1 | /* |
2 | * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | */ |
23 | |
24 | #include "precompiled.hpp" |
25 | #include "gc/z/zCollectedHeap.hpp" |
26 | #include "gc/z/zDirector.hpp" |
27 | #include "gc/z/zHeap.inline.hpp" |
28 | #include "gc/z/zStat.hpp" |
29 | #include "gc/z/zUtils.hpp" |
30 | #include "logging/log.hpp" |
31 | |
32 | const double ZDirector::one_in_1000 = 3.290527; |
33 | |
34 | ZDirector::ZDirector() : |
35 | _metronome(ZStatAllocRate::sample_hz) { |
36 | set_name("ZDirector" ); |
37 | create_and_start(); |
38 | } |
39 | |
40 | void ZDirector::sample_allocation_rate() const { |
41 | // Sample allocation rate. This is needed by rule_allocation_rate() |
42 | // below to estimate the time we have until we run out of memory. |
43 | const double bytes_per_second = ZStatAllocRate::sample_and_reset(); |
44 | |
45 | log_debug(gc, alloc)("Allocation Rate: %.3fMB/s, Avg: %.3f(+/-%.3f)MB/s" , |
46 | bytes_per_second / M, |
47 | ZStatAllocRate::avg() / M, |
48 | ZStatAllocRate::avg_sd() / M); |
49 | } |
50 | |
51 | bool ZDirector::is_first() const { |
52 | return ZStatCycle::ncycles() == 0; |
53 | } |
54 | |
55 | bool ZDirector::is_warm() const { |
56 | return ZStatCycle::ncycles() >= 3; |
57 | } |
58 | |
59 | bool ZDirector::rule_timer() const { |
60 | if (ZCollectionInterval == 0) { |
61 | // Rule disabled |
62 | return false; |
63 | } |
64 | |
65 | // Perform GC if timer has expired. |
66 | const double time_since_last_gc = ZStatCycle::time_since_last(); |
67 | const double time_until_gc = ZCollectionInterval - time_since_last_gc; |
68 | |
69 | log_debug(gc, director)("Rule: Timer, Interval: %us, TimeUntilGC: %.3lfs" , |
70 | ZCollectionInterval, time_until_gc); |
71 | |
72 | return time_until_gc <= 0; |
73 | } |
74 | |
75 | bool ZDirector::rule_warmup() const { |
76 | if (is_warm()) { |
77 | // Rule disabled |
78 | return false; |
79 | } |
80 | |
81 | // Perform GC if heap usage passes 10/20/30% and no other GC has been |
82 | // performed yet. This allows us to get some early samples of the GC |
83 | // duration, which is needed by the other rules. |
84 | const size_t max_capacity = ZHeap::heap()->soft_max_capacity(); |
85 | const size_t used = ZHeap::heap()->used(); |
86 | const double used_threshold_percent = (ZStatCycle::ncycles() + 1) * 0.1; |
87 | const size_t used_threshold = max_capacity * used_threshold_percent; |
88 | |
89 | log_debug(gc, director)("Rule: Warmup %.0f%%, Used: " SIZE_FORMAT "MB, UsedThreshold: " SIZE_FORMAT "MB" , |
90 | used_threshold_percent * 100, used / M, used_threshold / M); |
91 | |
92 | return used >= used_threshold; |
93 | } |
94 | |
95 | bool ZDirector::rule_allocation_rate() const { |
96 | if (is_first()) { |
97 | // Rule disabled |
98 | return false; |
99 | } |
100 | |
101 | // Perform GC if the estimated max allocation rate indicates that we |
102 | // will run out of memory. The estimated max allocation rate is based |
103 | // on the moving average of the sampled allocation rate plus a safety |
104 | // margin based on variations in the allocation rate and unforeseen |
105 | // allocation spikes. |
106 | |
107 | // Calculate amount of free memory available to Java threads. Note that |
108 | // the heap reserve is not available to Java threads and is therefore not |
109 | // considered part of the free memory. |
110 | const size_t max_capacity = ZHeap::heap()->soft_max_capacity(); |
111 | const size_t max_reserve = ZHeap::heap()->max_reserve(); |
112 | const size_t used = ZHeap::heap()->used(); |
113 | const size_t free_with_reserve = max_capacity - MIN2(max_capacity, used); |
114 | const size_t free = free_with_reserve - MIN2(free_with_reserve, max_reserve); |
115 | |
116 | // Calculate time until OOM given the max allocation rate and the amount |
117 | // of free memory. The allocation rate is a moving average and we multiply |
118 | // that with an allocation spike tolerance factor to guard against unforeseen |
119 | // phase changes in the allocate rate. We then add ~3.3 sigma to account for |
120 | // the allocation rate variance, which means the probability is 1 in 1000 |
121 | // that a sample is outside of the confidence interval. |
122 | const double max_alloc_rate = (ZStatAllocRate::avg() * ZAllocationSpikeTolerance) + (ZStatAllocRate::avg_sd() * one_in_1000); |
123 | const double time_until_oom = free / (max_alloc_rate + 1.0); // Plus 1.0B/s to avoid division by zero |
124 | |
125 | // Calculate max duration of a GC cycle. The duration of GC is a moving |
126 | // average, we add ~3.3 sigma to account for the GC duration variance. |
127 | const AbsSeq& duration_of_gc = ZStatCycle::normalized_duration(); |
128 | const double max_duration_of_gc = duration_of_gc.davg() + (duration_of_gc.dsd() * one_in_1000); |
129 | |
130 | // Calculate time until GC given the time until OOM and max duration of GC. |
131 | // We also deduct the sample interval, so that we don't overshoot the target |
132 | // time and end up starting the GC too late in the next interval. |
133 | const double sample_interval = 1.0 / ZStatAllocRate::sample_hz; |
134 | const double time_until_gc = time_until_oom - max_duration_of_gc - sample_interval; |
135 | |
136 | log_debug(gc, director)("Rule: Allocation Rate, MaxAllocRate: %.3lfMB/s, Free: " SIZE_FORMAT "MB, MaxDurationOfGC: %.3lfs, TimeUntilGC: %.3lfs" , |
137 | max_alloc_rate / M, free / M, max_duration_of_gc, time_until_gc); |
138 | |
139 | return time_until_gc <= 0; |
140 | } |
141 | |
142 | bool ZDirector::rule_proactive() const { |
143 | if (!ZProactive || !is_warm()) { |
144 | // Rule disabled |
145 | return false; |
146 | } |
147 | |
148 | // Perform GC if the impact of doing so, in terms of application throughput |
149 | // reduction, is considered acceptable. This rule allows us to keep the heap |
150 | // size down and allow reference processing to happen even when we have a lot |
151 | // of free space on the heap. |
152 | |
153 | // Only consider doing a proactive GC if the heap usage has grown by at least |
154 | // 10% of the max capacity since the previous GC, or more than 5 minutes has |
155 | // passed since the previous GC. This helps avoid superfluous GCs when running |
156 | // applications with very low allocation rate. |
157 | const size_t used_after_last_gc = ZStatHeap::used_at_relocate_end(); |
158 | const size_t used_increase_threshold = ZHeap::heap()->soft_max_capacity() * 0.10; // 10% |
159 | const size_t used_threshold = used_after_last_gc + used_increase_threshold; |
160 | const size_t used = ZHeap::heap()->used(); |
161 | const double time_since_last_gc = ZStatCycle::time_since_last(); |
162 | const double time_since_last_gc_threshold = 5 * 60; // 5 minutes |
163 | if (used < used_threshold && time_since_last_gc < time_since_last_gc_threshold) { |
164 | // Don't even consider doing a proactive GC |
165 | log_debug(gc, director)("Rule: Proactive, UsedUntilEnabled: " SIZE_FORMAT "MB, TimeUntilEnabled: %.3lfs" , |
166 | (used_threshold - used) / M, |
167 | time_since_last_gc_threshold - time_since_last_gc); |
168 | return false; |
169 | } |
170 | |
171 | const double assumed_throughput_drop_during_gc = 0.50; // 50% |
172 | const double acceptable_throughput_drop = 0.01; // 1% |
173 | const AbsSeq& duration_of_gc = ZStatCycle::normalized_duration(); |
174 | const double max_duration_of_gc = duration_of_gc.davg() + (duration_of_gc.dsd() * one_in_1000); |
175 | const double acceptable_gc_interval = max_duration_of_gc * ((assumed_throughput_drop_during_gc / acceptable_throughput_drop) - 1.0); |
176 | const double time_until_gc = acceptable_gc_interval - time_since_last_gc; |
177 | |
178 | log_debug(gc, director)("Rule: Proactive, AcceptableGCInterval: %.3lfs, TimeSinceLastGC: %.3lfs, TimeUntilGC: %.3lfs" , |
179 | acceptable_gc_interval, time_since_last_gc, time_until_gc); |
180 | |
181 | return time_until_gc <= 0; |
182 | } |
183 | |
184 | bool ZDirector::rule_high_usage() const { |
185 | // Perform GC if the amount of free memory is 5% or less. This is a preventive |
186 | // meassure in the case where the application has a very low allocation rate, |
187 | // such that the allocation rate rule doesn't trigger, but the amount of free |
188 | // memory is still slowly but surely heading towards zero. In this situation, |
189 | // we start a GC cycle to avoid a potential allocation stall later. |
190 | |
191 | // Calculate amount of free memory available to Java threads. Note that |
192 | // the heap reserve is not available to Java threads and is therefore not |
193 | // considered part of the free memory. |
194 | const size_t max_capacity = ZHeap::heap()->soft_max_capacity(); |
195 | const size_t max_reserve = ZHeap::heap()->max_reserve(); |
196 | const size_t used = ZHeap::heap()->used(); |
197 | const size_t free_with_reserve = max_capacity - used; |
198 | const size_t free = free_with_reserve - MIN2(free_with_reserve, max_reserve); |
199 | const double free_percent = percent_of(free, max_capacity); |
200 | |
201 | log_debug(gc, director)("Rule: High Usage, Free: " SIZE_FORMAT "MB(%.1lf%%)" , |
202 | free / M, free_percent); |
203 | |
204 | return free_percent <= 5.0; |
205 | } |
206 | |
207 | GCCause::Cause ZDirector::make_gc_decision() const { |
208 | // Rule 0: Timer |
209 | if (rule_timer()) { |
210 | return GCCause::_z_timer; |
211 | } |
212 | |
213 | // Rule 1: Warmup |
214 | if (rule_warmup()) { |
215 | return GCCause::_z_warmup; |
216 | } |
217 | |
218 | // Rule 2: Allocation rate |
219 | if (rule_allocation_rate()) { |
220 | return GCCause::_z_allocation_rate; |
221 | } |
222 | |
223 | // Rule 3: Proactive |
224 | if (rule_proactive()) { |
225 | return GCCause::_z_proactive; |
226 | } |
227 | |
228 | // Rule 4: High usage |
229 | if (rule_high_usage()) { |
230 | return GCCause::_z_high_usage; |
231 | } |
232 | |
233 | // No GC |
234 | return GCCause::_no_gc; |
235 | } |
236 | |
237 | void ZDirector::run_service() { |
238 | // Main loop |
239 | while (_metronome.wait_for_tick()) { |
240 | sample_allocation_rate(); |
241 | const GCCause::Cause cause = make_gc_decision(); |
242 | if (cause != GCCause::_no_gc) { |
243 | ZCollectedHeap::heap()->collect(cause); |
244 | } |
245 | } |
246 | } |
247 | |
248 | void ZDirector::stop_service() { |
249 | _metronome.stop(); |
250 | } |
251 | |