| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP |
| 26 | #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP |
| 27 | |
| 28 | #include "utilities/compilerWarnings.hpp" |
| 29 | #include "utilities/debug.hpp" |
| 30 | #include "utilities/macros.hpp" |
| 31 | |
| 32 | #include COMPILER_HEADER(utilities/globalDefinitions) |
| 33 | |
| 34 | // Defaults for macros that might be defined per compiler. |
| 35 | #ifndef NOINLINE |
| 36 | #define NOINLINE |
| 37 | #endif |
| 38 | #ifndef ALWAYSINLINE |
| 39 | #define ALWAYSINLINE inline |
| 40 | #endif |
| 41 | |
| 42 | #ifndef ATTRIBUTE_ALIGNED |
| 43 | #define ATTRIBUTE_ALIGNED(x) |
| 44 | #endif |
| 45 | |
| 46 | // These are #defines to selectively turn on/off the Print(Opto)Assembly |
| 47 | // capabilities. Choices should be led by a tradeoff between |
| 48 | // code size and improved supportability. |
| 49 | // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well |
| 50 | // to have a fallback in case hsdis is not available. |
| 51 | #if defined(PRODUCT) |
| 52 | #define SUPPORT_ABSTRACT_ASSEMBLY |
| 53 | #define SUPPORT_ASSEMBLY |
| 54 | #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing. |
| 55 | #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty. |
| 56 | #else |
| 57 | #define SUPPORT_ABSTRACT_ASSEMBLY |
| 58 | #define SUPPORT_ASSEMBLY |
| 59 | #define SUPPORT_OPTO_ASSEMBLY |
| 60 | #define SUPPORT_DATA_STRUCTS |
| 61 | #endif |
| 62 | #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY) |
| 63 | #define SUPPORT_ABSTRACT_ASSEMBLY |
| 64 | #endif |
| 65 | |
| 66 | // This file holds all globally used constants & types, class (forward) |
| 67 | // declarations and a few frequently used utility functions. |
| 68 | |
| 69 | //---------------------------------------------------------------------------------------------------- |
| 70 | // Printf-style formatters for fixed- and variable-width types as pointers and |
| 71 | // integers. These are derived from the definitions in inttypes.h. If the platform |
| 72 | // doesn't provide appropriate definitions, they should be provided in |
| 73 | // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) |
| 74 | |
| 75 | #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") |
| 76 | |
| 77 | // Format 32-bit quantities. |
| 78 | #define INT32_FORMAT "%" PRId32 |
| 79 | #define UINT32_FORMAT "%" PRIu32 |
| 80 | #define INT32_FORMAT_W(width) "%" #width PRId32 |
| 81 | #define UINT32_FORMAT_W(width) "%" #width PRIu32 |
| 82 | |
| 83 | #define PTR32_FORMAT "0x%08" PRIx32 |
| 84 | #define PTR32_FORMAT_W(width) "0x%" #width PRIx32 |
| 85 | |
| 86 | // Format 64-bit quantities. |
| 87 | #define INT64_FORMAT "%" PRId64 |
| 88 | #define UINT64_FORMAT "%" PRIu64 |
| 89 | #define UINT64_FORMAT_X "%" PRIx64 |
| 90 | #define INT64_FORMAT_W(width) "%" #width PRId64 |
| 91 | #define UINT64_FORMAT_W(width) "%" #width PRIu64 |
| 92 | #define UINT64_FORMAT_X_W(width) "%" #width PRIx64 |
| 93 | |
| 94 | #define PTR64_FORMAT "0x%016" PRIx64 |
| 95 | |
| 96 | // Format jlong, if necessary |
| 97 | #ifndef JLONG_FORMAT |
| 98 | #define JLONG_FORMAT INT64_FORMAT |
| 99 | #endif |
| 100 | #ifndef JLONG_FORMAT_W |
| 101 | #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width) |
| 102 | #endif |
| 103 | #ifndef JULONG_FORMAT |
| 104 | #define JULONG_FORMAT UINT64_FORMAT |
| 105 | #endif |
| 106 | #ifndef JULONG_FORMAT_X |
| 107 | #define JULONG_FORMAT_X UINT64_FORMAT_X |
| 108 | #endif |
| 109 | |
| 110 | // Format pointers which change size between 32- and 64-bit. |
| 111 | #ifdef _LP64 |
| 112 | #define INTPTR_FORMAT "0x%016" PRIxPTR |
| 113 | #define PTR_FORMAT "0x%016" PRIxPTR |
| 114 | #else // !_LP64 |
| 115 | #define INTPTR_FORMAT "0x%08" PRIxPTR |
| 116 | #define PTR_FORMAT "0x%08" PRIxPTR |
| 117 | #endif // _LP64 |
| 118 | |
| 119 | // Format pointers without leading zeros |
| 120 | #define INTPTRNZ_FORMAT "0x%" PRIxPTR |
| 121 | |
| 122 | #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR |
| 123 | |
| 124 | #define SSIZE_FORMAT "%" PRIdPTR |
| 125 | #define SIZE_FORMAT "%" PRIuPTR |
| 126 | #define SIZE_FORMAT_HEX "0x%" PRIxPTR |
| 127 | #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR |
| 128 | #define SIZE_FORMAT_W(width) "%" #width PRIuPTR |
| 129 | #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR |
| 130 | |
| 131 | #define INTX_FORMAT "%" PRIdPTR |
| 132 | #define UINTX_FORMAT "%" PRIuPTR |
| 133 | #define INTX_FORMAT_W(width) "%" #width PRIdPTR |
| 134 | #define UINTX_FORMAT_W(width) "%" #width PRIuPTR |
| 135 | |
| 136 | //---------------------------------------------------------------------------------------------------- |
| 137 | // Constants |
| 138 | |
| 139 | const int LogBytesPerShort = 1; |
| 140 | const int LogBytesPerInt = 2; |
| 141 | #ifdef _LP64 |
| 142 | const int LogBytesPerWord = 3; |
| 143 | #else |
| 144 | const int LogBytesPerWord = 2; |
| 145 | #endif |
| 146 | const int LogBytesPerLong = 3; |
| 147 | |
| 148 | const int BytesPerShort = 1 << LogBytesPerShort; |
| 149 | const int BytesPerInt = 1 << LogBytesPerInt; |
| 150 | const int BytesPerWord = 1 << LogBytesPerWord; |
| 151 | const int BytesPerLong = 1 << LogBytesPerLong; |
| 152 | |
| 153 | const int LogBitsPerByte = 3; |
| 154 | const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; |
| 155 | const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; |
| 156 | const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; |
| 157 | const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; |
| 158 | |
| 159 | const int BitsPerByte = 1 << LogBitsPerByte; |
| 160 | const int BitsPerShort = 1 << LogBitsPerShort; |
| 161 | const int BitsPerInt = 1 << LogBitsPerInt; |
| 162 | const int BitsPerWord = 1 << LogBitsPerWord; |
| 163 | const int BitsPerLong = 1 << LogBitsPerLong; |
| 164 | |
| 165 | const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; |
| 166 | const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; |
| 167 | |
| 168 | const int WordsPerLong = 2; // Number of stack entries for longs |
| 169 | |
| 170 | const int oopSize = sizeof(char*); // Full-width oop |
| 171 | extern int heapOopSize; // Oop within a java object |
| 172 | const int wordSize = sizeof(char*); |
| 173 | const int longSize = sizeof(jlong); |
| 174 | const int jintSize = sizeof(jint); |
| 175 | const int size_tSize = sizeof(size_t); |
| 176 | |
| 177 | const int BytesPerOop = BytesPerWord; // Full-width oop |
| 178 | |
| 179 | extern int LogBytesPerHeapOop; // Oop within a java object |
| 180 | extern int LogBitsPerHeapOop; |
| 181 | extern int BytesPerHeapOop; |
| 182 | extern int BitsPerHeapOop; |
| 183 | |
| 184 | const int BitsPerJavaInteger = 32; |
| 185 | const int BitsPerJavaLong = 64; |
| 186 | const int BitsPerSize_t = size_tSize * BitsPerByte; |
| 187 | |
| 188 | // Size of a char[] needed to represent a jint as a string in decimal. |
| 189 | const int jintAsStringSize = 12; |
| 190 | |
| 191 | // An opaque type, so that HeapWord* can be a generic pointer into the heap. |
| 192 | // We require that object sizes be measured in units of heap words (e.g. |
| 193 | // pointer-sized values), so that given HeapWord* hw, |
| 194 | // hw += oop(hw)->foo(); |
| 195 | // works, where foo is a method (like size or scavenge) that returns the |
| 196 | // object size. |
| 197 | class HeapWordImpl; // Opaque, never defined. |
| 198 | typedef HeapWordImpl* HeapWord; |
| 199 | |
| 200 | // Analogous opaque struct for metadata allocated from metaspaces. |
| 201 | class MetaWordImpl; // Opaque, never defined. |
| 202 | typedef MetaWordImpl* MetaWord; |
| 203 | |
| 204 | // HeapWordSize must be 2^LogHeapWordSize. |
| 205 | const int HeapWordSize = sizeof(HeapWord); |
| 206 | #ifdef _LP64 |
| 207 | const int LogHeapWordSize = 3; |
| 208 | #else |
| 209 | const int LogHeapWordSize = 2; |
| 210 | #endif |
| 211 | const int HeapWordsPerLong = BytesPerLong / HeapWordSize; |
| 212 | const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; |
| 213 | |
| 214 | // The minimum number of native machine words necessary to contain "byte_size" |
| 215 | // bytes. |
| 216 | inline size_t heap_word_size(size_t byte_size) { |
| 217 | return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; |
| 218 | } |
| 219 | |
| 220 | //------------------------------------------- |
| 221 | // Constant for jlong (standardized by C++11) |
| 222 | |
| 223 | // Build a 64bit integer constant |
| 224 | #define CONST64(x) (x ## LL) |
| 225 | #define UCONST64(x) (x ## ULL) |
| 226 | |
| 227 | const jlong min_jlong = CONST64(0x8000000000000000); |
| 228 | const jlong max_jlong = CONST64(0x7fffffffffffffff); |
| 229 | |
| 230 | const size_t K = 1024; |
| 231 | const size_t M = K*K; |
| 232 | const size_t G = M*K; |
| 233 | const size_t HWperKB = K / sizeof(HeapWord); |
| 234 | |
| 235 | // Constants for converting from a base unit to milli-base units. For |
| 236 | // example from seconds to milliseconds and microseconds |
| 237 | |
| 238 | const int MILLIUNITS = 1000; // milli units per base unit |
| 239 | const int MICROUNITS = 1000000; // micro units per base unit |
| 240 | const int NANOUNITS = 1000000000; // nano units per base unit |
| 241 | |
| 242 | const jlong NANOSECS_PER_SEC = CONST64(1000000000); |
| 243 | const jint NANOSECS_PER_MILLISEC = 1000000; |
| 244 | |
| 245 | // Proper units routines try to maintain at least three significant digits. |
| 246 | // In worst case, it would print five significant digits with lower prefix. |
| 247 | // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, |
| 248 | // and therefore we need to be careful. |
| 249 | |
| 250 | inline const char* proper_unit_for_byte_size(size_t s) { |
| 251 | #ifdef _LP64 |
| 252 | if (s >= 100*G) { |
| 253 | return "G" ; |
| 254 | } |
| 255 | #endif |
| 256 | if (s >= 100*M) { |
| 257 | return "M" ; |
| 258 | } else if (s >= 100*K) { |
| 259 | return "K" ; |
| 260 | } else { |
| 261 | return "B" ; |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | template <class T> |
| 266 | inline T byte_size_in_proper_unit(T s) { |
| 267 | #ifdef _LP64 |
| 268 | if (s >= 100*G) { |
| 269 | return (T)(s/G); |
| 270 | } |
| 271 | #endif |
| 272 | if (s >= 100*M) { |
| 273 | return (T)(s/M); |
| 274 | } else if (s >= 100*K) { |
| 275 | return (T)(s/K); |
| 276 | } else { |
| 277 | return s; |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | inline const char* exact_unit_for_byte_size(size_t s) { |
| 282 | #ifdef _LP64 |
| 283 | if (s >= G && (s % G) == 0) { |
| 284 | return "G" ; |
| 285 | } |
| 286 | #endif |
| 287 | if (s >= M && (s % M) == 0) { |
| 288 | return "M" ; |
| 289 | } |
| 290 | if (s >= K && (s % K) == 0) { |
| 291 | return "K" ; |
| 292 | } |
| 293 | return "B" ; |
| 294 | } |
| 295 | |
| 296 | inline size_t byte_size_in_exact_unit(size_t s) { |
| 297 | #ifdef _LP64 |
| 298 | if (s >= G && (s % G) == 0) { |
| 299 | return s / G; |
| 300 | } |
| 301 | #endif |
| 302 | if (s >= M && (s % M) == 0) { |
| 303 | return s / M; |
| 304 | } |
| 305 | if (s >= K && (s % K) == 0) { |
| 306 | return s / K; |
| 307 | } |
| 308 | return s; |
| 309 | } |
| 310 | |
| 311 | //---------------------------------------------------------------------------------------------------- |
| 312 | // VM type definitions |
| 313 | |
| 314 | // intx and uintx are the 'extended' int and 'extended' unsigned int types; |
| 315 | // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. |
| 316 | |
| 317 | typedef intptr_t intx; |
| 318 | typedef uintptr_t uintx; |
| 319 | |
| 320 | const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); |
| 321 | const intx max_intx = (uintx)min_intx - 1; |
| 322 | const uintx max_uintx = (uintx)-1; |
| 323 | |
| 324 | // Table of values: |
| 325 | // sizeof intx 4 8 |
| 326 | // min_intx 0x80000000 0x8000000000000000 |
| 327 | // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF |
| 328 | // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF |
| 329 | |
| 330 | typedef unsigned int uint; NEEDS_CLEANUP |
| 331 | |
| 332 | |
| 333 | //---------------------------------------------------------------------------------------------------- |
| 334 | // Java type definitions |
| 335 | |
| 336 | // All kinds of 'plain' byte addresses |
| 337 | typedef signed char s_char; |
| 338 | typedef unsigned char u_char; |
| 339 | typedef u_char* address; |
| 340 | typedef uintptr_t address_word; // unsigned integer which will hold a pointer |
| 341 | // except for some implementations of a C++ |
| 342 | // linkage pointer to function. Should never |
| 343 | // need one of those to be placed in this |
| 344 | // type anyway. |
| 345 | |
| 346 | // Utility functions to "portably" (?) bit twiddle pointers |
| 347 | // Where portable means keep ANSI C++ compilers quiet |
| 348 | |
| 349 | inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } |
| 350 | inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } |
| 351 | |
| 352 | // Utility functions to "portably" make cast to/from function pointers. |
| 353 | |
| 354 | inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } |
| 355 | inline address_word castable_address(address x) { return address_word(x) ; } |
| 356 | inline address_word castable_address(void* x) { return address_word(x) ; } |
| 357 | |
| 358 | // Pointer subtraction. |
| 359 | // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have |
| 360 | // the range we might need to find differences from one end of the heap |
| 361 | // to the other. |
| 362 | // A typical use might be: |
| 363 | // if (pointer_delta(end(), top()) >= size) { |
| 364 | // // enough room for an object of size |
| 365 | // ... |
| 366 | // and then additions like |
| 367 | // ... top() + size ... |
| 368 | // are safe because we know that top() is at least size below end(). |
| 369 | inline size_t pointer_delta(const volatile void* left, |
| 370 | const volatile void* right, |
| 371 | size_t element_size) { |
| 372 | return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; |
| 373 | } |
| 374 | |
| 375 | // A version specialized for HeapWord*'s. |
| 376 | inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { |
| 377 | return pointer_delta(left, right, sizeof(HeapWord)); |
| 378 | } |
| 379 | // A version specialized for MetaWord*'s. |
| 380 | inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { |
| 381 | return pointer_delta(left, right, sizeof(MetaWord)); |
| 382 | } |
| 383 | |
| 384 | // |
| 385 | // ANSI C++ does not allow casting from one pointer type to a function pointer |
| 386 | // directly without at best a warning. This macro accomplishes it silently |
| 387 | // In every case that is present at this point the value be cast is a pointer |
| 388 | // to a C linkage function. In some case the type used for the cast reflects |
| 389 | // that linkage and a picky compiler would not complain. In other cases because |
| 390 | // there is no convenient place to place a typedef with extern C linkage (i.e |
| 391 | // a platform dependent header file) it doesn't. At this point no compiler seems |
| 392 | // picky enough to catch these instances (which are few). It is possible that |
| 393 | // using templates could fix these for all cases. This use of templates is likely |
| 394 | // so far from the middle of the road that it is likely to be problematic in |
| 395 | // many C++ compilers. |
| 396 | // |
| 397 | #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) |
| 398 | #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) |
| 399 | |
| 400 | // Unsigned byte types for os and stream.hpp |
| 401 | |
| 402 | // Unsigned one, two, four and eigth byte quantities used for describing |
| 403 | // the .class file format. See JVM book chapter 4. |
| 404 | |
| 405 | typedef jubyte u1; |
| 406 | typedef jushort u2; |
| 407 | typedef juint u4; |
| 408 | typedef julong u8; |
| 409 | |
| 410 | const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte |
| 411 | const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort |
| 412 | const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint |
| 413 | const julong max_julong = (julong)-1; // 0xFF....FF largest julong |
| 414 | |
| 415 | typedef jbyte s1; |
| 416 | typedef jshort s2; |
| 417 | typedef jint s4; |
| 418 | typedef jlong s8; |
| 419 | |
| 420 | const jbyte min_jbyte = -(1 << 7); // smallest jbyte |
| 421 | const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte |
| 422 | const jshort min_jshort = -(1 << 15); // smallest jshort |
| 423 | const jshort max_jshort = (1 << 15) - 1; // largest jshort |
| 424 | |
| 425 | const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint |
| 426 | const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint |
| 427 | |
| 428 | //---------------------------------------------------------------------------------------------------- |
| 429 | // JVM spec restrictions |
| 430 | |
| 431 | const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) |
| 432 | |
| 433 | //---------------------------------------------------------------------------------------------------- |
| 434 | // Object alignment, in units of HeapWords. |
| 435 | // |
| 436 | // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and |
| 437 | // reference fields can be naturally aligned. |
| 438 | |
| 439 | extern int MinObjAlignment; |
| 440 | extern int MinObjAlignmentInBytes; |
| 441 | extern int MinObjAlignmentInBytesMask; |
| 442 | |
| 443 | extern int LogMinObjAlignment; |
| 444 | extern int LogMinObjAlignmentInBytes; |
| 445 | |
| 446 | const int LogKlassAlignmentInBytes = 3; |
| 447 | const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; |
| 448 | const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; |
| 449 | const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; |
| 450 | |
| 451 | // Maximal size of heap where unscaled compression can be used. Also upper bound |
| 452 | // for heap placement: 4GB. |
| 453 | const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); |
| 454 | // Maximal size of heap where compressed oops can be used. Also upper bound for heap |
| 455 | // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. |
| 456 | extern uint64_t OopEncodingHeapMax; |
| 457 | |
| 458 | // Maximal size of compressed class space. Above this limit compression is not possible. |
| 459 | // Also upper bound for placement of zero based class space. (Class space is further limited |
| 460 | // to be < 3G, see arguments.cpp.) |
| 461 | const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; |
| 462 | |
| 463 | // Machine dependent stuff |
| 464 | |
| 465 | // The maximum size of the code cache. Can be overridden by targets. |
| 466 | #define CODE_CACHE_SIZE_LIMIT (2*G) |
| 467 | // Allow targets to reduce the default size of the code cache. |
| 468 | #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT |
| 469 | |
| 470 | #include CPU_HEADER(globalDefinitions) |
| 471 | |
| 472 | // To assure the IRIW property on processors that are not multiple copy |
| 473 | // atomic, sync instructions must be issued between volatile reads to |
| 474 | // assure their ordering, instead of after volatile stores. |
| 475 | // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" |
| 476 | // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) |
| 477 | #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC |
| 478 | const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true; |
| 479 | #else |
| 480 | const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; |
| 481 | #endif |
| 482 | |
| 483 | // The expected size in bytes of a cache line, used to pad data structures. |
| 484 | #ifndef DEFAULT_CACHE_LINE_SIZE |
| 485 | #define DEFAULT_CACHE_LINE_SIZE 64 |
| 486 | #endif |
| 487 | |
| 488 | |
| 489 | //---------------------------------------------------------------------------------------------------- |
| 490 | // Utility macros for compilers |
| 491 | // used to silence compiler warnings |
| 492 | |
| 493 | #define Unused_Variable(var) var |
| 494 | |
| 495 | |
| 496 | //---------------------------------------------------------------------------------------------------- |
| 497 | // Miscellaneous |
| 498 | |
| 499 | // 6302670 Eliminate Hotspot __fabsf dependency |
| 500 | // All fabs() callers should call this function instead, which will implicitly |
| 501 | // convert the operand to double, avoiding a dependency on __fabsf which |
| 502 | // doesn't exist in early versions of Solaris 8. |
| 503 | inline double fabsd(double value) { |
| 504 | return fabs(value); |
| 505 | } |
| 506 | |
| 507 | // Returns numerator/denominator as percentage value from 0 to 100. If denominator |
| 508 | // is zero, return 0.0. |
| 509 | template<typename T> |
| 510 | inline double percent_of(T numerator, T denominator) { |
| 511 | return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0; |
| 512 | } |
| 513 | |
| 514 | //---------------------------------------------------------------------------------------------------- |
| 515 | // Special casts |
| 516 | // Cast floats into same-size integers and vice-versa w/o changing bit-pattern |
| 517 | typedef union { |
| 518 | jfloat f; |
| 519 | jint i; |
| 520 | } FloatIntConv; |
| 521 | |
| 522 | typedef union { |
| 523 | jdouble d; |
| 524 | jlong l; |
| 525 | julong ul; |
| 526 | } DoubleLongConv; |
| 527 | |
| 528 | inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } |
| 529 | inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } |
| 530 | |
| 531 | inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } |
| 532 | inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } |
| 533 | inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } |
| 534 | |
| 535 | inline jint low (jlong value) { return jint(value); } |
| 536 | inline jint high(jlong value) { return jint(value >> 32); } |
| 537 | |
| 538 | // the fancy casts are a hopefully portable way |
| 539 | // to do unsigned 32 to 64 bit type conversion |
| 540 | inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; |
| 541 | *value |= (jlong)(julong)(juint)low; } |
| 542 | |
| 543 | inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; |
| 544 | *value |= (jlong)high << 32; } |
| 545 | |
| 546 | inline jlong jlong_from(jint h, jint l) { |
| 547 | jlong result = 0; // initialization to avoid warning |
| 548 | set_high(&result, h); |
| 549 | set_low(&result, l); |
| 550 | return result; |
| 551 | } |
| 552 | |
| 553 | union jlong_accessor { |
| 554 | jint words[2]; |
| 555 | jlong long_value; |
| 556 | }; |
| 557 | |
| 558 | void basic_types_init(); // cannot define here; uses assert |
| 559 | |
| 560 | |
| 561 | // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java |
| 562 | enum BasicType { |
| 563 | T_BOOLEAN = 4, |
| 564 | T_CHAR = 5, |
| 565 | T_FLOAT = 6, |
| 566 | T_DOUBLE = 7, |
| 567 | T_BYTE = 8, |
| 568 | T_SHORT = 9, |
| 569 | T_INT = 10, |
| 570 | T_LONG = 11, |
| 571 | T_OBJECT = 12, |
| 572 | T_ARRAY = 13, |
| 573 | T_VOID = 14, |
| 574 | T_ADDRESS = 15, |
| 575 | T_NARROWOOP = 16, |
| 576 | T_METADATA = 17, |
| 577 | T_NARROWKLASS = 18, |
| 578 | T_CONFLICT = 19, // for stack value type with conflicting contents |
| 579 | T_ILLEGAL = 99 |
| 580 | }; |
| 581 | |
| 582 | inline bool is_java_primitive(BasicType t) { |
| 583 | return T_BOOLEAN <= t && t <= T_LONG; |
| 584 | } |
| 585 | |
| 586 | inline bool is_subword_type(BasicType t) { |
| 587 | // these guys are processed exactly like T_INT in calling sequences: |
| 588 | return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); |
| 589 | } |
| 590 | |
| 591 | inline bool is_signed_subword_type(BasicType t) { |
| 592 | return (t == T_BYTE || t == T_SHORT); |
| 593 | } |
| 594 | |
| 595 | inline bool is_reference_type(BasicType t) { |
| 596 | return (t == T_OBJECT || t == T_ARRAY); |
| 597 | } |
| 598 | |
| 599 | // Convert a char from a classfile signature to a BasicType |
| 600 | inline BasicType char2type(char c) { |
| 601 | switch( c ) { |
| 602 | case 'B': return T_BYTE; |
| 603 | case 'C': return T_CHAR; |
| 604 | case 'D': return T_DOUBLE; |
| 605 | case 'F': return T_FLOAT; |
| 606 | case 'I': return T_INT; |
| 607 | case 'J': return T_LONG; |
| 608 | case 'S': return T_SHORT; |
| 609 | case 'Z': return T_BOOLEAN; |
| 610 | case 'V': return T_VOID; |
| 611 | case 'L': return T_OBJECT; |
| 612 | case '[': return T_ARRAY; |
| 613 | } |
| 614 | return T_ILLEGAL; |
| 615 | } |
| 616 | |
| 617 | extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar |
| 618 | inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } |
| 619 | extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements |
| 620 | extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar |
| 621 | inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; } |
| 622 | extern BasicType name2type(const char* name); |
| 623 | |
| 624 | // Auxiliary math routines |
| 625 | // least common multiple |
| 626 | extern size_t lcm(size_t a, size_t b); |
| 627 | |
| 628 | |
| 629 | // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java |
| 630 | enum BasicTypeSize { |
| 631 | T_BOOLEAN_size = 1, |
| 632 | T_CHAR_size = 1, |
| 633 | T_FLOAT_size = 1, |
| 634 | T_DOUBLE_size = 2, |
| 635 | T_BYTE_size = 1, |
| 636 | T_SHORT_size = 1, |
| 637 | T_INT_size = 1, |
| 638 | T_LONG_size = 2, |
| 639 | T_OBJECT_size = 1, |
| 640 | T_ARRAY_size = 1, |
| 641 | T_NARROWOOP_size = 1, |
| 642 | T_NARROWKLASS_size = 1, |
| 643 | T_VOID_size = 0 |
| 644 | }; |
| 645 | |
| 646 | |
| 647 | // maps a BasicType to its instance field storage type: |
| 648 | // all sub-word integral types are widened to T_INT |
| 649 | extern BasicType type2field[T_CONFLICT+1]; |
| 650 | extern BasicType type2wfield[T_CONFLICT+1]; |
| 651 | |
| 652 | |
| 653 | // size in bytes |
| 654 | enum ArrayElementSize { |
| 655 | T_BOOLEAN_aelem_bytes = 1, |
| 656 | T_CHAR_aelem_bytes = 2, |
| 657 | T_FLOAT_aelem_bytes = 4, |
| 658 | T_DOUBLE_aelem_bytes = 8, |
| 659 | T_BYTE_aelem_bytes = 1, |
| 660 | T_SHORT_aelem_bytes = 2, |
| 661 | T_INT_aelem_bytes = 4, |
| 662 | T_LONG_aelem_bytes = 8, |
| 663 | #ifdef _LP64 |
| 664 | T_OBJECT_aelem_bytes = 8, |
| 665 | T_ARRAY_aelem_bytes = 8, |
| 666 | #else |
| 667 | T_OBJECT_aelem_bytes = 4, |
| 668 | T_ARRAY_aelem_bytes = 4, |
| 669 | #endif |
| 670 | T_NARROWOOP_aelem_bytes = 4, |
| 671 | T_NARROWKLASS_aelem_bytes = 4, |
| 672 | T_VOID_aelem_bytes = 0 |
| 673 | }; |
| 674 | |
| 675 | extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element |
| 676 | #ifdef ASSERT |
| 677 | extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts |
| 678 | #else |
| 679 | inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } |
| 680 | #endif |
| 681 | |
| 682 | |
| 683 | // JavaValue serves as a container for arbitrary Java values. |
| 684 | |
| 685 | class JavaValue { |
| 686 | |
| 687 | public: |
| 688 | typedef union JavaCallValue { |
| 689 | jfloat f; |
| 690 | jdouble d; |
| 691 | jint i; |
| 692 | jlong l; |
| 693 | jobject h; |
| 694 | } JavaCallValue; |
| 695 | |
| 696 | private: |
| 697 | BasicType _type; |
| 698 | JavaCallValue _value; |
| 699 | |
| 700 | public: |
| 701 | JavaValue(BasicType t = T_ILLEGAL) { _type = t; } |
| 702 | |
| 703 | JavaValue(jfloat value) { |
| 704 | _type = T_FLOAT; |
| 705 | _value.f = value; |
| 706 | } |
| 707 | |
| 708 | JavaValue(jdouble value) { |
| 709 | _type = T_DOUBLE; |
| 710 | _value.d = value; |
| 711 | } |
| 712 | |
| 713 | jfloat get_jfloat() const { return _value.f; } |
| 714 | jdouble get_jdouble() const { return _value.d; } |
| 715 | jint get_jint() const { return _value.i; } |
| 716 | jlong get_jlong() const { return _value.l; } |
| 717 | jobject get_jobject() const { return _value.h; } |
| 718 | JavaCallValue* get_value_addr() { return &_value; } |
| 719 | BasicType get_type() const { return _type; } |
| 720 | |
| 721 | void set_jfloat(jfloat f) { _value.f = f;} |
| 722 | void set_jdouble(jdouble d) { _value.d = d;} |
| 723 | void set_jint(jint i) { _value.i = i;} |
| 724 | void set_jlong(jlong l) { _value.l = l;} |
| 725 | void set_jobject(jobject h) { _value.h = h;} |
| 726 | void set_type(BasicType t) { _type = t; } |
| 727 | |
| 728 | jboolean get_jboolean() const { return (jboolean) (_value.i);} |
| 729 | jbyte get_jbyte() const { return (jbyte) (_value.i);} |
| 730 | jchar get_jchar() const { return (jchar) (_value.i);} |
| 731 | jshort get_jshort() const { return (jshort) (_value.i);} |
| 732 | |
| 733 | }; |
| 734 | |
| 735 | |
| 736 | #define STACK_BIAS 0 |
| 737 | // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff |
| 738 | // in order to extend the reach of the stack pointer. |
| 739 | #if defined(SPARC) && defined(_LP64) |
| 740 | #undef STACK_BIAS |
| 741 | #define STACK_BIAS 0x7ff |
| 742 | #endif |
| 743 | |
| 744 | |
| 745 | // TosState describes the top-of-stack state before and after the execution of |
| 746 | // a bytecode or method. The top-of-stack value may be cached in one or more CPU |
| 747 | // registers. The TosState corresponds to the 'machine representation' of this cached |
| 748 | // value. There's 4 states corresponding to the JAVA types int, long, float & double |
| 749 | // as well as a 5th state in case the top-of-stack value is actually on the top |
| 750 | // of stack (in memory) and thus not cached. The atos state corresponds to the itos |
| 751 | // state when it comes to machine representation but is used separately for (oop) |
| 752 | // type specific operations (e.g. verification code). |
| 753 | |
| 754 | enum TosState { // describes the tos cache contents |
| 755 | btos = 0, // byte, bool tos cached |
| 756 | ztos = 1, // byte, bool tos cached |
| 757 | ctos = 2, // char tos cached |
| 758 | stos = 3, // short tos cached |
| 759 | itos = 4, // int tos cached |
| 760 | ltos = 5, // long tos cached |
| 761 | ftos = 6, // float tos cached |
| 762 | dtos = 7, // double tos cached |
| 763 | atos = 8, // object cached |
| 764 | vtos = 9, // tos not cached |
| 765 | number_of_states, |
| 766 | ilgl // illegal state: should not occur |
| 767 | }; |
| 768 | |
| 769 | |
| 770 | inline TosState as_TosState(BasicType type) { |
| 771 | switch (type) { |
| 772 | case T_BYTE : return btos; |
| 773 | case T_BOOLEAN: return ztos; |
| 774 | case T_CHAR : return ctos; |
| 775 | case T_SHORT : return stos; |
| 776 | case T_INT : return itos; |
| 777 | case T_LONG : return ltos; |
| 778 | case T_FLOAT : return ftos; |
| 779 | case T_DOUBLE : return dtos; |
| 780 | case T_VOID : return vtos; |
| 781 | case T_ARRAY : // fall through |
| 782 | case T_OBJECT : return atos; |
| 783 | default : return ilgl; |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | inline BasicType as_BasicType(TosState state) { |
| 788 | switch (state) { |
| 789 | case btos : return T_BYTE; |
| 790 | case ztos : return T_BOOLEAN; |
| 791 | case ctos : return T_CHAR; |
| 792 | case stos : return T_SHORT; |
| 793 | case itos : return T_INT; |
| 794 | case ltos : return T_LONG; |
| 795 | case ftos : return T_FLOAT; |
| 796 | case dtos : return T_DOUBLE; |
| 797 | case atos : return T_OBJECT; |
| 798 | case vtos : return T_VOID; |
| 799 | default : return T_ILLEGAL; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | |
| 804 | // Helper function to convert BasicType info into TosState |
| 805 | // Note: Cannot define here as it uses global constant at the time being. |
| 806 | TosState as_TosState(BasicType type); |
| 807 | |
| 808 | |
| 809 | // JavaThreadState keeps track of which part of the code a thread is executing in. This |
| 810 | // information is needed by the safepoint code. |
| 811 | // |
| 812 | // There are 4 essential states: |
| 813 | // |
| 814 | // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) |
| 815 | // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles |
| 816 | // _thread_in_vm : Executing in the vm |
| 817 | // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) |
| 818 | // |
| 819 | // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in |
| 820 | // a transition from one state to another. These extra states makes it possible for the safepoint code to |
| 821 | // handle certain thread_states without having to suspend the thread - making the safepoint code faster. |
| 822 | // |
| 823 | // Given a state, the xxxx_trans state can always be found by adding 1. |
| 824 | // |
| 825 | enum JavaThreadState { |
| 826 | _thread_uninitialized = 0, // should never happen (missing initialization) |
| 827 | _thread_new = 2, // just starting up, i.e., in process of being initialized |
| 828 | _thread_new_trans = 3, // corresponding transition state (not used, included for completness) |
| 829 | _thread_in_native = 4, // running in native code |
| 830 | _thread_in_native_trans = 5, // corresponding transition state |
| 831 | _thread_in_vm = 6, // running in VM |
| 832 | _thread_in_vm_trans = 7, // corresponding transition state |
| 833 | _thread_in_Java = 8, // running in Java or in stub code |
| 834 | _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) |
| 835 | _thread_blocked = 10, // blocked in vm |
| 836 | _thread_blocked_trans = 11, // corresponding transition state |
| 837 | _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation |
| 838 | }; |
| 839 | |
| 840 | //---------------------------------------------------------------------------------------------------- |
| 841 | // Special constants for debugging |
| 842 | |
| 843 | const jint badInt = -3; // generic "bad int" value |
| 844 | const intptr_t badAddressVal = -2; // generic "bad address" value |
| 845 | const intptr_t badOopVal = -1; // generic "bad oop" value |
| 846 | const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC |
| 847 | const int badStackSegVal = 0xCA; // value used to zap stack segments |
| 848 | const int badHandleValue = 0xBC; // value used to zap vm handle area |
| 849 | const int badResourceValue = 0xAB; // value used to zap resource area |
| 850 | const int freeBlockPad = 0xBA; // value used to pad freed blocks. |
| 851 | const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. |
| 852 | const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk |
| 853 | const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC |
| 854 | const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC |
| 855 | const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation |
| 856 | const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation |
| 857 | |
| 858 | |
| 859 | // (These must be implemented as #defines because C++ compilers are |
| 860 | // not obligated to inline non-integral constants!) |
| 861 | #define badAddress ((address)::badAddressVal) |
| 862 | #define badOop (cast_to_oop(::badOopVal)) |
| 863 | #define badHeapWord (::badHeapWordVal) |
| 864 | |
| 865 | // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) |
| 866 | #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) |
| 867 | |
| 868 | //---------------------------------------------------------------------------------------------------- |
| 869 | // Utility functions for bitfield manipulations |
| 870 | |
| 871 | const intptr_t AllBits = ~0; // all bits set in a word |
| 872 | const intptr_t NoBits = 0; // no bits set in a word |
| 873 | const jlong NoLongBits = 0; // no bits set in a long |
| 874 | const intptr_t OneBit = 1; // only right_most bit set in a word |
| 875 | |
| 876 | // get a word with the n.th or the right-most or left-most n bits set |
| 877 | // (note: #define used only so that they can be used in enum constant definitions) |
| 878 | #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) |
| 879 | #define right_n_bits(n) (nth_bit(n) - 1) |
| 880 | #define left_n_bits(n) (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n)))) |
| 881 | |
| 882 | // bit-operations using a mask m |
| 883 | inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } |
| 884 | inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } |
| 885 | inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } |
| 886 | inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } |
| 887 | inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } |
| 888 | |
| 889 | // bit-operations using the n.th bit |
| 890 | inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } |
| 891 | inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } |
| 892 | inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } |
| 893 | |
| 894 | // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) |
| 895 | inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { |
| 896 | return mask_bits(x >> start_bit_no, right_n_bits(field_length)); |
| 897 | } |
| 898 | |
| 899 | |
| 900 | //---------------------------------------------------------------------------------------------------- |
| 901 | // Utility functions for integers |
| 902 | |
| 903 | // Avoid use of global min/max macros which may cause unwanted double |
| 904 | // evaluation of arguments. |
| 905 | #ifdef max |
| 906 | #undef max |
| 907 | #endif |
| 908 | |
| 909 | #ifdef min |
| 910 | #undef min |
| 911 | #endif |
| 912 | |
| 913 | // It is necessary to use templates here. Having normal overloaded |
| 914 | // functions does not work because it is necessary to provide both 32- |
| 915 | // and 64-bit overloaded functions, which does not work, and having |
| 916 | // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) |
| 917 | // will be even more error-prone than macros. |
| 918 | template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; } |
| 919 | template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; } |
| 920 | template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } |
| 921 | template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } |
| 922 | template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } |
| 923 | template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } |
| 924 | |
| 925 | template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } |
| 926 | |
| 927 | // true if x is a power of 2, false otherwise |
| 928 | inline bool is_power_of_2(intptr_t x) { |
| 929 | return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits)); |
| 930 | } |
| 931 | |
| 932 | // long version of is_power_of_2 |
| 933 | inline bool is_power_of_2_long(jlong x) { |
| 934 | return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits)); |
| 935 | } |
| 936 | |
| 937 | // Returns largest i such that 2^i <= x. |
| 938 | // If x == 0, the function returns -1. |
| 939 | inline int log2_intptr(uintptr_t x) { |
| 940 | int i = -1; |
| 941 | uintptr_t p = 1; |
| 942 | while (p != 0 && p <= x) { |
| 943 | // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) |
| 944 | i++; p *= 2; |
| 945 | } |
| 946 | // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) |
| 947 | // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size). |
| 948 | return i; |
| 949 | } |
| 950 | |
| 951 | //* largest i such that 2^i <= x |
| 952 | inline int log2_long(julong x) { |
| 953 | int i = -1; |
| 954 | julong p = 1; |
| 955 | while (p != 0 && p <= x) { |
| 956 | // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) |
| 957 | i++; p *= 2; |
| 958 | } |
| 959 | // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) |
| 960 | // (if p = 0 then overflow occurred and i = 63) |
| 961 | return i; |
| 962 | } |
| 963 | |
| 964 | // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine. |
| 965 | inline int log2_intptr(intptr_t x) { |
| 966 | return log2_intptr((uintptr_t)x); |
| 967 | } |
| 968 | |
| 969 | inline int log2_int(int x) { |
| 970 | STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t)); |
| 971 | return log2_intptr((uintptr_t)x); |
| 972 | } |
| 973 | |
| 974 | inline int log2_jint(jint x) { |
| 975 | STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t)); |
| 976 | return log2_intptr((uintptr_t)x); |
| 977 | } |
| 978 | |
| 979 | inline int log2_uint(uint x) { |
| 980 | STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t)); |
| 981 | return log2_intptr((uintptr_t)x); |
| 982 | } |
| 983 | |
| 984 | // A negative value of 'x' will return '63' |
| 985 | inline int log2_jlong(jlong x) { |
| 986 | STATIC_ASSERT(sizeof(jlong) <= sizeof(julong)); |
| 987 | return log2_long((julong)x); |
| 988 | } |
| 989 | |
| 990 | //* the argument must be exactly a power of 2 |
| 991 | inline int exact_log2(intptr_t x) { |
| 992 | assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x); |
| 993 | return log2_intptr(x); |
| 994 | } |
| 995 | |
| 996 | //* the argument must be exactly a power of 2 |
| 997 | inline int exact_log2_long(jlong x) { |
| 998 | assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x); |
| 999 | return log2_long(x); |
| 1000 | } |
| 1001 | |
| 1002 | inline bool is_odd (intx x) { return x & 1; } |
| 1003 | inline bool is_even(intx x) { return !is_odd(x); } |
| 1004 | |
| 1005 | // abs methods which cannot overflow and so are well-defined across |
| 1006 | // the entire domain of integer types. |
| 1007 | static inline unsigned int uabs(unsigned int n) { |
| 1008 | union { |
| 1009 | unsigned int result; |
| 1010 | int value; |
| 1011 | }; |
| 1012 | result = n; |
| 1013 | if (value < 0) result = 0-result; |
| 1014 | return result; |
| 1015 | } |
| 1016 | static inline julong uabs(julong n) { |
| 1017 | union { |
| 1018 | julong result; |
| 1019 | jlong value; |
| 1020 | }; |
| 1021 | result = n; |
| 1022 | if (value < 0) result = 0-result; |
| 1023 | return result; |
| 1024 | } |
| 1025 | static inline julong uabs(jlong n) { return uabs((julong)n); } |
| 1026 | static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } |
| 1027 | |
| 1028 | // "to" should be greater than "from." |
| 1029 | inline intx byte_size(void* from, void* to) { |
| 1030 | return (address)to - (address)from; |
| 1031 | } |
| 1032 | |
| 1033 | |
| 1034 | // Pack and extract shorts to/from ints: |
| 1035 | |
| 1036 | inline int (jint x) { |
| 1037 | return x & 0xffff; |
| 1038 | } |
| 1039 | |
| 1040 | inline int (jint x) { |
| 1041 | return (x >> 16) & 0xffff; |
| 1042 | } |
| 1043 | |
| 1044 | inline int build_int_from_shorts( jushort low, jushort high ) { |
| 1045 | return ((int)((unsigned int)high << 16) | (unsigned int)low); |
| 1046 | } |
| 1047 | |
| 1048 | // Convert pointer to intptr_t, for use in printing pointers. |
| 1049 | inline intptr_t p2i(const void * p) { |
| 1050 | return (intptr_t) p; |
| 1051 | } |
| 1052 | |
| 1053 | // swap a & b |
| 1054 | template<class T> static void swap(T& a, T& b) { |
| 1055 | T tmp = a; |
| 1056 | a = b; |
| 1057 | b = tmp; |
| 1058 | } |
| 1059 | |
| 1060 | #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0])) |
| 1061 | |
| 1062 | //---------------------------------------------------------------------------------------------------- |
| 1063 | // Sum and product which can never overflow: they wrap, just like the |
| 1064 | // Java operations. Note that we don't intend these to be used for |
| 1065 | // general-purpose arithmetic: their purpose is to emulate Java |
| 1066 | // operations. |
| 1067 | |
| 1068 | // The goal of this code to avoid undefined or implementation-defined |
| 1069 | // behavior. The use of an lvalue to reference cast is explicitly |
| 1070 | // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para |
| 1071 | // 15 in C++03] |
| 1072 | #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ |
| 1073 | inline TYPE NAME (TYPE in1, TYPE in2) { \ |
| 1074 | UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ |
| 1075 | ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ |
| 1076 | return reinterpret_cast<TYPE&>(ures); \ |
| 1077 | } |
| 1078 | |
| 1079 | JAVA_INTEGER_OP(+, java_add, jint, juint) |
| 1080 | JAVA_INTEGER_OP(-, java_subtract, jint, juint) |
| 1081 | JAVA_INTEGER_OP(*, java_multiply, jint, juint) |
| 1082 | JAVA_INTEGER_OP(+, java_add, jlong, julong) |
| 1083 | JAVA_INTEGER_OP(-, java_subtract, jlong, julong) |
| 1084 | JAVA_INTEGER_OP(*, java_multiply, jlong, julong) |
| 1085 | |
| 1086 | #undef JAVA_INTEGER_OP |
| 1087 | |
| 1088 | //---------------------------------------------------------------------------------------------------- |
| 1089 | // The goal of this code is to provide saturating operations for int/uint. |
| 1090 | // Checks overflow conditions and saturates the result to min_jint/max_jint. |
| 1091 | #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \ |
| 1092 | inline int NAME (TYPE1 in1, TYPE2 in2) { \ |
| 1093 | jlong res = static_cast<jlong>(in1); \ |
| 1094 | res OP ## = static_cast<jlong>(in2); \ |
| 1095 | if (res > max_jint) { \ |
| 1096 | res = max_jint; \ |
| 1097 | } else if (res < min_jint) { \ |
| 1098 | res = min_jint; \ |
| 1099 | } \ |
| 1100 | return static_cast<int>(res); \ |
| 1101 | } |
| 1102 | |
| 1103 | SATURATED_INTEGER_OP(+, saturated_add, int, int) |
| 1104 | SATURATED_INTEGER_OP(+, saturated_add, int, uint) |
| 1105 | SATURATED_INTEGER_OP(+, saturated_add, uint, int) |
| 1106 | SATURATED_INTEGER_OP(+, saturated_add, uint, uint) |
| 1107 | |
| 1108 | #undef SATURATED_INTEGER_OP |
| 1109 | |
| 1110 | // Dereference vptr |
| 1111 | // All C++ compilers that we know of have the vtbl pointer in the first |
| 1112 | // word. If there are exceptions, this function needs to be made compiler |
| 1113 | // specific. |
| 1114 | static inline void* dereference_vptr(const void* addr) { |
| 1115 | return *(void**)addr; |
| 1116 | } |
| 1117 | |
| 1118 | //---------------------------------------------------------------------------------------------------- |
| 1119 | // String type aliases used by command line flag declarations and |
| 1120 | // processing utilities. |
| 1121 | |
| 1122 | typedef const char* ccstr; |
| 1123 | typedef const char* ccstrlist; // represents string arguments which accumulate |
| 1124 | |
| 1125 | //---------------------------------------------------------------------------------------------------- |
| 1126 | // Default hash/equals functions used by ResourceHashtable and KVHashtable |
| 1127 | |
| 1128 | template<typename K> unsigned primitive_hash(const K& k) { |
| 1129 | unsigned hash = (unsigned)((uintptr_t)k); |
| 1130 | return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs |
| 1131 | } |
| 1132 | |
| 1133 | template<typename K> bool primitive_equals(const K& k0, const K& k1) { |
| 1134 | return k0 == k1; |
| 1135 | } |
| 1136 | |
| 1137 | |
| 1138 | #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP |
| 1139 | |