1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP |
26 | #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP |
27 | |
28 | #include "utilities/compilerWarnings.hpp" |
29 | #include "utilities/debug.hpp" |
30 | #include "utilities/macros.hpp" |
31 | |
32 | #include COMPILER_HEADER(utilities/globalDefinitions) |
33 | |
34 | // Defaults for macros that might be defined per compiler. |
35 | #ifndef NOINLINE |
36 | #define NOINLINE |
37 | #endif |
38 | #ifndef ALWAYSINLINE |
39 | #define ALWAYSINLINE inline |
40 | #endif |
41 | |
42 | #ifndef ATTRIBUTE_ALIGNED |
43 | #define ATTRIBUTE_ALIGNED(x) |
44 | #endif |
45 | |
46 | // These are #defines to selectively turn on/off the Print(Opto)Assembly |
47 | // capabilities. Choices should be led by a tradeoff between |
48 | // code size and improved supportability. |
49 | // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well |
50 | // to have a fallback in case hsdis is not available. |
51 | #if defined(PRODUCT) |
52 | #define SUPPORT_ABSTRACT_ASSEMBLY |
53 | #define SUPPORT_ASSEMBLY |
54 | #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing. |
55 | #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty. |
56 | #else |
57 | #define SUPPORT_ABSTRACT_ASSEMBLY |
58 | #define SUPPORT_ASSEMBLY |
59 | #define SUPPORT_OPTO_ASSEMBLY |
60 | #define SUPPORT_DATA_STRUCTS |
61 | #endif |
62 | #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY) |
63 | #define SUPPORT_ABSTRACT_ASSEMBLY |
64 | #endif |
65 | |
66 | // This file holds all globally used constants & types, class (forward) |
67 | // declarations and a few frequently used utility functions. |
68 | |
69 | //---------------------------------------------------------------------------------------------------- |
70 | // Printf-style formatters for fixed- and variable-width types as pointers and |
71 | // integers. These are derived from the definitions in inttypes.h. If the platform |
72 | // doesn't provide appropriate definitions, they should be provided in |
73 | // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) |
74 | |
75 | #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") |
76 | |
77 | // Format 32-bit quantities. |
78 | #define INT32_FORMAT "%" PRId32 |
79 | #define UINT32_FORMAT "%" PRIu32 |
80 | #define INT32_FORMAT_W(width) "%" #width PRId32 |
81 | #define UINT32_FORMAT_W(width) "%" #width PRIu32 |
82 | |
83 | #define PTR32_FORMAT "0x%08" PRIx32 |
84 | #define PTR32_FORMAT_W(width) "0x%" #width PRIx32 |
85 | |
86 | // Format 64-bit quantities. |
87 | #define INT64_FORMAT "%" PRId64 |
88 | #define UINT64_FORMAT "%" PRIu64 |
89 | #define UINT64_FORMAT_X "%" PRIx64 |
90 | #define INT64_FORMAT_W(width) "%" #width PRId64 |
91 | #define UINT64_FORMAT_W(width) "%" #width PRIu64 |
92 | #define UINT64_FORMAT_X_W(width) "%" #width PRIx64 |
93 | |
94 | #define PTR64_FORMAT "0x%016" PRIx64 |
95 | |
96 | // Format jlong, if necessary |
97 | #ifndef JLONG_FORMAT |
98 | #define JLONG_FORMAT INT64_FORMAT |
99 | #endif |
100 | #ifndef JLONG_FORMAT_W |
101 | #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width) |
102 | #endif |
103 | #ifndef JULONG_FORMAT |
104 | #define JULONG_FORMAT UINT64_FORMAT |
105 | #endif |
106 | #ifndef JULONG_FORMAT_X |
107 | #define JULONG_FORMAT_X UINT64_FORMAT_X |
108 | #endif |
109 | |
110 | // Format pointers which change size between 32- and 64-bit. |
111 | #ifdef _LP64 |
112 | #define INTPTR_FORMAT "0x%016" PRIxPTR |
113 | #define PTR_FORMAT "0x%016" PRIxPTR |
114 | #else // !_LP64 |
115 | #define INTPTR_FORMAT "0x%08" PRIxPTR |
116 | #define PTR_FORMAT "0x%08" PRIxPTR |
117 | #endif // _LP64 |
118 | |
119 | // Format pointers without leading zeros |
120 | #define INTPTRNZ_FORMAT "0x%" PRIxPTR |
121 | |
122 | #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR |
123 | |
124 | #define SSIZE_FORMAT "%" PRIdPTR |
125 | #define SIZE_FORMAT "%" PRIuPTR |
126 | #define SIZE_FORMAT_HEX "0x%" PRIxPTR |
127 | #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR |
128 | #define SIZE_FORMAT_W(width) "%" #width PRIuPTR |
129 | #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR |
130 | |
131 | #define INTX_FORMAT "%" PRIdPTR |
132 | #define UINTX_FORMAT "%" PRIuPTR |
133 | #define INTX_FORMAT_W(width) "%" #width PRIdPTR |
134 | #define UINTX_FORMAT_W(width) "%" #width PRIuPTR |
135 | |
136 | //---------------------------------------------------------------------------------------------------- |
137 | // Constants |
138 | |
139 | const int LogBytesPerShort = 1; |
140 | const int LogBytesPerInt = 2; |
141 | #ifdef _LP64 |
142 | const int LogBytesPerWord = 3; |
143 | #else |
144 | const int LogBytesPerWord = 2; |
145 | #endif |
146 | const int LogBytesPerLong = 3; |
147 | |
148 | const int BytesPerShort = 1 << LogBytesPerShort; |
149 | const int BytesPerInt = 1 << LogBytesPerInt; |
150 | const int BytesPerWord = 1 << LogBytesPerWord; |
151 | const int BytesPerLong = 1 << LogBytesPerLong; |
152 | |
153 | const int LogBitsPerByte = 3; |
154 | const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; |
155 | const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; |
156 | const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; |
157 | const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; |
158 | |
159 | const int BitsPerByte = 1 << LogBitsPerByte; |
160 | const int BitsPerShort = 1 << LogBitsPerShort; |
161 | const int BitsPerInt = 1 << LogBitsPerInt; |
162 | const int BitsPerWord = 1 << LogBitsPerWord; |
163 | const int BitsPerLong = 1 << LogBitsPerLong; |
164 | |
165 | const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; |
166 | const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; |
167 | |
168 | const int WordsPerLong = 2; // Number of stack entries for longs |
169 | |
170 | const int oopSize = sizeof(char*); // Full-width oop |
171 | extern int heapOopSize; // Oop within a java object |
172 | const int wordSize = sizeof(char*); |
173 | const int longSize = sizeof(jlong); |
174 | const int jintSize = sizeof(jint); |
175 | const int size_tSize = sizeof(size_t); |
176 | |
177 | const int BytesPerOop = BytesPerWord; // Full-width oop |
178 | |
179 | extern int LogBytesPerHeapOop; // Oop within a java object |
180 | extern int LogBitsPerHeapOop; |
181 | extern int BytesPerHeapOop; |
182 | extern int BitsPerHeapOop; |
183 | |
184 | const int BitsPerJavaInteger = 32; |
185 | const int BitsPerJavaLong = 64; |
186 | const int BitsPerSize_t = size_tSize * BitsPerByte; |
187 | |
188 | // Size of a char[] needed to represent a jint as a string in decimal. |
189 | const int jintAsStringSize = 12; |
190 | |
191 | // An opaque type, so that HeapWord* can be a generic pointer into the heap. |
192 | // We require that object sizes be measured in units of heap words (e.g. |
193 | // pointer-sized values), so that given HeapWord* hw, |
194 | // hw += oop(hw)->foo(); |
195 | // works, where foo is a method (like size or scavenge) that returns the |
196 | // object size. |
197 | class HeapWordImpl; // Opaque, never defined. |
198 | typedef HeapWordImpl* HeapWord; |
199 | |
200 | // Analogous opaque struct for metadata allocated from metaspaces. |
201 | class MetaWordImpl; // Opaque, never defined. |
202 | typedef MetaWordImpl* MetaWord; |
203 | |
204 | // HeapWordSize must be 2^LogHeapWordSize. |
205 | const int HeapWordSize = sizeof(HeapWord); |
206 | #ifdef _LP64 |
207 | const int LogHeapWordSize = 3; |
208 | #else |
209 | const int LogHeapWordSize = 2; |
210 | #endif |
211 | const int HeapWordsPerLong = BytesPerLong / HeapWordSize; |
212 | const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; |
213 | |
214 | // The minimum number of native machine words necessary to contain "byte_size" |
215 | // bytes. |
216 | inline size_t heap_word_size(size_t byte_size) { |
217 | return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; |
218 | } |
219 | |
220 | //------------------------------------------- |
221 | // Constant for jlong (standardized by C++11) |
222 | |
223 | // Build a 64bit integer constant |
224 | #define CONST64(x) (x ## LL) |
225 | #define UCONST64(x) (x ## ULL) |
226 | |
227 | const jlong min_jlong = CONST64(0x8000000000000000); |
228 | const jlong max_jlong = CONST64(0x7fffffffffffffff); |
229 | |
230 | const size_t K = 1024; |
231 | const size_t M = K*K; |
232 | const size_t G = M*K; |
233 | const size_t HWperKB = K / sizeof(HeapWord); |
234 | |
235 | // Constants for converting from a base unit to milli-base units. For |
236 | // example from seconds to milliseconds and microseconds |
237 | |
238 | const int MILLIUNITS = 1000; // milli units per base unit |
239 | const int MICROUNITS = 1000000; // micro units per base unit |
240 | const int NANOUNITS = 1000000000; // nano units per base unit |
241 | |
242 | const jlong NANOSECS_PER_SEC = CONST64(1000000000); |
243 | const jint NANOSECS_PER_MILLISEC = 1000000; |
244 | |
245 | // Proper units routines try to maintain at least three significant digits. |
246 | // In worst case, it would print five significant digits with lower prefix. |
247 | // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, |
248 | // and therefore we need to be careful. |
249 | |
250 | inline const char* proper_unit_for_byte_size(size_t s) { |
251 | #ifdef _LP64 |
252 | if (s >= 100*G) { |
253 | return "G" ; |
254 | } |
255 | #endif |
256 | if (s >= 100*M) { |
257 | return "M" ; |
258 | } else if (s >= 100*K) { |
259 | return "K" ; |
260 | } else { |
261 | return "B" ; |
262 | } |
263 | } |
264 | |
265 | template <class T> |
266 | inline T byte_size_in_proper_unit(T s) { |
267 | #ifdef _LP64 |
268 | if (s >= 100*G) { |
269 | return (T)(s/G); |
270 | } |
271 | #endif |
272 | if (s >= 100*M) { |
273 | return (T)(s/M); |
274 | } else if (s >= 100*K) { |
275 | return (T)(s/K); |
276 | } else { |
277 | return s; |
278 | } |
279 | } |
280 | |
281 | inline const char* exact_unit_for_byte_size(size_t s) { |
282 | #ifdef _LP64 |
283 | if (s >= G && (s % G) == 0) { |
284 | return "G" ; |
285 | } |
286 | #endif |
287 | if (s >= M && (s % M) == 0) { |
288 | return "M" ; |
289 | } |
290 | if (s >= K && (s % K) == 0) { |
291 | return "K" ; |
292 | } |
293 | return "B" ; |
294 | } |
295 | |
296 | inline size_t byte_size_in_exact_unit(size_t s) { |
297 | #ifdef _LP64 |
298 | if (s >= G && (s % G) == 0) { |
299 | return s / G; |
300 | } |
301 | #endif |
302 | if (s >= M && (s % M) == 0) { |
303 | return s / M; |
304 | } |
305 | if (s >= K && (s % K) == 0) { |
306 | return s / K; |
307 | } |
308 | return s; |
309 | } |
310 | |
311 | //---------------------------------------------------------------------------------------------------- |
312 | // VM type definitions |
313 | |
314 | // intx and uintx are the 'extended' int and 'extended' unsigned int types; |
315 | // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. |
316 | |
317 | typedef intptr_t intx; |
318 | typedef uintptr_t uintx; |
319 | |
320 | const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); |
321 | const intx max_intx = (uintx)min_intx - 1; |
322 | const uintx max_uintx = (uintx)-1; |
323 | |
324 | // Table of values: |
325 | // sizeof intx 4 8 |
326 | // min_intx 0x80000000 0x8000000000000000 |
327 | // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF |
328 | // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF |
329 | |
330 | typedef unsigned int uint; NEEDS_CLEANUP |
331 | |
332 | |
333 | //---------------------------------------------------------------------------------------------------- |
334 | // Java type definitions |
335 | |
336 | // All kinds of 'plain' byte addresses |
337 | typedef signed char s_char; |
338 | typedef unsigned char u_char; |
339 | typedef u_char* address; |
340 | typedef uintptr_t address_word; // unsigned integer which will hold a pointer |
341 | // except for some implementations of a C++ |
342 | // linkage pointer to function. Should never |
343 | // need one of those to be placed in this |
344 | // type anyway. |
345 | |
346 | // Utility functions to "portably" (?) bit twiddle pointers |
347 | // Where portable means keep ANSI C++ compilers quiet |
348 | |
349 | inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } |
350 | inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } |
351 | |
352 | // Utility functions to "portably" make cast to/from function pointers. |
353 | |
354 | inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } |
355 | inline address_word castable_address(address x) { return address_word(x) ; } |
356 | inline address_word castable_address(void* x) { return address_word(x) ; } |
357 | |
358 | // Pointer subtraction. |
359 | // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have |
360 | // the range we might need to find differences from one end of the heap |
361 | // to the other. |
362 | // A typical use might be: |
363 | // if (pointer_delta(end(), top()) >= size) { |
364 | // // enough room for an object of size |
365 | // ... |
366 | // and then additions like |
367 | // ... top() + size ... |
368 | // are safe because we know that top() is at least size below end(). |
369 | inline size_t pointer_delta(const volatile void* left, |
370 | const volatile void* right, |
371 | size_t element_size) { |
372 | return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; |
373 | } |
374 | |
375 | // A version specialized for HeapWord*'s. |
376 | inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { |
377 | return pointer_delta(left, right, sizeof(HeapWord)); |
378 | } |
379 | // A version specialized for MetaWord*'s. |
380 | inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { |
381 | return pointer_delta(left, right, sizeof(MetaWord)); |
382 | } |
383 | |
384 | // |
385 | // ANSI C++ does not allow casting from one pointer type to a function pointer |
386 | // directly without at best a warning. This macro accomplishes it silently |
387 | // In every case that is present at this point the value be cast is a pointer |
388 | // to a C linkage function. In some case the type used for the cast reflects |
389 | // that linkage and a picky compiler would not complain. In other cases because |
390 | // there is no convenient place to place a typedef with extern C linkage (i.e |
391 | // a platform dependent header file) it doesn't. At this point no compiler seems |
392 | // picky enough to catch these instances (which are few). It is possible that |
393 | // using templates could fix these for all cases. This use of templates is likely |
394 | // so far from the middle of the road that it is likely to be problematic in |
395 | // many C++ compilers. |
396 | // |
397 | #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) |
398 | #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) |
399 | |
400 | // Unsigned byte types for os and stream.hpp |
401 | |
402 | // Unsigned one, two, four and eigth byte quantities used for describing |
403 | // the .class file format. See JVM book chapter 4. |
404 | |
405 | typedef jubyte u1; |
406 | typedef jushort u2; |
407 | typedef juint u4; |
408 | typedef julong u8; |
409 | |
410 | const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte |
411 | const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort |
412 | const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint |
413 | const julong max_julong = (julong)-1; // 0xFF....FF largest julong |
414 | |
415 | typedef jbyte s1; |
416 | typedef jshort s2; |
417 | typedef jint s4; |
418 | typedef jlong s8; |
419 | |
420 | const jbyte min_jbyte = -(1 << 7); // smallest jbyte |
421 | const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte |
422 | const jshort min_jshort = -(1 << 15); // smallest jshort |
423 | const jshort max_jshort = (1 << 15) - 1; // largest jshort |
424 | |
425 | const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint |
426 | const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint |
427 | |
428 | //---------------------------------------------------------------------------------------------------- |
429 | // JVM spec restrictions |
430 | |
431 | const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) |
432 | |
433 | //---------------------------------------------------------------------------------------------------- |
434 | // Object alignment, in units of HeapWords. |
435 | // |
436 | // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and |
437 | // reference fields can be naturally aligned. |
438 | |
439 | extern int MinObjAlignment; |
440 | extern int MinObjAlignmentInBytes; |
441 | extern int MinObjAlignmentInBytesMask; |
442 | |
443 | extern int LogMinObjAlignment; |
444 | extern int LogMinObjAlignmentInBytes; |
445 | |
446 | const int LogKlassAlignmentInBytes = 3; |
447 | const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; |
448 | const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; |
449 | const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; |
450 | |
451 | // Maximal size of heap where unscaled compression can be used. Also upper bound |
452 | // for heap placement: 4GB. |
453 | const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); |
454 | // Maximal size of heap where compressed oops can be used. Also upper bound for heap |
455 | // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. |
456 | extern uint64_t OopEncodingHeapMax; |
457 | |
458 | // Maximal size of compressed class space. Above this limit compression is not possible. |
459 | // Also upper bound for placement of zero based class space. (Class space is further limited |
460 | // to be < 3G, see arguments.cpp.) |
461 | const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; |
462 | |
463 | // Machine dependent stuff |
464 | |
465 | // The maximum size of the code cache. Can be overridden by targets. |
466 | #define CODE_CACHE_SIZE_LIMIT (2*G) |
467 | // Allow targets to reduce the default size of the code cache. |
468 | #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT |
469 | |
470 | #include CPU_HEADER(globalDefinitions) |
471 | |
472 | // To assure the IRIW property on processors that are not multiple copy |
473 | // atomic, sync instructions must be issued between volatile reads to |
474 | // assure their ordering, instead of after volatile stores. |
475 | // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" |
476 | // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) |
477 | #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC |
478 | const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true; |
479 | #else |
480 | const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; |
481 | #endif |
482 | |
483 | // The expected size in bytes of a cache line, used to pad data structures. |
484 | #ifndef DEFAULT_CACHE_LINE_SIZE |
485 | #define DEFAULT_CACHE_LINE_SIZE 64 |
486 | #endif |
487 | |
488 | |
489 | //---------------------------------------------------------------------------------------------------- |
490 | // Utility macros for compilers |
491 | // used to silence compiler warnings |
492 | |
493 | #define Unused_Variable(var) var |
494 | |
495 | |
496 | //---------------------------------------------------------------------------------------------------- |
497 | // Miscellaneous |
498 | |
499 | // 6302670 Eliminate Hotspot __fabsf dependency |
500 | // All fabs() callers should call this function instead, which will implicitly |
501 | // convert the operand to double, avoiding a dependency on __fabsf which |
502 | // doesn't exist in early versions of Solaris 8. |
503 | inline double fabsd(double value) { |
504 | return fabs(value); |
505 | } |
506 | |
507 | // Returns numerator/denominator as percentage value from 0 to 100. If denominator |
508 | // is zero, return 0.0. |
509 | template<typename T> |
510 | inline double percent_of(T numerator, T denominator) { |
511 | return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0; |
512 | } |
513 | |
514 | //---------------------------------------------------------------------------------------------------- |
515 | // Special casts |
516 | // Cast floats into same-size integers and vice-versa w/o changing bit-pattern |
517 | typedef union { |
518 | jfloat f; |
519 | jint i; |
520 | } FloatIntConv; |
521 | |
522 | typedef union { |
523 | jdouble d; |
524 | jlong l; |
525 | julong ul; |
526 | } DoubleLongConv; |
527 | |
528 | inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } |
529 | inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } |
530 | |
531 | inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } |
532 | inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } |
533 | inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } |
534 | |
535 | inline jint low (jlong value) { return jint(value); } |
536 | inline jint high(jlong value) { return jint(value >> 32); } |
537 | |
538 | // the fancy casts are a hopefully portable way |
539 | // to do unsigned 32 to 64 bit type conversion |
540 | inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; |
541 | *value |= (jlong)(julong)(juint)low; } |
542 | |
543 | inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; |
544 | *value |= (jlong)high << 32; } |
545 | |
546 | inline jlong jlong_from(jint h, jint l) { |
547 | jlong result = 0; // initialization to avoid warning |
548 | set_high(&result, h); |
549 | set_low(&result, l); |
550 | return result; |
551 | } |
552 | |
553 | union jlong_accessor { |
554 | jint words[2]; |
555 | jlong long_value; |
556 | }; |
557 | |
558 | void basic_types_init(); // cannot define here; uses assert |
559 | |
560 | |
561 | // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java |
562 | enum BasicType { |
563 | T_BOOLEAN = 4, |
564 | T_CHAR = 5, |
565 | T_FLOAT = 6, |
566 | T_DOUBLE = 7, |
567 | T_BYTE = 8, |
568 | T_SHORT = 9, |
569 | T_INT = 10, |
570 | T_LONG = 11, |
571 | T_OBJECT = 12, |
572 | T_ARRAY = 13, |
573 | T_VOID = 14, |
574 | T_ADDRESS = 15, |
575 | T_NARROWOOP = 16, |
576 | T_METADATA = 17, |
577 | T_NARROWKLASS = 18, |
578 | T_CONFLICT = 19, // for stack value type with conflicting contents |
579 | T_ILLEGAL = 99 |
580 | }; |
581 | |
582 | inline bool is_java_primitive(BasicType t) { |
583 | return T_BOOLEAN <= t && t <= T_LONG; |
584 | } |
585 | |
586 | inline bool is_subword_type(BasicType t) { |
587 | // these guys are processed exactly like T_INT in calling sequences: |
588 | return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); |
589 | } |
590 | |
591 | inline bool is_signed_subword_type(BasicType t) { |
592 | return (t == T_BYTE || t == T_SHORT); |
593 | } |
594 | |
595 | inline bool is_reference_type(BasicType t) { |
596 | return (t == T_OBJECT || t == T_ARRAY); |
597 | } |
598 | |
599 | // Convert a char from a classfile signature to a BasicType |
600 | inline BasicType char2type(char c) { |
601 | switch( c ) { |
602 | case 'B': return T_BYTE; |
603 | case 'C': return T_CHAR; |
604 | case 'D': return T_DOUBLE; |
605 | case 'F': return T_FLOAT; |
606 | case 'I': return T_INT; |
607 | case 'J': return T_LONG; |
608 | case 'S': return T_SHORT; |
609 | case 'Z': return T_BOOLEAN; |
610 | case 'V': return T_VOID; |
611 | case 'L': return T_OBJECT; |
612 | case '[': return T_ARRAY; |
613 | } |
614 | return T_ILLEGAL; |
615 | } |
616 | |
617 | extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar |
618 | inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } |
619 | extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements |
620 | extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar |
621 | inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; } |
622 | extern BasicType name2type(const char* name); |
623 | |
624 | // Auxiliary math routines |
625 | // least common multiple |
626 | extern size_t lcm(size_t a, size_t b); |
627 | |
628 | |
629 | // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java |
630 | enum BasicTypeSize { |
631 | T_BOOLEAN_size = 1, |
632 | T_CHAR_size = 1, |
633 | T_FLOAT_size = 1, |
634 | T_DOUBLE_size = 2, |
635 | T_BYTE_size = 1, |
636 | T_SHORT_size = 1, |
637 | T_INT_size = 1, |
638 | T_LONG_size = 2, |
639 | T_OBJECT_size = 1, |
640 | T_ARRAY_size = 1, |
641 | T_NARROWOOP_size = 1, |
642 | T_NARROWKLASS_size = 1, |
643 | T_VOID_size = 0 |
644 | }; |
645 | |
646 | |
647 | // maps a BasicType to its instance field storage type: |
648 | // all sub-word integral types are widened to T_INT |
649 | extern BasicType type2field[T_CONFLICT+1]; |
650 | extern BasicType type2wfield[T_CONFLICT+1]; |
651 | |
652 | |
653 | // size in bytes |
654 | enum ArrayElementSize { |
655 | T_BOOLEAN_aelem_bytes = 1, |
656 | T_CHAR_aelem_bytes = 2, |
657 | T_FLOAT_aelem_bytes = 4, |
658 | T_DOUBLE_aelem_bytes = 8, |
659 | T_BYTE_aelem_bytes = 1, |
660 | T_SHORT_aelem_bytes = 2, |
661 | T_INT_aelem_bytes = 4, |
662 | T_LONG_aelem_bytes = 8, |
663 | #ifdef _LP64 |
664 | T_OBJECT_aelem_bytes = 8, |
665 | T_ARRAY_aelem_bytes = 8, |
666 | #else |
667 | T_OBJECT_aelem_bytes = 4, |
668 | T_ARRAY_aelem_bytes = 4, |
669 | #endif |
670 | T_NARROWOOP_aelem_bytes = 4, |
671 | T_NARROWKLASS_aelem_bytes = 4, |
672 | T_VOID_aelem_bytes = 0 |
673 | }; |
674 | |
675 | extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element |
676 | #ifdef ASSERT |
677 | extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts |
678 | #else |
679 | inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } |
680 | #endif |
681 | |
682 | |
683 | // JavaValue serves as a container for arbitrary Java values. |
684 | |
685 | class JavaValue { |
686 | |
687 | public: |
688 | typedef union JavaCallValue { |
689 | jfloat f; |
690 | jdouble d; |
691 | jint i; |
692 | jlong l; |
693 | jobject h; |
694 | } JavaCallValue; |
695 | |
696 | private: |
697 | BasicType _type; |
698 | JavaCallValue _value; |
699 | |
700 | public: |
701 | JavaValue(BasicType t = T_ILLEGAL) { _type = t; } |
702 | |
703 | JavaValue(jfloat value) { |
704 | _type = T_FLOAT; |
705 | _value.f = value; |
706 | } |
707 | |
708 | JavaValue(jdouble value) { |
709 | _type = T_DOUBLE; |
710 | _value.d = value; |
711 | } |
712 | |
713 | jfloat get_jfloat() const { return _value.f; } |
714 | jdouble get_jdouble() const { return _value.d; } |
715 | jint get_jint() const { return _value.i; } |
716 | jlong get_jlong() const { return _value.l; } |
717 | jobject get_jobject() const { return _value.h; } |
718 | JavaCallValue* get_value_addr() { return &_value; } |
719 | BasicType get_type() const { return _type; } |
720 | |
721 | void set_jfloat(jfloat f) { _value.f = f;} |
722 | void set_jdouble(jdouble d) { _value.d = d;} |
723 | void set_jint(jint i) { _value.i = i;} |
724 | void set_jlong(jlong l) { _value.l = l;} |
725 | void set_jobject(jobject h) { _value.h = h;} |
726 | void set_type(BasicType t) { _type = t; } |
727 | |
728 | jboolean get_jboolean() const { return (jboolean) (_value.i);} |
729 | jbyte get_jbyte() const { return (jbyte) (_value.i);} |
730 | jchar get_jchar() const { return (jchar) (_value.i);} |
731 | jshort get_jshort() const { return (jshort) (_value.i);} |
732 | |
733 | }; |
734 | |
735 | |
736 | #define STACK_BIAS 0 |
737 | // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff |
738 | // in order to extend the reach of the stack pointer. |
739 | #if defined(SPARC) && defined(_LP64) |
740 | #undef STACK_BIAS |
741 | #define STACK_BIAS 0x7ff |
742 | #endif |
743 | |
744 | |
745 | // TosState describes the top-of-stack state before and after the execution of |
746 | // a bytecode or method. The top-of-stack value may be cached in one or more CPU |
747 | // registers. The TosState corresponds to the 'machine representation' of this cached |
748 | // value. There's 4 states corresponding to the JAVA types int, long, float & double |
749 | // as well as a 5th state in case the top-of-stack value is actually on the top |
750 | // of stack (in memory) and thus not cached. The atos state corresponds to the itos |
751 | // state when it comes to machine representation but is used separately for (oop) |
752 | // type specific operations (e.g. verification code). |
753 | |
754 | enum TosState { // describes the tos cache contents |
755 | btos = 0, // byte, bool tos cached |
756 | ztos = 1, // byte, bool tos cached |
757 | ctos = 2, // char tos cached |
758 | stos = 3, // short tos cached |
759 | itos = 4, // int tos cached |
760 | ltos = 5, // long tos cached |
761 | ftos = 6, // float tos cached |
762 | dtos = 7, // double tos cached |
763 | atos = 8, // object cached |
764 | vtos = 9, // tos not cached |
765 | number_of_states, |
766 | ilgl // illegal state: should not occur |
767 | }; |
768 | |
769 | |
770 | inline TosState as_TosState(BasicType type) { |
771 | switch (type) { |
772 | case T_BYTE : return btos; |
773 | case T_BOOLEAN: return ztos; |
774 | case T_CHAR : return ctos; |
775 | case T_SHORT : return stos; |
776 | case T_INT : return itos; |
777 | case T_LONG : return ltos; |
778 | case T_FLOAT : return ftos; |
779 | case T_DOUBLE : return dtos; |
780 | case T_VOID : return vtos; |
781 | case T_ARRAY : // fall through |
782 | case T_OBJECT : return atos; |
783 | default : return ilgl; |
784 | } |
785 | } |
786 | |
787 | inline BasicType as_BasicType(TosState state) { |
788 | switch (state) { |
789 | case btos : return T_BYTE; |
790 | case ztos : return T_BOOLEAN; |
791 | case ctos : return T_CHAR; |
792 | case stos : return T_SHORT; |
793 | case itos : return T_INT; |
794 | case ltos : return T_LONG; |
795 | case ftos : return T_FLOAT; |
796 | case dtos : return T_DOUBLE; |
797 | case atos : return T_OBJECT; |
798 | case vtos : return T_VOID; |
799 | default : return T_ILLEGAL; |
800 | } |
801 | } |
802 | |
803 | |
804 | // Helper function to convert BasicType info into TosState |
805 | // Note: Cannot define here as it uses global constant at the time being. |
806 | TosState as_TosState(BasicType type); |
807 | |
808 | |
809 | // JavaThreadState keeps track of which part of the code a thread is executing in. This |
810 | // information is needed by the safepoint code. |
811 | // |
812 | // There are 4 essential states: |
813 | // |
814 | // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) |
815 | // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles |
816 | // _thread_in_vm : Executing in the vm |
817 | // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) |
818 | // |
819 | // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in |
820 | // a transition from one state to another. These extra states makes it possible for the safepoint code to |
821 | // handle certain thread_states without having to suspend the thread - making the safepoint code faster. |
822 | // |
823 | // Given a state, the xxxx_trans state can always be found by adding 1. |
824 | // |
825 | enum JavaThreadState { |
826 | _thread_uninitialized = 0, // should never happen (missing initialization) |
827 | _thread_new = 2, // just starting up, i.e., in process of being initialized |
828 | _thread_new_trans = 3, // corresponding transition state (not used, included for completness) |
829 | _thread_in_native = 4, // running in native code |
830 | _thread_in_native_trans = 5, // corresponding transition state |
831 | _thread_in_vm = 6, // running in VM |
832 | _thread_in_vm_trans = 7, // corresponding transition state |
833 | _thread_in_Java = 8, // running in Java or in stub code |
834 | _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) |
835 | _thread_blocked = 10, // blocked in vm |
836 | _thread_blocked_trans = 11, // corresponding transition state |
837 | _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation |
838 | }; |
839 | |
840 | //---------------------------------------------------------------------------------------------------- |
841 | // Special constants for debugging |
842 | |
843 | const jint badInt = -3; // generic "bad int" value |
844 | const intptr_t badAddressVal = -2; // generic "bad address" value |
845 | const intptr_t badOopVal = -1; // generic "bad oop" value |
846 | const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC |
847 | const int badStackSegVal = 0xCA; // value used to zap stack segments |
848 | const int badHandleValue = 0xBC; // value used to zap vm handle area |
849 | const int badResourceValue = 0xAB; // value used to zap resource area |
850 | const int freeBlockPad = 0xBA; // value used to pad freed blocks. |
851 | const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. |
852 | const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk |
853 | const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC |
854 | const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC |
855 | const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation |
856 | const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation |
857 | |
858 | |
859 | // (These must be implemented as #defines because C++ compilers are |
860 | // not obligated to inline non-integral constants!) |
861 | #define badAddress ((address)::badAddressVal) |
862 | #define badOop (cast_to_oop(::badOopVal)) |
863 | #define badHeapWord (::badHeapWordVal) |
864 | |
865 | // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) |
866 | #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) |
867 | |
868 | //---------------------------------------------------------------------------------------------------- |
869 | // Utility functions for bitfield manipulations |
870 | |
871 | const intptr_t AllBits = ~0; // all bits set in a word |
872 | const intptr_t NoBits = 0; // no bits set in a word |
873 | const jlong NoLongBits = 0; // no bits set in a long |
874 | const intptr_t OneBit = 1; // only right_most bit set in a word |
875 | |
876 | // get a word with the n.th or the right-most or left-most n bits set |
877 | // (note: #define used only so that they can be used in enum constant definitions) |
878 | #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) |
879 | #define right_n_bits(n) (nth_bit(n) - 1) |
880 | #define left_n_bits(n) (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n)))) |
881 | |
882 | // bit-operations using a mask m |
883 | inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } |
884 | inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } |
885 | inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } |
886 | inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } |
887 | inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } |
888 | |
889 | // bit-operations using the n.th bit |
890 | inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } |
891 | inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } |
892 | inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } |
893 | |
894 | // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) |
895 | inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { |
896 | return mask_bits(x >> start_bit_no, right_n_bits(field_length)); |
897 | } |
898 | |
899 | |
900 | //---------------------------------------------------------------------------------------------------- |
901 | // Utility functions for integers |
902 | |
903 | // Avoid use of global min/max macros which may cause unwanted double |
904 | // evaluation of arguments. |
905 | #ifdef max |
906 | #undef max |
907 | #endif |
908 | |
909 | #ifdef min |
910 | #undef min |
911 | #endif |
912 | |
913 | // It is necessary to use templates here. Having normal overloaded |
914 | // functions does not work because it is necessary to provide both 32- |
915 | // and 64-bit overloaded functions, which does not work, and having |
916 | // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) |
917 | // will be even more error-prone than macros. |
918 | template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; } |
919 | template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; } |
920 | template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } |
921 | template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } |
922 | template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } |
923 | template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } |
924 | |
925 | template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } |
926 | |
927 | // true if x is a power of 2, false otherwise |
928 | inline bool is_power_of_2(intptr_t x) { |
929 | return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits)); |
930 | } |
931 | |
932 | // long version of is_power_of_2 |
933 | inline bool is_power_of_2_long(jlong x) { |
934 | return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits)); |
935 | } |
936 | |
937 | // Returns largest i such that 2^i <= x. |
938 | // If x == 0, the function returns -1. |
939 | inline int log2_intptr(uintptr_t x) { |
940 | int i = -1; |
941 | uintptr_t p = 1; |
942 | while (p != 0 && p <= x) { |
943 | // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) |
944 | i++; p *= 2; |
945 | } |
946 | // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) |
947 | // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size). |
948 | return i; |
949 | } |
950 | |
951 | //* largest i such that 2^i <= x |
952 | inline int log2_long(julong x) { |
953 | int i = -1; |
954 | julong p = 1; |
955 | while (p != 0 && p <= x) { |
956 | // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) |
957 | i++; p *= 2; |
958 | } |
959 | // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) |
960 | // (if p = 0 then overflow occurred and i = 63) |
961 | return i; |
962 | } |
963 | |
964 | // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine. |
965 | inline int log2_intptr(intptr_t x) { |
966 | return log2_intptr((uintptr_t)x); |
967 | } |
968 | |
969 | inline int log2_int(int x) { |
970 | STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t)); |
971 | return log2_intptr((uintptr_t)x); |
972 | } |
973 | |
974 | inline int log2_jint(jint x) { |
975 | STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t)); |
976 | return log2_intptr((uintptr_t)x); |
977 | } |
978 | |
979 | inline int log2_uint(uint x) { |
980 | STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t)); |
981 | return log2_intptr((uintptr_t)x); |
982 | } |
983 | |
984 | // A negative value of 'x' will return '63' |
985 | inline int log2_jlong(jlong x) { |
986 | STATIC_ASSERT(sizeof(jlong) <= sizeof(julong)); |
987 | return log2_long((julong)x); |
988 | } |
989 | |
990 | //* the argument must be exactly a power of 2 |
991 | inline int exact_log2(intptr_t x) { |
992 | assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x); |
993 | return log2_intptr(x); |
994 | } |
995 | |
996 | //* the argument must be exactly a power of 2 |
997 | inline int exact_log2_long(jlong x) { |
998 | assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x); |
999 | return log2_long(x); |
1000 | } |
1001 | |
1002 | inline bool is_odd (intx x) { return x & 1; } |
1003 | inline bool is_even(intx x) { return !is_odd(x); } |
1004 | |
1005 | // abs methods which cannot overflow and so are well-defined across |
1006 | // the entire domain of integer types. |
1007 | static inline unsigned int uabs(unsigned int n) { |
1008 | union { |
1009 | unsigned int result; |
1010 | int value; |
1011 | }; |
1012 | result = n; |
1013 | if (value < 0) result = 0-result; |
1014 | return result; |
1015 | } |
1016 | static inline julong uabs(julong n) { |
1017 | union { |
1018 | julong result; |
1019 | jlong value; |
1020 | }; |
1021 | result = n; |
1022 | if (value < 0) result = 0-result; |
1023 | return result; |
1024 | } |
1025 | static inline julong uabs(jlong n) { return uabs((julong)n); } |
1026 | static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } |
1027 | |
1028 | // "to" should be greater than "from." |
1029 | inline intx byte_size(void* from, void* to) { |
1030 | return (address)to - (address)from; |
1031 | } |
1032 | |
1033 | |
1034 | // Pack and extract shorts to/from ints: |
1035 | |
1036 | inline int (jint x) { |
1037 | return x & 0xffff; |
1038 | } |
1039 | |
1040 | inline int (jint x) { |
1041 | return (x >> 16) & 0xffff; |
1042 | } |
1043 | |
1044 | inline int build_int_from_shorts( jushort low, jushort high ) { |
1045 | return ((int)((unsigned int)high << 16) | (unsigned int)low); |
1046 | } |
1047 | |
1048 | // Convert pointer to intptr_t, for use in printing pointers. |
1049 | inline intptr_t p2i(const void * p) { |
1050 | return (intptr_t) p; |
1051 | } |
1052 | |
1053 | // swap a & b |
1054 | template<class T> static void swap(T& a, T& b) { |
1055 | T tmp = a; |
1056 | a = b; |
1057 | b = tmp; |
1058 | } |
1059 | |
1060 | #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0])) |
1061 | |
1062 | //---------------------------------------------------------------------------------------------------- |
1063 | // Sum and product which can never overflow: they wrap, just like the |
1064 | // Java operations. Note that we don't intend these to be used for |
1065 | // general-purpose arithmetic: their purpose is to emulate Java |
1066 | // operations. |
1067 | |
1068 | // The goal of this code to avoid undefined or implementation-defined |
1069 | // behavior. The use of an lvalue to reference cast is explicitly |
1070 | // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para |
1071 | // 15 in C++03] |
1072 | #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ |
1073 | inline TYPE NAME (TYPE in1, TYPE in2) { \ |
1074 | UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ |
1075 | ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ |
1076 | return reinterpret_cast<TYPE&>(ures); \ |
1077 | } |
1078 | |
1079 | JAVA_INTEGER_OP(+, java_add, jint, juint) |
1080 | JAVA_INTEGER_OP(-, java_subtract, jint, juint) |
1081 | JAVA_INTEGER_OP(*, java_multiply, jint, juint) |
1082 | JAVA_INTEGER_OP(+, java_add, jlong, julong) |
1083 | JAVA_INTEGER_OP(-, java_subtract, jlong, julong) |
1084 | JAVA_INTEGER_OP(*, java_multiply, jlong, julong) |
1085 | |
1086 | #undef JAVA_INTEGER_OP |
1087 | |
1088 | //---------------------------------------------------------------------------------------------------- |
1089 | // The goal of this code is to provide saturating operations for int/uint. |
1090 | // Checks overflow conditions and saturates the result to min_jint/max_jint. |
1091 | #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \ |
1092 | inline int NAME (TYPE1 in1, TYPE2 in2) { \ |
1093 | jlong res = static_cast<jlong>(in1); \ |
1094 | res OP ## = static_cast<jlong>(in2); \ |
1095 | if (res > max_jint) { \ |
1096 | res = max_jint; \ |
1097 | } else if (res < min_jint) { \ |
1098 | res = min_jint; \ |
1099 | } \ |
1100 | return static_cast<int>(res); \ |
1101 | } |
1102 | |
1103 | SATURATED_INTEGER_OP(+, saturated_add, int, int) |
1104 | SATURATED_INTEGER_OP(+, saturated_add, int, uint) |
1105 | SATURATED_INTEGER_OP(+, saturated_add, uint, int) |
1106 | SATURATED_INTEGER_OP(+, saturated_add, uint, uint) |
1107 | |
1108 | #undef SATURATED_INTEGER_OP |
1109 | |
1110 | // Dereference vptr |
1111 | // All C++ compilers that we know of have the vtbl pointer in the first |
1112 | // word. If there are exceptions, this function needs to be made compiler |
1113 | // specific. |
1114 | static inline void* dereference_vptr(const void* addr) { |
1115 | return *(void**)addr; |
1116 | } |
1117 | |
1118 | //---------------------------------------------------------------------------------------------------- |
1119 | // String type aliases used by command line flag declarations and |
1120 | // processing utilities. |
1121 | |
1122 | typedef const char* ccstr; |
1123 | typedef const char* ccstrlist; // represents string arguments which accumulate |
1124 | |
1125 | //---------------------------------------------------------------------------------------------------- |
1126 | // Default hash/equals functions used by ResourceHashtable and KVHashtable |
1127 | |
1128 | template<typename K> unsigned primitive_hash(const K& k) { |
1129 | unsigned hash = (unsigned)((uintptr_t)k); |
1130 | return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs |
1131 | } |
1132 | |
1133 | template<typename K> bool primitive_equals(const K& k0, const K& k1) { |
1134 | return k0 == k1; |
1135 | } |
1136 | |
1137 | |
1138 | #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP |
1139 | |