1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "interpreter/interpreter.hpp" |
27 | #include "interpreter/interpreterRuntime.hpp" |
28 | #include "interpreter/interp_masm.hpp" |
29 | #include "interpreter/templateInterpreter.hpp" |
30 | #include "interpreter/templateInterpreterGenerator.hpp" |
31 | #include "interpreter/templateTable.hpp" |
32 | #include "logging/log.hpp" |
33 | #include "memory/resourceArea.hpp" |
34 | #include "runtime/timerTrace.hpp" |
35 | |
36 | #ifndef CC_INTERP |
37 | |
38 | # define __ _masm-> |
39 | |
40 | void TemplateInterpreter::initialize() { |
41 | if (_code != NULL) return; |
42 | // assertions |
43 | assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length, |
44 | "dispatch table too small" ); |
45 | |
46 | AbstractInterpreter::initialize(); |
47 | |
48 | TemplateTable::initialize(); |
49 | |
50 | // generate interpreter |
51 | { ResourceMark rm; |
52 | TraceTime timer("Interpreter generation" , TRACETIME_LOG(Info, startuptime)); |
53 | int code_size = InterpreterCodeSize; |
54 | NOT_PRODUCT(code_size *= 4;) // debug uses extra interpreter code space |
55 | _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL, |
56 | "Interpreter" ); |
57 | TemplateInterpreterGenerator g(_code); |
58 | // Free the unused memory not occupied by the interpreter and the stubs |
59 | _code->deallocate_unused_tail(); |
60 | } |
61 | |
62 | if (PrintInterpreter) { |
63 | ResourceMark rm; |
64 | print(); |
65 | } |
66 | |
67 | // initialize dispatch table |
68 | _active_table = _normal_table; |
69 | } |
70 | |
71 | //------------------------------------------------------------------------------------------------------------------------ |
72 | // Implementation of EntryPoint |
73 | |
74 | EntryPoint::EntryPoint() { |
75 | assert(number_of_states == 10, "check the code below" ); |
76 | _entry[btos] = NULL; |
77 | _entry[ztos] = NULL; |
78 | _entry[ctos] = NULL; |
79 | _entry[stos] = NULL; |
80 | _entry[atos] = NULL; |
81 | _entry[itos] = NULL; |
82 | _entry[ltos] = NULL; |
83 | _entry[ftos] = NULL; |
84 | _entry[dtos] = NULL; |
85 | _entry[vtos] = NULL; |
86 | } |
87 | |
88 | |
89 | EntryPoint::EntryPoint(address bentry, address zentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) { |
90 | assert(number_of_states == 10, "check the code below" ); |
91 | _entry[btos] = bentry; |
92 | _entry[ztos] = zentry; |
93 | _entry[ctos] = centry; |
94 | _entry[stos] = sentry; |
95 | _entry[atos] = aentry; |
96 | _entry[itos] = ientry; |
97 | _entry[ltos] = lentry; |
98 | _entry[ftos] = fentry; |
99 | _entry[dtos] = dentry; |
100 | _entry[vtos] = ventry; |
101 | } |
102 | |
103 | |
104 | void EntryPoint::set_entry(TosState state, address entry) { |
105 | assert(0 <= state && state < number_of_states, "state out of bounds" ); |
106 | _entry[state] = entry; |
107 | } |
108 | |
109 | |
110 | address EntryPoint::entry(TosState state) const { |
111 | assert(0 <= state && state < number_of_states, "state out of bounds" ); |
112 | return _entry[state]; |
113 | } |
114 | |
115 | |
116 | void EntryPoint::print() { |
117 | tty->print("[" ); |
118 | for (int i = 0; i < number_of_states; i++) { |
119 | if (i > 0) tty->print(", " ); |
120 | tty->print(INTPTR_FORMAT, p2i(_entry[i])); |
121 | } |
122 | tty->print("]" ); |
123 | } |
124 | |
125 | |
126 | bool EntryPoint::operator == (const EntryPoint& y) { |
127 | int i = number_of_states; |
128 | while (i-- > 0) { |
129 | if (_entry[i] != y._entry[i]) return false; |
130 | } |
131 | return true; |
132 | } |
133 | |
134 | |
135 | //------------------------------------------------------------------------------------------------------------------------ |
136 | // Implementation of DispatchTable |
137 | |
138 | EntryPoint DispatchTable::entry(int i) const { |
139 | assert(0 <= i && i < length, "index out of bounds" ); |
140 | return |
141 | EntryPoint( |
142 | _table[btos][i], |
143 | _table[ztos][i], |
144 | _table[ctos][i], |
145 | _table[stos][i], |
146 | _table[atos][i], |
147 | _table[itos][i], |
148 | _table[ltos][i], |
149 | _table[ftos][i], |
150 | _table[dtos][i], |
151 | _table[vtos][i] |
152 | ); |
153 | } |
154 | |
155 | |
156 | void DispatchTable::set_entry(int i, EntryPoint& entry) { |
157 | assert(0 <= i && i < length, "index out of bounds" ); |
158 | assert(number_of_states == 10, "check the code below" ); |
159 | _table[btos][i] = entry.entry(btos); |
160 | _table[ztos][i] = entry.entry(ztos); |
161 | _table[ctos][i] = entry.entry(ctos); |
162 | _table[stos][i] = entry.entry(stos); |
163 | _table[atos][i] = entry.entry(atos); |
164 | _table[itos][i] = entry.entry(itos); |
165 | _table[ltos][i] = entry.entry(ltos); |
166 | _table[ftos][i] = entry.entry(ftos); |
167 | _table[dtos][i] = entry.entry(dtos); |
168 | _table[vtos][i] = entry.entry(vtos); |
169 | } |
170 | |
171 | |
172 | bool DispatchTable::operator == (DispatchTable& y) { |
173 | int i = length; |
174 | while (i-- > 0) { |
175 | EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096) |
176 | if (!(entry(i) == t)) return false; |
177 | } |
178 | return true; |
179 | } |
180 | |
181 | address TemplateInterpreter::_remove_activation_entry = NULL; |
182 | address TemplateInterpreter::_remove_activation_preserving_args_entry = NULL; |
183 | |
184 | |
185 | address TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL; |
186 | address TemplateInterpreter::_throw_ArrayStoreException_entry = NULL; |
187 | address TemplateInterpreter::_throw_ArithmeticException_entry = NULL; |
188 | address TemplateInterpreter::_throw_ClassCastException_entry = NULL; |
189 | address TemplateInterpreter::_throw_NullPointerException_entry = NULL; |
190 | address TemplateInterpreter::_throw_StackOverflowError_entry = NULL; |
191 | address TemplateInterpreter::_throw_exception_entry = NULL; |
192 | |
193 | #ifndef PRODUCT |
194 | EntryPoint TemplateInterpreter::_trace_code; |
195 | #endif // !PRODUCT |
196 | EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries]; |
197 | EntryPoint TemplateInterpreter::_earlyret_entry; |
198 | EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ]; |
199 | address TemplateInterpreter::_deopt_reexecute_return_entry; |
200 | EntryPoint TemplateInterpreter::_safept_entry; |
201 | |
202 | address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs]; |
203 | address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs]; |
204 | address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs]; |
205 | |
206 | DispatchTable TemplateInterpreter::_active_table; |
207 | DispatchTable TemplateInterpreter::_normal_table; |
208 | DispatchTable TemplateInterpreter::_safept_table; |
209 | address TemplateInterpreter::_wentry_point[DispatchTable::length]; |
210 | |
211 | |
212 | //------------------------------------------------------------------------------------------------------------------------ |
213 | // Entry points |
214 | |
215 | /** |
216 | * Returns the return entry table for the given invoke bytecode. |
217 | */ |
218 | address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) { |
219 | switch (code) { |
220 | case Bytecodes::_invokestatic: |
221 | case Bytecodes::_invokespecial: |
222 | case Bytecodes::_invokevirtual: |
223 | case Bytecodes::_invokehandle: |
224 | return Interpreter::invoke_return_entry_table(); |
225 | case Bytecodes::_invokeinterface: |
226 | return Interpreter::invokeinterface_return_entry_table(); |
227 | case Bytecodes::_invokedynamic: |
228 | return Interpreter::invokedynamic_return_entry_table(); |
229 | default: |
230 | fatal("invalid bytecode: %s" , Bytecodes::name(code)); |
231 | return NULL; |
232 | } |
233 | } |
234 | |
235 | /** |
236 | * Returns the return entry address for the given top-of-stack state and bytecode. |
237 | */ |
238 | address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) { |
239 | guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length" ); |
240 | const int index = TosState_as_index(state); |
241 | switch (code) { |
242 | case Bytecodes::_invokestatic: |
243 | case Bytecodes::_invokespecial: |
244 | case Bytecodes::_invokevirtual: |
245 | case Bytecodes::_invokehandle: |
246 | return _invoke_return_entry[index]; |
247 | case Bytecodes::_invokeinterface: |
248 | return _invokeinterface_return_entry[index]; |
249 | case Bytecodes::_invokedynamic: |
250 | return _invokedynamic_return_entry[index]; |
251 | default: |
252 | assert(!Bytecodes::is_invoke(code), "invoke instructions should be handled separately: %s" , Bytecodes::name(code)); |
253 | address entry = _return_entry[length].entry(state); |
254 | vmassert(entry != NULL, "unsupported return entry requested, length=%d state=%d" , length, index); |
255 | return entry; |
256 | } |
257 | } |
258 | |
259 | |
260 | address TemplateInterpreter::deopt_entry(TosState state, int length) { |
261 | guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length" ); |
262 | address entry = _deopt_entry[length].entry(state); |
263 | vmassert(entry != NULL, "unsupported deopt entry requested, length=%d state=%d" , length, TosState_as_index(state)); |
264 | return entry; |
265 | } |
266 | |
267 | //------------------------------------------------------------------------------------------------------------------------ |
268 | // Suport for invokes |
269 | |
270 | int TemplateInterpreter::TosState_as_index(TosState state) { |
271 | assert( state < number_of_states , "Invalid state in TosState_as_index" ); |
272 | assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds" ); |
273 | return (int)state; |
274 | } |
275 | |
276 | |
277 | //------------------------------------------------------------------------------------------------------------------------ |
278 | // Safepoint suppport |
279 | |
280 | static inline void copy_table(address* from, address* to, int size) { |
281 | // Copy non-overlapping tables. The copy has to occur word wise for MT safety. |
282 | while (size-- > 0) *to++ = *from++; |
283 | } |
284 | |
285 | void TemplateInterpreter::notice_safepoints() { |
286 | if (!_notice_safepoints) { |
287 | log_debug(interpreter, safepoint)("switching active_table to safept_table." ); |
288 | // switch to safepoint dispatch table |
289 | _notice_safepoints = true; |
290 | copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address)); |
291 | } else { |
292 | log_debug(interpreter, safepoint)("active_table is already safept_table; " |
293 | "notice_safepoints() call is no-op." ); |
294 | } |
295 | } |
296 | |
297 | // switch from the dispatch table which notices safepoints back to the |
298 | // normal dispatch table. So that we can notice single stepping points, |
299 | // keep the safepoint dispatch table if we are single stepping in JVMTI. |
300 | // Note that the should_post_single_step test is exactly as fast as the |
301 | // JvmtiExport::_enabled test and covers both cases. |
302 | void TemplateInterpreter::ignore_safepoints() { |
303 | if (_notice_safepoints) { |
304 | if (!JvmtiExport::should_post_single_step()) { |
305 | log_debug(interpreter, safepoint)("switching active_table to normal_table." ); |
306 | // switch to normal dispatch table |
307 | _notice_safepoints = false; |
308 | copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address)); |
309 | } else { |
310 | log_debug(interpreter, safepoint)("single stepping is still active; " |
311 | "ignoring ignore_safepoints() call." ); |
312 | } |
313 | } else { |
314 | log_debug(interpreter, safepoint)("active_table is already normal_table; " |
315 | "ignore_safepoints() call is no-op." ); |
316 | } |
317 | } |
318 | |
319 | //------------------------------------------------------------------------------------------------------------------------ |
320 | // Deoptimization support |
321 | |
322 | // If deoptimization happens, this function returns the point of next bytecode to continue execution |
323 | address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) { |
324 | return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame); |
325 | } |
326 | |
327 | // If deoptimization happens, this function returns the point where the interpreter reexecutes |
328 | // the bytecode. |
329 | // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases |
330 | // that do not return "Interpreter::deopt_entry(vtos, 0)" |
331 | address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) { |
332 | assert(method->contains(bcp), "just checkin'" ); |
333 | Bytecodes::Code code = Bytecodes::code_at(method, bcp); |
334 | if (code == Bytecodes::_return_register_finalizer) { |
335 | // This is used for deopt during registration of finalizers |
336 | // during Object.<init>. We simply need to resume execution at |
337 | // the standard return vtos bytecode to pop the frame normally. |
338 | // reexecuting the real bytecode would cause double registration |
339 | // of the finalizable object. |
340 | return Interpreter::deopt_reexecute_return_entry(); |
341 | } else { |
342 | return AbstractInterpreter::deopt_reexecute_entry(method, bcp); |
343 | } |
344 | } |
345 | |
346 | // If deoptimization happens, the interpreter should reexecute this bytecode. |
347 | // This function mainly helps the compilers to set up the reexecute bit. |
348 | bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) { |
349 | if (code == Bytecodes::_return) { |
350 | //Yes, we consider Bytecodes::_return as a special case of reexecution |
351 | return true; |
352 | } else { |
353 | return AbstractInterpreter::bytecode_should_reexecute(code); |
354 | } |
355 | } |
356 | |
357 | InterpreterCodelet* TemplateInterpreter::codelet_containing(address pc) { |
358 | return (InterpreterCodelet*)_code->stub_containing(pc); |
359 | } |
360 | |
361 | #endif // !CC_INTERP |
362 | |