1 | /* |
2 | * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "memory/allocation.inline.hpp" |
27 | #include "opto/chaitin.hpp" |
28 | #include "opto/compile.hpp" |
29 | #include "opto/indexSet.hpp" |
30 | #include "opto/regmask.hpp" |
31 | |
32 | // This file defines the IndexSet class, a set of sparse integer indices. |
33 | // This data structure is used by the compiler in its liveness analysis and |
34 | // during register allocation. It also defines an iterator for this class. |
35 | |
36 | //-------------------------------- Initializations ------------------------------ |
37 | |
38 | IndexSet::BitBlock IndexSet::_empty_block = IndexSet::BitBlock(); |
39 | |
40 | #ifdef ASSERT |
41 | // Initialize statistics counters |
42 | julong IndexSet::_alloc_new = 0; |
43 | julong IndexSet::_alloc_total = 0; |
44 | |
45 | julong IndexSet::_total_bits = 0; |
46 | julong IndexSet::_total_used_blocks = 0; |
47 | julong IndexSet::_total_unused_blocks = 0; |
48 | |
49 | // Per set, or all sets operation tracing |
50 | int IndexSet::_serial_count = 1; |
51 | #endif |
52 | |
53 | //---------------------------- IndexSet::populate_free_list() ----------------------------- |
54 | // Populate the free BitBlock list with a batch of BitBlocks. The BitBlocks |
55 | // are 32 bit aligned. |
56 | |
57 | void IndexSet::populate_free_list() { |
58 | Compile *compile = Compile::current(); |
59 | BitBlock *free = (BitBlock*)compile->indexSet_free_block_list(); |
60 | |
61 | char *mem = (char*)arena()->Amalloc_4(sizeof(BitBlock) * |
62 | bitblock_alloc_chunk_size + 32); |
63 | |
64 | // Align the pointer to a 32 bit boundary. |
65 | BitBlock *new_blocks = (BitBlock*)(((uintptr_t)mem + 32) & ~0x001F); |
66 | |
67 | // Add the new blocks to the free list. |
68 | for (int i = 0; i < bitblock_alloc_chunk_size; i++) { |
69 | new_blocks->set_next(free); |
70 | free = new_blocks; |
71 | new_blocks++; |
72 | } |
73 | |
74 | compile->set_indexSet_free_block_list(free); |
75 | |
76 | #ifdef ASSERT |
77 | if (CollectIndexSetStatistics) { |
78 | inc_stat_counter(&_alloc_new, bitblock_alloc_chunk_size); |
79 | } |
80 | #endif |
81 | } |
82 | |
83 | |
84 | //---------------------------- IndexSet::alloc_block() ------------------------ |
85 | // Allocate a BitBlock from the free list. If the free list is empty, |
86 | // prime it. |
87 | |
88 | IndexSet::BitBlock *IndexSet::alloc_block() { |
89 | #ifdef ASSERT |
90 | if (CollectIndexSetStatistics) { |
91 | inc_stat_counter(&_alloc_total, 1); |
92 | } |
93 | #endif |
94 | Compile *compile = Compile::current(); |
95 | BitBlock* free_list = (BitBlock*)compile->indexSet_free_block_list(); |
96 | if (free_list == NULL) { |
97 | populate_free_list(); |
98 | free_list = (BitBlock*)compile->indexSet_free_block_list(); |
99 | } |
100 | BitBlock *block = free_list; |
101 | compile->set_indexSet_free_block_list(block->next()); |
102 | |
103 | block->clear(); |
104 | return block; |
105 | } |
106 | |
107 | //---------------------------- IndexSet::alloc_block_containing() ------------- |
108 | // Allocate a new BitBlock and put it into the position in the _blocks array |
109 | // corresponding to element. |
110 | |
111 | IndexSet::BitBlock *IndexSet::alloc_block_containing(uint element) { |
112 | BitBlock *block = alloc_block(); |
113 | uint bi = get_block_index(element); |
114 | _blocks[bi] = block; |
115 | return block; |
116 | } |
117 | |
118 | //---------------------------- IndexSet::free_block() ------------------------- |
119 | // Add a BitBlock to the free list. |
120 | |
121 | void IndexSet::free_block(uint i) { |
122 | debug_only(check_watch("free block" , i)); |
123 | assert(i < _max_blocks, "block index too large" ); |
124 | BitBlock *block = _blocks[i]; |
125 | assert(block != &_empty_block, "cannot free the empty block" ); |
126 | block->set_next((IndexSet::BitBlock*)Compile::current()->indexSet_free_block_list()); |
127 | Compile::current()->set_indexSet_free_block_list(block); |
128 | set_block(i,&_empty_block); |
129 | } |
130 | |
131 | //------------------------------lrg_union-------------------------------------- |
132 | // Compute the union of all elements of one and two which interfere with |
133 | // the RegMask mask. If the degree of the union becomes exceeds |
134 | // fail_degree, the union bails out. The underlying set is cleared before |
135 | // the union is performed. |
136 | |
137 | uint IndexSet::lrg_union(uint lr1, uint lr2, |
138 | const uint fail_degree, |
139 | const PhaseIFG *ifg, |
140 | const RegMask &mask ) { |
141 | IndexSet *one = ifg->neighbors(lr1); |
142 | IndexSet *two = ifg->neighbors(lr2); |
143 | LRG &lrg1 = ifg->lrgs(lr1); |
144 | LRG &lrg2 = ifg->lrgs(lr2); |
145 | #ifdef ASSERT |
146 | assert(_max_elements == one->_max_elements, "max element mismatch" ); |
147 | check_watch("union destination" ); |
148 | one->check_watch("union source" ); |
149 | two->check_watch("union source" ); |
150 | #endif |
151 | |
152 | // Compute the degree of the combined live-range. The combined |
153 | // live-range has the union of the original live-ranges' neighbors set as |
154 | // well as the neighbors of all intermediate copies, minus those neighbors |
155 | // that can not use the intersected allowed-register-set. |
156 | |
157 | // Copy the larger set. Insert the smaller set into the larger. |
158 | if (two->count() > one->count()) { |
159 | IndexSet *temp = one; |
160 | one = two; |
161 | two = temp; |
162 | } |
163 | |
164 | clear(); |
165 | |
166 | // Used to compute degree of register-only interferences. Infinite-stack |
167 | // neighbors do not alter colorability, as they can always color to some |
168 | // other color. (A variant of the Briggs assertion) |
169 | uint reg_degree = 0; |
170 | |
171 | uint element; |
172 | // Load up the combined interference set with the neighbors of one |
173 | IndexSetIterator elements(one); |
174 | while ((element = elements.next()) != 0) { |
175 | LRG &lrg = ifg->lrgs(element); |
176 | if (mask.overlap(lrg.mask())) { |
177 | insert(element); |
178 | if( !lrg.mask().is_AllStack() ) { |
179 | reg_degree += lrg1.compute_degree(lrg); |
180 | if( reg_degree >= fail_degree ) return reg_degree; |
181 | } else { |
182 | // !!!!! Danger! No update to reg_degree despite having a neighbor. |
183 | // A variant of the Briggs assertion. |
184 | // Not needed if I simplify during coalesce, ala George/Appel. |
185 | assert( lrg.lo_degree(), "" ); |
186 | } |
187 | } |
188 | } |
189 | // Add neighbors of two as well |
190 | IndexSetIterator elements2(two); |
191 | while ((element = elements2.next()) != 0) { |
192 | LRG &lrg = ifg->lrgs(element); |
193 | if (mask.overlap(lrg.mask())) { |
194 | if (insert(element)) { |
195 | if( !lrg.mask().is_AllStack() ) { |
196 | reg_degree += lrg2.compute_degree(lrg); |
197 | if( reg_degree >= fail_degree ) return reg_degree; |
198 | } else { |
199 | // !!!!! Danger! No update to reg_degree despite having a neighbor. |
200 | // A variant of the Briggs assertion. |
201 | // Not needed if I simplify during coalesce, ala George/Appel. |
202 | assert( lrg.lo_degree(), "" ); |
203 | } |
204 | } |
205 | } |
206 | } |
207 | |
208 | return reg_degree; |
209 | } |
210 | |
211 | //---------------------------- IndexSet() ----------------------------- |
212 | // A deep copy constructor. This is used when you need a scratch copy of this set. |
213 | |
214 | IndexSet::IndexSet (IndexSet *set) { |
215 | #ifdef ASSERT |
216 | _serial_number = _serial_count++; |
217 | set->check_watch("copied" , _serial_number); |
218 | check_watch("initialized by copy" , set->_serial_number); |
219 | _max_elements = set->_max_elements; |
220 | #endif |
221 | _count = set->_count; |
222 | _max_blocks = set->_max_blocks; |
223 | if (_max_blocks <= preallocated_block_list_size) { |
224 | _blocks = _preallocated_block_list; |
225 | } else { |
226 | _blocks = |
227 | (IndexSet::BitBlock**) arena()->Amalloc_4(sizeof(IndexSet::BitBlock**) * _max_blocks); |
228 | } |
229 | for (uint i = 0; i < _max_blocks; i++) { |
230 | BitBlock *block = set->_blocks[i]; |
231 | if (block == &_empty_block) { |
232 | set_block(i, &_empty_block); |
233 | } else { |
234 | BitBlock *new_block = alloc_block(); |
235 | memcpy(new_block->words(), block->words(), sizeof(uint32_t) * words_per_block); |
236 | set_block(i, new_block); |
237 | } |
238 | } |
239 | } |
240 | |
241 | //---------------------------- IndexSet::initialize() ----------------------------- |
242 | // Prepare an IndexSet for use. |
243 | |
244 | void IndexSet::initialize(uint max_elements) { |
245 | #ifdef ASSERT |
246 | _serial_number = _serial_count++; |
247 | check_watch("initialized" , max_elements); |
248 | _max_elements = max_elements; |
249 | #endif |
250 | _count = 0; |
251 | _max_blocks = (max_elements + bits_per_block - 1) / bits_per_block; |
252 | |
253 | if (_max_blocks <= preallocated_block_list_size) { |
254 | _blocks = _preallocated_block_list; |
255 | } else { |
256 | _blocks = (IndexSet::BitBlock**) arena()->Amalloc_4(sizeof(IndexSet::BitBlock*) * _max_blocks); |
257 | } |
258 | for (uint i = 0; i < _max_blocks; i++) { |
259 | set_block(i, &_empty_block); |
260 | } |
261 | } |
262 | |
263 | //---------------------------- IndexSet::initialize()------------------------------ |
264 | // Prepare an IndexSet for use. If it needs to allocate its _blocks array, it does |
265 | // so from the Arena passed as a parameter. BitBlock allocation is still done from |
266 | // the static Arena which was set with reset_memory(). |
267 | |
268 | void IndexSet::initialize(uint max_elements, Arena *arena) { |
269 | #ifdef ASSERT |
270 | _serial_number = _serial_count++; |
271 | check_watch("initialized2" , max_elements); |
272 | _max_elements = max_elements; |
273 | #endif // ASSERT |
274 | _count = 0; |
275 | _max_blocks = (max_elements + bits_per_block - 1) / bits_per_block; |
276 | |
277 | if (_max_blocks <= preallocated_block_list_size) { |
278 | _blocks = _preallocated_block_list; |
279 | } else { |
280 | _blocks = (IndexSet::BitBlock**) arena->Amalloc_4(sizeof(IndexSet::BitBlock*) * _max_blocks); |
281 | } |
282 | for (uint i = 0; i < _max_blocks; i++) { |
283 | set_block(i, &_empty_block); |
284 | } |
285 | } |
286 | |
287 | //---------------------------- IndexSet::swap() ----------------------------- |
288 | // Exchange two IndexSets. |
289 | |
290 | void IndexSet::swap(IndexSet *set) { |
291 | #ifdef ASSERT |
292 | assert(_max_elements == set->_max_elements, "must have same universe size to swap" ); |
293 | check_watch("swap" , set->_serial_number); |
294 | set->check_watch("swap" , _serial_number); |
295 | #endif |
296 | |
297 | for (uint i = 0; i < _max_blocks; i++) { |
298 | BitBlock *temp = _blocks[i]; |
299 | set_block(i, set->_blocks[i]); |
300 | set->set_block(i, temp); |
301 | } |
302 | uint temp = _count; |
303 | _count = set->_count; |
304 | set->_count = temp; |
305 | } |
306 | |
307 | //---------------------------- IndexSet::dump() ----------------------------- |
308 | // Print this set. Used for debugging. |
309 | |
310 | #ifndef PRODUCT |
311 | void IndexSet::dump() const { |
312 | IndexSetIterator elements(this); |
313 | |
314 | tty->print("{" ); |
315 | uint i; |
316 | while ((i = elements.next()) != 0) { |
317 | tty->print("L%d " , i); |
318 | } |
319 | tty->print_cr("}" ); |
320 | } |
321 | #endif |
322 | |
323 | #ifdef ASSERT |
324 | //---------------------------- IndexSet::tally_iteration_statistics() ----------------------------- |
325 | // Update block/bit counts to reflect that this set has been iterated over. |
326 | |
327 | void IndexSet::tally_iteration_statistics() const { |
328 | inc_stat_counter(&_total_bits, count()); |
329 | |
330 | for (uint i = 0; i < _max_blocks; i++) { |
331 | if (_blocks[i] != &_empty_block) { |
332 | inc_stat_counter(&_total_used_blocks, 1); |
333 | } else { |
334 | inc_stat_counter(&_total_unused_blocks, 1); |
335 | } |
336 | } |
337 | } |
338 | |
339 | //---------------------------- IndexSet::print_statistics() ----------------------------- |
340 | // Print statistics about IndexSet usage. |
341 | |
342 | void IndexSet::print_statistics() { |
343 | julong total_blocks = _total_used_blocks + _total_unused_blocks; |
344 | tty->print_cr ("Accumulated IndexSet usage statistics:" ); |
345 | tty->print_cr ("--------------------------------------" ); |
346 | tty->print_cr (" Iteration:" ); |
347 | tty->print_cr (" blocks visited: " UINT64_FORMAT, total_blocks); |
348 | tty->print_cr (" blocks empty: %4.2f%%" , 100.0*(double)_total_unused_blocks/total_blocks); |
349 | tty->print_cr (" bit density (bits/used blocks): %4.2f" , (double)_total_bits/_total_used_blocks); |
350 | tty->print_cr (" bit density (bits/all blocks): %4.2f" , (double)_total_bits/total_blocks); |
351 | tty->print_cr (" Allocation:" ); |
352 | tty->print_cr (" blocks allocated: " UINT64_FORMAT, _alloc_new); |
353 | tty->print_cr (" blocks used/reused: " UINT64_FORMAT, _alloc_total); |
354 | } |
355 | |
356 | //---------------------------- IndexSet::verify() ----------------------------- |
357 | // Expensive test of IndexSet sanity. Ensure that the count agrees with the |
358 | // number of bits in the blocks. Make sure the iterator is seeing all elements |
359 | // of the set. Meant for use during development. |
360 | |
361 | void IndexSet::verify() const { |
362 | assert(!member(0), "zero cannot be a member" ); |
363 | uint count = 0; |
364 | uint i; |
365 | for (i = 1; i < _max_elements; i++) { |
366 | if (member(i)) { |
367 | count++; |
368 | assert(count <= _count, "_count is messed up" ); |
369 | } |
370 | } |
371 | |
372 | IndexSetIterator elements(this); |
373 | count = 0; |
374 | while ((i = elements.next()) != 0) { |
375 | count++; |
376 | assert(member(i), "returned a non member" ); |
377 | assert(count <= _count, "iterator returned wrong number of elements" ); |
378 | } |
379 | } |
380 | #endif |
381 | |
382 | //---------------------------- IndexSetIterator() ----------------------------- |
383 | // Create an iterator for a set. If empty blocks are detected when iterating |
384 | // over the set, these blocks are replaced. |
385 | |
386 | IndexSetIterator::IndexSetIterator(IndexSet *set) { |
387 | #ifdef ASSERT |
388 | if (CollectIndexSetStatistics) { |
389 | set->tally_iteration_statistics(); |
390 | } |
391 | set->check_watch("traversed" , set->count()); |
392 | #endif |
393 | if (set->is_empty()) { |
394 | _current = 0; |
395 | _next_word = IndexSet::words_per_block; |
396 | _next_block = 1; |
397 | _max_blocks = 1; |
398 | |
399 | // We don't need the following values when we iterate over an empty set. |
400 | // The commented out code is left here to document that the omission |
401 | // is intentional. |
402 | // |
403 | //_value = 0; |
404 | //_words = NULL; |
405 | //_blocks = NULL; |
406 | //_set = NULL; |
407 | } else { |
408 | _current = 0; |
409 | _value = 0; |
410 | _next_block = 0; |
411 | _next_word = IndexSet::words_per_block; |
412 | |
413 | _max_blocks = set->_max_blocks; |
414 | _words = NULL; |
415 | _blocks = set->_blocks; |
416 | _set = set; |
417 | } |
418 | } |
419 | |
420 | //---------------------------- IndexSetIterator(const) ----------------------------- |
421 | // Iterate over a constant IndexSet. |
422 | |
423 | IndexSetIterator::IndexSetIterator(const IndexSet *set) { |
424 | #ifdef ASSERT |
425 | if (CollectIndexSetStatistics) { |
426 | set->tally_iteration_statistics(); |
427 | } |
428 | // We don't call check_watch from here to avoid bad recursion. |
429 | // set->check_watch("traversed const", set->count()); |
430 | #endif |
431 | if (set->is_empty()) { |
432 | _current = 0; |
433 | _next_word = IndexSet::words_per_block; |
434 | _next_block = 1; |
435 | _max_blocks = 1; |
436 | |
437 | // We don't need the following values when we iterate over an empty set. |
438 | // The commented out code is left here to document that the omission |
439 | // is intentional. |
440 | // |
441 | //_value = 0; |
442 | //_words = NULL; |
443 | //_blocks = NULL; |
444 | //_set = NULL; |
445 | } else { |
446 | _current = 0; |
447 | _value = 0; |
448 | _next_block = 0; |
449 | _next_word = IndexSet::words_per_block; |
450 | |
451 | _max_blocks = set->_max_blocks; |
452 | _words = NULL; |
453 | _blocks = set->_blocks; |
454 | _set = NULL; |
455 | } |
456 | } |
457 | |
458 | //---------------------------- List16Iterator::advance_and_next() ----------------------------- |
459 | // Advance to the next non-empty word in the set being iterated over. Return the next element |
460 | // if there is one. If we are done, return 0. This method is called from the next() method |
461 | // when it gets done with a word. |
462 | |
463 | uint IndexSetIterator::advance_and_next() { |
464 | // See if there is another non-empty word in the current block. |
465 | for (uint wi = _next_word; wi < (unsigned)IndexSet::words_per_block; wi++) { |
466 | if (_words[wi] != 0) { |
467 | // Found a non-empty word. |
468 | _value = ((_next_block - 1) * IndexSet::bits_per_block) + (wi * IndexSet::bits_per_word); |
469 | _current = _words[wi]; |
470 | |
471 | _next_word = wi+1; |
472 | |
473 | return next(); |
474 | } |
475 | } |
476 | |
477 | // We ran out of words in the current block. Advance to next non-empty block. |
478 | for (uint bi = _next_block; bi < _max_blocks; bi++) { |
479 | if (_blocks[bi] != &IndexSet::_empty_block) { |
480 | // Found a non-empty block. |
481 | |
482 | _words = _blocks[bi]->words(); |
483 | for (uint wi = 0; wi < (unsigned)IndexSet::words_per_block; wi++) { |
484 | if (_words[wi] != 0) { |
485 | // Found a non-empty word. |
486 | _value = (bi * IndexSet::bits_per_block) + (wi * IndexSet::bits_per_word); |
487 | _current = _words[wi]; |
488 | |
489 | _next_block = bi+1; |
490 | _next_word = wi+1; |
491 | |
492 | return next(); |
493 | } |
494 | } |
495 | |
496 | // All of the words in the block were empty. Replace |
497 | // the block with the empty block. |
498 | if (_set) { |
499 | _set->free_block(bi); |
500 | } |
501 | } |
502 | } |
503 | |
504 | // These assignments make redundant calls to next on a finished iterator |
505 | // faster. Probably not necessary. |
506 | _next_block = _max_blocks; |
507 | _next_word = IndexSet::words_per_block; |
508 | |
509 | // No more words. |
510 | return 0; |
511 | } |
512 | |