1 | /* |
2 | * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_OPTO_INDEXSET_HPP |
26 | #define SHARE_OPTO_INDEXSET_HPP |
27 | |
28 | #include "memory/allocation.hpp" |
29 | #include "memory/resourceArea.hpp" |
30 | #include "opto/compile.hpp" |
31 | #include "opto/regmask.hpp" |
32 | #include "utilities/count_trailing_zeros.hpp" |
33 | |
34 | // This file defines the IndexSet class, a set of sparse integer indices. |
35 | // This data structure is used by the compiler in its liveness analysis and |
36 | // during register allocation. |
37 | |
38 | //-------------------------------- class IndexSet ---------------------------- |
39 | // An IndexSet is a piece-wise bitvector. At the top level, we have an array |
40 | // of pointers to bitvector chunks called BitBlocks. Each BitBlock has a fixed |
41 | // size and is allocated from a shared free list. The bits which are set in |
42 | // each BitBlock correspond to the elements of the set. |
43 | |
44 | class IndexSet : public ResourceObj { |
45 | friend class IndexSetIterator; |
46 | |
47 | public: |
48 | // When we allocate an IndexSet, it starts off with an array of top level block |
49 | // pointers of a set length. This size is intended to be large enough for the |
50 | // majority of IndexSets. In the cases when this size is not large enough, |
51 | // a separately allocated array is used. |
52 | |
53 | // The length of the preallocated top level block array |
54 | enum { preallocated_block_list_size = 16 }; |
55 | |
56 | // Elements of a IndexSet get decomposed into three fields. The highest order |
57 | // bits are the block index, which tell which high level block holds the element. |
58 | // Within that block, the word index indicates which word holds the element. |
59 | // Finally, the bit index determines which single bit within that word indicates |
60 | // membership of the element in the set. |
61 | |
62 | // The lengths of the index bitfields |
63 | enum { bit_index_length = 5, |
64 | word_index_length = 3, |
65 | block_index_length = 8 // not used |
66 | }; |
67 | |
68 | // Derived constants used for manipulating the index bitfields |
69 | enum { |
70 | bit_index_offset = 0, // not used |
71 | word_index_offset = bit_index_length, |
72 | block_index_offset = bit_index_length + word_index_length, |
73 | |
74 | bits_per_word = 1 << bit_index_length, |
75 | words_per_block = 1 << word_index_length, |
76 | bits_per_block = bits_per_word * words_per_block, |
77 | |
78 | bit_index_mask = right_n_bits(bit_index_length), |
79 | word_index_mask = right_n_bits(word_index_length) |
80 | }; |
81 | |
82 | // These routines are used for extracting the block, word, and bit index |
83 | // from an element. |
84 | static uint get_block_index(uint element) { |
85 | return element >> block_index_offset; |
86 | } |
87 | static uint get_word_index(uint element) { |
88 | return mask_bits(element >> word_index_offset,word_index_mask); |
89 | } |
90 | static uint get_bit_index(uint element) { |
91 | return mask_bits(element,bit_index_mask); |
92 | } |
93 | |
94 | //------------------------------ class BitBlock ---------------------------- |
95 | // The BitBlock class is a segment of a bitvector set. |
96 | |
97 | class BitBlock : public ResourceObj { |
98 | friend class IndexSetIterator; |
99 | friend class IndexSet; |
100 | |
101 | private: |
102 | // All of BitBlocks fields and methods are declared private. We limit |
103 | // access to IndexSet and IndexSetIterator. |
104 | |
105 | // A BitBlock is composed of some number of 32 bit words. When a BitBlock |
106 | // is not in use by any IndexSet, it is stored on a free list. The next field |
107 | // is used by IndexSet to mainting this free list. |
108 | |
109 | union { |
110 | uint32_t _words[words_per_block]; |
111 | BitBlock *_next; |
112 | } _data; |
113 | |
114 | // accessors |
115 | uint32_t* words() { return _data._words; } |
116 | void set_next(BitBlock *next) { _data._next = next; } |
117 | BitBlock *next() { return _data._next; } |
118 | |
119 | // Operations. A BitBlock supports four simple operations, |
120 | // clear(), member(), insert(), and remove(). These methods do |
121 | // not assume that the block index has been masked out. |
122 | |
123 | void clear() { |
124 | memset(words(), 0, sizeof(uint32_t) * words_per_block); |
125 | } |
126 | |
127 | bool member(uint element) { |
128 | uint word_index = IndexSet::get_word_index(element); |
129 | uint bit_index = IndexSet::get_bit_index(element); |
130 | |
131 | return ((words()[word_index] & (uint32_t)(0x1 << bit_index)) != 0); |
132 | } |
133 | |
134 | bool insert(uint element) { |
135 | uint word_index = IndexSet::get_word_index(element); |
136 | uint bit_index = IndexSet::get_bit_index(element); |
137 | |
138 | uint32_t bit = (0x1 << bit_index); |
139 | uint32_t before = words()[word_index]; |
140 | words()[word_index] = before | bit; |
141 | return ((before & bit) != 0); |
142 | } |
143 | |
144 | bool remove(uint element) { |
145 | uint word_index = IndexSet::get_word_index(element); |
146 | uint bit_index = IndexSet::get_bit_index(element); |
147 | |
148 | uint32_t bit = (0x1 << bit_index); |
149 | uint32_t before = words()[word_index]; |
150 | words()[word_index] = before & ~bit; |
151 | return ((before & bit) != 0); |
152 | } |
153 | }; |
154 | |
155 | //-------------------------- BitBlock allocation --------------------------- |
156 | private: |
157 | |
158 | // All IndexSets share an arena from which they allocate BitBlocks. Unused |
159 | // BitBlocks are placed on a free list. |
160 | |
161 | // The number of BitBlocks to allocate at a time |
162 | enum { bitblock_alloc_chunk_size = 50 }; |
163 | |
164 | static Arena *arena() { return Compile::current()->indexSet_arena(); } |
165 | |
166 | static void populate_free_list(); |
167 | |
168 | public: |
169 | |
170 | // Invalidate the current free BitBlock list and begin allocation |
171 | // from a new arena. It is essential that this method is called whenever |
172 | // the Arena being used for BitBlock allocation is reset. |
173 | static void reset_memory(Compile* compile, Arena *arena) { |
174 | compile->set_indexSet_free_block_list(NULL); |
175 | compile->set_indexSet_arena(arena); |
176 | |
177 | // This should probably be done in a static initializer |
178 | _empty_block.clear(); |
179 | } |
180 | |
181 | private: |
182 | friend class BitBlock; |
183 | // A distinguished BitBlock which always remains empty. When a new IndexSet is |
184 | // created, all of its top level BitBlock pointers are initialized to point to |
185 | // this. |
186 | static BitBlock _empty_block; |
187 | |
188 | //-------------------------- Members ------------------------------------------ |
189 | |
190 | // The number of elements in the set |
191 | uint _count; |
192 | |
193 | // Our top level array of bitvector segments |
194 | BitBlock **_blocks; |
195 | |
196 | BitBlock *_preallocated_block_list[preallocated_block_list_size]; |
197 | |
198 | // The number of top level array entries in use |
199 | uint _max_blocks; |
200 | |
201 | // Our assertions need to know the maximum number allowed in the set |
202 | #ifdef ASSERT |
203 | uint _max_elements; |
204 | #endif |
205 | |
206 | // The next IndexSet on the free list (not used at same time as count) |
207 | IndexSet *_next; |
208 | |
209 | public: |
210 | //-------------------------- Free list operations ------------------------------ |
211 | // Individual IndexSets can be placed on a free list. This is done in PhaseLive. |
212 | |
213 | IndexSet *next() { |
214 | #ifdef ASSERT |
215 | if( VerifyOpto ) { |
216 | check_watch("removed from free list?" , ((_next == NULL) ? 0 : _next->_serial_number)); |
217 | } |
218 | #endif |
219 | return _next; |
220 | } |
221 | |
222 | void set_next(IndexSet *next) { |
223 | #ifdef ASSERT |
224 | if( VerifyOpto ) { |
225 | check_watch("put on free list?" , ((next == NULL) ? 0 : next->_serial_number)); |
226 | } |
227 | #endif |
228 | _next = next; |
229 | } |
230 | |
231 | private: |
232 | //-------------------------- Utility methods ----------------------------------- |
233 | |
234 | // Get the block which holds element |
235 | BitBlock *get_block_containing(uint element) const { |
236 | assert(element < _max_elements, "element out of bounds" ); |
237 | return _blocks[get_block_index(element)]; |
238 | } |
239 | |
240 | // Set a block in the top level array |
241 | void set_block(uint index, BitBlock *block) { |
242 | #ifdef ASSERT |
243 | if( VerifyOpto ) |
244 | check_watch("set block" , index); |
245 | #endif |
246 | _blocks[index] = block; |
247 | } |
248 | |
249 | // Get a BitBlock from the free list |
250 | BitBlock *alloc_block(); |
251 | |
252 | // Get a BitBlock from the free list and place it in the top level array |
253 | BitBlock *alloc_block_containing(uint element); |
254 | |
255 | // Free a block from the top level array, placing it on the free BitBlock list |
256 | void free_block(uint i); |
257 | |
258 | public: |
259 | //-------------------------- Primitive set operations -------------------------- |
260 | |
261 | void clear() { |
262 | #ifdef ASSERT |
263 | if( VerifyOpto ) |
264 | check_watch("clear" ); |
265 | #endif |
266 | _count = 0; |
267 | for (uint i = 0; i < _max_blocks; i++) { |
268 | BitBlock *block = _blocks[i]; |
269 | if (block != &_empty_block) { |
270 | free_block(i); |
271 | } |
272 | } |
273 | } |
274 | |
275 | uint count() const { return _count; } |
276 | |
277 | bool is_empty() const { return _count == 0; } |
278 | |
279 | bool member(uint element) const { |
280 | return get_block_containing(element)->member(element); |
281 | } |
282 | |
283 | bool insert(uint element) { |
284 | #ifdef ASSERT |
285 | if( VerifyOpto ) |
286 | check_watch("insert" , element); |
287 | #endif |
288 | if (element == 0) { |
289 | return 0; |
290 | } |
291 | BitBlock *block = get_block_containing(element); |
292 | if (block == &_empty_block) { |
293 | block = alloc_block_containing(element); |
294 | } |
295 | bool present = block->insert(element); |
296 | if (!present) { |
297 | _count++; |
298 | } |
299 | return !present; |
300 | } |
301 | |
302 | bool remove(uint element) { |
303 | #ifdef ASSERT |
304 | if( VerifyOpto ) |
305 | check_watch("remove" , element); |
306 | #endif |
307 | |
308 | BitBlock *block = get_block_containing(element); |
309 | bool present = block->remove(element); |
310 | if (present) { |
311 | _count--; |
312 | } |
313 | return present; |
314 | } |
315 | |
316 | //-------------------------- Compound set operations ------------------------ |
317 | // Compute the union of all elements of one and two which interfere |
318 | // with the RegMask mask. If the degree of the union becomes |
319 | // exceeds fail_degree, the union bails out. The underlying set is |
320 | // cleared before the union is performed. |
321 | uint lrg_union(uint lr1, uint lr2, |
322 | const uint fail_degree, |
323 | const class PhaseIFG *ifg, |
324 | const RegMask &mask); |
325 | |
326 | |
327 | //------------------------- Construction, initialization ----------------------- |
328 | |
329 | IndexSet() {} |
330 | |
331 | // This constructor is used for making a deep copy of a IndexSet. |
332 | IndexSet(IndexSet *set); |
333 | |
334 | // Perform initialization on a IndexSet |
335 | void initialize(uint max_element); |
336 | |
337 | // Initialize a IndexSet. If the top level BitBlock array needs to be |
338 | // allocated, do it from the proffered arena. BitBlocks are still allocated |
339 | // from the static Arena member. |
340 | void initialize(uint max_element, Arena *arena); |
341 | |
342 | // Exchange two sets |
343 | void swap(IndexSet *set); |
344 | |
345 | //-------------------------- Debugging and statistics -------------------------- |
346 | |
347 | #ifndef PRODUCT |
348 | // Output a IndexSet for debugging |
349 | void dump() const; |
350 | #endif |
351 | |
352 | #ifdef ASSERT |
353 | void tally_iteration_statistics() const; |
354 | |
355 | // BitBlock allocation statistics |
356 | static julong _alloc_new; |
357 | static julong _alloc_total; |
358 | |
359 | // Block density statistics |
360 | static julong _total_bits; |
361 | static julong _total_used_blocks; |
362 | static julong _total_unused_blocks; |
363 | |
364 | // Sanity tests |
365 | void verify() const; |
366 | |
367 | static int _serial_count; |
368 | int _serial_number; |
369 | |
370 | // Check to see if the serial number of the current set is the one we're tracing. |
371 | // If it is, print a message. |
372 | void check_watch(const char *operation, uint operand) const { |
373 | if (IndexSetWatch != 0) { |
374 | if (IndexSetWatch == -1 || _serial_number == IndexSetWatch) { |
375 | tty->print_cr("IndexSet %d : %s ( %d )" , _serial_number, operation, operand); |
376 | } |
377 | } |
378 | } |
379 | void check_watch(const char *operation) const { |
380 | if (IndexSetWatch != 0) { |
381 | if (IndexSetWatch == -1 || _serial_number == IndexSetWatch) { |
382 | tty->print_cr("IndexSet %d : %s" , _serial_number, operation); |
383 | } |
384 | } |
385 | } |
386 | |
387 | public: |
388 | static void print_statistics(); |
389 | |
390 | #endif |
391 | }; |
392 | |
393 | |
394 | //-------------------------------- class IndexSetIterator -------------------- |
395 | // An iterator for IndexSets. |
396 | |
397 | class IndexSetIterator { |
398 | friend class IndexSet; |
399 | |
400 | private: |
401 | // The current word we are inspecting |
402 | uint32_t _current; |
403 | |
404 | // What element number are we currently on? |
405 | uint _value; |
406 | |
407 | // The index of the next word we will inspect |
408 | uint _next_word; |
409 | |
410 | // A pointer to the contents of the current block |
411 | uint32_t *_words; |
412 | |
413 | // The index of the next block we will inspect |
414 | uint _next_block; |
415 | |
416 | // A pointer to the blocks in our set |
417 | IndexSet::BitBlock **_blocks; |
418 | |
419 | // The number of blocks in the set |
420 | uint _max_blocks; |
421 | |
422 | // If the iterator was created from a non-const set, we replace |
423 | // non-canonical empty blocks with the _empty_block pointer. If |
424 | // _set is NULL, we do no replacement. |
425 | IndexSet *_set; |
426 | |
427 | // Advance to the next non-empty word and return the next |
428 | // element in the set. |
429 | uint advance_and_next(); |
430 | |
431 | public: |
432 | |
433 | // If an iterator is built from a constant set then empty blocks |
434 | // are not canonicalized. |
435 | IndexSetIterator(IndexSet *set); |
436 | IndexSetIterator(const IndexSet *set); |
437 | |
438 | // Return the next element of the set. Return 0 when done. |
439 | uint next() { |
440 | uint current = _current; |
441 | if (current != 0) { |
442 | uint advance = count_trailing_zeros(current); |
443 | assert(((current >> advance) & 0x1) == 1, "sanity" ); |
444 | _current = (current >> advance) - 1; |
445 | _value += advance; |
446 | return _value; |
447 | } else { |
448 | return advance_and_next(); |
449 | } |
450 | } |
451 | }; |
452 | |
453 | #endif // SHARE_OPTO_INDEXSET_HPP |
454 | |