| 1 | /* |
| 2 | * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_OPTO_INDEXSET_HPP |
| 26 | #define SHARE_OPTO_INDEXSET_HPP |
| 27 | |
| 28 | #include "memory/allocation.hpp" |
| 29 | #include "memory/resourceArea.hpp" |
| 30 | #include "opto/compile.hpp" |
| 31 | #include "opto/regmask.hpp" |
| 32 | #include "utilities/count_trailing_zeros.hpp" |
| 33 | |
| 34 | // This file defines the IndexSet class, a set of sparse integer indices. |
| 35 | // This data structure is used by the compiler in its liveness analysis and |
| 36 | // during register allocation. |
| 37 | |
| 38 | //-------------------------------- class IndexSet ---------------------------- |
| 39 | // An IndexSet is a piece-wise bitvector. At the top level, we have an array |
| 40 | // of pointers to bitvector chunks called BitBlocks. Each BitBlock has a fixed |
| 41 | // size and is allocated from a shared free list. The bits which are set in |
| 42 | // each BitBlock correspond to the elements of the set. |
| 43 | |
| 44 | class IndexSet : public ResourceObj { |
| 45 | friend class IndexSetIterator; |
| 46 | |
| 47 | public: |
| 48 | // When we allocate an IndexSet, it starts off with an array of top level block |
| 49 | // pointers of a set length. This size is intended to be large enough for the |
| 50 | // majority of IndexSets. In the cases when this size is not large enough, |
| 51 | // a separately allocated array is used. |
| 52 | |
| 53 | // The length of the preallocated top level block array |
| 54 | enum { preallocated_block_list_size = 16 }; |
| 55 | |
| 56 | // Elements of a IndexSet get decomposed into three fields. The highest order |
| 57 | // bits are the block index, which tell which high level block holds the element. |
| 58 | // Within that block, the word index indicates which word holds the element. |
| 59 | // Finally, the bit index determines which single bit within that word indicates |
| 60 | // membership of the element in the set. |
| 61 | |
| 62 | // The lengths of the index bitfields |
| 63 | enum { bit_index_length = 5, |
| 64 | word_index_length = 3, |
| 65 | block_index_length = 8 // not used |
| 66 | }; |
| 67 | |
| 68 | // Derived constants used for manipulating the index bitfields |
| 69 | enum { |
| 70 | bit_index_offset = 0, // not used |
| 71 | word_index_offset = bit_index_length, |
| 72 | block_index_offset = bit_index_length + word_index_length, |
| 73 | |
| 74 | bits_per_word = 1 << bit_index_length, |
| 75 | words_per_block = 1 << word_index_length, |
| 76 | bits_per_block = bits_per_word * words_per_block, |
| 77 | |
| 78 | bit_index_mask = right_n_bits(bit_index_length), |
| 79 | word_index_mask = right_n_bits(word_index_length) |
| 80 | }; |
| 81 | |
| 82 | // These routines are used for extracting the block, word, and bit index |
| 83 | // from an element. |
| 84 | static uint get_block_index(uint element) { |
| 85 | return element >> block_index_offset; |
| 86 | } |
| 87 | static uint get_word_index(uint element) { |
| 88 | return mask_bits(element >> word_index_offset,word_index_mask); |
| 89 | } |
| 90 | static uint get_bit_index(uint element) { |
| 91 | return mask_bits(element,bit_index_mask); |
| 92 | } |
| 93 | |
| 94 | //------------------------------ class BitBlock ---------------------------- |
| 95 | // The BitBlock class is a segment of a bitvector set. |
| 96 | |
| 97 | class BitBlock : public ResourceObj { |
| 98 | friend class IndexSetIterator; |
| 99 | friend class IndexSet; |
| 100 | |
| 101 | private: |
| 102 | // All of BitBlocks fields and methods are declared private. We limit |
| 103 | // access to IndexSet and IndexSetIterator. |
| 104 | |
| 105 | // A BitBlock is composed of some number of 32 bit words. When a BitBlock |
| 106 | // is not in use by any IndexSet, it is stored on a free list. The next field |
| 107 | // is used by IndexSet to mainting this free list. |
| 108 | |
| 109 | union { |
| 110 | uint32_t _words[words_per_block]; |
| 111 | BitBlock *_next; |
| 112 | } _data; |
| 113 | |
| 114 | // accessors |
| 115 | uint32_t* words() { return _data._words; } |
| 116 | void set_next(BitBlock *next) { _data._next = next; } |
| 117 | BitBlock *next() { return _data._next; } |
| 118 | |
| 119 | // Operations. A BitBlock supports four simple operations, |
| 120 | // clear(), member(), insert(), and remove(). These methods do |
| 121 | // not assume that the block index has been masked out. |
| 122 | |
| 123 | void clear() { |
| 124 | memset(words(), 0, sizeof(uint32_t) * words_per_block); |
| 125 | } |
| 126 | |
| 127 | bool member(uint element) { |
| 128 | uint word_index = IndexSet::get_word_index(element); |
| 129 | uint bit_index = IndexSet::get_bit_index(element); |
| 130 | |
| 131 | return ((words()[word_index] & (uint32_t)(0x1 << bit_index)) != 0); |
| 132 | } |
| 133 | |
| 134 | bool insert(uint element) { |
| 135 | uint word_index = IndexSet::get_word_index(element); |
| 136 | uint bit_index = IndexSet::get_bit_index(element); |
| 137 | |
| 138 | uint32_t bit = (0x1 << bit_index); |
| 139 | uint32_t before = words()[word_index]; |
| 140 | words()[word_index] = before | bit; |
| 141 | return ((before & bit) != 0); |
| 142 | } |
| 143 | |
| 144 | bool remove(uint element) { |
| 145 | uint word_index = IndexSet::get_word_index(element); |
| 146 | uint bit_index = IndexSet::get_bit_index(element); |
| 147 | |
| 148 | uint32_t bit = (0x1 << bit_index); |
| 149 | uint32_t before = words()[word_index]; |
| 150 | words()[word_index] = before & ~bit; |
| 151 | return ((before & bit) != 0); |
| 152 | } |
| 153 | }; |
| 154 | |
| 155 | //-------------------------- BitBlock allocation --------------------------- |
| 156 | private: |
| 157 | |
| 158 | // All IndexSets share an arena from which they allocate BitBlocks. Unused |
| 159 | // BitBlocks are placed on a free list. |
| 160 | |
| 161 | // The number of BitBlocks to allocate at a time |
| 162 | enum { bitblock_alloc_chunk_size = 50 }; |
| 163 | |
| 164 | static Arena *arena() { return Compile::current()->indexSet_arena(); } |
| 165 | |
| 166 | static void populate_free_list(); |
| 167 | |
| 168 | public: |
| 169 | |
| 170 | // Invalidate the current free BitBlock list and begin allocation |
| 171 | // from a new arena. It is essential that this method is called whenever |
| 172 | // the Arena being used for BitBlock allocation is reset. |
| 173 | static void reset_memory(Compile* compile, Arena *arena) { |
| 174 | compile->set_indexSet_free_block_list(NULL); |
| 175 | compile->set_indexSet_arena(arena); |
| 176 | |
| 177 | // This should probably be done in a static initializer |
| 178 | _empty_block.clear(); |
| 179 | } |
| 180 | |
| 181 | private: |
| 182 | friend class BitBlock; |
| 183 | // A distinguished BitBlock which always remains empty. When a new IndexSet is |
| 184 | // created, all of its top level BitBlock pointers are initialized to point to |
| 185 | // this. |
| 186 | static BitBlock _empty_block; |
| 187 | |
| 188 | //-------------------------- Members ------------------------------------------ |
| 189 | |
| 190 | // The number of elements in the set |
| 191 | uint _count; |
| 192 | |
| 193 | // Our top level array of bitvector segments |
| 194 | BitBlock **_blocks; |
| 195 | |
| 196 | BitBlock *_preallocated_block_list[preallocated_block_list_size]; |
| 197 | |
| 198 | // The number of top level array entries in use |
| 199 | uint _max_blocks; |
| 200 | |
| 201 | // Our assertions need to know the maximum number allowed in the set |
| 202 | #ifdef ASSERT |
| 203 | uint _max_elements; |
| 204 | #endif |
| 205 | |
| 206 | // The next IndexSet on the free list (not used at same time as count) |
| 207 | IndexSet *_next; |
| 208 | |
| 209 | public: |
| 210 | //-------------------------- Free list operations ------------------------------ |
| 211 | // Individual IndexSets can be placed on a free list. This is done in PhaseLive. |
| 212 | |
| 213 | IndexSet *next() { |
| 214 | #ifdef ASSERT |
| 215 | if( VerifyOpto ) { |
| 216 | check_watch("removed from free list?" , ((_next == NULL) ? 0 : _next->_serial_number)); |
| 217 | } |
| 218 | #endif |
| 219 | return _next; |
| 220 | } |
| 221 | |
| 222 | void set_next(IndexSet *next) { |
| 223 | #ifdef ASSERT |
| 224 | if( VerifyOpto ) { |
| 225 | check_watch("put on free list?" , ((next == NULL) ? 0 : next->_serial_number)); |
| 226 | } |
| 227 | #endif |
| 228 | _next = next; |
| 229 | } |
| 230 | |
| 231 | private: |
| 232 | //-------------------------- Utility methods ----------------------------------- |
| 233 | |
| 234 | // Get the block which holds element |
| 235 | BitBlock *get_block_containing(uint element) const { |
| 236 | assert(element < _max_elements, "element out of bounds" ); |
| 237 | return _blocks[get_block_index(element)]; |
| 238 | } |
| 239 | |
| 240 | // Set a block in the top level array |
| 241 | void set_block(uint index, BitBlock *block) { |
| 242 | #ifdef ASSERT |
| 243 | if( VerifyOpto ) |
| 244 | check_watch("set block" , index); |
| 245 | #endif |
| 246 | _blocks[index] = block; |
| 247 | } |
| 248 | |
| 249 | // Get a BitBlock from the free list |
| 250 | BitBlock *alloc_block(); |
| 251 | |
| 252 | // Get a BitBlock from the free list and place it in the top level array |
| 253 | BitBlock *alloc_block_containing(uint element); |
| 254 | |
| 255 | // Free a block from the top level array, placing it on the free BitBlock list |
| 256 | void free_block(uint i); |
| 257 | |
| 258 | public: |
| 259 | //-------------------------- Primitive set operations -------------------------- |
| 260 | |
| 261 | void clear() { |
| 262 | #ifdef ASSERT |
| 263 | if( VerifyOpto ) |
| 264 | check_watch("clear" ); |
| 265 | #endif |
| 266 | _count = 0; |
| 267 | for (uint i = 0; i < _max_blocks; i++) { |
| 268 | BitBlock *block = _blocks[i]; |
| 269 | if (block != &_empty_block) { |
| 270 | free_block(i); |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | uint count() const { return _count; } |
| 276 | |
| 277 | bool is_empty() const { return _count == 0; } |
| 278 | |
| 279 | bool member(uint element) const { |
| 280 | return get_block_containing(element)->member(element); |
| 281 | } |
| 282 | |
| 283 | bool insert(uint element) { |
| 284 | #ifdef ASSERT |
| 285 | if( VerifyOpto ) |
| 286 | check_watch("insert" , element); |
| 287 | #endif |
| 288 | if (element == 0) { |
| 289 | return 0; |
| 290 | } |
| 291 | BitBlock *block = get_block_containing(element); |
| 292 | if (block == &_empty_block) { |
| 293 | block = alloc_block_containing(element); |
| 294 | } |
| 295 | bool present = block->insert(element); |
| 296 | if (!present) { |
| 297 | _count++; |
| 298 | } |
| 299 | return !present; |
| 300 | } |
| 301 | |
| 302 | bool remove(uint element) { |
| 303 | #ifdef ASSERT |
| 304 | if( VerifyOpto ) |
| 305 | check_watch("remove" , element); |
| 306 | #endif |
| 307 | |
| 308 | BitBlock *block = get_block_containing(element); |
| 309 | bool present = block->remove(element); |
| 310 | if (present) { |
| 311 | _count--; |
| 312 | } |
| 313 | return present; |
| 314 | } |
| 315 | |
| 316 | //-------------------------- Compound set operations ------------------------ |
| 317 | // Compute the union of all elements of one and two which interfere |
| 318 | // with the RegMask mask. If the degree of the union becomes |
| 319 | // exceeds fail_degree, the union bails out. The underlying set is |
| 320 | // cleared before the union is performed. |
| 321 | uint lrg_union(uint lr1, uint lr2, |
| 322 | const uint fail_degree, |
| 323 | const class PhaseIFG *ifg, |
| 324 | const RegMask &mask); |
| 325 | |
| 326 | |
| 327 | //------------------------- Construction, initialization ----------------------- |
| 328 | |
| 329 | IndexSet() {} |
| 330 | |
| 331 | // This constructor is used for making a deep copy of a IndexSet. |
| 332 | IndexSet(IndexSet *set); |
| 333 | |
| 334 | // Perform initialization on a IndexSet |
| 335 | void initialize(uint max_element); |
| 336 | |
| 337 | // Initialize a IndexSet. If the top level BitBlock array needs to be |
| 338 | // allocated, do it from the proffered arena. BitBlocks are still allocated |
| 339 | // from the static Arena member. |
| 340 | void initialize(uint max_element, Arena *arena); |
| 341 | |
| 342 | // Exchange two sets |
| 343 | void swap(IndexSet *set); |
| 344 | |
| 345 | //-------------------------- Debugging and statistics -------------------------- |
| 346 | |
| 347 | #ifndef PRODUCT |
| 348 | // Output a IndexSet for debugging |
| 349 | void dump() const; |
| 350 | #endif |
| 351 | |
| 352 | #ifdef ASSERT |
| 353 | void tally_iteration_statistics() const; |
| 354 | |
| 355 | // BitBlock allocation statistics |
| 356 | static julong _alloc_new; |
| 357 | static julong _alloc_total; |
| 358 | |
| 359 | // Block density statistics |
| 360 | static julong _total_bits; |
| 361 | static julong _total_used_blocks; |
| 362 | static julong _total_unused_blocks; |
| 363 | |
| 364 | // Sanity tests |
| 365 | void verify() const; |
| 366 | |
| 367 | static int _serial_count; |
| 368 | int _serial_number; |
| 369 | |
| 370 | // Check to see if the serial number of the current set is the one we're tracing. |
| 371 | // If it is, print a message. |
| 372 | void check_watch(const char *operation, uint operand) const { |
| 373 | if (IndexSetWatch != 0) { |
| 374 | if (IndexSetWatch == -1 || _serial_number == IndexSetWatch) { |
| 375 | tty->print_cr("IndexSet %d : %s ( %d )" , _serial_number, operation, operand); |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | void check_watch(const char *operation) const { |
| 380 | if (IndexSetWatch != 0) { |
| 381 | if (IndexSetWatch == -1 || _serial_number == IndexSetWatch) { |
| 382 | tty->print_cr("IndexSet %d : %s" , _serial_number, operation); |
| 383 | } |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | public: |
| 388 | static void print_statistics(); |
| 389 | |
| 390 | #endif |
| 391 | }; |
| 392 | |
| 393 | |
| 394 | //-------------------------------- class IndexSetIterator -------------------- |
| 395 | // An iterator for IndexSets. |
| 396 | |
| 397 | class IndexSetIterator { |
| 398 | friend class IndexSet; |
| 399 | |
| 400 | private: |
| 401 | // The current word we are inspecting |
| 402 | uint32_t _current; |
| 403 | |
| 404 | // What element number are we currently on? |
| 405 | uint _value; |
| 406 | |
| 407 | // The index of the next word we will inspect |
| 408 | uint _next_word; |
| 409 | |
| 410 | // A pointer to the contents of the current block |
| 411 | uint32_t *_words; |
| 412 | |
| 413 | // The index of the next block we will inspect |
| 414 | uint _next_block; |
| 415 | |
| 416 | // A pointer to the blocks in our set |
| 417 | IndexSet::BitBlock **_blocks; |
| 418 | |
| 419 | // The number of blocks in the set |
| 420 | uint _max_blocks; |
| 421 | |
| 422 | // If the iterator was created from a non-const set, we replace |
| 423 | // non-canonical empty blocks with the _empty_block pointer. If |
| 424 | // _set is NULL, we do no replacement. |
| 425 | IndexSet *_set; |
| 426 | |
| 427 | // Advance to the next non-empty word and return the next |
| 428 | // element in the set. |
| 429 | uint advance_and_next(); |
| 430 | |
| 431 | public: |
| 432 | |
| 433 | // If an iterator is built from a constant set then empty blocks |
| 434 | // are not canonicalized. |
| 435 | IndexSetIterator(IndexSet *set); |
| 436 | IndexSetIterator(const IndexSet *set); |
| 437 | |
| 438 | // Return the next element of the set. Return 0 when done. |
| 439 | uint next() { |
| 440 | uint current = _current; |
| 441 | if (current != 0) { |
| 442 | uint advance = count_trailing_zeros(current); |
| 443 | assert(((current >> advance) & 0x1) == 1, "sanity" ); |
| 444 | _current = (current >> advance) - 1; |
| 445 | _value += advance; |
| 446 | return _value; |
| 447 | } else { |
| 448 | return advance_and_next(); |
| 449 | } |
| 450 | } |
| 451 | }; |
| 452 | |
| 453 | #endif // SHARE_OPTO_INDEXSET_HPP |
| 454 | |