| 1 | /* | 
|---|
| 2 | * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved. | 
|---|
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|---|
| 4 | * | 
|---|
| 5 | * This code is free software; you can redistribute it and/or modify it | 
|---|
| 6 | * under the terms of the GNU General Public License version 2 only, as | 
|---|
| 7 | * published by the Free Software Foundation. | 
|---|
| 8 | * | 
|---|
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT | 
|---|
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|---|
| 11 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|---|
| 12 | * version 2 for more details (a copy is included in the LICENSE file that | 
|---|
| 13 | * accompanied this code). | 
|---|
| 14 | * | 
|---|
| 15 | * You should have received a copy of the GNU General Public License version | 
|---|
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, | 
|---|
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|---|
| 18 | * | 
|---|
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|---|
| 20 | * or visit www.oracle.com if you need additional information or have any | 
|---|
| 21 | * questions. | 
|---|
| 22 | * | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | #include "precompiled.hpp" | 
|---|
| 26 | #include "jni.h" | 
|---|
| 27 | #include "runtime/interfaceSupport.inline.hpp" | 
|---|
| 28 | #include "runtime/sharedRuntime.hpp" | 
|---|
| 29 |  | 
|---|
| 30 | // This file contains copies of the fdlibm routines used by | 
|---|
| 31 | // StrictMath. It turns out that it is almost always required to use | 
|---|
| 32 | // these runtime routines; the Intel CPU doesn't meet the Java | 
|---|
| 33 | // specification for sin/cos outside a certain limited argument range, | 
|---|
| 34 | // and the SPARC CPU doesn't appear to have sin/cos instructions. It | 
|---|
| 35 | // also turns out that avoiding the indirect call through function | 
|---|
| 36 | // pointer out to libjava.so in SharedRuntime speeds these routines up | 
|---|
| 37 | // by roughly 15% on both Win32/x86 and Solaris/SPARC. | 
|---|
| 38 |  | 
|---|
| 39 | // Enabling optimizations in this file causes incorrect code to be | 
|---|
| 40 | // generated; can not figure out how to turn down optimization for one | 
|---|
| 41 | // file in the IDE on Windows | 
|---|
| 42 | #ifdef WIN32 | 
|---|
| 43 | # pragma warning( disable: 4748 ) // /GS can not protect parameters and local variables from local buffer overrun because optimizations are disabled in function | 
|---|
| 44 | # pragma optimize ( "", off ) | 
|---|
| 45 | #endif | 
|---|
| 46 |  | 
|---|
| 47 | #include "runtime/sharedRuntimeMath.hpp" | 
|---|
| 48 |  | 
|---|
| 49 | /* __ieee754_log(x) | 
|---|
| 50 | * Return the logarithm of x | 
|---|
| 51 | * | 
|---|
| 52 | * Method : | 
|---|
| 53 | *   1. Argument Reduction: find k and f such that | 
|---|
| 54 | *                    x = 2^k * (1+f), | 
|---|
| 55 | *       where  sqrt(2)/2 < 1+f < sqrt(2) . | 
|---|
| 56 | * | 
|---|
| 57 | *   2. Approximation of log(1+f). | 
|---|
| 58 | *    Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | 
|---|
| 59 | *             = 2s + 2/3 s**3 + 2/5 s**5 + ....., | 
|---|
| 60 | *             = 2s + s*R | 
|---|
| 61 | *      We use a special Reme algorithm on [0,0.1716] to generate | 
|---|
| 62 | *    a polynomial of degree 14 to approximate R The maximum error | 
|---|
| 63 | *    of this polynomial approximation is bounded by 2**-58.45. In | 
|---|
| 64 | *    other words, | 
|---|
| 65 | *                    2      4      6      8      10      12      14 | 
|---|
| 66 | *        R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s | 
|---|
| 67 | *    (the values of Lg1 to Lg7 are listed in the program) | 
|---|
| 68 | *    and | 
|---|
| 69 | *        |      2          14          |     -58.45 | 
|---|
| 70 | *        | Lg1*s +...+Lg7*s    -  R(z) | <= 2 | 
|---|
| 71 | *        |                             | | 
|---|
| 72 | *    Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | 
|---|
| 73 | *    In order to guarantee error in log below 1ulp, we compute log | 
|---|
| 74 | *    by | 
|---|
| 75 | *            log(1+f) = f - s*(f - R)        (if f is not too large) | 
|---|
| 76 | *            log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy) | 
|---|
| 77 | * | 
|---|
| 78 | *    3. Finally,  log(x) = k*ln2 + log(1+f). | 
|---|
| 79 | *                        = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) | 
|---|
| 80 | *       Here ln2 is split into two floating point number: | 
|---|
| 81 | *                    ln2_hi + ln2_lo, | 
|---|
| 82 | *       where n*ln2_hi is always exact for |n| < 2000. | 
|---|
| 83 | * | 
|---|
| 84 | * Special cases: | 
|---|
| 85 | *    log(x) is NaN with signal if x < 0 (including -INF) ; | 
|---|
| 86 | *    log(+INF) is +INF; log(0) is -INF with signal; | 
|---|
| 87 | *    log(NaN) is that NaN with no signal. | 
|---|
| 88 | * | 
|---|
| 89 | * Accuracy: | 
|---|
| 90 | *    according to an error analysis, the error is always less than | 
|---|
| 91 | *    1 ulp (unit in the last place). | 
|---|
| 92 | * | 
|---|
| 93 | * Constants: | 
|---|
| 94 | * The hexadecimal values are the intended ones for the following | 
|---|
| 95 | * constants. The decimal values may be used, provided that the | 
|---|
| 96 | * compiler will convert from decimal to binary accurately enough | 
|---|
| 97 | * to produce the hexadecimal values shown. | 
|---|
| 98 | */ | 
|---|
| 99 |  | 
|---|
| 100 | static const double | 
|---|
| 101 | ln2_hi  =  6.93147180369123816490e-01,        /* 3fe62e42 fee00000 */ | 
|---|
| 102 | ln2_lo  =  1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */ | 
|---|
| 103 | Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */ | 
|---|
| 104 | Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */ | 
|---|
| 105 | Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */ | 
|---|
| 106 | Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */ | 
|---|
| 107 | Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */ | 
|---|
| 108 | Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */ | 
|---|
| 109 | Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */ | 
|---|
| 110 |  | 
|---|
| 111 | static double zero = 0.0; | 
|---|
| 112 |  | 
|---|
| 113 | static double __ieee754_log(double x) { | 
|---|
| 114 | double hfsq,f,s,z,R,w,t1,t2,dk; | 
|---|
| 115 | int k,hx,i,j; | 
|---|
| 116 | unsigned lx; | 
|---|
| 117 |  | 
|---|
| 118 | hx = high(x);               /* high word of x */ | 
|---|
| 119 | lx = low(x);                /* low  word of x */ | 
|---|
| 120 |  | 
|---|
| 121 | k=0; | 
|---|
| 122 | if (hx < 0x00100000) {                   /* x < 2**-1022  */ | 
|---|
| 123 | if (((hx&0x7fffffff)|lx)==0) | 
|---|
| 124 | return -two54/zero;             /* log(+-0)=-inf */ | 
|---|
| 125 | if (hx<0) return (x-x)/zero;   /* log(-#) = NaN */ | 
|---|
| 126 | k -= 54; x *= two54; /* subnormal number, scale up x */ | 
|---|
| 127 | hx = high(x);             /* high word of x */ | 
|---|
| 128 | } | 
|---|
| 129 | if (hx >= 0x7ff00000) return x+x; | 
|---|
| 130 | k += (hx>>20)-1023; | 
|---|
| 131 | hx &= 0x000fffff; | 
|---|
| 132 | i = (hx+0x95f64)&0x100000; | 
|---|
| 133 | set_high(&x, hx|(i^0x3ff00000)); /* normalize x or x/2 */ | 
|---|
| 134 | k += (i>>20); | 
|---|
| 135 | f = x-1.0; | 
|---|
| 136 | if((0x000fffff&(2+hx))<3) {  /* |f| < 2**-20 */ | 
|---|
| 137 | if(f==zero) { | 
|---|
| 138 | if (k==0) return zero; | 
|---|
| 139 | else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;} | 
|---|
| 140 | } | 
|---|
| 141 | R = f*f*(0.5-0.33333333333333333*f); | 
|---|
| 142 | if(k==0) return f-R; else {dk=(double)k; | 
|---|
| 143 | return dk*ln2_hi-((R-dk*ln2_lo)-f);} | 
|---|
| 144 | } | 
|---|
| 145 | s = f/(2.0+f); | 
|---|
| 146 | dk = (double)k; | 
|---|
| 147 | z = s*s; | 
|---|
| 148 | i = hx-0x6147a; | 
|---|
| 149 | w = z*z; | 
|---|
| 150 | j = 0x6b851-hx; | 
|---|
| 151 | t1= w*(Lg2+w*(Lg4+w*Lg6)); | 
|---|
| 152 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); | 
|---|
| 153 | i |= j; | 
|---|
| 154 | R = t2+t1; | 
|---|
| 155 | if(i>0) { | 
|---|
| 156 | hfsq=0.5*f*f; | 
|---|
| 157 | if(k==0) return f-(hfsq-s*(hfsq+R)); else | 
|---|
| 158 | return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); | 
|---|
| 159 | } else { | 
|---|
| 160 | if(k==0) return f-s*(f-R); else | 
|---|
| 161 | return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); | 
|---|
| 162 | } | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | JRT_LEAF(jdouble, SharedRuntime::dlog(jdouble x)) | 
|---|
| 166 | return __ieee754_log(x); | 
|---|
| 167 | JRT_END | 
|---|
| 168 |  | 
|---|
| 169 | /* __ieee754_log10(x) | 
|---|
| 170 | * Return the base 10 logarithm of x | 
|---|
| 171 | * | 
|---|
| 172 | * Method : | 
|---|
| 173 | *    Let log10_2hi = leading 40 bits of log10(2) and | 
|---|
| 174 | *        log10_2lo = log10(2) - log10_2hi, | 
|---|
| 175 | *        ivln10   = 1/log(10) rounded. | 
|---|
| 176 | *    Then | 
|---|
| 177 | *            n = ilogb(x), | 
|---|
| 178 | *            if(n<0)  n = n+1; | 
|---|
| 179 | *            x = scalbn(x,-n); | 
|---|
| 180 | *            log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) | 
|---|
| 181 | * | 
|---|
| 182 | * Note 1: | 
|---|
| 183 | *    To guarantee log10(10**n)=n, where 10**n is normal, the rounding | 
|---|
| 184 | *    mode must set to Round-to-Nearest. | 
|---|
| 185 | * Note 2: | 
|---|
| 186 | *    [1/log(10)] rounded to 53 bits has error  .198   ulps; | 
|---|
| 187 | *    log10 is monotonic at all binary break points. | 
|---|
| 188 | * | 
|---|
| 189 | * Special cases: | 
|---|
| 190 | *    log10(x) is NaN with signal if x < 0; | 
|---|
| 191 | *    log10(+INF) is +INF with no signal; log10(0) is -INF with signal; | 
|---|
| 192 | *    log10(NaN) is that NaN with no signal; | 
|---|
| 193 | *    log10(10**N) = N  for N=0,1,...,22. | 
|---|
| 194 | * | 
|---|
| 195 | * Constants: | 
|---|
| 196 | * The hexadecimal values are the intended ones for the following constants. | 
|---|
| 197 | * The decimal values may be used, provided that the compiler will convert | 
|---|
| 198 | * from decimal to binary accurately enough to produce the hexadecimal values | 
|---|
| 199 | * shown. | 
|---|
| 200 | */ | 
|---|
| 201 |  | 
|---|
| 202 | static const double | 
|---|
| 203 | ivln10     =  4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */ | 
|---|
| 204 | log10_2hi  =  3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ | 
|---|
| 205 | log10_2lo  =  3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ | 
|---|
| 206 |  | 
|---|
| 207 | static double __ieee754_log10(double x) { | 
|---|
| 208 | double y,z; | 
|---|
| 209 | int i,k,hx; | 
|---|
| 210 | unsigned lx; | 
|---|
| 211 |  | 
|---|
| 212 | hx = high(x);       /* high word of x */ | 
|---|
| 213 | lx = low(x);        /* low word of x */ | 
|---|
| 214 |  | 
|---|
| 215 | k=0; | 
|---|
| 216 | if (hx < 0x00100000) {                  /* x < 2**-1022  */ | 
|---|
| 217 | if (((hx&0x7fffffff)|lx)==0) | 
|---|
| 218 | return -two54/zero;             /* log(+-0)=-inf */ | 
|---|
| 219 | if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */ | 
|---|
| 220 | k -= 54; x *= two54; /* subnormal number, scale up x */ | 
|---|
| 221 | hx = high(x);                /* high word of x */ | 
|---|
| 222 | } | 
|---|
| 223 | if (hx >= 0x7ff00000) return x+x; | 
|---|
| 224 | k += (hx>>20)-1023; | 
|---|
| 225 | i  = ((unsigned)k&0x80000000)>>31; | 
|---|
| 226 | hx = (hx&0x000fffff)|((0x3ff-i)<<20); | 
|---|
| 227 | y  = (double)(k+i); | 
|---|
| 228 | set_high(&x, hx); | 
|---|
| 229 | z  = y*log10_2lo + ivln10*__ieee754_log(x); | 
|---|
| 230 | return  z+y*log10_2hi; | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 | JRT_LEAF(jdouble, SharedRuntime::dlog10(jdouble x)) | 
|---|
| 234 | return __ieee754_log10(x); | 
|---|
| 235 | JRT_END | 
|---|
| 236 |  | 
|---|
| 237 |  | 
|---|
| 238 | /* __ieee754_exp(x) | 
|---|
| 239 | * Returns the exponential of x. | 
|---|
| 240 | * | 
|---|
| 241 | * Method | 
|---|
| 242 | *   1. Argument reduction: | 
|---|
| 243 | *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. | 
|---|
| 244 | *      Given x, find r and integer k such that | 
|---|
| 245 | * | 
|---|
| 246 | *               x = k*ln2 + r,  |r| <= 0.5*ln2. | 
|---|
| 247 | * | 
|---|
| 248 | *      Here r will be represented as r = hi-lo for better | 
|---|
| 249 | *      accuracy. | 
|---|
| 250 | * | 
|---|
| 251 | *   2. Approximation of exp(r) by a special rational function on | 
|---|
| 252 | *      the interval [0,0.34658]: | 
|---|
| 253 | *      Write | 
|---|
| 254 | *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... | 
|---|
| 255 | *      We use a special Reme algorithm on [0,0.34658] to generate | 
|---|
| 256 | *      a polynomial of degree 5 to approximate R. The maximum error | 
|---|
| 257 | *      of this polynomial approximation is bounded by 2**-59. In | 
|---|
| 258 | *      other words, | 
|---|
| 259 | *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 | 
|---|
| 260 | *      (where z=r*r, and the values of P1 to P5 are listed below) | 
|---|
| 261 | *      and | 
|---|
| 262 | *          |                  5          |     -59 | 
|---|
| 263 | *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 | 
|---|
| 264 | *          |                             | | 
|---|
| 265 | *      The computation of exp(r) thus becomes | 
|---|
| 266 | *                             2*r | 
|---|
| 267 | *              exp(r) = 1 + ------- | 
|---|
| 268 | *                            R - r | 
|---|
| 269 | *                                 r*R1(r) | 
|---|
| 270 | *                     = 1 + r + ----------- (for better accuracy) | 
|---|
| 271 | *                                2 - R1(r) | 
|---|
| 272 | *      where | 
|---|
| 273 | *                               2       4             10 | 
|---|
| 274 | *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ). | 
|---|
| 275 | * | 
|---|
| 276 | *   3. Scale back to obtain exp(x): | 
|---|
| 277 | *      From step 1, we have | 
|---|
| 278 | *         exp(x) = 2^k * exp(r) | 
|---|
| 279 | * | 
|---|
| 280 | * Special cases: | 
|---|
| 281 | *      exp(INF) is INF, exp(NaN) is NaN; | 
|---|
| 282 | *      exp(-INF) is 0, and | 
|---|
| 283 | *      for finite argument, only exp(0)=1 is exact. | 
|---|
| 284 | * | 
|---|
| 285 | * Accuracy: | 
|---|
| 286 | *      according to an error analysis, the error is always less than | 
|---|
| 287 | *      1 ulp (unit in the last place). | 
|---|
| 288 | * | 
|---|
| 289 | * Misc. info. | 
|---|
| 290 | *      For IEEE double | 
|---|
| 291 | *          if x >  7.09782712893383973096e+02 then exp(x) overflow | 
|---|
| 292 | *          if x < -7.45133219101941108420e+02 then exp(x) underflow | 
|---|
| 293 | * | 
|---|
| 294 | * Constants: | 
|---|
| 295 | * The hexadecimal values are the intended ones for the following | 
|---|
| 296 | * constants. The decimal values may be used, provided that the | 
|---|
| 297 | * compiler will convert from decimal to binary accurately enough | 
|---|
| 298 | * to produce the hexadecimal values shown. | 
|---|
| 299 | */ | 
|---|
| 300 |  | 
|---|
| 301 | static const double | 
|---|
| 302 | one     = 1.0, | 
|---|
| 303 | halF[2]       = {0.5,-0.5,}, | 
|---|
| 304 | twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/ | 
|---|
| 305 | o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */ | 
|---|
| 306 | u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */ | 
|---|
| 307 | ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */ | 
|---|
| 308 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ | 
|---|
| 309 | ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */ | 
|---|
| 310 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ | 
|---|
| 311 | invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ | 
|---|
| 312 | P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | 
|---|
| 313 | P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | 
|---|
| 314 | P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | 
|---|
| 315 | P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | 
|---|
| 316 | P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ | 
|---|
| 317 |  | 
|---|
| 318 | static double __ieee754_exp(double x) { | 
|---|
| 319 | double y,hi=0,lo=0,c,t; | 
|---|
| 320 | int k=0,xsb; | 
|---|
| 321 | unsigned hx; | 
|---|
| 322 |  | 
|---|
| 323 | hx  = high(x);                /* high word of x */ | 
|---|
| 324 | xsb = (hx>>31)&1;             /* sign bit of x */ | 
|---|
| 325 | hx &= 0x7fffffff;             /* high word of |x| */ | 
|---|
| 326 |  | 
|---|
| 327 | /* filter out non-finite argument */ | 
|---|
| 328 | if(hx >= 0x40862E42) {                        /* if |x|>=709.78... */ | 
|---|
| 329 | if(hx>=0x7ff00000) { | 
|---|
| 330 | if(((hx&0xfffff)|low(x))!=0) | 
|---|
| 331 | return x+x;             /* NaN */ | 
|---|
| 332 | else return (xsb==0)? x:0.0;      /* exp(+-inf)={inf,0} */ | 
|---|
| 333 | } | 
|---|
| 334 | if(x > o_threshold) return hugeX*hugeX; /* overflow */ | 
|---|
| 335 | if(x < u_threshold) return twom1000*twom1000; /* underflow */ | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | /* argument reduction */ | 
|---|
| 339 | if(hx > 0x3fd62e42) {         /* if  |x| > 0.5 ln2 */ | 
|---|
| 340 | if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */ | 
|---|
| 341 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; | 
|---|
| 342 | } else { | 
|---|
| 343 | k  = (int)(invln2*x+halF[xsb]); | 
|---|
| 344 | t  = k; | 
|---|
| 345 | hi = x - t*ln2HI[0];      /* t*ln2HI is exact here */ | 
|---|
| 346 | lo = t*ln2LO[0]; | 
|---|
| 347 | } | 
|---|
| 348 | x  = hi - lo; | 
|---|
| 349 | } | 
|---|
| 350 | else if(hx < 0x3e300000)  {   /* when |x|<2**-28 */ | 
|---|
| 351 | if(hugeX+x>one) return one+x;/* trigger inexact */ | 
|---|
| 352 | } | 
|---|
| 353 | else k = 0; | 
|---|
| 354 |  | 
|---|
| 355 | /* x is now in primary range */ | 
|---|
| 356 | t  = x*x; | 
|---|
| 357 | c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | 
|---|
| 358 | if(k==0)      return one-((x*c)/(c-2.0)-x); | 
|---|
| 359 | else          y = one-((lo-(x*c)/(2.0-c))-hi); | 
|---|
| 360 | if(k >= -1021) { | 
|---|
| 361 | set_high(&y, high(y) + (k<<20)); /* add k to y's exponent */ | 
|---|
| 362 | return y; | 
|---|
| 363 | } else { | 
|---|
| 364 | set_high(&y, high(y) + ((k+1000)<<20)); /* add k to y's exponent */ | 
|---|
| 365 | return y*twom1000; | 
|---|
| 366 | } | 
|---|
| 367 | } | 
|---|
| 368 |  | 
|---|
| 369 | JRT_LEAF(jdouble, SharedRuntime::dexp(jdouble x)) | 
|---|
| 370 | return __ieee754_exp(x); | 
|---|
| 371 | JRT_END | 
|---|
| 372 |  | 
|---|
| 373 | /* __ieee754_pow(x,y) return x**y | 
|---|
| 374 | * | 
|---|
| 375 | *                    n | 
|---|
| 376 | * Method:  Let x =  2   * (1+f) | 
|---|
| 377 | *      1. Compute and return log2(x) in two pieces: | 
|---|
| 378 | *              log2(x) = w1 + w2, | 
|---|
| 379 | *         where w1 has 53-24 = 29 bit trailing zeros. | 
|---|
| 380 | *      2. Perform y*log2(x) = n+y' by simulating muti-precision | 
|---|
| 381 | *         arithmetic, where |y'|<=0.5. | 
|---|
| 382 | *      3. Return x**y = 2**n*exp(y'*log2) | 
|---|
| 383 | * | 
|---|
| 384 | * Special cases: | 
|---|
| 385 | *      1.  (anything) ** 0  is 1 | 
|---|
| 386 | *      2.  (anything) ** 1  is itself | 
|---|
| 387 | *      3.  (anything) ** NAN is NAN | 
|---|
| 388 | *      4.  NAN ** (anything except 0) is NAN | 
|---|
| 389 | *      5.  +-(|x| > 1) **  +INF is +INF | 
|---|
| 390 | *      6.  +-(|x| > 1) **  -INF is +0 | 
|---|
| 391 | *      7.  +-(|x| < 1) **  +INF is +0 | 
|---|
| 392 | *      8.  +-(|x| < 1) **  -INF is +INF | 
|---|
| 393 | *      9.  +-1         ** +-INF is NAN | 
|---|
| 394 | *      10. +0 ** (+anything except 0, NAN)               is +0 | 
|---|
| 395 | *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0 | 
|---|
| 396 | *      12. +0 ** (-anything except 0, NAN)               is +INF | 
|---|
| 397 | *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF | 
|---|
| 398 | *      14. -0 ** (odd integer) = -( +0 ** (odd integer) ) | 
|---|
| 399 | *      15. +INF ** (+anything except 0,NAN) is +INF | 
|---|
| 400 | *      16. +INF ** (-anything except 0,NAN) is +0 | 
|---|
| 401 | *      17. -INF ** (anything)  = -0 ** (-anything) | 
|---|
| 402 | *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) | 
|---|
| 403 | *      19. (-anything except 0 and inf) ** (non-integer) is NAN | 
|---|
| 404 | * | 
|---|
| 405 | * Accuracy: | 
|---|
| 406 | *      pow(x,y) returns x**y nearly rounded. In particular | 
|---|
| 407 | *                      pow(integer,integer) | 
|---|
| 408 | *      always returns the correct integer provided it is | 
|---|
| 409 | *      representable. | 
|---|
| 410 | * | 
|---|
| 411 | * Constants : | 
|---|
| 412 | * The hexadecimal values are the intended ones for the following | 
|---|
| 413 | * constants. The decimal values may be used, provided that the | 
|---|
| 414 | * compiler will convert from decimal to binary accurately enough | 
|---|
| 415 | * to produce the hexadecimal values shown. | 
|---|
| 416 | */ | 
|---|
| 417 |  | 
|---|
| 418 | static const double | 
|---|
| 419 | bp[] = {1.0, 1.5,}, | 
|---|
| 420 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ | 
|---|
| 421 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ | 
|---|
| 422 | zeroX    =  0.0, | 
|---|
| 423 | two     =  2.0, | 
|---|
| 424 | two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */ | 
|---|
| 425 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ | 
|---|
| 426 | L1X  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ | 
|---|
| 427 | L2X  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ | 
|---|
| 428 | L3X  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ | 
|---|
| 429 | L4X  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ | 
|---|
| 430 | L5X  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ | 
|---|
| 431 | L6X  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ | 
|---|
| 432 | lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ | 
|---|
| 433 | lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ | 
|---|
| 434 | lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ | 
|---|
| 435 | ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ | 
|---|
| 436 | cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ | 
|---|
| 437 | cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ | 
|---|
| 438 | cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ | 
|---|
| 439 | ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ | 
|---|
| 440 | ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ | 
|---|
| 441 | ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ | 
|---|
| 442 |  | 
|---|
| 443 | double __ieee754_pow(double x, double y) { | 
|---|
| 444 | double z,ax,z_h,z_l,p_h,p_l; | 
|---|
| 445 | double y1,t1,t2,r,s,t,u,v,w; | 
|---|
| 446 | int i0,i1,i,j,k,yisint,n; | 
|---|
| 447 | int hx,hy,ix,iy; | 
|---|
| 448 | unsigned lx,ly; | 
|---|
| 449 |  | 
|---|
| 450 | i0 = ((*(int*)&one)>>29)^1; i1=1-i0; | 
|---|
| 451 | hx = high(x); lx = low(x); | 
|---|
| 452 | hy = high(y); ly = low(y); | 
|---|
| 453 | ix = hx&0x7fffffff;  iy = hy&0x7fffffff; | 
|---|
| 454 |  | 
|---|
| 455 | /* y==zero: x**0 = 1 */ | 
|---|
| 456 | if((iy|ly)==0) return one; | 
|---|
| 457 |  | 
|---|
| 458 | /* +-NaN return x+y */ | 
|---|
| 459 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || | 
|---|
| 460 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) | 
|---|
| 461 | return x+y; | 
|---|
| 462 |  | 
|---|
| 463 | /* determine if y is an odd int when x < 0 | 
|---|
| 464 | * yisint = 0 ... y is not an integer | 
|---|
| 465 | * yisint = 1 ... y is an odd int | 
|---|
| 466 | * yisint = 2 ... y is an even int | 
|---|
| 467 | */ | 
|---|
| 468 | yisint  = 0; | 
|---|
| 469 | if(hx<0) { | 
|---|
| 470 | if(iy>=0x43400000) yisint = 2; /* even integer y */ | 
|---|
| 471 | else if(iy>=0x3ff00000) { | 
|---|
| 472 | k = (iy>>20)-0x3ff;          /* exponent */ | 
|---|
| 473 | if(k>20) { | 
|---|
| 474 | j = ly>>(52-k); | 
|---|
| 475 | if((unsigned)(j<<(52-k))==ly) yisint = 2-(j&1); | 
|---|
| 476 | } else if(ly==0) { | 
|---|
| 477 | j = iy>>(20-k); | 
|---|
| 478 | if((j<<(20-k))==iy) yisint = 2-(j&1); | 
|---|
| 479 | } | 
|---|
| 480 | } | 
|---|
| 481 | } | 
|---|
| 482 |  | 
|---|
| 483 | /* special value of y */ | 
|---|
| 484 | if(ly==0) { | 
|---|
| 485 | if (iy==0x7ff00000) {       /* y is +-inf */ | 
|---|
| 486 | if(((ix-0x3ff00000)|lx)==0) | 
|---|
| 487 | return  y - y;  /* inf**+-1 is NaN */ | 
|---|
| 488 | else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ | 
|---|
| 489 | return (hy>=0)? y: zeroX; | 
|---|
| 490 | else                      /* (|x|<1)**-,+inf = inf,0 */ | 
|---|
| 491 | return (hy<0)?-y: zeroX; | 
|---|
| 492 | } | 
|---|
| 493 | if(iy==0x3ff00000) {        /* y is  +-1 */ | 
|---|
| 494 | if(hy<0) return one/x; else return x; | 
|---|
| 495 | } | 
|---|
| 496 | if(hy==0x40000000) return x*x; /* y is  2 */ | 
|---|
| 497 | if(hy==0x3fe00000) {        /* y is  0.5 */ | 
|---|
| 498 | if(hx>=0) /* x >= +0 */ | 
|---|
| 499 | return sqrt(x); | 
|---|
| 500 | } | 
|---|
| 501 | } | 
|---|
| 502 |  | 
|---|
| 503 | ax   = fabsd(x); | 
|---|
| 504 | /* special value of x */ | 
|---|
| 505 | if(lx==0) { | 
|---|
| 506 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ | 
|---|
| 507 | z = ax;                   /*x is +-0,+-inf,+-1*/ | 
|---|
| 508 | if(hy<0) z = one/z;       /* z = (1/|x|) */ | 
|---|
| 509 | if(hx<0) { | 
|---|
| 510 | if(((ix-0x3ff00000)|yisint)==0) { | 
|---|
| 511 | #ifdef CAN_USE_NAN_DEFINE | 
|---|
| 512 | z = NAN; | 
|---|
| 513 | #else | 
|---|
| 514 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ | 
|---|
| 515 | #endif | 
|---|
| 516 | } else if(yisint==1) | 
|---|
| 517 | z = -1.0*z;           /* (x<0)**odd = -(|x|**odd) */ | 
|---|
| 518 | } | 
|---|
| 519 | return z; | 
|---|
| 520 | } | 
|---|
| 521 | } | 
|---|
| 522 |  | 
|---|
| 523 | n = (hx>>31)+1; | 
|---|
| 524 |  | 
|---|
| 525 | /* (x<0)**(non-int) is NaN */ | 
|---|
| 526 | if((n|yisint)==0) | 
|---|
| 527 | #ifdef CAN_USE_NAN_DEFINE | 
|---|
| 528 | return NAN; | 
|---|
| 529 | #else | 
|---|
| 530 | return (x-x)/(x-x); | 
|---|
| 531 | #endif | 
|---|
| 532 |  | 
|---|
| 533 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ | 
|---|
| 534 | if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ | 
|---|
| 535 |  | 
|---|
| 536 | /* |y| is huge */ | 
|---|
| 537 | if(iy>0x41e00000) { /* if |y| > 2**31 */ | 
|---|
| 538 | if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */ | 
|---|
| 539 | if(ix<=0x3fefffff) return (hy<0)? hugeX*hugeX:tiny*tiny; | 
|---|
| 540 | if(ix>=0x3ff00000) return (hy>0)? hugeX*hugeX:tiny*tiny; | 
|---|
| 541 | } | 
|---|
| 542 | /* over/underflow if x is not close to one */ | 
|---|
| 543 | if(ix<0x3fefffff) return (hy<0)? s*hugeX*hugeX:s*tiny*tiny; | 
|---|
| 544 | if(ix>0x3ff00000) return (hy>0)? s*hugeX*hugeX:s*tiny*tiny; | 
|---|
| 545 | /* now |1-x| is tiny <= 2**-20, suffice to compute | 
|---|
| 546 | log(x) by x-x^2/2+x^3/3-x^4/4 */ | 
|---|
| 547 | t = ax-one;         /* t has 20 trailing zeros */ | 
|---|
| 548 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); | 
|---|
| 549 | u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */ | 
|---|
| 550 | v = t*ivln2_l-w*ivln2; | 
|---|
| 551 | t1 = u+v; | 
|---|
| 552 | set_low(&t1, 0); | 
|---|
| 553 | t2 = v-(t1-u); | 
|---|
| 554 | } else { | 
|---|
| 555 | double ss,s2,s_h,s_l,t_h,t_l; | 
|---|
| 556 | n = 0; | 
|---|
| 557 | /* take care subnormal number */ | 
|---|
| 558 | if(ix<0x00100000) | 
|---|
| 559 | {ax *= two53; n -= 53; ix = high(ax); } | 
|---|
| 560 | n  += ((ix)>>20)-0x3ff; | 
|---|
| 561 | j  = ix&0x000fffff; | 
|---|
| 562 | /* determine interval */ | 
|---|
| 563 | ix = j|0x3ff00000;          /* normalize ix */ | 
|---|
| 564 | if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */ | 
|---|
| 565 | else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */ | 
|---|
| 566 | else {k=0;n+=1;ix -= 0x00100000;} | 
|---|
| 567 | set_high(&ax, ix); | 
|---|
| 568 |  | 
|---|
| 569 | /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ | 
|---|
| 570 | u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */ | 
|---|
| 571 | v = one/(ax+bp[k]); | 
|---|
| 572 | ss = u*v; | 
|---|
| 573 | s_h = ss; | 
|---|
| 574 | set_low(&s_h, 0); | 
|---|
| 575 | /* t_h=ax+bp[k] High */ | 
|---|
| 576 | t_h = zeroX; | 
|---|
| 577 | set_high(&t_h, ((ix>>1)|0x20000000)+0x00080000+(k<<18)); | 
|---|
| 578 | t_l = ax - (t_h-bp[k]); | 
|---|
| 579 | s_l = v*((u-s_h*t_h)-s_h*t_l); | 
|---|
| 580 | /* compute log(ax) */ | 
|---|
| 581 | s2 = ss*ss; | 
|---|
| 582 | r = s2*s2*(L1X+s2*(L2X+s2*(L3X+s2*(L4X+s2*(L5X+s2*L6X))))); | 
|---|
| 583 | r += s_l*(s_h+ss); | 
|---|
| 584 | s2  = s_h*s_h; | 
|---|
| 585 | t_h = 3.0+s2+r; | 
|---|
| 586 | set_low(&t_h, 0); | 
|---|
| 587 | t_l = r-((t_h-3.0)-s2); | 
|---|
| 588 | /* u+v = ss*(1+...) */ | 
|---|
| 589 | u = s_h*t_h; | 
|---|
| 590 | v = s_l*t_h+t_l*ss; | 
|---|
| 591 | /* 2/(3log2)*(ss+...) */ | 
|---|
| 592 | p_h = u+v; | 
|---|
| 593 | set_low(&p_h, 0); | 
|---|
| 594 | p_l = v-(p_h-u); | 
|---|
| 595 | z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */ | 
|---|
| 596 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; | 
|---|
| 597 | /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ | 
|---|
| 598 | t = (double)n; | 
|---|
| 599 | t1 = (((z_h+z_l)+dp_h[k])+t); | 
|---|
| 600 | set_low(&t1, 0); | 
|---|
| 601 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); | 
|---|
| 602 | } | 
|---|
| 603 |  | 
|---|
| 604 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ | 
|---|
| 605 | y1  = y; | 
|---|
| 606 | set_low(&y1, 0); | 
|---|
| 607 | p_l = (y-y1)*t1+y*t2; | 
|---|
| 608 | p_h = y1*t1; | 
|---|
| 609 | z = p_l+p_h; | 
|---|
| 610 | j = high(z); | 
|---|
| 611 | i = low(z); | 
|---|
| 612 | if (j>=0x40900000) {                          /* z >= 1024 */ | 
|---|
| 613 | if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */ | 
|---|
| 614 | return s*hugeX*hugeX;                     /* overflow */ | 
|---|
| 615 | else { | 
|---|
| 616 | if(p_l+ovt>z-p_h) return s*hugeX*hugeX;   /* overflow */ | 
|---|
| 617 | } | 
|---|
| 618 | } else if((j&0x7fffffff)>=0x4090cc00 ) {      /* z <= -1075 */ | 
|---|
| 619 | if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */ | 
|---|
| 620 | return s*tiny*tiny;               /* underflow */ | 
|---|
| 621 | else { | 
|---|
| 622 | if(p_l<=z-p_h) return s*tiny*tiny;        /* underflow */ | 
|---|
| 623 | } | 
|---|
| 624 | } | 
|---|
| 625 | /* | 
|---|
| 626 | * compute 2**(p_h+p_l) | 
|---|
| 627 | */ | 
|---|
| 628 | i = j&0x7fffffff; | 
|---|
| 629 | k = (i>>20)-0x3ff; | 
|---|
| 630 | n = 0; | 
|---|
| 631 | if(i>0x3fe00000) {            /* if |z| > 0.5, set n = [z+0.5] */ | 
|---|
| 632 | n = j+(0x00100000>>(k+1)); | 
|---|
| 633 | k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */ | 
|---|
| 634 | t = zeroX; | 
|---|
| 635 | set_high(&t, (n&~(0x000fffff>>k))); | 
|---|
| 636 | n = ((n&0x000fffff)|0x00100000)>>(20-k); | 
|---|
| 637 | if(j<0) n = -n; | 
|---|
| 638 | p_h -= t; | 
|---|
| 639 | } | 
|---|
| 640 | t = p_l+p_h; | 
|---|
| 641 | set_low(&t, 0); | 
|---|
| 642 | u = t*lg2_h; | 
|---|
| 643 | v = (p_l-(t-p_h))*lg2+t*lg2_l; | 
|---|
| 644 | z = u+v; | 
|---|
| 645 | w = v-(z-u); | 
|---|
| 646 | t  = z*z; | 
|---|
| 647 | t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | 
|---|
| 648 | r  = (z*t1)/(t1-two)-(w+z*w); | 
|---|
| 649 | z  = one-(r-z); | 
|---|
| 650 | j  = high(z); | 
|---|
| 651 | j += (n<<20); | 
|---|
| 652 | if((j>>20)<=0) z = scalbnA(z,n);       /* subnormal output */ | 
|---|
| 653 | else set_high(&z, high(z) + (n<<20)); | 
|---|
| 654 | return s*z; | 
|---|
| 655 | } | 
|---|
| 656 |  | 
|---|
| 657 |  | 
|---|
| 658 | JRT_LEAF(jdouble, SharedRuntime::dpow(jdouble x, jdouble y)) | 
|---|
| 659 | return __ieee754_pow(x, y); | 
|---|
| 660 | JRT_END | 
|---|
| 661 |  | 
|---|
| 662 | #ifdef WIN32 | 
|---|
| 663 | # pragma optimize ( "", on ) | 
|---|
| 664 | #endif | 
|---|
| 665 |  | 
|---|