1 | /* |
2 | * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "jni.h" |
27 | #include "runtime/interfaceSupport.inline.hpp" |
28 | #include "runtime/sharedRuntime.hpp" |
29 | #include "runtime/sharedRuntimeMath.hpp" |
30 | |
31 | // This file contains copies of the fdlibm routines used by |
32 | // StrictMath. It turns out that it is almost always required to use |
33 | // these runtime routines; the Intel CPU doesn't meet the Java |
34 | // specification for sin/cos outside a certain limited argument range, |
35 | // and the SPARC CPU doesn't appear to have sin/cos instructions. It |
36 | // also turns out that avoiding the indirect call through function |
37 | // pointer out to libjava.so in SharedRuntime speeds these routines up |
38 | // by roughly 15% on both Win32/x86 and Solaris/SPARC. |
39 | |
40 | /* |
41 | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
42 | * double x[],y[]; int e0,nx,prec; int ipio2[]; |
43 | * |
44 | * __kernel_rem_pio2 return the last three digits of N with |
45 | * y = x - N*pi/2 |
46 | * so that |y| < pi/2. |
47 | * |
48 | * The method is to compute the integer (mod 8) and fraction parts of |
49 | * (2/pi)*x without doing the full multiplication. In general we |
50 | * skip the part of the product that are known to be a huge integer ( |
51 | * more accurately, = 0 mod 8 ). Thus the number of operations are |
52 | * independent of the exponent of the input. |
53 | * |
54 | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
55 | * |
56 | * Input parameters: |
57 | * x[] The input value (must be positive) is broken into nx |
58 | * pieces of 24-bit integers in double precision format. |
59 | * x[i] will be the i-th 24 bit of x. The scaled exponent |
60 | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
61 | * match x's up to 24 bits. |
62 | * |
63 | * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
64 | * e0 = ilogb(z)-23 |
65 | * z = scalbn(z,-e0) |
66 | * for i = 0,1,2 |
67 | * x[i] = floor(z) |
68 | * z = (z-x[i])*2**24 |
69 | * |
70 | * |
71 | * y[] ouput result in an array of double precision numbers. |
72 | * The dimension of y[] is: |
73 | * 24-bit precision 1 |
74 | * 53-bit precision 2 |
75 | * 64-bit precision 2 |
76 | * 113-bit precision 3 |
77 | * The actual value is the sum of them. Thus for 113-bit |
78 | * precsion, one may have to do something like: |
79 | * |
80 | * long double t,w,r_head, r_tail; |
81 | * t = (long double)y[2] + (long double)y[1]; |
82 | * w = (long double)y[0]; |
83 | * r_head = t+w; |
84 | * r_tail = w - (r_head - t); |
85 | * |
86 | * e0 The exponent of x[0] |
87 | * |
88 | * nx dimension of x[] |
89 | * |
90 | * prec an interger indicating the precision: |
91 | * 0 24 bits (single) |
92 | * 1 53 bits (double) |
93 | * 2 64 bits (extended) |
94 | * 3 113 bits (quad) |
95 | * |
96 | * ipio2[] |
97 | * integer array, contains the (24*i)-th to (24*i+23)-th |
98 | * bit of 2/pi after binary point. The corresponding |
99 | * floating value is |
100 | * |
101 | * ipio2[i] * 2^(-24(i+1)). |
102 | * |
103 | * External function: |
104 | * double scalbn(), floor(); |
105 | * |
106 | * |
107 | * Here is the description of some local variables: |
108 | * |
109 | * jk jk+1 is the initial number of terms of ipio2[] needed |
110 | * in the computation. The recommended value is 2,3,4, |
111 | * 6 for single, double, extended,and quad. |
112 | * |
113 | * jz local integer variable indicating the number of |
114 | * terms of ipio2[] used. |
115 | * |
116 | * jx nx - 1 |
117 | * |
118 | * jv index for pointing to the suitable ipio2[] for the |
119 | * computation. In general, we want |
120 | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
121 | * is an integer. Thus |
122 | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
123 | * Hence jv = max(0,(e0-3)/24). |
124 | * |
125 | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
126 | * |
127 | * q[] double array with integral value, representing the |
128 | * 24-bits chunk of the product of x and 2/pi. |
129 | * |
130 | * q0 the corresponding exponent of q[0]. Note that the |
131 | * exponent for q[i] would be q0-24*i. |
132 | * |
133 | * PIo2[] double precision array, obtained by cutting pi/2 |
134 | * into 24 bits chunks. |
135 | * |
136 | * f[] ipio2[] in floating point |
137 | * |
138 | * iq[] integer array by breaking up q[] in 24-bits chunk. |
139 | * |
140 | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
141 | * |
142 | * ih integer. If >0 it indicates q[] is >= 0.5, hence |
143 | * it also indicates the *sign* of the result. |
144 | * |
145 | */ |
146 | |
147 | |
148 | /* |
149 | * Constants: |
150 | * The hexadecimal values are the intended ones for the following |
151 | * constants. The decimal values may be used, provided that the |
152 | * compiler will convert from decimal to binary accurately enough |
153 | * to produce the hexadecimal values shown. |
154 | */ |
155 | |
156 | |
157 | static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ |
158 | |
159 | static const double PIo2[] = { |
160 | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
161 | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
162 | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
163 | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
164 | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
165 | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
166 | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
167 | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
168 | }; |
169 | |
170 | static const double |
171 | zeroB = 0.0, |
172 | one = 1.0, |
173 | two24B = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
174 | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
175 | |
176 | static int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) { |
177 | int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
178 | double z,fw,f[20],fq[20],q[20]; |
179 | |
180 | /* initialize jk*/ |
181 | jk = init_jk[prec]; |
182 | jp = jk; |
183 | |
184 | /* determine jx,jv,q0, note that 3>q0 */ |
185 | jx = nx-1; |
186 | jv = (e0-3)/24; if(jv<0) jv=0; |
187 | q0 = e0-24*(jv+1); |
188 | |
189 | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
190 | j = jv-jx; m = jx+jk; |
191 | for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : (double) ipio2[j]; |
192 | |
193 | /* compute q[0],q[1],...q[jk] */ |
194 | for (i=0;i<=jk;i++) { |
195 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
196 | } |
197 | |
198 | jz = jk; |
199 | recompute: |
200 | /* distill q[] into iq[] reversingly */ |
201 | for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
202 | fw = (double)((int)(twon24* z)); |
203 | iq[i] = (int)(z-two24B*fw); |
204 | z = q[j-1]+fw; |
205 | } |
206 | |
207 | /* compute n */ |
208 | z = scalbnA(z,q0); /* actual value of z */ |
209 | z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ |
210 | n = (int) z; |
211 | z -= (double)n; |
212 | ih = 0; |
213 | if(q0>0) { /* need iq[jz-1] to determine n */ |
214 | i = (iq[jz-1]>>(24-q0)); n += i; |
215 | iq[jz-1] -= i<<(24-q0); |
216 | ih = iq[jz-1]>>(23-q0); |
217 | } |
218 | else if(q0==0) ih = iq[jz-1]>>23; |
219 | else if(z>=0.5) ih=2; |
220 | |
221 | if(ih>0) { /* q > 0.5 */ |
222 | n += 1; carry = 0; |
223 | for(i=0;i<jz ;i++) { /* compute 1-q */ |
224 | j = iq[i]; |
225 | if(carry==0) { |
226 | if(j!=0) { |
227 | carry = 1; iq[i] = 0x1000000- j; |
228 | } |
229 | } else iq[i] = 0xffffff - j; |
230 | } |
231 | if(q0>0) { /* rare case: chance is 1 in 12 */ |
232 | switch(q0) { |
233 | case 1: |
234 | iq[jz-1] &= 0x7fffff; break; |
235 | case 2: |
236 | iq[jz-1] &= 0x3fffff; break; |
237 | } |
238 | } |
239 | if(ih==2) { |
240 | z = one - z; |
241 | if(carry!=0) z -= scalbnA(one,q0); |
242 | } |
243 | } |
244 | |
245 | /* check if recomputation is needed */ |
246 | if(z==zeroB) { |
247 | j = 0; |
248 | for (i=jz-1;i>=jk;i--) j |= iq[i]; |
249 | if(j==0) { /* need recomputation */ |
250 | for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
251 | |
252 | for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
253 | f[jx+i] = (double) ipio2[jv+i]; |
254 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
255 | q[i] = fw; |
256 | } |
257 | jz += k; |
258 | goto recompute; |
259 | } |
260 | } |
261 | |
262 | /* chop off zero terms */ |
263 | if(z==0.0) { |
264 | jz -= 1; q0 -= 24; |
265 | while(iq[jz]==0) { jz--; q0-=24;} |
266 | } else { /* break z into 24-bit if necessary */ |
267 | z = scalbnA(z,-q0); |
268 | if(z>=two24B) { |
269 | fw = (double)((int)(twon24*z)); |
270 | iq[jz] = (int)(z-two24B*fw); |
271 | jz += 1; q0 += 24; |
272 | iq[jz] = (int) fw; |
273 | } else iq[jz] = (int) z ; |
274 | } |
275 | |
276 | /* convert integer "bit" chunk to floating-point value */ |
277 | fw = scalbnA(one,q0); |
278 | for(i=jz;i>=0;i--) { |
279 | q[i] = fw*(double)iq[i]; fw*=twon24; |
280 | } |
281 | |
282 | /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
283 | for(i=jz;i>=0;i--) { |
284 | for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
285 | fq[jz-i] = fw; |
286 | } |
287 | |
288 | /* compress fq[] into y[] */ |
289 | switch(prec) { |
290 | case 0: |
291 | fw = 0.0; |
292 | for (i=jz;i>=0;i--) fw += fq[i]; |
293 | y[0] = (ih==0)? fw: -fw; |
294 | break; |
295 | case 1: |
296 | case 2: |
297 | fw = 0.0; |
298 | for (i=jz;i>=0;i--) fw += fq[i]; |
299 | y[0] = (ih==0)? fw: -fw; |
300 | fw = fq[0]-fw; |
301 | for (i=1;i<=jz;i++) fw += fq[i]; |
302 | y[1] = (ih==0)? fw: -fw; |
303 | break; |
304 | case 3: /* painful */ |
305 | for (i=jz;i>0;i--) { |
306 | fw = fq[i-1]+fq[i]; |
307 | fq[i] += fq[i-1]-fw; |
308 | fq[i-1] = fw; |
309 | } |
310 | for (i=jz;i>1;i--) { |
311 | fw = fq[i-1]+fq[i]; |
312 | fq[i] += fq[i-1]-fw; |
313 | fq[i-1] = fw; |
314 | } |
315 | for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
316 | if(ih==0) { |
317 | y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
318 | } else { |
319 | y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
320 | } |
321 | } |
322 | return n&7; |
323 | } |
324 | |
325 | |
326 | /* |
327 | * ==================================================== |
328 | * Copyright (c) 1993 Oracle and/or its affiliates. All rights reserved. |
329 | * |
330 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
331 | * Permission to use, copy, modify, and distribute this |
332 | * software is freely granted, provided that this notice |
333 | * is preserved. |
334 | * ==================================================== |
335 | * |
336 | */ |
337 | |
338 | /* __ieee754_rem_pio2(x,y) |
339 | * |
340 | * return the remainder of x rem pi/2 in y[0]+y[1] |
341 | * use __kernel_rem_pio2() |
342 | */ |
343 | |
344 | /* |
345 | * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi |
346 | */ |
347 | static const int two_over_pi[] = { |
348 | 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, |
349 | 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, |
350 | 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, |
351 | 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, |
352 | 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, |
353 | 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, |
354 | 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, |
355 | 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, |
356 | 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, |
357 | 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, |
358 | 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, |
359 | }; |
360 | |
361 | static const int npio2_hw[] = { |
362 | 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, |
363 | 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, |
364 | 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, |
365 | 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, |
366 | 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, |
367 | 0x404858EB, 0x404921FB, |
368 | }; |
369 | |
370 | /* |
371 | * invpio2: 53 bits of 2/pi |
372 | * pio2_1: first 33 bit of pi/2 |
373 | * pio2_1t: pi/2 - pio2_1 |
374 | * pio2_2: second 33 bit of pi/2 |
375 | * pio2_2t: pi/2 - (pio2_1+pio2_2) |
376 | * pio2_3: third 33 bit of pi/2 |
377 | * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) |
378 | */ |
379 | |
380 | static const double |
381 | zeroA = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
382 | half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
383 | two24A = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
384 | invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
385 | pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ |
386 | pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ |
387 | pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ |
388 | pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ |
389 | pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ |
390 | pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ |
391 | |
392 | static int __ieee754_rem_pio2(double x, double *y) { |
393 | double z,w,t,r,fn; |
394 | double tx[3]; |
395 | int e0,i,j,nx,n,ix,hx,i0; |
396 | |
397 | i0 = ((*(int*)&two24A)>>30)^1; /* high word index */ |
398 | hx = *(i0+(int*)&x); /* high word of x */ |
399 | ix = hx&0x7fffffff; |
400 | if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ |
401 | {y[0] = x; y[1] = 0; return 0;} |
402 | if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ |
403 | if(hx>0) { |
404 | z = x - pio2_1; |
405 | if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ |
406 | y[0] = z - pio2_1t; |
407 | y[1] = (z-y[0])-pio2_1t; |
408 | } else { /* near pi/2, use 33+33+53 bit pi */ |
409 | z -= pio2_2; |
410 | y[0] = z - pio2_2t; |
411 | y[1] = (z-y[0])-pio2_2t; |
412 | } |
413 | return 1; |
414 | } else { /* negative x */ |
415 | z = x + pio2_1; |
416 | if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ |
417 | y[0] = z + pio2_1t; |
418 | y[1] = (z-y[0])+pio2_1t; |
419 | } else { /* near pi/2, use 33+33+53 bit pi */ |
420 | z += pio2_2; |
421 | y[0] = z + pio2_2t; |
422 | y[1] = (z-y[0])+pio2_2t; |
423 | } |
424 | return -1; |
425 | } |
426 | } |
427 | if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ |
428 | t = fabsd(x); |
429 | n = (int) (t*invpio2+half); |
430 | fn = (double)n; |
431 | r = t-fn*pio2_1; |
432 | w = fn*pio2_1t; /* 1st round good to 85 bit */ |
433 | if(n<32&&ix!=npio2_hw[n-1]) { |
434 | y[0] = r-w; /* quick check no cancellation */ |
435 | } else { |
436 | j = ix>>20; |
437 | y[0] = r-w; |
438 | i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff); |
439 | if(i>16) { /* 2nd iteration needed, good to 118 */ |
440 | t = r; |
441 | w = fn*pio2_2; |
442 | r = t-w; |
443 | w = fn*pio2_2t-((t-r)-w); |
444 | y[0] = r-w; |
445 | i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff); |
446 | if(i>49) { /* 3rd iteration need, 151 bits acc */ |
447 | t = r; /* will cover all possible cases */ |
448 | w = fn*pio2_3; |
449 | r = t-w; |
450 | w = fn*pio2_3t-((t-r)-w); |
451 | y[0] = r-w; |
452 | } |
453 | } |
454 | } |
455 | y[1] = (r-y[0])-w; |
456 | if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} |
457 | else return n; |
458 | } |
459 | /* |
460 | * all other (large) arguments |
461 | */ |
462 | if(ix>=0x7ff00000) { /* x is inf or NaN */ |
463 | y[0]=y[1]=x-x; return 0; |
464 | } |
465 | /* set z = scalbn(|x|,ilogb(x)-23) */ |
466 | *(1-i0+(int*)&z) = *(1-i0+(int*)&x); |
467 | e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */ |
468 | *(i0+(int*)&z) = ix - (e0<<20); |
469 | for(i=0;i<2;i++) { |
470 | tx[i] = (double)((int)(z)); |
471 | z = (z-tx[i])*two24A; |
472 | } |
473 | tx[2] = z; |
474 | nx = 3; |
475 | while(tx[nx-1]==zeroA) nx--; /* skip zero term */ |
476 | n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); |
477 | if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} |
478 | return n; |
479 | } |
480 | |
481 | |
482 | /* __kernel_sin( x, y, iy) |
483 | * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
484 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
485 | * Input y is the tail of x. |
486 | * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). |
487 | * |
488 | * Algorithm |
489 | * 1. Since sin(-x) = -sin(x), we need only to consider positive x. |
490 | * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. |
491 | * 3. sin(x) is approximated by a polynomial of degree 13 on |
492 | * [0,pi/4] |
493 | * 3 13 |
494 | * sin(x) ~ x + S1*x + ... + S6*x |
495 | * where |
496 | * |
497 | * |sin(x) 2 4 6 8 10 12 | -58 |
498 | * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
499 | * | x | |
500 | * |
501 | * 4. sin(x+y) = sin(x) + sin'(x')*y |
502 | * ~ sin(x) + (1-x*x/2)*y |
503 | * For better accuracy, let |
504 | * 3 2 2 2 2 |
505 | * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) |
506 | * then 3 2 |
507 | * sin(x) = x + (S1*x + (x *(r-y/2)+y)) |
508 | */ |
509 | |
510 | static const double |
511 | S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ |
512 | S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ |
513 | S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ |
514 | S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ |
515 | S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ |
516 | S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ |
517 | |
518 | static double __kernel_sin(double x, double y, int iy) |
519 | { |
520 | double z,r,v; |
521 | int ix; |
522 | ix = high(x)&0x7fffffff; /* high word of x */ |
523 | if(ix<0x3e400000) /* |x| < 2**-27 */ |
524 | {if((int)x==0) return x;} /* generate inexact */ |
525 | z = x*x; |
526 | v = z*x; |
527 | r = S2+z*(S3+z*(S4+z*(S5+z*S6))); |
528 | if(iy==0) return x+v*(S1+z*r); |
529 | else return x-((z*(half*y-v*r)-y)-v*S1); |
530 | } |
531 | |
532 | /* |
533 | * __kernel_cos( x, y ) |
534 | * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
535 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
536 | * Input y is the tail of x. |
537 | * |
538 | * Algorithm |
539 | * 1. Since cos(-x) = cos(x), we need only to consider positive x. |
540 | * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. |
541 | * 3. cos(x) is approximated by a polynomial of degree 14 on |
542 | * [0,pi/4] |
543 | * 4 14 |
544 | * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
545 | * where the remez error is |
546 | * |
547 | * | 2 4 6 8 10 12 14 | -58 |
548 | * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
549 | * | | |
550 | * |
551 | * 4 6 8 10 12 14 |
552 | * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
553 | * cos(x) = 1 - x*x/2 + r |
554 | * since cos(x+y) ~ cos(x) - sin(x)*y |
555 | * ~ cos(x) - x*y, |
556 | * a correction term is necessary in cos(x) and hence |
557 | * cos(x+y) = 1 - (x*x/2 - (r - x*y)) |
558 | * For better accuracy when x > 0.3, let qx = |x|/4 with |
559 | * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
560 | * Then |
561 | * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). |
562 | * Note that 1-qx and (x*x/2-qx) is EXACT here, and the |
563 | * magnitude of the latter is at least a quarter of x*x/2, |
564 | * thus, reducing the rounding error in the subtraction. |
565 | */ |
566 | |
567 | static const double |
568 | C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ |
569 | C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ |
570 | C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ |
571 | C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ |
572 | C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ |
573 | C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ |
574 | |
575 | static double __kernel_cos(double x, double y) |
576 | { |
577 | double a,h,z,r,qx=0; |
578 | int ix; |
579 | ix = high(x)&0x7fffffff; /* ix = |x|'s high word*/ |
580 | if(ix<0x3e400000) { /* if x < 2**27 */ |
581 | if(((int)x)==0) return one; /* generate inexact */ |
582 | } |
583 | z = x*x; |
584 | r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); |
585 | if(ix < 0x3FD33333) /* if |x| < 0.3 */ |
586 | return one - (0.5*z - (z*r - x*y)); |
587 | else { |
588 | if(ix > 0x3fe90000) { /* x > 0.78125 */ |
589 | qx = 0.28125; |
590 | } else { |
591 | set_high(&qx, ix-0x00200000); /* x/4 */ |
592 | set_low(&qx, 0); |
593 | } |
594 | h = 0.5*z-qx; |
595 | a = one-qx; |
596 | return a - (h - (z*r-x*y)); |
597 | } |
598 | } |
599 | |
600 | /* __kernel_tan( x, y, k ) |
601 | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
602 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
603 | * Input y is the tail of x. |
604 | * Input k indicates whether tan (if k=1) or |
605 | * -1/tan (if k= -1) is returned. |
606 | * |
607 | * Algorithm |
608 | * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
609 | * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
610 | * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
611 | * [0,0.67434] |
612 | * 3 27 |
613 | * tan(x) ~ x + T1*x + ... + T13*x |
614 | * where |
615 | * |
616 | * |tan(x) 2 4 26 | -59.2 |
617 | * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
618 | * | x | |
619 | * |
620 | * Note: tan(x+y) = tan(x) + tan'(x)*y |
621 | * ~ tan(x) + (1+x*x)*y |
622 | * Therefore, for better accuracy in computing tan(x+y), let |
623 | * 3 2 2 2 2 |
624 | * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
625 | * then |
626 | * 3 2 |
627 | * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
628 | * |
629 | * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
630 | * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
631 | * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
632 | */ |
633 | |
634 | static const double |
635 | pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
636 | pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
637 | T[] = { |
638 | 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
639 | 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
640 | 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
641 | 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
642 | 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
643 | 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
644 | 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
645 | 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
646 | 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
647 | 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
648 | 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
649 | -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
650 | 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
651 | }; |
652 | |
653 | static double __kernel_tan(double x, double y, int iy) |
654 | { |
655 | double z,r,v,w,s; |
656 | int ix,hx; |
657 | hx = high(x); /* high word of x */ |
658 | ix = hx&0x7fffffff; /* high word of |x| */ |
659 | if(ix<0x3e300000) { /* x < 2**-28 */ |
660 | if((int)x==0) { /* generate inexact */ |
661 | if (((ix | low(x)) | (iy + 1)) == 0) |
662 | return one / fabsd(x); |
663 | else { |
664 | if (iy == 1) |
665 | return x; |
666 | else { /* compute -1 / (x+y) carefully */ |
667 | double a, t; |
668 | |
669 | z = w = x + y; |
670 | set_low(&z, 0); |
671 | v = y - (z - x); |
672 | t = a = -one / w; |
673 | set_low(&t, 0); |
674 | s = one + t * z; |
675 | return t + a * (s + t * v); |
676 | } |
677 | } |
678 | } |
679 | } |
680 | if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
681 | if(hx<0) {x = -x; y = -y;} |
682 | z = pio4-x; |
683 | w = pio4lo-y; |
684 | x = z+w; y = 0.0; |
685 | } |
686 | z = x*x; |
687 | w = z*z; |
688 | /* Break x^5*(T[1]+x^2*T[2]+...) into |
689 | * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
690 | * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
691 | */ |
692 | r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
693 | v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
694 | s = z*x; |
695 | r = y + z*(s*(r+v)+y); |
696 | r += T[0]*s; |
697 | w = x+r; |
698 | if(ix>=0x3FE59428) { |
699 | v = (double)iy; |
700 | return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
701 | } |
702 | if(iy==1) return w; |
703 | else { /* if allow error up to 2 ulp, |
704 | simply return -1.0/(x+r) here */ |
705 | /* compute -1.0/(x+r) accurately */ |
706 | double a,t; |
707 | z = w; |
708 | set_low(&z, 0); |
709 | v = r-(z - x); /* z+v = r+x */ |
710 | t = a = -1.0/w; /* a = -1.0/w */ |
711 | set_low(&t, 0); |
712 | s = 1.0+t*z; |
713 | return t+a*(s+t*v); |
714 | } |
715 | } |
716 | |
717 | |
718 | //---------------------------------------------------------------------- |
719 | // |
720 | // Routines for new sin/cos implementation |
721 | // |
722 | //---------------------------------------------------------------------- |
723 | |
724 | /* sin(x) |
725 | * Return sine function of x. |
726 | * |
727 | * kernel function: |
728 | * __kernel_sin ... sine function on [-pi/4,pi/4] |
729 | * __kernel_cos ... cose function on [-pi/4,pi/4] |
730 | * __ieee754_rem_pio2 ... argument reduction routine |
731 | * |
732 | * Method. |
733 | * Let S,C and T denote the sin, cos and tan respectively on |
734 | * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
735 | * in [-pi/4 , +pi/4], and let n = k mod 4. |
736 | * We have |
737 | * |
738 | * n sin(x) cos(x) tan(x) |
739 | * ---------------------------------------------------------- |
740 | * 0 S C T |
741 | * 1 C -S -1/T |
742 | * 2 -S -C T |
743 | * 3 -C S -1/T |
744 | * ---------------------------------------------------------- |
745 | * |
746 | * Special cases: |
747 | * Let trig be any of sin, cos, or tan. |
748 | * trig(+-INF) is NaN, with signals; |
749 | * trig(NaN) is that NaN; |
750 | * |
751 | * Accuracy: |
752 | * TRIG(x) returns trig(x) nearly rounded |
753 | */ |
754 | |
755 | JRT_LEAF(jdouble, SharedRuntime::dsin(jdouble x)) |
756 | double y[2],z=0.0; |
757 | int n, ix; |
758 | |
759 | /* High word of x. */ |
760 | ix = high(x); |
761 | |
762 | /* |x| ~< pi/4 */ |
763 | ix &= 0x7fffffff; |
764 | if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); |
765 | |
766 | /* sin(Inf or NaN) is NaN */ |
767 | else if (ix>=0x7ff00000) return x-x; |
768 | |
769 | /* argument reduction needed */ |
770 | else { |
771 | n = __ieee754_rem_pio2(x,y); |
772 | switch(n&3) { |
773 | case 0: return __kernel_sin(y[0],y[1],1); |
774 | case 1: return __kernel_cos(y[0],y[1]); |
775 | case 2: return -__kernel_sin(y[0],y[1],1); |
776 | default: |
777 | return -__kernel_cos(y[0],y[1]); |
778 | } |
779 | } |
780 | JRT_END |
781 | |
782 | /* cos(x) |
783 | * Return cosine function of x. |
784 | * |
785 | * kernel function: |
786 | * __kernel_sin ... sine function on [-pi/4,pi/4] |
787 | * __kernel_cos ... cosine function on [-pi/4,pi/4] |
788 | * __ieee754_rem_pio2 ... argument reduction routine |
789 | * |
790 | * Method. |
791 | * Let S,C and T denote the sin, cos and tan respectively on |
792 | * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
793 | * in [-pi/4 , +pi/4], and let n = k mod 4. |
794 | * We have |
795 | * |
796 | * n sin(x) cos(x) tan(x) |
797 | * ---------------------------------------------------------- |
798 | * 0 S C T |
799 | * 1 C -S -1/T |
800 | * 2 -S -C T |
801 | * 3 -C S -1/T |
802 | * ---------------------------------------------------------- |
803 | * |
804 | * Special cases: |
805 | * Let trig be any of sin, cos, or tan. |
806 | * trig(+-INF) is NaN, with signals; |
807 | * trig(NaN) is that NaN; |
808 | * |
809 | * Accuracy: |
810 | * TRIG(x) returns trig(x) nearly rounded |
811 | */ |
812 | |
813 | JRT_LEAF(jdouble, SharedRuntime::dcos(jdouble x)) |
814 | double y[2],z=0.0; |
815 | int n, ix; |
816 | |
817 | /* High word of x. */ |
818 | ix = high(x); |
819 | |
820 | /* |x| ~< pi/4 */ |
821 | ix &= 0x7fffffff; |
822 | if(ix <= 0x3fe921fb) return __kernel_cos(x,z); |
823 | |
824 | /* cos(Inf or NaN) is NaN */ |
825 | else if (ix>=0x7ff00000) return x-x; |
826 | |
827 | /* argument reduction needed */ |
828 | else { |
829 | n = __ieee754_rem_pio2(x,y); |
830 | switch(n&3) { |
831 | case 0: return __kernel_cos(y[0],y[1]); |
832 | case 1: return -__kernel_sin(y[0],y[1],1); |
833 | case 2: return -__kernel_cos(y[0],y[1]); |
834 | default: |
835 | return __kernel_sin(y[0],y[1],1); |
836 | } |
837 | } |
838 | JRT_END |
839 | |
840 | /* tan(x) |
841 | * Return tangent function of x. |
842 | * |
843 | * kernel function: |
844 | * __kernel_tan ... tangent function on [-pi/4,pi/4] |
845 | * __ieee754_rem_pio2 ... argument reduction routine |
846 | * |
847 | * Method. |
848 | * Let S,C and T denote the sin, cos and tan respectively on |
849 | * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
850 | * in [-pi/4 , +pi/4], and let n = k mod 4. |
851 | * We have |
852 | * |
853 | * n sin(x) cos(x) tan(x) |
854 | * ---------------------------------------------------------- |
855 | * 0 S C T |
856 | * 1 C -S -1/T |
857 | * 2 -S -C T |
858 | * 3 -C S -1/T |
859 | * ---------------------------------------------------------- |
860 | * |
861 | * Special cases: |
862 | * Let trig be any of sin, cos, or tan. |
863 | * trig(+-INF) is NaN, with signals; |
864 | * trig(NaN) is that NaN; |
865 | * |
866 | * Accuracy: |
867 | * TRIG(x) returns trig(x) nearly rounded |
868 | */ |
869 | |
870 | JRT_LEAF(jdouble, SharedRuntime::dtan(jdouble x)) |
871 | double y[2],z=0.0; |
872 | int n, ix; |
873 | |
874 | /* High word of x. */ |
875 | ix = high(x); |
876 | |
877 | /* |x| ~< pi/4 */ |
878 | ix &= 0x7fffffff; |
879 | if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); |
880 | |
881 | /* tan(Inf or NaN) is NaN */ |
882 | else if (ix>=0x7ff00000) return x-x; /* NaN */ |
883 | |
884 | /* argument reduction needed */ |
885 | else { |
886 | n = __ieee754_rem_pio2(x,y); |
887 | return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even |
888 | -1 -- n odd */ |
889 | } |
890 | JRT_END |
891 | |