1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jcdctmgr.c |
7 | * |
8 | * Copyright (C) 1994-1996, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains the forward-DCT management logic. |
13 | * This code selects a particular DCT implementation to be used, |
14 | * and it performs related housekeeping chores including coefficient |
15 | * quantization. |
16 | */ |
17 | |
18 | #define JPEG_INTERNALS |
19 | #include "jinclude.h" |
20 | #include "jpeglib.h" |
21 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
22 | |
23 | |
24 | /* Private subobject for this module */ |
25 | |
26 | typedef struct { |
27 | struct jpeg_forward_dct pub; /* public fields */ |
28 | |
29 | /* Pointer to the DCT routine actually in use */ |
30 | forward_DCT_method_ptr do_dct; |
31 | |
32 | /* The actual post-DCT divisors --- not identical to the quant table |
33 | * entries, because of scaling (especially for an unnormalized DCT). |
34 | * Each table is given in normal array order. |
35 | */ |
36 | DCTELEM * divisors[NUM_QUANT_TBLS]; |
37 | |
38 | #ifdef DCT_FLOAT_SUPPORTED |
39 | /* Same as above for the floating-point case. */ |
40 | float_DCT_method_ptr do_float_dct; |
41 | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; |
42 | #endif |
43 | } my_fdct_controller; |
44 | |
45 | typedef my_fdct_controller * my_fdct_ptr; |
46 | |
47 | |
48 | /* |
49 | * Initialize for a processing pass. |
50 | * Verify that all referenced Q-tables are present, and set up |
51 | * the divisor table for each one. |
52 | * In the current implementation, DCT of all components is done during |
53 | * the first pass, even if only some components will be output in the |
54 | * first scan. Hence all components should be examined here. |
55 | */ |
56 | |
57 | METHODDEF(void) |
58 | start_pass_fdctmgr (j_compress_ptr cinfo) |
59 | { |
60 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
61 | int ci, qtblno, i; |
62 | jpeg_component_info *compptr; |
63 | JQUANT_TBL * qtbl; |
64 | DCTELEM * dtbl; |
65 | |
66 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
67 | ci++, compptr++) { |
68 | qtblno = compptr->quant_tbl_no; |
69 | /* Make sure specified quantization table is present */ |
70 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
71 | cinfo->quant_tbl_ptrs[qtblno] == NULL) |
72 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
73 | qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
74 | /* Compute divisors for this quant table */ |
75 | /* We may do this more than once for same table, but it's not a big deal */ |
76 | switch (cinfo->dct_method) { |
77 | #ifdef DCT_ISLOW_SUPPORTED |
78 | case JDCT_ISLOW: |
79 | /* For LL&M IDCT method, divisors are equal to raw quantization |
80 | * coefficients multiplied by 8 (to counteract scaling). |
81 | */ |
82 | if (fdct->divisors[qtblno] == NULL) { |
83 | fdct->divisors[qtblno] = (DCTELEM *) |
84 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
85 | DCTSIZE2 * SIZEOF(DCTELEM)); |
86 | } |
87 | dtbl = fdct->divisors[qtblno]; |
88 | for (i = 0; i < DCTSIZE2; i++) { |
89 | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; |
90 | } |
91 | break; |
92 | #endif |
93 | #ifdef DCT_IFAST_SUPPORTED |
94 | case JDCT_IFAST: |
95 | { |
96 | /* For AA&N IDCT method, divisors are equal to quantization |
97 | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
98 | * scalefactor[0] = 1 |
99 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
100 | * We apply a further scale factor of 8. |
101 | */ |
102 | #define CONST_BITS 14 |
103 | static const INT16 aanscales[DCTSIZE2] = { |
104 | /* precomputed values scaled up by 14 bits */ |
105 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
106 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
107 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
108 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
109 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
110 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
111 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
112 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
113 | }; |
114 | SHIFT_TEMPS |
115 | |
116 | if (fdct->divisors[qtblno] == NULL) { |
117 | fdct->divisors[qtblno] = (DCTELEM *) |
118 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
119 | DCTSIZE2 * SIZEOF(DCTELEM)); |
120 | } |
121 | dtbl = fdct->divisors[qtblno]; |
122 | for (i = 0; i < DCTSIZE2; i++) { |
123 | dtbl[i] = (DCTELEM) |
124 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
125 | (INT32) aanscales[i]), |
126 | CONST_BITS-3); |
127 | } |
128 | } |
129 | break; |
130 | #endif |
131 | #ifdef DCT_FLOAT_SUPPORTED |
132 | case JDCT_FLOAT: |
133 | { |
134 | /* For float AA&N IDCT method, divisors are equal to quantization |
135 | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
136 | * scalefactor[0] = 1 |
137 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
138 | * We apply a further scale factor of 8. |
139 | * What's actually stored is 1/divisor so that the inner loop can |
140 | * use a multiplication rather than a division. |
141 | */ |
142 | FAST_FLOAT * fdtbl; |
143 | int row, col; |
144 | static const double aanscalefactor[DCTSIZE] = { |
145 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
146 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
147 | }; |
148 | |
149 | if (fdct->float_divisors[qtblno] == NULL) { |
150 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
151 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
152 | DCTSIZE2 * SIZEOF(FAST_FLOAT)); |
153 | } |
154 | fdtbl = fdct->float_divisors[qtblno]; |
155 | i = 0; |
156 | for (row = 0; row < DCTSIZE; row++) { |
157 | for (col = 0; col < DCTSIZE; col++) { |
158 | fdtbl[i] = (FAST_FLOAT) |
159 | (1.0 / (((double) qtbl->quantval[i] * |
160 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
161 | i++; |
162 | } |
163 | } |
164 | } |
165 | break; |
166 | #endif |
167 | default: |
168 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
169 | break; |
170 | } |
171 | } |
172 | } |
173 | |
174 | |
175 | /* |
176 | * Perform forward DCT on one or more blocks of a component. |
177 | * |
178 | * The input samples are taken from the sample_data[] array starting at |
179 | * position start_row/start_col, and moving to the right for any additional |
180 | * blocks. The quantized coefficients are returned in coef_blocks[]. |
181 | */ |
182 | |
183 | METHODDEF(void) |
184 | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
185 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
186 | JDIMENSION start_row, JDIMENSION start_col, |
187 | JDIMENSION num_blocks) |
188 | /* This version is used for integer DCT implementations. */ |
189 | { |
190 | /* This routine is heavily used, so it's worth coding it tightly. */ |
191 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
192 | forward_DCT_method_ptr do_dct = fdct->do_dct; |
193 | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; |
194 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
195 | JDIMENSION bi; |
196 | |
197 | sample_data += start_row; /* fold in the vertical offset once */ |
198 | |
199 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
200 | /* Load data into workspace, applying unsigned->signed conversion */ |
201 | { register DCTELEM *workspaceptr; |
202 | register JSAMPROW elemptr; |
203 | register int elemr; |
204 | |
205 | workspaceptr = workspace; |
206 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
207 | elemptr = sample_data[elemr] + start_col; |
208 | #if DCTSIZE == 8 /* unroll the inner loop */ |
209 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
210 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
211 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
212 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
213 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
214 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
215 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
216 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
217 | #else |
218 | { register int elemc; |
219 | for (elemc = DCTSIZE; elemc > 0; elemc--) { |
220 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
221 | } |
222 | } |
223 | #endif |
224 | } |
225 | } |
226 | |
227 | /* Perform the DCT */ |
228 | (*do_dct) (workspace); |
229 | |
230 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
231 | { register DCTELEM temp, qval; |
232 | register int i; |
233 | register JCOEFPTR output_ptr = coef_blocks[bi]; |
234 | |
235 | for (i = 0; i < DCTSIZE2; i++) { |
236 | qval = divisors[i]; |
237 | temp = workspace[i]; |
238 | /* Divide the coefficient value by qval, ensuring proper rounding. |
239 | * Since C does not specify the direction of rounding for negative |
240 | * quotients, we have to force the dividend positive for portability. |
241 | * |
242 | * In most files, at least half of the output values will be zero |
243 | * (at default quantization settings, more like three-quarters...) |
244 | * so we should ensure that this case is fast. On many machines, |
245 | * a comparison is enough cheaper than a divide to make a special test |
246 | * a win. Since both inputs will be nonnegative, we need only test |
247 | * for a < b to discover whether a/b is 0. |
248 | * If your machine's division is fast enough, define FAST_DIVIDE. |
249 | */ |
250 | #ifdef FAST_DIVIDE |
251 | #define DIVIDE_BY(a,b) a /= b |
252 | #else |
253 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 |
254 | #endif |
255 | if (temp < 0) { |
256 | temp = -temp; |
257 | temp += qval>>1; /* for rounding */ |
258 | DIVIDE_BY(temp, qval); |
259 | temp = -temp; |
260 | } else { |
261 | temp += qval>>1; /* for rounding */ |
262 | DIVIDE_BY(temp, qval); |
263 | } |
264 | output_ptr[i] = (JCOEF) temp; |
265 | } |
266 | } |
267 | } |
268 | } |
269 | |
270 | |
271 | #ifdef DCT_FLOAT_SUPPORTED |
272 | |
273 | METHODDEF(void) |
274 | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
275 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
276 | JDIMENSION start_row, JDIMENSION start_col, |
277 | JDIMENSION num_blocks) |
278 | /* This version is used for floating-point DCT implementations. */ |
279 | { |
280 | /* This routine is heavily used, so it's worth coding it tightly. */ |
281 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
282 | float_DCT_method_ptr do_dct = fdct->do_float_dct; |
283 | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
284 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
285 | JDIMENSION bi; |
286 | |
287 | sample_data += start_row; /* fold in the vertical offset once */ |
288 | |
289 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
290 | /* Load data into workspace, applying unsigned->signed conversion */ |
291 | { register FAST_FLOAT *workspaceptr; |
292 | register JSAMPROW elemptr; |
293 | register int elemr; |
294 | |
295 | workspaceptr = workspace; |
296 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
297 | elemptr = sample_data[elemr] + start_col; |
298 | #if DCTSIZE == 8 /* unroll the inner loop */ |
299 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
300 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
301 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
302 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
303 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
304 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
305 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
306 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
307 | #else |
308 | { register int elemc; |
309 | for (elemc = DCTSIZE; elemc > 0; elemc--) { |
310 | *workspaceptr++ = (FAST_FLOAT) |
311 | (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
312 | } |
313 | } |
314 | #endif |
315 | } |
316 | } |
317 | |
318 | /* Perform the DCT */ |
319 | (*do_dct) (workspace); |
320 | |
321 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
322 | { register FAST_FLOAT temp; |
323 | register int i; |
324 | register JCOEFPTR output_ptr = coef_blocks[bi]; |
325 | |
326 | for (i = 0; i < DCTSIZE2; i++) { |
327 | /* Apply the quantization and scaling factor */ |
328 | temp = workspace[i] * divisors[i]; |
329 | /* Round to nearest integer. |
330 | * Since C does not specify the direction of rounding for negative |
331 | * quotients, we have to force the dividend positive for portability. |
332 | * The maximum coefficient size is +-16K (for 12-bit data), so this |
333 | * code should work for either 16-bit or 32-bit ints. |
334 | */ |
335 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
336 | } |
337 | } |
338 | } |
339 | } |
340 | |
341 | #endif /* DCT_FLOAT_SUPPORTED */ |
342 | |
343 | |
344 | /* |
345 | * Initialize FDCT manager. |
346 | */ |
347 | |
348 | GLOBAL(void) |
349 | jinit_forward_dct (j_compress_ptr cinfo) |
350 | { |
351 | my_fdct_ptr fdct; |
352 | int i; |
353 | |
354 | fdct = (my_fdct_ptr) |
355 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
356 | SIZEOF(my_fdct_controller)); |
357 | cinfo->fdct = (struct jpeg_forward_dct *) fdct; |
358 | fdct->pub.start_pass = start_pass_fdctmgr; |
359 | |
360 | switch (cinfo->dct_method) { |
361 | #ifdef DCT_ISLOW_SUPPORTED |
362 | case JDCT_ISLOW: |
363 | fdct->pub.forward_DCT = forward_DCT; |
364 | fdct->do_dct = jpeg_fdct_islow; |
365 | break; |
366 | #endif |
367 | #ifdef DCT_IFAST_SUPPORTED |
368 | case JDCT_IFAST: |
369 | fdct->pub.forward_DCT = forward_DCT; |
370 | fdct->do_dct = jpeg_fdct_ifast; |
371 | break; |
372 | #endif |
373 | #ifdef DCT_FLOAT_SUPPORTED |
374 | case JDCT_FLOAT: |
375 | fdct->pub.forward_DCT = forward_DCT_float; |
376 | fdct->do_float_dct = jpeg_fdct_float; |
377 | break; |
378 | #endif |
379 | default: |
380 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
381 | break; |
382 | } |
383 | |
384 | /* Mark divisor tables unallocated */ |
385 | for (i = 0; i < NUM_QUANT_TBLS; i++) { |
386 | fdct->divisors[i] = NULL; |
387 | #ifdef DCT_FLOAT_SUPPORTED |
388 | fdct->float_divisors[i] = NULL; |
389 | #endif |
390 | } |
391 | } |
392 | |