1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jchuff.c |
7 | * |
8 | * Copyright (C) 1991-1997, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains Huffman entropy encoding routines. |
13 | * |
14 | * Much of the complexity here has to do with supporting output suspension. |
15 | * If the data destination module demands suspension, we want to be able to |
16 | * back up to the start of the current MCU. To do this, we copy state |
17 | * variables into local working storage, and update them back to the |
18 | * permanent JPEG objects only upon successful completion of an MCU. |
19 | */ |
20 | |
21 | #define JPEG_INTERNALS |
22 | #include "jinclude.h" |
23 | #include "jpeglib.h" |
24 | #include "jchuff.h" /* Declarations shared with jcphuff.c */ |
25 | |
26 | |
27 | /* Expanded entropy encoder object for Huffman encoding. |
28 | * |
29 | * The savable_state subrecord contains fields that change within an MCU, |
30 | * but must not be updated permanently until we complete the MCU. |
31 | */ |
32 | |
33 | typedef struct { |
34 | INT32 put_buffer; /* current bit-accumulation buffer */ |
35 | int put_bits; /* # of bits now in it */ |
36 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
37 | } savable_state; |
38 | |
39 | /* This macro is to work around compilers with missing or broken |
40 | * structure assignment. You'll need to fix this code if you have |
41 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
42 | */ |
43 | |
44 | #ifndef NO_STRUCT_ASSIGN |
45 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
46 | #else |
47 | #if MAX_COMPS_IN_SCAN == 4 |
48 | #define ASSIGN_STATE(dest,src) \ |
49 | ((dest).put_buffer = (src).put_buffer, \ |
50 | (dest).put_bits = (src).put_bits, \ |
51 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
52 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
53 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
54 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
55 | #endif |
56 | #endif |
57 | |
58 | |
59 | typedef struct { |
60 | struct jpeg_entropy_encoder pub; /* public fields */ |
61 | |
62 | savable_state saved; /* Bit buffer & DC state at start of MCU */ |
63 | |
64 | /* These fields are NOT loaded into local working state. */ |
65 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
66 | int next_restart_num; /* next restart number to write (0-7) */ |
67 | |
68 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
69 | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
70 | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
71 | |
72 | #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
73 | long * dc_count_ptrs[NUM_HUFF_TBLS]; |
74 | long * ac_count_ptrs[NUM_HUFF_TBLS]; |
75 | #endif |
76 | } huff_entropy_encoder; |
77 | |
78 | typedef huff_entropy_encoder * huff_entropy_ptr; |
79 | |
80 | /* Working state while writing an MCU. |
81 | * This struct contains all the fields that are needed by subroutines. |
82 | */ |
83 | |
84 | typedef struct { |
85 | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
86 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
87 | savable_state cur; /* Current bit buffer & DC state */ |
88 | j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
89 | } working_state; |
90 | |
91 | |
92 | /* Forward declarations */ |
93 | METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, |
94 | JBLOCKROW *MCU_data)); |
95 | METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); |
96 | #ifdef ENTROPY_OPT_SUPPORTED |
97 | METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, |
98 | JBLOCKROW *MCU_data)); |
99 | METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); |
100 | #endif |
101 | |
102 | |
103 | /* |
104 | * Initialize for a Huffman-compressed scan. |
105 | * If gather_statistics is TRUE, we do not output anything during the scan, |
106 | * just count the Huffman symbols used and generate Huffman code tables. |
107 | */ |
108 | |
109 | METHODDEF(void) |
110 | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
111 | { |
112 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
113 | int ci, dctbl, actbl; |
114 | jpeg_component_info * compptr; |
115 | |
116 | if (gather_statistics) { |
117 | #ifdef ENTROPY_OPT_SUPPORTED |
118 | entropy->pub.encode_mcu = encode_mcu_gather; |
119 | entropy->pub.finish_pass = finish_pass_gather; |
120 | #else |
121 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
122 | #endif |
123 | } else { |
124 | entropy->pub.encode_mcu = encode_mcu_huff; |
125 | entropy->pub.finish_pass = finish_pass_huff; |
126 | } |
127 | |
128 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
129 | compptr = cinfo->cur_comp_info[ci]; |
130 | dctbl = compptr->dc_tbl_no; |
131 | actbl = compptr->ac_tbl_no; |
132 | if (gather_statistics) { |
133 | #ifdef ENTROPY_OPT_SUPPORTED |
134 | /* Check for invalid table indexes */ |
135 | /* (make_c_derived_tbl does this in the other path) */ |
136 | if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
137 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
138 | if (actbl < 0 || actbl >= NUM_HUFF_TBLS) |
139 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); |
140 | /* Allocate and zero the statistics tables */ |
141 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
142 | if (entropy->dc_count_ptrs[dctbl] == NULL) |
143 | entropy->dc_count_ptrs[dctbl] = (long *) |
144 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
145 | 257 * SIZEOF(long)); |
146 | MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); |
147 | if (entropy->ac_count_ptrs[actbl] == NULL) |
148 | entropy->ac_count_ptrs[actbl] = (long *) |
149 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
150 | 257 * SIZEOF(long)); |
151 | MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); |
152 | #endif |
153 | } else { |
154 | /* Compute derived values for Huffman tables */ |
155 | /* We may do this more than once for a table, but it's not expensive */ |
156 | jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
157 | & entropy->dc_derived_tbls[dctbl]); |
158 | jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, |
159 | & entropy->ac_derived_tbls[actbl]); |
160 | } |
161 | /* Initialize DC predictions to 0 */ |
162 | entropy->saved.last_dc_val[ci] = 0; |
163 | } |
164 | |
165 | /* Initialize bit buffer to empty */ |
166 | entropy->saved.put_buffer = 0; |
167 | entropy->saved.put_bits = 0; |
168 | |
169 | /* Initialize restart stuff */ |
170 | entropy->restarts_to_go = cinfo->restart_interval; |
171 | entropy->next_restart_num = 0; |
172 | } |
173 | |
174 | |
175 | /* |
176 | * Compute the derived values for a Huffman table. |
177 | * This routine also performs some validation checks on the table. |
178 | * |
179 | * Note this is also used by jcphuff.c. |
180 | */ |
181 | |
182 | GLOBAL(void) |
183 | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
184 | c_derived_tbl ** pdtbl) |
185 | { |
186 | JHUFF_TBL *htbl; |
187 | c_derived_tbl *dtbl; |
188 | int p, i, l, lastp, si, maxsymbol; |
189 | char huffsize[257]; |
190 | unsigned int huffcode[257]; |
191 | unsigned int code; |
192 | |
193 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
194 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
195 | */ |
196 | |
197 | /* Find the input Huffman table */ |
198 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
199 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
200 | htbl = |
201 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
202 | if (htbl == NULL) |
203 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
204 | |
205 | /* Allocate a workspace if we haven't already done so. */ |
206 | if (*pdtbl == NULL) |
207 | *pdtbl = (c_derived_tbl *) |
208 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
209 | SIZEOF(c_derived_tbl)); |
210 | dtbl = *pdtbl; |
211 | |
212 | /* Figure C.1: make table of Huffman code length for each symbol */ |
213 | |
214 | p = 0; |
215 | for (l = 1; l <= 16; l++) { |
216 | i = (int) htbl->bits[l]; |
217 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
218 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
219 | while (i--) |
220 | huffsize[p++] = (char) l; |
221 | } |
222 | huffsize[p] = 0; |
223 | lastp = p; |
224 | |
225 | /* Figure C.2: generate the codes themselves */ |
226 | /* We also validate that the counts represent a legal Huffman code tree. */ |
227 | |
228 | code = 0; |
229 | si = huffsize[0]; |
230 | p = 0; |
231 | while (huffsize[p]) { |
232 | while (((int) huffsize[p]) == si) { |
233 | huffcode[p++] = code; |
234 | code++; |
235 | } |
236 | /* code is now 1 more than the last code used for codelength si; but |
237 | * it must still fit in si bits, since no code is allowed to be all ones. |
238 | */ |
239 | if (((INT32) code) >= (((INT32) 1) << si)) |
240 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
241 | code <<= 1; |
242 | si++; |
243 | } |
244 | |
245 | /* Figure C.3: generate encoding tables */ |
246 | /* These are code and size indexed by symbol value */ |
247 | |
248 | /* Set all codeless symbols to have code length 0; |
249 | * this lets us detect duplicate VAL entries here, and later |
250 | * allows emit_bits to detect any attempt to emit such symbols. |
251 | */ |
252 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
253 | |
254 | /* This is also a convenient place to check for out-of-range |
255 | * and duplicated VAL entries. We allow 0..255 for AC symbols |
256 | * but only 0..15 for DC. (We could constrain them further |
257 | * based on data depth and mode, but this seems enough.) |
258 | */ |
259 | maxsymbol = isDC ? 15 : 255; |
260 | |
261 | for (p = 0; p < lastp; p++) { |
262 | i = htbl->huffval[p]; |
263 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
264 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
265 | dtbl->ehufco[i] = huffcode[p]; |
266 | dtbl->ehufsi[i] = huffsize[p]; |
267 | } |
268 | } |
269 | |
270 | |
271 | /* Outputting bytes to the file */ |
272 | |
273 | /* Emit a byte, taking 'action' if must suspend. */ |
274 | #define emit_byte(state,val,action) \ |
275 | { *(state)->next_output_byte++ = (JOCTET) (val); \ |
276 | if (--(state)->free_in_buffer == 0) \ |
277 | if (! dump_buffer(state)) \ |
278 | { action; } } |
279 | |
280 | |
281 | LOCAL(boolean) |
282 | dump_buffer (working_state * state) |
283 | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
284 | { |
285 | struct jpeg_destination_mgr * dest = state->cinfo->dest; |
286 | |
287 | if (! (*dest->empty_output_buffer) (state->cinfo)) |
288 | return FALSE; |
289 | /* After a successful buffer dump, must reset buffer pointers */ |
290 | state->next_output_byte = dest->next_output_byte; |
291 | state->free_in_buffer = dest->free_in_buffer; |
292 | return TRUE; |
293 | } |
294 | |
295 | |
296 | /* Outputting bits to the file */ |
297 | |
298 | /* Only the right 24 bits of put_buffer are used; the valid bits are |
299 | * left-justified in this part. At most 16 bits can be passed to emit_bits |
300 | * in one call, and we never retain more than 7 bits in put_buffer |
301 | * between calls, so 24 bits are sufficient. |
302 | */ |
303 | |
304 | INLINE |
305 | LOCAL(boolean) |
306 | emit_bits (working_state * state, unsigned int code, int size) |
307 | /* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
308 | { |
309 | /* This routine is heavily used, so it's worth coding tightly. */ |
310 | register INT32 put_buffer = (INT32) code; |
311 | register int put_bits = state->cur.put_bits; |
312 | |
313 | /* if size is 0, caller used an invalid Huffman table entry */ |
314 | if (size == 0) |
315 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
316 | |
317 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
318 | |
319 | put_bits += size; /* new number of bits in buffer */ |
320 | |
321 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
322 | |
323 | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ |
324 | |
325 | while (put_bits >= 8) { |
326 | int c = (int) ((put_buffer >> 16) & 0xFF); |
327 | |
328 | emit_byte(state, c, return FALSE); |
329 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
330 | emit_byte(state, 0, return FALSE); |
331 | } |
332 | put_buffer <<= 8; |
333 | put_bits -= 8; |
334 | } |
335 | |
336 | state->cur.put_buffer = put_buffer; /* update state variables */ |
337 | state->cur.put_bits = put_bits; |
338 | |
339 | return TRUE; |
340 | } |
341 | |
342 | |
343 | LOCAL(boolean) |
344 | flush_bits (working_state * state) |
345 | { |
346 | if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ |
347 | return FALSE; |
348 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
349 | state->cur.put_bits = 0; |
350 | return TRUE; |
351 | } |
352 | |
353 | |
354 | /* Encode a single block's worth of coefficients */ |
355 | |
356 | LOCAL(boolean) |
357 | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
358 | c_derived_tbl *dctbl, c_derived_tbl *actbl) |
359 | { |
360 | register int temp, temp2; |
361 | register int nbits; |
362 | register int k, r, i; |
363 | |
364 | /* Encode the DC coefficient difference per section F.1.2.1 */ |
365 | |
366 | temp = temp2 = block[0] - last_dc_val; |
367 | |
368 | if (temp < 0) { |
369 | temp = -temp; /* temp is abs value of input */ |
370 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
371 | /* This code assumes we are on a two's complement machine */ |
372 | temp2--; |
373 | } |
374 | |
375 | /* Find the number of bits needed for the magnitude of the coefficient */ |
376 | nbits = 0; |
377 | while (temp) { |
378 | nbits++; |
379 | temp >>= 1; |
380 | } |
381 | /* Check for out-of-range coefficient values. |
382 | * Since we're encoding a difference, the range limit is twice as much. |
383 | */ |
384 | if (nbits > MAX_COEF_BITS+1) |
385 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
386 | |
387 | /* Emit the Huffman-coded symbol for the number of bits */ |
388 | if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
389 | return FALSE; |
390 | |
391 | /* Emit that number of bits of the value, if positive, */ |
392 | /* or the complement of its magnitude, if negative. */ |
393 | if (nbits) /* emit_bits rejects calls with size 0 */ |
394 | if (! emit_bits(state, (unsigned int) temp2, nbits)) |
395 | return FALSE; |
396 | |
397 | /* Encode the AC coefficients per section F.1.2.2 */ |
398 | |
399 | r = 0; /* r = run length of zeros */ |
400 | |
401 | for (k = 1; k < DCTSIZE2; k++) { |
402 | if ((temp = block[jpeg_natural_order[k]]) == 0) { |
403 | r++; |
404 | } else { |
405 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
406 | while (r > 15) { |
407 | if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
408 | return FALSE; |
409 | r -= 16; |
410 | } |
411 | |
412 | temp2 = temp; |
413 | if (temp < 0) { |
414 | temp = -temp; /* temp is abs value of input */ |
415 | /* This code assumes we are on a two's complement machine */ |
416 | temp2--; |
417 | } |
418 | |
419 | /* Find the number of bits needed for the magnitude of the coefficient */ |
420 | nbits = 1; /* there must be at least one 1 bit */ |
421 | while ((temp >>= 1)) |
422 | nbits++; |
423 | /* Check for out-of-range coefficient values */ |
424 | if (nbits > MAX_COEF_BITS) |
425 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
426 | |
427 | /* Emit Huffman symbol for run length / number of bits */ |
428 | i = (r << 4) + nbits; |
429 | if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) |
430 | return FALSE; |
431 | |
432 | /* Emit that number of bits of the value, if positive, */ |
433 | /* or the complement of its magnitude, if negative. */ |
434 | if (! emit_bits(state, (unsigned int) temp2, nbits)) |
435 | return FALSE; |
436 | |
437 | r = 0; |
438 | } |
439 | } |
440 | |
441 | /* If the last coef(s) were zero, emit an end-of-block code */ |
442 | if (r > 0) |
443 | if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) |
444 | return FALSE; |
445 | |
446 | return TRUE; |
447 | } |
448 | |
449 | |
450 | /* |
451 | * Emit a restart marker & resynchronize predictions. |
452 | */ |
453 | |
454 | LOCAL(boolean) |
455 | emit_restart (working_state * state, int restart_num) |
456 | { |
457 | int ci; |
458 | |
459 | if (! flush_bits(state)) |
460 | return FALSE; |
461 | |
462 | emit_byte(state, 0xFF, return FALSE); |
463 | emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
464 | |
465 | /* Re-initialize DC predictions to 0 */ |
466 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
467 | state->cur.last_dc_val[ci] = 0; |
468 | |
469 | /* The restart counter is not updated until we successfully write the MCU. */ |
470 | |
471 | return TRUE; |
472 | } |
473 | |
474 | |
475 | /* |
476 | * Encode and output one MCU's worth of Huffman-compressed coefficients. |
477 | */ |
478 | |
479 | METHODDEF(boolean) |
480 | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
481 | { |
482 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
483 | working_state state; |
484 | int blkn, ci; |
485 | jpeg_component_info * compptr; |
486 | |
487 | /* Load up working state */ |
488 | state.next_output_byte = cinfo->dest->next_output_byte; |
489 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
490 | ASSIGN_STATE(state.cur, entropy->saved); |
491 | state.cinfo = cinfo; |
492 | |
493 | /* Emit restart marker if needed */ |
494 | if (cinfo->restart_interval) { |
495 | if (entropy->restarts_to_go == 0) |
496 | if (! emit_restart(&state, entropy->next_restart_num)) |
497 | return FALSE; |
498 | } |
499 | |
500 | /* Encode the MCU data blocks */ |
501 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
502 | ci = cinfo->MCU_membership[blkn]; |
503 | compptr = cinfo->cur_comp_info[ci]; |
504 | if (! encode_one_block(&state, |
505 | MCU_data[blkn][0], state.cur.last_dc_val[ci], |
506 | entropy->dc_derived_tbls[compptr->dc_tbl_no], |
507 | entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
508 | return FALSE; |
509 | /* Update last_dc_val */ |
510 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
511 | } |
512 | |
513 | /* Completed MCU, so update state */ |
514 | cinfo->dest->next_output_byte = state.next_output_byte; |
515 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
516 | ASSIGN_STATE(entropy->saved, state.cur); |
517 | |
518 | /* Update restart-interval state too */ |
519 | if (cinfo->restart_interval) { |
520 | if (entropy->restarts_to_go == 0) { |
521 | entropy->restarts_to_go = cinfo->restart_interval; |
522 | entropy->next_restart_num++; |
523 | entropy->next_restart_num &= 7; |
524 | } |
525 | entropy->restarts_to_go--; |
526 | } |
527 | |
528 | return TRUE; |
529 | } |
530 | |
531 | |
532 | /* |
533 | * Finish up at the end of a Huffman-compressed scan. |
534 | */ |
535 | |
536 | METHODDEF(void) |
537 | finish_pass_huff (j_compress_ptr cinfo) |
538 | { |
539 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
540 | working_state state; |
541 | |
542 | /* Load up working state ... flush_bits needs it */ |
543 | state.next_output_byte = cinfo->dest->next_output_byte; |
544 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
545 | ASSIGN_STATE(state.cur, entropy->saved); |
546 | state.cinfo = cinfo; |
547 | |
548 | /* Flush out the last data */ |
549 | if (! flush_bits(&state)) |
550 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
551 | |
552 | /* Update state */ |
553 | cinfo->dest->next_output_byte = state.next_output_byte; |
554 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
555 | ASSIGN_STATE(entropy->saved, state.cur); |
556 | } |
557 | |
558 | |
559 | /* |
560 | * Huffman coding optimization. |
561 | * |
562 | * We first scan the supplied data and count the number of uses of each symbol |
563 | * that is to be Huffman-coded. (This process MUST agree with the code above.) |
564 | * Then we build a Huffman coding tree for the observed counts. |
565 | * Symbols which are not needed at all for the particular image are not |
566 | * assigned any code, which saves space in the DHT marker as well as in |
567 | * the compressed data. |
568 | */ |
569 | |
570 | #ifdef ENTROPY_OPT_SUPPORTED |
571 | |
572 | |
573 | /* Process a single block's worth of coefficients */ |
574 | |
575 | LOCAL(void) |
576 | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
577 | long dc_counts[], long ac_counts[]) |
578 | { |
579 | register int temp; |
580 | register int nbits; |
581 | register int k, r; |
582 | |
583 | /* Encode the DC coefficient difference per section F.1.2.1 */ |
584 | |
585 | temp = block[0] - last_dc_val; |
586 | if (temp < 0) |
587 | temp = -temp; |
588 | |
589 | /* Find the number of bits needed for the magnitude of the coefficient */ |
590 | nbits = 0; |
591 | while (temp) { |
592 | nbits++; |
593 | temp >>= 1; |
594 | } |
595 | /* Check for out-of-range coefficient values. |
596 | * Since we're encoding a difference, the range limit is twice as much. |
597 | */ |
598 | if (nbits > MAX_COEF_BITS+1) |
599 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
600 | |
601 | /* Count the Huffman symbol for the number of bits */ |
602 | dc_counts[nbits]++; |
603 | |
604 | /* Encode the AC coefficients per section F.1.2.2 */ |
605 | |
606 | r = 0; /* r = run length of zeros */ |
607 | |
608 | for (k = 1; k < DCTSIZE2; k++) { |
609 | if ((temp = block[jpeg_natural_order[k]]) == 0) { |
610 | r++; |
611 | } else { |
612 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
613 | while (r > 15) { |
614 | ac_counts[0xF0]++; |
615 | r -= 16; |
616 | } |
617 | |
618 | /* Find the number of bits needed for the magnitude of the coefficient */ |
619 | if (temp < 0) |
620 | temp = -temp; |
621 | |
622 | /* Find the number of bits needed for the magnitude of the coefficient */ |
623 | nbits = 1; /* there must be at least one 1 bit */ |
624 | while ((temp >>= 1)) |
625 | nbits++; |
626 | /* Check for out-of-range coefficient values */ |
627 | if (nbits > MAX_COEF_BITS) |
628 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
629 | |
630 | /* Count Huffman symbol for run length / number of bits */ |
631 | ac_counts[(r << 4) + nbits]++; |
632 | |
633 | r = 0; |
634 | } |
635 | } |
636 | |
637 | /* If the last coef(s) were zero, emit an end-of-block code */ |
638 | if (r > 0) |
639 | ac_counts[0]++; |
640 | } |
641 | |
642 | |
643 | /* |
644 | * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
645 | * No data is actually output, so no suspension return is possible. |
646 | */ |
647 | |
648 | METHODDEF(boolean) |
649 | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
650 | { |
651 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
652 | int blkn, ci; |
653 | jpeg_component_info * compptr; |
654 | |
655 | /* Take care of restart intervals if needed */ |
656 | if (cinfo->restart_interval) { |
657 | if (entropy->restarts_to_go == 0) { |
658 | /* Re-initialize DC predictions to 0 */ |
659 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
660 | entropy->saved.last_dc_val[ci] = 0; |
661 | /* Update restart state */ |
662 | entropy->restarts_to_go = cinfo->restart_interval; |
663 | } |
664 | entropy->restarts_to_go--; |
665 | } |
666 | |
667 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
668 | ci = cinfo->MCU_membership[blkn]; |
669 | compptr = cinfo->cur_comp_info[ci]; |
670 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
671 | entropy->dc_count_ptrs[compptr->dc_tbl_no], |
672 | entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
673 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
674 | } |
675 | |
676 | return TRUE; |
677 | } |
678 | |
679 | |
680 | /* |
681 | * Generate the best Huffman code table for the given counts, fill htbl. |
682 | * Note this is also used by jcphuff.c. |
683 | * |
684 | * The JPEG standard requires that no symbol be assigned a codeword of all |
685 | * one bits (so that padding bits added at the end of a compressed segment |
686 | * can't look like a valid code). Because of the canonical ordering of |
687 | * codewords, this just means that there must be an unused slot in the |
688 | * longest codeword length category. Section K.2 of the JPEG spec suggests |
689 | * reserving such a slot by pretending that symbol 256 is a valid symbol |
690 | * with count 1. In theory that's not optimal; giving it count zero but |
691 | * including it in the symbol set anyway should give a better Huffman code. |
692 | * But the theoretically better code actually seems to come out worse in |
693 | * practice, because it produces more all-ones bytes (which incur stuffed |
694 | * zero bytes in the final file). In any case the difference is tiny. |
695 | * |
696 | * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
697 | * If some symbols have a very small but nonzero probability, the Huffman tree |
698 | * must be adjusted to meet the code length restriction. We currently use |
699 | * the adjustment method suggested in JPEG section K.2. This method is *not* |
700 | * optimal; it may not choose the best possible limited-length code. But |
701 | * typically only very-low-frequency symbols will be given less-than-optimal |
702 | * lengths, so the code is almost optimal. Experimental comparisons against |
703 | * an optimal limited-length-code algorithm indicate that the difference is |
704 | * microscopic --- usually less than a hundredth of a percent of total size. |
705 | * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
706 | */ |
707 | |
708 | GLOBAL(void) |
709 | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
710 | { |
711 | #define MAX_CLEN 32 /* assumed maximum initial code length */ |
712 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
713 | int codesize[257]; /* codesize[k] = code length of symbol k */ |
714 | int others[257]; /* next symbol in current branch of tree */ |
715 | int c1, c2; |
716 | int p, i, j; |
717 | long v; |
718 | |
719 | /* This algorithm is explained in section K.2 of the JPEG standard */ |
720 | |
721 | MEMZERO(bits, SIZEOF(bits)); |
722 | MEMZERO(codesize, SIZEOF(codesize)); |
723 | for (i = 0; i < 257; i++) |
724 | others[i] = -1; /* init links to empty */ |
725 | |
726 | freq[256] = 1; /* make sure 256 has a nonzero count */ |
727 | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
728 | * that no real symbol is given code-value of all ones, because 256 |
729 | * will be placed last in the largest codeword category. |
730 | */ |
731 | |
732 | /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
733 | |
734 | for (;;) { |
735 | /* Find the smallest nonzero frequency, set c1 = its symbol */ |
736 | /* In case of ties, take the larger symbol number */ |
737 | c1 = -1; |
738 | v = 1000000000L; |
739 | for (i = 0; i <= 256; i++) { |
740 | if (freq[i] && freq[i] <= v) { |
741 | v = freq[i]; |
742 | c1 = i; |
743 | } |
744 | } |
745 | |
746 | /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
747 | /* In case of ties, take the larger symbol number */ |
748 | c2 = -1; |
749 | v = 1000000000L; |
750 | for (i = 0; i <= 256; i++) { |
751 | if (freq[i] && freq[i] <= v && i != c1) { |
752 | v = freq[i]; |
753 | c2 = i; |
754 | } |
755 | } |
756 | |
757 | /* Done if we've merged everything into one frequency */ |
758 | if (c2 < 0) |
759 | break; |
760 | |
761 | /* Else merge the two counts/trees */ |
762 | freq[c1] += freq[c2]; |
763 | freq[c2] = 0; |
764 | |
765 | /* Increment the codesize of everything in c1's tree branch */ |
766 | codesize[c1]++; |
767 | while (others[c1] >= 0) { |
768 | c1 = others[c1]; |
769 | codesize[c1]++; |
770 | } |
771 | |
772 | others[c1] = c2; /* chain c2 onto c1's tree branch */ |
773 | |
774 | /* Increment the codesize of everything in c2's tree branch */ |
775 | codesize[c2]++; |
776 | while (others[c2] >= 0) { |
777 | c2 = others[c2]; |
778 | codesize[c2]++; |
779 | } |
780 | } |
781 | |
782 | /* Now count the number of symbols of each code length */ |
783 | for (i = 0; i <= 256; i++) { |
784 | if (codesize[i]) { |
785 | /* The JPEG standard seems to think that this can't happen, */ |
786 | /* but I'm paranoid... */ |
787 | if (codesize[i] > MAX_CLEN) |
788 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
789 | |
790 | bits[codesize[i]]++; |
791 | } |
792 | } |
793 | |
794 | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
795 | * Huffman procedure assigned any such lengths, we must adjust the coding. |
796 | * Here is what the JPEG spec says about how this next bit works: |
797 | * Since symbols are paired for the longest Huffman code, the symbols are |
798 | * removed from this length category two at a time. The prefix for the pair |
799 | * (which is one bit shorter) is allocated to one of the pair; then, |
800 | * skipping the BITS entry for that prefix length, a code word from the next |
801 | * shortest nonzero BITS entry is converted into a prefix for two code words |
802 | * one bit longer. |
803 | */ |
804 | |
805 | for (i = MAX_CLEN; i > 16; i--) { |
806 | while (bits[i] > 0) { |
807 | j = i - 2; /* find length of new prefix to be used */ |
808 | while (bits[j] == 0) { |
809 | if (j == 0) |
810 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
811 | j--; |
812 | } |
813 | |
814 | bits[i] -= 2; /* remove two symbols */ |
815 | bits[i-1]++; /* one goes in this length */ |
816 | bits[j+1] += 2; /* two new symbols in this length */ |
817 | bits[j]--; /* symbol of this length is now a prefix */ |
818 | } |
819 | } |
820 | |
821 | /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
822 | while (bits[i] == 0) /* find largest codelength still in use */ |
823 | i--; |
824 | bits[i]--; |
825 | |
826 | /* Return final symbol counts (only for lengths 0..16) */ |
827 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
828 | |
829 | /* Return a list of the symbols sorted by code length */ |
830 | /* It's not real clear to me why we don't need to consider the codelength |
831 | * changes made above, but the JPEG spec seems to think this works. |
832 | */ |
833 | p = 0; |
834 | for (i = 1; i <= MAX_CLEN; i++) { |
835 | for (j = 0; j <= 255; j++) { |
836 | if (codesize[j] == i) { |
837 | htbl->huffval[p] = (UINT8) j; |
838 | p++; |
839 | } |
840 | } |
841 | } |
842 | |
843 | /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
844 | htbl->sent_table = FALSE; |
845 | } |
846 | |
847 | |
848 | /* |
849 | * Finish up a statistics-gathering pass and create the new Huffman tables. |
850 | */ |
851 | |
852 | METHODDEF(void) |
853 | finish_pass_gather (j_compress_ptr cinfo) |
854 | { |
855 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
856 | int ci, dctbl, actbl; |
857 | jpeg_component_info * compptr; |
858 | JHUFF_TBL **htblptr; |
859 | boolean did_dc[NUM_HUFF_TBLS]; |
860 | boolean did_ac[NUM_HUFF_TBLS]; |
861 | |
862 | /* It's important not to apply jpeg_gen_optimal_table more than once |
863 | * per table, because it clobbers the input frequency counts! |
864 | */ |
865 | MEMZERO(did_dc, SIZEOF(did_dc)); |
866 | MEMZERO(did_ac, SIZEOF(did_ac)); |
867 | |
868 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
869 | compptr = cinfo->cur_comp_info[ci]; |
870 | dctbl = compptr->dc_tbl_no; |
871 | actbl = compptr->ac_tbl_no; |
872 | if (! did_dc[dctbl]) { |
873 | htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; |
874 | if (*htblptr == NULL) |
875 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
876 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); |
877 | did_dc[dctbl] = TRUE; |
878 | } |
879 | if (! did_ac[actbl]) { |
880 | htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; |
881 | if (*htblptr == NULL) |
882 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
883 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); |
884 | did_ac[actbl] = TRUE; |
885 | } |
886 | } |
887 | } |
888 | |
889 | |
890 | #endif /* ENTROPY_OPT_SUPPORTED */ |
891 | |
892 | |
893 | /* |
894 | * Module initialization routine for Huffman entropy encoding. |
895 | */ |
896 | |
897 | GLOBAL(void) |
898 | jinit_huff_encoder (j_compress_ptr cinfo) |
899 | { |
900 | huff_entropy_ptr entropy; |
901 | int i; |
902 | |
903 | entropy = (huff_entropy_ptr) |
904 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
905 | SIZEOF(huff_entropy_encoder)); |
906 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
907 | entropy->pub.start_pass = start_pass_huff; |
908 | |
909 | /* Mark tables unallocated */ |
910 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
911 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
912 | #ifdef ENTROPY_OPT_SUPPORTED |
913 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
914 | #endif |
915 | } |
916 | } |
917 | |