1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jcphuff.c |
7 | * |
8 | * Copyright (C) 1995-1997, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains Huffman entropy encoding routines for progressive JPEG. |
13 | * |
14 | * We do not support output suspension in this module, since the library |
15 | * currently does not allow multiple-scan files to be written with output |
16 | * suspension. |
17 | */ |
18 | |
19 | #define JPEG_INTERNALS |
20 | #include "jinclude.h" |
21 | #include "jpeglib.h" |
22 | #include "jchuff.h" /* Declarations shared with jchuff.c */ |
23 | |
24 | #ifdef C_PROGRESSIVE_SUPPORTED |
25 | |
26 | /* Expanded entropy encoder object for progressive Huffman encoding. */ |
27 | |
28 | typedef struct { |
29 | struct jpeg_entropy_encoder pub; /* public fields */ |
30 | |
31 | /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
32 | boolean gather_statistics; |
33 | |
34 | /* Bit-level coding status. |
35 | * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
36 | */ |
37 | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
38 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
39 | INT32 put_buffer; /* current bit-accumulation buffer */ |
40 | int put_bits; /* # of bits now in it */ |
41 | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
42 | |
43 | /* Coding status for DC components */ |
44 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
45 | |
46 | /* Coding status for AC components */ |
47 | int ac_tbl_no; /* the table number of the single component */ |
48 | unsigned int EOBRUN; /* run length of EOBs */ |
49 | unsigned int BE; /* # of buffered correction bits before MCU */ |
50 | char * bit_buffer; /* buffer for correction bits (1 per char) */ |
51 | /* packing correction bits tightly would save some space but cost time... */ |
52 | |
53 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
54 | int next_restart_num; /* next restart number to write (0-7) */ |
55 | |
56 | /* Pointers to derived tables (these workspaces have image lifespan). |
57 | * Since any one scan codes only DC or only AC, we only need one set |
58 | * of tables, not one for DC and one for AC. |
59 | */ |
60 | c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
61 | |
62 | /* Statistics tables for optimization; again, one set is enough */ |
63 | long * count_ptrs[NUM_HUFF_TBLS]; |
64 | } phuff_entropy_encoder; |
65 | |
66 | typedef phuff_entropy_encoder * phuff_entropy_ptr; |
67 | |
68 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
69 | * buffer can hold. Larger sizes may slightly improve compression, but |
70 | * 1000 is already well into the realm of overkill. |
71 | * The minimum safe size is 64 bits. |
72 | */ |
73 | |
74 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
75 | |
76 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
77 | * We assume that int right shift is unsigned if INT32 right shift is, |
78 | * which should be safe. |
79 | */ |
80 | |
81 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
82 | #define ISHIFT_TEMPS int ishift_temp; |
83 | #define IRIGHT_SHIFT(x,shft) \ |
84 | ((ishift_temp = (x)) < 0 ? \ |
85 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
86 | (ishift_temp >> (shft))) |
87 | #else |
88 | #define ISHIFT_TEMPS |
89 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
90 | #endif |
91 | |
92 | /* Forward declarations */ |
93 | METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, |
94 | JBLOCKROW *MCU_data)); |
95 | METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, |
96 | JBLOCKROW *MCU_data)); |
97 | METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, |
98 | JBLOCKROW *MCU_data)); |
99 | METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, |
100 | JBLOCKROW *MCU_data)); |
101 | METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); |
102 | METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); |
103 | |
104 | |
105 | /* |
106 | * Initialize for a Huffman-compressed scan using progressive JPEG. |
107 | */ |
108 | |
109 | METHODDEF(void) |
110 | start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) |
111 | { |
112 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
113 | boolean is_DC_band; |
114 | int ci, tbl; |
115 | jpeg_component_info * compptr; |
116 | |
117 | entropy->cinfo = cinfo; |
118 | entropy->gather_statistics = gather_statistics; |
119 | |
120 | is_DC_band = (cinfo->Ss == 0); |
121 | |
122 | /* We assume jcmaster.c already validated the scan parameters. */ |
123 | |
124 | /* Select execution routines */ |
125 | if (cinfo->Ah == 0) { |
126 | if (is_DC_band) |
127 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
128 | else |
129 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
130 | } else { |
131 | if (is_DC_band) |
132 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
133 | else { |
134 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
135 | /* AC refinement needs a correction bit buffer */ |
136 | if (entropy->bit_buffer == NULL) |
137 | entropy->bit_buffer = (char *) |
138 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
139 | MAX_CORR_BITS * SIZEOF(char)); |
140 | } |
141 | } |
142 | if (gather_statistics) |
143 | entropy->pub.finish_pass = finish_pass_gather_phuff; |
144 | else |
145 | entropy->pub.finish_pass = finish_pass_phuff; |
146 | |
147 | /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 |
148 | * for AC coefficients. |
149 | */ |
150 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
151 | compptr = cinfo->cur_comp_info[ci]; |
152 | /* Initialize DC predictions to 0 */ |
153 | entropy->last_dc_val[ci] = 0; |
154 | /* Get table index */ |
155 | if (is_DC_band) { |
156 | if (cinfo->Ah != 0) /* DC refinement needs no table */ |
157 | continue; |
158 | tbl = compptr->dc_tbl_no; |
159 | } else { |
160 | entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; |
161 | } |
162 | if (gather_statistics) { |
163 | /* Check for invalid table index */ |
164 | /* (make_c_derived_tbl does this in the other path) */ |
165 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
166 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
167 | /* Allocate and zero the statistics tables */ |
168 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
169 | if (entropy->count_ptrs[tbl] == NULL) |
170 | entropy->count_ptrs[tbl] = (long *) |
171 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
172 | 257 * SIZEOF(long)); |
173 | MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); |
174 | } else { |
175 | /* Compute derived values for Huffman table */ |
176 | /* We may do this more than once for a table, but it's not expensive */ |
177 | jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, |
178 | & entropy->derived_tbls[tbl]); |
179 | } |
180 | } |
181 | |
182 | /* Initialize AC stuff */ |
183 | entropy->EOBRUN = 0; |
184 | entropy->BE = 0; |
185 | |
186 | /* Initialize bit buffer to empty */ |
187 | entropy->put_buffer = 0; |
188 | entropy->put_bits = 0; |
189 | |
190 | /* Initialize restart stuff */ |
191 | entropy->restarts_to_go = cinfo->restart_interval; |
192 | entropy->next_restart_num = 0; |
193 | } |
194 | |
195 | |
196 | /* Outputting bytes to the file. |
197 | * NB: these must be called only when actually outputting, |
198 | * that is, entropy->gather_statistics == FALSE. |
199 | */ |
200 | |
201 | /* Emit a byte */ |
202 | #define emit_byte(entropy,val) \ |
203 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
204 | if (--(entropy)->free_in_buffer == 0) \ |
205 | dump_buffer(entropy); } |
206 | |
207 | |
208 | LOCAL(void) |
209 | dump_buffer (phuff_entropy_ptr entropy) |
210 | /* Empty the output buffer; we do not support suspension in this module. */ |
211 | { |
212 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
213 | |
214 | if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
215 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
216 | /* After a successful buffer dump, must reset buffer pointers */ |
217 | entropy->next_output_byte = dest->next_output_byte; |
218 | entropy->free_in_buffer = dest->free_in_buffer; |
219 | } |
220 | |
221 | |
222 | /* Outputting bits to the file */ |
223 | |
224 | /* Only the right 24 bits of put_buffer are used; the valid bits are |
225 | * left-justified in this part. At most 16 bits can be passed to emit_bits |
226 | * in one call, and we never retain more than 7 bits in put_buffer |
227 | * between calls, so 24 bits are sufficient. |
228 | */ |
229 | |
230 | INLINE |
231 | LOCAL(void) |
232 | emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) |
233 | /* Emit some bits, unless we are in gather mode */ |
234 | { |
235 | /* This routine is heavily used, so it's worth coding tightly. */ |
236 | register INT32 put_buffer = (INT32) code; |
237 | register int put_bits = entropy->put_bits; |
238 | |
239 | /* if size is 0, caller used an invalid Huffman table entry */ |
240 | if (size == 0) |
241 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
242 | |
243 | if (entropy->gather_statistics) |
244 | return; /* do nothing if we're only getting stats */ |
245 | |
246 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
247 | |
248 | put_bits += size; /* new number of bits in buffer */ |
249 | |
250 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
251 | |
252 | put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ |
253 | |
254 | while (put_bits >= 8) { |
255 | int c = (int) ((put_buffer >> 16) & 0xFF); |
256 | |
257 | emit_byte(entropy, c); |
258 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
259 | emit_byte(entropy, 0); |
260 | } |
261 | put_buffer <<= 8; |
262 | put_bits -= 8; |
263 | } |
264 | |
265 | entropy->put_buffer = put_buffer; /* update variables */ |
266 | entropy->put_bits = put_bits; |
267 | } |
268 | |
269 | |
270 | LOCAL(void) |
271 | flush_bits (phuff_entropy_ptr entropy) |
272 | { |
273 | emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
274 | entropy->put_buffer = 0; /* and reset bit-buffer to empty */ |
275 | entropy->put_bits = 0; |
276 | } |
277 | |
278 | |
279 | /* |
280 | * Emit (or just count) a Huffman symbol. |
281 | */ |
282 | |
283 | INLINE |
284 | LOCAL(void) |
285 | emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) |
286 | { |
287 | if (entropy->gather_statistics) |
288 | entropy->count_ptrs[tbl_no][symbol]++; |
289 | else { |
290 | c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; |
291 | emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
292 | } |
293 | } |
294 | |
295 | |
296 | /* |
297 | * Emit bits from a correction bit buffer. |
298 | */ |
299 | |
300 | LOCAL(void) |
301 | emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, |
302 | unsigned int nbits) |
303 | { |
304 | if (entropy->gather_statistics) |
305 | return; /* no real work */ |
306 | |
307 | while (nbits > 0) { |
308 | emit_bits(entropy, (unsigned int) (*bufstart), 1); |
309 | bufstart++; |
310 | nbits--; |
311 | } |
312 | } |
313 | |
314 | |
315 | /* |
316 | * Emit any pending EOBRUN symbol. |
317 | */ |
318 | |
319 | LOCAL(void) |
320 | emit_eobrun (phuff_entropy_ptr entropy) |
321 | { |
322 | register int temp, nbits; |
323 | |
324 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
325 | temp = entropy->EOBRUN; |
326 | nbits = 0; |
327 | while ((temp >>= 1)) |
328 | nbits++; |
329 | /* safety check: shouldn't happen given limited correction-bit buffer */ |
330 | if (nbits > 14) |
331 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
332 | |
333 | emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
334 | if (nbits) |
335 | emit_bits(entropy, entropy->EOBRUN, nbits); |
336 | |
337 | entropy->EOBRUN = 0; |
338 | |
339 | /* Emit any buffered correction bits */ |
340 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
341 | entropy->BE = 0; |
342 | } |
343 | } |
344 | |
345 | |
346 | /* |
347 | * Emit a restart marker & resynchronize predictions. |
348 | */ |
349 | |
350 | LOCAL(void) |
351 | emit_restart (phuff_entropy_ptr entropy, int restart_num) |
352 | { |
353 | int ci; |
354 | |
355 | emit_eobrun(entropy); |
356 | |
357 | if (! entropy->gather_statistics) { |
358 | flush_bits(entropy); |
359 | emit_byte(entropy, 0xFF); |
360 | emit_byte(entropy, JPEG_RST0 + restart_num); |
361 | } |
362 | |
363 | if (entropy->cinfo->Ss == 0) { |
364 | /* Re-initialize DC predictions to 0 */ |
365 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
366 | entropy->last_dc_val[ci] = 0; |
367 | } else { |
368 | /* Re-initialize all AC-related fields to 0 */ |
369 | entropy->EOBRUN = 0; |
370 | entropy->BE = 0; |
371 | } |
372 | } |
373 | |
374 | |
375 | /* |
376 | * MCU encoding for DC initial scan (either spectral selection, |
377 | * or first pass of successive approximation). |
378 | */ |
379 | |
380 | METHODDEF(boolean) |
381 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
382 | { |
383 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
384 | register int temp, temp2; |
385 | register int nbits; |
386 | int blkn, ci; |
387 | int Al = cinfo->Al; |
388 | JBLOCKROW block; |
389 | jpeg_component_info * compptr; |
390 | ISHIFT_TEMPS |
391 | |
392 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
393 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
394 | |
395 | /* Emit restart marker if needed */ |
396 | if (cinfo->restart_interval) |
397 | if (entropy->restarts_to_go == 0) |
398 | emit_restart(entropy, entropy->next_restart_num); |
399 | |
400 | /* Encode the MCU data blocks */ |
401 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
402 | block = MCU_data[blkn]; |
403 | ci = cinfo->MCU_membership[blkn]; |
404 | compptr = cinfo->cur_comp_info[ci]; |
405 | |
406 | /* Compute the DC value after the required point transform by Al. |
407 | * This is simply an arithmetic right shift. |
408 | */ |
409 | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
410 | |
411 | /* DC differences are figured on the point-transformed values. */ |
412 | temp = temp2 - entropy->last_dc_val[ci]; |
413 | entropy->last_dc_val[ci] = temp2; |
414 | |
415 | /* Encode the DC coefficient difference per section G.1.2.1 */ |
416 | temp2 = temp; |
417 | if (temp < 0) { |
418 | temp = -temp; /* temp is abs value of input */ |
419 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
420 | /* This code assumes we are on a two's complement machine */ |
421 | temp2--; |
422 | } |
423 | |
424 | /* Find the number of bits needed for the magnitude of the coefficient */ |
425 | nbits = 0; |
426 | while (temp) { |
427 | nbits++; |
428 | temp >>= 1; |
429 | } |
430 | /* Check for out-of-range coefficient values. |
431 | * Since we're encoding a difference, the range limit is twice as much. |
432 | */ |
433 | if (nbits > MAX_COEF_BITS+1) |
434 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
435 | |
436 | /* Count/emit the Huffman-coded symbol for the number of bits */ |
437 | emit_symbol(entropy, compptr->dc_tbl_no, nbits); |
438 | |
439 | /* Emit that number of bits of the value, if positive, */ |
440 | /* or the complement of its magnitude, if negative. */ |
441 | if (nbits) /* emit_bits rejects calls with size 0 */ |
442 | emit_bits(entropy, (unsigned int) temp2, nbits); |
443 | } |
444 | |
445 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
446 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
447 | |
448 | /* Update restart-interval state too */ |
449 | if (cinfo->restart_interval) { |
450 | if (entropy->restarts_to_go == 0) { |
451 | entropy->restarts_to_go = cinfo->restart_interval; |
452 | entropy->next_restart_num++; |
453 | entropy->next_restart_num &= 7; |
454 | } |
455 | entropy->restarts_to_go--; |
456 | } |
457 | |
458 | return TRUE; |
459 | } |
460 | |
461 | |
462 | /* |
463 | * MCU encoding for AC initial scan (either spectral selection, |
464 | * or first pass of successive approximation). |
465 | */ |
466 | |
467 | METHODDEF(boolean) |
468 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
469 | { |
470 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
471 | register int temp, temp2; |
472 | register int nbits; |
473 | register int r, k; |
474 | int Se = cinfo->Se; |
475 | int Al = cinfo->Al; |
476 | JBLOCKROW block; |
477 | |
478 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
479 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
480 | |
481 | /* Emit restart marker if needed */ |
482 | if (cinfo->restart_interval) |
483 | if (entropy->restarts_to_go == 0) |
484 | emit_restart(entropy, entropy->next_restart_num); |
485 | |
486 | /* Encode the MCU data block */ |
487 | block = MCU_data[0]; |
488 | |
489 | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
490 | |
491 | r = 0; /* r = run length of zeros */ |
492 | |
493 | for (k = cinfo->Ss; k <= Se; k++) { |
494 | if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { |
495 | r++; |
496 | continue; |
497 | } |
498 | /* We must apply the point transform by Al. For AC coefficients this |
499 | * is an integer division with rounding towards 0. To do this portably |
500 | * in C, we shift after obtaining the absolute value; so the code is |
501 | * interwoven with finding the abs value (temp) and output bits (temp2). |
502 | */ |
503 | if (temp < 0) { |
504 | temp = -temp; /* temp is abs value of input */ |
505 | temp >>= Al; /* apply the point transform */ |
506 | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
507 | temp2 = ~temp; |
508 | } else { |
509 | temp >>= Al; /* apply the point transform */ |
510 | temp2 = temp; |
511 | } |
512 | /* Watch out for case that nonzero coef is zero after point transform */ |
513 | if (temp == 0) { |
514 | r++; |
515 | continue; |
516 | } |
517 | |
518 | /* Emit any pending EOBRUN */ |
519 | if (entropy->EOBRUN > 0) |
520 | emit_eobrun(entropy); |
521 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
522 | while (r > 15) { |
523 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
524 | r -= 16; |
525 | } |
526 | |
527 | /* Find the number of bits needed for the magnitude of the coefficient */ |
528 | nbits = 1; /* there must be at least one 1 bit */ |
529 | while ((temp >>= 1)) |
530 | nbits++; |
531 | /* Check for out-of-range coefficient values */ |
532 | if (nbits > MAX_COEF_BITS) |
533 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
534 | |
535 | /* Count/emit Huffman symbol for run length / number of bits */ |
536 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
537 | |
538 | /* Emit that number of bits of the value, if positive, */ |
539 | /* or the complement of its magnitude, if negative. */ |
540 | emit_bits(entropy, (unsigned int) temp2, nbits); |
541 | |
542 | r = 0; /* reset zero run length */ |
543 | } |
544 | |
545 | if (r > 0) { /* If there are trailing zeroes, */ |
546 | entropy->EOBRUN++; /* count an EOB */ |
547 | if (entropy->EOBRUN == 0x7FFF) |
548 | emit_eobrun(entropy); /* force it out to avoid overflow */ |
549 | } |
550 | |
551 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
552 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
553 | |
554 | /* Update restart-interval state too */ |
555 | if (cinfo->restart_interval) { |
556 | if (entropy->restarts_to_go == 0) { |
557 | entropy->restarts_to_go = cinfo->restart_interval; |
558 | entropy->next_restart_num++; |
559 | entropy->next_restart_num &= 7; |
560 | } |
561 | entropy->restarts_to_go--; |
562 | } |
563 | |
564 | return TRUE; |
565 | } |
566 | |
567 | |
568 | /* |
569 | * MCU encoding for DC successive approximation refinement scan. |
570 | * Note: we assume such scans can be multi-component, although the spec |
571 | * is not very clear on the point. |
572 | */ |
573 | |
574 | METHODDEF(boolean) |
575 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
576 | { |
577 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
578 | register int temp; |
579 | int blkn; |
580 | int Al = cinfo->Al; |
581 | JBLOCKROW block; |
582 | |
583 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
584 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
585 | |
586 | /* Emit restart marker if needed */ |
587 | if (cinfo->restart_interval) |
588 | if (entropy->restarts_to_go == 0) |
589 | emit_restart(entropy, entropy->next_restart_num); |
590 | |
591 | /* Encode the MCU data blocks */ |
592 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
593 | block = MCU_data[blkn]; |
594 | |
595 | /* We simply emit the Al'th bit of the DC coefficient value. */ |
596 | temp = (*block)[0]; |
597 | emit_bits(entropy, (unsigned int) (temp >> Al), 1); |
598 | } |
599 | |
600 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
601 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
602 | |
603 | /* Update restart-interval state too */ |
604 | if (cinfo->restart_interval) { |
605 | if (entropy->restarts_to_go == 0) { |
606 | entropy->restarts_to_go = cinfo->restart_interval; |
607 | entropy->next_restart_num++; |
608 | entropy->next_restart_num &= 7; |
609 | } |
610 | entropy->restarts_to_go--; |
611 | } |
612 | |
613 | return TRUE; |
614 | } |
615 | |
616 | |
617 | /* |
618 | * MCU encoding for AC successive approximation refinement scan. |
619 | */ |
620 | |
621 | METHODDEF(boolean) |
622 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
623 | { |
624 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
625 | register int temp; |
626 | register int r, k; |
627 | int EOB; |
628 | char *BR_buffer; |
629 | unsigned int BR; |
630 | int Se = cinfo->Se; |
631 | int Al = cinfo->Al; |
632 | JBLOCKROW block; |
633 | int absvalues[DCTSIZE2]; |
634 | |
635 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
636 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
637 | |
638 | /* Emit restart marker if needed */ |
639 | if (cinfo->restart_interval) |
640 | if (entropy->restarts_to_go == 0) |
641 | emit_restart(entropy, entropy->next_restart_num); |
642 | |
643 | /* Encode the MCU data block */ |
644 | block = MCU_data[0]; |
645 | |
646 | /* It is convenient to make a pre-pass to determine the transformed |
647 | * coefficients' absolute values and the EOB position. |
648 | */ |
649 | EOB = 0; |
650 | for (k = cinfo->Ss; k <= Se; k++) { |
651 | temp = (*block)[jpeg_natural_order[k]]; |
652 | /* We must apply the point transform by Al. For AC coefficients this |
653 | * is an integer division with rounding towards 0. To do this portably |
654 | * in C, we shift after obtaining the absolute value. |
655 | */ |
656 | if (temp < 0) |
657 | temp = -temp; /* temp is abs value of input */ |
658 | temp >>= Al; /* apply the point transform */ |
659 | absvalues[k] = temp; /* save abs value for main pass */ |
660 | if (temp == 1) |
661 | EOB = k; /* EOB = index of last newly-nonzero coef */ |
662 | } |
663 | |
664 | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
665 | |
666 | r = 0; /* r = run length of zeros */ |
667 | BR = 0; /* BR = count of buffered bits added now */ |
668 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
669 | |
670 | for (k = cinfo->Ss; k <= Se; k++) { |
671 | if ((temp = absvalues[k]) == 0) { |
672 | r++; |
673 | continue; |
674 | } |
675 | |
676 | /* Emit any required ZRLs, but not if they can be folded into EOB */ |
677 | while (r > 15 && k <= EOB) { |
678 | /* emit any pending EOBRUN and the BE correction bits */ |
679 | emit_eobrun(entropy); |
680 | /* Emit ZRL */ |
681 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
682 | r -= 16; |
683 | /* Emit buffered correction bits that must be associated with ZRL */ |
684 | emit_buffered_bits(entropy, BR_buffer, BR); |
685 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
686 | BR = 0; |
687 | } |
688 | |
689 | /* If the coef was previously nonzero, it only needs a correction bit. |
690 | * NOTE: a straight translation of the spec's figure G.7 would suggest |
691 | * that we also need to test r > 15. But if r > 15, we can only get here |
692 | * if k > EOB, which implies that this coefficient is not 1. |
693 | */ |
694 | if (temp > 1) { |
695 | /* The correction bit is the next bit of the absolute value. */ |
696 | BR_buffer[BR++] = (char) (temp & 1); |
697 | continue; |
698 | } |
699 | |
700 | /* Emit any pending EOBRUN and the BE correction bits */ |
701 | emit_eobrun(entropy); |
702 | |
703 | /* Count/emit Huffman symbol for run length / number of bits */ |
704 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
705 | |
706 | /* Emit output bit for newly-nonzero coef */ |
707 | temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; |
708 | emit_bits(entropy, (unsigned int) temp, 1); |
709 | |
710 | /* Emit buffered correction bits that must be associated with this code */ |
711 | emit_buffered_bits(entropy, BR_buffer, BR); |
712 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
713 | BR = 0; |
714 | r = 0; /* reset zero run length */ |
715 | } |
716 | |
717 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
718 | entropy->EOBRUN++; /* count an EOB */ |
719 | entropy->BE += BR; /* concat my correction bits to older ones */ |
720 | /* We force out the EOB if we risk either: |
721 | * 1. overflow of the EOB counter; |
722 | * 2. overflow of the correction bit buffer during the next MCU. |
723 | */ |
724 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
725 | emit_eobrun(entropy); |
726 | } |
727 | |
728 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
729 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
730 | |
731 | /* Update restart-interval state too */ |
732 | if (cinfo->restart_interval) { |
733 | if (entropy->restarts_to_go == 0) { |
734 | entropy->restarts_to_go = cinfo->restart_interval; |
735 | entropy->next_restart_num++; |
736 | entropy->next_restart_num &= 7; |
737 | } |
738 | entropy->restarts_to_go--; |
739 | } |
740 | |
741 | return TRUE; |
742 | } |
743 | |
744 | |
745 | /* |
746 | * Finish up at the end of a Huffman-compressed progressive scan. |
747 | */ |
748 | |
749 | METHODDEF(void) |
750 | finish_pass_phuff (j_compress_ptr cinfo) |
751 | { |
752 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
753 | |
754 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
755 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
756 | |
757 | /* Flush out any buffered data */ |
758 | emit_eobrun(entropy); |
759 | flush_bits(entropy); |
760 | |
761 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
762 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
763 | } |
764 | |
765 | |
766 | /* |
767 | * Finish up a statistics-gathering pass and create the new Huffman tables. |
768 | */ |
769 | |
770 | METHODDEF(void) |
771 | finish_pass_gather_phuff (j_compress_ptr cinfo) |
772 | { |
773 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
774 | boolean is_DC_band; |
775 | int ci, tbl; |
776 | jpeg_component_info * compptr; |
777 | JHUFF_TBL **htblptr; |
778 | boolean did[NUM_HUFF_TBLS]; |
779 | |
780 | /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
781 | emit_eobrun(entropy); |
782 | |
783 | is_DC_band = (cinfo->Ss == 0); |
784 | |
785 | /* It's important not to apply jpeg_gen_optimal_table more than once |
786 | * per table, because it clobbers the input frequency counts! |
787 | */ |
788 | MEMZERO(did, SIZEOF(did)); |
789 | |
790 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
791 | compptr = cinfo->cur_comp_info[ci]; |
792 | if (is_DC_band) { |
793 | if (cinfo->Ah != 0) /* DC refinement needs no table */ |
794 | continue; |
795 | tbl = compptr->dc_tbl_no; |
796 | } else { |
797 | tbl = compptr->ac_tbl_no; |
798 | } |
799 | if (! did[tbl]) { |
800 | if (is_DC_band) |
801 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
802 | else |
803 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
804 | if (*htblptr == NULL) |
805 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
806 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); |
807 | did[tbl] = TRUE; |
808 | } |
809 | } |
810 | } |
811 | |
812 | |
813 | /* |
814 | * Module initialization routine for progressive Huffman entropy encoding. |
815 | */ |
816 | |
817 | GLOBAL(void) |
818 | jinit_phuff_encoder (j_compress_ptr cinfo) |
819 | { |
820 | phuff_entropy_ptr entropy; |
821 | int i; |
822 | |
823 | entropy = (phuff_entropy_ptr) |
824 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
825 | SIZEOF(phuff_entropy_encoder)); |
826 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
827 | entropy->pub.start_pass = start_pass_phuff; |
828 | |
829 | /* Mark tables unallocated */ |
830 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
831 | entropy->derived_tbls[i] = NULL; |
832 | entropy->count_ptrs[i] = NULL; |
833 | } |
834 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
835 | } |
836 | |
837 | #endif /* C_PROGRESSIVE_SUPPORTED */ |
838 | |