1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jcsample.c |
7 | * |
8 | * Copyright (C) 1991-1996, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains downsampling routines. |
13 | * |
14 | * Downsampling input data is counted in "row groups". A row group |
15 | * is defined to be max_v_samp_factor pixel rows of each component, |
16 | * from which the downsampler produces v_samp_factor sample rows. |
17 | * A single row group is processed in each call to the downsampler module. |
18 | * |
19 | * The downsampler is responsible for edge-expansion of its output data |
20 | * to fill an integral number of DCT blocks horizontally. The source buffer |
21 | * may be modified if it is helpful for this purpose (the source buffer is |
22 | * allocated wide enough to correspond to the desired output width). |
23 | * The caller (the prep controller) is responsible for vertical padding. |
24 | * |
25 | * The downsampler may request "context rows" by setting need_context_rows |
26 | * during startup. In this case, the input arrays will contain at least |
27 | * one row group's worth of pixels above and below the passed-in data; |
28 | * the caller will create dummy rows at image top and bottom by replicating |
29 | * the first or last real pixel row. |
30 | * |
31 | * An excellent reference for image resampling is |
32 | * Digital Image Warping, George Wolberg, 1990. |
33 | * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
34 | * |
35 | * The downsampling algorithm used here is a simple average of the source |
36 | * pixels covered by the output pixel. The hi-falutin sampling literature |
37 | * refers to this as a "box filter". In general the characteristics of a box |
38 | * filter are not very good, but for the specific cases we normally use (1:1 |
39 | * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
40 | * nearly so bad. If you intend to use other sampling ratios, you'd be well |
41 | * advised to improve this code. |
42 | * |
43 | * A simple input-smoothing capability is provided. This is mainly intended |
44 | * for cleaning up color-dithered GIF input files (if you find it inadequate, |
45 | * we suggest using an external filtering program such as pnmconvol). When |
46 | * enabled, each input pixel P is replaced by a weighted sum of itself and its |
47 | * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
48 | * where SF = (smoothing_factor / 1024). |
49 | * Currently, smoothing is only supported for 2h2v sampling factors. |
50 | */ |
51 | |
52 | #define JPEG_INTERNALS |
53 | #include "jinclude.h" |
54 | #include "jpeglib.h" |
55 | |
56 | |
57 | /* Pointer to routine to downsample a single component */ |
58 | typedef JMETHOD(void, downsample1_ptr, |
59 | (j_compress_ptr cinfo, jpeg_component_info * compptr, |
60 | JSAMPARRAY input_data, JSAMPARRAY output_data)); |
61 | |
62 | /* Private subobject */ |
63 | |
64 | typedef struct { |
65 | struct jpeg_downsampler pub; /* public fields */ |
66 | |
67 | /* Downsampling method pointers, one per component */ |
68 | downsample1_ptr methods[MAX_COMPONENTS]; |
69 | } my_downsampler; |
70 | |
71 | typedef my_downsampler * my_downsample_ptr; |
72 | |
73 | |
74 | /* |
75 | * Initialize for a downsampling pass. |
76 | */ |
77 | |
78 | METHODDEF(void) |
79 | start_pass_downsample (j_compress_ptr cinfo) |
80 | { |
81 | /* no work for now */ |
82 | } |
83 | |
84 | |
85 | /* |
86 | * Expand a component horizontally from width input_cols to width output_cols, |
87 | * by duplicating the rightmost samples. |
88 | */ |
89 | |
90 | LOCAL(void) |
91 | expand_right_edge (JSAMPARRAY image_data, int num_rows, |
92 | JDIMENSION input_cols, JDIMENSION output_cols) |
93 | { |
94 | register JSAMPROW ptr; |
95 | register JSAMPLE pixval; |
96 | register int count; |
97 | int row; |
98 | int numcols = (int) (output_cols - input_cols); |
99 | |
100 | if (numcols > 0) { |
101 | for (row = 0; row < num_rows; row++) { |
102 | ptr = image_data[row] + input_cols; |
103 | pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
104 | for (count = numcols; count > 0; count--) |
105 | *ptr++ = pixval; |
106 | } |
107 | } |
108 | } |
109 | |
110 | |
111 | /* |
112 | * Do downsampling for a whole row group (all components). |
113 | * |
114 | * In this version we simply downsample each component independently. |
115 | */ |
116 | |
117 | METHODDEF(void) |
118 | sep_downsample (j_compress_ptr cinfo, |
119 | JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
120 | JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
121 | { |
122 | my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
123 | int ci; |
124 | jpeg_component_info * compptr; |
125 | JSAMPARRAY in_ptr, out_ptr; |
126 | |
127 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
128 | ci++, compptr++) { |
129 | in_ptr = input_buf[ci] + in_row_index; |
130 | out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); |
131 | (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
132 | } |
133 | } |
134 | |
135 | |
136 | /* |
137 | * Downsample pixel values of a single component. |
138 | * One row group is processed per call. |
139 | * This version handles arbitrary integral sampling ratios, without smoothing. |
140 | * Note that this version is not actually used for customary sampling ratios. |
141 | */ |
142 | |
143 | METHODDEF(void) |
144 | int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
145 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
146 | { |
147 | int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
148 | JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
149 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
150 | JSAMPROW inptr, outptr; |
151 | INT32 outvalue; |
152 | |
153 | h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; |
154 | v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; |
155 | numpix = h_expand * v_expand; |
156 | numpix2 = numpix/2; |
157 | |
158 | /* Expand input data enough to let all the output samples be generated |
159 | * by the standard loop. Special-casing padded output would be more |
160 | * efficient. |
161 | */ |
162 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
163 | cinfo->image_width, output_cols * h_expand); |
164 | |
165 | inrow = 0; |
166 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
167 | outptr = output_data[outrow]; |
168 | for (outcol = 0, outcol_h = 0; outcol < output_cols; |
169 | outcol++, outcol_h += h_expand) { |
170 | outvalue = 0; |
171 | for (v = 0; v < v_expand; v++) { |
172 | inptr = input_data[inrow+v] + outcol_h; |
173 | for (h = 0; h < h_expand; h++) { |
174 | outvalue += (INT32) GETJSAMPLE(*inptr++); |
175 | } |
176 | } |
177 | *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
178 | } |
179 | inrow += v_expand; |
180 | } |
181 | } |
182 | |
183 | |
184 | /* |
185 | * Downsample pixel values of a single component. |
186 | * This version handles the special case of a full-size component, |
187 | * without smoothing. |
188 | */ |
189 | |
190 | METHODDEF(void) |
191 | fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
192 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
193 | { |
194 | /* Copy the data */ |
195 | jcopy_sample_rows(input_data, 0, output_data, 0, |
196 | cinfo->max_v_samp_factor, cinfo->image_width); |
197 | /* Edge-expand */ |
198 | expand_right_edge(output_data, cinfo->max_v_samp_factor, |
199 | cinfo->image_width, compptr->width_in_blocks * DCTSIZE); |
200 | } |
201 | |
202 | |
203 | /* |
204 | * Downsample pixel values of a single component. |
205 | * This version handles the common case of 2:1 horizontal and 1:1 vertical, |
206 | * without smoothing. |
207 | * |
208 | * A note about the "bias" calculations: when rounding fractional values to |
209 | * integer, we do not want to always round 0.5 up to the next integer. |
210 | * If we did that, we'd introduce a noticeable bias towards larger values. |
211 | * Instead, this code is arranged so that 0.5 will be rounded up or down at |
212 | * alternate pixel locations (a simple ordered dither pattern). |
213 | */ |
214 | |
215 | METHODDEF(void) |
216 | h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
217 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
218 | { |
219 | int outrow; |
220 | JDIMENSION outcol; |
221 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
222 | register JSAMPROW inptr, outptr; |
223 | register int bias; |
224 | |
225 | /* Expand input data enough to let all the output samples be generated |
226 | * by the standard loop. Special-casing padded output would be more |
227 | * efficient. |
228 | */ |
229 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
230 | cinfo->image_width, output_cols * 2); |
231 | |
232 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
233 | outptr = output_data[outrow]; |
234 | inptr = input_data[outrow]; |
235 | bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
236 | for (outcol = 0; outcol < output_cols; outcol++) { |
237 | *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
238 | + bias) >> 1); |
239 | bias ^= 1; /* 0=>1, 1=>0 */ |
240 | inptr += 2; |
241 | } |
242 | } |
243 | } |
244 | |
245 | |
246 | /* |
247 | * Downsample pixel values of a single component. |
248 | * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
249 | * without smoothing. |
250 | */ |
251 | |
252 | METHODDEF(void) |
253 | h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
254 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
255 | { |
256 | int inrow, outrow; |
257 | JDIMENSION outcol; |
258 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
259 | register JSAMPROW inptr0, inptr1, outptr; |
260 | register int bias; |
261 | |
262 | /* Expand input data enough to let all the output samples be generated |
263 | * by the standard loop. Special-casing padded output would be more |
264 | * efficient. |
265 | */ |
266 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
267 | cinfo->image_width, output_cols * 2); |
268 | |
269 | inrow = 0; |
270 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
271 | outptr = output_data[outrow]; |
272 | inptr0 = input_data[inrow]; |
273 | inptr1 = input_data[inrow+1]; |
274 | bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
275 | for (outcol = 0; outcol < output_cols; outcol++) { |
276 | *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
277 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
278 | + bias) >> 2); |
279 | bias ^= 3; /* 1=>2, 2=>1 */ |
280 | inptr0 += 2; inptr1 += 2; |
281 | } |
282 | inrow += 2; |
283 | } |
284 | } |
285 | |
286 | |
287 | #ifdef INPUT_SMOOTHING_SUPPORTED |
288 | |
289 | /* |
290 | * Downsample pixel values of a single component. |
291 | * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
292 | * with smoothing. One row of context is required. |
293 | */ |
294 | |
295 | METHODDEF(void) |
296 | h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
297 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
298 | { |
299 | int inrow, outrow; |
300 | JDIMENSION colctr; |
301 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
302 | register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
303 | INT32 membersum, neighsum, memberscale, neighscale; |
304 | |
305 | /* Expand input data enough to let all the output samples be generated |
306 | * by the standard loop. Special-casing padded output would be more |
307 | * efficient. |
308 | */ |
309 | expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
310 | cinfo->image_width, output_cols * 2); |
311 | |
312 | /* We don't bother to form the individual "smoothed" input pixel values; |
313 | * we can directly compute the output which is the average of the four |
314 | * smoothed values. Each of the four member pixels contributes a fraction |
315 | * (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
316 | * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
317 | * output. The four corner-adjacent neighbor pixels contribute a fraction |
318 | * SF to just one smoothed pixel, or SF/4 to the final output; while the |
319 | * eight edge-adjacent neighbors contribute SF to each of two smoothed |
320 | * pixels, or SF/2 overall. In order to use integer arithmetic, these |
321 | * factors are scaled by 2^16 = 65536. |
322 | * Also recall that SF = smoothing_factor / 1024. |
323 | */ |
324 | |
325 | memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
326 | neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
327 | |
328 | inrow = 0; |
329 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
330 | outptr = output_data[outrow]; |
331 | inptr0 = input_data[inrow]; |
332 | inptr1 = input_data[inrow+1]; |
333 | above_ptr = input_data[inrow-1]; |
334 | below_ptr = input_data[inrow+2]; |
335 | |
336 | /* Special case for first column: pretend column -1 is same as column 0 */ |
337 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
338 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
339 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
340 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
341 | GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
342 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
343 | neighsum += neighsum; |
344 | neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
345 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
346 | membersum = membersum * memberscale + neighsum * neighscale; |
347 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
348 | inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
349 | |
350 | for (colctr = output_cols - 2; colctr > 0; colctr--) { |
351 | /* sum of pixels directly mapped to this output element */ |
352 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
353 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
354 | /* sum of edge-neighbor pixels */ |
355 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
356 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
357 | GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
358 | GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
359 | /* The edge-neighbors count twice as much as corner-neighbors */ |
360 | neighsum += neighsum; |
361 | /* Add in the corner-neighbors */ |
362 | neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
363 | GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
364 | /* form final output scaled up by 2^16 */ |
365 | membersum = membersum * memberscale + neighsum * neighscale; |
366 | /* round, descale and output it */ |
367 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
368 | inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
369 | } |
370 | |
371 | /* Special case for last column */ |
372 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
373 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
374 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
375 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
376 | GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
377 | GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
378 | neighsum += neighsum; |
379 | neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
380 | GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
381 | membersum = membersum * memberscale + neighsum * neighscale; |
382 | *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
383 | |
384 | inrow += 2; |
385 | } |
386 | } |
387 | |
388 | |
389 | /* |
390 | * Downsample pixel values of a single component. |
391 | * This version handles the special case of a full-size component, |
392 | * with smoothing. One row of context is required. |
393 | */ |
394 | |
395 | METHODDEF(void) |
396 | fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
397 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
398 | { |
399 | int outrow; |
400 | JDIMENSION colctr; |
401 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
402 | register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
403 | INT32 membersum, neighsum, memberscale, neighscale; |
404 | int colsum, lastcolsum, nextcolsum; |
405 | |
406 | /* Expand input data enough to let all the output samples be generated |
407 | * by the standard loop. Special-casing padded output would be more |
408 | * efficient. |
409 | */ |
410 | expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
411 | cinfo->image_width, output_cols); |
412 | |
413 | /* Each of the eight neighbor pixels contributes a fraction SF to the |
414 | * smoothed pixel, while the main pixel contributes (1-8*SF). In order |
415 | * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
416 | * Also recall that SF = smoothing_factor / 1024. |
417 | */ |
418 | |
419 | memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
420 | neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
421 | |
422 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
423 | outptr = output_data[outrow]; |
424 | inptr = input_data[outrow]; |
425 | above_ptr = input_data[outrow-1]; |
426 | below_ptr = input_data[outrow+1]; |
427 | |
428 | /* Special case for first column */ |
429 | colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
430 | GETJSAMPLE(*inptr); |
431 | membersum = GETJSAMPLE(*inptr++); |
432 | nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
433 | GETJSAMPLE(*inptr); |
434 | neighsum = colsum + (colsum - membersum) + nextcolsum; |
435 | membersum = membersum * memberscale + neighsum * neighscale; |
436 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
437 | lastcolsum = colsum; colsum = nextcolsum; |
438 | |
439 | for (colctr = output_cols - 2; colctr > 0; colctr--) { |
440 | membersum = GETJSAMPLE(*inptr++); |
441 | above_ptr++; below_ptr++; |
442 | nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
443 | GETJSAMPLE(*inptr); |
444 | neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
445 | membersum = membersum * memberscale + neighsum * neighscale; |
446 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
447 | lastcolsum = colsum; colsum = nextcolsum; |
448 | } |
449 | |
450 | /* Special case for last column */ |
451 | membersum = GETJSAMPLE(*inptr); |
452 | neighsum = lastcolsum + (colsum - membersum) + colsum; |
453 | membersum = membersum * memberscale + neighsum * neighscale; |
454 | *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
455 | |
456 | } |
457 | } |
458 | |
459 | #endif /* INPUT_SMOOTHING_SUPPORTED */ |
460 | |
461 | |
462 | /* |
463 | * Module initialization routine for downsampling. |
464 | * Note that we must select a routine for each component. |
465 | */ |
466 | |
467 | GLOBAL(void) |
468 | jinit_downsampler (j_compress_ptr cinfo) |
469 | { |
470 | my_downsample_ptr downsample; |
471 | int ci; |
472 | jpeg_component_info * compptr; |
473 | boolean smoothok = TRUE; |
474 | |
475 | downsample = (my_downsample_ptr) |
476 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
477 | SIZEOF(my_downsampler)); |
478 | cinfo->downsample = (struct jpeg_downsampler *) downsample; |
479 | downsample->pub.start_pass = start_pass_downsample; |
480 | downsample->pub.downsample = sep_downsample; |
481 | downsample->pub.need_context_rows = FALSE; |
482 | |
483 | if (cinfo->CCIR601_sampling) |
484 | ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
485 | |
486 | /* Verify we can handle the sampling factors, and set up method pointers */ |
487 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
488 | ci++, compptr++) { |
489 | if (compptr->h_samp_factor == cinfo->max_h_samp_factor && |
490 | compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
491 | #ifdef INPUT_SMOOTHING_SUPPORTED |
492 | if (cinfo->smoothing_factor) { |
493 | downsample->methods[ci] = fullsize_smooth_downsample; |
494 | downsample->pub.need_context_rows = TRUE; |
495 | } else |
496 | #endif |
497 | downsample->methods[ci] = fullsize_downsample; |
498 | } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
499 | compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
500 | smoothok = FALSE; |
501 | downsample->methods[ci] = h2v1_downsample; |
502 | } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
503 | compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { |
504 | #ifdef INPUT_SMOOTHING_SUPPORTED |
505 | if (cinfo->smoothing_factor) { |
506 | downsample->methods[ci] = h2v2_smooth_downsample; |
507 | downsample->pub.need_context_rows = TRUE; |
508 | } else |
509 | #endif |
510 | downsample->methods[ci] = h2v2_downsample; |
511 | } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && |
512 | (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { |
513 | smoothok = FALSE; |
514 | downsample->methods[ci] = int_downsample; |
515 | } else |
516 | ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
517 | } |
518 | |
519 | #ifdef INPUT_SMOOTHING_SUPPORTED |
520 | if (cinfo->smoothing_factor && !smoothok) |
521 | TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
522 | #endif |
523 | } |
524 | |