1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jddctmgr.c |
7 | * |
8 | * Copyright (C) 1994-1996, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains the inverse-DCT management logic. |
13 | * This code selects a particular IDCT implementation to be used, |
14 | * and it performs related housekeeping chores. No code in this file |
15 | * is executed per IDCT step, only during output pass setup. |
16 | * |
17 | * Note that the IDCT routines are responsible for performing coefficient |
18 | * dequantization as well as the IDCT proper. This module sets up the |
19 | * dequantization multiplier table needed by the IDCT routine. |
20 | */ |
21 | |
22 | #define JPEG_INTERNALS |
23 | #include "jinclude.h" |
24 | #include "jpeglib.h" |
25 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
26 | |
27 | |
28 | /* |
29 | * The decompressor input side (jdinput.c) saves away the appropriate |
30 | * quantization table for each component at the start of the first scan |
31 | * involving that component. (This is necessary in order to correctly |
32 | * decode files that reuse Q-table slots.) |
33 | * When we are ready to make an output pass, the saved Q-table is converted |
34 | * to a multiplier table that will actually be used by the IDCT routine. |
35 | * The multiplier table contents are IDCT-method-dependent. To support |
36 | * application changes in IDCT method between scans, we can remake the |
37 | * multiplier tables if necessary. |
38 | * In buffered-image mode, the first output pass may occur before any data |
39 | * has been seen for some components, and thus before their Q-tables have |
40 | * been saved away. To handle this case, multiplier tables are preset |
41 | * to zeroes; the result of the IDCT will be a neutral gray level. |
42 | */ |
43 | |
44 | |
45 | /* Private subobject for this module */ |
46 | |
47 | typedef struct { |
48 | struct jpeg_inverse_dct pub; /* public fields */ |
49 | |
50 | /* This array contains the IDCT method code that each multiplier table |
51 | * is currently set up for, or -1 if it's not yet set up. |
52 | * The actual multiplier tables are pointed to by dct_table in the |
53 | * per-component comp_info structures. |
54 | */ |
55 | int cur_method[MAX_COMPONENTS]; |
56 | } my_idct_controller; |
57 | |
58 | typedef my_idct_controller * my_idct_ptr; |
59 | |
60 | |
61 | /* Allocated multiplier tables: big enough for any supported variant */ |
62 | |
63 | typedef union { |
64 | ISLOW_MULT_TYPE islow_array[DCTSIZE2]; |
65 | #ifdef DCT_IFAST_SUPPORTED |
66 | IFAST_MULT_TYPE ifast_array[DCTSIZE2]; |
67 | #endif |
68 | #ifdef DCT_FLOAT_SUPPORTED |
69 | FLOAT_MULT_TYPE float_array[DCTSIZE2]; |
70 | #endif |
71 | } multiplier_table; |
72 | |
73 | |
74 | /* The current scaled-IDCT routines require ISLOW-style multiplier tables, |
75 | * so be sure to compile that code if either ISLOW or SCALING is requested. |
76 | */ |
77 | #ifdef DCT_ISLOW_SUPPORTED |
78 | #define PROVIDE_ISLOW_TABLES |
79 | #else |
80 | #ifdef IDCT_SCALING_SUPPORTED |
81 | #define PROVIDE_ISLOW_TABLES |
82 | #endif |
83 | #endif |
84 | |
85 | |
86 | /* |
87 | * Prepare for an output pass. |
88 | * Here we select the proper IDCT routine for each component and build |
89 | * a matching multiplier table. |
90 | */ |
91 | |
92 | METHODDEF(void) |
93 | start_pass (j_decompress_ptr cinfo) |
94 | { |
95 | my_idct_ptr idct = (my_idct_ptr) cinfo->idct; |
96 | int ci, i; |
97 | jpeg_component_info *compptr; |
98 | int method = 0; |
99 | inverse_DCT_method_ptr method_ptr = NULL; |
100 | JQUANT_TBL * qtbl; |
101 | |
102 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
103 | ci++, compptr++) { |
104 | /* Select the proper IDCT routine for this component's scaling */ |
105 | switch (compptr->DCT_scaled_size) { |
106 | #ifdef IDCT_SCALING_SUPPORTED |
107 | case 1: |
108 | method_ptr = jpeg_idct_1x1; |
109 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
110 | break; |
111 | case 2: |
112 | method_ptr = jpeg_idct_2x2; |
113 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
114 | break; |
115 | case 4: |
116 | method_ptr = jpeg_idct_4x4; |
117 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
118 | break; |
119 | #endif |
120 | case DCTSIZE: |
121 | switch (cinfo->dct_method) { |
122 | #ifdef DCT_ISLOW_SUPPORTED |
123 | case JDCT_ISLOW: |
124 | method_ptr = jpeg_idct_islow; |
125 | method = JDCT_ISLOW; |
126 | break; |
127 | #endif |
128 | #ifdef DCT_IFAST_SUPPORTED |
129 | case JDCT_IFAST: |
130 | method_ptr = jpeg_idct_ifast; |
131 | method = JDCT_IFAST; |
132 | break; |
133 | #endif |
134 | #ifdef DCT_FLOAT_SUPPORTED |
135 | case JDCT_FLOAT: |
136 | method_ptr = jpeg_idct_float; |
137 | method = JDCT_FLOAT; |
138 | break; |
139 | #endif |
140 | default: |
141 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
142 | break; |
143 | } |
144 | break; |
145 | default: |
146 | ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); |
147 | break; |
148 | } |
149 | idct->pub.inverse_DCT[ci] = method_ptr; |
150 | /* Create multiplier table from quant table. |
151 | * However, we can skip this if the component is uninteresting |
152 | * or if we already built the table. Also, if no quant table |
153 | * has yet been saved for the component, we leave the |
154 | * multiplier table all-zero; we'll be reading zeroes from the |
155 | * coefficient controller's buffer anyway. |
156 | */ |
157 | if (! compptr->component_needed || idct->cur_method[ci] == method) |
158 | continue; |
159 | qtbl = compptr->quant_table; |
160 | if (qtbl == NULL) /* happens if no data yet for component */ |
161 | continue; |
162 | idct->cur_method[ci] = method; |
163 | switch (method) { |
164 | #ifdef PROVIDE_ISLOW_TABLES |
165 | case JDCT_ISLOW: |
166 | { |
167 | /* For LL&M IDCT method, multipliers are equal to raw quantization |
168 | * coefficients, but are stored as ints to ensure access efficiency. |
169 | */ |
170 | ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; |
171 | for (i = 0; i < DCTSIZE2; i++) { |
172 | ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; |
173 | } |
174 | } |
175 | break; |
176 | #endif |
177 | #ifdef DCT_IFAST_SUPPORTED |
178 | case JDCT_IFAST: |
179 | { |
180 | /* For AA&N IDCT method, multipliers are equal to quantization |
181 | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
182 | * scalefactor[0] = 1 |
183 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
184 | * For integer operation, the multiplier table is to be scaled by |
185 | * IFAST_SCALE_BITS. |
186 | */ |
187 | IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; |
188 | #define CONST_BITS 14 |
189 | static const INT16 aanscales[DCTSIZE2] = { |
190 | /* precomputed values scaled up by 14 bits */ |
191 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
192 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
193 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
194 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
195 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
196 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
197 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
198 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
199 | }; |
200 | SHIFT_TEMPS |
201 | |
202 | for (i = 0; i < DCTSIZE2; i++) { |
203 | ifmtbl[i] = (IFAST_MULT_TYPE) |
204 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
205 | (INT32) aanscales[i]), |
206 | CONST_BITS-IFAST_SCALE_BITS); |
207 | } |
208 | } |
209 | break; |
210 | #endif |
211 | #ifdef DCT_FLOAT_SUPPORTED |
212 | case JDCT_FLOAT: |
213 | { |
214 | /* For float AA&N IDCT method, multipliers are equal to quantization |
215 | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
216 | * scalefactor[0] = 1 |
217 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
218 | */ |
219 | FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; |
220 | int row, col; |
221 | static const double aanscalefactor[DCTSIZE] = { |
222 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
223 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
224 | }; |
225 | |
226 | i = 0; |
227 | for (row = 0; row < DCTSIZE; row++) { |
228 | for (col = 0; col < DCTSIZE; col++) { |
229 | fmtbl[i] = (FLOAT_MULT_TYPE) |
230 | ((double) qtbl->quantval[i] * |
231 | aanscalefactor[row] * aanscalefactor[col]); |
232 | i++; |
233 | } |
234 | } |
235 | } |
236 | break; |
237 | #endif |
238 | default: |
239 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
240 | break; |
241 | } |
242 | } |
243 | } |
244 | |
245 | |
246 | /* |
247 | * Initialize IDCT manager. |
248 | */ |
249 | |
250 | GLOBAL(void) |
251 | jinit_inverse_dct (j_decompress_ptr cinfo) |
252 | { |
253 | my_idct_ptr idct; |
254 | int ci; |
255 | jpeg_component_info *compptr; |
256 | |
257 | idct = (my_idct_ptr) |
258 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
259 | SIZEOF(my_idct_controller)); |
260 | cinfo->idct = (struct jpeg_inverse_dct *) idct; |
261 | idct->pub.start_pass = start_pass; |
262 | |
263 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
264 | ci++, compptr++) { |
265 | /* Allocate and pre-zero a multiplier table for each component */ |
266 | compptr->dct_table = |
267 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
268 | SIZEOF(multiplier_table)); |
269 | MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); |
270 | /* Mark multiplier table not yet set up for any method */ |
271 | idct->cur_method[ci] = -1; |
272 | } |
273 | } |
274 | |