1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jdhuff.c |
7 | * |
8 | * Copyright (C) 1991-1997, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains Huffman entropy decoding routines. |
13 | * |
14 | * Much of the complexity here has to do with supporting input suspension. |
15 | * If the data source module demands suspension, we want to be able to back |
16 | * up to the start of the current MCU. To do this, we copy state variables |
17 | * into local working storage, and update them back to the permanent |
18 | * storage only upon successful completion of an MCU. |
19 | */ |
20 | |
21 | #define JPEG_INTERNALS |
22 | #include "jinclude.h" |
23 | #include "jpeglib.h" |
24 | #include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
25 | |
26 | |
27 | /* |
28 | * Expanded entropy decoder object for Huffman decoding. |
29 | * |
30 | * The savable_state subrecord contains fields that change within an MCU, |
31 | * but must not be updated permanently until we complete the MCU. |
32 | */ |
33 | |
34 | typedef struct { |
35 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
36 | } savable_state; |
37 | |
38 | /* This macro is to work around compilers with missing or broken |
39 | * structure assignment. You'll need to fix this code if you have |
40 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
41 | */ |
42 | |
43 | #ifndef NO_STRUCT_ASSIGN |
44 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
45 | #else |
46 | #if MAX_COMPS_IN_SCAN == 4 |
47 | #define ASSIGN_STATE(dest,src) \ |
48 | ((dest).last_dc_val[0] = (src).last_dc_val[0], \ |
49 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
50 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
51 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
52 | #endif |
53 | #endif |
54 | |
55 | |
56 | typedef struct { |
57 | struct jpeg_entropy_decoder pub; /* public fields */ |
58 | |
59 | /* These fields are loaded into local variables at start of each MCU. |
60 | * In case of suspension, we exit WITHOUT updating them. |
61 | */ |
62 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
63 | savable_state saved; /* Other state at start of MCU */ |
64 | |
65 | /* These fields are NOT loaded into local working state. */ |
66 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
67 | |
68 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
69 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
70 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
71 | |
72 | /* Precalculated info set up by start_pass for use in decode_mcu: */ |
73 | |
74 | /* Pointers to derived tables to be used for each block within an MCU */ |
75 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
76 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
77 | /* Whether we care about the DC and AC coefficient values for each block */ |
78 | boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
79 | boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
80 | } huff_entropy_decoder; |
81 | |
82 | typedef huff_entropy_decoder * huff_entropy_ptr; |
83 | |
84 | |
85 | /* |
86 | * Initialize for a Huffman-compressed scan. |
87 | */ |
88 | |
89 | METHODDEF(void) |
90 | start_pass_huff_decoder (j_decompress_ptr cinfo) |
91 | { |
92 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
93 | int ci, blkn, dctbl, actbl; |
94 | jpeg_component_info * compptr; |
95 | |
96 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
97 | * This ought to be an error condition, but we make it a warning because |
98 | * there are some baseline files out there with all zeroes in these bytes. |
99 | */ |
100 | if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || |
101 | cinfo->Ah != 0 || cinfo->Al != 0) |
102 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
103 | |
104 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
105 | compptr = cinfo->cur_comp_info[ci]; |
106 | dctbl = compptr->dc_tbl_no; |
107 | actbl = compptr->ac_tbl_no; |
108 | /* Compute derived values for Huffman tables */ |
109 | /* We may do this more than once for a table, but it's not expensive */ |
110 | jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, |
111 | & entropy->dc_derived_tbls[dctbl]); |
112 | jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, |
113 | & entropy->ac_derived_tbls[actbl]); |
114 | /* Initialize DC predictions to 0 */ |
115 | entropy->saved.last_dc_val[ci] = 0; |
116 | } |
117 | |
118 | /* Precalculate decoding info for each block in an MCU of this scan */ |
119 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
120 | ci = cinfo->MCU_membership[blkn]; |
121 | compptr = cinfo->cur_comp_info[ci]; |
122 | /* Precalculate which table to use for each block */ |
123 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
124 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
125 | /* Decide whether we really care about the coefficient values */ |
126 | if (compptr->component_needed) { |
127 | entropy->dc_needed[blkn] = TRUE; |
128 | /* we don't need the ACs if producing a 1/8th-size image */ |
129 | entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); |
130 | } else { |
131 | entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
132 | } |
133 | } |
134 | |
135 | /* Initialize bitread state variables */ |
136 | entropy->bitstate.bits_left = 0; |
137 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
138 | entropy->pub.insufficient_data = FALSE; |
139 | |
140 | /* Initialize restart counter */ |
141 | entropy->restarts_to_go = cinfo->restart_interval; |
142 | } |
143 | |
144 | |
145 | /* |
146 | * Compute the derived values for a Huffman table. |
147 | * This routine also performs some validation checks on the table. |
148 | * |
149 | * Note this is also used by jdphuff.c. |
150 | */ |
151 | |
152 | GLOBAL(void) |
153 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
154 | d_derived_tbl ** pdtbl) |
155 | { |
156 | JHUFF_TBL *htbl; |
157 | d_derived_tbl *dtbl; |
158 | int p, i, l, si, numsymbols; |
159 | int lookbits, ctr; |
160 | char huffsize[257]; |
161 | unsigned int huffcode[257]; |
162 | unsigned int code; |
163 | |
164 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
165 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
166 | */ |
167 | |
168 | /* Find the input Huffman table */ |
169 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
170 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
171 | htbl = |
172 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
173 | if (htbl == NULL) |
174 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
175 | |
176 | /* Allocate a workspace if we haven't already done so. */ |
177 | if (*pdtbl == NULL) |
178 | *pdtbl = (d_derived_tbl *) |
179 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
180 | SIZEOF(d_derived_tbl)); |
181 | dtbl = *pdtbl; |
182 | dtbl->pub = htbl; /* fill in back link */ |
183 | |
184 | /* Figure C.1: make table of Huffman code length for each symbol */ |
185 | |
186 | p = 0; |
187 | for (l = 1; l <= 16; l++) { |
188 | i = (int) htbl->bits[l]; |
189 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
190 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
191 | while (i--) |
192 | huffsize[p++] = (char) l; |
193 | } |
194 | huffsize[p] = 0; |
195 | numsymbols = p; |
196 | |
197 | /* Figure C.2: generate the codes themselves */ |
198 | /* We also validate that the counts represent a legal Huffman code tree. */ |
199 | |
200 | code = 0; |
201 | si = huffsize[0]; |
202 | p = 0; |
203 | while (huffsize[p]) { |
204 | while (((int) huffsize[p]) == si) { |
205 | huffcode[p++] = code; |
206 | code++; |
207 | } |
208 | /* code is now 1 more than the last code used for codelength si; but |
209 | * it must still fit in si bits, since no code is allowed to be all ones. |
210 | */ |
211 | if (((INT32) code) >= (((INT32) 1) << si)) |
212 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
213 | code <<= 1; |
214 | si++; |
215 | } |
216 | |
217 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
218 | |
219 | p = 0; |
220 | for (l = 1; l <= 16; l++) { |
221 | if (htbl->bits[l]) { |
222 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
223 | * minus the minimum code of length l |
224 | */ |
225 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; |
226 | p += htbl->bits[l]; |
227 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
228 | } else { |
229 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
230 | } |
231 | } |
232 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
233 | |
234 | /* Compute lookahead tables to speed up decoding. |
235 | * First we set all the table entries to 0, indicating "too long"; |
236 | * then we iterate through the Huffman codes that are short enough and |
237 | * fill in all the entries that correspond to bit sequences starting |
238 | * with that code. |
239 | */ |
240 | |
241 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); |
242 | |
243 | p = 0; |
244 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
245 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
246 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
247 | /* Generate left-justified code followed by all possible bit sequences */ |
248 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
249 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
250 | dtbl->look_nbits[lookbits] = l; |
251 | dtbl->look_sym[lookbits] = htbl->huffval[p]; |
252 | lookbits++; |
253 | } |
254 | } |
255 | } |
256 | |
257 | /* Validate symbols as being reasonable. |
258 | * For AC tables, we make no check, but accept all byte values 0..255. |
259 | * For DC tables, we require the symbols to be in range 0..15. |
260 | * (Tighter bounds could be applied depending on the data depth and mode, |
261 | * but this is sufficient to ensure safe decoding.) |
262 | */ |
263 | if (isDC) { |
264 | for (i = 0; i < numsymbols; i++) { |
265 | int sym = htbl->huffval[i]; |
266 | if (sym < 0 || sym > 15) |
267 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
268 | } |
269 | } |
270 | } |
271 | |
272 | |
273 | /* |
274 | * Out-of-line code for bit fetching (shared with jdphuff.c). |
275 | * See jdhuff.h for info about usage. |
276 | * Note: current values of get_buffer and bits_left are passed as parameters, |
277 | * but are returned in the corresponding fields of the state struct. |
278 | * |
279 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
280 | * of get_buffer to be used. (On machines with wider words, an even larger |
281 | * buffer could be used.) However, on some machines 32-bit shifts are |
282 | * quite slow and take time proportional to the number of places shifted. |
283 | * (This is true with most PC compilers, for instance.) In this case it may |
284 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
285 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
286 | */ |
287 | |
288 | #ifdef SLOW_SHIFT_32 |
289 | #define MIN_GET_BITS 15 /* minimum allowable value */ |
290 | #else |
291 | #define MIN_GET_BITS (BIT_BUF_SIZE-7) |
292 | #endif |
293 | |
294 | |
295 | GLOBAL(boolean) |
296 | jpeg_fill_bit_buffer (bitread_working_state * state, |
297 | register bit_buf_type get_buffer, register int bits_left, |
298 | int nbits) |
299 | /* Load up the bit buffer to a depth of at least nbits */ |
300 | { |
301 | /* Copy heavily used state fields into locals (hopefully registers) */ |
302 | register const JOCTET * next_input_byte = state->next_input_byte; |
303 | register size_t bytes_in_buffer = state->bytes_in_buffer; |
304 | j_decompress_ptr cinfo = state->cinfo; |
305 | |
306 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
307 | /* (It is assumed that no request will be for more than that many bits.) */ |
308 | /* We fail to do so only if we hit a marker or are forced to suspend. */ |
309 | |
310 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
311 | while (bits_left < MIN_GET_BITS) { |
312 | register int c; |
313 | |
314 | /* Attempt to read a byte */ |
315 | if (bytes_in_buffer == 0) { |
316 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
317 | return FALSE; |
318 | next_input_byte = cinfo->src->next_input_byte; |
319 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
320 | } |
321 | bytes_in_buffer--; |
322 | c = GETJOCTET(*next_input_byte++); |
323 | |
324 | /* If it's 0xFF, check and discard stuffed zero byte */ |
325 | if (c == 0xFF) { |
326 | /* Loop here to discard any padding FF's on terminating marker, |
327 | * so that we can save a valid unread_marker value. NOTE: we will |
328 | * accept multiple FF's followed by a 0 as meaning a single FF data |
329 | * byte. This data pattern is not valid according to the standard. |
330 | */ |
331 | do { |
332 | if (bytes_in_buffer == 0) { |
333 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
334 | return FALSE; |
335 | next_input_byte = cinfo->src->next_input_byte; |
336 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
337 | } |
338 | bytes_in_buffer--; |
339 | c = GETJOCTET(*next_input_byte++); |
340 | } while (c == 0xFF); |
341 | |
342 | if (c == 0) { |
343 | /* Found FF/00, which represents an FF data byte */ |
344 | c = 0xFF; |
345 | } else { |
346 | /* Oops, it's actually a marker indicating end of compressed data. |
347 | * Save the marker code for later use. |
348 | * Fine point: it might appear that we should save the marker into |
349 | * bitread working state, not straight into permanent state. But |
350 | * once we have hit a marker, we cannot need to suspend within the |
351 | * current MCU, because we will read no more bytes from the data |
352 | * source. So it is OK to update permanent state right away. |
353 | */ |
354 | cinfo->unread_marker = c; |
355 | /* See if we need to insert some fake zero bits. */ |
356 | goto no_more_bytes; |
357 | } |
358 | } |
359 | |
360 | /* OK, load c into get_buffer */ |
361 | get_buffer = (get_buffer << 8) | c; |
362 | bits_left += 8; |
363 | } /* end while */ |
364 | } else { |
365 | no_more_bytes: |
366 | /* We get here if we've read the marker that terminates the compressed |
367 | * data segment. There should be enough bits in the buffer register |
368 | * to satisfy the request; if so, no problem. |
369 | */ |
370 | if (nbits > bits_left) { |
371 | /* Uh-oh. Report corrupted data to user and stuff zeroes into |
372 | * the data stream, so that we can produce some kind of image. |
373 | * We use a nonvolatile flag to ensure that only one warning message |
374 | * appears per data segment. |
375 | */ |
376 | if (! cinfo->entropy->insufficient_data) { |
377 | WARNMS(cinfo, JWRN_HIT_MARKER); |
378 | cinfo->entropy->insufficient_data = TRUE; |
379 | } |
380 | /* Fill the buffer with zero bits */ |
381 | get_buffer <<= MIN_GET_BITS - bits_left; |
382 | bits_left = MIN_GET_BITS; |
383 | } |
384 | } |
385 | |
386 | /* Unload the local registers */ |
387 | state->next_input_byte = next_input_byte; |
388 | state->bytes_in_buffer = bytes_in_buffer; |
389 | state->get_buffer = get_buffer; |
390 | state->bits_left = bits_left; |
391 | |
392 | return TRUE; |
393 | } |
394 | |
395 | |
396 | /* |
397 | * Out-of-line code for Huffman code decoding. |
398 | * See jdhuff.h for info about usage. |
399 | */ |
400 | |
401 | GLOBAL(int) |
402 | jpeg_huff_decode (bitread_working_state * state, |
403 | register bit_buf_type get_buffer, register int bits_left, |
404 | d_derived_tbl * htbl, int min_bits) |
405 | { |
406 | register int l = min_bits; |
407 | register INT32 code; |
408 | |
409 | /* HUFF_DECODE has determined that the code is at least min_bits */ |
410 | /* bits long, so fetch that many bits in one swoop. */ |
411 | |
412 | CHECK_BIT_BUFFER(*state, l, return -1); |
413 | code = GET_BITS(l); |
414 | |
415 | /* Collect the rest of the Huffman code one bit at a time. */ |
416 | /* This is per Figure F.16 in the JPEG spec. */ |
417 | |
418 | while (code > htbl->maxcode[l]) { |
419 | code <<= 1; |
420 | CHECK_BIT_BUFFER(*state, 1, return -1); |
421 | code |= GET_BITS(1); |
422 | l++; |
423 | } |
424 | |
425 | /* Unload the local registers */ |
426 | state->get_buffer = get_buffer; |
427 | state->bits_left = bits_left; |
428 | |
429 | /* With garbage input we may reach the sentinel value l = 17. */ |
430 | |
431 | if (l > 16) { |
432 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
433 | return 0; /* fake a zero as the safest result */ |
434 | } |
435 | |
436 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
437 | } |
438 | |
439 | |
440 | /* |
441 | * Figure F.12: extend sign bit. |
442 | * On some machines, a shift and add will be faster than a table lookup. |
443 | */ |
444 | |
445 | #ifdef AVOID_TABLES |
446 | |
447 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) |
448 | |
449 | #else |
450 | |
451 | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
452 | |
453 | static const int extend_test[16] = /* entry n is 2**(n-1) */ |
454 | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
455 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
456 | |
457 | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
458 | { 0, |
459 | (int)(((unsigned)(~0)<<1) + 1), (int)(((unsigned)(~0)<<2) + 1), |
460 | (int)(((unsigned)(~0)<<3) + 1), (int)(((unsigned)(~0)<<4) + 1), |
461 | (int)(((unsigned)(~0)<<5) + 1), (int)(((unsigned)(~0)<<6) + 1), |
462 | (int)(((unsigned)(~0)<<7) + 1), (int)(((unsigned)(~0)<<8) + 1), |
463 | (int)(((unsigned)(~0)<<9) + 1), (int)(((unsigned)(~0)<<10) + 1), |
464 | (int)(((unsigned)(~0)<<11) + 1), (int)(((unsigned)(~0)<<12) + 1), |
465 | (int)(((unsigned)(~0)<<13) + 1), (int)(((unsigned)(~0)<<14) + 1), |
466 | (int)(((unsigned)(~0)<<15) + 1) }; |
467 | |
468 | #endif /* AVOID_TABLES */ |
469 | |
470 | |
471 | /* |
472 | * Check for a restart marker & resynchronize decoder. |
473 | * Returns FALSE if must suspend. |
474 | */ |
475 | |
476 | LOCAL(boolean) |
477 | process_restart (j_decompress_ptr cinfo) |
478 | { |
479 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
480 | int ci; |
481 | |
482 | /* Throw away any unused bits remaining in bit buffer; */ |
483 | /* include any full bytes in next_marker's count of discarded bytes */ |
484 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
485 | entropy->bitstate.bits_left = 0; |
486 | |
487 | /* Advance past the RSTn marker */ |
488 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
489 | return FALSE; |
490 | |
491 | /* Re-initialize DC predictions to 0 */ |
492 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
493 | entropy->saved.last_dc_val[ci] = 0; |
494 | |
495 | /* Reset restart counter */ |
496 | entropy->restarts_to_go = cinfo->restart_interval; |
497 | |
498 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
499 | * against a marker. In that case we will end up treating the next data |
500 | * segment as empty, and we can avoid producing bogus output pixels by |
501 | * leaving the flag set. |
502 | */ |
503 | if (cinfo->unread_marker == 0) |
504 | entropy->pub.insufficient_data = FALSE; |
505 | |
506 | return TRUE; |
507 | } |
508 | |
509 | |
510 | /* |
511 | * Decode and return one MCU's worth of Huffman-compressed coefficients. |
512 | * The coefficients are reordered from zigzag order into natural array order, |
513 | * but are not dequantized. |
514 | * |
515 | * The i'th block of the MCU is stored into the block pointed to by |
516 | * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
517 | * (Wholesale zeroing is usually a little faster than retail...) |
518 | * |
519 | * Returns FALSE if data source requested suspension. In that case no |
520 | * changes have been made to permanent state. (Exception: some output |
521 | * coefficients may already have been assigned. This is harmless for |
522 | * this module, since we'll just re-assign them on the next call.) |
523 | */ |
524 | |
525 | METHODDEF(boolean) |
526 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
527 | { |
528 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
529 | int blkn; |
530 | BITREAD_STATE_VARS; |
531 | savable_state state; |
532 | |
533 | /* Process restart marker if needed; may have to suspend */ |
534 | if (cinfo->restart_interval) { |
535 | if (entropy->restarts_to_go == 0) |
536 | if (! process_restart(cinfo)) |
537 | return FALSE; |
538 | } |
539 | |
540 | /* If we've run out of data, just leave the MCU set to zeroes. |
541 | * This way, we return uniform gray for the remainder of the segment. |
542 | */ |
543 | if (! entropy->pub.insufficient_data) { |
544 | |
545 | /* Load up working state */ |
546 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
547 | ASSIGN_STATE(state, entropy->saved); |
548 | |
549 | /* Outer loop handles each block in the MCU */ |
550 | |
551 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
552 | JBLOCKROW block = MCU_data[blkn]; |
553 | d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; |
554 | d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; |
555 | register int s, k, r; |
556 | |
557 | /* Decode a single block's worth of coefficients */ |
558 | |
559 | /* Section F.2.2.1: decode the DC coefficient difference */ |
560 | HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
561 | if (s) { |
562 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
563 | r = GET_BITS(s); |
564 | s = HUFF_EXTEND(r, s); |
565 | } |
566 | |
567 | if (entropy->dc_needed[blkn]) { |
568 | /* Convert DC difference to actual value, update last_dc_val */ |
569 | int ci = cinfo->MCU_membership[blkn]; |
570 | s += state.last_dc_val[ci]; |
571 | state.last_dc_val[ci] = s; |
572 | /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
573 | (*block)[0] = (JCOEF) s; |
574 | } |
575 | |
576 | if (entropy->ac_needed[blkn]) { |
577 | |
578 | /* Section F.2.2.2: decode the AC coefficients */ |
579 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
580 | for (k = 1; k < DCTSIZE2; k++) { |
581 | HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
582 | |
583 | r = s >> 4; |
584 | s &= 15; |
585 | |
586 | if (s) { |
587 | k += r; |
588 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
589 | r = GET_BITS(s); |
590 | s = HUFF_EXTEND(r, s); |
591 | /* Output coefficient in natural (dezigzagged) order. |
592 | * Note: the extra entries in jpeg_natural_order[] will save us |
593 | * if k >= DCTSIZE2, which could happen if the data is corrupted. |
594 | */ |
595 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
596 | } else { |
597 | if (r != 15) |
598 | break; |
599 | k += 15; |
600 | } |
601 | } |
602 | |
603 | } else { |
604 | |
605 | /* Section F.2.2.2: decode the AC coefficients */ |
606 | /* In this path we just discard the values */ |
607 | for (k = 1; k < DCTSIZE2; k++) { |
608 | HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
609 | |
610 | r = s >> 4; |
611 | s &= 15; |
612 | |
613 | if (s) { |
614 | k += r; |
615 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
616 | DROP_BITS(s); |
617 | } else { |
618 | if (r != 15) |
619 | break; |
620 | k += 15; |
621 | } |
622 | } |
623 | |
624 | } |
625 | } |
626 | |
627 | /* Completed MCU, so update state */ |
628 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
629 | ASSIGN_STATE(entropy->saved, state); |
630 | } |
631 | |
632 | /* Account for restart interval (no-op if not using restarts) */ |
633 | entropy->restarts_to_go--; |
634 | |
635 | return TRUE; |
636 | } |
637 | |
638 | |
639 | /* |
640 | * Module initialization routine for Huffman entropy decoding. |
641 | */ |
642 | |
643 | GLOBAL(void) |
644 | jinit_huff_decoder (j_decompress_ptr cinfo) |
645 | { |
646 | huff_entropy_ptr entropy; |
647 | int i; |
648 | |
649 | entropy = (huff_entropy_ptr) |
650 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
651 | SIZEOF(huff_entropy_decoder)); |
652 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
653 | entropy->pub.start_pass = start_pass_huff_decoder; |
654 | entropy->pub.decode_mcu = decode_mcu; |
655 | |
656 | /* Mark tables unallocated */ |
657 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
658 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
659 | } |
660 | } |
661 | |