1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jdmerge.c |
7 | * |
8 | * Copyright (C) 1994-1996, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains code for merged upsampling/color conversion. |
13 | * |
14 | * This file combines functions from jdsample.c and jdcolor.c; |
15 | * read those files first to understand what's going on. |
16 | * |
17 | * When the chroma components are to be upsampled by simple replication |
18 | * (ie, box filtering), we can save some work in color conversion by |
19 | * calculating all the output pixels corresponding to a pair of chroma |
20 | * samples at one time. In the conversion equations |
21 | * R = Y + K1 * Cr |
22 | * G = Y + K2 * Cb + K3 * Cr |
23 | * B = Y + K4 * Cb |
24 | * only the Y term varies among the group of pixels corresponding to a pair |
25 | * of chroma samples, so the rest of the terms can be calculated just once. |
26 | * At typical sampling ratios, this eliminates half or three-quarters of the |
27 | * multiplications needed for color conversion. |
28 | * |
29 | * This file currently provides implementations for the following cases: |
30 | * YCbCr => RGB color conversion only. |
31 | * Sampling ratios of 2h1v or 2h2v. |
32 | * No scaling needed at upsample time. |
33 | * Corner-aligned (non-CCIR601) sampling alignment. |
34 | * Other special cases could be added, but in most applications these are |
35 | * the only common cases. (For uncommon cases we fall back on the more |
36 | * general code in jdsample.c and jdcolor.c.) |
37 | */ |
38 | |
39 | #define JPEG_INTERNALS |
40 | #include "jinclude.h" |
41 | #include "jpeglib.h" |
42 | |
43 | #ifdef UPSAMPLE_MERGING_SUPPORTED |
44 | |
45 | |
46 | /* Private subobject */ |
47 | |
48 | typedef struct { |
49 | struct jpeg_upsampler pub; /* public fields */ |
50 | |
51 | /* Pointer to routine to do actual upsampling/conversion of one row group */ |
52 | JMETHOD(void, upmethod, (j_decompress_ptr cinfo, |
53 | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
54 | JSAMPARRAY output_buf)); |
55 | |
56 | /* Private state for YCC->RGB conversion */ |
57 | int * Cr_r_tab; /* => table for Cr to R conversion */ |
58 | int * Cb_b_tab; /* => table for Cb to B conversion */ |
59 | INT32 * Cr_g_tab; /* => table for Cr to G conversion */ |
60 | INT32 * Cb_g_tab; /* => table for Cb to G conversion */ |
61 | |
62 | /* For 2:1 vertical sampling, we produce two output rows at a time. |
63 | * We need a "spare" row buffer to hold the second output row if the |
64 | * application provides just a one-row buffer; we also use the spare |
65 | * to discard the dummy last row if the image height is odd. |
66 | */ |
67 | JSAMPROW spare_row; |
68 | boolean spare_full; /* T if spare buffer is occupied */ |
69 | |
70 | JDIMENSION out_row_width; /* samples per output row */ |
71 | JDIMENSION rows_to_go; /* counts rows remaining in image */ |
72 | } my_upsampler; |
73 | |
74 | typedef my_upsampler * my_upsample_ptr; |
75 | |
76 | #define SCALEBITS 16 /* speediest right-shift on some machines */ |
77 | #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) |
78 | #define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) |
79 | |
80 | |
81 | /* |
82 | * Initialize tables for YCC->RGB colorspace conversion. |
83 | * This is taken directly from jdcolor.c; see that file for more info. |
84 | */ |
85 | |
86 | LOCAL(void) |
87 | build_ycc_rgb_table (j_decompress_ptr cinfo) |
88 | { |
89 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
90 | int i; |
91 | INT32 x; |
92 | SHIFT_TEMPS |
93 | |
94 | upsample->Cr_r_tab = (int *) |
95 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
96 | (MAXJSAMPLE+1) * SIZEOF(int)); |
97 | upsample->Cb_b_tab = (int *) |
98 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
99 | (MAXJSAMPLE+1) * SIZEOF(int)); |
100 | upsample->Cr_g_tab = (INT32 *) |
101 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
102 | (MAXJSAMPLE+1) * SIZEOF(INT32)); |
103 | upsample->Cb_g_tab = (INT32 *) |
104 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
105 | (MAXJSAMPLE+1) * SIZEOF(INT32)); |
106 | |
107 | for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
108 | /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
109 | /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
110 | /* Cr=>R value is nearest int to 1.40200 * x */ |
111 | upsample->Cr_r_tab[i] = (int) |
112 | RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); |
113 | /* Cb=>B value is nearest int to 1.77200 * x */ |
114 | upsample->Cb_b_tab[i] = (int) |
115 | RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); |
116 | /* Cr=>G value is scaled-up -0.71414 * x */ |
117 | upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; |
118 | /* Cb=>G value is scaled-up -0.34414 * x */ |
119 | /* We also add in ONE_HALF so that need not do it in inner loop */ |
120 | upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; |
121 | } |
122 | } |
123 | |
124 | |
125 | /* |
126 | * Initialize for an upsampling pass. |
127 | */ |
128 | |
129 | METHODDEF(void) |
130 | start_pass_merged_upsample (j_decompress_ptr cinfo) |
131 | { |
132 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
133 | |
134 | /* Mark the spare buffer empty */ |
135 | upsample->spare_full = FALSE; |
136 | /* Initialize total-height counter for detecting bottom of image */ |
137 | upsample->rows_to_go = cinfo->output_height; |
138 | } |
139 | |
140 | |
141 | /* |
142 | * Control routine to do upsampling (and color conversion). |
143 | * |
144 | * The control routine just handles the row buffering considerations. |
145 | */ |
146 | |
147 | METHODDEF(void) |
148 | merged_2v_upsample (j_decompress_ptr cinfo, |
149 | JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
150 | JDIMENSION in_row_groups_avail, |
151 | JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
152 | JDIMENSION out_rows_avail) |
153 | /* 2:1 vertical sampling case: may need a spare row. */ |
154 | { |
155 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
156 | JSAMPROW work_ptrs[2]; |
157 | JDIMENSION num_rows; /* number of rows returned to caller */ |
158 | |
159 | if (upsample->spare_full) { |
160 | /* If we have a spare row saved from a previous cycle, just return it. */ |
161 | jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, |
162 | 1, upsample->out_row_width); |
163 | num_rows = 1; |
164 | upsample->spare_full = FALSE; |
165 | } else { |
166 | /* Figure number of rows to return to caller. */ |
167 | num_rows = 2; |
168 | /* Not more than the distance to the end of the image. */ |
169 | if (num_rows > upsample->rows_to_go) |
170 | num_rows = upsample->rows_to_go; |
171 | /* And not more than what the client can accept: */ |
172 | out_rows_avail -= *out_row_ctr; |
173 | if (num_rows > out_rows_avail) |
174 | num_rows = out_rows_avail; |
175 | /* Create output pointer array for upsampler. */ |
176 | work_ptrs[0] = output_buf[*out_row_ctr]; |
177 | if (num_rows > 1) { |
178 | work_ptrs[1] = output_buf[*out_row_ctr + 1]; |
179 | } else { |
180 | work_ptrs[1] = upsample->spare_row; |
181 | upsample->spare_full = TRUE; |
182 | } |
183 | /* Now do the upsampling. */ |
184 | (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); |
185 | } |
186 | |
187 | /* Adjust counts */ |
188 | *out_row_ctr += num_rows; |
189 | upsample->rows_to_go -= num_rows; |
190 | /* When the buffer is emptied, declare this input row group consumed */ |
191 | if (! upsample->spare_full) |
192 | (*in_row_group_ctr)++; |
193 | } |
194 | |
195 | |
196 | METHODDEF(void) |
197 | merged_1v_upsample (j_decompress_ptr cinfo, |
198 | JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
199 | JDIMENSION in_row_groups_avail, |
200 | JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
201 | JDIMENSION out_rows_avail) |
202 | /* 1:1 vertical sampling case: much easier, never need a spare row. */ |
203 | { |
204 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
205 | |
206 | /* Just do the upsampling. */ |
207 | (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, |
208 | output_buf + *out_row_ctr); |
209 | /* Adjust counts */ |
210 | (*out_row_ctr)++; |
211 | (*in_row_group_ctr)++; |
212 | } |
213 | |
214 | |
215 | /* |
216 | * These are the routines invoked by the control routines to do |
217 | * the actual upsampling/conversion. One row group is processed per call. |
218 | * |
219 | * Note: since we may be writing directly into application-supplied buffers, |
220 | * we have to be honest about the output width; we can't assume the buffer |
221 | * has been rounded up to an even width. |
222 | */ |
223 | |
224 | |
225 | /* |
226 | * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. |
227 | */ |
228 | |
229 | METHODDEF(void) |
230 | h2v1_merged_upsample (j_decompress_ptr cinfo, |
231 | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
232 | JSAMPARRAY output_buf) |
233 | { |
234 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
235 | register int y, cred, cgreen, cblue; |
236 | int cb, cr; |
237 | register JSAMPROW outptr; |
238 | JSAMPROW inptr0, inptr1, inptr2; |
239 | JDIMENSION col; |
240 | /* copy these pointers into registers if possible */ |
241 | register JSAMPLE * range_limit = cinfo->sample_range_limit; |
242 | int * Crrtab = upsample->Cr_r_tab; |
243 | int * Cbbtab = upsample->Cb_b_tab; |
244 | INT32 * Crgtab = upsample->Cr_g_tab; |
245 | INT32 * Cbgtab = upsample->Cb_g_tab; |
246 | SHIFT_TEMPS |
247 | |
248 | inptr0 = input_buf[0][in_row_group_ctr]; |
249 | inptr1 = input_buf[1][in_row_group_ctr]; |
250 | inptr2 = input_buf[2][in_row_group_ctr]; |
251 | outptr = output_buf[0]; |
252 | /* Loop for each pair of output pixels */ |
253 | for (col = cinfo->output_width >> 1; col > 0; col--) { |
254 | /* Do the chroma part of the calculation */ |
255 | cb = GETJSAMPLE(*inptr1++); |
256 | cr = GETJSAMPLE(*inptr2++); |
257 | cred = Crrtab[cr]; |
258 | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
259 | cblue = Cbbtab[cb]; |
260 | /* Fetch 2 Y values and emit 2 pixels */ |
261 | y = GETJSAMPLE(*inptr0++); |
262 | outptr[RGB_RED] = range_limit[y + cred]; |
263 | outptr[RGB_GREEN] = range_limit[y + cgreen]; |
264 | outptr[RGB_BLUE] = range_limit[y + cblue]; |
265 | outptr += RGB_PIXELSIZE; |
266 | y = GETJSAMPLE(*inptr0++); |
267 | outptr[RGB_RED] = range_limit[y + cred]; |
268 | outptr[RGB_GREEN] = range_limit[y + cgreen]; |
269 | outptr[RGB_BLUE] = range_limit[y + cblue]; |
270 | outptr += RGB_PIXELSIZE; |
271 | } |
272 | /* If image width is odd, do the last output column separately */ |
273 | if (cinfo->output_width & 1) { |
274 | cb = GETJSAMPLE(*inptr1); |
275 | cr = GETJSAMPLE(*inptr2); |
276 | cred = Crrtab[cr]; |
277 | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
278 | cblue = Cbbtab[cb]; |
279 | y = GETJSAMPLE(*inptr0); |
280 | outptr[RGB_RED] = range_limit[y + cred]; |
281 | outptr[RGB_GREEN] = range_limit[y + cgreen]; |
282 | outptr[RGB_BLUE] = range_limit[y + cblue]; |
283 | } |
284 | } |
285 | |
286 | |
287 | /* |
288 | * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. |
289 | */ |
290 | |
291 | METHODDEF(void) |
292 | h2v2_merged_upsample (j_decompress_ptr cinfo, |
293 | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
294 | JSAMPARRAY output_buf) |
295 | { |
296 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
297 | register int y, cred, cgreen, cblue; |
298 | int cb, cr; |
299 | register JSAMPROW outptr0, outptr1; |
300 | JSAMPROW inptr00, inptr01, inptr1, inptr2; |
301 | JDIMENSION col; |
302 | /* copy these pointers into registers if possible */ |
303 | register JSAMPLE * range_limit = cinfo->sample_range_limit; |
304 | int * Crrtab = upsample->Cr_r_tab; |
305 | int * Cbbtab = upsample->Cb_b_tab; |
306 | INT32 * Crgtab = upsample->Cr_g_tab; |
307 | INT32 * Cbgtab = upsample->Cb_g_tab; |
308 | SHIFT_TEMPS |
309 | |
310 | inptr00 = input_buf[0][in_row_group_ctr*2]; |
311 | inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; |
312 | inptr1 = input_buf[1][in_row_group_ctr]; |
313 | inptr2 = input_buf[2][in_row_group_ctr]; |
314 | outptr0 = output_buf[0]; |
315 | outptr1 = output_buf[1]; |
316 | /* Loop for each group of output pixels */ |
317 | for (col = cinfo->output_width >> 1; col > 0; col--) { |
318 | /* Do the chroma part of the calculation */ |
319 | cb = GETJSAMPLE(*inptr1++); |
320 | cr = GETJSAMPLE(*inptr2++); |
321 | cred = Crrtab[cr]; |
322 | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
323 | cblue = Cbbtab[cb]; |
324 | /* Fetch 4 Y values and emit 4 pixels */ |
325 | y = GETJSAMPLE(*inptr00++); |
326 | outptr0[RGB_RED] = range_limit[y + cred]; |
327 | outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
328 | outptr0[RGB_BLUE] = range_limit[y + cblue]; |
329 | outptr0 += RGB_PIXELSIZE; |
330 | y = GETJSAMPLE(*inptr00++); |
331 | outptr0[RGB_RED] = range_limit[y + cred]; |
332 | outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
333 | outptr0[RGB_BLUE] = range_limit[y + cblue]; |
334 | outptr0 += RGB_PIXELSIZE; |
335 | y = GETJSAMPLE(*inptr01++); |
336 | outptr1[RGB_RED] = range_limit[y + cred]; |
337 | outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
338 | outptr1[RGB_BLUE] = range_limit[y + cblue]; |
339 | outptr1 += RGB_PIXELSIZE; |
340 | y = GETJSAMPLE(*inptr01++); |
341 | outptr1[RGB_RED] = range_limit[y + cred]; |
342 | outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
343 | outptr1[RGB_BLUE] = range_limit[y + cblue]; |
344 | outptr1 += RGB_PIXELSIZE; |
345 | } |
346 | /* If image width is odd, do the last output column separately */ |
347 | if (cinfo->output_width & 1) { |
348 | cb = GETJSAMPLE(*inptr1); |
349 | cr = GETJSAMPLE(*inptr2); |
350 | cred = Crrtab[cr]; |
351 | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
352 | cblue = Cbbtab[cb]; |
353 | y = GETJSAMPLE(*inptr00); |
354 | outptr0[RGB_RED] = range_limit[y + cred]; |
355 | outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
356 | outptr0[RGB_BLUE] = range_limit[y + cblue]; |
357 | y = GETJSAMPLE(*inptr01); |
358 | outptr1[RGB_RED] = range_limit[y + cred]; |
359 | outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
360 | outptr1[RGB_BLUE] = range_limit[y + cblue]; |
361 | } |
362 | } |
363 | |
364 | |
365 | /* |
366 | * Module initialization routine for merged upsampling/color conversion. |
367 | * |
368 | * NB: this is called under the conditions determined by use_merged_upsample() |
369 | * in jdmaster.c. That routine MUST correspond to the actual capabilities |
370 | * of this module; no safety checks are made here. |
371 | */ |
372 | |
373 | GLOBAL(void) |
374 | jinit_merged_upsampler (j_decompress_ptr cinfo) |
375 | { |
376 | my_upsample_ptr upsample; |
377 | |
378 | upsample = (my_upsample_ptr) |
379 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
380 | SIZEOF(my_upsampler)); |
381 | cinfo->upsample = (struct jpeg_upsampler *) upsample; |
382 | upsample->pub.start_pass = start_pass_merged_upsample; |
383 | upsample->pub.need_context_rows = FALSE; |
384 | |
385 | upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; |
386 | |
387 | if (cinfo->max_v_samp_factor == 2) { |
388 | upsample->pub.upsample = merged_2v_upsample; |
389 | upsample->upmethod = h2v2_merged_upsample; |
390 | /* Allocate a spare row buffer */ |
391 | upsample->spare_row = (JSAMPROW) |
392 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
393 | (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE))); |
394 | } else { |
395 | upsample->pub.upsample = merged_1v_upsample; |
396 | upsample->upmethod = h2v1_merged_upsample; |
397 | /* No spare row needed */ |
398 | upsample->spare_row = NULL; |
399 | } |
400 | |
401 | build_ycc_rgb_table(cinfo); |
402 | } |
403 | |
404 | #endif /* UPSAMPLE_MERGING_SUPPORTED */ |
405 | |