1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jdphuff.c |
7 | * |
8 | * Copyright (C) 1995-1997, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains Huffman entropy decoding routines for progressive JPEG. |
13 | * |
14 | * Much of the complexity here has to do with supporting input suspension. |
15 | * If the data source module demands suspension, we want to be able to back |
16 | * up to the start of the current MCU. To do this, we copy state variables |
17 | * into local working storage, and update them back to the permanent |
18 | * storage only upon successful completion of an MCU. |
19 | */ |
20 | |
21 | #define JPEG_INTERNALS |
22 | #include "jinclude.h" |
23 | #include "jpeglib.h" |
24 | #include "jdhuff.h" /* Declarations shared with jdhuff.c */ |
25 | |
26 | |
27 | #ifdef D_PROGRESSIVE_SUPPORTED |
28 | |
29 | /* |
30 | * Expanded entropy decoder object for progressive Huffman decoding. |
31 | * |
32 | * The savable_state subrecord contains fields that change within an MCU, |
33 | * but must not be updated permanently until we complete the MCU. |
34 | */ |
35 | |
36 | typedef struct { |
37 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ |
38 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
39 | } savable_state; |
40 | |
41 | /* This macro is to work around compilers with missing or broken |
42 | * structure assignment. You'll need to fix this code if you have |
43 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
44 | */ |
45 | |
46 | #ifndef NO_STRUCT_ASSIGN |
47 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
48 | #else |
49 | #if MAX_COMPS_IN_SCAN == 4 |
50 | #define ASSIGN_STATE(dest,src) \ |
51 | ((dest).EOBRUN = (src).EOBRUN, \ |
52 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
53 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
54 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
55 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
56 | #endif |
57 | #endif |
58 | |
59 | |
60 | typedef struct { |
61 | struct jpeg_entropy_decoder pub; /* public fields */ |
62 | |
63 | /* These fields are loaded into local variables at start of each MCU. |
64 | * In case of suspension, we exit WITHOUT updating them. |
65 | */ |
66 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
67 | savable_state saved; /* Other state at start of MCU */ |
68 | |
69 | /* These fields are NOT loaded into local working state. */ |
70 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
71 | |
72 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
73 | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
74 | |
75 | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ |
76 | } phuff_entropy_decoder; |
77 | |
78 | typedef phuff_entropy_decoder * phuff_entropy_ptr; |
79 | |
80 | /* Forward declarations */ |
81 | METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, |
82 | JBLOCKROW *MCU_data)); |
83 | METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, |
84 | JBLOCKROW *MCU_data)); |
85 | METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, |
86 | JBLOCKROW *MCU_data)); |
87 | METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, |
88 | JBLOCKROW *MCU_data)); |
89 | |
90 | |
91 | /* |
92 | * Initialize for a Huffman-compressed scan. |
93 | */ |
94 | |
95 | METHODDEF(void) |
96 | start_pass_phuff_decoder (j_decompress_ptr cinfo) |
97 | { |
98 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
99 | boolean is_DC_band, bad; |
100 | int ci, coefi, tbl; |
101 | int *coef_bit_ptr; |
102 | jpeg_component_info * compptr; |
103 | |
104 | is_DC_band = (cinfo->Ss == 0); |
105 | |
106 | /* Validate scan parameters */ |
107 | bad = FALSE; |
108 | if (is_DC_band) { |
109 | if (cinfo->Se != 0) |
110 | bad = TRUE; |
111 | } else { |
112 | /* need not check Ss/Se < 0 since they came from unsigned bytes */ |
113 | if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) |
114 | bad = TRUE; |
115 | /* AC scans may have only one component */ |
116 | if (cinfo->comps_in_scan != 1) |
117 | bad = TRUE; |
118 | } |
119 | if (cinfo->Ah != 0) { |
120 | /* Successive approximation refinement scan: must have Al = Ah-1. */ |
121 | if (cinfo->Al != cinfo->Ah-1) |
122 | bad = TRUE; |
123 | } |
124 | if (cinfo->Al > 13) /* need not check for < 0 */ |
125 | bad = TRUE; |
126 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision, |
127 | * but the spec doesn't say so, and we try to be liberal about what we |
128 | * accept. Note: large Al values could result in out-of-range DC |
129 | * coefficients during early scans, leading to bizarre displays due to |
130 | * overflows in the IDCT math. But we won't crash. |
131 | */ |
132 | if (bad) |
133 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
134 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
135 | /* Update progression status, and verify that scan order is legal. |
136 | * Note that inter-scan inconsistencies are treated as warnings |
137 | * not fatal errors ... not clear if this is right way to behave. |
138 | */ |
139 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
140 | int cindex = cinfo->cur_comp_info[ci]->component_index; |
141 | coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
142 | if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
143 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
144 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
145 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
146 | if (cinfo->Ah != expected) |
147 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
148 | coef_bit_ptr[coefi] = cinfo->Al; |
149 | } |
150 | } |
151 | |
152 | /* Select MCU decoding routine */ |
153 | if (cinfo->Ah == 0) { |
154 | if (is_DC_band) |
155 | entropy->pub.decode_mcu = decode_mcu_DC_first; |
156 | else |
157 | entropy->pub.decode_mcu = decode_mcu_AC_first; |
158 | } else { |
159 | if (is_DC_band) |
160 | entropy->pub.decode_mcu = decode_mcu_DC_refine; |
161 | else |
162 | entropy->pub.decode_mcu = decode_mcu_AC_refine; |
163 | } |
164 | |
165 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
166 | compptr = cinfo->cur_comp_info[ci]; |
167 | /* Make sure requested tables are present, and compute derived tables. |
168 | * We may build same derived table more than once, but it's not expensive. |
169 | */ |
170 | if (is_DC_band) { |
171 | if (cinfo->Ah == 0) { /* DC refinement needs no table */ |
172 | tbl = compptr->dc_tbl_no; |
173 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, |
174 | & entropy->derived_tbls[tbl]); |
175 | } |
176 | } else { |
177 | tbl = compptr->ac_tbl_no; |
178 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, |
179 | & entropy->derived_tbls[tbl]); |
180 | /* remember the single active table */ |
181 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; |
182 | } |
183 | /* Initialize DC predictions to 0 */ |
184 | entropy->saved.last_dc_val[ci] = 0; |
185 | } |
186 | |
187 | /* Initialize bitread state variables */ |
188 | entropy->bitstate.bits_left = 0; |
189 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
190 | entropy->pub.insufficient_data = FALSE; |
191 | |
192 | /* Initialize private state variables */ |
193 | entropy->saved.EOBRUN = 0; |
194 | |
195 | /* Initialize restart counter */ |
196 | entropy->restarts_to_go = cinfo->restart_interval; |
197 | } |
198 | |
199 | |
200 | /* |
201 | * Figure F.12: extend sign bit. |
202 | * On some machines, a shift and add will be faster than a table lookup. |
203 | */ |
204 | |
205 | #ifdef AVOID_TABLES |
206 | |
207 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) |
208 | |
209 | #else |
210 | |
211 | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
212 | |
213 | static const int extend_test[16] = /* entry n is 2**(n-1) */ |
214 | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
215 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
216 | |
217 | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
218 | { 0, |
219 | (int)(((unsigned)(~0)<<1) + 1), (int)(((unsigned)(~0)<<2) + 1), |
220 | (int)(((unsigned)(~0)<<3) + 1), (int)(((unsigned)(~0)<<4) + 1), |
221 | (int)(((unsigned)(~0)<<5) + 1), (int)(((unsigned)(~0)<<6) + 1), |
222 | (int)(((unsigned)(~0)<<7) + 1), (int)(((unsigned)(~0)<<8) + 1), |
223 | (int)(((unsigned)(~0)<<9) + 1), (int)(((unsigned)(~0)<<10) + 1), |
224 | (int)(((unsigned)(~0)<<11) + 1), (int)(((unsigned)(~0)<<12) + 1), |
225 | (int)(((unsigned)(~0)<<13) + 1), (int)(((unsigned)(~0)<<14) + 1), |
226 | (int)(((unsigned)(~0)<<15) + 1) }; |
227 | |
228 | #endif /* AVOID_TABLES */ |
229 | |
230 | |
231 | /* |
232 | * Check for a restart marker & resynchronize decoder. |
233 | * Returns FALSE if must suspend. |
234 | */ |
235 | |
236 | LOCAL(boolean) |
237 | process_restart (j_decompress_ptr cinfo) |
238 | { |
239 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
240 | int ci; |
241 | |
242 | /* Throw away any unused bits remaining in bit buffer; */ |
243 | /* include any full bytes in next_marker's count of discarded bytes */ |
244 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
245 | entropy->bitstate.bits_left = 0; |
246 | |
247 | /* Advance past the RSTn marker */ |
248 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
249 | return FALSE; |
250 | |
251 | /* Re-initialize DC predictions to 0 */ |
252 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
253 | entropy->saved.last_dc_val[ci] = 0; |
254 | /* Re-init EOB run count, too */ |
255 | entropy->saved.EOBRUN = 0; |
256 | |
257 | /* Reset restart counter */ |
258 | entropy->restarts_to_go = cinfo->restart_interval; |
259 | |
260 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
261 | * against a marker. In that case we will end up treating the next data |
262 | * segment as empty, and we can avoid producing bogus output pixels by |
263 | * leaving the flag set. |
264 | */ |
265 | if (cinfo->unread_marker == 0) |
266 | entropy->pub.insufficient_data = FALSE; |
267 | |
268 | return TRUE; |
269 | } |
270 | |
271 | |
272 | /* |
273 | * Huffman MCU decoding. |
274 | * Each of these routines decodes and returns one MCU's worth of |
275 | * Huffman-compressed coefficients. |
276 | * The coefficients are reordered from zigzag order into natural array order, |
277 | * but are not dequantized. |
278 | * |
279 | * The i'th block of the MCU is stored into the block pointed to by |
280 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
281 | * |
282 | * We return FALSE if data source requested suspension. In that case no |
283 | * changes have been made to permanent state. (Exception: some output |
284 | * coefficients may already have been assigned. This is harmless for |
285 | * spectral selection, since we'll just re-assign them on the next call. |
286 | * Successive approximation AC refinement has to be more careful, however.) |
287 | */ |
288 | |
289 | /* |
290 | * MCU decoding for DC initial scan (either spectral selection, |
291 | * or first pass of successive approximation). |
292 | */ |
293 | |
294 | METHODDEF(boolean) |
295 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
296 | { |
297 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
298 | int Al = cinfo->Al; |
299 | register int s, r; |
300 | int blkn, ci; |
301 | JBLOCKROW block; |
302 | BITREAD_STATE_VARS; |
303 | savable_state state; |
304 | d_derived_tbl * tbl; |
305 | jpeg_component_info * compptr; |
306 | |
307 | /* Process restart marker if needed; may have to suspend */ |
308 | if (cinfo->restart_interval) { |
309 | if (entropy->restarts_to_go == 0) |
310 | if (! process_restart(cinfo)) |
311 | return FALSE; |
312 | } |
313 | |
314 | /* If we've run out of data, just leave the MCU set to zeroes. |
315 | * This way, we return uniform gray for the remainder of the segment. |
316 | */ |
317 | if (! entropy->pub.insufficient_data) { |
318 | |
319 | /* Load up working state */ |
320 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
321 | ASSIGN_STATE(state, entropy->saved); |
322 | |
323 | /* Outer loop handles each block in the MCU */ |
324 | |
325 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
326 | block = MCU_data[blkn]; |
327 | ci = cinfo->MCU_membership[blkn]; |
328 | compptr = cinfo->cur_comp_info[ci]; |
329 | tbl = entropy->derived_tbls[compptr->dc_tbl_no]; |
330 | |
331 | /* Decode a single block's worth of coefficients */ |
332 | |
333 | /* Section F.2.2.1: decode the DC coefficient difference */ |
334 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1); |
335 | if (s) { |
336 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
337 | r = GET_BITS(s); |
338 | s = HUFF_EXTEND(r, s); |
339 | } |
340 | |
341 | /* Convert DC difference to actual value, update last_dc_val */ |
342 | s += state.last_dc_val[ci]; |
343 | state.last_dc_val[ci] = s; |
344 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ |
345 | (*block)[0] = (JCOEF) (s << Al); |
346 | } |
347 | |
348 | /* Completed MCU, so update state */ |
349 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
350 | ASSIGN_STATE(entropy->saved, state); |
351 | } |
352 | |
353 | /* Account for restart interval (no-op if not using restarts) */ |
354 | entropy->restarts_to_go--; |
355 | |
356 | return TRUE; |
357 | } |
358 | |
359 | |
360 | /* |
361 | * MCU decoding for AC initial scan (either spectral selection, |
362 | * or first pass of successive approximation). |
363 | */ |
364 | |
365 | METHODDEF(boolean) |
366 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
367 | { |
368 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
369 | int Se = cinfo->Se; |
370 | int Al = cinfo->Al; |
371 | register int s, k, r; |
372 | unsigned int EOBRUN; |
373 | JBLOCKROW block; |
374 | BITREAD_STATE_VARS; |
375 | d_derived_tbl * tbl; |
376 | |
377 | /* Process restart marker if needed; may have to suspend */ |
378 | if (cinfo->restart_interval) { |
379 | if (entropy->restarts_to_go == 0) |
380 | if (! process_restart(cinfo)) |
381 | return FALSE; |
382 | } |
383 | |
384 | /* If we've run out of data, just leave the MCU set to zeroes. |
385 | * This way, we return uniform gray for the remainder of the segment. |
386 | */ |
387 | if (! entropy->pub.insufficient_data) { |
388 | |
389 | /* Load up working state. |
390 | * We can avoid loading/saving bitread state if in an EOB run. |
391 | */ |
392 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
393 | |
394 | /* There is always only one block per MCU */ |
395 | |
396 | if (EOBRUN > 0) /* if it's a band of zeroes... */ |
397 | EOBRUN--; /* ...process it now (we do nothing) */ |
398 | else { |
399 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
400 | block = MCU_data[0]; |
401 | tbl = entropy->ac_derived_tbl; |
402 | |
403 | for (k = cinfo->Ss; k <= Se; k++) { |
404 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2); |
405 | r = s >> 4; |
406 | s &= 15; |
407 | if (s) { |
408 | k += r; |
409 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
410 | r = GET_BITS(s); |
411 | s = HUFF_EXTEND(r, s); |
412 | /* Scale and output coefficient in natural (dezigzagged) order */ |
413 | (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); |
414 | } else { |
415 | if (r == 15) { /* ZRL */ |
416 | k += 15; /* skip 15 zeroes in band */ |
417 | } else { /* EOBr, run length is 2^r + appended bits */ |
418 | EOBRUN = 1 << r; |
419 | if (r) { /* EOBr, r > 0 */ |
420 | CHECK_BIT_BUFFER(br_state, r, return FALSE); |
421 | r = GET_BITS(r); |
422 | EOBRUN += r; |
423 | } |
424 | EOBRUN--; /* this band is processed at this moment */ |
425 | break; /* force end-of-band */ |
426 | } |
427 | } |
428 | } |
429 | |
430 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
431 | } |
432 | |
433 | /* Completed MCU, so update state */ |
434 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
435 | } |
436 | |
437 | /* Account for restart interval (no-op if not using restarts) */ |
438 | entropy->restarts_to_go--; |
439 | |
440 | return TRUE; |
441 | } |
442 | |
443 | |
444 | /* |
445 | * MCU decoding for DC successive approximation refinement scan. |
446 | * Note: we assume such scans can be multi-component, although the spec |
447 | * is not very clear on the point. |
448 | */ |
449 | |
450 | METHODDEF(boolean) |
451 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
452 | { |
453 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
454 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
455 | int blkn; |
456 | JBLOCKROW block; |
457 | BITREAD_STATE_VARS; |
458 | |
459 | /* Process restart marker if needed; may have to suspend */ |
460 | if (cinfo->restart_interval) { |
461 | if (entropy->restarts_to_go == 0) |
462 | if (! process_restart(cinfo)) |
463 | return FALSE; |
464 | } |
465 | |
466 | /* Not worth the cycles to check insufficient_data here, |
467 | * since we will not change the data anyway if we read zeroes. |
468 | */ |
469 | |
470 | /* Load up working state */ |
471 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
472 | |
473 | /* Outer loop handles each block in the MCU */ |
474 | |
475 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
476 | block = MCU_data[blkn]; |
477 | |
478 | /* Encoded data is simply the next bit of the two's-complement DC value */ |
479 | CHECK_BIT_BUFFER(br_state, 1, return FALSE); |
480 | if (GET_BITS(1)) |
481 | (*block)[0] |= p1; |
482 | /* Note: since we use |=, repeating the assignment later is safe */ |
483 | } |
484 | |
485 | /* Completed MCU, so update state */ |
486 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
487 | |
488 | /* Account for restart interval (no-op if not using restarts) */ |
489 | entropy->restarts_to_go--; |
490 | |
491 | return TRUE; |
492 | } |
493 | |
494 | |
495 | /* |
496 | * MCU decoding for AC successive approximation refinement scan. |
497 | */ |
498 | |
499 | METHODDEF(boolean) |
500 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
501 | { |
502 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
503 | int Se = cinfo->Se; |
504 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
505 | int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ |
506 | register int s, k, r; |
507 | unsigned int EOBRUN; |
508 | JBLOCKROW block; |
509 | JCOEFPTR thiscoef; |
510 | BITREAD_STATE_VARS; |
511 | d_derived_tbl * tbl; |
512 | int num_newnz; |
513 | int newnz_pos[DCTSIZE2]; |
514 | |
515 | /* Process restart marker if needed; may have to suspend */ |
516 | if (cinfo->restart_interval) { |
517 | if (entropy->restarts_to_go == 0) |
518 | if (! process_restart(cinfo)) |
519 | return FALSE; |
520 | } |
521 | |
522 | /* If we've run out of data, don't modify the MCU. |
523 | */ |
524 | if (! entropy->pub.insufficient_data) { |
525 | |
526 | /* Load up working state */ |
527 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
528 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
529 | |
530 | /* There is always only one block per MCU */ |
531 | block = MCU_data[0]; |
532 | tbl = entropy->ac_derived_tbl; |
533 | |
534 | /* If we are forced to suspend, we must undo the assignments to any newly |
535 | * nonzero coefficients in the block, because otherwise we'd get confused |
536 | * next time about which coefficients were already nonzero. |
537 | * But we need not undo addition of bits to already-nonzero coefficients; |
538 | * instead, we can test the current bit to see if we already did it. |
539 | */ |
540 | num_newnz = 0; |
541 | |
542 | /* initialize coefficient loop counter to start of band */ |
543 | k = cinfo->Ss; |
544 | |
545 | if (EOBRUN == 0) { |
546 | for (; k <= Se; k++) { |
547 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3); |
548 | r = s >> 4; |
549 | s &= 15; |
550 | if (s) { |
551 | if (s != 1) /* size of new coef should always be 1 */ |
552 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE); |
553 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
554 | if (GET_BITS(1)) |
555 | s = p1; /* newly nonzero coef is positive */ |
556 | else |
557 | s = m1; /* newly nonzero coef is negative */ |
558 | } else { |
559 | if (r != 15) { |
560 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ |
561 | if (r) { |
562 | CHECK_BIT_BUFFER(br_state, r, goto undoit); |
563 | r = GET_BITS(r); |
564 | EOBRUN += r; |
565 | } |
566 | break; /* rest of block is handled by EOB logic */ |
567 | } |
568 | /* note s = 0 for processing ZRL */ |
569 | } |
570 | /* Advance over already-nonzero coefs and r still-zero coefs, |
571 | * appending correction bits to the nonzeroes. A correction bit is 1 |
572 | * if the absolute value of the coefficient must be increased. |
573 | */ |
574 | do { |
575 | thiscoef = *block + jpeg_natural_order[k]; |
576 | if (*thiscoef != 0) { |
577 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
578 | if (GET_BITS(1)) { |
579 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ |
580 | if (*thiscoef >= 0) |
581 | *thiscoef += p1; |
582 | else |
583 | *thiscoef += m1; |
584 | } |
585 | } |
586 | } else { |
587 | if (--r < 0) |
588 | break; /* reached target zero coefficient */ |
589 | } |
590 | k++; |
591 | } while (k <= Se); |
592 | if (s) { |
593 | int pos = jpeg_natural_order[k]; |
594 | /* Output newly nonzero coefficient */ |
595 | (*block)[pos] = (JCOEF) s; |
596 | /* Remember its position in case we have to suspend */ |
597 | newnz_pos[num_newnz++] = pos; |
598 | } |
599 | } |
600 | } |
601 | |
602 | if (EOBRUN > 0) { |
603 | /* Scan any remaining coefficient positions after the end-of-band |
604 | * (the last newly nonzero coefficient, if any). Append a correction |
605 | * bit to each already-nonzero coefficient. A correction bit is 1 |
606 | * if the absolute value of the coefficient must be increased. |
607 | */ |
608 | for (; k <= Se; k++) { |
609 | thiscoef = *block + jpeg_natural_order[k]; |
610 | if (*thiscoef != 0) { |
611 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
612 | if (GET_BITS(1)) { |
613 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ |
614 | if (*thiscoef >= 0) |
615 | *thiscoef += p1; |
616 | else |
617 | *thiscoef += m1; |
618 | } |
619 | } |
620 | } |
621 | } |
622 | /* Count one block completed in EOB run */ |
623 | EOBRUN--; |
624 | } |
625 | |
626 | /* Completed MCU, so update state */ |
627 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
628 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
629 | } |
630 | |
631 | /* Account for restart interval (no-op if not using restarts) */ |
632 | entropy->restarts_to_go--; |
633 | |
634 | return TRUE; |
635 | |
636 | undoit: |
637 | /* Re-zero any output coefficients that we made newly nonzero */ |
638 | while (num_newnz > 0) |
639 | (*block)[newnz_pos[--num_newnz]] = 0; |
640 | |
641 | return FALSE; |
642 | } |
643 | |
644 | |
645 | /* |
646 | * Module initialization routine for progressive Huffman entropy decoding. |
647 | */ |
648 | |
649 | GLOBAL(void) |
650 | jinit_phuff_decoder (j_decompress_ptr cinfo) |
651 | { |
652 | phuff_entropy_ptr entropy; |
653 | int *coef_bit_ptr; |
654 | int ci, i; |
655 | |
656 | entropy = (phuff_entropy_ptr) |
657 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
658 | SIZEOF(phuff_entropy_decoder)); |
659 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
660 | entropy->pub.start_pass = start_pass_phuff_decoder; |
661 | |
662 | /* Mark derived tables unallocated */ |
663 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
664 | entropy->derived_tbls[i] = NULL; |
665 | } |
666 | |
667 | /* Create progression status table */ |
668 | cinfo->coef_bits = (int (*)[DCTSIZE2]) |
669 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
670 | cinfo->num_components*DCTSIZE2*SIZEOF(int)); |
671 | coef_bit_ptr = & cinfo->coef_bits[0][0]; |
672 | for (ci = 0; ci < cinfo->num_components; ci++) |
673 | for (i = 0; i < DCTSIZE2; i++) |
674 | *coef_bit_ptr++ = -1; |
675 | } |
676 | |
677 | #endif /* D_PROGRESSIVE_SUPPORTED */ |
678 | |