1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jfdctflt.c |
7 | * |
8 | * Copyright (C) 1994-1996, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains a floating-point implementation of the |
13 | * forward DCT (Discrete Cosine Transform). |
14 | * |
15 | * This implementation should be more accurate than either of the integer |
16 | * DCT implementations. However, it may not give the same results on all |
17 | * machines because of differences in roundoff behavior. Speed will depend |
18 | * on the hardware's floating point capacity. |
19 | * |
20 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
21 | * on each column. Direct algorithms are also available, but they are |
22 | * much more complex and seem not to be any faster when reduced to code. |
23 | * |
24 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
25 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
26 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
27 | * JPEG textbook (see REFERENCES section in file README). The following code |
28 | * is based directly on figure 4-8 in P&M. |
29 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
30 | * possible to arrange the computation so that many of the multiplies are |
31 | * simple scalings of the final outputs. These multiplies can then be |
32 | * folded into the multiplications or divisions by the JPEG quantization |
33 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
34 | * to be done in the DCT itself. |
35 | * The primary disadvantage of this method is that with a fixed-point |
36 | * implementation, accuracy is lost due to imprecise representation of the |
37 | * scaled quantization values. However, that problem does not arise if |
38 | * we use floating point arithmetic. |
39 | */ |
40 | |
41 | #define JPEG_INTERNALS |
42 | #include "jinclude.h" |
43 | #include "jpeglib.h" |
44 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
45 | |
46 | #ifdef DCT_FLOAT_SUPPORTED |
47 | |
48 | |
49 | /* |
50 | * This module is specialized to the case DCTSIZE = 8. |
51 | */ |
52 | |
53 | #if DCTSIZE != 8 |
54 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
55 | #endif |
56 | |
57 | |
58 | /* |
59 | * Perform the forward DCT on one block of samples. |
60 | */ |
61 | |
62 | GLOBAL(void) |
63 | jpeg_fdct_float (FAST_FLOAT * data) |
64 | { |
65 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
66 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
67 | FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; |
68 | FAST_FLOAT *dataptr; |
69 | int ctr; |
70 | |
71 | /* Pass 1: process rows. */ |
72 | |
73 | dataptr = data; |
74 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
75 | tmp0 = dataptr[0] + dataptr[7]; |
76 | tmp7 = dataptr[0] - dataptr[7]; |
77 | tmp1 = dataptr[1] + dataptr[6]; |
78 | tmp6 = dataptr[1] - dataptr[6]; |
79 | tmp2 = dataptr[2] + dataptr[5]; |
80 | tmp5 = dataptr[2] - dataptr[5]; |
81 | tmp3 = dataptr[3] + dataptr[4]; |
82 | tmp4 = dataptr[3] - dataptr[4]; |
83 | |
84 | /* Even part */ |
85 | |
86 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
87 | tmp13 = tmp0 - tmp3; |
88 | tmp11 = tmp1 + tmp2; |
89 | tmp12 = tmp1 - tmp2; |
90 | |
91 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
92 | dataptr[4] = tmp10 - tmp11; |
93 | |
94 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
95 | dataptr[2] = tmp13 + z1; /* phase 5 */ |
96 | dataptr[6] = tmp13 - z1; |
97 | |
98 | /* Odd part */ |
99 | |
100 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
101 | tmp11 = tmp5 + tmp6; |
102 | tmp12 = tmp6 + tmp7; |
103 | |
104 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
105 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
106 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
107 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
108 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
109 | |
110 | z11 = tmp7 + z3; /* phase 5 */ |
111 | z13 = tmp7 - z3; |
112 | |
113 | dataptr[5] = z13 + z2; /* phase 6 */ |
114 | dataptr[3] = z13 - z2; |
115 | dataptr[1] = z11 + z4; |
116 | dataptr[7] = z11 - z4; |
117 | |
118 | dataptr += DCTSIZE; /* advance pointer to next row */ |
119 | } |
120 | |
121 | /* Pass 2: process columns. */ |
122 | |
123 | dataptr = data; |
124 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
125 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
126 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
127 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
128 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
129 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
130 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
131 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
132 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
133 | |
134 | /* Even part */ |
135 | |
136 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
137 | tmp13 = tmp0 - tmp3; |
138 | tmp11 = tmp1 + tmp2; |
139 | tmp12 = tmp1 - tmp2; |
140 | |
141 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
142 | dataptr[DCTSIZE*4] = tmp10 - tmp11; |
143 | |
144 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
145 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
146 | dataptr[DCTSIZE*6] = tmp13 - z1; |
147 | |
148 | /* Odd part */ |
149 | |
150 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
151 | tmp11 = tmp5 + tmp6; |
152 | tmp12 = tmp6 + tmp7; |
153 | |
154 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
155 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
156 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
157 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
158 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
159 | |
160 | z11 = tmp7 + z3; /* phase 5 */ |
161 | z13 = tmp7 - z3; |
162 | |
163 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
164 | dataptr[DCTSIZE*3] = z13 - z2; |
165 | dataptr[DCTSIZE*1] = z11 + z4; |
166 | dataptr[DCTSIZE*7] = z11 - z4; |
167 | |
168 | dataptr++; /* advance pointer to next column */ |
169 | } |
170 | } |
171 | |
172 | #endif /* DCT_FLOAT_SUPPORTED */ |
173 | |