1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jidctint.c |
7 | * |
8 | * Copyright (C) 1991-1998, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains a slow-but-accurate integer implementation of the |
13 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
14 | * must also perform dequantization of the input coefficients. |
15 | * |
16 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
17 | * on each row (or vice versa, but it's more convenient to emit a row at |
18 | * a time). Direct algorithms are also available, but they are much more |
19 | * complex and seem not to be any faster when reduced to code. |
20 | * |
21 | * This implementation is based on an algorithm described in |
22 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
23 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
24 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
25 | * The primary algorithm described there uses 11 multiplies and 29 adds. |
26 | * We use their alternate method with 12 multiplies and 32 adds. |
27 | * The advantage of this method is that no data path contains more than one |
28 | * multiplication; this allows a very simple and accurate implementation in |
29 | * scaled fixed-point arithmetic, with a minimal number of shifts. |
30 | */ |
31 | |
32 | #define JPEG_INTERNALS |
33 | #include "jinclude.h" |
34 | #include "jpeglib.h" |
35 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
36 | |
37 | #ifdef DCT_ISLOW_SUPPORTED |
38 | |
39 | |
40 | /* |
41 | * This module is specialized to the case DCTSIZE = 8. |
42 | */ |
43 | |
44 | #if DCTSIZE != 8 |
45 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
46 | #endif |
47 | |
48 | |
49 | /* |
50 | * The poop on this scaling stuff is as follows: |
51 | * |
52 | * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) |
53 | * larger than the true IDCT outputs. The final outputs are therefore |
54 | * a factor of N larger than desired; since N=8 this can be cured by |
55 | * a simple right shift at the end of the algorithm. The advantage of |
56 | * this arrangement is that we save two multiplications per 1-D IDCT, |
57 | * because the y0 and y4 inputs need not be divided by sqrt(N). |
58 | * |
59 | * We have to do addition and subtraction of the integer inputs, which |
60 | * is no problem, and multiplication by fractional constants, which is |
61 | * a problem to do in integer arithmetic. We multiply all the constants |
62 | * by CONST_SCALE and convert them to integer constants (thus retaining |
63 | * CONST_BITS bits of precision in the constants). After doing a |
64 | * multiplication we have to divide the product by CONST_SCALE, with proper |
65 | * rounding, to produce the correct output. This division can be done |
66 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting |
67 | * as long as possible so that partial sums can be added together with |
68 | * full fractional precision. |
69 | * |
70 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that |
71 | * they are represented to better-than-integral precision. These outputs |
72 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
73 | * with the recommended scaling. (To scale up 12-bit sample data further, an |
74 | * intermediate INT32 array would be needed.) |
75 | * |
76 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must |
77 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
78 | * shows that the values given below are the most effective. |
79 | */ |
80 | |
81 | #if BITS_IN_JSAMPLE == 8 |
82 | #define CONST_BITS 13 |
83 | #define PASS1_BITS 2 |
84 | #else |
85 | #define CONST_BITS 13 |
86 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
87 | #endif |
88 | |
89 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
90 | * causing a lot of useless floating-point operations at run time. |
91 | * To get around this we use the following pre-calculated constants. |
92 | * If you change CONST_BITS you may want to add appropriate values. |
93 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
94 | */ |
95 | |
96 | #if CONST_BITS == 13 |
97 | #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ |
98 | #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ |
99 | #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ |
100 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
101 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
102 | #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ |
103 | #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ |
104 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
105 | #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ |
106 | #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ |
107 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
108 | #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ |
109 | #else |
110 | #define FIX_0_298631336 FIX(0.298631336) |
111 | #define FIX_0_390180644 FIX(0.390180644) |
112 | #define FIX_0_541196100 FIX(0.541196100) |
113 | #define FIX_0_765366865 FIX(0.765366865) |
114 | #define FIX_0_899976223 FIX(0.899976223) |
115 | #define FIX_1_175875602 FIX(1.175875602) |
116 | #define FIX_1_501321110 FIX(1.501321110) |
117 | #define FIX_1_847759065 FIX(1.847759065) |
118 | #define FIX_1_961570560 FIX(1.961570560) |
119 | #define FIX_2_053119869 FIX(2.053119869) |
120 | #define FIX_2_562915447 FIX(2.562915447) |
121 | #define FIX_3_072711026 FIX(3.072711026) |
122 | #endif |
123 | |
124 | |
125 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
126 | * For 8-bit samples with the recommended scaling, all the variable |
127 | * and constant values involved are no more than 16 bits wide, so a |
128 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
129 | * For 12-bit samples, a full 32-bit multiplication will be needed. |
130 | */ |
131 | |
132 | #if BITS_IN_JSAMPLE == 8 |
133 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
134 | #else |
135 | #define MULTIPLY(var,const) ((var) * (const)) |
136 | #endif |
137 | |
138 | |
139 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
140 | * entry; produce an int result. In this module, both inputs and result |
141 | * are 16 bits or less, so either int or short multiply will work. |
142 | */ |
143 | |
144 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) |
145 | |
146 | |
147 | /* |
148 | * Perform dequantization and inverse DCT on one block of coefficients. |
149 | */ |
150 | |
151 | GLOBAL(void) |
152 | jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
153 | JCOEFPTR coef_block, |
154 | JSAMPARRAY output_buf, JDIMENSION output_col) |
155 | { |
156 | INT32 tmp0, tmp1, tmp2, tmp3; |
157 | INT32 tmp10, tmp11, tmp12, tmp13; |
158 | INT32 z1, z2, z3, z4, z5; |
159 | JCOEFPTR inptr; |
160 | ISLOW_MULT_TYPE * quantptr; |
161 | int * wsptr; |
162 | JSAMPROW outptr; |
163 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
164 | int ctr; |
165 | int workspace[DCTSIZE2]; /* buffers data between passes */ |
166 | SHIFT_TEMPS |
167 | |
168 | /* Pass 1: process columns from input, store into work array. */ |
169 | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
170 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
171 | |
172 | inptr = coef_block; |
173 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
174 | wsptr = workspace; |
175 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
176 | /* Due to quantization, we will usually find that many of the input |
177 | * coefficients are zero, especially the AC terms. We can exploit this |
178 | * by short-circuiting the IDCT calculation for any column in which all |
179 | * the AC terms are zero. In that case each output is equal to the |
180 | * DC coefficient (with scale factor as needed). |
181 | * With typical images and quantization tables, half or more of the |
182 | * column DCT calculations can be simplified this way. |
183 | */ |
184 | |
185 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
186 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
187 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
188 | inptr[DCTSIZE*7] == 0) { |
189 | /* AC terms all zero */ |
190 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; |
191 | |
192 | wsptr[DCTSIZE*0] = dcval; |
193 | wsptr[DCTSIZE*1] = dcval; |
194 | wsptr[DCTSIZE*2] = dcval; |
195 | wsptr[DCTSIZE*3] = dcval; |
196 | wsptr[DCTSIZE*4] = dcval; |
197 | wsptr[DCTSIZE*5] = dcval; |
198 | wsptr[DCTSIZE*6] = dcval; |
199 | wsptr[DCTSIZE*7] = dcval; |
200 | |
201 | inptr++; /* advance pointers to next column */ |
202 | quantptr++; |
203 | wsptr++; |
204 | continue; |
205 | } |
206 | |
207 | /* Even part: reverse the even part of the forward DCT. */ |
208 | /* The rotator is sqrt(2)*c(-6). */ |
209 | |
210 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
211 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
212 | |
213 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
214 | tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); |
215 | tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); |
216 | |
217 | z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
218 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
219 | |
220 | tmp0 = (z2 + z3) << CONST_BITS; |
221 | tmp1 = (z2 - z3) << CONST_BITS; |
222 | |
223 | tmp10 = tmp0 + tmp3; |
224 | tmp13 = tmp0 - tmp3; |
225 | tmp11 = tmp1 + tmp2; |
226 | tmp12 = tmp1 - tmp2; |
227 | |
228 | /* Odd part per figure 8; the matrix is unitary and hence its |
229 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
230 | */ |
231 | |
232 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
233 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
234 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
235 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
236 | |
237 | z1 = tmp0 + tmp3; |
238 | z2 = tmp1 + tmp2; |
239 | z3 = tmp0 + tmp2; |
240 | z4 = tmp1 + tmp3; |
241 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
242 | |
243 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
244 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
245 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
246 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
247 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
248 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
249 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
250 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
251 | |
252 | z3 += z5; |
253 | z4 += z5; |
254 | |
255 | tmp0 += z1 + z3; |
256 | tmp1 += z2 + z4; |
257 | tmp2 += z2 + z3; |
258 | tmp3 += z1 + z4; |
259 | |
260 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
261 | |
262 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
263 | wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
264 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
265 | wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
266 | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
267 | wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
268 | wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
269 | wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
270 | |
271 | inptr++; /* advance pointers to next column */ |
272 | quantptr++; |
273 | wsptr++; |
274 | } |
275 | |
276 | /* Pass 2: process rows from work array, store into output array. */ |
277 | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
278 | /* and also undo the PASS1_BITS scaling. */ |
279 | |
280 | wsptr = workspace; |
281 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
282 | outptr = output_buf[ctr] + output_col; |
283 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
284 | * However, the column calculation has created many nonzero AC terms, so |
285 | * the simplification applies less often (typically 5% to 10% of the time). |
286 | * On machines with very fast multiplication, it's possible that the |
287 | * test takes more time than it's worth. In that case this section |
288 | * may be commented out. |
289 | */ |
290 | |
291 | #ifndef NO_ZERO_ROW_TEST |
292 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
293 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
294 | /* AC terms all zero */ |
295 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
296 | & RANGE_MASK]; |
297 | |
298 | outptr[0] = dcval; |
299 | outptr[1] = dcval; |
300 | outptr[2] = dcval; |
301 | outptr[3] = dcval; |
302 | outptr[4] = dcval; |
303 | outptr[5] = dcval; |
304 | outptr[6] = dcval; |
305 | outptr[7] = dcval; |
306 | |
307 | wsptr += DCTSIZE; /* advance pointer to next row */ |
308 | continue; |
309 | } |
310 | #endif |
311 | |
312 | /* Even part: reverse the even part of the forward DCT. */ |
313 | /* The rotator is sqrt(2)*c(-6). */ |
314 | |
315 | z2 = (INT32) wsptr[2]; |
316 | z3 = (INT32) wsptr[6]; |
317 | |
318 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
319 | tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); |
320 | tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); |
321 | |
322 | tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS; |
323 | tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS; |
324 | |
325 | tmp10 = tmp0 + tmp3; |
326 | tmp13 = tmp0 - tmp3; |
327 | tmp11 = tmp1 + tmp2; |
328 | tmp12 = tmp1 - tmp2; |
329 | |
330 | /* Odd part per figure 8; the matrix is unitary and hence its |
331 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
332 | */ |
333 | |
334 | tmp0 = (INT32) wsptr[7]; |
335 | tmp1 = (INT32) wsptr[5]; |
336 | tmp2 = (INT32) wsptr[3]; |
337 | tmp3 = (INT32) wsptr[1]; |
338 | |
339 | z1 = tmp0 + tmp3; |
340 | z2 = tmp1 + tmp2; |
341 | z3 = tmp0 + tmp2; |
342 | z4 = tmp1 + tmp3; |
343 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
344 | |
345 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
346 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
347 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
348 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
349 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
350 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
351 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
352 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
353 | |
354 | z3 += z5; |
355 | z4 += z5; |
356 | |
357 | tmp0 += z1 + z3; |
358 | tmp1 += z2 + z4; |
359 | tmp2 += z2 + z3; |
360 | tmp3 += z1 + z4; |
361 | |
362 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
363 | |
364 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, |
365 | CONST_BITS+PASS1_BITS+3) |
366 | & RANGE_MASK]; |
367 | outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, |
368 | CONST_BITS+PASS1_BITS+3) |
369 | & RANGE_MASK]; |
370 | outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, |
371 | CONST_BITS+PASS1_BITS+3) |
372 | & RANGE_MASK]; |
373 | outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, |
374 | CONST_BITS+PASS1_BITS+3) |
375 | & RANGE_MASK]; |
376 | outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, |
377 | CONST_BITS+PASS1_BITS+3) |
378 | & RANGE_MASK]; |
379 | outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, |
380 | CONST_BITS+PASS1_BITS+3) |
381 | & RANGE_MASK]; |
382 | outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, |
383 | CONST_BITS+PASS1_BITS+3) |
384 | & RANGE_MASK]; |
385 | outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, |
386 | CONST_BITS+PASS1_BITS+3) |
387 | & RANGE_MASK]; |
388 | |
389 | wsptr += DCTSIZE; /* advance pointer to next row */ |
390 | } |
391 | } |
392 | |
393 | #endif /* DCT_ISLOW_SUPPORTED */ |
394 | |