1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jmemmgr.c |
7 | * |
8 | * Copyright (C) 1991-1997, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains the JPEG system-independent memory management |
13 | * routines. This code is usable across a wide variety of machines; most |
14 | * of the system dependencies have been isolated in a separate file. |
15 | * The major functions provided here are: |
16 | * * pool-based allocation and freeing of memory; |
17 | * * policy decisions about how to divide available memory among the |
18 | * virtual arrays; |
19 | * * control logic for swapping virtual arrays between main memory and |
20 | * backing storage. |
21 | * The separate system-dependent file provides the actual backing-storage |
22 | * access code, and it contains the policy decision about how much total |
23 | * main memory to use. |
24 | * This file is system-dependent in the sense that some of its functions |
25 | * are unnecessary in some systems. For example, if there is enough virtual |
26 | * memory so that backing storage will never be used, much of the virtual |
27 | * array control logic could be removed. (Of course, if you have that much |
28 | * memory then you shouldn't care about a little bit of unused code...) |
29 | */ |
30 | |
31 | #define JPEG_INTERNALS |
32 | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
33 | #include "jinclude.h" |
34 | #include "jpeglib.h" |
35 | #include "jmemsys.h" /* import the system-dependent declarations */ |
36 | |
37 | #ifndef NO_GETENV |
38 | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
39 | extern char * getenv JPP((const char * name)); |
40 | #endif |
41 | #endif |
42 | |
43 | |
44 | /* |
45 | * Some important notes: |
46 | * The allocation routines provided here must never return NULL. |
47 | * They should exit to error_exit if unsuccessful. |
48 | * |
49 | * It's not a good idea to try to merge the sarray and barray routines, |
50 | * even though they are textually almost the same, because samples are |
51 | * usually stored as bytes while coefficients are shorts or ints. Thus, |
52 | * in machines where byte pointers have a different representation from |
53 | * word pointers, the resulting machine code could not be the same. |
54 | */ |
55 | |
56 | |
57 | /* |
58 | * Many machines require storage alignment: longs must start on 4-byte |
59 | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
60 | * always returns pointers that are multiples of the worst-case alignment |
61 | * requirement, and we had better do so too. |
62 | * There isn't any really portable way to determine the worst-case alignment |
63 | * requirement. This module assumes that the alignment requirement is |
64 | * multiples of sizeof(ALIGN_TYPE). |
65 | * By default, we define ALIGN_TYPE as double. This is necessary on some |
66 | * workstations (where doubles really do need 8-byte alignment) and will work |
67 | * fine on nearly everything. If your machine has lesser alignment needs, |
68 | * you can save a few bytes by making ALIGN_TYPE smaller. |
69 | * The only place I know of where this will NOT work is certain Macintosh |
70 | * 680x0 compilers that define double as a 10-byte IEEE extended float. |
71 | * Doing 10-byte alignment is counterproductive because longwords won't be |
72 | * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have |
73 | * such a compiler. |
74 | */ |
75 | |
76 | #ifndef ALIGN_TYPE /* so can override from jconfig.h */ |
77 | #define ALIGN_TYPE double |
78 | #endif |
79 | |
80 | |
81 | /* |
82 | * We allocate objects from "pools", where each pool is gotten with a single |
83 | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
84 | * overhead within a pool, except for alignment padding. Each pool has a |
85 | * header with a link to the next pool of the same class. |
86 | * Small and large pool headers are identical except that the latter's |
87 | * link pointer must be FAR on 80x86 machines. |
88 | * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE |
89 | * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple |
90 | * of the alignment requirement of ALIGN_TYPE. |
91 | */ |
92 | |
93 | typedef union small_pool_struct * small_pool_ptr; |
94 | |
95 | typedef union small_pool_struct { |
96 | struct { |
97 | small_pool_ptr next; /* next in list of pools */ |
98 | size_t bytes_used; /* how many bytes already used within pool */ |
99 | size_t bytes_left; /* bytes still available in this pool */ |
100 | } hdr; |
101 | ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
102 | } small_pool_hdr; |
103 | |
104 | typedef union large_pool_struct FAR * large_pool_ptr; |
105 | |
106 | typedef union large_pool_struct { |
107 | struct { |
108 | large_pool_ptr next; /* next in list of pools */ |
109 | size_t bytes_used; /* how many bytes already used within pool */ |
110 | size_t bytes_left; /* bytes still available in this pool */ |
111 | } hdr; |
112 | ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
113 | } large_pool_hdr; |
114 | |
115 | |
116 | /* |
117 | * Here is the full definition of a memory manager object. |
118 | */ |
119 | |
120 | typedef struct { |
121 | struct jpeg_memory_mgr pub; /* public fields */ |
122 | |
123 | /* Each pool identifier (lifetime class) names a linked list of pools. */ |
124 | small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
125 | large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
126 | |
127 | /* Since we only have one lifetime class of virtual arrays, only one |
128 | * linked list is necessary (for each datatype). Note that the virtual |
129 | * array control blocks being linked together are actually stored somewhere |
130 | * in the small-pool list. |
131 | */ |
132 | jvirt_sarray_ptr virt_sarray_list; |
133 | jvirt_barray_ptr virt_barray_list; |
134 | |
135 | /* This counts total space obtained from jpeg_get_small/large */ |
136 | size_t total_space_allocated; |
137 | |
138 | /* alloc_sarray and alloc_barray set this value for use by virtual |
139 | * array routines. |
140 | */ |
141 | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
142 | } my_memory_mgr; |
143 | |
144 | typedef my_memory_mgr * my_mem_ptr; |
145 | |
146 | |
147 | /* |
148 | * The control blocks for virtual arrays. |
149 | * Note that these blocks are allocated in the "small" pool area. |
150 | * System-dependent info for the associated backing store (if any) is hidden |
151 | * inside the backing_store_info struct. |
152 | */ |
153 | |
154 | struct jvirt_sarray_control { |
155 | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
156 | JDIMENSION rows_in_array; /* total virtual array height */ |
157 | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
158 | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
159 | JDIMENSION rows_in_mem; /* height of memory buffer */ |
160 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
161 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
162 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
163 | boolean pre_zero; /* pre-zero mode requested? */ |
164 | boolean dirty; /* do current buffer contents need written? */ |
165 | boolean b_s_open; /* is backing-store data valid? */ |
166 | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
167 | backing_store_info b_s_info; /* System-dependent control info */ |
168 | }; |
169 | |
170 | struct jvirt_barray_control { |
171 | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
172 | JDIMENSION rows_in_array; /* total virtual array height */ |
173 | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
174 | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
175 | JDIMENSION rows_in_mem; /* height of memory buffer */ |
176 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
177 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
178 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
179 | boolean pre_zero; /* pre-zero mode requested? */ |
180 | boolean dirty; /* do current buffer contents need written? */ |
181 | boolean b_s_open; /* is backing-store data valid? */ |
182 | jvirt_barray_ptr next; /* link to next virtual barray control block */ |
183 | backing_store_info b_s_info; /* System-dependent control info */ |
184 | }; |
185 | |
186 | |
187 | #ifdef MEM_STATS /* optional extra stuff for statistics */ |
188 | |
189 | LOCAL(void) |
190 | print_mem_stats (j_common_ptr cinfo, int pool_id) |
191 | { |
192 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
193 | small_pool_ptr shdr_ptr; |
194 | large_pool_ptr lhdr_ptr; |
195 | |
196 | /* Since this is only a debugging stub, we can cheat a little by using |
197 | * fprintf directly rather than going through the trace message code. |
198 | * This is helpful because message parm array can't handle longs. |
199 | */ |
200 | fprintf(stderr, "Freeing pool %d, total space = %ld\n" , |
201 | pool_id, mem->total_space_allocated); |
202 | |
203 | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
204 | lhdr_ptr = lhdr_ptr->hdr.next) { |
205 | fprintf(stderr, " Large chunk used %ld\n" , |
206 | (long) lhdr_ptr->hdr.bytes_used); |
207 | } |
208 | |
209 | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
210 | shdr_ptr = shdr_ptr->hdr.next) { |
211 | fprintf(stderr, " Small chunk used %ld free %ld\n" , |
212 | (long) shdr_ptr->hdr.bytes_used, |
213 | (long) shdr_ptr->hdr.bytes_left); |
214 | } |
215 | } |
216 | |
217 | #endif /* MEM_STATS */ |
218 | |
219 | |
220 | LOCAL(void) |
221 | out_of_memory (j_common_ptr cinfo, int which) |
222 | /* Report an out-of-memory error and stop execution */ |
223 | /* If we compiled MEM_STATS support, report alloc requests before dying */ |
224 | { |
225 | #ifdef MEM_STATS |
226 | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
227 | #endif |
228 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
229 | } |
230 | |
231 | |
232 | /* |
233 | * Allocation of "small" objects. |
234 | * |
235 | * For these, we use pooled storage. When a new pool must be created, |
236 | * we try to get enough space for the current request plus a "slop" factor, |
237 | * where the slop will be the amount of leftover space in the new pool. |
238 | * The speed vs. space tradeoff is largely determined by the slop values. |
239 | * A different slop value is provided for each pool class (lifetime), |
240 | * and we also distinguish the first pool of a class from later ones. |
241 | * NOTE: the values given work fairly well on both 16- and 32-bit-int |
242 | * machines, but may be too small if longs are 64 bits or more. |
243 | */ |
244 | |
245 | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
246 | { |
247 | 1600, /* first PERMANENT pool */ |
248 | 16000 /* first IMAGE pool */ |
249 | }; |
250 | |
251 | static const size_t [JPOOL_NUMPOOLS] = |
252 | { |
253 | 0, /* additional PERMANENT pools */ |
254 | 5000 /* additional IMAGE pools */ |
255 | }; |
256 | |
257 | #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
258 | |
259 | |
260 | METHODDEF(void *) |
261 | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
262 | /* Allocate a "small" object */ |
263 | { |
264 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
265 | small_pool_ptr hdr_ptr, prev_hdr_ptr; |
266 | char * data_ptr; |
267 | size_t odd_bytes, min_request, slop; |
268 | |
269 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
270 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) |
271 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
272 | |
273 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
274 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
275 | if (odd_bytes > 0) |
276 | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
277 | |
278 | /* See if space is available in any existing pool */ |
279 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
280 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
281 | prev_hdr_ptr = NULL; |
282 | hdr_ptr = mem->small_list[pool_id]; |
283 | while (hdr_ptr != NULL) { |
284 | if (hdr_ptr->hdr.bytes_left >= sizeofobject) |
285 | break; /* found pool with enough space */ |
286 | prev_hdr_ptr = hdr_ptr; |
287 | hdr_ptr = hdr_ptr->hdr.next; |
288 | } |
289 | |
290 | /* Time to make a new pool? */ |
291 | if (hdr_ptr == NULL) { |
292 | /* min_request is what we need now, slop is what will be leftover */ |
293 | min_request = sizeofobject + SIZEOF(small_pool_hdr); |
294 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
295 | slop = first_pool_slop[pool_id]; |
296 | else |
297 | slop = extra_pool_slop[pool_id]; |
298 | /* Don't ask for more than MAX_ALLOC_CHUNK */ |
299 | if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
300 | slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
301 | /* Try to get space, if fail reduce slop and try again */ |
302 | for (;;) { |
303 | hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
304 | if (hdr_ptr != NULL) |
305 | break; |
306 | slop /= 2; |
307 | if (slop < MIN_SLOP) /* give up when it gets real small */ |
308 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
309 | } |
310 | mem->total_space_allocated += min_request + slop; |
311 | /* Success, initialize the new pool header and add to end of list */ |
312 | hdr_ptr->hdr.next = NULL; |
313 | hdr_ptr->hdr.bytes_used = 0; |
314 | hdr_ptr->hdr.bytes_left = sizeofobject + slop; |
315 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
316 | mem->small_list[pool_id] = hdr_ptr; |
317 | else |
318 | prev_hdr_ptr->hdr.next = hdr_ptr; |
319 | } |
320 | |
321 | /* OK, allocate the object from the current pool */ |
322 | data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ |
323 | data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ |
324 | hdr_ptr->hdr.bytes_used += sizeofobject; |
325 | hdr_ptr->hdr.bytes_left -= sizeofobject; |
326 | |
327 | return (void *) data_ptr; |
328 | } |
329 | |
330 | |
331 | /* |
332 | * Allocation of "large" objects. |
333 | * |
334 | * The external semantics of these are the same as "small" objects, |
335 | * except that FAR pointers are used on 80x86. However the pool |
336 | * management heuristics are quite different. We assume that each |
337 | * request is large enough that it may as well be passed directly to |
338 | * jpeg_get_large; the pool management just links everything together |
339 | * so that we can free it all on demand. |
340 | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
341 | * structures. The routines that create these structures (see below) |
342 | * deliberately bunch rows together to ensure a large request size. |
343 | */ |
344 | |
345 | METHODDEF(void FAR *) |
346 | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
347 | /* Allocate a "large" object */ |
348 | { |
349 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
350 | large_pool_ptr hdr_ptr; |
351 | size_t odd_bytes; |
352 | |
353 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
354 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) |
355 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
356 | |
357 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
358 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
359 | if (odd_bytes > 0) |
360 | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
361 | |
362 | /* Always make a new pool */ |
363 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
364 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
365 | |
366 | hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
367 | SIZEOF(large_pool_hdr)); |
368 | if (hdr_ptr == NULL) |
369 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
370 | mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); |
371 | |
372 | /* Success, initialize the new pool header and add to list */ |
373 | hdr_ptr->hdr.next = mem->large_list[pool_id]; |
374 | /* We maintain space counts in each pool header for statistical purposes, |
375 | * even though they are not needed for allocation. |
376 | */ |
377 | hdr_ptr->hdr.bytes_used = sizeofobject; |
378 | hdr_ptr->hdr.bytes_left = 0; |
379 | mem->large_list[pool_id] = hdr_ptr; |
380 | |
381 | return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ |
382 | } |
383 | |
384 | |
385 | /* |
386 | * Creation of 2-D sample arrays. |
387 | * The pointers are in near heap, the samples themselves in FAR heap. |
388 | * |
389 | * To minimize allocation overhead and to allow I/O of large contiguous |
390 | * blocks, we allocate the sample rows in groups of as many rows as possible |
391 | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
392 | * NB: the virtual array control routines, later in this file, know about |
393 | * this chunking of rows. The rowsperchunk value is left in the mem manager |
394 | * object so that it can be saved away if this sarray is the workspace for |
395 | * a virtual array. |
396 | */ |
397 | |
398 | METHODDEF(JSAMPARRAY) |
399 | alloc_sarray (j_common_ptr cinfo, int pool_id, |
400 | JDIMENSION samplesperrow, JDIMENSION numrows) |
401 | /* Allocate a 2-D sample array */ |
402 | { |
403 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
404 | JSAMPARRAY result; |
405 | JSAMPROW workspace; |
406 | JDIMENSION rowsperchunk, currow, i; |
407 | long ltemp; |
408 | |
409 | if (samplesperrow == 0) { |
410 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
411 | } |
412 | /* Calculate max # of rows allowed in one allocation chunk */ |
413 | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
414 | ((long) samplesperrow * SIZEOF(JSAMPLE)); |
415 | if (ltemp <= 0) |
416 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
417 | if (ltemp < (long) numrows) |
418 | rowsperchunk = (JDIMENSION) ltemp; |
419 | else |
420 | rowsperchunk = numrows; |
421 | mem->last_rowsperchunk = rowsperchunk; |
422 | |
423 | /* Get space for row pointers (small object) */ |
424 | result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
425 | (size_t) (numrows * SIZEOF(JSAMPROW))); |
426 | |
427 | /* Get the rows themselves (large objects) */ |
428 | currow = 0; |
429 | while (currow < numrows) { |
430 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
431 | workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
432 | (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
433 | * SIZEOF(JSAMPLE))); |
434 | for (i = rowsperchunk; i > 0; i--) { |
435 | result[currow++] = workspace; |
436 | workspace += samplesperrow; |
437 | } |
438 | } |
439 | |
440 | return result; |
441 | } |
442 | |
443 | |
444 | /* |
445 | * Creation of 2-D coefficient-block arrays. |
446 | * This is essentially the same as the code for sample arrays, above. |
447 | */ |
448 | |
449 | METHODDEF(JBLOCKARRAY) |
450 | alloc_barray (j_common_ptr cinfo, int pool_id, |
451 | JDIMENSION blocksperrow, JDIMENSION numrows) |
452 | /* Allocate a 2-D coefficient-block array */ |
453 | { |
454 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
455 | JBLOCKARRAY result; |
456 | JBLOCKROW workspace; |
457 | JDIMENSION rowsperchunk, currow, i; |
458 | long ltemp; |
459 | |
460 | if (blocksperrow == 0) { |
461 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
462 | } |
463 | |
464 | /* Calculate max # of rows allowed in one allocation chunk */ |
465 | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
466 | ((long) blocksperrow * SIZEOF(JBLOCK)); |
467 | if (ltemp <= 0) |
468 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
469 | if (ltemp < (long) numrows) |
470 | rowsperchunk = (JDIMENSION) ltemp; |
471 | else |
472 | rowsperchunk = numrows; |
473 | mem->last_rowsperchunk = rowsperchunk; |
474 | |
475 | /* Get space for row pointers (small object) */ |
476 | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
477 | (size_t) (numrows * SIZEOF(JBLOCKROW))); |
478 | |
479 | /* Get the rows themselves (large objects) */ |
480 | currow = 0; |
481 | while (currow < numrows) { |
482 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
483 | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
484 | (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
485 | * SIZEOF(JBLOCK))); |
486 | for (i = rowsperchunk; i > 0; i--) { |
487 | result[currow++] = workspace; |
488 | workspace += blocksperrow; |
489 | } |
490 | } |
491 | |
492 | return result; |
493 | } |
494 | |
495 | |
496 | /* |
497 | * About virtual array management: |
498 | * |
499 | * The above "normal" array routines are only used to allocate strip buffers |
500 | * (as wide as the image, but just a few rows high). Full-image-sized buffers |
501 | * are handled as "virtual" arrays. The array is still accessed a strip at a |
502 | * time, but the memory manager must save the whole array for repeated |
503 | * accesses. The intended implementation is that there is a strip buffer in |
504 | * memory (as high as is possible given the desired memory limit), plus a |
505 | * backing file that holds the rest of the array. |
506 | * |
507 | * The request_virt_array routines are told the total size of the image and |
508 | * the maximum number of rows that will be accessed at once. The in-memory |
509 | * buffer must be at least as large as the maxaccess value. |
510 | * |
511 | * The request routines create control blocks but not the in-memory buffers. |
512 | * That is postponed until realize_virt_arrays is called. At that time the |
513 | * total amount of space needed is known (approximately, anyway), so free |
514 | * memory can be divided up fairly. |
515 | * |
516 | * The access_virt_array routines are responsible for making a specific strip |
517 | * area accessible (after reading or writing the backing file, if necessary). |
518 | * Note that the access routines are told whether the caller intends to modify |
519 | * the accessed strip; during a read-only pass this saves having to rewrite |
520 | * data to disk. The access routines are also responsible for pre-zeroing |
521 | * any newly accessed rows, if pre-zeroing was requested. |
522 | * |
523 | * In current usage, the access requests are usually for nonoverlapping |
524 | * strips; that is, successive access start_row numbers differ by exactly |
525 | * num_rows = maxaccess. This means we can get good performance with simple |
526 | * buffer dump/reload logic, by making the in-memory buffer be a multiple |
527 | * of the access height; then there will never be accesses across bufferload |
528 | * boundaries. The code will still work with overlapping access requests, |
529 | * but it doesn't handle bufferload overlaps very efficiently. |
530 | */ |
531 | |
532 | |
533 | METHODDEF(jvirt_sarray_ptr) |
534 | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
535 | JDIMENSION samplesperrow, JDIMENSION numrows, |
536 | JDIMENSION maxaccess) |
537 | /* Request a virtual 2-D sample array */ |
538 | { |
539 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
540 | jvirt_sarray_ptr result; |
541 | |
542 | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
543 | if (pool_id != JPOOL_IMAGE) |
544 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
545 | |
546 | /* get control block */ |
547 | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
548 | SIZEOF(struct jvirt_sarray_control)); |
549 | |
550 | result->mem_buffer = NULL; /* marks array not yet realized */ |
551 | result->rows_in_array = numrows; |
552 | result->samplesperrow = samplesperrow; |
553 | result->maxaccess = maxaccess; |
554 | result->pre_zero = pre_zero; |
555 | result->b_s_open = FALSE; /* no associated backing-store object */ |
556 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
557 | mem->virt_sarray_list = result; |
558 | |
559 | return result; |
560 | } |
561 | |
562 | |
563 | METHODDEF(jvirt_barray_ptr) |
564 | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
565 | JDIMENSION blocksperrow, JDIMENSION numrows, |
566 | JDIMENSION maxaccess) |
567 | /* Request a virtual 2-D coefficient-block array */ |
568 | { |
569 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
570 | jvirt_barray_ptr result; |
571 | |
572 | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
573 | if (pool_id != JPOOL_IMAGE) |
574 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
575 | |
576 | /* get control block */ |
577 | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
578 | SIZEOF(struct jvirt_barray_control)); |
579 | |
580 | result->mem_buffer = NULL; /* marks array not yet realized */ |
581 | result->rows_in_array = numrows; |
582 | result->blocksperrow = blocksperrow; |
583 | result->maxaccess = maxaccess; |
584 | result->pre_zero = pre_zero; |
585 | result->b_s_open = FALSE; /* no associated backing-store object */ |
586 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
587 | mem->virt_barray_list = result; |
588 | |
589 | return result; |
590 | } |
591 | |
592 | |
593 | METHODDEF(void) |
594 | realize_virt_arrays (j_common_ptr cinfo) |
595 | /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
596 | { |
597 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
598 | size_t space_per_minheight, maximum_space, avail_mem; |
599 | size_t minheights, max_minheights; |
600 | jvirt_sarray_ptr sptr; |
601 | jvirt_barray_ptr bptr; |
602 | |
603 | /* Compute the minimum space needed (maxaccess rows in each buffer) |
604 | * and the maximum space needed (full image height in each buffer). |
605 | * These may be of use to the system-dependent jpeg_mem_available routine. |
606 | */ |
607 | space_per_minheight = 0; |
608 | maximum_space = 0; |
609 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
610 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
611 | space_per_minheight += (long) sptr->maxaccess * |
612 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
613 | maximum_space += (long) sptr->rows_in_array * |
614 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
615 | } |
616 | } |
617 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
618 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
619 | space_per_minheight += (long) bptr->maxaccess * |
620 | (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
621 | maximum_space += (long) bptr->rows_in_array * |
622 | (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
623 | } |
624 | } |
625 | |
626 | if (space_per_minheight <= 0) |
627 | return; /* no unrealized arrays, no work */ |
628 | |
629 | /* Determine amount of memory to actually use; this is system-dependent. */ |
630 | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
631 | mem->total_space_allocated); |
632 | |
633 | /* If the maximum space needed is available, make all the buffers full |
634 | * height; otherwise parcel it out with the same number of minheights |
635 | * in each buffer. |
636 | */ |
637 | if (avail_mem >= maximum_space) |
638 | max_minheights = 1000000000L; |
639 | else { |
640 | max_minheights = avail_mem / space_per_minheight; |
641 | /* If there doesn't seem to be enough space, try to get the minimum |
642 | * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
643 | */ |
644 | if (max_minheights <= 0) |
645 | max_minheights = 1; |
646 | } |
647 | |
648 | /* Allocate the in-memory buffers and initialize backing store as needed. */ |
649 | |
650 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
651 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
652 | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
653 | if (minheights <= max_minheights) { |
654 | /* This buffer fits in memory */ |
655 | sptr->rows_in_mem = sptr->rows_in_array; |
656 | } else { |
657 | /* It doesn't fit in memory, create backing store. */ |
658 | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
659 | jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
660 | (long) sptr->rows_in_array * |
661 | (long) sptr->samplesperrow * |
662 | (long) SIZEOF(JSAMPLE)); |
663 | sptr->b_s_open = TRUE; |
664 | } |
665 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
666 | sptr->samplesperrow, sptr->rows_in_mem); |
667 | sptr->rowsperchunk = mem->last_rowsperchunk; |
668 | sptr->cur_start_row = 0; |
669 | sptr->first_undef_row = 0; |
670 | sptr->dirty = FALSE; |
671 | } |
672 | } |
673 | |
674 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
675 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
676 | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
677 | if (minheights <= max_minheights) { |
678 | /* This buffer fits in memory */ |
679 | bptr->rows_in_mem = bptr->rows_in_array; |
680 | } else { |
681 | /* It doesn't fit in memory, create backing store. */ |
682 | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
683 | jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
684 | (long) bptr->rows_in_array * |
685 | (long) bptr->blocksperrow * |
686 | (long) SIZEOF(JBLOCK)); |
687 | bptr->b_s_open = TRUE; |
688 | } |
689 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
690 | bptr->blocksperrow, bptr->rows_in_mem); |
691 | bptr->rowsperchunk = mem->last_rowsperchunk; |
692 | bptr->cur_start_row = 0; |
693 | bptr->first_undef_row = 0; |
694 | bptr->dirty = FALSE; |
695 | } |
696 | } |
697 | } |
698 | |
699 | |
700 | LOCAL(void) |
701 | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
702 | /* Do backing store read or write of a virtual sample array */ |
703 | { |
704 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
705 | |
706 | bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); |
707 | file_offset = ptr->cur_start_row * bytesperrow; |
708 | /* Loop to read or write each allocation chunk in mem_buffer */ |
709 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
710 | /* One chunk, but check for short chunk at end of buffer */ |
711 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
712 | /* Transfer no more than is currently defined */ |
713 | thisrow = (long) ptr->cur_start_row + i; |
714 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
715 | /* Transfer no more than fits in file */ |
716 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
717 | if (rows <= 0) /* this chunk might be past end of file! */ |
718 | break; |
719 | byte_count = rows * bytesperrow; |
720 | if (writing) |
721 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
722 | (void FAR *) ptr->mem_buffer[i], |
723 | file_offset, byte_count); |
724 | else |
725 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
726 | (void FAR *) ptr->mem_buffer[i], |
727 | file_offset, byte_count); |
728 | file_offset += byte_count; |
729 | } |
730 | } |
731 | |
732 | |
733 | LOCAL(void) |
734 | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
735 | /* Do backing store read or write of a virtual coefficient-block array */ |
736 | { |
737 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
738 | |
739 | bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); |
740 | file_offset = ptr->cur_start_row * bytesperrow; |
741 | /* Loop to read or write each allocation chunk in mem_buffer */ |
742 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
743 | /* One chunk, but check for short chunk at end of buffer */ |
744 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
745 | /* Transfer no more than is currently defined */ |
746 | thisrow = (long) ptr->cur_start_row + i; |
747 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
748 | /* Transfer no more than fits in file */ |
749 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
750 | if (rows <= 0) /* this chunk might be past end of file! */ |
751 | break; |
752 | byte_count = rows * bytesperrow; |
753 | if (writing) |
754 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
755 | (void FAR *) ptr->mem_buffer[i], |
756 | file_offset, byte_count); |
757 | else |
758 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
759 | (void FAR *) ptr->mem_buffer[i], |
760 | file_offset, byte_count); |
761 | file_offset += byte_count; |
762 | } |
763 | } |
764 | |
765 | |
766 | METHODDEF(JSAMPARRAY) |
767 | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
768 | JDIMENSION start_row, JDIMENSION num_rows, |
769 | boolean writable) |
770 | /* Access the part of a virtual sample array starting at start_row */ |
771 | /* and extending for num_rows rows. writable is true if */ |
772 | /* caller intends to modify the accessed area. */ |
773 | { |
774 | JDIMENSION end_row = start_row + num_rows; |
775 | JDIMENSION undef_row; |
776 | |
777 | /* debugging check */ |
778 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
779 | ptr->mem_buffer == NULL) |
780 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
781 | |
782 | /* Make the desired part of the virtual array accessible */ |
783 | if (start_row < ptr->cur_start_row || |
784 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
785 | if (! ptr->b_s_open) |
786 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
787 | /* Flush old buffer contents if necessary */ |
788 | if (ptr->dirty) { |
789 | do_sarray_io(cinfo, ptr, TRUE); |
790 | ptr->dirty = FALSE; |
791 | } |
792 | /* Decide what part of virtual array to access. |
793 | * Algorithm: if target address > current window, assume forward scan, |
794 | * load starting at target address. If target address < current window, |
795 | * assume backward scan, load so that target area is top of window. |
796 | * Note that when switching from forward write to forward read, will have |
797 | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
798 | */ |
799 | if (start_row > ptr->cur_start_row) { |
800 | ptr->cur_start_row = start_row; |
801 | } else { |
802 | /* use long arithmetic here to avoid overflow & unsigned problems */ |
803 | long ltemp; |
804 | |
805 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
806 | if (ltemp < 0) |
807 | ltemp = 0; /* don't fall off front end of file */ |
808 | ptr->cur_start_row = (JDIMENSION) ltemp; |
809 | } |
810 | /* Read in the selected part of the array. |
811 | * During the initial write pass, we will do no actual read |
812 | * because the selected part is all undefined. |
813 | */ |
814 | do_sarray_io(cinfo, ptr, FALSE); |
815 | } |
816 | /* Ensure the accessed part of the array is defined; prezero if needed. |
817 | * To improve locality of access, we only prezero the part of the array |
818 | * that the caller is about to access, not the entire in-memory array. |
819 | */ |
820 | if (ptr->first_undef_row < end_row) { |
821 | if (ptr->first_undef_row < start_row) { |
822 | if (writable) /* writer skipped over a section of array */ |
823 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
824 | undef_row = start_row; /* but reader is allowed to read ahead */ |
825 | } else { |
826 | undef_row = ptr->first_undef_row; |
827 | } |
828 | if (writable) |
829 | ptr->first_undef_row = end_row; |
830 | if (ptr->pre_zero) { |
831 | size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); |
832 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
833 | end_row -= ptr->cur_start_row; |
834 | while (undef_row < end_row) { |
835 | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
836 | undef_row++; |
837 | } |
838 | } else { |
839 | if (! writable) /* reader looking at undefined data */ |
840 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
841 | } |
842 | } |
843 | /* Flag the buffer dirty if caller will write in it */ |
844 | if (writable) |
845 | ptr->dirty = TRUE; |
846 | /* Return address of proper part of the buffer */ |
847 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
848 | } |
849 | |
850 | |
851 | METHODDEF(JBLOCKARRAY) |
852 | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
853 | JDIMENSION start_row, JDIMENSION num_rows, |
854 | boolean writable) |
855 | /* Access the part of a virtual block array starting at start_row */ |
856 | /* and extending for num_rows rows. writable is true if */ |
857 | /* caller intends to modify the accessed area. */ |
858 | { |
859 | JDIMENSION end_row = start_row + num_rows; |
860 | JDIMENSION undef_row; |
861 | |
862 | /* debugging check */ |
863 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
864 | ptr->mem_buffer == NULL) |
865 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
866 | |
867 | /* Make the desired part of the virtual array accessible */ |
868 | if (start_row < ptr->cur_start_row || |
869 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
870 | if (! ptr->b_s_open) |
871 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
872 | /* Flush old buffer contents if necessary */ |
873 | if (ptr->dirty) { |
874 | do_barray_io(cinfo, ptr, TRUE); |
875 | ptr->dirty = FALSE; |
876 | } |
877 | /* Decide what part of virtual array to access. |
878 | * Algorithm: if target address > current window, assume forward scan, |
879 | * load starting at target address. If target address < current window, |
880 | * assume backward scan, load so that target area is top of window. |
881 | * Note that when switching from forward write to forward read, will have |
882 | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
883 | */ |
884 | if (start_row > ptr->cur_start_row) { |
885 | ptr->cur_start_row = start_row; |
886 | } else { |
887 | /* use long arithmetic here to avoid overflow & unsigned problems */ |
888 | long ltemp; |
889 | |
890 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
891 | if (ltemp < 0) |
892 | ltemp = 0; /* don't fall off front end of file */ |
893 | ptr->cur_start_row = (JDIMENSION) ltemp; |
894 | } |
895 | /* Read in the selected part of the array. |
896 | * During the initial write pass, we will do no actual read |
897 | * because the selected part is all undefined. |
898 | */ |
899 | do_barray_io(cinfo, ptr, FALSE); |
900 | } |
901 | /* Ensure the accessed part of the array is defined; prezero if needed. |
902 | * To improve locality of access, we only prezero the part of the array |
903 | * that the caller is about to access, not the entire in-memory array. |
904 | */ |
905 | if (ptr->first_undef_row < end_row) { |
906 | if (ptr->first_undef_row < start_row) { |
907 | if (writable) /* writer skipped over a section of array */ |
908 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
909 | undef_row = start_row; /* but reader is allowed to read ahead */ |
910 | } else { |
911 | undef_row = ptr->first_undef_row; |
912 | } |
913 | if (writable) |
914 | ptr->first_undef_row = end_row; |
915 | if (ptr->pre_zero) { |
916 | size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); |
917 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
918 | end_row -= ptr->cur_start_row; |
919 | while (undef_row < end_row) { |
920 | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
921 | undef_row++; |
922 | } |
923 | } else { |
924 | if (! writable) /* reader looking at undefined data */ |
925 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
926 | } |
927 | } |
928 | /* Flag the buffer dirty if caller will write in it */ |
929 | if (writable) |
930 | ptr->dirty = TRUE; |
931 | /* Return address of proper part of the buffer */ |
932 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
933 | } |
934 | |
935 | |
936 | /* |
937 | * Release all objects belonging to a specified pool. |
938 | */ |
939 | |
940 | METHODDEF(void) |
941 | free_pool (j_common_ptr cinfo, int pool_id) |
942 | { |
943 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
944 | small_pool_ptr shdr_ptr; |
945 | large_pool_ptr lhdr_ptr; |
946 | size_t space_freed; |
947 | |
948 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
949 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
950 | |
951 | #ifdef MEM_STATS |
952 | if (cinfo->err->trace_level > 1) |
953 | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
954 | #endif |
955 | |
956 | /* If freeing IMAGE pool, close any virtual arrays first */ |
957 | if (pool_id == JPOOL_IMAGE) { |
958 | jvirt_sarray_ptr sptr; |
959 | jvirt_barray_ptr bptr; |
960 | |
961 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
962 | if (sptr->b_s_open) { /* there may be no backing store */ |
963 | sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
964 | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
965 | } |
966 | } |
967 | mem->virt_sarray_list = NULL; |
968 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
969 | if (bptr->b_s_open) { /* there may be no backing store */ |
970 | bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
971 | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
972 | } |
973 | } |
974 | mem->virt_barray_list = NULL; |
975 | } |
976 | |
977 | /* Release large objects */ |
978 | lhdr_ptr = mem->large_list[pool_id]; |
979 | mem->large_list[pool_id] = NULL; |
980 | |
981 | while (lhdr_ptr != NULL) { |
982 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; |
983 | space_freed = lhdr_ptr->hdr.bytes_used + |
984 | lhdr_ptr->hdr.bytes_left + |
985 | SIZEOF(large_pool_hdr); |
986 | jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); |
987 | mem->total_space_allocated -= space_freed; |
988 | lhdr_ptr = next_lhdr_ptr; |
989 | } |
990 | |
991 | /* Release small objects */ |
992 | shdr_ptr = mem->small_list[pool_id]; |
993 | mem->small_list[pool_id] = NULL; |
994 | |
995 | while (shdr_ptr != NULL) { |
996 | small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; |
997 | space_freed = shdr_ptr->hdr.bytes_used + |
998 | shdr_ptr->hdr.bytes_left + |
999 | SIZEOF(small_pool_hdr); |
1000 | jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
1001 | mem->total_space_allocated -= space_freed; |
1002 | shdr_ptr = next_shdr_ptr; |
1003 | } |
1004 | } |
1005 | |
1006 | |
1007 | /* |
1008 | * Close up shop entirely. |
1009 | * Note that this cannot be called unless cinfo->mem is non-NULL. |
1010 | */ |
1011 | |
1012 | METHODDEF(void) |
1013 | self_destruct (j_common_ptr cinfo) |
1014 | { |
1015 | int pool; |
1016 | |
1017 | /* Close all backing store, release all memory. |
1018 | * Releasing pools in reverse order might help avoid fragmentation |
1019 | * with some (brain-damaged) malloc libraries. |
1020 | */ |
1021 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1022 | free_pool(cinfo, pool); |
1023 | } |
1024 | |
1025 | /* Release the memory manager control block too. */ |
1026 | jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); |
1027 | cinfo->mem = NULL; /* ensures I will be called only once */ |
1028 | |
1029 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1030 | } |
1031 | |
1032 | |
1033 | /* |
1034 | * Memory manager initialization. |
1035 | * When this is called, only the error manager pointer is valid in cinfo! |
1036 | */ |
1037 | |
1038 | GLOBAL(void) |
1039 | jinit_memory_mgr (j_common_ptr cinfo) |
1040 | { |
1041 | my_mem_ptr mem; |
1042 | size_t max_to_use; |
1043 | int pool; |
1044 | size_t test_mac; |
1045 | |
1046 | cinfo->mem = NULL; /* for safety if init fails */ |
1047 | |
1048 | /* Check for configuration errors. |
1049 | * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
1050 | * doesn't reflect any real hardware alignment requirement. |
1051 | * The test is a little tricky: for X>0, X and X-1 have no one-bits |
1052 | * in common if and only if X is a power of 2, ie has only one one-bit. |
1053 | * Some compilers may give an "unreachable code" warning here; ignore it. |
1054 | */ |
1055 | if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) |
1056 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
1057 | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
1058 | * a multiple of SIZEOF(ALIGN_TYPE). |
1059 | * Again, an "unreachable code" warning may be ignored here. |
1060 | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
1061 | */ |
1062 | test_mac = (size_t) MAX_ALLOC_CHUNK; |
1063 | if ((long) test_mac != MAX_ALLOC_CHUNK || |
1064 | (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) |
1065 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
1066 | |
1067 | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
1068 | |
1069 | /* Attempt to allocate memory manager's control block */ |
1070 | mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); |
1071 | |
1072 | if (mem == NULL) { |
1073 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1074 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
1075 | } |
1076 | |
1077 | /* OK, fill in the method pointers */ |
1078 | mem->pub.alloc_small = alloc_small; |
1079 | mem->pub.alloc_large = alloc_large; |
1080 | mem->pub.alloc_sarray = alloc_sarray; |
1081 | mem->pub.alloc_barray = alloc_barray; |
1082 | mem->pub.request_virt_sarray = request_virt_sarray; |
1083 | mem->pub.request_virt_barray = request_virt_barray; |
1084 | mem->pub.realize_virt_arrays = realize_virt_arrays; |
1085 | mem->pub.access_virt_sarray = access_virt_sarray; |
1086 | mem->pub.access_virt_barray = access_virt_barray; |
1087 | mem->pub.free_pool = free_pool; |
1088 | mem->pub.self_destruct = self_destruct; |
1089 | |
1090 | /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
1091 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
1092 | |
1093 | /* Initialize working state */ |
1094 | mem->pub.max_memory_to_use = max_to_use; |
1095 | |
1096 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1097 | mem->small_list[pool] = NULL; |
1098 | mem->large_list[pool] = NULL; |
1099 | } |
1100 | mem->virt_sarray_list = NULL; |
1101 | mem->virt_barray_list = NULL; |
1102 | |
1103 | mem->total_space_allocated = SIZEOF(my_memory_mgr); |
1104 | |
1105 | /* Declare ourselves open for business */ |
1106 | cinfo->mem = & mem->pub; |
1107 | |
1108 | /* Check for an environment variable JPEGMEM; if found, override the |
1109 | * default max_memory setting from jpeg_mem_init. Note that the |
1110 | * surrounding application may again override this value. |
1111 | * If your system doesn't support getenv(), define NO_GETENV to disable |
1112 | * this feature. |
1113 | */ |
1114 | #ifndef NO_GETENV |
1115 | { char * memenv; |
1116 | |
1117 | if ((memenv = getenv("JPEGMEM" )) != NULL) { |
1118 | char ch = 'x'; |
1119 | unsigned int mem_max = 0u; |
1120 | |
1121 | if (sscanf(memenv, "%u%c" , &mem_max, &ch) > 0) { |
1122 | max_to_use = (size_t)mem_max; |
1123 | if (ch == 'm' || ch == 'M') |
1124 | max_to_use *= 1000L; |
1125 | mem->pub.max_memory_to_use = max_to_use * 1000L; |
1126 | } |
1127 | } |
1128 | } |
1129 | #endif |
1130 | |
1131 | } |
1132 | |