1 | /* |
2 | * reserved comment block |
3 | * DO NOT REMOVE OR ALTER! |
4 | */ |
5 | /* |
6 | * jquant1.c |
7 | * |
8 | * Copyright (C) 1991-1996, Thomas G. Lane. |
9 | * This file is part of the Independent JPEG Group's software. |
10 | * For conditions of distribution and use, see the accompanying README file. |
11 | * |
12 | * This file contains 1-pass color quantization (color mapping) routines. |
13 | * These routines provide mapping to a fixed color map using equally spaced |
14 | * color values. Optional Floyd-Steinberg or ordered dithering is available. |
15 | */ |
16 | |
17 | #define JPEG_INTERNALS |
18 | #include "jinclude.h" |
19 | #include "jpeglib.h" |
20 | |
21 | #ifdef QUANT_1PASS_SUPPORTED |
22 | |
23 | |
24 | /* |
25 | * The main purpose of 1-pass quantization is to provide a fast, if not very |
26 | * high quality, colormapped output capability. A 2-pass quantizer usually |
27 | * gives better visual quality; however, for quantized grayscale output this |
28 | * quantizer is perfectly adequate. Dithering is highly recommended with this |
29 | * quantizer, though you can turn it off if you really want to. |
30 | * |
31 | * In 1-pass quantization the colormap must be chosen in advance of seeing the |
32 | * image. We use a map consisting of all combinations of Ncolors[i] color |
33 | * values for the i'th component. The Ncolors[] values are chosen so that |
34 | * their product, the total number of colors, is no more than that requested. |
35 | * (In most cases, the product will be somewhat less.) |
36 | * |
37 | * Since the colormap is orthogonal, the representative value for each color |
38 | * component can be determined without considering the other components; |
39 | * then these indexes can be combined into a colormap index by a standard |
40 | * N-dimensional-array-subscript calculation. Most of the arithmetic involved |
41 | * can be precalculated and stored in the lookup table colorindex[]. |
42 | * colorindex[i][j] maps pixel value j in component i to the nearest |
43 | * representative value (grid plane) for that component; this index is |
44 | * multiplied by the array stride for component i, so that the |
45 | * index of the colormap entry closest to a given pixel value is just |
46 | * sum( colorindex[component-number][pixel-component-value] ) |
47 | * Aside from being fast, this scheme allows for variable spacing between |
48 | * representative values with no additional lookup cost. |
49 | * |
50 | * If gamma correction has been applied in color conversion, it might be wise |
51 | * to adjust the color grid spacing so that the representative colors are |
52 | * equidistant in linear space. At this writing, gamma correction is not |
53 | * implemented by jdcolor, so nothing is done here. |
54 | */ |
55 | |
56 | |
57 | /* Declarations for ordered dithering. |
58 | * |
59 | * We use a standard 16x16 ordered dither array. The basic concept of ordered |
60 | * dithering is described in many references, for instance Dale Schumacher's |
61 | * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). |
62 | * In place of Schumacher's comparisons against a "threshold" value, we add a |
63 | * "dither" value to the input pixel and then round the result to the nearest |
64 | * output value. The dither value is equivalent to (0.5 - threshold) times |
65 | * the distance between output values. For ordered dithering, we assume that |
66 | * the output colors are equally spaced; if not, results will probably be |
67 | * worse, since the dither may be too much or too little at a given point. |
68 | * |
69 | * The normal calculation would be to form pixel value + dither, range-limit |
70 | * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. |
71 | * We can skip the separate range-limiting step by extending the colorindex |
72 | * table in both directions. |
73 | */ |
74 | |
75 | #define ODITHER_SIZE 16 /* dimension of dither matrix */ |
76 | /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ |
77 | #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ |
78 | #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ |
79 | |
80 | typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; |
81 | typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; |
82 | |
83 | static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { |
84 | /* Bayer's order-4 dither array. Generated by the code given in |
85 | * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. |
86 | * The values in this array must range from 0 to ODITHER_CELLS-1. |
87 | */ |
88 | { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, |
89 | { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, |
90 | { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, |
91 | { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, |
92 | { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, |
93 | { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, |
94 | { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, |
95 | { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, |
96 | { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, |
97 | { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, |
98 | { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, |
99 | { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, |
100 | { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, |
101 | { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, |
102 | { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, |
103 | { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } |
104 | }; |
105 | |
106 | |
107 | /* Declarations for Floyd-Steinberg dithering. |
108 | * |
109 | * Errors are accumulated into the array fserrors[], at a resolution of |
110 | * 1/16th of a pixel count. The error at a given pixel is propagated |
111 | * to its not-yet-processed neighbors using the standard F-S fractions, |
112 | * ... (here) 7/16 |
113 | * 3/16 5/16 1/16 |
114 | * We work left-to-right on even rows, right-to-left on odd rows. |
115 | * |
116 | * We can get away with a single array (holding one row's worth of errors) |
117 | * by using it to store the current row's errors at pixel columns not yet |
118 | * processed, but the next row's errors at columns already processed. We |
119 | * need only a few extra variables to hold the errors immediately around the |
120 | * current column. (If we are lucky, those variables are in registers, but |
121 | * even if not, they're probably cheaper to access than array elements are.) |
122 | * |
123 | * The fserrors[] array is indexed [component#][position]. |
124 | * We provide (#columns + 2) entries per component; the extra entry at each |
125 | * end saves us from special-casing the first and last pixels. |
126 | * |
127 | * Note: on a wide image, we might not have enough room in a PC's near data |
128 | * segment to hold the error array; so it is allocated with alloc_large. |
129 | */ |
130 | |
131 | #if BITS_IN_JSAMPLE == 8 |
132 | typedef INT16 FSERROR; /* 16 bits should be enough */ |
133 | typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
134 | #else |
135 | typedef INT32 FSERROR; /* may need more than 16 bits */ |
136 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
137 | #endif |
138 | |
139 | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
140 | |
141 | |
142 | /* Private subobject */ |
143 | |
144 | #define MAX_Q_COMPS 4 /* max components I can handle */ |
145 | |
146 | typedef struct { |
147 | struct jpeg_color_quantizer pub; /* public fields */ |
148 | |
149 | /* Initially allocated colormap is saved here */ |
150 | JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ |
151 | int sv_actual; /* number of entries in use */ |
152 | |
153 | JSAMPARRAY colorindex; /* Precomputed mapping for speed */ |
154 | /* colorindex[i][j] = index of color closest to pixel value j in component i, |
155 | * premultiplied as described above. Since colormap indexes must fit into |
156 | * JSAMPLEs, the entries of this array will too. |
157 | */ |
158 | boolean is_padded; /* is the colorindex padded for odither? */ |
159 | |
160 | int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ |
161 | |
162 | /* Variables for ordered dithering */ |
163 | int row_index; /* cur row's vertical index in dither matrix */ |
164 | ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ |
165 | |
166 | /* Variables for Floyd-Steinberg dithering */ |
167 | FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ |
168 | boolean on_odd_row; /* flag to remember which row we are on */ |
169 | } my_cquantizer; |
170 | |
171 | typedef my_cquantizer * my_cquantize_ptr; |
172 | |
173 | |
174 | /* |
175 | * Policy-making subroutines for create_colormap and create_colorindex. |
176 | * These routines determine the colormap to be used. The rest of the module |
177 | * only assumes that the colormap is orthogonal. |
178 | * |
179 | * * select_ncolors decides how to divvy up the available colors |
180 | * among the components. |
181 | * * output_value defines the set of representative values for a component. |
182 | * * largest_input_value defines the mapping from input values to |
183 | * representative values for a component. |
184 | * Note that the latter two routines may impose different policies for |
185 | * different components, though this is not currently done. |
186 | */ |
187 | |
188 | |
189 | LOCAL(int) |
190 | select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) |
191 | /* Determine allocation of desired colors to components, */ |
192 | /* and fill in Ncolors[] array to indicate choice. */ |
193 | /* Return value is total number of colors (product of Ncolors[] values). */ |
194 | { |
195 | int nc = cinfo->out_color_components; /* number of color components */ |
196 | int max_colors = cinfo->desired_number_of_colors; |
197 | int total_colors, iroot, i, j; |
198 | boolean changed; |
199 | long temp; |
200 | static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; |
201 | |
202 | /* We can allocate at least the nc'th root of max_colors per component. */ |
203 | /* Compute floor(nc'th root of max_colors). */ |
204 | iroot = 1; |
205 | do { |
206 | iroot++; |
207 | temp = iroot; /* set temp = iroot ** nc */ |
208 | for (i = 1; i < nc; i++) |
209 | temp *= iroot; |
210 | } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ |
211 | iroot--; /* now iroot = floor(root) */ |
212 | |
213 | /* Must have at least 2 color values per component */ |
214 | if (iroot < 2) |
215 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); |
216 | |
217 | /* Initialize to iroot color values for each component */ |
218 | total_colors = 1; |
219 | for (i = 0; i < nc; i++) { |
220 | Ncolors[i] = iroot; |
221 | total_colors *= iroot; |
222 | } |
223 | /* We may be able to increment the count for one or more components without |
224 | * exceeding max_colors, though we know not all can be incremented. |
225 | * Sometimes, the first component can be incremented more than once! |
226 | * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) |
227 | * In RGB colorspace, try to increment G first, then R, then B. |
228 | */ |
229 | do { |
230 | changed = FALSE; |
231 | for (i = 0; i < nc; i++) { |
232 | j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); |
233 | /* calculate new total_colors if Ncolors[j] is incremented */ |
234 | temp = total_colors / Ncolors[j]; |
235 | temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ |
236 | if (temp > (long) max_colors) |
237 | break; /* won't fit, done with this pass */ |
238 | Ncolors[j]++; /* OK, apply the increment */ |
239 | total_colors = (int) temp; |
240 | changed = TRUE; |
241 | } |
242 | } while (changed); |
243 | |
244 | return total_colors; |
245 | } |
246 | |
247 | |
248 | LOCAL(int) |
249 | output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
250 | /* Return j'th output value, where j will range from 0 to maxj */ |
251 | /* The output values must fall in 0..MAXJSAMPLE in increasing order */ |
252 | { |
253 | /* We always provide values 0 and MAXJSAMPLE for each component; |
254 | * any additional values are equally spaced between these limits. |
255 | * (Forcing the upper and lower values to the limits ensures that |
256 | * dithering can't produce a color outside the selected gamut.) |
257 | */ |
258 | return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); |
259 | } |
260 | |
261 | |
262 | LOCAL(int) |
263 | largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
264 | /* Return largest input value that should map to j'th output value */ |
265 | /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ |
266 | { |
267 | /* Breakpoints are halfway between values returned by output_value */ |
268 | return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); |
269 | } |
270 | |
271 | |
272 | /* |
273 | * Create the colormap. |
274 | */ |
275 | |
276 | LOCAL(void) |
277 | create_colormap (j_decompress_ptr cinfo) |
278 | { |
279 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
280 | JSAMPARRAY colormap; /* Created colormap */ |
281 | int total_colors; /* Number of distinct output colors */ |
282 | int i,j,k, nci, blksize, blkdist, ptr, val; |
283 | |
284 | /* Select number of colors for each component */ |
285 | total_colors = select_ncolors(cinfo, cquantize->Ncolors); |
286 | |
287 | /* Report selected color counts */ |
288 | if (cinfo->out_color_components == 3) |
289 | TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, |
290 | total_colors, cquantize->Ncolors[0], |
291 | cquantize->Ncolors[1], cquantize->Ncolors[2]); |
292 | else |
293 | TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); |
294 | |
295 | /* Allocate and fill in the colormap. */ |
296 | /* The colors are ordered in the map in standard row-major order, */ |
297 | /* i.e. rightmost (highest-indexed) color changes most rapidly. */ |
298 | |
299 | colormap = (*cinfo->mem->alloc_sarray) |
300 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
301 | (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); |
302 | |
303 | /* blksize is number of adjacent repeated entries for a component */ |
304 | /* blkdist is distance between groups of identical entries for a component */ |
305 | blkdist = total_colors; |
306 | |
307 | for (i = 0; i < cinfo->out_color_components; i++) { |
308 | /* fill in colormap entries for i'th color component */ |
309 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
310 | blksize = blkdist / nci; |
311 | for (j = 0; j < nci; j++) { |
312 | /* Compute j'th output value (out of nci) for component */ |
313 | val = output_value(cinfo, i, j, nci-1); |
314 | /* Fill in all colormap entries that have this value of this component */ |
315 | for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { |
316 | /* fill in blksize entries beginning at ptr */ |
317 | for (k = 0; k < blksize; k++) |
318 | colormap[i][ptr+k] = (JSAMPLE) val; |
319 | } |
320 | } |
321 | blkdist = blksize; /* blksize of this color is blkdist of next */ |
322 | } |
323 | |
324 | /* Save the colormap in private storage, |
325 | * where it will survive color quantization mode changes. |
326 | */ |
327 | cquantize->sv_colormap = colormap; |
328 | cquantize->sv_actual = total_colors; |
329 | } |
330 | |
331 | |
332 | /* |
333 | * Create the color index table. |
334 | */ |
335 | |
336 | LOCAL(void) |
337 | create_colorindex (j_decompress_ptr cinfo) |
338 | { |
339 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
340 | JSAMPROW indexptr; |
341 | int i,j,k, nci, blksize, val, pad; |
342 | |
343 | /* For ordered dither, we pad the color index tables by MAXJSAMPLE in |
344 | * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). |
345 | * This is not necessary in the other dithering modes. However, we |
346 | * flag whether it was done in case user changes dithering mode. |
347 | */ |
348 | if (cinfo->dither_mode == JDITHER_ORDERED) { |
349 | pad = MAXJSAMPLE*2; |
350 | cquantize->is_padded = TRUE; |
351 | } else { |
352 | pad = 0; |
353 | cquantize->is_padded = FALSE; |
354 | } |
355 | |
356 | cquantize->colorindex = (*cinfo->mem->alloc_sarray) |
357 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
358 | (JDIMENSION) (MAXJSAMPLE+1 + pad), |
359 | (JDIMENSION) cinfo->out_color_components); |
360 | |
361 | /* blksize is number of adjacent repeated entries for a component */ |
362 | blksize = cquantize->sv_actual; |
363 | |
364 | for (i = 0; i < cinfo->out_color_components; i++) { |
365 | /* fill in colorindex entries for i'th color component */ |
366 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
367 | blksize = blksize / nci; |
368 | |
369 | /* adjust colorindex pointers to provide padding at negative indexes. */ |
370 | if (pad) |
371 | cquantize->colorindex[i] += MAXJSAMPLE; |
372 | |
373 | /* in loop, val = index of current output value, */ |
374 | /* and k = largest j that maps to current val */ |
375 | indexptr = cquantize->colorindex[i]; |
376 | val = 0; |
377 | k = largest_input_value(cinfo, i, 0, nci-1); |
378 | for (j = 0; j <= MAXJSAMPLE; j++) { |
379 | while (j > k) /* advance val if past boundary */ |
380 | k = largest_input_value(cinfo, i, ++val, nci-1); |
381 | /* premultiply so that no multiplication needed in main processing */ |
382 | indexptr[j] = (JSAMPLE) (val * blksize); |
383 | } |
384 | /* Pad at both ends if necessary */ |
385 | if (pad) |
386 | for (j = 1; j <= MAXJSAMPLE; j++) { |
387 | indexptr[-j] = indexptr[0]; |
388 | indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; |
389 | } |
390 | } |
391 | } |
392 | |
393 | |
394 | /* |
395 | * Create an ordered-dither array for a component having ncolors |
396 | * distinct output values. |
397 | */ |
398 | |
399 | LOCAL(ODITHER_MATRIX_PTR) |
400 | make_odither_array (j_decompress_ptr cinfo, int ncolors) |
401 | { |
402 | ODITHER_MATRIX_PTR odither; |
403 | int j,k; |
404 | INT32 num,den; |
405 | |
406 | odither = (ODITHER_MATRIX_PTR) |
407 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
408 | SIZEOF(ODITHER_MATRIX)); |
409 | /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). |
410 | * Hence the dither value for the matrix cell with fill order f |
411 | * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). |
412 | * On 16-bit-int machine, be careful to avoid overflow. |
413 | */ |
414 | den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); |
415 | for (j = 0; j < ODITHER_SIZE; j++) { |
416 | for (k = 0; k < ODITHER_SIZE; k++) { |
417 | num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) |
418 | * MAXJSAMPLE; |
419 | /* Ensure round towards zero despite C's lack of consistency |
420 | * about rounding negative values in integer division... |
421 | */ |
422 | odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); |
423 | } |
424 | } |
425 | return odither; |
426 | } |
427 | |
428 | |
429 | /* |
430 | * Create the ordered-dither tables. |
431 | * Components having the same number of representative colors may |
432 | * share a dither table. |
433 | */ |
434 | |
435 | LOCAL(void) |
436 | create_odither_tables (j_decompress_ptr cinfo) |
437 | { |
438 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
439 | ODITHER_MATRIX_PTR odither; |
440 | int i, j, nci; |
441 | |
442 | for (i = 0; i < cinfo->out_color_components; i++) { |
443 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
444 | odither = NULL; /* search for matching prior component */ |
445 | for (j = 0; j < i; j++) { |
446 | if (nci == cquantize->Ncolors[j]) { |
447 | odither = cquantize->odither[j]; |
448 | break; |
449 | } |
450 | } |
451 | if (odither == NULL) /* need a new table? */ |
452 | odither = make_odither_array(cinfo, nci); |
453 | cquantize->odither[i] = odither; |
454 | } |
455 | } |
456 | |
457 | |
458 | /* |
459 | * Map some rows of pixels to the output colormapped representation. |
460 | */ |
461 | |
462 | METHODDEF(void) |
463 | color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
464 | JSAMPARRAY output_buf, int num_rows) |
465 | /* General case, no dithering */ |
466 | { |
467 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
468 | JSAMPARRAY colorindex = cquantize->colorindex; |
469 | register int pixcode, ci; |
470 | register JSAMPROW ptrin, ptrout; |
471 | int row; |
472 | JDIMENSION col; |
473 | JDIMENSION width = cinfo->output_width; |
474 | register int nc = cinfo->out_color_components; |
475 | |
476 | for (row = 0; row < num_rows; row++) { |
477 | ptrin = input_buf[row]; |
478 | ptrout = output_buf[row]; |
479 | for (col = width; col > 0; col--) { |
480 | pixcode = 0; |
481 | for (ci = 0; ci < nc; ci++) { |
482 | pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); |
483 | } |
484 | *ptrout++ = (JSAMPLE) pixcode; |
485 | } |
486 | } |
487 | } |
488 | |
489 | |
490 | METHODDEF(void) |
491 | color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
492 | JSAMPARRAY output_buf, int num_rows) |
493 | /* Fast path for out_color_components==3, no dithering */ |
494 | { |
495 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
496 | register int pixcode; |
497 | register JSAMPROW ptrin, ptrout; |
498 | JSAMPROW colorindex0 = cquantize->colorindex[0]; |
499 | JSAMPROW colorindex1 = cquantize->colorindex[1]; |
500 | JSAMPROW colorindex2 = cquantize->colorindex[2]; |
501 | int row; |
502 | JDIMENSION col; |
503 | JDIMENSION width = cinfo->output_width; |
504 | |
505 | for (row = 0; row < num_rows; row++) { |
506 | ptrin = input_buf[row]; |
507 | ptrout = output_buf[row]; |
508 | for (col = width; col > 0; col--) { |
509 | pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); |
510 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); |
511 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); |
512 | *ptrout++ = (JSAMPLE) pixcode; |
513 | } |
514 | } |
515 | } |
516 | |
517 | |
518 | METHODDEF(void) |
519 | quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
520 | JSAMPARRAY output_buf, int num_rows) |
521 | /* General case, with ordered dithering */ |
522 | { |
523 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
524 | register JSAMPROW input_ptr; |
525 | register JSAMPROW output_ptr; |
526 | JSAMPROW colorindex_ci; |
527 | int * dither; /* points to active row of dither matrix */ |
528 | int row_index, col_index; /* current indexes into dither matrix */ |
529 | int nc = cinfo->out_color_components; |
530 | int ci; |
531 | int row; |
532 | JDIMENSION col; |
533 | JDIMENSION width = cinfo->output_width; |
534 | |
535 | for (row = 0; row < num_rows; row++) { |
536 | /* Initialize output values to 0 so can process components separately */ |
537 | jzero_far((void FAR *) output_buf[row], |
538 | (size_t) (width * SIZEOF(JSAMPLE))); |
539 | row_index = cquantize->row_index; |
540 | for (ci = 0; ci < nc; ci++) { |
541 | input_ptr = input_buf[row] + ci; |
542 | output_ptr = output_buf[row]; |
543 | colorindex_ci = cquantize->colorindex[ci]; |
544 | dither = cquantize->odither[ci][row_index]; |
545 | col_index = 0; |
546 | |
547 | for (col = width; col > 0; col--) { |
548 | /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, |
549 | * select output value, accumulate into output code for this pixel. |
550 | * Range-limiting need not be done explicitly, as we have extended |
551 | * the colorindex table to produce the right answers for out-of-range |
552 | * inputs. The maximum dither is +- MAXJSAMPLE; this sets the |
553 | * required amount of padding. |
554 | */ |
555 | *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; |
556 | input_ptr += nc; |
557 | output_ptr++; |
558 | col_index = (col_index + 1) & ODITHER_MASK; |
559 | } |
560 | } |
561 | /* Advance row index for next row */ |
562 | row_index = (row_index + 1) & ODITHER_MASK; |
563 | cquantize->row_index = row_index; |
564 | } |
565 | } |
566 | |
567 | |
568 | METHODDEF(void) |
569 | quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
570 | JSAMPARRAY output_buf, int num_rows) |
571 | /* Fast path for out_color_components==3, with ordered dithering */ |
572 | { |
573 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
574 | register int pixcode; |
575 | register JSAMPROW input_ptr; |
576 | register JSAMPROW output_ptr; |
577 | JSAMPROW colorindex0 = cquantize->colorindex[0]; |
578 | JSAMPROW colorindex1 = cquantize->colorindex[1]; |
579 | JSAMPROW colorindex2 = cquantize->colorindex[2]; |
580 | int * dither0; /* points to active row of dither matrix */ |
581 | int * dither1; |
582 | int * dither2; |
583 | int row_index, col_index; /* current indexes into dither matrix */ |
584 | int row; |
585 | JDIMENSION col; |
586 | JDIMENSION width = cinfo->output_width; |
587 | |
588 | for (row = 0; row < num_rows; row++) { |
589 | row_index = cquantize->row_index; |
590 | input_ptr = input_buf[row]; |
591 | output_ptr = output_buf[row]; |
592 | dither0 = cquantize->odither[0][row_index]; |
593 | dither1 = cquantize->odither[1][row_index]; |
594 | dither2 = cquantize->odither[2][row_index]; |
595 | col_index = 0; |
596 | |
597 | for (col = width; col > 0; col--) { |
598 | pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + |
599 | dither0[col_index]]); |
600 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + |
601 | dither1[col_index]]); |
602 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + |
603 | dither2[col_index]]); |
604 | *output_ptr++ = (JSAMPLE) pixcode; |
605 | col_index = (col_index + 1) & ODITHER_MASK; |
606 | } |
607 | row_index = (row_index + 1) & ODITHER_MASK; |
608 | cquantize->row_index = row_index; |
609 | } |
610 | } |
611 | |
612 | |
613 | METHODDEF(void) |
614 | quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
615 | JSAMPARRAY output_buf, int num_rows) |
616 | /* General case, with Floyd-Steinberg dithering */ |
617 | { |
618 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
619 | register LOCFSERROR cur; /* current error or pixel value */ |
620 | LOCFSERROR belowerr; /* error for pixel below cur */ |
621 | LOCFSERROR bpreverr; /* error for below/prev col */ |
622 | LOCFSERROR bnexterr; /* error for below/next col */ |
623 | LOCFSERROR delta; |
624 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
625 | register JSAMPROW input_ptr; |
626 | register JSAMPROW output_ptr; |
627 | JSAMPROW colorindex_ci; |
628 | JSAMPROW colormap_ci; |
629 | int pixcode; |
630 | int nc = cinfo->out_color_components; |
631 | int dir; /* 1 for left-to-right, -1 for right-to-left */ |
632 | int dirnc; /* dir * nc */ |
633 | int ci; |
634 | int row; |
635 | JDIMENSION col; |
636 | JDIMENSION width = cinfo->output_width; |
637 | JSAMPLE *range_limit = cinfo->sample_range_limit; |
638 | SHIFT_TEMPS |
639 | |
640 | for (row = 0; row < num_rows; row++) { |
641 | /* Initialize output values to 0 so can process components separately */ |
642 | jzero_far((void FAR *) output_buf[row], |
643 | (size_t) (width * SIZEOF(JSAMPLE))); |
644 | for (ci = 0; ci < nc; ci++) { |
645 | input_ptr = input_buf[row] + ci; |
646 | output_ptr = output_buf[row]; |
647 | if (cquantize->on_odd_row) { |
648 | /* work right to left in this row */ |
649 | input_ptr += (width-1) * nc; /* so point to rightmost pixel */ |
650 | output_ptr += width-1; |
651 | dir = -1; |
652 | dirnc = -nc; |
653 | errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ |
654 | } else { |
655 | /* work left to right in this row */ |
656 | dir = 1; |
657 | dirnc = nc; |
658 | errorptr = cquantize->fserrors[ci]; /* => entry before first column */ |
659 | } |
660 | colorindex_ci = cquantize->colorindex[ci]; |
661 | colormap_ci = cquantize->sv_colormap[ci]; |
662 | /* Preset error values: no error propagated to first pixel from left */ |
663 | cur = 0; |
664 | /* and no error propagated to row below yet */ |
665 | belowerr = bpreverr = 0; |
666 | |
667 | for (col = width; col > 0; col--) { |
668 | /* cur holds the error propagated from the previous pixel on the |
669 | * current line. Add the error propagated from the previous line |
670 | * to form the complete error correction term for this pixel, and |
671 | * round the error term (which is expressed * 16) to an integer. |
672 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
673 | * for either sign of the error value. |
674 | * Note: errorptr points to *previous* column's array entry. |
675 | */ |
676 | cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); |
677 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
678 | * The maximum error is +- MAXJSAMPLE; this sets the required size |
679 | * of the range_limit array. |
680 | */ |
681 | cur += GETJSAMPLE(*input_ptr); |
682 | cur = GETJSAMPLE(range_limit[cur]); |
683 | /* Select output value, accumulate into output code for this pixel */ |
684 | pixcode = GETJSAMPLE(colorindex_ci[cur]); |
685 | *output_ptr += (JSAMPLE) pixcode; |
686 | /* Compute actual representation error at this pixel */ |
687 | /* Note: we can do this even though we don't have the final */ |
688 | /* pixel code, because the colormap is orthogonal. */ |
689 | cur -= GETJSAMPLE(colormap_ci[pixcode]); |
690 | /* Compute error fractions to be propagated to adjacent pixels. |
691 | * Add these into the running sums, and simultaneously shift the |
692 | * next-line error sums left by 1 column. |
693 | */ |
694 | bnexterr = cur; |
695 | delta = cur * 2; |
696 | cur += delta; /* form error * 3 */ |
697 | errorptr[0] = (FSERROR) (bpreverr + cur); |
698 | cur += delta; /* form error * 5 */ |
699 | bpreverr = belowerr + cur; |
700 | belowerr = bnexterr; |
701 | cur += delta; /* form error * 7 */ |
702 | /* At this point cur contains the 7/16 error value to be propagated |
703 | * to the next pixel on the current line, and all the errors for the |
704 | * next line have been shifted over. We are therefore ready to move on. |
705 | */ |
706 | input_ptr += dirnc; /* advance input ptr to next column */ |
707 | output_ptr += dir; /* advance output ptr to next column */ |
708 | errorptr += dir; /* advance errorptr to current column */ |
709 | } |
710 | /* Post-loop cleanup: we must unload the final error value into the |
711 | * final fserrors[] entry. Note we need not unload belowerr because |
712 | * it is for the dummy column before or after the actual array. |
713 | */ |
714 | errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ |
715 | } |
716 | cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); |
717 | } |
718 | } |
719 | |
720 | |
721 | /* |
722 | * Allocate workspace for Floyd-Steinberg errors. |
723 | */ |
724 | |
725 | LOCAL(void) |
726 | alloc_fs_workspace (j_decompress_ptr cinfo) |
727 | { |
728 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
729 | size_t arraysize; |
730 | int i; |
731 | |
732 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
733 | for (i = 0; i < cinfo->out_color_components; i++) { |
734 | cquantize->fserrors[i] = (FSERRPTR) |
735 | (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
736 | } |
737 | } |
738 | |
739 | |
740 | /* |
741 | * Initialize for one-pass color quantization. |
742 | */ |
743 | |
744 | METHODDEF(void) |
745 | start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
746 | { |
747 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
748 | size_t arraysize; |
749 | int i; |
750 | |
751 | /* Install my colormap. */ |
752 | cinfo->colormap = cquantize->sv_colormap; |
753 | cinfo->actual_number_of_colors = cquantize->sv_actual; |
754 | |
755 | /* Initialize for desired dithering mode. */ |
756 | switch (cinfo->dither_mode) { |
757 | case JDITHER_NONE: |
758 | if (cinfo->out_color_components == 3) |
759 | cquantize->pub.color_quantize = color_quantize3; |
760 | else |
761 | cquantize->pub.color_quantize = color_quantize; |
762 | break; |
763 | case JDITHER_ORDERED: |
764 | if (cinfo->out_color_components == 3) |
765 | cquantize->pub.color_quantize = quantize3_ord_dither; |
766 | else |
767 | cquantize->pub.color_quantize = quantize_ord_dither; |
768 | cquantize->row_index = 0; /* initialize state for ordered dither */ |
769 | /* If user changed to ordered dither from another mode, |
770 | * we must recreate the color index table with padding. |
771 | * This will cost extra space, but probably isn't very likely. |
772 | */ |
773 | if (! cquantize->is_padded) |
774 | create_colorindex(cinfo); |
775 | /* Create ordered-dither tables if we didn't already. */ |
776 | if (cquantize->odither[0] == NULL) |
777 | create_odither_tables(cinfo); |
778 | break; |
779 | case JDITHER_FS: |
780 | cquantize->pub.color_quantize = quantize_fs_dither; |
781 | cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ |
782 | /* Allocate Floyd-Steinberg workspace if didn't already. */ |
783 | if (cquantize->fserrors[0] == NULL) |
784 | alloc_fs_workspace(cinfo); |
785 | /* Initialize the propagated errors to zero. */ |
786 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
787 | for (i = 0; i < cinfo->out_color_components; i++) |
788 | jzero_far((void FAR *) cquantize->fserrors[i], arraysize); |
789 | break; |
790 | default: |
791 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
792 | break; |
793 | } |
794 | } |
795 | |
796 | |
797 | /* |
798 | * Finish up at the end of the pass. |
799 | */ |
800 | |
801 | METHODDEF(void) |
802 | finish_pass_1_quant (j_decompress_ptr cinfo) |
803 | { |
804 | /* no work in 1-pass case */ |
805 | } |
806 | |
807 | |
808 | /* |
809 | * Switch to a new external colormap between output passes. |
810 | * Shouldn't get to this module! |
811 | */ |
812 | |
813 | METHODDEF(void) |
814 | new_color_map_1_quant (j_decompress_ptr cinfo) |
815 | { |
816 | ERREXIT(cinfo, JERR_MODE_CHANGE); |
817 | } |
818 | |
819 | |
820 | /* |
821 | * Module initialization routine for 1-pass color quantization. |
822 | */ |
823 | |
824 | GLOBAL(void) |
825 | jinit_1pass_quantizer (j_decompress_ptr cinfo) |
826 | { |
827 | my_cquantize_ptr cquantize; |
828 | |
829 | cquantize = (my_cquantize_ptr) |
830 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
831 | SIZEOF(my_cquantizer)); |
832 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
833 | cquantize->pub.start_pass = start_pass_1_quant; |
834 | cquantize->pub.finish_pass = finish_pass_1_quant; |
835 | cquantize->pub.new_color_map = new_color_map_1_quant; |
836 | cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ |
837 | cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ |
838 | |
839 | /* Make sure my internal arrays won't overflow */ |
840 | if (cinfo->out_color_components > MAX_Q_COMPS) |
841 | ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); |
842 | /* Make sure colormap indexes can be represented by JSAMPLEs */ |
843 | if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) |
844 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); |
845 | |
846 | /* Create the colormap and color index table. */ |
847 | create_colormap(cinfo); |
848 | create_colorindex(cinfo); |
849 | |
850 | /* Allocate Floyd-Steinberg workspace now if requested. |
851 | * We do this now since it is FAR storage and may affect the memory |
852 | * manager's space calculations. If the user changes to FS dither |
853 | * mode in a later pass, we will allocate the space then, and will |
854 | * possibly overrun the max_memory_to_use setting. |
855 | */ |
856 | if (cinfo->dither_mode == JDITHER_FS) |
857 | alloc_fs_workspace(cinfo); |
858 | } |
859 | |
860 | #endif /* QUANT_1PASS_SUPPORTED */ |
861 | |