| 1 | /* | 
|---|
| 2 | * reserved comment block | 
|---|
| 3 | * DO NOT REMOVE OR ALTER! | 
|---|
| 4 | */ | 
|---|
| 5 | /* | 
|---|
| 6 | * jquant1.c | 
|---|
| 7 | * | 
|---|
| 8 | * Copyright (C) 1991-1996, Thomas G. Lane. | 
|---|
| 9 | * This file is part of the Independent JPEG Group's software. | 
|---|
| 10 | * For conditions of distribution and use, see the accompanying README file. | 
|---|
| 11 | * | 
|---|
| 12 | * This file contains 1-pass color quantization (color mapping) routines. | 
|---|
| 13 | * These routines provide mapping to a fixed color map using equally spaced | 
|---|
| 14 | * color values.  Optional Floyd-Steinberg or ordered dithering is available. | 
|---|
| 15 | */ | 
|---|
| 16 |  | 
|---|
| 17 | #define JPEG_INTERNALS | 
|---|
| 18 | #include "jinclude.h" | 
|---|
| 19 | #include "jpeglib.h" | 
|---|
| 20 |  | 
|---|
| 21 | #ifdef QUANT_1PASS_SUPPORTED | 
|---|
| 22 |  | 
|---|
| 23 |  | 
|---|
| 24 | /* | 
|---|
| 25 | * The main purpose of 1-pass quantization is to provide a fast, if not very | 
|---|
| 26 | * high quality, colormapped output capability.  A 2-pass quantizer usually | 
|---|
| 27 | * gives better visual quality; however, for quantized grayscale output this | 
|---|
| 28 | * quantizer is perfectly adequate.  Dithering is highly recommended with this | 
|---|
| 29 | * quantizer, though you can turn it off if you really want to. | 
|---|
| 30 | * | 
|---|
| 31 | * In 1-pass quantization the colormap must be chosen in advance of seeing the | 
|---|
| 32 | * image.  We use a map consisting of all combinations of Ncolors[i] color | 
|---|
| 33 | * values for the i'th component.  The Ncolors[] values are chosen so that | 
|---|
| 34 | * their product, the total number of colors, is no more than that requested. | 
|---|
| 35 | * (In most cases, the product will be somewhat less.) | 
|---|
| 36 | * | 
|---|
| 37 | * Since the colormap is orthogonal, the representative value for each color | 
|---|
| 38 | * component can be determined without considering the other components; | 
|---|
| 39 | * then these indexes can be combined into a colormap index by a standard | 
|---|
| 40 | * N-dimensional-array-subscript calculation.  Most of the arithmetic involved | 
|---|
| 41 | * can be precalculated and stored in the lookup table colorindex[]. | 
|---|
| 42 | * colorindex[i][j] maps pixel value j in component i to the nearest | 
|---|
| 43 | * representative value (grid plane) for that component; this index is | 
|---|
| 44 | * multiplied by the array stride for component i, so that the | 
|---|
| 45 | * index of the colormap entry closest to a given pixel value is just | 
|---|
| 46 | *    sum( colorindex[component-number][pixel-component-value] ) | 
|---|
| 47 | * Aside from being fast, this scheme allows for variable spacing between | 
|---|
| 48 | * representative values with no additional lookup cost. | 
|---|
| 49 | * | 
|---|
| 50 | * If gamma correction has been applied in color conversion, it might be wise | 
|---|
| 51 | * to adjust the color grid spacing so that the representative colors are | 
|---|
| 52 | * equidistant in linear space.  At this writing, gamma correction is not | 
|---|
| 53 | * implemented by jdcolor, so nothing is done here. | 
|---|
| 54 | */ | 
|---|
| 55 |  | 
|---|
| 56 |  | 
|---|
| 57 | /* Declarations for ordered dithering. | 
|---|
| 58 | * | 
|---|
| 59 | * We use a standard 16x16 ordered dither array.  The basic concept of ordered | 
|---|
| 60 | * dithering is described in many references, for instance Dale Schumacher's | 
|---|
| 61 | * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). | 
|---|
| 62 | * In place of Schumacher's comparisons against a "threshold" value, we add a | 
|---|
| 63 | * "dither" value to the input pixel and then round the result to the nearest | 
|---|
| 64 | * output value.  The dither value is equivalent to (0.5 - threshold) times | 
|---|
| 65 | * the distance between output values.  For ordered dithering, we assume that | 
|---|
| 66 | * the output colors are equally spaced; if not, results will probably be | 
|---|
| 67 | * worse, since the dither may be too much or too little at a given point. | 
|---|
| 68 | * | 
|---|
| 69 | * The normal calculation would be to form pixel value + dither, range-limit | 
|---|
| 70 | * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. | 
|---|
| 71 | * We can skip the separate range-limiting step by extending the colorindex | 
|---|
| 72 | * table in both directions. | 
|---|
| 73 | */ | 
|---|
| 74 |  | 
|---|
| 75 | #define ODITHER_SIZE  16        /* dimension of dither matrix */ | 
|---|
| 76 | /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ | 
|---|
| 77 | #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */ | 
|---|
| 78 | #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */ | 
|---|
| 79 |  | 
|---|
| 80 | typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; | 
|---|
| 81 | typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; | 
|---|
| 82 |  | 
|---|
| 83 | static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { | 
|---|
| 84 | /* Bayer's order-4 dither array.  Generated by the code given in | 
|---|
| 85 | * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | 
|---|
| 86 | * The values in this array must range from 0 to ODITHER_CELLS-1. | 
|---|
| 87 | */ | 
|---|
| 88 | {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 }, | 
|---|
| 89 | { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | 
|---|
| 90 | {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | 
|---|
| 91 | { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | 
|---|
| 92 | {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 }, | 
|---|
| 93 | { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | 
|---|
| 94 | {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | 
|---|
| 95 | { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | 
|---|
| 96 | {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 }, | 
|---|
| 97 | { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | 
|---|
| 98 | {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | 
|---|
| 99 | { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | 
|---|
| 100 | {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 }, | 
|---|
| 101 | { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | 
|---|
| 102 | {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | 
|---|
| 103 | { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | 
|---|
| 104 | }; | 
|---|
| 105 |  | 
|---|
| 106 |  | 
|---|
| 107 | /* Declarations for Floyd-Steinberg dithering. | 
|---|
| 108 | * | 
|---|
| 109 | * Errors are accumulated into the array fserrors[], at a resolution of | 
|---|
| 110 | * 1/16th of a pixel count.  The error at a given pixel is propagated | 
|---|
| 111 | * to its not-yet-processed neighbors using the standard F-S fractions, | 
|---|
| 112 | *              ...     (here)  7/16 | 
|---|
| 113 | *              3/16    5/16    1/16 | 
|---|
| 114 | * We work left-to-right on even rows, right-to-left on odd rows. | 
|---|
| 115 | * | 
|---|
| 116 | * We can get away with a single array (holding one row's worth of errors) | 
|---|
| 117 | * by using it to store the current row's errors at pixel columns not yet | 
|---|
| 118 | * processed, but the next row's errors at columns already processed.  We | 
|---|
| 119 | * need only a few extra variables to hold the errors immediately around the | 
|---|
| 120 | * current column.  (If we are lucky, those variables are in registers, but | 
|---|
| 121 | * even if not, they're probably cheaper to access than array elements are.) | 
|---|
| 122 | * | 
|---|
| 123 | * The fserrors[] array is indexed [component#][position]. | 
|---|
| 124 | * We provide (#columns + 2) entries per component; the extra entry at each | 
|---|
| 125 | * end saves us from special-casing the first and last pixels. | 
|---|
| 126 | * | 
|---|
| 127 | * Note: on a wide image, we might not have enough room in a PC's near data | 
|---|
| 128 | * segment to hold the error array; so it is allocated with alloc_large. | 
|---|
| 129 | */ | 
|---|
| 130 |  | 
|---|
| 131 | #if BITS_IN_JSAMPLE == 8 | 
|---|
| 132 | typedef INT16 FSERROR;          /* 16 bits should be enough */ | 
|---|
| 133 | typedef int LOCFSERROR;         /* use 'int' for calculation temps */ | 
|---|
| 134 | #else | 
|---|
| 135 | typedef INT32 FSERROR;          /* may need more than 16 bits */ | 
|---|
| 136 | typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */ | 
|---|
| 137 | #endif | 
|---|
| 138 |  | 
|---|
| 139 | typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */ | 
|---|
| 140 |  | 
|---|
| 141 |  | 
|---|
| 142 | /* Private subobject */ | 
|---|
| 143 |  | 
|---|
| 144 | #define MAX_Q_COMPS 4           /* max components I can handle */ | 
|---|
| 145 |  | 
|---|
| 146 | typedef struct { | 
|---|
| 147 | struct jpeg_color_quantizer pub; /* public fields */ | 
|---|
| 148 |  | 
|---|
| 149 | /* Initially allocated colormap is saved here */ | 
|---|
| 150 | JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */ | 
|---|
| 151 | int sv_actual;                /* number of entries in use */ | 
|---|
| 152 |  | 
|---|
| 153 | JSAMPARRAY colorindex;        /* Precomputed mapping for speed */ | 
|---|
| 154 | /* colorindex[i][j] = index of color closest to pixel value j in component i, | 
|---|
| 155 | * premultiplied as described above.  Since colormap indexes must fit into | 
|---|
| 156 | * JSAMPLEs, the entries of this array will too. | 
|---|
| 157 | */ | 
|---|
| 158 | boolean is_padded;            /* is the colorindex padded for odither? */ | 
|---|
| 159 |  | 
|---|
| 160 | int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */ | 
|---|
| 161 |  | 
|---|
| 162 | /* Variables for ordered dithering */ | 
|---|
| 163 | int row_index;                /* cur row's vertical index in dither matrix */ | 
|---|
| 164 | ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ | 
|---|
| 165 |  | 
|---|
| 166 | /* Variables for Floyd-Steinberg dithering */ | 
|---|
| 167 | FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ | 
|---|
| 168 | boolean on_odd_row;           /* flag to remember which row we are on */ | 
|---|
| 169 | } my_cquantizer; | 
|---|
| 170 |  | 
|---|
| 171 | typedef my_cquantizer * my_cquantize_ptr; | 
|---|
| 172 |  | 
|---|
| 173 |  | 
|---|
| 174 | /* | 
|---|
| 175 | * Policy-making subroutines for create_colormap and create_colorindex. | 
|---|
| 176 | * These routines determine the colormap to be used.  The rest of the module | 
|---|
| 177 | * only assumes that the colormap is orthogonal. | 
|---|
| 178 | * | 
|---|
| 179 | *  * select_ncolors decides how to divvy up the available colors | 
|---|
| 180 | *    among the components. | 
|---|
| 181 | *  * output_value defines the set of representative values for a component. | 
|---|
| 182 | *  * largest_input_value defines the mapping from input values to | 
|---|
| 183 | *    representative values for a component. | 
|---|
| 184 | * Note that the latter two routines may impose different policies for | 
|---|
| 185 | * different components, though this is not currently done. | 
|---|
| 186 | */ | 
|---|
| 187 |  | 
|---|
| 188 |  | 
|---|
| 189 | LOCAL(int) | 
|---|
| 190 | select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) | 
|---|
| 191 | /* Determine allocation of desired colors to components, */ | 
|---|
| 192 | /* and fill in Ncolors[] array to indicate choice. */ | 
|---|
| 193 | /* Return value is total number of colors (product of Ncolors[] values). */ | 
|---|
| 194 | { | 
|---|
| 195 | int nc = cinfo->out_color_components; /* number of color components */ | 
|---|
| 196 | int max_colors = cinfo->desired_number_of_colors; | 
|---|
| 197 | int total_colors, iroot, i, j; | 
|---|
| 198 | boolean changed; | 
|---|
| 199 | long temp; | 
|---|
| 200 | static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; | 
|---|
| 201 |  | 
|---|
| 202 | /* We can allocate at least the nc'th root of max_colors per component. */ | 
|---|
| 203 | /* Compute floor(nc'th root of max_colors). */ | 
|---|
| 204 | iroot = 1; | 
|---|
| 205 | do { | 
|---|
| 206 | iroot++; | 
|---|
| 207 | temp = iroot;               /* set temp = iroot ** nc */ | 
|---|
| 208 | for (i = 1; i < nc; i++) | 
|---|
| 209 | temp *= iroot; | 
|---|
| 210 | } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ | 
|---|
| 211 | iroot--;                      /* now iroot = floor(root) */ | 
|---|
| 212 |  | 
|---|
| 213 | /* Must have at least 2 color values per component */ | 
|---|
| 214 | if (iroot < 2) | 
|---|
| 215 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); | 
|---|
| 216 |  | 
|---|
| 217 | /* Initialize to iroot color values for each component */ | 
|---|
| 218 | total_colors = 1; | 
|---|
| 219 | for (i = 0; i < nc; i++) { | 
|---|
| 220 | Ncolors[i] = iroot; | 
|---|
| 221 | total_colors *= iroot; | 
|---|
| 222 | } | 
|---|
| 223 | /* We may be able to increment the count for one or more components without | 
|---|
| 224 | * exceeding max_colors, though we know not all can be incremented. | 
|---|
| 225 | * Sometimes, the first component can be incremented more than once! | 
|---|
| 226 | * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) | 
|---|
| 227 | * In RGB colorspace, try to increment G first, then R, then B. | 
|---|
| 228 | */ | 
|---|
| 229 | do { | 
|---|
| 230 | changed = FALSE; | 
|---|
| 231 | for (i = 0; i < nc; i++) { | 
|---|
| 232 | j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); | 
|---|
| 233 | /* calculate new total_colors if Ncolors[j] is incremented */ | 
|---|
| 234 | temp = total_colors / Ncolors[j]; | 
|---|
| 235 | temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */ | 
|---|
| 236 | if (temp > (long) max_colors) | 
|---|
| 237 | break;                  /* won't fit, done with this pass */ | 
|---|
| 238 | Ncolors[j]++;             /* OK, apply the increment */ | 
|---|
| 239 | total_colors = (int) temp; | 
|---|
| 240 | changed = TRUE; | 
|---|
| 241 | } | 
|---|
| 242 | } while (changed); | 
|---|
| 243 |  | 
|---|
| 244 | return total_colors; | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 |  | 
|---|
| 248 | LOCAL(int) | 
|---|
| 249 | output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | 
|---|
| 250 | /* Return j'th output value, where j will range from 0 to maxj */ | 
|---|
| 251 | /* The output values must fall in 0..MAXJSAMPLE in increasing order */ | 
|---|
| 252 | { | 
|---|
| 253 | /* We always provide values 0 and MAXJSAMPLE for each component; | 
|---|
| 254 | * any additional values are equally spaced between these limits. | 
|---|
| 255 | * (Forcing the upper and lower values to the limits ensures that | 
|---|
| 256 | * dithering can't produce a color outside the selected gamut.) | 
|---|
| 257 | */ | 
|---|
| 258 | return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); | 
|---|
| 259 | } | 
|---|
| 260 |  | 
|---|
| 261 |  | 
|---|
| 262 | LOCAL(int) | 
|---|
| 263 | largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | 
|---|
| 264 | /* Return largest input value that should map to j'th output value */ | 
|---|
| 265 | /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ | 
|---|
| 266 | { | 
|---|
| 267 | /* Breakpoints are halfway between values returned by output_value */ | 
|---|
| 268 | return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); | 
|---|
| 269 | } | 
|---|
| 270 |  | 
|---|
| 271 |  | 
|---|
| 272 | /* | 
|---|
| 273 | * Create the colormap. | 
|---|
| 274 | */ | 
|---|
| 275 |  | 
|---|
| 276 | LOCAL(void) | 
|---|
| 277 | create_colormap (j_decompress_ptr cinfo) | 
|---|
| 278 | { | 
|---|
| 279 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 280 | JSAMPARRAY colormap;          /* Created colormap */ | 
|---|
| 281 | int total_colors;             /* Number of distinct output colors */ | 
|---|
| 282 | int i,j,k, nci, blksize, blkdist, ptr, val; | 
|---|
| 283 |  | 
|---|
| 284 | /* Select number of colors for each component */ | 
|---|
| 285 | total_colors = select_ncolors(cinfo, cquantize->Ncolors); | 
|---|
| 286 |  | 
|---|
| 287 | /* Report selected color counts */ | 
|---|
| 288 | if (cinfo->out_color_components == 3) | 
|---|
| 289 | TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, | 
|---|
| 290 | total_colors, cquantize->Ncolors[0], | 
|---|
| 291 | cquantize->Ncolors[1], cquantize->Ncolors[2]); | 
|---|
| 292 | else | 
|---|
| 293 | TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); | 
|---|
| 294 |  | 
|---|
| 295 | /* Allocate and fill in the colormap. */ | 
|---|
| 296 | /* The colors are ordered in the map in standard row-major order, */ | 
|---|
| 297 | /* i.e. rightmost (highest-indexed) color changes most rapidly. */ | 
|---|
| 298 |  | 
|---|
| 299 | colormap = (*cinfo->mem->alloc_sarray) | 
|---|
| 300 | ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|---|
| 301 | (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); | 
|---|
| 302 |  | 
|---|
| 303 | /* blksize is number of adjacent repeated entries for a component */ | 
|---|
| 304 | /* blkdist is distance between groups of identical entries for a component */ | 
|---|
| 305 | blkdist = total_colors; | 
|---|
| 306 |  | 
|---|
| 307 | for (i = 0; i < cinfo->out_color_components; i++) { | 
|---|
| 308 | /* fill in colormap entries for i'th color component */ | 
|---|
| 309 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
|---|
| 310 | blksize = blkdist / nci; | 
|---|
| 311 | for (j = 0; j < nci; j++) { | 
|---|
| 312 | /* Compute j'th output value (out of nci) for component */ | 
|---|
| 313 | val = output_value(cinfo, i, j, nci-1); | 
|---|
| 314 | /* Fill in all colormap entries that have this value of this component */ | 
|---|
| 315 | for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { | 
|---|
| 316 | /* fill in blksize entries beginning at ptr */ | 
|---|
| 317 | for (k = 0; k < blksize; k++) | 
|---|
| 318 | colormap[i][ptr+k] = (JSAMPLE) val; | 
|---|
| 319 | } | 
|---|
| 320 | } | 
|---|
| 321 | blkdist = blksize;          /* blksize of this color is blkdist of next */ | 
|---|
| 322 | } | 
|---|
| 323 |  | 
|---|
| 324 | /* Save the colormap in private storage, | 
|---|
| 325 | * where it will survive color quantization mode changes. | 
|---|
| 326 | */ | 
|---|
| 327 | cquantize->sv_colormap = colormap; | 
|---|
| 328 | cquantize->sv_actual = total_colors; | 
|---|
| 329 | } | 
|---|
| 330 |  | 
|---|
| 331 |  | 
|---|
| 332 | /* | 
|---|
| 333 | * Create the color index table. | 
|---|
| 334 | */ | 
|---|
| 335 |  | 
|---|
| 336 | LOCAL(void) | 
|---|
| 337 | create_colorindex (j_decompress_ptr cinfo) | 
|---|
| 338 | { | 
|---|
| 339 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 340 | JSAMPROW indexptr; | 
|---|
| 341 | int i,j,k, nci, blksize, val, pad; | 
|---|
| 342 |  | 
|---|
| 343 | /* For ordered dither, we pad the color index tables by MAXJSAMPLE in | 
|---|
| 344 | * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). | 
|---|
| 345 | * This is not necessary in the other dithering modes.  However, we | 
|---|
| 346 | * flag whether it was done in case user changes dithering mode. | 
|---|
| 347 | */ | 
|---|
| 348 | if (cinfo->dither_mode == JDITHER_ORDERED) { | 
|---|
| 349 | pad = MAXJSAMPLE*2; | 
|---|
| 350 | cquantize->is_padded = TRUE; | 
|---|
| 351 | } else { | 
|---|
| 352 | pad = 0; | 
|---|
| 353 | cquantize->is_padded = FALSE; | 
|---|
| 354 | } | 
|---|
| 355 |  | 
|---|
| 356 | cquantize->colorindex = (*cinfo->mem->alloc_sarray) | 
|---|
| 357 | ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|---|
| 358 | (JDIMENSION) (MAXJSAMPLE+1 + pad), | 
|---|
| 359 | (JDIMENSION) cinfo->out_color_components); | 
|---|
| 360 |  | 
|---|
| 361 | /* blksize is number of adjacent repeated entries for a component */ | 
|---|
| 362 | blksize = cquantize->sv_actual; | 
|---|
| 363 |  | 
|---|
| 364 | for (i = 0; i < cinfo->out_color_components; i++) { | 
|---|
| 365 | /* fill in colorindex entries for i'th color component */ | 
|---|
| 366 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
|---|
| 367 | blksize = blksize / nci; | 
|---|
| 368 |  | 
|---|
| 369 | /* adjust colorindex pointers to provide padding at negative indexes. */ | 
|---|
| 370 | if (pad) | 
|---|
| 371 | cquantize->colorindex[i] += MAXJSAMPLE; | 
|---|
| 372 |  | 
|---|
| 373 | /* in loop, val = index of current output value, */ | 
|---|
| 374 | /* and k = largest j that maps to current val */ | 
|---|
| 375 | indexptr = cquantize->colorindex[i]; | 
|---|
| 376 | val = 0; | 
|---|
| 377 | k = largest_input_value(cinfo, i, 0, nci-1); | 
|---|
| 378 | for (j = 0; j <= MAXJSAMPLE; j++) { | 
|---|
| 379 | while (j > k)             /* advance val if past boundary */ | 
|---|
| 380 | k = largest_input_value(cinfo, i, ++val, nci-1); | 
|---|
| 381 | /* premultiply so that no multiplication needed in main processing */ | 
|---|
| 382 | indexptr[j] = (JSAMPLE) (val * blksize); | 
|---|
| 383 | } | 
|---|
| 384 | /* Pad at both ends if necessary */ | 
|---|
| 385 | if (pad) | 
|---|
| 386 | for (j = 1; j <= MAXJSAMPLE; j++) { | 
|---|
| 387 | indexptr[-j] = indexptr[0]; | 
|---|
| 388 | indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; | 
|---|
| 389 | } | 
|---|
| 390 | } | 
|---|
| 391 | } | 
|---|
| 392 |  | 
|---|
| 393 |  | 
|---|
| 394 | /* | 
|---|
| 395 | * Create an ordered-dither array for a component having ncolors | 
|---|
| 396 | * distinct output values. | 
|---|
| 397 | */ | 
|---|
| 398 |  | 
|---|
| 399 | LOCAL(ODITHER_MATRIX_PTR) | 
|---|
| 400 | make_odither_array (j_decompress_ptr cinfo, int ncolors) | 
|---|
| 401 | { | 
|---|
| 402 | ODITHER_MATRIX_PTR odither; | 
|---|
| 403 | int j,k; | 
|---|
| 404 | INT32 num,den; | 
|---|
| 405 |  | 
|---|
| 406 | odither = (ODITHER_MATRIX_PTR) | 
|---|
| 407 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|---|
| 408 | SIZEOF(ODITHER_MATRIX)); | 
|---|
| 409 | /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). | 
|---|
| 410 | * Hence the dither value for the matrix cell with fill order f | 
|---|
| 411 | * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). | 
|---|
| 412 | * On 16-bit-int machine, be careful to avoid overflow. | 
|---|
| 413 | */ | 
|---|
| 414 | den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); | 
|---|
| 415 | for (j = 0; j < ODITHER_SIZE; j++) { | 
|---|
| 416 | for (k = 0; k < ODITHER_SIZE; k++) { | 
|---|
| 417 | num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) | 
|---|
| 418 | * MAXJSAMPLE; | 
|---|
| 419 | /* Ensure round towards zero despite C's lack of consistency | 
|---|
| 420 | * about rounding negative values in integer division... | 
|---|
| 421 | */ | 
|---|
| 422 | odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); | 
|---|
| 423 | } | 
|---|
| 424 | } | 
|---|
| 425 | return odither; | 
|---|
| 426 | } | 
|---|
| 427 |  | 
|---|
| 428 |  | 
|---|
| 429 | /* | 
|---|
| 430 | * Create the ordered-dither tables. | 
|---|
| 431 | * Components having the same number of representative colors may | 
|---|
| 432 | * share a dither table. | 
|---|
| 433 | */ | 
|---|
| 434 |  | 
|---|
| 435 | LOCAL(void) | 
|---|
| 436 | create_odither_tables (j_decompress_ptr cinfo) | 
|---|
| 437 | { | 
|---|
| 438 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 439 | ODITHER_MATRIX_PTR odither; | 
|---|
| 440 | int i, j, nci; | 
|---|
| 441 |  | 
|---|
| 442 | for (i = 0; i < cinfo->out_color_components; i++) { | 
|---|
| 443 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
|---|
| 444 | odither = NULL;             /* search for matching prior component */ | 
|---|
| 445 | for (j = 0; j < i; j++) { | 
|---|
| 446 | if (nci == cquantize->Ncolors[j]) { | 
|---|
| 447 | odither = cquantize->odither[j]; | 
|---|
| 448 | break; | 
|---|
| 449 | } | 
|---|
| 450 | } | 
|---|
| 451 | if (odither == NULL)        /* need a new table? */ | 
|---|
| 452 | odither = make_odither_array(cinfo, nci); | 
|---|
| 453 | cquantize->odither[i] = odither; | 
|---|
| 454 | } | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 |  | 
|---|
| 458 | /* | 
|---|
| 459 | * Map some rows of pixels to the output colormapped representation. | 
|---|
| 460 | */ | 
|---|
| 461 |  | 
|---|
| 462 | METHODDEF(void) | 
|---|
| 463 | color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|---|
| 464 | JSAMPARRAY output_buf, int num_rows) | 
|---|
| 465 | /* General case, no dithering */ | 
|---|
| 466 | { | 
|---|
| 467 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 468 | JSAMPARRAY colorindex = cquantize->colorindex; | 
|---|
| 469 | register int pixcode, ci; | 
|---|
| 470 | register JSAMPROW ptrin, ptrout; | 
|---|
| 471 | int row; | 
|---|
| 472 | JDIMENSION col; | 
|---|
| 473 | JDIMENSION width = cinfo->output_width; | 
|---|
| 474 | register int nc = cinfo->out_color_components; | 
|---|
| 475 |  | 
|---|
| 476 | for (row = 0; row < num_rows; row++) { | 
|---|
| 477 | ptrin = input_buf[row]; | 
|---|
| 478 | ptrout = output_buf[row]; | 
|---|
| 479 | for (col = width; col > 0; col--) { | 
|---|
| 480 | pixcode = 0; | 
|---|
| 481 | for (ci = 0; ci < nc; ci++) { | 
|---|
| 482 | pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); | 
|---|
| 483 | } | 
|---|
| 484 | *ptrout++ = (JSAMPLE) pixcode; | 
|---|
| 485 | } | 
|---|
| 486 | } | 
|---|
| 487 | } | 
|---|
| 488 |  | 
|---|
| 489 |  | 
|---|
| 490 | METHODDEF(void) | 
|---|
| 491 | color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|---|
| 492 | JSAMPARRAY output_buf, int num_rows) | 
|---|
| 493 | /* Fast path for out_color_components==3, no dithering */ | 
|---|
| 494 | { | 
|---|
| 495 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 496 | register int pixcode; | 
|---|
| 497 | register JSAMPROW ptrin, ptrout; | 
|---|
| 498 | JSAMPROW colorindex0 = cquantize->colorindex[0]; | 
|---|
| 499 | JSAMPROW colorindex1 = cquantize->colorindex[1]; | 
|---|
| 500 | JSAMPROW colorindex2 = cquantize->colorindex[2]; | 
|---|
| 501 | int row; | 
|---|
| 502 | JDIMENSION col; | 
|---|
| 503 | JDIMENSION width = cinfo->output_width; | 
|---|
| 504 |  | 
|---|
| 505 | for (row = 0; row < num_rows; row++) { | 
|---|
| 506 | ptrin = input_buf[row]; | 
|---|
| 507 | ptrout = output_buf[row]; | 
|---|
| 508 | for (col = width; col > 0; col--) { | 
|---|
| 509 | pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); | 
|---|
| 510 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); | 
|---|
| 511 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); | 
|---|
| 512 | *ptrout++ = (JSAMPLE) pixcode; | 
|---|
| 513 | } | 
|---|
| 514 | } | 
|---|
| 515 | } | 
|---|
| 516 |  | 
|---|
| 517 |  | 
|---|
| 518 | METHODDEF(void) | 
|---|
| 519 | quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|---|
| 520 | JSAMPARRAY output_buf, int num_rows) | 
|---|
| 521 | /* General case, with ordered dithering */ | 
|---|
| 522 | { | 
|---|
| 523 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 524 | register JSAMPROW input_ptr; | 
|---|
| 525 | register JSAMPROW output_ptr; | 
|---|
| 526 | JSAMPROW colorindex_ci; | 
|---|
| 527 | int * dither;                 /* points to active row of dither matrix */ | 
|---|
| 528 | int row_index, col_index;     /* current indexes into dither matrix */ | 
|---|
| 529 | int nc = cinfo->out_color_components; | 
|---|
| 530 | int ci; | 
|---|
| 531 | int row; | 
|---|
| 532 | JDIMENSION col; | 
|---|
| 533 | JDIMENSION width = cinfo->output_width; | 
|---|
| 534 |  | 
|---|
| 535 | for (row = 0; row < num_rows; row++) { | 
|---|
| 536 | /* Initialize output values to 0 so can process components separately */ | 
|---|
| 537 | jzero_far((void FAR *) output_buf[row], | 
|---|
| 538 | (size_t) (width * SIZEOF(JSAMPLE))); | 
|---|
| 539 | row_index = cquantize->row_index; | 
|---|
| 540 | for (ci = 0; ci < nc; ci++) { | 
|---|
| 541 | input_ptr = input_buf[row] + ci; | 
|---|
| 542 | output_ptr = output_buf[row]; | 
|---|
| 543 | colorindex_ci = cquantize->colorindex[ci]; | 
|---|
| 544 | dither = cquantize->odither[ci][row_index]; | 
|---|
| 545 | col_index = 0; | 
|---|
| 546 |  | 
|---|
| 547 | for (col = width; col > 0; col--) { | 
|---|
| 548 | /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, | 
|---|
| 549 | * select output value, accumulate into output code for this pixel. | 
|---|
| 550 | * Range-limiting need not be done explicitly, as we have extended | 
|---|
| 551 | * the colorindex table to produce the right answers for out-of-range | 
|---|
| 552 | * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the | 
|---|
| 553 | * required amount of padding. | 
|---|
| 554 | */ | 
|---|
| 555 | *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; | 
|---|
| 556 | input_ptr += nc; | 
|---|
| 557 | output_ptr++; | 
|---|
| 558 | col_index = (col_index + 1) & ODITHER_MASK; | 
|---|
| 559 | } | 
|---|
| 560 | } | 
|---|
| 561 | /* Advance row index for next row */ | 
|---|
| 562 | row_index = (row_index + 1) & ODITHER_MASK; | 
|---|
| 563 | cquantize->row_index = row_index; | 
|---|
| 564 | } | 
|---|
| 565 | } | 
|---|
| 566 |  | 
|---|
| 567 |  | 
|---|
| 568 | METHODDEF(void) | 
|---|
| 569 | quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|---|
| 570 | JSAMPARRAY output_buf, int num_rows) | 
|---|
| 571 | /* Fast path for out_color_components==3, with ordered dithering */ | 
|---|
| 572 | { | 
|---|
| 573 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 574 | register int pixcode; | 
|---|
| 575 | register JSAMPROW input_ptr; | 
|---|
| 576 | register JSAMPROW output_ptr; | 
|---|
| 577 | JSAMPROW colorindex0 = cquantize->colorindex[0]; | 
|---|
| 578 | JSAMPROW colorindex1 = cquantize->colorindex[1]; | 
|---|
| 579 | JSAMPROW colorindex2 = cquantize->colorindex[2]; | 
|---|
| 580 | int * dither0;                /* points to active row of dither matrix */ | 
|---|
| 581 | int * dither1; | 
|---|
| 582 | int * dither2; | 
|---|
| 583 | int row_index, col_index;     /* current indexes into dither matrix */ | 
|---|
| 584 | int row; | 
|---|
| 585 | JDIMENSION col; | 
|---|
| 586 | JDIMENSION width = cinfo->output_width; | 
|---|
| 587 |  | 
|---|
| 588 | for (row = 0; row < num_rows; row++) { | 
|---|
| 589 | row_index = cquantize->row_index; | 
|---|
| 590 | input_ptr = input_buf[row]; | 
|---|
| 591 | output_ptr = output_buf[row]; | 
|---|
| 592 | dither0 = cquantize->odither[0][row_index]; | 
|---|
| 593 | dither1 = cquantize->odither[1][row_index]; | 
|---|
| 594 | dither2 = cquantize->odither[2][row_index]; | 
|---|
| 595 | col_index = 0; | 
|---|
| 596 |  | 
|---|
| 597 | for (col = width; col > 0; col--) { | 
|---|
| 598 | pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + | 
|---|
| 599 | dither0[col_index]]); | 
|---|
| 600 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + | 
|---|
| 601 | dither1[col_index]]); | 
|---|
| 602 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + | 
|---|
| 603 | dither2[col_index]]); | 
|---|
| 604 | *output_ptr++ = (JSAMPLE) pixcode; | 
|---|
| 605 | col_index = (col_index + 1) & ODITHER_MASK; | 
|---|
| 606 | } | 
|---|
| 607 | row_index = (row_index + 1) & ODITHER_MASK; | 
|---|
| 608 | cquantize->row_index = row_index; | 
|---|
| 609 | } | 
|---|
| 610 | } | 
|---|
| 611 |  | 
|---|
| 612 |  | 
|---|
| 613 | METHODDEF(void) | 
|---|
| 614 | quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|---|
| 615 | JSAMPARRAY output_buf, int num_rows) | 
|---|
| 616 | /* General case, with Floyd-Steinberg dithering */ | 
|---|
| 617 | { | 
|---|
| 618 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 619 | register LOCFSERROR cur;      /* current error or pixel value */ | 
|---|
| 620 | LOCFSERROR belowerr;          /* error for pixel below cur */ | 
|---|
| 621 | LOCFSERROR bpreverr;          /* error for below/prev col */ | 
|---|
| 622 | LOCFSERROR bnexterr;          /* error for below/next col */ | 
|---|
| 623 | LOCFSERROR delta; | 
|---|
| 624 | register FSERRPTR errorptr;   /* => fserrors[] at column before current */ | 
|---|
| 625 | register JSAMPROW input_ptr; | 
|---|
| 626 | register JSAMPROW output_ptr; | 
|---|
| 627 | JSAMPROW colorindex_ci; | 
|---|
| 628 | JSAMPROW colormap_ci; | 
|---|
| 629 | int pixcode; | 
|---|
| 630 | int nc = cinfo->out_color_components; | 
|---|
| 631 | int dir;                      /* 1 for left-to-right, -1 for right-to-left */ | 
|---|
| 632 | int dirnc;                    /* dir * nc */ | 
|---|
| 633 | int ci; | 
|---|
| 634 | int row; | 
|---|
| 635 | JDIMENSION col; | 
|---|
| 636 | JDIMENSION width = cinfo->output_width; | 
|---|
| 637 | JSAMPLE *range_limit = cinfo->sample_range_limit; | 
|---|
| 638 | SHIFT_TEMPS | 
|---|
| 639 |  | 
|---|
| 640 | for (row = 0; row < num_rows; row++) { | 
|---|
| 641 | /* Initialize output values to 0 so can process components separately */ | 
|---|
| 642 | jzero_far((void FAR *) output_buf[row], | 
|---|
| 643 | (size_t) (width * SIZEOF(JSAMPLE))); | 
|---|
| 644 | for (ci = 0; ci < nc; ci++) { | 
|---|
| 645 | input_ptr = input_buf[row] + ci; | 
|---|
| 646 | output_ptr = output_buf[row]; | 
|---|
| 647 | if (cquantize->on_odd_row) { | 
|---|
| 648 | /* work right to left in this row */ | 
|---|
| 649 | input_ptr += (width-1) * nc; /* so point to rightmost pixel */ | 
|---|
| 650 | output_ptr += width-1; | 
|---|
| 651 | dir = -1; | 
|---|
| 652 | dirnc = -nc; | 
|---|
| 653 | errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ | 
|---|
| 654 | } else { | 
|---|
| 655 | /* work left to right in this row */ | 
|---|
| 656 | dir = 1; | 
|---|
| 657 | dirnc = nc; | 
|---|
| 658 | errorptr = cquantize->fserrors[ci]; /* => entry before first column */ | 
|---|
| 659 | } | 
|---|
| 660 | colorindex_ci = cquantize->colorindex[ci]; | 
|---|
| 661 | colormap_ci = cquantize->sv_colormap[ci]; | 
|---|
| 662 | /* Preset error values: no error propagated to first pixel from left */ | 
|---|
| 663 | cur = 0; | 
|---|
| 664 | /* and no error propagated to row below yet */ | 
|---|
| 665 | belowerr = bpreverr = 0; | 
|---|
| 666 |  | 
|---|
| 667 | for (col = width; col > 0; col--) { | 
|---|
| 668 | /* cur holds the error propagated from the previous pixel on the | 
|---|
| 669 | * current line.  Add the error propagated from the previous line | 
|---|
| 670 | * to form the complete error correction term for this pixel, and | 
|---|
| 671 | * round the error term (which is expressed * 16) to an integer. | 
|---|
| 672 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | 
|---|
| 673 | * for either sign of the error value. | 
|---|
| 674 | * Note: errorptr points to *previous* column's array entry. | 
|---|
| 675 | */ | 
|---|
| 676 | cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); | 
|---|
| 677 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | 
|---|
| 678 | * The maximum error is +- MAXJSAMPLE; this sets the required size | 
|---|
| 679 | * of the range_limit array. | 
|---|
| 680 | */ | 
|---|
| 681 | cur += GETJSAMPLE(*input_ptr); | 
|---|
| 682 | cur = GETJSAMPLE(range_limit[cur]); | 
|---|
| 683 | /* Select output value, accumulate into output code for this pixel */ | 
|---|
| 684 | pixcode = GETJSAMPLE(colorindex_ci[cur]); | 
|---|
| 685 | *output_ptr += (JSAMPLE) pixcode; | 
|---|
| 686 | /* Compute actual representation error at this pixel */ | 
|---|
| 687 | /* Note: we can do this even though we don't have the final */ | 
|---|
| 688 | /* pixel code, because the colormap is orthogonal. */ | 
|---|
| 689 | cur -= GETJSAMPLE(colormap_ci[pixcode]); | 
|---|
| 690 | /* Compute error fractions to be propagated to adjacent pixels. | 
|---|
| 691 | * Add these into the running sums, and simultaneously shift the | 
|---|
| 692 | * next-line error sums left by 1 column. | 
|---|
| 693 | */ | 
|---|
| 694 | bnexterr = cur; | 
|---|
| 695 | delta = cur * 2; | 
|---|
| 696 | cur += delta;           /* form error * 3 */ | 
|---|
| 697 | errorptr[0] = (FSERROR) (bpreverr + cur); | 
|---|
| 698 | cur += delta;           /* form error * 5 */ | 
|---|
| 699 | bpreverr = belowerr + cur; | 
|---|
| 700 | belowerr = bnexterr; | 
|---|
| 701 | cur += delta;           /* form error * 7 */ | 
|---|
| 702 | /* At this point cur contains the 7/16 error value to be propagated | 
|---|
| 703 | * to the next pixel on the current line, and all the errors for the | 
|---|
| 704 | * next line have been shifted over. We are therefore ready to move on. | 
|---|
| 705 | */ | 
|---|
| 706 | input_ptr += dirnc;     /* advance input ptr to next column */ | 
|---|
| 707 | output_ptr += dir;      /* advance output ptr to next column */ | 
|---|
| 708 | errorptr += dir;        /* advance errorptr to current column */ | 
|---|
| 709 | } | 
|---|
| 710 | /* Post-loop cleanup: we must unload the final error value into the | 
|---|
| 711 | * final fserrors[] entry.  Note we need not unload belowerr because | 
|---|
| 712 | * it is for the dummy column before or after the actual array. | 
|---|
| 713 | */ | 
|---|
| 714 | errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ | 
|---|
| 715 | } | 
|---|
| 716 | cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); | 
|---|
| 717 | } | 
|---|
| 718 | } | 
|---|
| 719 |  | 
|---|
| 720 |  | 
|---|
| 721 | /* | 
|---|
| 722 | * Allocate workspace for Floyd-Steinberg errors. | 
|---|
| 723 | */ | 
|---|
| 724 |  | 
|---|
| 725 | LOCAL(void) | 
|---|
| 726 | alloc_fs_workspace (j_decompress_ptr cinfo) | 
|---|
| 727 | { | 
|---|
| 728 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 729 | size_t arraysize; | 
|---|
| 730 | int i; | 
|---|
| 731 |  | 
|---|
| 732 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); | 
|---|
| 733 | for (i = 0; i < cinfo->out_color_components; i++) { | 
|---|
| 734 | cquantize->fserrors[i] = (FSERRPTR) | 
|---|
| 735 | (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | 
|---|
| 736 | } | 
|---|
| 737 | } | 
|---|
| 738 |  | 
|---|
| 739 |  | 
|---|
| 740 | /* | 
|---|
| 741 | * Initialize for one-pass color quantization. | 
|---|
| 742 | */ | 
|---|
| 743 |  | 
|---|
| 744 | METHODDEF(void) | 
|---|
| 745 | start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | 
|---|
| 746 | { | 
|---|
| 747 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 748 | size_t arraysize; | 
|---|
| 749 | int i; | 
|---|
| 750 |  | 
|---|
| 751 | /* Install my colormap. */ | 
|---|
| 752 | cinfo->colormap = cquantize->sv_colormap; | 
|---|
| 753 | cinfo->actual_number_of_colors = cquantize->sv_actual; | 
|---|
| 754 |  | 
|---|
| 755 | /* Initialize for desired dithering mode. */ | 
|---|
| 756 | switch (cinfo->dither_mode) { | 
|---|
| 757 | case JDITHER_NONE: | 
|---|
| 758 | if (cinfo->out_color_components == 3) | 
|---|
| 759 | cquantize->pub.color_quantize = color_quantize3; | 
|---|
| 760 | else | 
|---|
| 761 | cquantize->pub.color_quantize = color_quantize; | 
|---|
| 762 | break; | 
|---|
| 763 | case JDITHER_ORDERED: | 
|---|
| 764 | if (cinfo->out_color_components == 3) | 
|---|
| 765 | cquantize->pub.color_quantize = quantize3_ord_dither; | 
|---|
| 766 | else | 
|---|
| 767 | cquantize->pub.color_quantize = quantize_ord_dither; | 
|---|
| 768 | cquantize->row_index = 0;   /* initialize state for ordered dither */ | 
|---|
| 769 | /* If user changed to ordered dither from another mode, | 
|---|
| 770 | * we must recreate the color index table with padding. | 
|---|
| 771 | * This will cost extra space, but probably isn't very likely. | 
|---|
| 772 | */ | 
|---|
| 773 | if (! cquantize->is_padded) | 
|---|
| 774 | create_colorindex(cinfo); | 
|---|
| 775 | /* Create ordered-dither tables if we didn't already. */ | 
|---|
| 776 | if (cquantize->odither[0] == NULL) | 
|---|
| 777 | create_odither_tables(cinfo); | 
|---|
| 778 | break; | 
|---|
| 779 | case JDITHER_FS: | 
|---|
| 780 | cquantize->pub.color_quantize = quantize_fs_dither; | 
|---|
| 781 | cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ | 
|---|
| 782 | /* Allocate Floyd-Steinberg workspace if didn't already. */ | 
|---|
| 783 | if (cquantize->fserrors[0] == NULL) | 
|---|
| 784 | alloc_fs_workspace(cinfo); | 
|---|
| 785 | /* Initialize the propagated errors to zero. */ | 
|---|
| 786 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); | 
|---|
| 787 | for (i = 0; i < cinfo->out_color_components; i++) | 
|---|
| 788 | jzero_far((void FAR *) cquantize->fserrors[i], arraysize); | 
|---|
| 789 | break; | 
|---|
| 790 | default: | 
|---|
| 791 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|---|
| 792 | break; | 
|---|
| 793 | } | 
|---|
| 794 | } | 
|---|
| 795 |  | 
|---|
| 796 |  | 
|---|
| 797 | /* | 
|---|
| 798 | * Finish up at the end of the pass. | 
|---|
| 799 | */ | 
|---|
| 800 |  | 
|---|
| 801 | METHODDEF(void) | 
|---|
| 802 | finish_pass_1_quant (j_decompress_ptr cinfo) | 
|---|
| 803 | { | 
|---|
| 804 | /* no work in 1-pass case */ | 
|---|
| 805 | } | 
|---|
| 806 |  | 
|---|
| 807 |  | 
|---|
| 808 | /* | 
|---|
| 809 | * Switch to a new external colormap between output passes. | 
|---|
| 810 | * Shouldn't get to this module! | 
|---|
| 811 | */ | 
|---|
| 812 |  | 
|---|
| 813 | METHODDEF(void) | 
|---|
| 814 | new_color_map_1_quant (j_decompress_ptr cinfo) | 
|---|
| 815 | { | 
|---|
| 816 | ERREXIT(cinfo, JERR_MODE_CHANGE); | 
|---|
| 817 | } | 
|---|
| 818 |  | 
|---|
| 819 |  | 
|---|
| 820 | /* | 
|---|
| 821 | * Module initialization routine for 1-pass color quantization. | 
|---|
| 822 | */ | 
|---|
| 823 |  | 
|---|
| 824 | GLOBAL(void) | 
|---|
| 825 | jinit_1pass_quantizer (j_decompress_ptr cinfo) | 
|---|
| 826 | { | 
|---|
| 827 | my_cquantize_ptr cquantize; | 
|---|
| 828 |  | 
|---|
| 829 | cquantize = (my_cquantize_ptr) | 
|---|
| 830 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|---|
| 831 | SIZEOF(my_cquantizer)); | 
|---|
| 832 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | 
|---|
| 833 | cquantize->pub.start_pass = start_pass_1_quant; | 
|---|
| 834 | cquantize->pub.finish_pass = finish_pass_1_quant; | 
|---|
| 835 | cquantize->pub.new_color_map = new_color_map_1_quant; | 
|---|
| 836 | cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ | 
|---|
| 837 | cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ | 
|---|
| 838 |  | 
|---|
| 839 | /* Make sure my internal arrays won't overflow */ | 
|---|
| 840 | if (cinfo->out_color_components > MAX_Q_COMPS) | 
|---|
| 841 | ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); | 
|---|
| 842 | /* Make sure colormap indexes can be represented by JSAMPLEs */ | 
|---|
| 843 | if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) | 
|---|
| 844 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); | 
|---|
| 845 |  | 
|---|
| 846 | /* Create the colormap and color index table. */ | 
|---|
| 847 | create_colormap(cinfo); | 
|---|
| 848 | create_colorindex(cinfo); | 
|---|
| 849 |  | 
|---|
| 850 | /* Allocate Floyd-Steinberg workspace now if requested. | 
|---|
| 851 | * We do this now since it is FAR storage and may affect the memory | 
|---|
| 852 | * manager's space calculations.  If the user changes to FS dither | 
|---|
| 853 | * mode in a later pass, we will allocate the space then, and will | 
|---|
| 854 | * possibly overrun the max_memory_to_use setting. | 
|---|
| 855 | */ | 
|---|
| 856 | if (cinfo->dither_mode == JDITHER_FS) | 
|---|
| 857 | alloc_fs_workspace(cinfo); | 
|---|
| 858 | } | 
|---|
| 859 |  | 
|---|
| 860 | #endif /* QUANT_1PASS_SUPPORTED */ | 
|---|
| 861 |  | 
|---|