| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * vacuumlazy.c |
| 4 | * Concurrent ("lazy") vacuuming. |
| 5 | * |
| 6 | * |
| 7 | * The major space usage for LAZY VACUUM is storage for the array of dead tuple |
| 8 | * TIDs. We want to ensure we can vacuum even the very largest relations with |
| 9 | * finite memory space usage. To do that, we set upper bounds on the number of |
| 10 | * tuples we will keep track of at once. |
| 11 | * |
| 12 | * We are willing to use at most maintenance_work_mem (or perhaps |
| 13 | * autovacuum_work_mem) memory space to keep track of dead tuples. We |
| 14 | * initially allocate an array of TIDs of that size, with an upper limit that |
| 15 | * depends on table size (this limit ensures we don't allocate a huge area |
| 16 | * uselessly for vacuuming small tables). If the array threatens to overflow, |
| 17 | * we suspend the heap scan phase and perform a pass of index cleanup and page |
| 18 | * compaction, then resume the heap scan with an empty TID array. |
| 19 | * |
| 20 | * If we're processing a table with no indexes, we can just vacuum each page |
| 21 | * as we go; there's no need to save up multiple tuples to minimize the number |
| 22 | * of index scans performed. So we don't use maintenance_work_mem memory for |
| 23 | * the TID array, just enough to hold as many heap tuples as fit on one page. |
| 24 | * |
| 25 | * |
| 26 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 27 | * Portions Copyright (c) 1994, Regents of the University of California |
| 28 | * |
| 29 | * |
| 30 | * IDENTIFICATION |
| 31 | * src/backend/access/heap/vacuumlazy.c |
| 32 | * |
| 33 | *------------------------------------------------------------------------- |
| 34 | */ |
| 35 | #include "postgres.h" |
| 36 | |
| 37 | #include <math.h> |
| 38 | |
| 39 | #include "access/genam.h" |
| 40 | #include "access/heapam.h" |
| 41 | #include "access/heapam_xlog.h" |
| 42 | #include "access/htup_details.h" |
| 43 | #include "access/multixact.h" |
| 44 | #include "access/transam.h" |
| 45 | #include "access/visibilitymap.h" |
| 46 | #include "access/xlog.h" |
| 47 | #include "catalog/storage.h" |
| 48 | #include "commands/dbcommands.h" |
| 49 | #include "commands/progress.h" |
| 50 | #include "commands/vacuum.h" |
| 51 | #include "miscadmin.h" |
| 52 | #include "pgstat.h" |
| 53 | #include "portability/instr_time.h" |
| 54 | #include "postmaster/autovacuum.h" |
| 55 | #include "storage/bufmgr.h" |
| 56 | #include "storage/freespace.h" |
| 57 | #include "storage/lmgr.h" |
| 58 | #include "utils/lsyscache.h" |
| 59 | #include "utils/memutils.h" |
| 60 | #include "utils/pg_rusage.h" |
| 61 | #include "utils/timestamp.h" |
| 62 | |
| 63 | |
| 64 | /* |
| 65 | * Space/time tradeoff parameters: do these need to be user-tunable? |
| 66 | * |
| 67 | * To consider truncating the relation, we want there to be at least |
| 68 | * REL_TRUNCATE_MINIMUM or (relsize / REL_TRUNCATE_FRACTION) (whichever |
| 69 | * is less) potentially-freeable pages. |
| 70 | */ |
| 71 | #define REL_TRUNCATE_MINIMUM 1000 |
| 72 | #define REL_TRUNCATE_FRACTION 16 |
| 73 | |
| 74 | /* |
| 75 | * Timing parameters for truncate locking heuristics. |
| 76 | * |
| 77 | * These were not exposed as user tunable GUC values because it didn't seem |
| 78 | * that the potential for improvement was great enough to merit the cost of |
| 79 | * supporting them. |
| 80 | */ |
| 81 | #define VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL 20 /* ms */ |
| 82 | #define VACUUM_TRUNCATE_LOCK_WAIT_INTERVAL 50 /* ms */ |
| 83 | #define VACUUM_TRUNCATE_LOCK_TIMEOUT 5000 /* ms */ |
| 84 | |
| 85 | /* |
| 86 | * When a table has no indexes, vacuum the FSM after every 8GB, approximately |
| 87 | * (it won't be exact because we only vacuum FSM after processing a heap page |
| 88 | * that has some removable tuples). When there are indexes, this is ignored, |
| 89 | * and we vacuum FSM after each index/heap cleaning pass. |
| 90 | */ |
| 91 | #define VACUUM_FSM_EVERY_PAGES \ |
| 92 | ((BlockNumber) (((uint64) 8 * 1024 * 1024 * 1024) / BLCKSZ)) |
| 93 | |
| 94 | /* |
| 95 | * Guesstimation of number of dead tuples per page. This is used to |
| 96 | * provide an upper limit to memory allocated when vacuuming small |
| 97 | * tables. |
| 98 | */ |
| 99 | #define LAZY_ALLOC_TUPLES MaxHeapTuplesPerPage |
| 100 | |
| 101 | /* |
| 102 | * Before we consider skipping a page that's marked as clean in |
| 103 | * visibility map, we must've seen at least this many clean pages. |
| 104 | */ |
| 105 | #define SKIP_PAGES_THRESHOLD ((BlockNumber) 32) |
| 106 | |
| 107 | /* |
| 108 | * Size of the prefetch window for lazy vacuum backwards truncation scan. |
| 109 | * Needs to be a power of 2. |
| 110 | */ |
| 111 | #define PREFETCH_SIZE ((BlockNumber) 32) |
| 112 | |
| 113 | typedef struct LVRelStats |
| 114 | { |
| 115 | /* useindex = true means two-pass strategy; false means one-pass */ |
| 116 | bool useindex; |
| 117 | /* Overall statistics about rel */ |
| 118 | BlockNumber old_rel_pages; /* previous value of pg_class.relpages */ |
| 119 | BlockNumber rel_pages; /* total number of pages */ |
| 120 | BlockNumber scanned_pages; /* number of pages we examined */ |
| 121 | BlockNumber pinskipped_pages; /* # of pages we skipped due to a pin */ |
| 122 | BlockNumber frozenskipped_pages; /* # of frozen pages we skipped */ |
| 123 | BlockNumber tupcount_pages; /* pages whose tuples we counted */ |
| 124 | double old_live_tuples; /* previous value of pg_class.reltuples */ |
| 125 | double new_rel_tuples; /* new estimated total # of tuples */ |
| 126 | double new_live_tuples; /* new estimated total # of live tuples */ |
| 127 | double new_dead_tuples; /* new estimated total # of dead tuples */ |
| 128 | BlockNumber pages_removed; |
| 129 | double tuples_deleted; |
| 130 | BlockNumber nonempty_pages; /* actually, last nonempty page + 1 */ |
| 131 | /* List of TIDs of tuples we intend to delete */ |
| 132 | /* NB: this list is ordered by TID address */ |
| 133 | int num_dead_tuples; /* current # of entries */ |
| 134 | int max_dead_tuples; /* # slots allocated in array */ |
| 135 | ItemPointer dead_tuples; /* array of ItemPointerData */ |
| 136 | int num_index_scans; |
| 137 | TransactionId latestRemovedXid; |
| 138 | bool lock_waiter_detected; |
| 139 | } LVRelStats; |
| 140 | |
| 141 | |
| 142 | /* A few variables that don't seem worth passing around as parameters */ |
| 143 | static int elevel = -1; |
| 144 | |
| 145 | static TransactionId OldestXmin; |
| 146 | static TransactionId FreezeLimit; |
| 147 | static MultiXactId MultiXactCutoff; |
| 148 | |
| 149 | static BufferAccessStrategy vac_strategy; |
| 150 | |
| 151 | |
| 152 | /* non-export function prototypes */ |
| 153 | static void lazy_scan_heap(Relation onerel, VacuumParams *params, |
| 154 | LVRelStats *vacrelstats, Relation *Irel, int nindexes, |
| 155 | bool aggressive); |
| 156 | static void lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats); |
| 157 | static bool lazy_check_needs_freeze(Buffer buf, bool *hastup); |
| 158 | static void lazy_vacuum_index(Relation indrel, |
| 159 | IndexBulkDeleteResult **stats, |
| 160 | LVRelStats *vacrelstats); |
| 161 | static void lazy_cleanup_index(Relation indrel, |
| 162 | IndexBulkDeleteResult *stats, |
| 163 | LVRelStats *vacrelstats); |
| 164 | static int lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer, |
| 165 | int tupindex, LVRelStats *vacrelstats, Buffer *vmbuffer); |
| 166 | static bool should_attempt_truncation(VacuumParams *params, |
| 167 | LVRelStats *vacrelstats); |
| 168 | static void lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats); |
| 169 | static BlockNumber count_nondeletable_pages(Relation onerel, |
| 170 | LVRelStats *vacrelstats); |
| 171 | static void lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks); |
| 172 | static void lazy_record_dead_tuple(LVRelStats *vacrelstats, |
| 173 | ItemPointer itemptr); |
| 174 | static bool lazy_tid_reaped(ItemPointer itemptr, void *state); |
| 175 | static int vac_cmp_itemptr(const void *left, const void *right); |
| 176 | static bool heap_page_is_all_visible(Relation rel, Buffer buf, |
| 177 | TransactionId *visibility_cutoff_xid, bool *all_frozen); |
| 178 | |
| 179 | |
| 180 | /* |
| 181 | * heap_vacuum_rel() -- perform VACUUM for one heap relation |
| 182 | * |
| 183 | * This routine vacuums a single heap, cleans out its indexes, and |
| 184 | * updates its relpages and reltuples statistics. |
| 185 | * |
| 186 | * At entry, we have already established a transaction and opened |
| 187 | * and locked the relation. |
| 188 | */ |
| 189 | void |
| 190 | heap_vacuum_rel(Relation onerel, VacuumParams *params, |
| 191 | BufferAccessStrategy bstrategy) |
| 192 | { |
| 193 | LVRelStats *vacrelstats; |
| 194 | Relation *Irel; |
| 195 | int nindexes; |
| 196 | PGRUsage ru0; |
| 197 | TimestampTz starttime = 0; |
| 198 | long secs; |
| 199 | int usecs; |
| 200 | double read_rate, |
| 201 | write_rate; |
| 202 | bool aggressive; /* should we scan all unfrozen pages? */ |
| 203 | bool scanned_all_unfrozen; /* actually scanned all such pages? */ |
| 204 | TransactionId xidFullScanLimit; |
| 205 | MultiXactId mxactFullScanLimit; |
| 206 | BlockNumber new_rel_pages; |
| 207 | BlockNumber new_rel_allvisible; |
| 208 | double new_live_tuples; |
| 209 | TransactionId new_frozen_xid; |
| 210 | MultiXactId new_min_multi; |
| 211 | |
| 212 | Assert(params != NULL); |
| 213 | Assert(params->index_cleanup != VACOPT_TERNARY_DEFAULT); |
| 214 | Assert(params->truncate != VACOPT_TERNARY_DEFAULT); |
| 215 | |
| 216 | /* not every AM requires these to be valid, but heap does */ |
| 217 | Assert(TransactionIdIsNormal(onerel->rd_rel->relfrozenxid)); |
| 218 | Assert(MultiXactIdIsValid(onerel->rd_rel->relminmxid)); |
| 219 | |
| 220 | /* measure elapsed time iff autovacuum logging requires it */ |
| 221 | if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0) |
| 222 | { |
| 223 | pg_rusage_init(&ru0); |
| 224 | starttime = GetCurrentTimestamp(); |
| 225 | } |
| 226 | |
| 227 | if (params->options & VACOPT_VERBOSE) |
| 228 | elevel = INFO; |
| 229 | else |
| 230 | elevel = DEBUG2; |
| 231 | |
| 232 | pgstat_progress_start_command(PROGRESS_COMMAND_VACUUM, |
| 233 | RelationGetRelid(onerel)); |
| 234 | |
| 235 | vac_strategy = bstrategy; |
| 236 | |
| 237 | vacuum_set_xid_limits(onerel, |
| 238 | params->freeze_min_age, |
| 239 | params->freeze_table_age, |
| 240 | params->multixact_freeze_min_age, |
| 241 | params->multixact_freeze_table_age, |
| 242 | &OldestXmin, &FreezeLimit, &xidFullScanLimit, |
| 243 | &MultiXactCutoff, &mxactFullScanLimit); |
| 244 | |
| 245 | /* |
| 246 | * We request an aggressive scan if the table's frozen Xid is now older |
| 247 | * than or equal to the requested Xid full-table scan limit; or if the |
| 248 | * table's minimum MultiXactId is older than or equal to the requested |
| 249 | * mxid full-table scan limit; or if DISABLE_PAGE_SKIPPING was specified. |
| 250 | */ |
| 251 | aggressive = TransactionIdPrecedesOrEquals(onerel->rd_rel->relfrozenxid, |
| 252 | xidFullScanLimit); |
| 253 | aggressive |= MultiXactIdPrecedesOrEquals(onerel->rd_rel->relminmxid, |
| 254 | mxactFullScanLimit); |
| 255 | if (params->options & VACOPT_DISABLE_PAGE_SKIPPING) |
| 256 | aggressive = true; |
| 257 | |
| 258 | /* |
| 259 | * Normally the relfrozenxid for an anti-wraparound vacuum will be old |
| 260 | * enough to force an aggressive vacuum. However, a concurrent vacuum |
| 261 | * might have already done this work that the relfrozenxid in relcache has |
| 262 | * been updated. If that happens this vacuum is redundant, so skip it. |
| 263 | */ |
| 264 | if (params->is_wraparound && !aggressive) |
| 265 | { |
| 266 | ereport(DEBUG1, |
| 267 | (errmsg("skipping redundant vacuum to prevent wraparound of table \"%s.%s.%s\"" , |
| 268 | get_database_name(MyDatabaseId), |
| 269 | get_namespace_name(RelationGetNamespace(onerel)), |
| 270 | RelationGetRelationName(onerel)))); |
| 271 | pgstat_progress_end_command(); |
| 272 | return; |
| 273 | } |
| 274 | |
| 275 | vacrelstats = (LVRelStats *) palloc0(sizeof(LVRelStats)); |
| 276 | |
| 277 | vacrelstats->old_rel_pages = onerel->rd_rel->relpages; |
| 278 | vacrelstats->old_live_tuples = onerel->rd_rel->reltuples; |
| 279 | vacrelstats->num_index_scans = 0; |
| 280 | vacrelstats->pages_removed = 0; |
| 281 | vacrelstats->lock_waiter_detected = false; |
| 282 | |
| 283 | /* Open all indexes of the relation */ |
| 284 | vac_open_indexes(onerel, RowExclusiveLock, &nindexes, &Irel); |
| 285 | vacrelstats->useindex = (nindexes > 0 && |
| 286 | params->index_cleanup == VACOPT_TERNARY_ENABLED); |
| 287 | |
| 288 | /* Do the vacuuming */ |
| 289 | lazy_scan_heap(onerel, params, vacrelstats, Irel, nindexes, aggressive); |
| 290 | |
| 291 | /* Done with indexes */ |
| 292 | vac_close_indexes(nindexes, Irel, NoLock); |
| 293 | |
| 294 | /* |
| 295 | * Compute whether we actually scanned the all unfrozen pages. If we did, |
| 296 | * we can adjust relfrozenxid and relminmxid. |
| 297 | * |
| 298 | * NB: We need to check this before truncating the relation, because that |
| 299 | * will change ->rel_pages. |
| 300 | */ |
| 301 | if ((vacrelstats->scanned_pages + vacrelstats->frozenskipped_pages) |
| 302 | < vacrelstats->rel_pages) |
| 303 | { |
| 304 | Assert(!aggressive); |
| 305 | scanned_all_unfrozen = false; |
| 306 | } |
| 307 | else |
| 308 | scanned_all_unfrozen = true; |
| 309 | |
| 310 | /* |
| 311 | * Optionally truncate the relation. |
| 312 | */ |
| 313 | if (should_attempt_truncation(params, vacrelstats)) |
| 314 | lazy_truncate_heap(onerel, vacrelstats); |
| 315 | |
| 316 | /* Report that we are now doing final cleanup */ |
| 317 | pgstat_progress_update_param(PROGRESS_VACUUM_PHASE, |
| 318 | PROGRESS_VACUUM_PHASE_FINAL_CLEANUP); |
| 319 | |
| 320 | /* |
| 321 | * Update statistics in pg_class. |
| 322 | * |
| 323 | * A corner case here is that if we scanned no pages at all because every |
| 324 | * page is all-visible, we should not update relpages/reltuples, because |
| 325 | * we have no new information to contribute. In particular this keeps us |
| 326 | * from replacing relpages=reltuples=0 (which means "unknown tuple |
| 327 | * density") with nonzero relpages and reltuples=0 (which means "zero |
| 328 | * tuple density") unless there's some actual evidence for the latter. |
| 329 | * |
| 330 | * It's important that we use tupcount_pages and not scanned_pages for the |
| 331 | * check described above; scanned_pages counts pages where we could not |
| 332 | * get cleanup lock, and which were processed only for frozenxid purposes. |
| 333 | * |
| 334 | * We do update relallvisible even in the corner case, since if the table |
| 335 | * is all-visible we'd definitely like to know that. But clamp the value |
| 336 | * to be not more than what we're setting relpages to. |
| 337 | * |
| 338 | * Also, don't change relfrozenxid/relminmxid if we skipped any pages, |
| 339 | * since then we don't know for certain that all tuples have a newer xmin. |
| 340 | */ |
| 341 | new_rel_pages = vacrelstats->rel_pages; |
| 342 | new_live_tuples = vacrelstats->new_live_tuples; |
| 343 | if (vacrelstats->tupcount_pages == 0 && new_rel_pages > 0) |
| 344 | { |
| 345 | new_rel_pages = vacrelstats->old_rel_pages; |
| 346 | new_live_tuples = vacrelstats->old_live_tuples; |
| 347 | } |
| 348 | |
| 349 | visibilitymap_count(onerel, &new_rel_allvisible, NULL); |
| 350 | if (new_rel_allvisible > new_rel_pages) |
| 351 | new_rel_allvisible = new_rel_pages; |
| 352 | |
| 353 | new_frozen_xid = scanned_all_unfrozen ? FreezeLimit : InvalidTransactionId; |
| 354 | new_min_multi = scanned_all_unfrozen ? MultiXactCutoff : InvalidMultiXactId; |
| 355 | |
| 356 | vac_update_relstats(onerel, |
| 357 | new_rel_pages, |
| 358 | new_live_tuples, |
| 359 | new_rel_allvisible, |
| 360 | nindexes > 0, |
| 361 | new_frozen_xid, |
| 362 | new_min_multi, |
| 363 | false); |
| 364 | |
| 365 | /* report results to the stats collector, too */ |
| 366 | pgstat_report_vacuum(RelationGetRelid(onerel), |
| 367 | onerel->rd_rel->relisshared, |
| 368 | new_live_tuples, |
| 369 | vacrelstats->new_dead_tuples); |
| 370 | pgstat_progress_end_command(); |
| 371 | |
| 372 | /* and log the action if appropriate */ |
| 373 | if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0) |
| 374 | { |
| 375 | TimestampTz endtime = GetCurrentTimestamp(); |
| 376 | |
| 377 | if (params->log_min_duration == 0 || |
| 378 | TimestampDifferenceExceeds(starttime, endtime, |
| 379 | params->log_min_duration)) |
| 380 | { |
| 381 | StringInfoData buf; |
| 382 | char *msgfmt; |
| 383 | |
| 384 | TimestampDifference(starttime, endtime, &secs, &usecs); |
| 385 | |
| 386 | read_rate = 0; |
| 387 | write_rate = 0; |
| 388 | if ((secs > 0) || (usecs > 0)) |
| 389 | { |
| 390 | read_rate = (double) BLCKSZ * VacuumPageMiss / (1024 * 1024) / |
| 391 | (secs + usecs / 1000000.0); |
| 392 | write_rate = (double) BLCKSZ * VacuumPageDirty / (1024 * 1024) / |
| 393 | (secs + usecs / 1000000.0); |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * This is pretty messy, but we split it up so that we can skip |
| 398 | * emitting individual parts of the message when not applicable. |
| 399 | */ |
| 400 | initStringInfo(&buf); |
| 401 | if (params->is_wraparound) |
| 402 | { |
| 403 | /* an anti-wraparound vacuum has to be aggressive */ |
| 404 | Assert(aggressive); |
| 405 | msgfmt = _("automatic aggressive vacuum to prevent wraparound of table \"%s.%s.%s\": index scans: %d\n" ); |
| 406 | } |
| 407 | else |
| 408 | { |
| 409 | if (aggressive) |
| 410 | msgfmt = _("automatic aggressive vacuum of table \"%s.%s.%s\": index scans: %d\n" ); |
| 411 | else |
| 412 | msgfmt = _("automatic vacuum of table \"%s.%s.%s\": index scans: %d\n" ); |
| 413 | } |
| 414 | appendStringInfo(&buf, msgfmt, |
| 415 | get_database_name(MyDatabaseId), |
| 416 | get_namespace_name(RelationGetNamespace(onerel)), |
| 417 | RelationGetRelationName(onerel), |
| 418 | vacrelstats->num_index_scans); |
| 419 | appendStringInfo(&buf, _("pages: %u removed, %u remain, %u skipped due to pins, %u skipped frozen\n" ), |
| 420 | vacrelstats->pages_removed, |
| 421 | vacrelstats->rel_pages, |
| 422 | vacrelstats->pinskipped_pages, |
| 423 | vacrelstats->frozenskipped_pages); |
| 424 | appendStringInfo(&buf, |
| 425 | _("tuples: %.0f removed, %.0f remain, %.0f are dead but not yet removable, oldest xmin: %u\n" ), |
| 426 | vacrelstats->tuples_deleted, |
| 427 | vacrelstats->new_rel_tuples, |
| 428 | vacrelstats->new_dead_tuples, |
| 429 | OldestXmin); |
| 430 | appendStringInfo(&buf, |
| 431 | _("buffer usage: %d hits, %d misses, %d dirtied\n" ), |
| 432 | VacuumPageHit, |
| 433 | VacuumPageMiss, |
| 434 | VacuumPageDirty); |
| 435 | appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n" ), |
| 436 | read_rate, write_rate); |
| 437 | appendStringInfo(&buf, _("system usage: %s" ), pg_rusage_show(&ru0)); |
| 438 | |
| 439 | ereport(LOG, |
| 440 | (errmsg_internal("%s" , buf.data))); |
| 441 | pfree(buf.data); |
| 442 | } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * For Hot Standby we need to know the highest transaction id that will |
| 448 | * be removed by any change. VACUUM proceeds in a number of passes so |
| 449 | * we need to consider how each pass operates. The first phase runs |
| 450 | * heap_page_prune(), which can issue XLOG_HEAP2_CLEAN records as it |
| 451 | * progresses - these will have a latestRemovedXid on each record. |
| 452 | * In some cases this removes all of the tuples to be removed, though |
| 453 | * often we have dead tuples with index pointers so we must remember them |
| 454 | * for removal in phase 3. Index records for those rows are removed |
| 455 | * in phase 2 and index blocks do not have MVCC information attached. |
| 456 | * So before we can allow removal of any index tuples we need to issue |
| 457 | * a WAL record containing the latestRemovedXid of rows that will be |
| 458 | * removed in phase three. This allows recovery queries to block at the |
| 459 | * correct place, i.e. before phase two, rather than during phase three |
| 460 | * which would be after the rows have become inaccessible. |
| 461 | */ |
| 462 | static void |
| 463 | vacuum_log_cleanup_info(Relation rel, LVRelStats *vacrelstats) |
| 464 | { |
| 465 | /* |
| 466 | * Skip this for relations for which no WAL is to be written, or if we're |
| 467 | * not trying to support archive recovery. |
| 468 | */ |
| 469 | if (!RelationNeedsWAL(rel) || !XLogIsNeeded()) |
| 470 | return; |
| 471 | |
| 472 | /* |
| 473 | * No need to write the record at all unless it contains a valid value |
| 474 | */ |
| 475 | if (TransactionIdIsValid(vacrelstats->latestRemovedXid)) |
| 476 | (void) log_heap_cleanup_info(rel->rd_node, vacrelstats->latestRemovedXid); |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * lazy_scan_heap() -- scan an open heap relation |
| 481 | * |
| 482 | * This routine prunes each page in the heap, which will among other |
| 483 | * things truncate dead tuples to dead line pointers, defragment the |
| 484 | * page, and set commit status bits (see heap_page_prune). It also builds |
| 485 | * lists of dead tuples and pages with free space, calculates statistics |
| 486 | * on the number of live tuples in the heap, and marks pages as |
| 487 | * all-visible if appropriate. When done, or when we run low on space for |
| 488 | * dead-tuple TIDs, invoke vacuuming of indexes and call lazy_vacuum_heap |
| 489 | * to reclaim dead line pointers. |
| 490 | * |
| 491 | * If there are no indexes then we can reclaim line pointers on the fly; |
| 492 | * dead line pointers need only be retained until all index pointers that |
| 493 | * reference them have been killed. |
| 494 | */ |
| 495 | static void |
| 496 | lazy_scan_heap(Relation onerel, VacuumParams *params, LVRelStats *vacrelstats, |
| 497 | Relation *Irel, int nindexes, bool aggressive) |
| 498 | { |
| 499 | BlockNumber nblocks, |
| 500 | blkno; |
| 501 | HeapTupleData tuple; |
| 502 | char *relname; |
| 503 | TransactionId relfrozenxid = onerel->rd_rel->relfrozenxid; |
| 504 | TransactionId relminmxid = onerel->rd_rel->relminmxid; |
| 505 | BlockNumber empty_pages, |
| 506 | vacuumed_pages, |
| 507 | next_fsm_block_to_vacuum; |
| 508 | double num_tuples, /* total number of nonremovable tuples */ |
| 509 | live_tuples, /* live tuples (reltuples estimate) */ |
| 510 | tups_vacuumed, /* tuples cleaned up by vacuum */ |
| 511 | nkeep, /* dead-but-not-removable tuples */ |
| 512 | nunused; /* unused line pointers */ |
| 513 | IndexBulkDeleteResult **indstats; |
| 514 | int i; |
| 515 | PGRUsage ru0; |
| 516 | Buffer vmbuffer = InvalidBuffer; |
| 517 | BlockNumber next_unskippable_block; |
| 518 | bool skipping_blocks; |
| 519 | xl_heap_freeze_tuple *frozen; |
| 520 | StringInfoData buf; |
| 521 | const int initprog_index[] = { |
| 522 | PROGRESS_VACUUM_PHASE, |
| 523 | PROGRESS_VACUUM_TOTAL_HEAP_BLKS, |
| 524 | PROGRESS_VACUUM_MAX_DEAD_TUPLES |
| 525 | }; |
| 526 | int64 initprog_val[3]; |
| 527 | |
| 528 | pg_rusage_init(&ru0); |
| 529 | |
| 530 | relname = RelationGetRelationName(onerel); |
| 531 | if (aggressive) |
| 532 | ereport(elevel, |
| 533 | (errmsg("aggressively vacuuming \"%s.%s\"" , |
| 534 | get_namespace_name(RelationGetNamespace(onerel)), |
| 535 | relname))); |
| 536 | else |
| 537 | ereport(elevel, |
| 538 | (errmsg("vacuuming \"%s.%s\"" , |
| 539 | get_namespace_name(RelationGetNamespace(onerel)), |
| 540 | relname))); |
| 541 | |
| 542 | empty_pages = vacuumed_pages = 0; |
| 543 | next_fsm_block_to_vacuum = (BlockNumber) 0; |
| 544 | num_tuples = live_tuples = tups_vacuumed = nkeep = nunused = 0; |
| 545 | |
| 546 | indstats = (IndexBulkDeleteResult **) |
| 547 | palloc0(nindexes * sizeof(IndexBulkDeleteResult *)); |
| 548 | |
| 549 | nblocks = RelationGetNumberOfBlocks(onerel); |
| 550 | vacrelstats->rel_pages = nblocks; |
| 551 | vacrelstats->scanned_pages = 0; |
| 552 | vacrelstats->tupcount_pages = 0; |
| 553 | vacrelstats->nonempty_pages = 0; |
| 554 | vacrelstats->latestRemovedXid = InvalidTransactionId; |
| 555 | |
| 556 | lazy_space_alloc(vacrelstats, nblocks); |
| 557 | frozen = palloc(sizeof(xl_heap_freeze_tuple) * MaxHeapTuplesPerPage); |
| 558 | |
| 559 | /* Report that we're scanning the heap, advertising total # of blocks */ |
| 560 | initprog_val[0] = PROGRESS_VACUUM_PHASE_SCAN_HEAP; |
| 561 | initprog_val[1] = nblocks; |
| 562 | initprog_val[2] = vacrelstats->max_dead_tuples; |
| 563 | pgstat_progress_update_multi_param(3, initprog_index, initprog_val); |
| 564 | |
| 565 | /* |
| 566 | * Except when aggressive is set, we want to skip pages that are |
| 567 | * all-visible according to the visibility map, but only when we can skip |
| 568 | * at least SKIP_PAGES_THRESHOLD consecutive pages. Since we're reading |
| 569 | * sequentially, the OS should be doing readahead for us, so there's no |
| 570 | * gain in skipping a page now and then; that's likely to disable |
| 571 | * readahead and so be counterproductive. Also, skipping even a single |
| 572 | * page means that we can't update relfrozenxid, so we only want to do it |
| 573 | * if we can skip a goodly number of pages. |
| 574 | * |
| 575 | * When aggressive is set, we can't skip pages just because they are |
| 576 | * all-visible, but we can still skip pages that are all-frozen, since |
| 577 | * such pages do not need freezing and do not affect the value that we can |
| 578 | * safely set for relfrozenxid or relminmxid. |
| 579 | * |
| 580 | * Before entering the main loop, establish the invariant that |
| 581 | * next_unskippable_block is the next block number >= blkno that we can't |
| 582 | * skip based on the visibility map, either all-visible for a regular scan |
| 583 | * or all-frozen for an aggressive scan. We set it to nblocks if there's |
| 584 | * no such block. We also set up the skipping_blocks flag correctly at |
| 585 | * this stage. |
| 586 | * |
| 587 | * Note: The value returned by visibilitymap_get_status could be slightly |
| 588 | * out-of-date, since we make this test before reading the corresponding |
| 589 | * heap page or locking the buffer. This is OK. If we mistakenly think |
| 590 | * that the page is all-visible or all-frozen when in fact the flag's just |
| 591 | * been cleared, we might fail to vacuum the page. It's easy to see that |
| 592 | * skipping a page when aggressive is not set is not a very big deal; we |
| 593 | * might leave some dead tuples lying around, but the next vacuum will |
| 594 | * find them. But even when aggressive *is* set, it's still OK if we miss |
| 595 | * a page whose all-frozen marking has just been cleared. Any new XIDs |
| 596 | * just added to that page are necessarily newer than the GlobalXmin we |
| 597 | * computed, so they'll have no effect on the value to which we can safely |
| 598 | * set relfrozenxid. A similar argument applies for MXIDs and relminmxid. |
| 599 | * |
| 600 | * We will scan the table's last page, at least to the extent of |
| 601 | * determining whether it has tuples or not, even if it should be skipped |
| 602 | * according to the above rules; except when we've already determined that |
| 603 | * it's not worth trying to truncate the table. This avoids having |
| 604 | * lazy_truncate_heap() take access-exclusive lock on the table to attempt |
| 605 | * a truncation that just fails immediately because there are tuples in |
| 606 | * the last page. This is worth avoiding mainly because such a lock must |
| 607 | * be replayed on any hot standby, where it can be disruptive. |
| 608 | */ |
| 609 | next_unskippable_block = 0; |
| 610 | if ((params->options & VACOPT_DISABLE_PAGE_SKIPPING) == 0) |
| 611 | { |
| 612 | while (next_unskippable_block < nblocks) |
| 613 | { |
| 614 | uint8 vmstatus; |
| 615 | |
| 616 | vmstatus = visibilitymap_get_status(onerel, next_unskippable_block, |
| 617 | &vmbuffer); |
| 618 | if (aggressive) |
| 619 | { |
| 620 | if ((vmstatus & VISIBILITYMAP_ALL_FROZEN) == 0) |
| 621 | break; |
| 622 | } |
| 623 | else |
| 624 | { |
| 625 | if ((vmstatus & VISIBILITYMAP_ALL_VISIBLE) == 0) |
| 626 | break; |
| 627 | } |
| 628 | vacuum_delay_point(); |
| 629 | next_unskippable_block++; |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | if (next_unskippable_block >= SKIP_PAGES_THRESHOLD) |
| 634 | skipping_blocks = true; |
| 635 | else |
| 636 | skipping_blocks = false; |
| 637 | |
| 638 | for (blkno = 0; blkno < nblocks; blkno++) |
| 639 | { |
| 640 | Buffer buf; |
| 641 | Page page; |
| 642 | OffsetNumber offnum, |
| 643 | maxoff; |
| 644 | bool tupgone, |
| 645 | hastup; |
| 646 | int prev_dead_count; |
| 647 | int nfrozen; |
| 648 | Size freespace; |
| 649 | bool all_visible_according_to_vm = false; |
| 650 | bool all_visible; |
| 651 | bool all_frozen = true; /* provided all_visible is also true */ |
| 652 | bool has_dead_tuples; |
| 653 | TransactionId visibility_cutoff_xid = InvalidTransactionId; |
| 654 | |
| 655 | /* see note above about forcing scanning of last page */ |
| 656 | #define FORCE_CHECK_PAGE() \ |
| 657 | (blkno == nblocks - 1 && should_attempt_truncation(params, vacrelstats)) |
| 658 | |
| 659 | pgstat_progress_update_param(PROGRESS_VACUUM_HEAP_BLKS_SCANNED, blkno); |
| 660 | |
| 661 | if (blkno == next_unskippable_block) |
| 662 | { |
| 663 | /* Time to advance next_unskippable_block */ |
| 664 | next_unskippable_block++; |
| 665 | if ((params->options & VACOPT_DISABLE_PAGE_SKIPPING) == 0) |
| 666 | { |
| 667 | while (next_unskippable_block < nblocks) |
| 668 | { |
| 669 | uint8 vmskipflags; |
| 670 | |
| 671 | vmskipflags = visibilitymap_get_status(onerel, |
| 672 | next_unskippable_block, |
| 673 | &vmbuffer); |
| 674 | if (aggressive) |
| 675 | { |
| 676 | if ((vmskipflags & VISIBILITYMAP_ALL_FROZEN) == 0) |
| 677 | break; |
| 678 | } |
| 679 | else |
| 680 | { |
| 681 | if ((vmskipflags & VISIBILITYMAP_ALL_VISIBLE) == 0) |
| 682 | break; |
| 683 | } |
| 684 | vacuum_delay_point(); |
| 685 | next_unskippable_block++; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | /* |
| 690 | * We know we can't skip the current block. But set up |
| 691 | * skipping_blocks to do the right thing at the following blocks. |
| 692 | */ |
| 693 | if (next_unskippable_block - blkno > SKIP_PAGES_THRESHOLD) |
| 694 | skipping_blocks = true; |
| 695 | else |
| 696 | skipping_blocks = false; |
| 697 | |
| 698 | /* |
| 699 | * Normally, the fact that we can't skip this block must mean that |
| 700 | * it's not all-visible. But in an aggressive vacuum we know only |
| 701 | * that it's not all-frozen, so it might still be all-visible. |
| 702 | */ |
| 703 | if (aggressive && VM_ALL_VISIBLE(onerel, blkno, &vmbuffer)) |
| 704 | all_visible_according_to_vm = true; |
| 705 | } |
| 706 | else |
| 707 | { |
| 708 | /* |
| 709 | * The current block is potentially skippable; if we've seen a |
| 710 | * long enough run of skippable blocks to justify skipping it, and |
| 711 | * we're not forced to check it, then go ahead and skip. |
| 712 | * Otherwise, the page must be at least all-visible if not |
| 713 | * all-frozen, so we can set all_visible_according_to_vm = true. |
| 714 | */ |
| 715 | if (skipping_blocks && !FORCE_CHECK_PAGE()) |
| 716 | { |
| 717 | /* |
| 718 | * Tricky, tricky. If this is in aggressive vacuum, the page |
| 719 | * must have been all-frozen at the time we checked whether it |
| 720 | * was skippable, but it might not be any more. We must be |
| 721 | * careful to count it as a skipped all-frozen page in that |
| 722 | * case, or else we'll think we can't update relfrozenxid and |
| 723 | * relminmxid. If it's not an aggressive vacuum, we don't |
| 724 | * know whether it was all-frozen, so we have to recheck; but |
| 725 | * in this case an approximate answer is OK. |
| 726 | */ |
| 727 | if (aggressive || VM_ALL_FROZEN(onerel, blkno, &vmbuffer)) |
| 728 | vacrelstats->frozenskipped_pages++; |
| 729 | continue; |
| 730 | } |
| 731 | all_visible_according_to_vm = true; |
| 732 | } |
| 733 | |
| 734 | vacuum_delay_point(); |
| 735 | |
| 736 | /* |
| 737 | * If we are close to overrunning the available space for dead-tuple |
| 738 | * TIDs, pause and do a cycle of vacuuming before we tackle this page. |
| 739 | */ |
| 740 | if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MaxHeapTuplesPerPage && |
| 741 | vacrelstats->num_dead_tuples > 0) |
| 742 | { |
| 743 | const int hvp_index[] = { |
| 744 | PROGRESS_VACUUM_PHASE, |
| 745 | PROGRESS_VACUUM_NUM_INDEX_VACUUMS |
| 746 | }; |
| 747 | int64 hvp_val[2]; |
| 748 | |
| 749 | /* |
| 750 | * Before beginning index vacuuming, we release any pin we may |
| 751 | * hold on the visibility map page. This isn't necessary for |
| 752 | * correctness, but we do it anyway to avoid holding the pin |
| 753 | * across a lengthy, unrelated operation. |
| 754 | */ |
| 755 | if (BufferIsValid(vmbuffer)) |
| 756 | { |
| 757 | ReleaseBuffer(vmbuffer); |
| 758 | vmbuffer = InvalidBuffer; |
| 759 | } |
| 760 | |
| 761 | /* Log cleanup info before we touch indexes */ |
| 762 | vacuum_log_cleanup_info(onerel, vacrelstats); |
| 763 | |
| 764 | /* Report that we are now vacuuming indexes */ |
| 765 | pgstat_progress_update_param(PROGRESS_VACUUM_PHASE, |
| 766 | PROGRESS_VACUUM_PHASE_VACUUM_INDEX); |
| 767 | |
| 768 | /* Remove index entries */ |
| 769 | for (i = 0; i < nindexes; i++) |
| 770 | lazy_vacuum_index(Irel[i], |
| 771 | &indstats[i], |
| 772 | vacrelstats); |
| 773 | |
| 774 | /* |
| 775 | * Report that we are now vacuuming the heap. We also increase |
| 776 | * the number of index scans here; note that by using |
| 777 | * pgstat_progress_update_multi_param we can update both |
| 778 | * parameters atomically. |
| 779 | */ |
| 780 | hvp_val[0] = PROGRESS_VACUUM_PHASE_VACUUM_HEAP; |
| 781 | hvp_val[1] = vacrelstats->num_index_scans + 1; |
| 782 | pgstat_progress_update_multi_param(2, hvp_index, hvp_val); |
| 783 | |
| 784 | /* Remove tuples from heap */ |
| 785 | lazy_vacuum_heap(onerel, vacrelstats); |
| 786 | |
| 787 | /* |
| 788 | * Forget the now-vacuumed tuples, and press on, but be careful |
| 789 | * not to reset latestRemovedXid since we want that value to be |
| 790 | * valid. |
| 791 | */ |
| 792 | vacrelstats->num_dead_tuples = 0; |
| 793 | vacrelstats->num_index_scans++; |
| 794 | |
| 795 | /* |
| 796 | * Vacuum the Free Space Map to make newly-freed space visible on |
| 797 | * upper-level FSM pages. Note we have not yet processed blkno. |
| 798 | */ |
| 799 | FreeSpaceMapVacuumRange(onerel, next_fsm_block_to_vacuum, blkno); |
| 800 | next_fsm_block_to_vacuum = blkno; |
| 801 | |
| 802 | /* Report that we are once again scanning the heap */ |
| 803 | pgstat_progress_update_param(PROGRESS_VACUUM_PHASE, |
| 804 | PROGRESS_VACUUM_PHASE_SCAN_HEAP); |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Pin the visibility map page in case we need to mark the page |
| 809 | * all-visible. In most cases this will be very cheap, because we'll |
| 810 | * already have the correct page pinned anyway. However, it's |
| 811 | * possible that (a) next_unskippable_block is covered by a different |
| 812 | * VM page than the current block or (b) we released our pin and did a |
| 813 | * cycle of index vacuuming. |
| 814 | * |
| 815 | */ |
| 816 | visibilitymap_pin(onerel, blkno, &vmbuffer); |
| 817 | |
| 818 | buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno, |
| 819 | RBM_NORMAL, vac_strategy); |
| 820 | |
| 821 | /* We need buffer cleanup lock so that we can prune HOT chains. */ |
| 822 | if (!ConditionalLockBufferForCleanup(buf)) |
| 823 | { |
| 824 | /* |
| 825 | * If we're not performing an aggressive scan to guard against XID |
| 826 | * wraparound, and we don't want to forcibly check the page, then |
| 827 | * it's OK to skip vacuuming pages we get a lock conflict on. They |
| 828 | * will be dealt with in some future vacuum. |
| 829 | */ |
| 830 | if (!aggressive && !FORCE_CHECK_PAGE()) |
| 831 | { |
| 832 | ReleaseBuffer(buf); |
| 833 | vacrelstats->pinskipped_pages++; |
| 834 | continue; |
| 835 | } |
| 836 | |
| 837 | /* |
| 838 | * Read the page with share lock to see if any xids on it need to |
| 839 | * be frozen. If not we just skip the page, after updating our |
| 840 | * scan statistics. If there are some, we wait for cleanup lock. |
| 841 | * |
| 842 | * We could defer the lock request further by remembering the page |
| 843 | * and coming back to it later, or we could even register |
| 844 | * ourselves for multiple buffers and then service whichever one |
| 845 | * is received first. For now, this seems good enough. |
| 846 | * |
| 847 | * If we get here with aggressive false, then we're just forcibly |
| 848 | * checking the page, and so we don't want to insist on getting |
| 849 | * the lock; we only need to know if the page contains tuples, so |
| 850 | * that we can update nonempty_pages correctly. It's convenient |
| 851 | * to use lazy_check_needs_freeze() for both situations, though. |
| 852 | */ |
| 853 | LockBuffer(buf, BUFFER_LOCK_SHARE); |
| 854 | if (!lazy_check_needs_freeze(buf, &hastup)) |
| 855 | { |
| 856 | UnlockReleaseBuffer(buf); |
| 857 | vacrelstats->scanned_pages++; |
| 858 | vacrelstats->pinskipped_pages++; |
| 859 | if (hastup) |
| 860 | vacrelstats->nonempty_pages = blkno + 1; |
| 861 | continue; |
| 862 | } |
| 863 | if (!aggressive) |
| 864 | { |
| 865 | /* |
| 866 | * Here, we must not advance scanned_pages; that would amount |
| 867 | * to claiming that the page contains no freezable tuples. |
| 868 | */ |
| 869 | UnlockReleaseBuffer(buf); |
| 870 | vacrelstats->pinskipped_pages++; |
| 871 | if (hastup) |
| 872 | vacrelstats->nonempty_pages = blkno + 1; |
| 873 | continue; |
| 874 | } |
| 875 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 876 | LockBufferForCleanup(buf); |
| 877 | /* drop through to normal processing */ |
| 878 | } |
| 879 | |
| 880 | vacrelstats->scanned_pages++; |
| 881 | vacrelstats->tupcount_pages++; |
| 882 | |
| 883 | page = BufferGetPage(buf); |
| 884 | |
| 885 | if (PageIsNew(page)) |
| 886 | { |
| 887 | bool still_new; |
| 888 | |
| 889 | /* |
| 890 | * All-zeroes pages can be left over if either a backend extends |
| 891 | * the relation by a single page, but crashes before the newly |
| 892 | * initialized page has been written out, or when bulk-extending |
| 893 | * the relation (which creates a number of empty pages at the tail |
| 894 | * end of the relation, but enters them into the FSM). |
| 895 | * |
| 896 | * Make sure these pages are in the FSM, to ensure they can be |
| 897 | * reused. Do that by testing if there's any space recorded for |
| 898 | * the page. If not, enter it. |
| 899 | * |
| 900 | * Note we do not enter the page into the visibilitymap. That has |
| 901 | * the downside that we repeatedly visit this page in subsequent |
| 902 | * vacuums, but otherwise we'll never not discover the space on a |
| 903 | * promoted standby. The harm of repeated checking ought to |
| 904 | * normally not be too bad - the space usually should be used at |
| 905 | * some point, otherwise there wouldn't be any regular vacuums. |
| 906 | */ |
| 907 | |
| 908 | /* |
| 909 | * Perform checking of FSM after releasing lock, the fsm is |
| 910 | * approximate, after all. |
| 911 | */ |
| 912 | still_new = PageIsNew(page); |
| 913 | UnlockReleaseBuffer(buf); |
| 914 | |
| 915 | if (still_new) |
| 916 | { |
| 917 | empty_pages++; |
| 918 | |
| 919 | if (GetRecordedFreeSpace(onerel, blkno) == 0) |
| 920 | { |
| 921 | Size freespace; |
| 922 | |
| 923 | freespace = BufferGetPageSize(buf) - SizeOfPageHeaderData; |
| 924 | RecordPageWithFreeSpace(onerel, blkno, freespace); |
| 925 | } |
| 926 | } |
| 927 | continue; |
| 928 | } |
| 929 | |
| 930 | if (PageIsEmpty(page)) |
| 931 | { |
| 932 | empty_pages++; |
| 933 | freespace = PageGetHeapFreeSpace(page); |
| 934 | |
| 935 | /* |
| 936 | * Empty pages are always all-visible and all-frozen (note that |
| 937 | * the same is currently not true for new pages, see above). |
| 938 | */ |
| 939 | if (!PageIsAllVisible(page)) |
| 940 | { |
| 941 | START_CRIT_SECTION(); |
| 942 | |
| 943 | /* mark buffer dirty before writing a WAL record */ |
| 944 | MarkBufferDirty(buf); |
| 945 | |
| 946 | /* |
| 947 | * It's possible that another backend has extended the heap, |
| 948 | * initialized the page, and then failed to WAL-log the page |
| 949 | * due to an ERROR. Since heap extension is not WAL-logged, |
| 950 | * recovery might try to replay our record setting the page |
| 951 | * all-visible and find that the page isn't initialized, which |
| 952 | * will cause a PANIC. To prevent that, check whether the |
| 953 | * page has been previously WAL-logged, and if not, do that |
| 954 | * now. |
| 955 | */ |
| 956 | if (RelationNeedsWAL(onerel) && |
| 957 | PageGetLSN(page) == InvalidXLogRecPtr) |
| 958 | log_newpage_buffer(buf, true); |
| 959 | |
| 960 | PageSetAllVisible(page); |
| 961 | visibilitymap_set(onerel, blkno, buf, InvalidXLogRecPtr, |
| 962 | vmbuffer, InvalidTransactionId, |
| 963 | VISIBILITYMAP_ALL_VISIBLE | VISIBILITYMAP_ALL_FROZEN); |
| 964 | END_CRIT_SECTION(); |
| 965 | } |
| 966 | |
| 967 | UnlockReleaseBuffer(buf); |
| 968 | RecordPageWithFreeSpace(onerel, blkno, freespace); |
| 969 | continue; |
| 970 | } |
| 971 | |
| 972 | /* |
| 973 | * Prune all HOT-update chains in this page. |
| 974 | * |
| 975 | * We count tuples removed by the pruning step as removed by VACUUM. |
| 976 | */ |
| 977 | tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin, false, |
| 978 | &vacrelstats->latestRemovedXid); |
| 979 | |
| 980 | /* |
| 981 | * Now scan the page to collect vacuumable items and check for tuples |
| 982 | * requiring freezing. |
| 983 | */ |
| 984 | all_visible = true; |
| 985 | has_dead_tuples = false; |
| 986 | nfrozen = 0; |
| 987 | hastup = false; |
| 988 | prev_dead_count = vacrelstats->num_dead_tuples; |
| 989 | maxoff = PageGetMaxOffsetNumber(page); |
| 990 | |
| 991 | /* |
| 992 | * Note: If you change anything in the loop below, also look at |
| 993 | * heap_page_is_all_visible to see if that needs to be changed. |
| 994 | */ |
| 995 | for (offnum = FirstOffsetNumber; |
| 996 | offnum <= maxoff; |
| 997 | offnum = OffsetNumberNext(offnum)) |
| 998 | { |
| 999 | ItemId itemid; |
| 1000 | |
| 1001 | itemid = PageGetItemId(page, offnum); |
| 1002 | |
| 1003 | /* Unused items require no processing, but we count 'em */ |
| 1004 | if (!ItemIdIsUsed(itemid)) |
| 1005 | { |
| 1006 | nunused += 1; |
| 1007 | continue; |
| 1008 | } |
| 1009 | |
| 1010 | /* Redirect items mustn't be touched */ |
| 1011 | if (ItemIdIsRedirected(itemid)) |
| 1012 | { |
| 1013 | hastup = true; /* this page won't be truncatable */ |
| 1014 | continue; |
| 1015 | } |
| 1016 | |
| 1017 | ItemPointerSet(&(tuple.t_self), blkno, offnum); |
| 1018 | |
| 1019 | /* |
| 1020 | * DEAD line pointers are to be vacuumed normally; but we don't |
| 1021 | * count them in tups_vacuumed, else we'd be double-counting (at |
| 1022 | * least in the common case where heap_page_prune() just freed up |
| 1023 | * a non-HOT tuple). |
| 1024 | */ |
| 1025 | if (ItemIdIsDead(itemid)) |
| 1026 | { |
| 1027 | lazy_record_dead_tuple(vacrelstats, &(tuple.t_self)); |
| 1028 | all_visible = false; |
| 1029 | continue; |
| 1030 | } |
| 1031 | |
| 1032 | Assert(ItemIdIsNormal(itemid)); |
| 1033 | |
| 1034 | tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid); |
| 1035 | tuple.t_len = ItemIdGetLength(itemid); |
| 1036 | tuple.t_tableOid = RelationGetRelid(onerel); |
| 1037 | |
| 1038 | tupgone = false; |
| 1039 | |
| 1040 | /* |
| 1041 | * The criteria for counting a tuple as live in this block need to |
| 1042 | * match what analyze.c's acquire_sample_rows() does, otherwise |
| 1043 | * VACUUM and ANALYZE may produce wildly different reltuples |
| 1044 | * values, e.g. when there are many recently-dead tuples. |
| 1045 | * |
| 1046 | * The logic here is a bit simpler than acquire_sample_rows(), as |
| 1047 | * VACUUM can't run inside a transaction block, which makes some |
| 1048 | * cases impossible (e.g. in-progress insert from the same |
| 1049 | * transaction). |
| 1050 | */ |
| 1051 | switch (HeapTupleSatisfiesVacuum(&tuple, OldestXmin, buf)) |
| 1052 | { |
| 1053 | case HEAPTUPLE_DEAD: |
| 1054 | |
| 1055 | /* |
| 1056 | * Ordinarily, DEAD tuples would have been removed by |
| 1057 | * heap_page_prune(), but it's possible that the tuple |
| 1058 | * state changed since heap_page_prune() looked. In |
| 1059 | * particular an INSERT_IN_PROGRESS tuple could have |
| 1060 | * changed to DEAD if the inserter aborted. So this |
| 1061 | * cannot be considered an error condition. |
| 1062 | * |
| 1063 | * If the tuple is HOT-updated then it must only be |
| 1064 | * removed by a prune operation; so we keep it just as if |
| 1065 | * it were RECENTLY_DEAD. Also, if it's a heap-only |
| 1066 | * tuple, we choose to keep it, because it'll be a lot |
| 1067 | * cheaper to get rid of it in the next pruning pass than |
| 1068 | * to treat it like an indexed tuple. Finally, if index |
| 1069 | * cleanup is disabled, the second heap pass will not |
| 1070 | * execute, and the tuple will not get removed, so we must |
| 1071 | * treat it like any other dead tuple that we choose to |
| 1072 | * keep. |
| 1073 | * |
| 1074 | * If this were to happen for a tuple that actually needed |
| 1075 | * to be deleted, we'd be in trouble, because it'd |
| 1076 | * possibly leave a tuple below the relation's xmin |
| 1077 | * horizon alive. heap_prepare_freeze_tuple() is prepared |
| 1078 | * to detect that case and abort the transaction, |
| 1079 | * preventing corruption. |
| 1080 | */ |
| 1081 | if (HeapTupleIsHotUpdated(&tuple) || |
| 1082 | HeapTupleIsHeapOnly(&tuple) || |
| 1083 | params->index_cleanup == VACOPT_TERNARY_DISABLED) |
| 1084 | nkeep += 1; |
| 1085 | else |
| 1086 | tupgone = true; /* we can delete the tuple */ |
| 1087 | all_visible = false; |
| 1088 | break; |
| 1089 | case HEAPTUPLE_LIVE: |
| 1090 | |
| 1091 | /* |
| 1092 | * Count it as live. Not only is this natural, but it's |
| 1093 | * also what acquire_sample_rows() does. |
| 1094 | */ |
| 1095 | live_tuples += 1; |
| 1096 | |
| 1097 | /* |
| 1098 | * Is the tuple definitely visible to all transactions? |
| 1099 | * |
| 1100 | * NB: Like with per-tuple hint bits, we can't set the |
| 1101 | * PD_ALL_VISIBLE flag if the inserter committed |
| 1102 | * asynchronously. See SetHintBits for more info. Check |
| 1103 | * that the tuple is hinted xmin-committed because of |
| 1104 | * that. |
| 1105 | */ |
| 1106 | if (all_visible) |
| 1107 | { |
| 1108 | TransactionId xmin; |
| 1109 | |
| 1110 | if (!HeapTupleHeaderXminCommitted(tuple.t_data)) |
| 1111 | { |
| 1112 | all_visible = false; |
| 1113 | break; |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * The inserter definitely committed. But is it old |
| 1118 | * enough that everyone sees it as committed? |
| 1119 | */ |
| 1120 | xmin = HeapTupleHeaderGetXmin(tuple.t_data); |
| 1121 | if (!TransactionIdPrecedes(xmin, OldestXmin)) |
| 1122 | { |
| 1123 | all_visible = false; |
| 1124 | break; |
| 1125 | } |
| 1126 | |
| 1127 | /* Track newest xmin on page. */ |
| 1128 | if (TransactionIdFollows(xmin, visibility_cutoff_xid)) |
| 1129 | visibility_cutoff_xid = xmin; |
| 1130 | } |
| 1131 | break; |
| 1132 | case HEAPTUPLE_RECENTLY_DEAD: |
| 1133 | |
| 1134 | /* |
| 1135 | * If tuple is recently deleted then we must not remove it |
| 1136 | * from relation. |
| 1137 | */ |
| 1138 | nkeep += 1; |
| 1139 | all_visible = false; |
| 1140 | break; |
| 1141 | case HEAPTUPLE_INSERT_IN_PROGRESS: |
| 1142 | |
| 1143 | /* |
| 1144 | * This is an expected case during concurrent vacuum. |
| 1145 | * |
| 1146 | * We do not count these rows as live, because we expect |
| 1147 | * the inserting transaction to update the counters at |
| 1148 | * commit, and we assume that will happen only after we |
| 1149 | * report our results. This assumption is a bit shaky, |
| 1150 | * but it is what acquire_sample_rows() does, so be |
| 1151 | * consistent. |
| 1152 | */ |
| 1153 | all_visible = false; |
| 1154 | break; |
| 1155 | case HEAPTUPLE_DELETE_IN_PROGRESS: |
| 1156 | /* This is an expected case during concurrent vacuum */ |
| 1157 | all_visible = false; |
| 1158 | |
| 1159 | /* |
| 1160 | * Count such rows as live. As above, we assume the |
| 1161 | * deleting transaction will commit and update the |
| 1162 | * counters after we report. |
| 1163 | */ |
| 1164 | live_tuples += 1; |
| 1165 | break; |
| 1166 | default: |
| 1167 | elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result" ); |
| 1168 | break; |
| 1169 | } |
| 1170 | |
| 1171 | if (tupgone) |
| 1172 | { |
| 1173 | lazy_record_dead_tuple(vacrelstats, &(tuple.t_self)); |
| 1174 | HeapTupleHeaderAdvanceLatestRemovedXid(tuple.t_data, |
| 1175 | &vacrelstats->latestRemovedXid); |
| 1176 | tups_vacuumed += 1; |
| 1177 | has_dead_tuples = true; |
| 1178 | } |
| 1179 | else |
| 1180 | { |
| 1181 | bool tuple_totally_frozen; |
| 1182 | |
| 1183 | num_tuples += 1; |
| 1184 | hastup = true; |
| 1185 | |
| 1186 | /* |
| 1187 | * Each non-removable tuple must be checked to see if it needs |
| 1188 | * freezing. Note we already have exclusive buffer lock. |
| 1189 | */ |
| 1190 | if (heap_prepare_freeze_tuple(tuple.t_data, |
| 1191 | relfrozenxid, relminmxid, |
| 1192 | FreezeLimit, MultiXactCutoff, |
| 1193 | &frozen[nfrozen], |
| 1194 | &tuple_totally_frozen)) |
| 1195 | frozen[nfrozen++].offset = offnum; |
| 1196 | |
| 1197 | if (!tuple_totally_frozen) |
| 1198 | all_frozen = false; |
| 1199 | } |
| 1200 | } /* scan along page */ |
| 1201 | |
| 1202 | /* |
| 1203 | * If we froze any tuples, mark the buffer dirty, and write a WAL |
| 1204 | * record recording the changes. We must log the changes to be |
| 1205 | * crash-safe against future truncation of CLOG. |
| 1206 | */ |
| 1207 | if (nfrozen > 0) |
| 1208 | { |
| 1209 | START_CRIT_SECTION(); |
| 1210 | |
| 1211 | MarkBufferDirty(buf); |
| 1212 | |
| 1213 | /* execute collected freezes */ |
| 1214 | for (i = 0; i < nfrozen; i++) |
| 1215 | { |
| 1216 | ItemId itemid; |
| 1217 | HeapTupleHeader htup; |
| 1218 | |
| 1219 | itemid = PageGetItemId(page, frozen[i].offset); |
| 1220 | htup = (HeapTupleHeader) PageGetItem(page, itemid); |
| 1221 | |
| 1222 | heap_execute_freeze_tuple(htup, &frozen[i]); |
| 1223 | } |
| 1224 | |
| 1225 | /* Now WAL-log freezing if necessary */ |
| 1226 | if (RelationNeedsWAL(onerel)) |
| 1227 | { |
| 1228 | XLogRecPtr recptr; |
| 1229 | |
| 1230 | recptr = log_heap_freeze(onerel, buf, FreezeLimit, |
| 1231 | frozen, nfrozen); |
| 1232 | PageSetLSN(page, recptr); |
| 1233 | } |
| 1234 | |
| 1235 | END_CRIT_SECTION(); |
| 1236 | } |
| 1237 | |
| 1238 | /* |
| 1239 | * If there are no indexes we can vacuum the page right now instead of |
| 1240 | * doing a second scan. Also we don't do that but forget dead tuples |
| 1241 | * when index cleanup is disabled. |
| 1242 | */ |
| 1243 | if (!vacrelstats->useindex && vacrelstats->num_dead_tuples > 0) |
| 1244 | { |
| 1245 | if (nindexes == 0) |
| 1246 | { |
| 1247 | /* Remove tuples from heap if the table has no index */ |
| 1248 | lazy_vacuum_page(onerel, blkno, buf, 0, vacrelstats, &vmbuffer); |
| 1249 | vacuumed_pages++; |
| 1250 | has_dead_tuples = false; |
| 1251 | } |
| 1252 | else |
| 1253 | { |
| 1254 | /* |
| 1255 | * Here, we have indexes but index cleanup is disabled. |
| 1256 | * Instead of vacuuming the dead tuples on the heap, we just |
| 1257 | * forget them. |
| 1258 | * |
| 1259 | * Note that vacrelstats->dead_tuples could have tuples which |
| 1260 | * became dead after HOT-pruning but are not marked dead yet. |
| 1261 | * We do not process them because it's a very rare condition, |
| 1262 | * and the next vacuum will process them anyway. |
| 1263 | */ |
| 1264 | Assert(params->index_cleanup == VACOPT_TERNARY_DISABLED); |
| 1265 | } |
| 1266 | |
| 1267 | /* |
| 1268 | * Forget the now-vacuumed tuples, and press on, but be careful |
| 1269 | * not to reset latestRemovedXid since we want that value to be |
| 1270 | * valid. |
| 1271 | */ |
| 1272 | vacrelstats->num_dead_tuples = 0; |
| 1273 | |
| 1274 | /* |
| 1275 | * Periodically do incremental FSM vacuuming to make newly-freed |
| 1276 | * space visible on upper FSM pages. Note: although we've cleaned |
| 1277 | * the current block, we haven't yet updated its FSM entry (that |
| 1278 | * happens further down), so passing end == blkno is correct. |
| 1279 | */ |
| 1280 | if (blkno - next_fsm_block_to_vacuum >= VACUUM_FSM_EVERY_PAGES) |
| 1281 | { |
| 1282 | FreeSpaceMapVacuumRange(onerel, next_fsm_block_to_vacuum, |
| 1283 | blkno); |
| 1284 | next_fsm_block_to_vacuum = blkno; |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | freespace = PageGetHeapFreeSpace(page); |
| 1289 | |
| 1290 | /* mark page all-visible, if appropriate */ |
| 1291 | if (all_visible && !all_visible_according_to_vm) |
| 1292 | { |
| 1293 | uint8 flags = VISIBILITYMAP_ALL_VISIBLE; |
| 1294 | |
| 1295 | if (all_frozen) |
| 1296 | flags |= VISIBILITYMAP_ALL_FROZEN; |
| 1297 | |
| 1298 | /* |
| 1299 | * It should never be the case that the visibility map page is set |
| 1300 | * while the page-level bit is clear, but the reverse is allowed |
| 1301 | * (if checksums are not enabled). Regardless, set the both bits |
| 1302 | * so that we get back in sync. |
| 1303 | * |
| 1304 | * NB: If the heap page is all-visible but the VM bit is not set, |
| 1305 | * we don't need to dirty the heap page. However, if checksums |
| 1306 | * are enabled, we do need to make sure that the heap page is |
| 1307 | * dirtied before passing it to visibilitymap_set(), because it |
| 1308 | * may be logged. Given that this situation should only happen in |
| 1309 | * rare cases after a crash, it is not worth optimizing. |
| 1310 | */ |
| 1311 | PageSetAllVisible(page); |
| 1312 | MarkBufferDirty(buf); |
| 1313 | visibilitymap_set(onerel, blkno, buf, InvalidXLogRecPtr, |
| 1314 | vmbuffer, visibility_cutoff_xid, flags); |
| 1315 | } |
| 1316 | |
| 1317 | /* |
| 1318 | * As of PostgreSQL 9.2, the visibility map bit should never be set if |
| 1319 | * the page-level bit is clear. However, it's possible that the bit |
| 1320 | * got cleared after we checked it and before we took the buffer |
| 1321 | * content lock, so we must recheck before jumping to the conclusion |
| 1322 | * that something bad has happened. |
| 1323 | */ |
| 1324 | else if (all_visible_according_to_vm && !PageIsAllVisible(page) |
| 1325 | && VM_ALL_VISIBLE(onerel, blkno, &vmbuffer)) |
| 1326 | { |
| 1327 | elog(WARNING, "page is not marked all-visible but visibility map bit is set in relation \"%s\" page %u" , |
| 1328 | relname, blkno); |
| 1329 | visibilitymap_clear(onerel, blkno, vmbuffer, |
| 1330 | VISIBILITYMAP_VALID_BITS); |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * It's possible for the value returned by GetOldestXmin() to move |
| 1335 | * backwards, so it's not wrong for us to see tuples that appear to |
| 1336 | * not be visible to everyone yet, while PD_ALL_VISIBLE is already |
| 1337 | * set. The real safe xmin value never moves backwards, but |
| 1338 | * GetOldestXmin() is conservative and sometimes returns a value |
| 1339 | * that's unnecessarily small, so if we see that contradiction it just |
| 1340 | * means that the tuples that we think are not visible to everyone yet |
| 1341 | * actually are, and the PD_ALL_VISIBLE flag is correct. |
| 1342 | * |
| 1343 | * There should never be dead tuples on a page with PD_ALL_VISIBLE |
| 1344 | * set, however. |
| 1345 | */ |
| 1346 | else if (PageIsAllVisible(page) && has_dead_tuples) |
| 1347 | { |
| 1348 | elog(WARNING, "page containing dead tuples is marked as all-visible in relation \"%s\" page %u" , |
| 1349 | relname, blkno); |
| 1350 | PageClearAllVisible(page); |
| 1351 | MarkBufferDirty(buf); |
| 1352 | visibilitymap_clear(onerel, blkno, vmbuffer, |
| 1353 | VISIBILITYMAP_VALID_BITS); |
| 1354 | } |
| 1355 | |
| 1356 | /* |
| 1357 | * If the all-visible page is turned out to be all-frozen but not |
| 1358 | * marked, we should so mark it. Note that all_frozen is only valid |
| 1359 | * if all_visible is true, so we must check both. |
| 1360 | */ |
| 1361 | else if (all_visible_according_to_vm && all_visible && all_frozen && |
| 1362 | !VM_ALL_FROZEN(onerel, blkno, &vmbuffer)) |
| 1363 | { |
| 1364 | /* |
| 1365 | * We can pass InvalidTransactionId as the cutoff XID here, |
| 1366 | * because setting the all-frozen bit doesn't cause recovery |
| 1367 | * conflicts. |
| 1368 | */ |
| 1369 | visibilitymap_set(onerel, blkno, buf, InvalidXLogRecPtr, |
| 1370 | vmbuffer, InvalidTransactionId, |
| 1371 | VISIBILITYMAP_ALL_FROZEN); |
| 1372 | } |
| 1373 | |
| 1374 | UnlockReleaseBuffer(buf); |
| 1375 | |
| 1376 | /* Remember the location of the last page with nonremovable tuples */ |
| 1377 | if (hastup) |
| 1378 | vacrelstats->nonempty_pages = blkno + 1; |
| 1379 | |
| 1380 | /* |
| 1381 | * If we remembered any tuples for deletion, then the page will be |
| 1382 | * visited again by lazy_vacuum_heap, which will compute and record |
| 1383 | * its post-compaction free space. If not, then we're done with this |
| 1384 | * page, so remember its free space as-is. (This path will always be |
| 1385 | * taken if there are no indexes.) |
| 1386 | */ |
| 1387 | if (vacrelstats->num_dead_tuples == prev_dead_count) |
| 1388 | RecordPageWithFreeSpace(onerel, blkno, freespace); |
| 1389 | } |
| 1390 | |
| 1391 | /* report that everything is scanned and vacuumed */ |
| 1392 | pgstat_progress_update_param(PROGRESS_VACUUM_HEAP_BLKS_SCANNED, blkno); |
| 1393 | |
| 1394 | pfree(frozen); |
| 1395 | |
| 1396 | /* save stats for use later */ |
| 1397 | vacrelstats->tuples_deleted = tups_vacuumed; |
| 1398 | vacrelstats->new_dead_tuples = nkeep; |
| 1399 | |
| 1400 | /* now we can compute the new value for pg_class.reltuples */ |
| 1401 | vacrelstats->new_live_tuples = vac_estimate_reltuples(onerel, |
| 1402 | nblocks, |
| 1403 | vacrelstats->tupcount_pages, |
| 1404 | live_tuples); |
| 1405 | |
| 1406 | /* also compute total number of surviving heap entries */ |
| 1407 | vacrelstats->new_rel_tuples = |
| 1408 | vacrelstats->new_live_tuples + vacrelstats->new_dead_tuples; |
| 1409 | |
| 1410 | /* |
| 1411 | * Release any remaining pin on visibility map page. |
| 1412 | */ |
| 1413 | if (BufferIsValid(vmbuffer)) |
| 1414 | { |
| 1415 | ReleaseBuffer(vmbuffer); |
| 1416 | vmbuffer = InvalidBuffer; |
| 1417 | } |
| 1418 | |
| 1419 | /* If any tuples need to be deleted, perform final vacuum cycle */ |
| 1420 | /* XXX put a threshold on min number of tuples here? */ |
| 1421 | if (vacrelstats->num_dead_tuples > 0) |
| 1422 | { |
| 1423 | const int hvp_index[] = { |
| 1424 | PROGRESS_VACUUM_PHASE, |
| 1425 | PROGRESS_VACUUM_NUM_INDEX_VACUUMS |
| 1426 | }; |
| 1427 | int64 hvp_val[2]; |
| 1428 | |
| 1429 | /* Log cleanup info before we touch indexes */ |
| 1430 | vacuum_log_cleanup_info(onerel, vacrelstats); |
| 1431 | |
| 1432 | /* Report that we are now vacuuming indexes */ |
| 1433 | pgstat_progress_update_param(PROGRESS_VACUUM_PHASE, |
| 1434 | PROGRESS_VACUUM_PHASE_VACUUM_INDEX); |
| 1435 | |
| 1436 | /* Remove index entries */ |
| 1437 | for (i = 0; i < nindexes; i++) |
| 1438 | lazy_vacuum_index(Irel[i], |
| 1439 | &indstats[i], |
| 1440 | vacrelstats); |
| 1441 | |
| 1442 | /* Report that we are now vacuuming the heap */ |
| 1443 | hvp_val[0] = PROGRESS_VACUUM_PHASE_VACUUM_HEAP; |
| 1444 | hvp_val[1] = vacrelstats->num_index_scans + 1; |
| 1445 | pgstat_progress_update_multi_param(2, hvp_index, hvp_val); |
| 1446 | |
| 1447 | /* Remove tuples from heap */ |
| 1448 | pgstat_progress_update_param(PROGRESS_VACUUM_PHASE, |
| 1449 | PROGRESS_VACUUM_PHASE_VACUUM_HEAP); |
| 1450 | lazy_vacuum_heap(onerel, vacrelstats); |
| 1451 | vacrelstats->num_index_scans++; |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | * Vacuum the remainder of the Free Space Map. We must do this whether or |
| 1456 | * not there were indexes. |
| 1457 | */ |
| 1458 | if (blkno > next_fsm_block_to_vacuum) |
| 1459 | FreeSpaceMapVacuumRange(onerel, next_fsm_block_to_vacuum, blkno); |
| 1460 | |
| 1461 | /* report all blocks vacuumed; and that we're cleaning up */ |
| 1462 | pgstat_progress_update_param(PROGRESS_VACUUM_HEAP_BLKS_VACUUMED, blkno); |
| 1463 | pgstat_progress_update_param(PROGRESS_VACUUM_PHASE, |
| 1464 | PROGRESS_VACUUM_PHASE_INDEX_CLEANUP); |
| 1465 | |
| 1466 | /* Do post-vacuum cleanup and statistics update for each index */ |
| 1467 | if (vacrelstats->useindex) |
| 1468 | { |
| 1469 | for (i = 0; i < nindexes; i++) |
| 1470 | lazy_cleanup_index(Irel[i], indstats[i], vacrelstats); |
| 1471 | } |
| 1472 | |
| 1473 | /* If no indexes, make log report that lazy_vacuum_heap would've made */ |
| 1474 | if (vacuumed_pages) |
| 1475 | ereport(elevel, |
| 1476 | (errmsg("\"%s\": removed %.0f row versions in %u pages" , |
| 1477 | RelationGetRelationName(onerel), |
| 1478 | tups_vacuumed, vacuumed_pages))); |
| 1479 | |
| 1480 | /* |
| 1481 | * This is pretty messy, but we split it up so that we can skip emitting |
| 1482 | * individual parts of the message when not applicable. |
| 1483 | */ |
| 1484 | initStringInfo(&buf); |
| 1485 | appendStringInfo(&buf, |
| 1486 | _("%.0f dead row versions cannot be removed yet, oldest xmin: %u\n" ), |
| 1487 | nkeep, OldestXmin); |
| 1488 | appendStringInfo(&buf, _("There were %.0f unused item identifiers.\n" ), |
| 1489 | nunused); |
| 1490 | appendStringInfo(&buf, ngettext("Skipped %u page due to buffer pins, " , |
| 1491 | "Skipped %u pages due to buffer pins, " , |
| 1492 | vacrelstats->pinskipped_pages), |
| 1493 | vacrelstats->pinskipped_pages); |
| 1494 | appendStringInfo(&buf, ngettext("%u frozen page.\n" , |
| 1495 | "%u frozen pages.\n" , |
| 1496 | vacrelstats->frozenskipped_pages), |
| 1497 | vacrelstats->frozenskipped_pages); |
| 1498 | appendStringInfo(&buf, ngettext("%u page is entirely empty.\n" , |
| 1499 | "%u pages are entirely empty.\n" , |
| 1500 | empty_pages), |
| 1501 | empty_pages); |
| 1502 | appendStringInfo(&buf, _("%s." ), pg_rusage_show(&ru0)); |
| 1503 | |
| 1504 | ereport(elevel, |
| 1505 | (errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u out of %u pages" , |
| 1506 | RelationGetRelationName(onerel), |
| 1507 | tups_vacuumed, num_tuples, |
| 1508 | vacrelstats->scanned_pages, nblocks), |
| 1509 | errdetail_internal("%s" , buf.data))); |
| 1510 | pfree(buf.data); |
| 1511 | } |
| 1512 | |
| 1513 | |
| 1514 | /* |
| 1515 | * lazy_vacuum_heap() -- second pass over the heap |
| 1516 | * |
| 1517 | * This routine marks dead tuples as unused and compacts out free |
| 1518 | * space on their pages. Pages not having dead tuples recorded from |
| 1519 | * lazy_scan_heap are not visited at all. |
| 1520 | * |
| 1521 | * Note: the reason for doing this as a second pass is we cannot remove |
| 1522 | * the tuples until we've removed their index entries, and we want to |
| 1523 | * process index entry removal in batches as large as possible. |
| 1524 | */ |
| 1525 | static void |
| 1526 | lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats) |
| 1527 | { |
| 1528 | int tupindex; |
| 1529 | int npages; |
| 1530 | PGRUsage ru0; |
| 1531 | Buffer vmbuffer = InvalidBuffer; |
| 1532 | |
| 1533 | pg_rusage_init(&ru0); |
| 1534 | npages = 0; |
| 1535 | |
| 1536 | tupindex = 0; |
| 1537 | while (tupindex < vacrelstats->num_dead_tuples) |
| 1538 | { |
| 1539 | BlockNumber tblk; |
| 1540 | Buffer buf; |
| 1541 | Page page; |
| 1542 | Size freespace; |
| 1543 | |
| 1544 | vacuum_delay_point(); |
| 1545 | |
| 1546 | tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]); |
| 1547 | buf = ReadBufferExtended(onerel, MAIN_FORKNUM, tblk, RBM_NORMAL, |
| 1548 | vac_strategy); |
| 1549 | if (!ConditionalLockBufferForCleanup(buf)) |
| 1550 | { |
| 1551 | ReleaseBuffer(buf); |
| 1552 | ++tupindex; |
| 1553 | continue; |
| 1554 | } |
| 1555 | tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats, |
| 1556 | &vmbuffer); |
| 1557 | |
| 1558 | /* Now that we've compacted the page, record its available space */ |
| 1559 | page = BufferGetPage(buf); |
| 1560 | freespace = PageGetHeapFreeSpace(page); |
| 1561 | |
| 1562 | UnlockReleaseBuffer(buf); |
| 1563 | RecordPageWithFreeSpace(onerel, tblk, freespace); |
| 1564 | npages++; |
| 1565 | } |
| 1566 | |
| 1567 | if (BufferIsValid(vmbuffer)) |
| 1568 | { |
| 1569 | ReleaseBuffer(vmbuffer); |
| 1570 | vmbuffer = InvalidBuffer; |
| 1571 | } |
| 1572 | |
| 1573 | ereport(elevel, |
| 1574 | (errmsg("\"%s\": removed %d row versions in %d pages" , |
| 1575 | RelationGetRelationName(onerel), |
| 1576 | tupindex, npages), |
| 1577 | errdetail_internal("%s" , pg_rusage_show(&ru0)))); |
| 1578 | } |
| 1579 | |
| 1580 | /* |
| 1581 | * lazy_vacuum_page() -- free dead tuples on a page |
| 1582 | * and repair its fragmentation. |
| 1583 | * |
| 1584 | * Caller must hold pin and buffer cleanup lock on the buffer. |
| 1585 | * |
| 1586 | * tupindex is the index in vacrelstats->dead_tuples of the first dead |
| 1587 | * tuple for this page. We assume the rest follow sequentially. |
| 1588 | * The return value is the first tupindex after the tuples of this page. |
| 1589 | */ |
| 1590 | static int |
| 1591 | lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer, |
| 1592 | int tupindex, LVRelStats *vacrelstats, Buffer *vmbuffer) |
| 1593 | { |
| 1594 | Page page = BufferGetPage(buffer); |
| 1595 | OffsetNumber unused[MaxOffsetNumber]; |
| 1596 | int uncnt = 0; |
| 1597 | TransactionId visibility_cutoff_xid; |
| 1598 | bool all_frozen; |
| 1599 | |
| 1600 | pgstat_progress_update_param(PROGRESS_VACUUM_HEAP_BLKS_VACUUMED, blkno); |
| 1601 | |
| 1602 | START_CRIT_SECTION(); |
| 1603 | |
| 1604 | for (; tupindex < vacrelstats->num_dead_tuples; tupindex++) |
| 1605 | { |
| 1606 | BlockNumber tblk; |
| 1607 | OffsetNumber toff; |
| 1608 | ItemId itemid; |
| 1609 | |
| 1610 | tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]); |
| 1611 | if (tblk != blkno) |
| 1612 | break; /* past end of tuples for this block */ |
| 1613 | toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]); |
| 1614 | itemid = PageGetItemId(page, toff); |
| 1615 | ItemIdSetUnused(itemid); |
| 1616 | unused[uncnt++] = toff; |
| 1617 | } |
| 1618 | |
| 1619 | PageRepairFragmentation(page); |
| 1620 | |
| 1621 | /* |
| 1622 | * Mark buffer dirty before we write WAL. |
| 1623 | */ |
| 1624 | MarkBufferDirty(buffer); |
| 1625 | |
| 1626 | /* XLOG stuff */ |
| 1627 | if (RelationNeedsWAL(onerel)) |
| 1628 | { |
| 1629 | XLogRecPtr recptr; |
| 1630 | |
| 1631 | recptr = log_heap_clean(onerel, buffer, |
| 1632 | NULL, 0, NULL, 0, |
| 1633 | unused, uncnt, |
| 1634 | vacrelstats->latestRemovedXid); |
| 1635 | PageSetLSN(page, recptr); |
| 1636 | } |
| 1637 | |
| 1638 | /* |
| 1639 | * End critical section, so we safely can do visibility tests (which |
| 1640 | * possibly need to perform IO and allocate memory!). If we crash now the |
| 1641 | * page (including the corresponding vm bit) might not be marked all |
| 1642 | * visible, but that's fine. A later vacuum will fix that. |
| 1643 | */ |
| 1644 | END_CRIT_SECTION(); |
| 1645 | |
| 1646 | /* |
| 1647 | * Now that we have removed the dead tuples from the page, once again |
| 1648 | * check if the page has become all-visible. The page is already marked |
| 1649 | * dirty, exclusively locked, and, if needed, a full page image has been |
| 1650 | * emitted in the log_heap_clean() above. |
| 1651 | */ |
| 1652 | if (heap_page_is_all_visible(onerel, buffer, &visibility_cutoff_xid, |
| 1653 | &all_frozen)) |
| 1654 | PageSetAllVisible(page); |
| 1655 | |
| 1656 | /* |
| 1657 | * All the changes to the heap page have been done. If the all-visible |
| 1658 | * flag is now set, also set the VM all-visible bit (and, if possible, the |
| 1659 | * all-frozen bit) unless this has already been done previously. |
| 1660 | */ |
| 1661 | if (PageIsAllVisible(page)) |
| 1662 | { |
| 1663 | uint8 vm_status = visibilitymap_get_status(onerel, blkno, vmbuffer); |
| 1664 | uint8 flags = 0; |
| 1665 | |
| 1666 | /* Set the VM all-frozen bit to flag, if needed */ |
| 1667 | if ((vm_status & VISIBILITYMAP_ALL_VISIBLE) == 0) |
| 1668 | flags |= VISIBILITYMAP_ALL_VISIBLE; |
| 1669 | if ((vm_status & VISIBILITYMAP_ALL_FROZEN) == 0 && all_frozen) |
| 1670 | flags |= VISIBILITYMAP_ALL_FROZEN; |
| 1671 | |
| 1672 | Assert(BufferIsValid(*vmbuffer)); |
| 1673 | if (flags != 0) |
| 1674 | visibilitymap_set(onerel, blkno, buffer, InvalidXLogRecPtr, |
| 1675 | *vmbuffer, visibility_cutoff_xid, flags); |
| 1676 | } |
| 1677 | |
| 1678 | return tupindex; |
| 1679 | } |
| 1680 | |
| 1681 | /* |
| 1682 | * lazy_check_needs_freeze() -- scan page to see if any tuples |
| 1683 | * need to be cleaned to avoid wraparound |
| 1684 | * |
| 1685 | * Returns true if the page needs to be vacuumed using cleanup lock. |
| 1686 | * Also returns a flag indicating whether page contains any tuples at all. |
| 1687 | */ |
| 1688 | static bool |
| 1689 | lazy_check_needs_freeze(Buffer buf, bool *hastup) |
| 1690 | { |
| 1691 | Page page = BufferGetPage(buf); |
| 1692 | OffsetNumber offnum, |
| 1693 | maxoff; |
| 1694 | HeapTupleHeader ; |
| 1695 | |
| 1696 | *hastup = false; |
| 1697 | |
| 1698 | /* |
| 1699 | * New and empty pages, obviously, don't contain tuples. We could make |
| 1700 | * sure that the page is registered in the FSM, but it doesn't seem worth |
| 1701 | * waiting for a cleanup lock just for that, especially because it's |
| 1702 | * likely that the pin holder will do so. |
| 1703 | */ |
| 1704 | if (PageIsNew(page) || PageIsEmpty(page)) |
| 1705 | return false; |
| 1706 | |
| 1707 | maxoff = PageGetMaxOffsetNumber(page); |
| 1708 | for (offnum = FirstOffsetNumber; |
| 1709 | offnum <= maxoff; |
| 1710 | offnum = OffsetNumberNext(offnum)) |
| 1711 | { |
| 1712 | ItemId itemid; |
| 1713 | |
| 1714 | itemid = PageGetItemId(page, offnum); |
| 1715 | |
| 1716 | /* this should match hastup test in count_nondeletable_pages() */ |
| 1717 | if (ItemIdIsUsed(itemid)) |
| 1718 | *hastup = true; |
| 1719 | |
| 1720 | /* dead and redirect items never need freezing */ |
| 1721 | if (!ItemIdIsNormal(itemid)) |
| 1722 | continue; |
| 1723 | |
| 1724 | tupleheader = (HeapTupleHeader) PageGetItem(page, itemid); |
| 1725 | |
| 1726 | if (heap_tuple_needs_freeze(tupleheader, FreezeLimit, |
| 1727 | MultiXactCutoff, buf)) |
| 1728 | return true; |
| 1729 | } /* scan along page */ |
| 1730 | |
| 1731 | return false; |
| 1732 | } |
| 1733 | |
| 1734 | |
| 1735 | /* |
| 1736 | * lazy_vacuum_index() -- vacuum one index relation. |
| 1737 | * |
| 1738 | * Delete all the index entries pointing to tuples listed in |
| 1739 | * vacrelstats->dead_tuples, and update running statistics. |
| 1740 | */ |
| 1741 | static void |
| 1742 | lazy_vacuum_index(Relation indrel, |
| 1743 | IndexBulkDeleteResult **stats, |
| 1744 | LVRelStats *vacrelstats) |
| 1745 | { |
| 1746 | IndexVacuumInfo ivinfo; |
| 1747 | PGRUsage ru0; |
| 1748 | |
| 1749 | pg_rusage_init(&ru0); |
| 1750 | |
| 1751 | ivinfo.index = indrel; |
| 1752 | ivinfo.analyze_only = false; |
| 1753 | ivinfo.report_progress = false; |
| 1754 | ivinfo.estimated_count = true; |
| 1755 | ivinfo.message_level = elevel; |
| 1756 | /* We can only provide an approximate value of num_heap_tuples here */ |
| 1757 | ivinfo.num_heap_tuples = vacrelstats->old_live_tuples; |
| 1758 | ivinfo.strategy = vac_strategy; |
| 1759 | |
| 1760 | /* Do bulk deletion */ |
| 1761 | *stats = index_bulk_delete(&ivinfo, *stats, |
| 1762 | lazy_tid_reaped, (void *) vacrelstats); |
| 1763 | |
| 1764 | ereport(elevel, |
| 1765 | (errmsg("scanned index \"%s\" to remove %d row versions" , |
| 1766 | RelationGetRelationName(indrel), |
| 1767 | vacrelstats->num_dead_tuples), |
| 1768 | errdetail_internal("%s" , pg_rusage_show(&ru0)))); |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * lazy_cleanup_index() -- do post-vacuum cleanup for one index relation. |
| 1773 | */ |
| 1774 | static void |
| 1775 | lazy_cleanup_index(Relation indrel, |
| 1776 | IndexBulkDeleteResult *stats, |
| 1777 | LVRelStats *vacrelstats) |
| 1778 | { |
| 1779 | IndexVacuumInfo ivinfo; |
| 1780 | PGRUsage ru0; |
| 1781 | |
| 1782 | pg_rusage_init(&ru0); |
| 1783 | |
| 1784 | ivinfo.index = indrel; |
| 1785 | ivinfo.analyze_only = false; |
| 1786 | ivinfo.report_progress = false; |
| 1787 | ivinfo.estimated_count = (vacrelstats->tupcount_pages < vacrelstats->rel_pages); |
| 1788 | ivinfo.message_level = elevel; |
| 1789 | |
| 1790 | /* |
| 1791 | * Now we can provide a better estimate of total number of surviving |
| 1792 | * tuples (we assume indexes are more interested in that than in the |
| 1793 | * number of nominally live tuples). |
| 1794 | */ |
| 1795 | ivinfo.num_heap_tuples = vacrelstats->new_rel_tuples; |
| 1796 | ivinfo.strategy = vac_strategy; |
| 1797 | |
| 1798 | stats = index_vacuum_cleanup(&ivinfo, stats); |
| 1799 | |
| 1800 | if (!stats) |
| 1801 | return; |
| 1802 | |
| 1803 | /* |
| 1804 | * Now update statistics in pg_class, but only if the index says the count |
| 1805 | * is accurate. |
| 1806 | */ |
| 1807 | if (!stats->estimated_count) |
| 1808 | vac_update_relstats(indrel, |
| 1809 | stats->num_pages, |
| 1810 | stats->num_index_tuples, |
| 1811 | 0, |
| 1812 | false, |
| 1813 | InvalidTransactionId, |
| 1814 | InvalidMultiXactId, |
| 1815 | false); |
| 1816 | |
| 1817 | ereport(elevel, |
| 1818 | (errmsg("index \"%s\" now contains %.0f row versions in %u pages" , |
| 1819 | RelationGetRelationName(indrel), |
| 1820 | stats->num_index_tuples, |
| 1821 | stats->num_pages), |
| 1822 | errdetail("%.0f index row versions were removed.\n" |
| 1823 | "%u index pages have been deleted, %u are currently reusable.\n" |
| 1824 | "%s." , |
| 1825 | stats->tuples_removed, |
| 1826 | stats->pages_deleted, stats->pages_free, |
| 1827 | pg_rusage_show(&ru0)))); |
| 1828 | |
| 1829 | pfree(stats); |
| 1830 | } |
| 1831 | |
| 1832 | /* |
| 1833 | * should_attempt_truncation - should we attempt to truncate the heap? |
| 1834 | * |
| 1835 | * Don't even think about it unless we have a shot at releasing a goodly |
| 1836 | * number of pages. Otherwise, the time taken isn't worth it. |
| 1837 | * |
| 1838 | * Also don't attempt it if we are doing early pruning/vacuuming, because a |
| 1839 | * scan which cannot find a truncated heap page cannot determine that the |
| 1840 | * snapshot is too old to read that page. We might be able to get away with |
| 1841 | * truncating all except one of the pages, setting its LSN to (at least) the |
| 1842 | * maximum of the truncated range if we also treated an index leaf tuple |
| 1843 | * pointing to a missing heap page as something to trigger the "snapshot too |
| 1844 | * old" error, but that seems fragile and seems like it deserves its own patch |
| 1845 | * if we consider it. |
| 1846 | * |
| 1847 | * This is split out so that we can test whether truncation is going to be |
| 1848 | * called for before we actually do it. If you change the logic here, be |
| 1849 | * careful to depend only on fields that lazy_scan_heap updates on-the-fly. |
| 1850 | */ |
| 1851 | static bool |
| 1852 | should_attempt_truncation(VacuumParams *params, LVRelStats *vacrelstats) |
| 1853 | { |
| 1854 | BlockNumber possibly_freeable; |
| 1855 | |
| 1856 | if (params->truncate == VACOPT_TERNARY_DISABLED) |
| 1857 | return false; |
| 1858 | |
| 1859 | possibly_freeable = vacrelstats->rel_pages - vacrelstats->nonempty_pages; |
| 1860 | if (possibly_freeable > 0 && |
| 1861 | (possibly_freeable >= REL_TRUNCATE_MINIMUM || |
| 1862 | possibly_freeable >= vacrelstats->rel_pages / REL_TRUNCATE_FRACTION) && |
| 1863 | old_snapshot_threshold < 0) |
| 1864 | return true; |
| 1865 | else |
| 1866 | return false; |
| 1867 | } |
| 1868 | |
| 1869 | /* |
| 1870 | * lazy_truncate_heap - try to truncate off any empty pages at the end |
| 1871 | */ |
| 1872 | static void |
| 1873 | lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats) |
| 1874 | { |
| 1875 | BlockNumber old_rel_pages = vacrelstats->rel_pages; |
| 1876 | BlockNumber new_rel_pages; |
| 1877 | PGRUsage ru0; |
| 1878 | int lock_retry; |
| 1879 | |
| 1880 | pg_rusage_init(&ru0); |
| 1881 | |
| 1882 | /* Report that we are now truncating */ |
| 1883 | pgstat_progress_update_param(PROGRESS_VACUUM_PHASE, |
| 1884 | PROGRESS_VACUUM_PHASE_TRUNCATE); |
| 1885 | |
| 1886 | /* |
| 1887 | * Loop until no more truncating can be done. |
| 1888 | */ |
| 1889 | do |
| 1890 | { |
| 1891 | /* |
| 1892 | * We need full exclusive lock on the relation in order to do |
| 1893 | * truncation. If we can't get it, give up rather than waiting --- we |
| 1894 | * don't want to block other backends, and we don't want to deadlock |
| 1895 | * (which is quite possible considering we already hold a lower-grade |
| 1896 | * lock). |
| 1897 | */ |
| 1898 | vacrelstats->lock_waiter_detected = false; |
| 1899 | lock_retry = 0; |
| 1900 | while (true) |
| 1901 | { |
| 1902 | if (ConditionalLockRelation(onerel, AccessExclusiveLock)) |
| 1903 | break; |
| 1904 | |
| 1905 | /* |
| 1906 | * Check for interrupts while trying to (re-)acquire the exclusive |
| 1907 | * lock. |
| 1908 | */ |
| 1909 | CHECK_FOR_INTERRUPTS(); |
| 1910 | |
| 1911 | if (++lock_retry > (VACUUM_TRUNCATE_LOCK_TIMEOUT / |
| 1912 | VACUUM_TRUNCATE_LOCK_WAIT_INTERVAL)) |
| 1913 | { |
| 1914 | /* |
| 1915 | * We failed to establish the lock in the specified number of |
| 1916 | * retries. This means we give up truncating. |
| 1917 | */ |
| 1918 | vacrelstats->lock_waiter_detected = true; |
| 1919 | ereport(elevel, |
| 1920 | (errmsg("\"%s\": stopping truncate due to conflicting lock request" , |
| 1921 | RelationGetRelationName(onerel)))); |
| 1922 | return; |
| 1923 | } |
| 1924 | |
| 1925 | pg_usleep(VACUUM_TRUNCATE_LOCK_WAIT_INTERVAL * 1000L); |
| 1926 | } |
| 1927 | |
| 1928 | /* |
| 1929 | * Now that we have exclusive lock, look to see if the rel has grown |
| 1930 | * whilst we were vacuuming with non-exclusive lock. If so, give up; |
| 1931 | * the newly added pages presumably contain non-deletable tuples. |
| 1932 | */ |
| 1933 | new_rel_pages = RelationGetNumberOfBlocks(onerel); |
| 1934 | if (new_rel_pages != old_rel_pages) |
| 1935 | { |
| 1936 | /* |
| 1937 | * Note: we intentionally don't update vacrelstats->rel_pages with |
| 1938 | * the new rel size here. If we did, it would amount to assuming |
| 1939 | * that the new pages are empty, which is unlikely. Leaving the |
| 1940 | * numbers alone amounts to assuming that the new pages have the |
| 1941 | * same tuple density as existing ones, which is less unlikely. |
| 1942 | */ |
| 1943 | UnlockRelation(onerel, AccessExclusiveLock); |
| 1944 | return; |
| 1945 | } |
| 1946 | |
| 1947 | /* |
| 1948 | * Scan backwards from the end to verify that the end pages actually |
| 1949 | * contain no tuples. This is *necessary*, not optional, because |
| 1950 | * other backends could have added tuples to these pages whilst we |
| 1951 | * were vacuuming. |
| 1952 | */ |
| 1953 | new_rel_pages = count_nondeletable_pages(onerel, vacrelstats); |
| 1954 | |
| 1955 | if (new_rel_pages >= old_rel_pages) |
| 1956 | { |
| 1957 | /* can't do anything after all */ |
| 1958 | UnlockRelation(onerel, AccessExclusiveLock); |
| 1959 | return; |
| 1960 | } |
| 1961 | |
| 1962 | /* |
| 1963 | * Okay to truncate. |
| 1964 | */ |
| 1965 | RelationTruncate(onerel, new_rel_pages); |
| 1966 | |
| 1967 | /* |
| 1968 | * We can release the exclusive lock as soon as we have truncated. |
| 1969 | * Other backends can't safely access the relation until they have |
| 1970 | * processed the smgr invalidation that smgrtruncate sent out ... but |
| 1971 | * that should happen as part of standard invalidation processing once |
| 1972 | * they acquire lock on the relation. |
| 1973 | */ |
| 1974 | UnlockRelation(onerel, AccessExclusiveLock); |
| 1975 | |
| 1976 | /* |
| 1977 | * Update statistics. Here, it *is* correct to adjust rel_pages |
| 1978 | * without also touching reltuples, since the tuple count wasn't |
| 1979 | * changed by the truncation. |
| 1980 | */ |
| 1981 | vacrelstats->pages_removed += old_rel_pages - new_rel_pages; |
| 1982 | vacrelstats->rel_pages = new_rel_pages; |
| 1983 | |
| 1984 | ereport(elevel, |
| 1985 | (errmsg("\"%s\": truncated %u to %u pages" , |
| 1986 | RelationGetRelationName(onerel), |
| 1987 | old_rel_pages, new_rel_pages), |
| 1988 | errdetail_internal("%s" , |
| 1989 | pg_rusage_show(&ru0)))); |
| 1990 | old_rel_pages = new_rel_pages; |
| 1991 | } while (new_rel_pages > vacrelstats->nonempty_pages && |
| 1992 | vacrelstats->lock_waiter_detected); |
| 1993 | } |
| 1994 | |
| 1995 | /* |
| 1996 | * Rescan end pages to verify that they are (still) empty of tuples. |
| 1997 | * |
| 1998 | * Returns number of nondeletable pages (last nonempty page + 1). |
| 1999 | */ |
| 2000 | static BlockNumber |
| 2001 | count_nondeletable_pages(Relation onerel, LVRelStats *vacrelstats) |
| 2002 | { |
| 2003 | BlockNumber blkno; |
| 2004 | BlockNumber prefetchedUntil; |
| 2005 | instr_time starttime; |
| 2006 | |
| 2007 | /* Initialize the starttime if we check for conflicting lock requests */ |
| 2008 | INSTR_TIME_SET_CURRENT(starttime); |
| 2009 | |
| 2010 | /* |
| 2011 | * Start checking blocks at what we believe relation end to be and move |
| 2012 | * backwards. (Strange coding of loop control is needed because blkno is |
| 2013 | * unsigned.) To make the scan faster, we prefetch a few blocks at a time |
| 2014 | * in forward direction, so that OS-level readahead can kick in. |
| 2015 | */ |
| 2016 | blkno = vacrelstats->rel_pages; |
| 2017 | StaticAssertStmt((PREFETCH_SIZE & (PREFETCH_SIZE - 1)) == 0, |
| 2018 | "prefetch size must be power of 2" ); |
| 2019 | prefetchedUntil = InvalidBlockNumber; |
| 2020 | while (blkno > vacrelstats->nonempty_pages) |
| 2021 | { |
| 2022 | Buffer buf; |
| 2023 | Page page; |
| 2024 | OffsetNumber offnum, |
| 2025 | maxoff; |
| 2026 | bool hastup; |
| 2027 | |
| 2028 | /* |
| 2029 | * Check if another process requests a lock on our relation. We are |
| 2030 | * holding an AccessExclusiveLock here, so they will be waiting. We |
| 2031 | * only do this once per VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL, and we |
| 2032 | * only check if that interval has elapsed once every 32 blocks to |
| 2033 | * keep the number of system calls and actual shared lock table |
| 2034 | * lookups to a minimum. |
| 2035 | */ |
| 2036 | if ((blkno % 32) == 0) |
| 2037 | { |
| 2038 | instr_time currenttime; |
| 2039 | instr_time elapsed; |
| 2040 | |
| 2041 | INSTR_TIME_SET_CURRENT(currenttime); |
| 2042 | elapsed = currenttime; |
| 2043 | INSTR_TIME_SUBTRACT(elapsed, starttime); |
| 2044 | if ((INSTR_TIME_GET_MICROSEC(elapsed) / 1000) |
| 2045 | >= VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL) |
| 2046 | { |
| 2047 | if (LockHasWaitersRelation(onerel, AccessExclusiveLock)) |
| 2048 | { |
| 2049 | ereport(elevel, |
| 2050 | (errmsg("\"%s\": suspending truncate due to conflicting lock request" , |
| 2051 | RelationGetRelationName(onerel)))); |
| 2052 | |
| 2053 | vacrelstats->lock_waiter_detected = true; |
| 2054 | return blkno; |
| 2055 | } |
| 2056 | starttime = currenttime; |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | /* |
| 2061 | * We don't insert a vacuum delay point here, because we have an |
| 2062 | * exclusive lock on the table which we want to hold for as short a |
| 2063 | * time as possible. We still need to check for interrupts however. |
| 2064 | */ |
| 2065 | CHECK_FOR_INTERRUPTS(); |
| 2066 | |
| 2067 | blkno--; |
| 2068 | |
| 2069 | /* If we haven't prefetched this lot yet, do so now. */ |
| 2070 | if (prefetchedUntil > blkno) |
| 2071 | { |
| 2072 | BlockNumber prefetchStart; |
| 2073 | BlockNumber pblkno; |
| 2074 | |
| 2075 | prefetchStart = blkno & ~(PREFETCH_SIZE - 1); |
| 2076 | for (pblkno = prefetchStart; pblkno <= blkno; pblkno++) |
| 2077 | { |
| 2078 | PrefetchBuffer(onerel, MAIN_FORKNUM, pblkno); |
| 2079 | CHECK_FOR_INTERRUPTS(); |
| 2080 | } |
| 2081 | prefetchedUntil = prefetchStart; |
| 2082 | } |
| 2083 | |
| 2084 | buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno, |
| 2085 | RBM_NORMAL, vac_strategy); |
| 2086 | |
| 2087 | /* In this phase we only need shared access to the buffer */ |
| 2088 | LockBuffer(buf, BUFFER_LOCK_SHARE); |
| 2089 | |
| 2090 | page = BufferGetPage(buf); |
| 2091 | |
| 2092 | if (PageIsNew(page) || PageIsEmpty(page)) |
| 2093 | { |
| 2094 | UnlockReleaseBuffer(buf); |
| 2095 | continue; |
| 2096 | } |
| 2097 | |
| 2098 | hastup = false; |
| 2099 | maxoff = PageGetMaxOffsetNumber(page); |
| 2100 | for (offnum = FirstOffsetNumber; |
| 2101 | offnum <= maxoff; |
| 2102 | offnum = OffsetNumberNext(offnum)) |
| 2103 | { |
| 2104 | ItemId itemid; |
| 2105 | |
| 2106 | itemid = PageGetItemId(page, offnum); |
| 2107 | |
| 2108 | /* |
| 2109 | * Note: any non-unused item should be taken as a reason to keep |
| 2110 | * this page. We formerly thought that DEAD tuples could be |
| 2111 | * thrown away, but that's not so, because we'd not have cleaned |
| 2112 | * out their index entries. |
| 2113 | */ |
| 2114 | if (ItemIdIsUsed(itemid)) |
| 2115 | { |
| 2116 | hastup = true; |
| 2117 | break; /* can stop scanning */ |
| 2118 | } |
| 2119 | } /* scan along page */ |
| 2120 | |
| 2121 | UnlockReleaseBuffer(buf); |
| 2122 | |
| 2123 | /* Done scanning if we found a tuple here */ |
| 2124 | if (hastup) |
| 2125 | return blkno + 1; |
| 2126 | } |
| 2127 | |
| 2128 | /* |
| 2129 | * If we fall out of the loop, all the previously-thought-to-be-empty |
| 2130 | * pages still are; we need not bother to look at the last known-nonempty |
| 2131 | * page. |
| 2132 | */ |
| 2133 | return vacrelstats->nonempty_pages; |
| 2134 | } |
| 2135 | |
| 2136 | /* |
| 2137 | * lazy_space_alloc - space allocation decisions for lazy vacuum |
| 2138 | * |
| 2139 | * See the comments at the head of this file for rationale. |
| 2140 | */ |
| 2141 | static void |
| 2142 | lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks) |
| 2143 | { |
| 2144 | long maxtuples; |
| 2145 | int vac_work_mem = IsAutoVacuumWorkerProcess() && |
| 2146 | autovacuum_work_mem != -1 ? |
| 2147 | autovacuum_work_mem : maintenance_work_mem; |
| 2148 | |
| 2149 | if (vacrelstats->useindex) |
| 2150 | { |
| 2151 | maxtuples = (vac_work_mem * 1024L) / sizeof(ItemPointerData); |
| 2152 | maxtuples = Min(maxtuples, INT_MAX); |
| 2153 | maxtuples = Min(maxtuples, MaxAllocSize / sizeof(ItemPointerData)); |
| 2154 | |
| 2155 | /* curious coding here to ensure the multiplication can't overflow */ |
| 2156 | if ((BlockNumber) (maxtuples / LAZY_ALLOC_TUPLES) > relblocks) |
| 2157 | maxtuples = relblocks * LAZY_ALLOC_TUPLES; |
| 2158 | |
| 2159 | /* stay sane if small maintenance_work_mem */ |
| 2160 | maxtuples = Max(maxtuples, MaxHeapTuplesPerPage); |
| 2161 | } |
| 2162 | else |
| 2163 | { |
| 2164 | maxtuples = MaxHeapTuplesPerPage; |
| 2165 | } |
| 2166 | |
| 2167 | vacrelstats->num_dead_tuples = 0; |
| 2168 | vacrelstats->max_dead_tuples = (int) maxtuples; |
| 2169 | vacrelstats->dead_tuples = (ItemPointer) |
| 2170 | palloc(maxtuples * sizeof(ItemPointerData)); |
| 2171 | } |
| 2172 | |
| 2173 | /* |
| 2174 | * lazy_record_dead_tuple - remember one deletable tuple |
| 2175 | */ |
| 2176 | static void |
| 2177 | lazy_record_dead_tuple(LVRelStats *vacrelstats, |
| 2178 | ItemPointer itemptr) |
| 2179 | { |
| 2180 | /* |
| 2181 | * The array shouldn't overflow under normal behavior, but perhaps it |
| 2182 | * could if we are given a really small maintenance_work_mem. In that |
| 2183 | * case, just forget the last few tuples (we'll get 'em next time). |
| 2184 | */ |
| 2185 | if (vacrelstats->num_dead_tuples < vacrelstats->max_dead_tuples) |
| 2186 | { |
| 2187 | vacrelstats->dead_tuples[vacrelstats->num_dead_tuples] = *itemptr; |
| 2188 | vacrelstats->num_dead_tuples++; |
| 2189 | pgstat_progress_update_param(PROGRESS_VACUUM_NUM_DEAD_TUPLES, |
| 2190 | vacrelstats->num_dead_tuples); |
| 2191 | } |
| 2192 | } |
| 2193 | |
| 2194 | /* |
| 2195 | * lazy_tid_reaped() -- is a particular tid deletable? |
| 2196 | * |
| 2197 | * This has the right signature to be an IndexBulkDeleteCallback. |
| 2198 | * |
| 2199 | * Assumes dead_tuples array is in sorted order. |
| 2200 | */ |
| 2201 | static bool |
| 2202 | lazy_tid_reaped(ItemPointer itemptr, void *state) |
| 2203 | { |
| 2204 | LVRelStats *vacrelstats = (LVRelStats *) state; |
| 2205 | ItemPointer res; |
| 2206 | |
| 2207 | res = (ItemPointer) bsearch((void *) itemptr, |
| 2208 | (void *) vacrelstats->dead_tuples, |
| 2209 | vacrelstats->num_dead_tuples, |
| 2210 | sizeof(ItemPointerData), |
| 2211 | vac_cmp_itemptr); |
| 2212 | |
| 2213 | return (res != NULL); |
| 2214 | } |
| 2215 | |
| 2216 | /* |
| 2217 | * Comparator routines for use with qsort() and bsearch(). |
| 2218 | */ |
| 2219 | static int |
| 2220 | vac_cmp_itemptr(const void *left, const void *right) |
| 2221 | { |
| 2222 | BlockNumber lblk, |
| 2223 | rblk; |
| 2224 | OffsetNumber loff, |
| 2225 | roff; |
| 2226 | |
| 2227 | lblk = ItemPointerGetBlockNumber((ItemPointer) left); |
| 2228 | rblk = ItemPointerGetBlockNumber((ItemPointer) right); |
| 2229 | |
| 2230 | if (lblk < rblk) |
| 2231 | return -1; |
| 2232 | if (lblk > rblk) |
| 2233 | return 1; |
| 2234 | |
| 2235 | loff = ItemPointerGetOffsetNumber((ItemPointer) left); |
| 2236 | roff = ItemPointerGetOffsetNumber((ItemPointer) right); |
| 2237 | |
| 2238 | if (loff < roff) |
| 2239 | return -1; |
| 2240 | if (loff > roff) |
| 2241 | return 1; |
| 2242 | |
| 2243 | return 0; |
| 2244 | } |
| 2245 | |
| 2246 | /* |
| 2247 | * Check if every tuple in the given page is visible to all current and future |
| 2248 | * transactions. Also return the visibility_cutoff_xid which is the highest |
| 2249 | * xmin amongst the visible tuples. Set *all_frozen to true if every tuple |
| 2250 | * on this page is frozen. |
| 2251 | */ |
| 2252 | static bool |
| 2253 | heap_page_is_all_visible(Relation rel, Buffer buf, |
| 2254 | TransactionId *visibility_cutoff_xid, |
| 2255 | bool *all_frozen) |
| 2256 | { |
| 2257 | Page page = BufferGetPage(buf); |
| 2258 | BlockNumber blockno = BufferGetBlockNumber(buf); |
| 2259 | OffsetNumber offnum, |
| 2260 | maxoff; |
| 2261 | bool all_visible = true; |
| 2262 | |
| 2263 | *visibility_cutoff_xid = InvalidTransactionId; |
| 2264 | *all_frozen = true; |
| 2265 | |
| 2266 | /* |
| 2267 | * This is a stripped down version of the line pointer scan in |
| 2268 | * lazy_scan_heap(). So if you change anything here, also check that code. |
| 2269 | */ |
| 2270 | maxoff = PageGetMaxOffsetNumber(page); |
| 2271 | for (offnum = FirstOffsetNumber; |
| 2272 | offnum <= maxoff && all_visible; |
| 2273 | offnum = OffsetNumberNext(offnum)) |
| 2274 | { |
| 2275 | ItemId itemid; |
| 2276 | HeapTupleData tuple; |
| 2277 | |
| 2278 | itemid = PageGetItemId(page, offnum); |
| 2279 | |
| 2280 | /* Unused or redirect line pointers are of no interest */ |
| 2281 | if (!ItemIdIsUsed(itemid) || ItemIdIsRedirected(itemid)) |
| 2282 | continue; |
| 2283 | |
| 2284 | ItemPointerSet(&(tuple.t_self), blockno, offnum); |
| 2285 | |
| 2286 | /* |
| 2287 | * Dead line pointers can have index pointers pointing to them. So |
| 2288 | * they can't be treated as visible |
| 2289 | */ |
| 2290 | if (ItemIdIsDead(itemid)) |
| 2291 | { |
| 2292 | all_visible = false; |
| 2293 | *all_frozen = false; |
| 2294 | break; |
| 2295 | } |
| 2296 | |
| 2297 | Assert(ItemIdIsNormal(itemid)); |
| 2298 | |
| 2299 | tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid); |
| 2300 | tuple.t_len = ItemIdGetLength(itemid); |
| 2301 | tuple.t_tableOid = RelationGetRelid(rel); |
| 2302 | |
| 2303 | switch (HeapTupleSatisfiesVacuum(&tuple, OldestXmin, buf)) |
| 2304 | { |
| 2305 | case HEAPTUPLE_LIVE: |
| 2306 | { |
| 2307 | TransactionId xmin; |
| 2308 | |
| 2309 | /* Check comments in lazy_scan_heap. */ |
| 2310 | if (!HeapTupleHeaderXminCommitted(tuple.t_data)) |
| 2311 | { |
| 2312 | all_visible = false; |
| 2313 | *all_frozen = false; |
| 2314 | break; |
| 2315 | } |
| 2316 | |
| 2317 | /* |
| 2318 | * The inserter definitely committed. But is it old enough |
| 2319 | * that everyone sees it as committed? |
| 2320 | */ |
| 2321 | xmin = HeapTupleHeaderGetXmin(tuple.t_data); |
| 2322 | if (!TransactionIdPrecedes(xmin, OldestXmin)) |
| 2323 | { |
| 2324 | all_visible = false; |
| 2325 | *all_frozen = false; |
| 2326 | break; |
| 2327 | } |
| 2328 | |
| 2329 | /* Track newest xmin on page. */ |
| 2330 | if (TransactionIdFollows(xmin, *visibility_cutoff_xid)) |
| 2331 | *visibility_cutoff_xid = xmin; |
| 2332 | |
| 2333 | /* Check whether this tuple is already frozen or not */ |
| 2334 | if (all_visible && *all_frozen && |
| 2335 | heap_tuple_needs_eventual_freeze(tuple.t_data)) |
| 2336 | *all_frozen = false; |
| 2337 | } |
| 2338 | break; |
| 2339 | |
| 2340 | case HEAPTUPLE_DEAD: |
| 2341 | case HEAPTUPLE_RECENTLY_DEAD: |
| 2342 | case HEAPTUPLE_INSERT_IN_PROGRESS: |
| 2343 | case HEAPTUPLE_DELETE_IN_PROGRESS: |
| 2344 | { |
| 2345 | all_visible = false; |
| 2346 | *all_frozen = false; |
| 2347 | break; |
| 2348 | } |
| 2349 | default: |
| 2350 | elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result" ); |
| 2351 | break; |
| 2352 | } |
| 2353 | } /* scan along page */ |
| 2354 | |
| 2355 | return all_visible; |
| 2356 | } |
| 2357 | |