1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * nbtpage.c |
4 | * BTree-specific page management code for the Postgres btree access |
5 | * method. |
6 | * |
7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
8 | * Portions Copyright (c) 1994, Regents of the University of California |
9 | * |
10 | * |
11 | * IDENTIFICATION |
12 | * src/backend/access/nbtree/nbtpage.c |
13 | * |
14 | * NOTES |
15 | * Postgres btree pages look like ordinary relation pages. The opaque |
16 | * data at high addresses includes pointers to left and right siblings |
17 | * and flag data describing page state. The first page in a btree, page |
18 | * zero, is special -- it stores meta-information describing the tree. |
19 | * Pages one and higher store the actual tree data. |
20 | * |
21 | *------------------------------------------------------------------------- |
22 | */ |
23 | #include "postgres.h" |
24 | |
25 | #include "access/nbtree.h" |
26 | #include "access/nbtxlog.h" |
27 | #include "access/transam.h" |
28 | #include "access/xlog.h" |
29 | #include "access/xloginsert.h" |
30 | #include "miscadmin.h" |
31 | #include "storage/indexfsm.h" |
32 | #include "storage/lmgr.h" |
33 | #include "storage/predicate.h" |
34 | #include "utils/snapmgr.h" |
35 | |
36 | static BTMetaPageData *_bt_getmeta(Relation rel, Buffer metabuf); |
37 | static bool _bt_mark_page_halfdead(Relation rel, Buffer buf, BTStack stack); |
38 | static bool _bt_unlink_halfdead_page(Relation rel, Buffer leafbuf, |
39 | bool *rightsib_empty); |
40 | static bool _bt_lock_branch_parent(Relation rel, BlockNumber child, |
41 | BTStack stack, Buffer *topparent, OffsetNumber *topoff, |
42 | BlockNumber *target, BlockNumber *rightsib); |
43 | static void _bt_log_reuse_page(Relation rel, BlockNumber blkno, |
44 | TransactionId latestRemovedXid); |
45 | |
46 | /* |
47 | * _bt_initmetapage() -- Fill a page buffer with a correct metapage image |
48 | */ |
49 | void |
50 | _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level) |
51 | { |
52 | BTMetaPageData *metad; |
53 | BTPageOpaque metaopaque; |
54 | |
55 | _bt_pageinit(page, BLCKSZ); |
56 | |
57 | metad = BTPageGetMeta(page); |
58 | metad->btm_magic = BTREE_MAGIC; |
59 | metad->btm_version = BTREE_VERSION; |
60 | metad->btm_root = rootbknum; |
61 | metad->btm_level = level; |
62 | metad->btm_fastroot = rootbknum; |
63 | metad->btm_fastlevel = level; |
64 | metad->btm_oldest_btpo_xact = InvalidTransactionId; |
65 | metad->btm_last_cleanup_num_heap_tuples = -1.0; |
66 | |
67 | metaopaque = (BTPageOpaque) PageGetSpecialPointer(page); |
68 | metaopaque->btpo_flags = BTP_META; |
69 | |
70 | /* |
71 | * Set pd_lower just past the end of the metadata. This is essential, |
72 | * because without doing so, metadata will be lost if xlog.c compresses |
73 | * the page. |
74 | */ |
75 | ((PageHeader) page)->pd_lower = |
76 | ((char *) metad + sizeof(BTMetaPageData)) - (char *) page; |
77 | } |
78 | |
79 | /* |
80 | * _bt_upgrademetapage() -- Upgrade a meta-page from an old format to version |
81 | * 3, the last version that can be updated without broadly affecting |
82 | * on-disk compatibility. (A REINDEX is required to upgrade to v4.) |
83 | * |
84 | * This routine does purely in-memory image upgrade. Caller is |
85 | * responsible for locking, WAL-logging etc. |
86 | */ |
87 | void |
88 | _bt_upgrademetapage(Page page) |
89 | { |
90 | BTMetaPageData *metad; |
91 | BTPageOpaque metaopaque PG_USED_FOR_ASSERTS_ONLY; |
92 | |
93 | metad = BTPageGetMeta(page); |
94 | metaopaque = (BTPageOpaque) PageGetSpecialPointer(page); |
95 | |
96 | /* It must be really a meta page of upgradable version */ |
97 | Assert(metaopaque->btpo_flags & BTP_META); |
98 | Assert(metad->btm_version < BTREE_NOVAC_VERSION); |
99 | Assert(metad->btm_version >= BTREE_MIN_VERSION); |
100 | |
101 | /* Set version number and fill extra fields added into version 3 */ |
102 | metad->btm_version = BTREE_NOVAC_VERSION; |
103 | metad->btm_oldest_btpo_xact = InvalidTransactionId; |
104 | metad->btm_last_cleanup_num_heap_tuples = -1.0; |
105 | |
106 | /* Adjust pd_lower (see _bt_initmetapage() for details) */ |
107 | ((PageHeader) page)->pd_lower = |
108 | ((char *) metad + sizeof(BTMetaPageData)) - (char *) page; |
109 | } |
110 | |
111 | /* |
112 | * Get metadata from share-locked buffer containing metapage, while performing |
113 | * standard sanity checks. |
114 | * |
115 | * Callers that cache data returned here in local cache should note that an |
116 | * on-the-fly upgrade using _bt_upgrademetapage() can change the version field |
117 | * and BTREE_NOVAC_VERSION specific fields without invalidating local cache. |
118 | */ |
119 | static BTMetaPageData * |
120 | _bt_getmeta(Relation rel, Buffer metabuf) |
121 | { |
122 | Page metapg; |
123 | BTPageOpaque metaopaque; |
124 | BTMetaPageData *metad; |
125 | |
126 | metapg = BufferGetPage(metabuf); |
127 | metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg); |
128 | metad = BTPageGetMeta(metapg); |
129 | |
130 | /* sanity-check the metapage */ |
131 | if (!P_ISMETA(metaopaque) || |
132 | metad->btm_magic != BTREE_MAGIC) |
133 | ereport(ERROR, |
134 | (errcode(ERRCODE_INDEX_CORRUPTED), |
135 | errmsg("index \"%s\" is not a btree" , |
136 | RelationGetRelationName(rel)))); |
137 | |
138 | if (metad->btm_version < BTREE_MIN_VERSION || |
139 | metad->btm_version > BTREE_VERSION) |
140 | ereport(ERROR, |
141 | (errcode(ERRCODE_INDEX_CORRUPTED), |
142 | errmsg("version mismatch in index \"%s\": file version %d, " |
143 | "current version %d, minimal supported version %d" , |
144 | RelationGetRelationName(rel), |
145 | metad->btm_version, BTREE_VERSION, BTREE_MIN_VERSION))); |
146 | |
147 | return metad; |
148 | } |
149 | |
150 | /* |
151 | * _bt_update_meta_cleanup_info() -- Update cleanup-related information in |
152 | * the metapage. |
153 | * |
154 | * This routine checks if provided cleanup-related information is matching |
155 | * to those written in the metapage. On mismatch, metapage is overwritten. |
156 | */ |
157 | void |
158 | _bt_update_meta_cleanup_info(Relation rel, TransactionId oldestBtpoXact, |
159 | float8 numHeapTuples) |
160 | { |
161 | Buffer metabuf; |
162 | Page metapg; |
163 | BTMetaPageData *metad; |
164 | bool needsRewrite = false; |
165 | XLogRecPtr recptr; |
166 | |
167 | /* read the metapage and check if it needs rewrite */ |
168 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
169 | metapg = BufferGetPage(metabuf); |
170 | metad = BTPageGetMeta(metapg); |
171 | |
172 | /* outdated version of metapage always needs rewrite */ |
173 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
174 | needsRewrite = true; |
175 | else if (metad->btm_oldest_btpo_xact != oldestBtpoXact || |
176 | metad->btm_last_cleanup_num_heap_tuples != numHeapTuples) |
177 | needsRewrite = true; |
178 | |
179 | if (!needsRewrite) |
180 | { |
181 | _bt_relbuf(rel, metabuf); |
182 | return; |
183 | } |
184 | |
185 | /* trade in our read lock for a write lock */ |
186 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
187 | LockBuffer(metabuf, BT_WRITE); |
188 | |
189 | START_CRIT_SECTION(); |
190 | |
191 | /* upgrade meta-page if needed */ |
192 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
193 | _bt_upgrademetapage(metapg); |
194 | |
195 | /* update cleanup-related information */ |
196 | metad->btm_oldest_btpo_xact = oldestBtpoXact; |
197 | metad->btm_last_cleanup_num_heap_tuples = numHeapTuples; |
198 | MarkBufferDirty(metabuf); |
199 | |
200 | /* write wal record if needed */ |
201 | if (RelationNeedsWAL(rel)) |
202 | { |
203 | xl_btree_metadata md; |
204 | |
205 | XLogBeginInsert(); |
206 | XLogRegisterBuffer(0, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
207 | |
208 | Assert(metad->btm_version >= BTREE_NOVAC_VERSION); |
209 | md.version = metad->btm_version; |
210 | md.root = metad->btm_root; |
211 | md.level = metad->btm_level; |
212 | md.fastroot = metad->btm_fastroot; |
213 | md.fastlevel = metad->btm_fastlevel; |
214 | md.oldest_btpo_xact = oldestBtpoXact; |
215 | md.last_cleanup_num_heap_tuples = numHeapTuples; |
216 | |
217 | XLogRegisterBufData(0, (char *) &md, sizeof(xl_btree_metadata)); |
218 | |
219 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_META_CLEANUP); |
220 | |
221 | PageSetLSN(metapg, recptr); |
222 | } |
223 | |
224 | END_CRIT_SECTION(); |
225 | _bt_relbuf(rel, metabuf); |
226 | } |
227 | |
228 | /* |
229 | * _bt_getroot() -- Get the root page of the btree. |
230 | * |
231 | * Since the root page can move around the btree file, we have to read |
232 | * its location from the metadata page, and then read the root page |
233 | * itself. If no root page exists yet, we have to create one. The |
234 | * standard class of race conditions exists here; I think I covered |
235 | * them all in the intricate dance of lock requests below. |
236 | * |
237 | * The access type parameter (BT_READ or BT_WRITE) controls whether |
238 | * a new root page will be created or not. If access = BT_READ, |
239 | * and no root page exists, we just return InvalidBuffer. For |
240 | * BT_WRITE, we try to create the root page if it doesn't exist. |
241 | * NOTE that the returned root page will have only a read lock set |
242 | * on it even if access = BT_WRITE! |
243 | * |
244 | * The returned page is not necessarily the true root --- it could be |
245 | * a "fast root" (a page that is alone in its level due to deletions). |
246 | * Also, if the root page is split while we are "in flight" to it, |
247 | * what we will return is the old root, which is now just the leftmost |
248 | * page on a probably-not-very-wide level. For most purposes this is |
249 | * as good as or better than the true root, so we do not bother to |
250 | * insist on finding the true root. We do, however, guarantee to |
251 | * return a live (not deleted or half-dead) page. |
252 | * |
253 | * On successful return, the root page is pinned and read-locked. |
254 | * The metadata page is not locked or pinned on exit. |
255 | */ |
256 | Buffer |
257 | _bt_getroot(Relation rel, int access) |
258 | { |
259 | Buffer metabuf; |
260 | Buffer rootbuf; |
261 | Page rootpage; |
262 | BTPageOpaque rootopaque; |
263 | BlockNumber rootblkno; |
264 | uint32 rootlevel; |
265 | BTMetaPageData *metad; |
266 | |
267 | /* |
268 | * Try to use previously-cached metapage data to find the root. This |
269 | * normally saves one buffer access per index search, which is a very |
270 | * helpful savings in bufmgr traffic and hence contention. |
271 | */ |
272 | if (rel->rd_amcache != NULL) |
273 | { |
274 | metad = (BTMetaPageData *) rel->rd_amcache; |
275 | /* We shouldn't have cached it if any of these fail */ |
276 | Assert(metad->btm_magic == BTREE_MAGIC); |
277 | Assert(metad->btm_version >= BTREE_MIN_VERSION); |
278 | Assert(metad->btm_version <= BTREE_VERSION); |
279 | Assert(metad->btm_root != P_NONE); |
280 | |
281 | rootblkno = metad->btm_fastroot; |
282 | Assert(rootblkno != P_NONE); |
283 | rootlevel = metad->btm_fastlevel; |
284 | |
285 | rootbuf = _bt_getbuf(rel, rootblkno, BT_READ); |
286 | rootpage = BufferGetPage(rootbuf); |
287 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
288 | |
289 | /* |
290 | * Since the cache might be stale, we check the page more carefully |
291 | * here than normal. We *must* check that it's not deleted. If it's |
292 | * not alone on its level, then we reject too --- this may be overly |
293 | * paranoid but better safe than sorry. Note we don't check P_ISROOT, |
294 | * because that's not set in a "fast root". |
295 | */ |
296 | if (!P_IGNORE(rootopaque) && |
297 | rootopaque->btpo.level == rootlevel && |
298 | P_LEFTMOST(rootopaque) && |
299 | P_RIGHTMOST(rootopaque)) |
300 | { |
301 | /* OK, accept cached page as the root */ |
302 | return rootbuf; |
303 | } |
304 | _bt_relbuf(rel, rootbuf); |
305 | /* Cache is stale, throw it away */ |
306 | if (rel->rd_amcache) |
307 | pfree(rel->rd_amcache); |
308 | rel->rd_amcache = NULL; |
309 | } |
310 | |
311 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
312 | metad = _bt_getmeta(rel, metabuf); |
313 | |
314 | /* if no root page initialized yet, do it */ |
315 | if (metad->btm_root == P_NONE) |
316 | { |
317 | Page metapg; |
318 | |
319 | /* If access = BT_READ, caller doesn't want us to create root yet */ |
320 | if (access == BT_READ) |
321 | { |
322 | _bt_relbuf(rel, metabuf); |
323 | return InvalidBuffer; |
324 | } |
325 | |
326 | /* trade in our read lock for a write lock */ |
327 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
328 | LockBuffer(metabuf, BT_WRITE); |
329 | |
330 | /* |
331 | * Race condition: if someone else initialized the metadata between |
332 | * the time we released the read lock and acquired the write lock, we |
333 | * must avoid doing it again. |
334 | */ |
335 | if (metad->btm_root != P_NONE) |
336 | { |
337 | /* |
338 | * Metadata initialized by someone else. In order to guarantee no |
339 | * deadlocks, we have to release the metadata page and start all |
340 | * over again. (Is that really true? But it's hardly worth trying |
341 | * to optimize this case.) |
342 | */ |
343 | _bt_relbuf(rel, metabuf); |
344 | return _bt_getroot(rel, access); |
345 | } |
346 | |
347 | /* |
348 | * Get, initialize, write, and leave a lock of the appropriate type on |
349 | * the new root page. Since this is the first page in the tree, it's |
350 | * a leaf as well as the root. |
351 | */ |
352 | rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE); |
353 | rootblkno = BufferGetBlockNumber(rootbuf); |
354 | rootpage = BufferGetPage(rootbuf); |
355 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
356 | rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE; |
357 | rootopaque->btpo_flags = (BTP_LEAF | BTP_ROOT); |
358 | rootopaque->btpo.level = 0; |
359 | rootopaque->btpo_cycleid = 0; |
360 | /* Get raw page pointer for metapage */ |
361 | metapg = BufferGetPage(metabuf); |
362 | |
363 | /* NO ELOG(ERROR) till meta is updated */ |
364 | START_CRIT_SECTION(); |
365 | |
366 | /* upgrade metapage if needed */ |
367 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
368 | _bt_upgrademetapage(metapg); |
369 | |
370 | metad->btm_root = rootblkno; |
371 | metad->btm_level = 0; |
372 | metad->btm_fastroot = rootblkno; |
373 | metad->btm_fastlevel = 0; |
374 | metad->btm_oldest_btpo_xact = InvalidTransactionId; |
375 | metad->btm_last_cleanup_num_heap_tuples = -1.0; |
376 | |
377 | MarkBufferDirty(rootbuf); |
378 | MarkBufferDirty(metabuf); |
379 | |
380 | /* XLOG stuff */ |
381 | if (RelationNeedsWAL(rel)) |
382 | { |
383 | xl_btree_newroot xlrec; |
384 | XLogRecPtr recptr; |
385 | xl_btree_metadata md; |
386 | |
387 | XLogBeginInsert(); |
388 | XLogRegisterBuffer(0, rootbuf, REGBUF_WILL_INIT); |
389 | XLogRegisterBuffer(2, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
390 | |
391 | Assert(metad->btm_version >= BTREE_NOVAC_VERSION); |
392 | md.version = metad->btm_version; |
393 | md.root = rootblkno; |
394 | md.level = 0; |
395 | md.fastroot = rootblkno; |
396 | md.fastlevel = 0; |
397 | md.oldest_btpo_xact = InvalidTransactionId; |
398 | md.last_cleanup_num_heap_tuples = -1.0; |
399 | |
400 | XLogRegisterBufData(2, (char *) &md, sizeof(xl_btree_metadata)); |
401 | |
402 | xlrec.rootblk = rootblkno; |
403 | xlrec.level = 0; |
404 | |
405 | XLogRegisterData((char *) &xlrec, SizeOfBtreeNewroot); |
406 | |
407 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT); |
408 | |
409 | PageSetLSN(rootpage, recptr); |
410 | PageSetLSN(metapg, recptr); |
411 | } |
412 | |
413 | END_CRIT_SECTION(); |
414 | |
415 | /* |
416 | * swap root write lock for read lock. There is no danger of anyone |
417 | * else accessing the new root page while it's unlocked, since no one |
418 | * else knows where it is yet. |
419 | */ |
420 | LockBuffer(rootbuf, BUFFER_LOCK_UNLOCK); |
421 | LockBuffer(rootbuf, BT_READ); |
422 | |
423 | /* okay, metadata is correct, release lock on it without caching */ |
424 | _bt_relbuf(rel, metabuf); |
425 | } |
426 | else |
427 | { |
428 | rootblkno = metad->btm_fastroot; |
429 | Assert(rootblkno != P_NONE); |
430 | rootlevel = metad->btm_fastlevel; |
431 | |
432 | /* |
433 | * Cache the metapage data for next time |
434 | */ |
435 | rel->rd_amcache = MemoryContextAlloc(rel->rd_indexcxt, |
436 | sizeof(BTMetaPageData)); |
437 | memcpy(rel->rd_amcache, metad, sizeof(BTMetaPageData)); |
438 | |
439 | /* |
440 | * We are done with the metapage; arrange to release it via first |
441 | * _bt_relandgetbuf call |
442 | */ |
443 | rootbuf = metabuf; |
444 | |
445 | for (;;) |
446 | { |
447 | rootbuf = _bt_relandgetbuf(rel, rootbuf, rootblkno, BT_READ); |
448 | rootpage = BufferGetPage(rootbuf); |
449 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
450 | |
451 | if (!P_IGNORE(rootopaque)) |
452 | break; |
453 | |
454 | /* it's dead, Jim. step right one page */ |
455 | if (P_RIGHTMOST(rootopaque)) |
456 | elog(ERROR, "no live root page found in index \"%s\"" , |
457 | RelationGetRelationName(rel)); |
458 | rootblkno = rootopaque->btpo_next; |
459 | } |
460 | |
461 | /* Note: can't check btpo.level on deleted pages */ |
462 | if (rootopaque->btpo.level != rootlevel) |
463 | elog(ERROR, "root page %u of index \"%s\" has level %u, expected %u" , |
464 | rootblkno, RelationGetRelationName(rel), |
465 | rootopaque->btpo.level, rootlevel); |
466 | } |
467 | |
468 | /* |
469 | * By here, we have a pin and read lock on the root page, and no lock set |
470 | * on the metadata page. Return the root page's buffer. |
471 | */ |
472 | return rootbuf; |
473 | } |
474 | |
475 | /* |
476 | * _bt_gettrueroot() -- Get the true root page of the btree. |
477 | * |
478 | * This is the same as the BT_READ case of _bt_getroot(), except |
479 | * we follow the true-root link not the fast-root link. |
480 | * |
481 | * By the time we acquire lock on the root page, it might have been split and |
482 | * not be the true root anymore. This is okay for the present uses of this |
483 | * routine; we only really need to be able to move up at least one tree level |
484 | * from whatever non-root page we were at. If we ever do need to lock the |
485 | * one true root page, we could loop here, re-reading the metapage on each |
486 | * failure. (Note that it wouldn't do to hold the lock on the metapage while |
487 | * moving to the root --- that'd deadlock against any concurrent root split.) |
488 | */ |
489 | Buffer |
490 | _bt_gettrueroot(Relation rel) |
491 | { |
492 | Buffer metabuf; |
493 | Page metapg; |
494 | BTPageOpaque metaopaque; |
495 | Buffer rootbuf; |
496 | Page rootpage; |
497 | BTPageOpaque rootopaque; |
498 | BlockNumber rootblkno; |
499 | uint32 rootlevel; |
500 | BTMetaPageData *metad; |
501 | |
502 | /* |
503 | * We don't try to use cached metapage data here, since (a) this path is |
504 | * not performance-critical, and (b) if we are here it suggests our cache |
505 | * is out-of-date anyway. In light of point (b), it's probably safest to |
506 | * actively flush any cached metapage info. |
507 | */ |
508 | if (rel->rd_amcache) |
509 | pfree(rel->rd_amcache); |
510 | rel->rd_amcache = NULL; |
511 | |
512 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
513 | metapg = BufferGetPage(metabuf); |
514 | metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg); |
515 | metad = BTPageGetMeta(metapg); |
516 | |
517 | if (!P_ISMETA(metaopaque) || |
518 | metad->btm_magic != BTREE_MAGIC) |
519 | ereport(ERROR, |
520 | (errcode(ERRCODE_INDEX_CORRUPTED), |
521 | errmsg("index \"%s\" is not a btree" , |
522 | RelationGetRelationName(rel)))); |
523 | |
524 | if (metad->btm_version < BTREE_MIN_VERSION || |
525 | metad->btm_version > BTREE_VERSION) |
526 | ereport(ERROR, |
527 | (errcode(ERRCODE_INDEX_CORRUPTED), |
528 | errmsg("version mismatch in index \"%s\": file version %d, " |
529 | "current version %d, minimal supported version %d" , |
530 | RelationGetRelationName(rel), |
531 | metad->btm_version, BTREE_VERSION, BTREE_MIN_VERSION))); |
532 | |
533 | /* if no root page initialized yet, fail */ |
534 | if (metad->btm_root == P_NONE) |
535 | { |
536 | _bt_relbuf(rel, metabuf); |
537 | return InvalidBuffer; |
538 | } |
539 | |
540 | rootblkno = metad->btm_root; |
541 | rootlevel = metad->btm_level; |
542 | |
543 | /* |
544 | * We are done with the metapage; arrange to release it via first |
545 | * _bt_relandgetbuf call |
546 | */ |
547 | rootbuf = metabuf; |
548 | |
549 | for (;;) |
550 | { |
551 | rootbuf = _bt_relandgetbuf(rel, rootbuf, rootblkno, BT_READ); |
552 | rootpage = BufferGetPage(rootbuf); |
553 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
554 | |
555 | if (!P_IGNORE(rootopaque)) |
556 | break; |
557 | |
558 | /* it's dead, Jim. step right one page */ |
559 | if (P_RIGHTMOST(rootopaque)) |
560 | elog(ERROR, "no live root page found in index \"%s\"" , |
561 | RelationGetRelationName(rel)); |
562 | rootblkno = rootopaque->btpo_next; |
563 | } |
564 | |
565 | /* Note: can't check btpo.level on deleted pages */ |
566 | if (rootopaque->btpo.level != rootlevel) |
567 | elog(ERROR, "root page %u of index \"%s\" has level %u, expected %u" , |
568 | rootblkno, RelationGetRelationName(rel), |
569 | rootopaque->btpo.level, rootlevel); |
570 | |
571 | return rootbuf; |
572 | } |
573 | |
574 | /* |
575 | * _bt_getrootheight() -- Get the height of the btree search tree. |
576 | * |
577 | * We return the level (counting from zero) of the current fast root. |
578 | * This represents the number of tree levels we'd have to descend through |
579 | * to start any btree index search. |
580 | * |
581 | * This is used by the planner for cost-estimation purposes. Since it's |
582 | * only an estimate, slightly-stale data is fine, hence we don't worry |
583 | * about updating previously cached data. |
584 | */ |
585 | int |
586 | _bt_getrootheight(Relation rel) |
587 | { |
588 | BTMetaPageData *metad; |
589 | |
590 | if (rel->rd_amcache == NULL) |
591 | { |
592 | Buffer metabuf; |
593 | |
594 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
595 | metad = _bt_getmeta(rel, metabuf); |
596 | |
597 | /* |
598 | * If there's no root page yet, _bt_getroot() doesn't expect a cache |
599 | * to be made, so just stop here and report the index height is zero. |
600 | * (XXX perhaps _bt_getroot() should be changed to allow this case.) |
601 | */ |
602 | if (metad->btm_root == P_NONE) |
603 | { |
604 | _bt_relbuf(rel, metabuf); |
605 | return 0; |
606 | } |
607 | |
608 | /* |
609 | * Cache the metapage data for next time |
610 | */ |
611 | rel->rd_amcache = MemoryContextAlloc(rel->rd_indexcxt, |
612 | sizeof(BTMetaPageData)); |
613 | memcpy(rel->rd_amcache, metad, sizeof(BTMetaPageData)); |
614 | _bt_relbuf(rel, metabuf); |
615 | } |
616 | |
617 | /* Get cached page */ |
618 | metad = (BTMetaPageData *) rel->rd_amcache; |
619 | /* We shouldn't have cached it if any of these fail */ |
620 | Assert(metad->btm_magic == BTREE_MAGIC); |
621 | Assert(metad->btm_version >= BTREE_MIN_VERSION); |
622 | Assert(metad->btm_version <= BTREE_VERSION); |
623 | Assert(metad->btm_fastroot != P_NONE); |
624 | |
625 | return metad->btm_fastlevel; |
626 | } |
627 | |
628 | /* |
629 | * _bt_heapkeyspace() -- is heap TID being treated as a key? |
630 | * |
631 | * This is used to determine the rules that must be used to descend a |
632 | * btree. Version 4 indexes treat heap TID as a tiebreaker attribute. |
633 | * pg_upgrade'd version 3 indexes need extra steps to preserve reasonable |
634 | * performance when inserting a new BTScanInsert-wise duplicate tuple |
635 | * among many leaf pages already full of such duplicates. |
636 | */ |
637 | bool |
638 | _bt_heapkeyspace(Relation rel) |
639 | { |
640 | BTMetaPageData *metad; |
641 | |
642 | if (rel->rd_amcache == NULL) |
643 | { |
644 | Buffer metabuf; |
645 | |
646 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
647 | metad = _bt_getmeta(rel, metabuf); |
648 | |
649 | /* |
650 | * If there's no root page yet, _bt_getroot() doesn't expect a cache |
651 | * to be made, so just stop here. (XXX perhaps _bt_getroot() should |
652 | * be changed to allow this case.) |
653 | */ |
654 | if (metad->btm_root == P_NONE) |
655 | { |
656 | uint32 btm_version = metad->btm_version; |
657 | |
658 | _bt_relbuf(rel, metabuf); |
659 | return btm_version > BTREE_NOVAC_VERSION; |
660 | } |
661 | |
662 | /* |
663 | * Cache the metapage data for next time |
664 | * |
665 | * An on-the-fly version upgrade performed by _bt_upgrademetapage() |
666 | * can change the nbtree version for an index without invalidating any |
667 | * local cache. This is okay because it can only happen when moving |
668 | * from version 2 to version 3, both of which are !heapkeyspace |
669 | * versions. |
670 | */ |
671 | rel->rd_amcache = MemoryContextAlloc(rel->rd_indexcxt, |
672 | sizeof(BTMetaPageData)); |
673 | memcpy(rel->rd_amcache, metad, sizeof(BTMetaPageData)); |
674 | _bt_relbuf(rel, metabuf); |
675 | } |
676 | |
677 | /* Get cached page */ |
678 | metad = (BTMetaPageData *) rel->rd_amcache; |
679 | /* We shouldn't have cached it if any of these fail */ |
680 | Assert(metad->btm_magic == BTREE_MAGIC); |
681 | Assert(metad->btm_version >= BTREE_MIN_VERSION); |
682 | Assert(metad->btm_version <= BTREE_VERSION); |
683 | Assert(metad->btm_fastroot != P_NONE); |
684 | |
685 | return metad->btm_version > BTREE_NOVAC_VERSION; |
686 | } |
687 | |
688 | /* |
689 | * _bt_checkpage() -- Verify that a freshly-read page looks sane. |
690 | */ |
691 | void |
692 | _bt_checkpage(Relation rel, Buffer buf) |
693 | { |
694 | Page page = BufferGetPage(buf); |
695 | |
696 | /* |
697 | * ReadBuffer verifies that every newly-read page passes |
698 | * PageHeaderIsValid, which means it either contains a reasonably sane |
699 | * page header or is all-zero. We have to defend against the all-zero |
700 | * case, however. |
701 | */ |
702 | if (PageIsNew(page)) |
703 | ereport(ERROR, |
704 | (errcode(ERRCODE_INDEX_CORRUPTED), |
705 | errmsg("index \"%s\" contains unexpected zero page at block %u" , |
706 | RelationGetRelationName(rel), |
707 | BufferGetBlockNumber(buf)), |
708 | errhint("Please REINDEX it." ))); |
709 | |
710 | /* |
711 | * Additionally check that the special area looks sane. |
712 | */ |
713 | if (PageGetSpecialSize(page) != MAXALIGN(sizeof(BTPageOpaqueData))) |
714 | ereport(ERROR, |
715 | (errcode(ERRCODE_INDEX_CORRUPTED), |
716 | errmsg("index \"%s\" contains corrupted page at block %u" , |
717 | RelationGetRelationName(rel), |
718 | BufferGetBlockNumber(buf)), |
719 | errhint("Please REINDEX it." ))); |
720 | } |
721 | |
722 | /* |
723 | * Log the reuse of a page from the FSM. |
724 | */ |
725 | static void |
726 | _bt_log_reuse_page(Relation rel, BlockNumber blkno, TransactionId latestRemovedXid) |
727 | { |
728 | xl_btree_reuse_page xlrec_reuse; |
729 | |
730 | /* |
731 | * Note that we don't register the buffer with the record, because this |
732 | * operation doesn't modify the page. This record only exists to provide a |
733 | * conflict point for Hot Standby. |
734 | */ |
735 | |
736 | /* XLOG stuff */ |
737 | xlrec_reuse.node = rel->rd_node; |
738 | xlrec_reuse.block = blkno; |
739 | xlrec_reuse.latestRemovedXid = latestRemovedXid; |
740 | |
741 | XLogBeginInsert(); |
742 | XLogRegisterData((char *) &xlrec_reuse, SizeOfBtreeReusePage); |
743 | |
744 | XLogInsert(RM_BTREE_ID, XLOG_BTREE_REUSE_PAGE); |
745 | } |
746 | |
747 | /* |
748 | * _bt_getbuf() -- Get a buffer by block number for read or write. |
749 | * |
750 | * blkno == P_NEW means to get an unallocated index page. The page |
751 | * will be initialized before returning it. |
752 | * |
753 | * When this routine returns, the appropriate lock is set on the |
754 | * requested buffer and its reference count has been incremented |
755 | * (ie, the buffer is "locked and pinned"). Also, we apply |
756 | * _bt_checkpage to sanity-check the page (except in P_NEW case). |
757 | */ |
758 | Buffer |
759 | _bt_getbuf(Relation rel, BlockNumber blkno, int access) |
760 | { |
761 | Buffer buf; |
762 | |
763 | if (blkno != P_NEW) |
764 | { |
765 | /* Read an existing block of the relation */ |
766 | buf = ReadBuffer(rel, blkno); |
767 | LockBuffer(buf, access); |
768 | _bt_checkpage(rel, buf); |
769 | } |
770 | else |
771 | { |
772 | bool needLock; |
773 | Page page; |
774 | |
775 | Assert(access == BT_WRITE); |
776 | |
777 | /* |
778 | * First see if the FSM knows of any free pages. |
779 | * |
780 | * We can't trust the FSM's report unreservedly; we have to check that |
781 | * the page is still free. (For example, an already-free page could |
782 | * have been re-used between the time the last VACUUM scanned it and |
783 | * the time the VACUUM made its FSM updates.) |
784 | * |
785 | * In fact, it's worse than that: we can't even assume that it's safe |
786 | * to take a lock on the reported page. If somebody else has a lock |
787 | * on it, or even worse our own caller does, we could deadlock. (The |
788 | * own-caller scenario is actually not improbable. Consider an index |
789 | * on a serial or timestamp column. Nearly all splits will be at the |
790 | * rightmost page, so it's entirely likely that _bt_split will call us |
791 | * while holding a lock on the page most recently acquired from FSM. A |
792 | * VACUUM running concurrently with the previous split could well have |
793 | * placed that page back in FSM.) |
794 | * |
795 | * To get around that, we ask for only a conditional lock on the |
796 | * reported page. If we fail, then someone else is using the page, |
797 | * and we may reasonably assume it's not free. (If we happen to be |
798 | * wrong, the worst consequence is the page will be lost to use till |
799 | * the next VACUUM, which is no big problem.) |
800 | */ |
801 | for (;;) |
802 | { |
803 | blkno = GetFreeIndexPage(rel); |
804 | if (blkno == InvalidBlockNumber) |
805 | break; |
806 | buf = ReadBuffer(rel, blkno); |
807 | if (ConditionalLockBuffer(buf)) |
808 | { |
809 | page = BufferGetPage(buf); |
810 | if (_bt_page_recyclable(page)) |
811 | { |
812 | /* |
813 | * If we are generating WAL for Hot Standby then create a |
814 | * WAL record that will allow us to conflict with queries |
815 | * running on standby, in case they have snapshots older |
816 | * than btpo.xact. This can only apply if the page does |
817 | * have a valid btpo.xact value, ie not if it's new. (We |
818 | * must check that because an all-zero page has no special |
819 | * space.) |
820 | */ |
821 | if (XLogStandbyInfoActive() && RelationNeedsWAL(rel) && |
822 | !PageIsNew(page)) |
823 | { |
824 | BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
825 | |
826 | _bt_log_reuse_page(rel, blkno, opaque->btpo.xact); |
827 | } |
828 | |
829 | /* Okay to use page. Re-initialize and return it */ |
830 | _bt_pageinit(page, BufferGetPageSize(buf)); |
831 | return buf; |
832 | } |
833 | elog(DEBUG2, "FSM returned nonrecyclable page" ); |
834 | _bt_relbuf(rel, buf); |
835 | } |
836 | else |
837 | { |
838 | elog(DEBUG2, "FSM returned nonlockable page" ); |
839 | /* couldn't get lock, so just drop pin */ |
840 | ReleaseBuffer(buf); |
841 | } |
842 | } |
843 | |
844 | /* |
845 | * Extend the relation by one page. |
846 | * |
847 | * We have to use a lock to ensure no one else is extending the rel at |
848 | * the same time, else we will both try to initialize the same new |
849 | * page. We can skip locking for new or temp relations, however, |
850 | * since no one else could be accessing them. |
851 | */ |
852 | needLock = !RELATION_IS_LOCAL(rel); |
853 | |
854 | if (needLock) |
855 | LockRelationForExtension(rel, ExclusiveLock); |
856 | |
857 | buf = ReadBuffer(rel, P_NEW); |
858 | |
859 | /* Acquire buffer lock on new page */ |
860 | LockBuffer(buf, BT_WRITE); |
861 | |
862 | /* |
863 | * Release the file-extension lock; it's now OK for someone else to |
864 | * extend the relation some more. Note that we cannot release this |
865 | * lock before we have buffer lock on the new page, or we risk a race |
866 | * condition against btvacuumscan --- see comments therein. |
867 | */ |
868 | if (needLock) |
869 | UnlockRelationForExtension(rel, ExclusiveLock); |
870 | |
871 | /* Initialize the new page before returning it */ |
872 | page = BufferGetPage(buf); |
873 | Assert(PageIsNew(page)); |
874 | _bt_pageinit(page, BufferGetPageSize(buf)); |
875 | } |
876 | |
877 | /* ref count and lock type are correct */ |
878 | return buf; |
879 | } |
880 | |
881 | /* |
882 | * _bt_relandgetbuf() -- release a locked buffer and get another one. |
883 | * |
884 | * This is equivalent to _bt_relbuf followed by _bt_getbuf, with the |
885 | * exception that blkno may not be P_NEW. Also, if obuf is InvalidBuffer |
886 | * then it reduces to just _bt_getbuf; allowing this case simplifies some |
887 | * callers. |
888 | * |
889 | * The original motivation for using this was to avoid two entries to the |
890 | * bufmgr when one would do. However, now it's mainly just a notational |
891 | * convenience. The only case where it saves work over _bt_relbuf/_bt_getbuf |
892 | * is when the target page is the same one already in the buffer. |
893 | */ |
894 | Buffer |
895 | _bt_relandgetbuf(Relation rel, Buffer obuf, BlockNumber blkno, int access) |
896 | { |
897 | Buffer buf; |
898 | |
899 | Assert(blkno != P_NEW); |
900 | if (BufferIsValid(obuf)) |
901 | LockBuffer(obuf, BUFFER_LOCK_UNLOCK); |
902 | buf = ReleaseAndReadBuffer(obuf, rel, blkno); |
903 | LockBuffer(buf, access); |
904 | _bt_checkpage(rel, buf); |
905 | return buf; |
906 | } |
907 | |
908 | /* |
909 | * _bt_relbuf() -- release a locked buffer. |
910 | * |
911 | * Lock and pin (refcount) are both dropped. |
912 | */ |
913 | void |
914 | _bt_relbuf(Relation rel, Buffer buf) |
915 | { |
916 | UnlockReleaseBuffer(buf); |
917 | } |
918 | |
919 | /* |
920 | * _bt_pageinit() -- Initialize a new page. |
921 | * |
922 | * On return, the page header is initialized; data space is empty; |
923 | * special space is zeroed out. |
924 | */ |
925 | void |
926 | _bt_pageinit(Page page, Size size) |
927 | { |
928 | PageInit(page, size, sizeof(BTPageOpaqueData)); |
929 | } |
930 | |
931 | /* |
932 | * _bt_page_recyclable() -- Is an existing page recyclable? |
933 | * |
934 | * This exists to make sure _bt_getbuf and btvacuumscan have the same |
935 | * policy about whether a page is safe to re-use. But note that _bt_getbuf |
936 | * knows enough to distinguish the PageIsNew condition from the other one. |
937 | * At some point it might be appropriate to redesign this to have a three-way |
938 | * result value. |
939 | */ |
940 | bool |
941 | _bt_page_recyclable(Page page) |
942 | { |
943 | BTPageOpaque opaque; |
944 | |
945 | /* |
946 | * It's possible to find an all-zeroes page in an index --- for example, a |
947 | * backend might successfully extend the relation one page and then crash |
948 | * before it is able to make a WAL entry for adding the page. If we find a |
949 | * zeroed page then reclaim it. |
950 | */ |
951 | if (PageIsNew(page)) |
952 | return true; |
953 | |
954 | /* |
955 | * Otherwise, recycle if deleted and too old to have any processes |
956 | * interested in it. |
957 | */ |
958 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
959 | if (P_ISDELETED(opaque) && |
960 | TransactionIdPrecedes(opaque->btpo.xact, RecentGlobalXmin)) |
961 | return true; |
962 | return false; |
963 | } |
964 | |
965 | /* |
966 | * Delete item(s) from a btree page during VACUUM. |
967 | * |
968 | * This must only be used for deleting leaf items. Deleting an item on a |
969 | * non-leaf page has to be done as part of an atomic action that includes |
970 | * deleting the page it points to. |
971 | * |
972 | * This routine assumes that the caller has pinned and locked the buffer. |
973 | * Also, the given itemnos *must* appear in increasing order in the array. |
974 | * |
975 | * We record VACUUMs and b-tree deletes differently in WAL. InHotStandby |
976 | * we need to be able to pin all of the blocks in the btree in physical |
977 | * order when replaying the effects of a VACUUM, just as we do for the |
978 | * original VACUUM itself. lastBlockVacuumed allows us to tell whether an |
979 | * intermediate range of blocks has had no changes at all by VACUUM, |
980 | * and so must be scanned anyway during replay. We always write a WAL record |
981 | * for the last block in the index, whether or not it contained any items |
982 | * to be removed. This allows us to scan right up to end of index to |
983 | * ensure correct locking. |
984 | */ |
985 | void |
986 | _bt_delitems_vacuum(Relation rel, Buffer buf, |
987 | OffsetNumber *itemnos, int nitems, |
988 | BlockNumber lastBlockVacuumed) |
989 | { |
990 | Page page = BufferGetPage(buf); |
991 | BTPageOpaque opaque; |
992 | |
993 | /* No ereport(ERROR) until changes are logged */ |
994 | START_CRIT_SECTION(); |
995 | |
996 | /* Fix the page */ |
997 | if (nitems > 0) |
998 | PageIndexMultiDelete(page, itemnos, nitems); |
999 | |
1000 | /* |
1001 | * We can clear the vacuum cycle ID since this page has certainly been |
1002 | * processed by the current vacuum scan. |
1003 | */ |
1004 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1005 | opaque->btpo_cycleid = 0; |
1006 | |
1007 | /* |
1008 | * Mark the page as not containing any LP_DEAD items. This is not |
1009 | * certainly true (there might be some that have recently been marked, but |
1010 | * weren't included in our target-item list), but it will almost always be |
1011 | * true and it doesn't seem worth an additional page scan to check it. |
1012 | * Remember that BTP_HAS_GARBAGE is only a hint anyway. |
1013 | */ |
1014 | opaque->btpo_flags &= ~BTP_HAS_GARBAGE; |
1015 | |
1016 | MarkBufferDirty(buf); |
1017 | |
1018 | /* XLOG stuff */ |
1019 | if (RelationNeedsWAL(rel)) |
1020 | { |
1021 | XLogRecPtr recptr; |
1022 | xl_btree_vacuum xlrec_vacuum; |
1023 | |
1024 | xlrec_vacuum.lastBlockVacuumed = lastBlockVacuumed; |
1025 | |
1026 | XLogBeginInsert(); |
1027 | XLogRegisterBuffer(0, buf, REGBUF_STANDARD); |
1028 | XLogRegisterData((char *) &xlrec_vacuum, SizeOfBtreeVacuum); |
1029 | |
1030 | /* |
1031 | * The target-offsets array is not in the buffer, but pretend that it |
1032 | * is. When XLogInsert stores the whole buffer, the offsets array |
1033 | * need not be stored too. |
1034 | */ |
1035 | if (nitems > 0) |
1036 | XLogRegisterBufData(0, (char *) itemnos, nitems * sizeof(OffsetNumber)); |
1037 | |
1038 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_VACUUM); |
1039 | |
1040 | PageSetLSN(page, recptr); |
1041 | } |
1042 | |
1043 | END_CRIT_SECTION(); |
1044 | } |
1045 | |
1046 | /* |
1047 | * Delete item(s) from a btree page during single-page cleanup. |
1048 | * |
1049 | * As above, must only be used on leaf pages. |
1050 | * |
1051 | * This routine assumes that the caller has pinned and locked the buffer. |
1052 | * Also, the given itemnos *must* appear in increasing order in the array. |
1053 | * |
1054 | * This is nearly the same as _bt_delitems_vacuum as far as what it does to |
1055 | * the page, but the WAL logging considerations are quite different. See |
1056 | * comments for _bt_delitems_vacuum. |
1057 | */ |
1058 | void |
1059 | _bt_delitems_delete(Relation rel, Buffer buf, |
1060 | OffsetNumber *itemnos, int nitems, |
1061 | Relation heapRel) |
1062 | { |
1063 | Page page = BufferGetPage(buf); |
1064 | BTPageOpaque opaque; |
1065 | TransactionId latestRemovedXid = InvalidTransactionId; |
1066 | |
1067 | /* Shouldn't be called unless there's something to do */ |
1068 | Assert(nitems > 0); |
1069 | |
1070 | if (XLogStandbyInfoActive() && RelationNeedsWAL(rel)) |
1071 | latestRemovedXid = |
1072 | index_compute_xid_horizon_for_tuples(rel, heapRel, buf, |
1073 | itemnos, nitems); |
1074 | |
1075 | /* No ereport(ERROR) until changes are logged */ |
1076 | START_CRIT_SECTION(); |
1077 | |
1078 | /* Fix the page */ |
1079 | PageIndexMultiDelete(page, itemnos, nitems); |
1080 | |
1081 | /* |
1082 | * Unlike _bt_delitems_vacuum, we *must not* clear the vacuum cycle ID, |
1083 | * because this is not called by VACUUM. |
1084 | */ |
1085 | |
1086 | /* |
1087 | * Mark the page as not containing any LP_DEAD items. This is not |
1088 | * certainly true (there might be some that have recently been marked, but |
1089 | * weren't included in our target-item list), but it will almost always be |
1090 | * true and it doesn't seem worth an additional page scan to check it. |
1091 | * Remember that BTP_HAS_GARBAGE is only a hint anyway. |
1092 | */ |
1093 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1094 | opaque->btpo_flags &= ~BTP_HAS_GARBAGE; |
1095 | |
1096 | MarkBufferDirty(buf); |
1097 | |
1098 | /* XLOG stuff */ |
1099 | if (RelationNeedsWAL(rel)) |
1100 | { |
1101 | XLogRecPtr recptr; |
1102 | xl_btree_delete xlrec_delete; |
1103 | |
1104 | xlrec_delete.latestRemovedXid = latestRemovedXid; |
1105 | xlrec_delete.nitems = nitems; |
1106 | |
1107 | XLogBeginInsert(); |
1108 | XLogRegisterBuffer(0, buf, REGBUF_STANDARD); |
1109 | XLogRegisterData((char *) &xlrec_delete, SizeOfBtreeDelete); |
1110 | |
1111 | /* |
1112 | * We need the target-offsets array whether or not we store the whole |
1113 | * buffer, to allow us to find the latestRemovedXid on a standby |
1114 | * server. |
1115 | */ |
1116 | XLogRegisterData((char *) itemnos, nitems * sizeof(OffsetNumber)); |
1117 | |
1118 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_DELETE); |
1119 | |
1120 | PageSetLSN(page, recptr); |
1121 | } |
1122 | |
1123 | END_CRIT_SECTION(); |
1124 | } |
1125 | |
1126 | /* |
1127 | * Returns true, if the given block has the half-dead flag set. |
1128 | */ |
1129 | static bool |
1130 | _bt_is_page_halfdead(Relation rel, BlockNumber blk) |
1131 | { |
1132 | Buffer buf; |
1133 | Page page; |
1134 | BTPageOpaque opaque; |
1135 | bool result; |
1136 | |
1137 | buf = _bt_getbuf(rel, blk, BT_READ); |
1138 | page = BufferGetPage(buf); |
1139 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1140 | |
1141 | result = P_ISHALFDEAD(opaque); |
1142 | _bt_relbuf(rel, buf); |
1143 | |
1144 | return result; |
1145 | } |
1146 | |
1147 | /* |
1148 | * Subroutine to find the parent of the branch we're deleting. This climbs |
1149 | * up the tree until it finds a page with more than one child, i.e. a page |
1150 | * that will not be totally emptied by the deletion. The chain of pages below |
1151 | * it, with one downlink each, will form the branch that we need to delete. |
1152 | * |
1153 | * If we cannot remove the downlink from the parent, because it's the |
1154 | * rightmost entry, returns false. On success, *topparent and *topoff are set |
1155 | * to the buffer holding the parent, and the offset of the downlink in it. |
1156 | * *topparent is write-locked, the caller is responsible for releasing it when |
1157 | * done. *target is set to the topmost page in the branch to-be-deleted, i.e. |
1158 | * the page whose downlink *topparent / *topoff point to, and *rightsib to its |
1159 | * right sibling. |
1160 | * |
1161 | * "child" is the leaf page we wish to delete, and "stack" is a search stack |
1162 | * leading to it (it actually leads to the leftmost leaf page with a high key |
1163 | * matching that of the page to be deleted in !heapkeyspace indexes). Note |
1164 | * that we will update the stack entry(s) to reflect current downlink |
1165 | * positions --- this is essentially the same as the corresponding step of |
1166 | * splitting, and is not expected to affect caller. The caller should |
1167 | * initialize *target and *rightsib to the leaf page and its right sibling. |
1168 | * |
1169 | * Note: it's OK to release page locks on any internal pages between the leaf |
1170 | * and *topparent, because a safe deletion can't become unsafe due to |
1171 | * concurrent activity. An internal page can only acquire an entry if the |
1172 | * child is split, but that cannot happen as long as we hold a lock on the |
1173 | * leaf. |
1174 | */ |
1175 | static bool |
1176 | _bt_lock_branch_parent(Relation rel, BlockNumber child, BTStack stack, |
1177 | Buffer *topparent, OffsetNumber *topoff, |
1178 | BlockNumber *target, BlockNumber *rightsib) |
1179 | { |
1180 | BlockNumber parent; |
1181 | OffsetNumber poffset, |
1182 | maxoff; |
1183 | Buffer pbuf; |
1184 | Page page; |
1185 | BTPageOpaque opaque; |
1186 | BlockNumber leftsib; |
1187 | |
1188 | /* |
1189 | * Locate the downlink of "child" in the parent, updating the stack entry |
1190 | * if needed. This is how !heapkeyspace indexes deal with having |
1191 | * non-unique high keys in leaf level pages. Even heapkeyspace indexes |
1192 | * can have a stale stack due to insertions into the parent. |
1193 | */ |
1194 | stack->bts_btentry = child; |
1195 | pbuf = _bt_getstackbuf(rel, stack); |
1196 | if (pbuf == InvalidBuffer) |
1197 | elog(ERROR, "failed to re-find parent key in index \"%s\" for deletion target page %u" , |
1198 | RelationGetRelationName(rel), child); |
1199 | parent = stack->bts_blkno; |
1200 | poffset = stack->bts_offset; |
1201 | |
1202 | page = BufferGetPage(pbuf); |
1203 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1204 | maxoff = PageGetMaxOffsetNumber(page); |
1205 | |
1206 | /* |
1207 | * If the target is the rightmost child of its parent, then we can't |
1208 | * delete, unless it's also the only child. |
1209 | */ |
1210 | if (poffset >= maxoff) |
1211 | { |
1212 | /* It's rightmost child... */ |
1213 | if (poffset == P_FIRSTDATAKEY(opaque)) |
1214 | { |
1215 | /* |
1216 | * It's only child, so safe if parent would itself be removable. |
1217 | * We have to check the parent itself, and then recurse to test |
1218 | * the conditions at the parent's parent. |
1219 | */ |
1220 | if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || |
1221 | P_INCOMPLETE_SPLIT(opaque)) |
1222 | { |
1223 | _bt_relbuf(rel, pbuf); |
1224 | return false; |
1225 | } |
1226 | |
1227 | *target = parent; |
1228 | *rightsib = opaque->btpo_next; |
1229 | leftsib = opaque->btpo_prev; |
1230 | |
1231 | _bt_relbuf(rel, pbuf); |
1232 | |
1233 | /* |
1234 | * Like in _bt_pagedel, check that the left sibling is not marked |
1235 | * with INCOMPLETE_SPLIT flag. That would mean that there is no |
1236 | * downlink to the page to be deleted, and the page deletion |
1237 | * algorithm isn't prepared to handle that. |
1238 | */ |
1239 | if (leftsib != P_NONE) |
1240 | { |
1241 | Buffer lbuf; |
1242 | Page lpage; |
1243 | BTPageOpaque lopaque; |
1244 | |
1245 | lbuf = _bt_getbuf(rel, leftsib, BT_READ); |
1246 | lpage = BufferGetPage(lbuf); |
1247 | lopaque = (BTPageOpaque) PageGetSpecialPointer(lpage); |
1248 | |
1249 | /* |
1250 | * If the left sibling was concurrently split, so that its |
1251 | * next-pointer doesn't point to the current page anymore, the |
1252 | * split that created the current page must be completed. (We |
1253 | * don't allow splitting an incompletely split page again |
1254 | * until the previous split has been completed) |
1255 | */ |
1256 | if (lopaque->btpo_next == parent && |
1257 | P_INCOMPLETE_SPLIT(lopaque)) |
1258 | { |
1259 | _bt_relbuf(rel, lbuf); |
1260 | return false; |
1261 | } |
1262 | _bt_relbuf(rel, lbuf); |
1263 | } |
1264 | |
1265 | return _bt_lock_branch_parent(rel, parent, stack->bts_parent, |
1266 | topparent, topoff, target, rightsib); |
1267 | } |
1268 | else |
1269 | { |
1270 | /* Unsafe to delete */ |
1271 | _bt_relbuf(rel, pbuf); |
1272 | return false; |
1273 | } |
1274 | } |
1275 | else |
1276 | { |
1277 | /* Not rightmost child, so safe to delete */ |
1278 | *topparent = pbuf; |
1279 | *topoff = poffset; |
1280 | return true; |
1281 | } |
1282 | } |
1283 | |
1284 | /* |
1285 | * _bt_pagedel() -- Delete a page from the b-tree, if legal to do so. |
1286 | * |
1287 | * This action unlinks the page from the b-tree structure, removing all |
1288 | * pointers leading to it --- but not touching its own left and right links. |
1289 | * The page cannot be physically reclaimed right away, since other processes |
1290 | * may currently be trying to follow links leading to the page; they have to |
1291 | * be allowed to use its right-link to recover. See nbtree/README. |
1292 | * |
1293 | * On entry, the target buffer must be pinned and locked (either read or write |
1294 | * lock is OK). This lock and pin will be dropped before exiting. |
1295 | * |
1296 | * Returns the number of pages successfully deleted (zero if page cannot |
1297 | * be deleted now; could be more than one if parent or sibling pages were |
1298 | * deleted too). |
1299 | * |
1300 | * NOTE: this leaks memory. Rather than trying to clean up everything |
1301 | * carefully, it's better to run it in a temp context that can be reset |
1302 | * frequently. |
1303 | */ |
1304 | int |
1305 | _bt_pagedel(Relation rel, Buffer buf) |
1306 | { |
1307 | int ndeleted = 0; |
1308 | BlockNumber rightsib; |
1309 | bool rightsib_empty; |
1310 | Page page; |
1311 | BTPageOpaque opaque; |
1312 | |
1313 | /* |
1314 | * "stack" is a search stack leading (approximately) to the target page. |
1315 | * It is initially NULL, but when iterating, we keep it to avoid |
1316 | * duplicated search effort. |
1317 | * |
1318 | * Also, when "stack" is not NULL, we have already checked that the |
1319 | * current page is not the right half of an incomplete split, i.e. the |
1320 | * left sibling does not have its INCOMPLETE_SPLIT flag set. |
1321 | */ |
1322 | BTStack stack = NULL; |
1323 | |
1324 | for (;;) |
1325 | { |
1326 | page = BufferGetPage(buf); |
1327 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1328 | |
1329 | /* |
1330 | * Internal pages are never deleted directly, only as part of deleting |
1331 | * the whole branch all the way down to leaf level. |
1332 | */ |
1333 | if (!P_ISLEAF(opaque)) |
1334 | { |
1335 | /* |
1336 | * Pre-9.4 page deletion only marked internal pages as half-dead, |
1337 | * but now we only use that flag on leaf pages. The old algorithm |
1338 | * was never supposed to leave half-dead pages in the tree, it was |
1339 | * just a transient state, but it was nevertheless possible in |
1340 | * error scenarios. We don't know how to deal with them here. They |
1341 | * are harmless as far as searches are considered, but inserts |
1342 | * into the deleted keyspace could add out-of-order downlinks in |
1343 | * the upper levels. Log a notice, hopefully the admin will notice |
1344 | * and reindex. |
1345 | */ |
1346 | if (P_ISHALFDEAD(opaque)) |
1347 | ereport(LOG, |
1348 | (errcode(ERRCODE_INDEX_CORRUPTED), |
1349 | errmsg("index \"%s\" contains a half-dead internal page" , |
1350 | RelationGetRelationName(rel)), |
1351 | errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it." ))); |
1352 | _bt_relbuf(rel, buf); |
1353 | return ndeleted; |
1354 | } |
1355 | |
1356 | /* |
1357 | * We can never delete rightmost pages nor root pages. While at it, |
1358 | * check that page is not already deleted and is empty. |
1359 | * |
1360 | * To keep the algorithm simple, we also never delete an incompletely |
1361 | * split page (they should be rare enough that this doesn't make any |
1362 | * meaningful difference to disk usage): |
1363 | * |
1364 | * The INCOMPLETE_SPLIT flag on the page tells us if the page is the |
1365 | * left half of an incomplete split, but ensuring that it's not the |
1366 | * right half is more complicated. For that, we have to check that |
1367 | * the left sibling doesn't have its INCOMPLETE_SPLIT flag set. On |
1368 | * the first iteration, we temporarily release the lock on the current |
1369 | * page, and check the left sibling and also construct a search stack |
1370 | * to. On subsequent iterations, we know we stepped right from a page |
1371 | * that passed these tests, so it's OK. |
1372 | */ |
1373 | if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) || |
1374 | P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page) || |
1375 | P_INCOMPLETE_SPLIT(opaque)) |
1376 | { |
1377 | /* Should never fail to delete a half-dead page */ |
1378 | Assert(!P_ISHALFDEAD(opaque)); |
1379 | |
1380 | _bt_relbuf(rel, buf); |
1381 | return ndeleted; |
1382 | } |
1383 | |
1384 | /* |
1385 | * First, remove downlink pointing to the page (or a parent of the |
1386 | * page, if we are going to delete a taller branch), and mark the page |
1387 | * as half-dead. |
1388 | */ |
1389 | if (!P_ISHALFDEAD(opaque)) |
1390 | { |
1391 | /* |
1392 | * We need an approximate pointer to the page's parent page. We |
1393 | * use a variant of the standard search mechanism to search for |
1394 | * the page's high key; this will give us a link to either the |
1395 | * current parent or someplace to its left (if there are multiple |
1396 | * equal high keys, which is possible with !heapkeyspace indexes). |
1397 | * |
1398 | * Also check if this is the right-half of an incomplete split |
1399 | * (see comment above). |
1400 | */ |
1401 | if (!stack) |
1402 | { |
1403 | BTScanInsert itup_key; |
1404 | ItemId itemid; |
1405 | IndexTuple targetkey; |
1406 | Buffer lbuf; |
1407 | BlockNumber leftsib; |
1408 | |
1409 | itemid = PageGetItemId(page, P_HIKEY); |
1410 | targetkey = CopyIndexTuple((IndexTuple) PageGetItem(page, itemid)); |
1411 | |
1412 | leftsib = opaque->btpo_prev; |
1413 | |
1414 | /* |
1415 | * To avoid deadlocks, we'd better drop the leaf page lock |
1416 | * before going further. |
1417 | */ |
1418 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
1419 | |
1420 | /* |
1421 | * Fetch the left sibling, to check that it's not marked with |
1422 | * INCOMPLETE_SPLIT flag. That would mean that the page |
1423 | * to-be-deleted doesn't have a downlink, and the page |
1424 | * deletion algorithm isn't prepared to handle that. |
1425 | */ |
1426 | if (!P_LEFTMOST(opaque)) |
1427 | { |
1428 | BTPageOpaque lopaque; |
1429 | Page lpage; |
1430 | |
1431 | lbuf = _bt_getbuf(rel, leftsib, BT_READ); |
1432 | lpage = BufferGetPage(lbuf); |
1433 | lopaque = (BTPageOpaque) PageGetSpecialPointer(lpage); |
1434 | |
1435 | /* |
1436 | * If the left sibling is split again by another backend, |
1437 | * after we released the lock, we know that the first |
1438 | * split must have finished, because we don't allow an |
1439 | * incompletely-split page to be split again. So we don't |
1440 | * need to walk right here. |
1441 | */ |
1442 | if (lopaque->btpo_next == BufferGetBlockNumber(buf) && |
1443 | P_INCOMPLETE_SPLIT(lopaque)) |
1444 | { |
1445 | ReleaseBuffer(buf); |
1446 | _bt_relbuf(rel, lbuf); |
1447 | return ndeleted; |
1448 | } |
1449 | _bt_relbuf(rel, lbuf); |
1450 | } |
1451 | |
1452 | /* we need an insertion scan key for the search, so build one */ |
1453 | itup_key = _bt_mkscankey(rel, targetkey); |
1454 | /* find the leftmost leaf page with matching pivot/high key */ |
1455 | itup_key->pivotsearch = true; |
1456 | stack = _bt_search(rel, itup_key, &lbuf, BT_READ, NULL); |
1457 | /* don't need a lock or second pin on the page */ |
1458 | _bt_relbuf(rel, lbuf); |
1459 | |
1460 | /* |
1461 | * Re-lock the leaf page, and start over, to re-check that the |
1462 | * page can still be deleted. |
1463 | */ |
1464 | LockBuffer(buf, BT_WRITE); |
1465 | continue; |
1466 | } |
1467 | |
1468 | if (!_bt_mark_page_halfdead(rel, buf, stack)) |
1469 | { |
1470 | _bt_relbuf(rel, buf); |
1471 | return ndeleted; |
1472 | } |
1473 | } |
1474 | |
1475 | /* |
1476 | * Then unlink it from its siblings. Each call to |
1477 | * _bt_unlink_halfdead_page unlinks the topmost page from the branch, |
1478 | * making it shallower. Iterate until the leaf page is gone. |
1479 | */ |
1480 | rightsib_empty = false; |
1481 | while (P_ISHALFDEAD(opaque)) |
1482 | { |
1483 | /* will check for interrupts, once lock is released */ |
1484 | if (!_bt_unlink_halfdead_page(rel, buf, &rightsib_empty)) |
1485 | { |
1486 | /* _bt_unlink_halfdead_page already released buffer */ |
1487 | return ndeleted; |
1488 | } |
1489 | ndeleted++; |
1490 | } |
1491 | |
1492 | rightsib = opaque->btpo_next; |
1493 | |
1494 | _bt_relbuf(rel, buf); |
1495 | |
1496 | /* |
1497 | * Check here, as calling loops will have locks held, preventing |
1498 | * interrupts from being processed. |
1499 | */ |
1500 | CHECK_FOR_INTERRUPTS(); |
1501 | |
1502 | /* |
1503 | * The page has now been deleted. If its right sibling is completely |
1504 | * empty, it's possible that the reason we haven't deleted it earlier |
1505 | * is that it was the rightmost child of the parent. Now that we |
1506 | * removed the downlink for this page, the right sibling might now be |
1507 | * the only child of the parent, and could be removed. It would be |
1508 | * picked up by the next vacuum anyway, but might as well try to |
1509 | * remove it now, so loop back to process the right sibling. |
1510 | */ |
1511 | if (!rightsib_empty) |
1512 | break; |
1513 | |
1514 | buf = _bt_getbuf(rel, rightsib, BT_WRITE); |
1515 | } |
1516 | |
1517 | return ndeleted; |
1518 | } |
1519 | |
1520 | /* |
1521 | * First stage of page deletion. Remove the downlink to the top of the |
1522 | * branch being deleted, and mark the leaf page as half-dead. |
1523 | */ |
1524 | static bool |
1525 | _bt_mark_page_halfdead(Relation rel, Buffer leafbuf, BTStack stack) |
1526 | { |
1527 | BlockNumber leafblkno; |
1528 | BlockNumber leafrightsib; |
1529 | BlockNumber target; |
1530 | BlockNumber rightsib; |
1531 | ItemId itemid; |
1532 | Page page; |
1533 | BTPageOpaque opaque; |
1534 | Buffer topparent; |
1535 | OffsetNumber topoff; |
1536 | OffsetNumber nextoffset; |
1537 | IndexTuple itup; |
1538 | IndexTupleData trunctuple; |
1539 | |
1540 | page = BufferGetPage(leafbuf); |
1541 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1542 | |
1543 | Assert(!P_RIGHTMOST(opaque) && !P_ISROOT(opaque) && !P_ISDELETED(opaque) && |
1544 | !P_ISHALFDEAD(opaque) && P_ISLEAF(opaque) && |
1545 | P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page)); |
1546 | |
1547 | /* |
1548 | * Save info about the leaf page. |
1549 | */ |
1550 | leafblkno = BufferGetBlockNumber(leafbuf); |
1551 | leafrightsib = opaque->btpo_next; |
1552 | |
1553 | /* |
1554 | * Before attempting to lock the parent page, check that the right sibling |
1555 | * is not in half-dead state. A half-dead right sibling would have no |
1556 | * downlink in the parent, which would be highly confusing later when we |
1557 | * delete the downlink that follows the current page's downlink. (I |
1558 | * believe the deletion would work correctly, but it would fail the |
1559 | * cross-check we make that the following downlink points to the right |
1560 | * sibling of the delete page.) |
1561 | */ |
1562 | if (_bt_is_page_halfdead(rel, leafrightsib)) |
1563 | { |
1564 | elog(DEBUG1, "could not delete page %u because its right sibling %u is half-dead" , |
1565 | leafblkno, leafrightsib); |
1566 | return false; |
1567 | } |
1568 | |
1569 | /* |
1570 | * We cannot delete a page that is the rightmost child of its immediate |
1571 | * parent, unless it is the only child --- in which case the parent has to |
1572 | * be deleted too, and the same condition applies recursively to it. We |
1573 | * have to check this condition all the way up before trying to delete, |
1574 | * and lock the final parent of the to-be-deleted subtree. |
1575 | * |
1576 | * However, we won't need to repeat the above _bt_is_page_halfdead() check |
1577 | * for parent/ancestor pages because of the rightmost restriction. The |
1578 | * leaf check will apply to a right "cousin" leaf page rather than a |
1579 | * simple right sibling leaf page in cases where we actually go on to |
1580 | * perform internal page deletion. The right cousin leaf page is |
1581 | * representative of the left edge of the subtree to the right of the |
1582 | * to-be-deleted subtree as a whole. (Besides, internal pages are never |
1583 | * marked half-dead, so it isn't even possible to directly assess if an |
1584 | * internal page is part of some other to-be-deleted subtree.) |
1585 | */ |
1586 | rightsib = leafrightsib; |
1587 | target = leafblkno; |
1588 | if (!_bt_lock_branch_parent(rel, leafblkno, stack, |
1589 | &topparent, &topoff, &target, &rightsib)) |
1590 | return false; |
1591 | |
1592 | /* |
1593 | * Check that the parent-page index items we're about to delete/overwrite |
1594 | * contain what we expect. This can fail if the index has become corrupt |
1595 | * for some reason. We want to throw any error before entering the |
1596 | * critical section --- otherwise it'd be a PANIC. |
1597 | * |
1598 | * The test on the target item is just an Assert because |
1599 | * _bt_lock_branch_parent should have guaranteed it has the expected |
1600 | * contents. The test on the next-child downlink is known to sometimes |
1601 | * fail in the field, though. |
1602 | */ |
1603 | page = BufferGetPage(topparent); |
1604 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1605 | |
1606 | #ifdef USE_ASSERT_CHECKING |
1607 | itemid = PageGetItemId(page, topoff); |
1608 | itup = (IndexTuple) PageGetItem(page, itemid); |
1609 | Assert(BTreeInnerTupleGetDownLink(itup) == target); |
1610 | #endif |
1611 | |
1612 | nextoffset = OffsetNumberNext(topoff); |
1613 | itemid = PageGetItemId(page, nextoffset); |
1614 | itup = (IndexTuple) PageGetItem(page, itemid); |
1615 | if (BTreeInnerTupleGetDownLink(itup) != rightsib) |
1616 | elog(ERROR, "right sibling %u of block %u is not next child %u of block %u in index \"%s\"" , |
1617 | rightsib, target, BTreeInnerTupleGetDownLink(itup), |
1618 | BufferGetBlockNumber(topparent), RelationGetRelationName(rel)); |
1619 | |
1620 | /* |
1621 | * Any insert which would have gone on the leaf block will now go to its |
1622 | * right sibling. |
1623 | */ |
1624 | PredicateLockPageCombine(rel, leafblkno, leafrightsib); |
1625 | |
1626 | /* No ereport(ERROR) until changes are logged */ |
1627 | START_CRIT_SECTION(); |
1628 | |
1629 | /* |
1630 | * Update parent. The normal case is a tad tricky because we want to |
1631 | * delete the target's downlink and the *following* key. Easiest way is |
1632 | * to copy the right sibling's downlink over the target downlink, and then |
1633 | * delete the following item. |
1634 | */ |
1635 | page = BufferGetPage(topparent); |
1636 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1637 | |
1638 | itemid = PageGetItemId(page, topoff); |
1639 | itup = (IndexTuple) PageGetItem(page, itemid); |
1640 | BTreeInnerTupleSetDownLink(itup, rightsib); |
1641 | |
1642 | nextoffset = OffsetNumberNext(topoff); |
1643 | PageIndexTupleDelete(page, nextoffset); |
1644 | |
1645 | /* |
1646 | * Mark the leaf page as half-dead, and stamp it with a pointer to the |
1647 | * highest internal page in the branch we're deleting. We use the tid of |
1648 | * the high key to store it. |
1649 | */ |
1650 | page = BufferGetPage(leafbuf); |
1651 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1652 | opaque->btpo_flags |= BTP_HALF_DEAD; |
1653 | |
1654 | PageIndexTupleDelete(page, P_HIKEY); |
1655 | Assert(PageGetMaxOffsetNumber(page) == 0); |
1656 | MemSet(&trunctuple, 0, sizeof(IndexTupleData)); |
1657 | trunctuple.t_info = sizeof(IndexTupleData); |
1658 | if (target != leafblkno) |
1659 | BTreeTupleSetTopParent(&trunctuple, target); |
1660 | else |
1661 | BTreeTupleSetTopParent(&trunctuple, InvalidBlockNumber); |
1662 | |
1663 | if (PageAddItem(page, (Item) &trunctuple, sizeof(IndexTupleData), P_HIKEY, |
1664 | false, false) == InvalidOffsetNumber) |
1665 | elog(ERROR, "could not add dummy high key to half-dead page" ); |
1666 | |
1667 | /* Must mark buffers dirty before XLogInsert */ |
1668 | MarkBufferDirty(topparent); |
1669 | MarkBufferDirty(leafbuf); |
1670 | |
1671 | /* XLOG stuff */ |
1672 | if (RelationNeedsWAL(rel)) |
1673 | { |
1674 | xl_btree_mark_page_halfdead xlrec; |
1675 | XLogRecPtr recptr; |
1676 | |
1677 | xlrec.poffset = topoff; |
1678 | xlrec.leafblk = leafblkno; |
1679 | if (target != leafblkno) |
1680 | xlrec.topparent = target; |
1681 | else |
1682 | xlrec.topparent = InvalidBlockNumber; |
1683 | |
1684 | XLogBeginInsert(); |
1685 | XLogRegisterBuffer(0, leafbuf, REGBUF_WILL_INIT); |
1686 | XLogRegisterBuffer(1, topparent, REGBUF_STANDARD); |
1687 | |
1688 | page = BufferGetPage(leafbuf); |
1689 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1690 | xlrec.leftblk = opaque->btpo_prev; |
1691 | xlrec.rightblk = opaque->btpo_next; |
1692 | |
1693 | XLogRegisterData((char *) &xlrec, SizeOfBtreeMarkPageHalfDead); |
1694 | |
1695 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_MARK_PAGE_HALFDEAD); |
1696 | |
1697 | page = BufferGetPage(topparent); |
1698 | PageSetLSN(page, recptr); |
1699 | page = BufferGetPage(leafbuf); |
1700 | PageSetLSN(page, recptr); |
1701 | } |
1702 | |
1703 | END_CRIT_SECTION(); |
1704 | |
1705 | _bt_relbuf(rel, topparent); |
1706 | return true; |
1707 | } |
1708 | |
1709 | /* |
1710 | * Unlink a page in a branch of half-dead pages from its siblings. |
1711 | * |
1712 | * If the leaf page still has a downlink pointing to it, unlinks the highest |
1713 | * parent in the to-be-deleted branch instead of the leaf page. To get rid |
1714 | * of the whole branch, including the leaf page itself, iterate until the |
1715 | * leaf page is deleted. |
1716 | * |
1717 | * Returns 'false' if the page could not be unlinked (shouldn't happen). |
1718 | * If the (new) right sibling of the page is empty, *rightsib_empty is set |
1719 | * to true. |
1720 | * |
1721 | * Must hold pin and lock on leafbuf at entry (read or write doesn't matter). |
1722 | * On success exit, we'll be holding pin and write lock. On failure exit, |
1723 | * we'll release both pin and lock before returning (we define it that way |
1724 | * to avoid having to reacquire a lock we already released). |
1725 | */ |
1726 | static bool |
1727 | _bt_unlink_halfdead_page(Relation rel, Buffer leafbuf, bool *rightsib_empty) |
1728 | { |
1729 | BlockNumber leafblkno = BufferGetBlockNumber(leafbuf); |
1730 | BlockNumber leafleftsib; |
1731 | BlockNumber leafrightsib; |
1732 | BlockNumber target; |
1733 | BlockNumber leftsib; |
1734 | BlockNumber rightsib; |
1735 | Buffer lbuf = InvalidBuffer; |
1736 | Buffer buf; |
1737 | Buffer rbuf; |
1738 | Buffer metabuf = InvalidBuffer; |
1739 | Page metapg = NULL; |
1740 | BTMetaPageData *metad = NULL; |
1741 | ItemId itemid; |
1742 | Page page; |
1743 | BTPageOpaque opaque; |
1744 | bool rightsib_is_rightmost; |
1745 | int targetlevel; |
1746 | IndexTuple leafhikey; |
1747 | BlockNumber nextchild; |
1748 | |
1749 | page = BufferGetPage(leafbuf); |
1750 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1751 | |
1752 | Assert(P_ISLEAF(opaque) && P_ISHALFDEAD(opaque)); |
1753 | |
1754 | /* |
1755 | * Remember some information about the leaf page. |
1756 | */ |
1757 | itemid = PageGetItemId(page, P_HIKEY); |
1758 | leafhikey = (IndexTuple) PageGetItem(page, itemid); |
1759 | leafleftsib = opaque->btpo_prev; |
1760 | leafrightsib = opaque->btpo_next; |
1761 | |
1762 | LockBuffer(leafbuf, BUFFER_LOCK_UNLOCK); |
1763 | |
1764 | /* |
1765 | * Check here, as calling loops will have locks held, preventing |
1766 | * interrupts from being processed. |
1767 | */ |
1768 | CHECK_FOR_INTERRUPTS(); |
1769 | |
1770 | /* |
1771 | * If the leaf page still has a parent pointing to it (or a chain of |
1772 | * parents), we don't unlink the leaf page yet, but the topmost remaining |
1773 | * parent in the branch. Set 'target' and 'buf' to reference the page |
1774 | * actually being unlinked. |
1775 | */ |
1776 | target = BTreeTupleGetTopParent(leafhikey); |
1777 | |
1778 | if (target != InvalidBlockNumber) |
1779 | { |
1780 | Assert(target != leafblkno); |
1781 | |
1782 | /* fetch the block number of the topmost parent's left sibling */ |
1783 | buf = _bt_getbuf(rel, target, BT_READ); |
1784 | page = BufferGetPage(buf); |
1785 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1786 | leftsib = opaque->btpo_prev; |
1787 | targetlevel = opaque->btpo.level; |
1788 | |
1789 | /* |
1790 | * To avoid deadlocks, we'd better drop the target page lock before |
1791 | * going further. |
1792 | */ |
1793 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
1794 | } |
1795 | else |
1796 | { |
1797 | target = leafblkno; |
1798 | |
1799 | buf = leafbuf; |
1800 | leftsib = leafleftsib; |
1801 | targetlevel = 0; |
1802 | } |
1803 | |
1804 | /* |
1805 | * We have to lock the pages we need to modify in the standard order: |
1806 | * moving right, then up. Else we will deadlock against other writers. |
1807 | * |
1808 | * So, first lock the leaf page, if it's not the target. Then find and |
1809 | * write-lock the current left sibling of the target page. The sibling |
1810 | * that was current a moment ago could have split, so we may have to move |
1811 | * right. This search could fail if either the sibling or the target page |
1812 | * was deleted by someone else meanwhile; if so, give up. (Right now, |
1813 | * that should never happen, since page deletion is only done in VACUUM |
1814 | * and there shouldn't be multiple VACUUMs concurrently on the same |
1815 | * table.) |
1816 | */ |
1817 | if (target != leafblkno) |
1818 | LockBuffer(leafbuf, BT_WRITE); |
1819 | if (leftsib != P_NONE) |
1820 | { |
1821 | lbuf = _bt_getbuf(rel, leftsib, BT_WRITE); |
1822 | page = BufferGetPage(lbuf); |
1823 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1824 | while (P_ISDELETED(opaque) || opaque->btpo_next != target) |
1825 | { |
1826 | /* step right one page */ |
1827 | leftsib = opaque->btpo_next; |
1828 | _bt_relbuf(rel, lbuf); |
1829 | |
1830 | /* |
1831 | * It'd be good to check for interrupts here, but it's not easy to |
1832 | * do so because a lock is always held. This block isn't |
1833 | * frequently reached, so hopefully the consequences of not |
1834 | * checking interrupts aren't too bad. |
1835 | */ |
1836 | |
1837 | if (leftsib == P_NONE) |
1838 | { |
1839 | elog(LOG, "no left sibling (concurrent deletion?) of block %u in \"%s\"" , |
1840 | target, |
1841 | RelationGetRelationName(rel)); |
1842 | if (target != leafblkno) |
1843 | { |
1844 | /* we have only a pin on target, but pin+lock on leafbuf */ |
1845 | ReleaseBuffer(buf); |
1846 | _bt_relbuf(rel, leafbuf); |
1847 | } |
1848 | else |
1849 | { |
1850 | /* we have only a pin on leafbuf */ |
1851 | ReleaseBuffer(leafbuf); |
1852 | } |
1853 | return false; |
1854 | } |
1855 | lbuf = _bt_getbuf(rel, leftsib, BT_WRITE); |
1856 | page = BufferGetPage(lbuf); |
1857 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1858 | } |
1859 | } |
1860 | else |
1861 | lbuf = InvalidBuffer; |
1862 | |
1863 | /* |
1864 | * Next write-lock the target page itself. It should be okay to take just |
1865 | * a write lock not a superexclusive lock, since no scans would stop on an |
1866 | * empty page. |
1867 | */ |
1868 | LockBuffer(buf, BT_WRITE); |
1869 | page = BufferGetPage(buf); |
1870 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1871 | |
1872 | /* |
1873 | * Check page is still empty etc, else abandon deletion. This is just for |
1874 | * paranoia's sake; a half-dead page cannot resurrect because there can be |
1875 | * only one vacuum process running at a time. |
1876 | */ |
1877 | if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque)) |
1878 | { |
1879 | elog(ERROR, "half-dead page changed status unexpectedly in block %u of index \"%s\"" , |
1880 | target, RelationGetRelationName(rel)); |
1881 | } |
1882 | if (opaque->btpo_prev != leftsib) |
1883 | elog(ERROR, "left link changed unexpectedly in block %u of index \"%s\"" , |
1884 | target, RelationGetRelationName(rel)); |
1885 | |
1886 | if (target == leafblkno) |
1887 | { |
1888 | if (P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page) || |
1889 | !P_ISLEAF(opaque) || !P_ISHALFDEAD(opaque)) |
1890 | elog(ERROR, "half-dead page changed status unexpectedly in block %u of index \"%s\"" , |
1891 | target, RelationGetRelationName(rel)); |
1892 | nextchild = InvalidBlockNumber; |
1893 | } |
1894 | else |
1895 | { |
1896 | if (P_FIRSTDATAKEY(opaque) != PageGetMaxOffsetNumber(page) || |
1897 | P_ISLEAF(opaque)) |
1898 | elog(ERROR, "half-dead page changed status unexpectedly in block %u of index \"%s\"" , |
1899 | target, RelationGetRelationName(rel)); |
1900 | |
1901 | /* remember the next non-leaf child down in the branch. */ |
1902 | itemid = PageGetItemId(page, P_FIRSTDATAKEY(opaque)); |
1903 | nextchild = BTreeInnerTupleGetDownLink((IndexTuple) PageGetItem(page, itemid)); |
1904 | if (nextchild == leafblkno) |
1905 | nextchild = InvalidBlockNumber; |
1906 | } |
1907 | |
1908 | /* |
1909 | * And next write-lock the (current) right sibling. |
1910 | */ |
1911 | rightsib = opaque->btpo_next; |
1912 | rbuf = _bt_getbuf(rel, rightsib, BT_WRITE); |
1913 | page = BufferGetPage(rbuf); |
1914 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1915 | if (opaque->btpo_prev != target) |
1916 | elog(ERROR, "right sibling's left-link doesn't match: " |
1917 | "block %u links to %u instead of expected %u in index \"%s\"" , |
1918 | rightsib, opaque->btpo_prev, target, |
1919 | RelationGetRelationName(rel)); |
1920 | rightsib_is_rightmost = P_RIGHTMOST(opaque); |
1921 | *rightsib_empty = (P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page)); |
1922 | |
1923 | /* |
1924 | * If we are deleting the next-to-last page on the target's level, then |
1925 | * the rightsib is a candidate to become the new fast root. (In theory, it |
1926 | * might be possible to push the fast root even further down, but the odds |
1927 | * of doing so are slim, and the locking considerations daunting.) |
1928 | * |
1929 | * We don't support handling this in the case where the parent is becoming |
1930 | * half-dead, even though it theoretically could occur. |
1931 | * |
1932 | * We can safely acquire a lock on the metapage here --- see comments for |
1933 | * _bt_newroot(). |
1934 | */ |
1935 | if (leftsib == P_NONE && rightsib_is_rightmost) |
1936 | { |
1937 | page = BufferGetPage(rbuf); |
1938 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1939 | if (P_RIGHTMOST(opaque)) |
1940 | { |
1941 | /* rightsib will be the only one left on the level */ |
1942 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE); |
1943 | metapg = BufferGetPage(metabuf); |
1944 | metad = BTPageGetMeta(metapg); |
1945 | |
1946 | /* |
1947 | * The expected case here is btm_fastlevel == targetlevel+1; if |
1948 | * the fastlevel is <= targetlevel, something is wrong, and we |
1949 | * choose to overwrite it to fix it. |
1950 | */ |
1951 | if (metad->btm_fastlevel > targetlevel + 1) |
1952 | { |
1953 | /* no update wanted */ |
1954 | _bt_relbuf(rel, metabuf); |
1955 | metabuf = InvalidBuffer; |
1956 | } |
1957 | } |
1958 | } |
1959 | |
1960 | /* |
1961 | * Here we begin doing the deletion. |
1962 | */ |
1963 | |
1964 | /* No ereport(ERROR) until changes are logged */ |
1965 | START_CRIT_SECTION(); |
1966 | |
1967 | /* |
1968 | * Update siblings' side-links. Note the target page's side-links will |
1969 | * continue to point to the siblings. Asserts here are just rechecking |
1970 | * things we already verified above. |
1971 | */ |
1972 | if (BufferIsValid(lbuf)) |
1973 | { |
1974 | page = BufferGetPage(lbuf); |
1975 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1976 | Assert(opaque->btpo_next == target); |
1977 | opaque->btpo_next = rightsib; |
1978 | } |
1979 | page = BufferGetPage(rbuf); |
1980 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1981 | Assert(opaque->btpo_prev == target); |
1982 | opaque->btpo_prev = leftsib; |
1983 | |
1984 | /* |
1985 | * If we deleted a parent of the targeted leaf page, instead of the leaf |
1986 | * itself, update the leaf to point to the next remaining child in the |
1987 | * branch. |
1988 | */ |
1989 | if (target != leafblkno) |
1990 | BTreeTupleSetTopParent(leafhikey, nextchild); |
1991 | |
1992 | /* |
1993 | * Mark the page itself deleted. It can be recycled when all current |
1994 | * transactions are gone. Storing GetTopTransactionId() would work, but |
1995 | * we're in VACUUM and would not otherwise have an XID. Having already |
1996 | * updated links to the target, ReadNewTransactionId() suffices as an |
1997 | * upper bound. Any scan having retained a now-stale link is advertising |
1998 | * in its PGXACT an xmin less than or equal to the value we read here. It |
1999 | * will continue to do so, holding back RecentGlobalXmin, for the duration |
2000 | * of that scan. |
2001 | */ |
2002 | page = BufferGetPage(buf); |
2003 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
2004 | opaque->btpo_flags &= ~BTP_HALF_DEAD; |
2005 | opaque->btpo_flags |= BTP_DELETED; |
2006 | opaque->btpo.xact = ReadNewTransactionId(); |
2007 | |
2008 | /* And update the metapage, if needed */ |
2009 | if (BufferIsValid(metabuf)) |
2010 | { |
2011 | /* upgrade metapage if needed */ |
2012 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
2013 | _bt_upgrademetapage(metapg); |
2014 | metad->btm_fastroot = rightsib; |
2015 | metad->btm_fastlevel = targetlevel; |
2016 | MarkBufferDirty(metabuf); |
2017 | } |
2018 | |
2019 | /* Must mark buffers dirty before XLogInsert */ |
2020 | MarkBufferDirty(rbuf); |
2021 | MarkBufferDirty(buf); |
2022 | if (BufferIsValid(lbuf)) |
2023 | MarkBufferDirty(lbuf); |
2024 | if (target != leafblkno) |
2025 | MarkBufferDirty(leafbuf); |
2026 | |
2027 | /* XLOG stuff */ |
2028 | if (RelationNeedsWAL(rel)) |
2029 | { |
2030 | xl_btree_unlink_page xlrec; |
2031 | xl_btree_metadata xlmeta; |
2032 | uint8 xlinfo; |
2033 | XLogRecPtr recptr; |
2034 | |
2035 | XLogBeginInsert(); |
2036 | |
2037 | XLogRegisterBuffer(0, buf, REGBUF_WILL_INIT); |
2038 | if (BufferIsValid(lbuf)) |
2039 | XLogRegisterBuffer(1, lbuf, REGBUF_STANDARD); |
2040 | XLogRegisterBuffer(2, rbuf, REGBUF_STANDARD); |
2041 | if (target != leafblkno) |
2042 | XLogRegisterBuffer(3, leafbuf, REGBUF_WILL_INIT); |
2043 | |
2044 | /* information on the unlinked block */ |
2045 | xlrec.leftsib = leftsib; |
2046 | xlrec.rightsib = rightsib; |
2047 | xlrec.btpo_xact = opaque->btpo.xact; |
2048 | |
2049 | /* information needed to recreate the leaf block (if not the target) */ |
2050 | xlrec.leafleftsib = leafleftsib; |
2051 | xlrec.leafrightsib = leafrightsib; |
2052 | xlrec.topparent = nextchild; |
2053 | |
2054 | XLogRegisterData((char *) &xlrec, SizeOfBtreeUnlinkPage); |
2055 | |
2056 | if (BufferIsValid(metabuf)) |
2057 | { |
2058 | XLogRegisterBuffer(4, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
2059 | |
2060 | Assert(metad->btm_version >= BTREE_NOVAC_VERSION); |
2061 | xlmeta.version = metad->btm_version; |
2062 | xlmeta.root = metad->btm_root; |
2063 | xlmeta.level = metad->btm_level; |
2064 | xlmeta.fastroot = metad->btm_fastroot; |
2065 | xlmeta.fastlevel = metad->btm_fastlevel; |
2066 | xlmeta.oldest_btpo_xact = metad->btm_oldest_btpo_xact; |
2067 | xlmeta.last_cleanup_num_heap_tuples = metad->btm_last_cleanup_num_heap_tuples; |
2068 | |
2069 | XLogRegisterBufData(4, (char *) &xlmeta, sizeof(xl_btree_metadata)); |
2070 | xlinfo = XLOG_BTREE_UNLINK_PAGE_META; |
2071 | } |
2072 | else |
2073 | xlinfo = XLOG_BTREE_UNLINK_PAGE; |
2074 | |
2075 | recptr = XLogInsert(RM_BTREE_ID, xlinfo); |
2076 | |
2077 | if (BufferIsValid(metabuf)) |
2078 | { |
2079 | PageSetLSN(metapg, recptr); |
2080 | } |
2081 | page = BufferGetPage(rbuf); |
2082 | PageSetLSN(page, recptr); |
2083 | page = BufferGetPage(buf); |
2084 | PageSetLSN(page, recptr); |
2085 | if (BufferIsValid(lbuf)) |
2086 | { |
2087 | page = BufferGetPage(lbuf); |
2088 | PageSetLSN(page, recptr); |
2089 | } |
2090 | if (target != leafblkno) |
2091 | { |
2092 | page = BufferGetPage(leafbuf); |
2093 | PageSetLSN(page, recptr); |
2094 | } |
2095 | } |
2096 | |
2097 | END_CRIT_SECTION(); |
2098 | |
2099 | /* release metapage */ |
2100 | if (BufferIsValid(metabuf)) |
2101 | _bt_relbuf(rel, metabuf); |
2102 | |
2103 | /* release siblings */ |
2104 | if (BufferIsValid(lbuf)) |
2105 | _bt_relbuf(rel, lbuf); |
2106 | _bt_relbuf(rel, rbuf); |
2107 | |
2108 | /* |
2109 | * Release the target, if it was not the leaf block. The leaf is always |
2110 | * kept locked. |
2111 | */ |
2112 | if (target != leafblkno) |
2113 | _bt_relbuf(rel, buf); |
2114 | |
2115 | return true; |
2116 | } |
2117 | |