| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nbtpage.c |
| 4 | * BTree-specific page management code for the Postgres btree access |
| 5 | * method. |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * |
| 11 | * IDENTIFICATION |
| 12 | * src/backend/access/nbtree/nbtpage.c |
| 13 | * |
| 14 | * NOTES |
| 15 | * Postgres btree pages look like ordinary relation pages. The opaque |
| 16 | * data at high addresses includes pointers to left and right siblings |
| 17 | * and flag data describing page state. The first page in a btree, page |
| 18 | * zero, is special -- it stores meta-information describing the tree. |
| 19 | * Pages one and higher store the actual tree data. |
| 20 | * |
| 21 | *------------------------------------------------------------------------- |
| 22 | */ |
| 23 | #include "postgres.h" |
| 24 | |
| 25 | #include "access/nbtree.h" |
| 26 | #include "access/nbtxlog.h" |
| 27 | #include "access/transam.h" |
| 28 | #include "access/xlog.h" |
| 29 | #include "access/xloginsert.h" |
| 30 | #include "miscadmin.h" |
| 31 | #include "storage/indexfsm.h" |
| 32 | #include "storage/lmgr.h" |
| 33 | #include "storage/predicate.h" |
| 34 | #include "utils/snapmgr.h" |
| 35 | |
| 36 | static BTMetaPageData *_bt_getmeta(Relation rel, Buffer metabuf); |
| 37 | static bool _bt_mark_page_halfdead(Relation rel, Buffer buf, BTStack stack); |
| 38 | static bool _bt_unlink_halfdead_page(Relation rel, Buffer leafbuf, |
| 39 | bool *rightsib_empty); |
| 40 | static bool _bt_lock_branch_parent(Relation rel, BlockNumber child, |
| 41 | BTStack stack, Buffer *topparent, OffsetNumber *topoff, |
| 42 | BlockNumber *target, BlockNumber *rightsib); |
| 43 | static void _bt_log_reuse_page(Relation rel, BlockNumber blkno, |
| 44 | TransactionId latestRemovedXid); |
| 45 | |
| 46 | /* |
| 47 | * _bt_initmetapage() -- Fill a page buffer with a correct metapage image |
| 48 | */ |
| 49 | void |
| 50 | _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level) |
| 51 | { |
| 52 | BTMetaPageData *metad; |
| 53 | BTPageOpaque metaopaque; |
| 54 | |
| 55 | _bt_pageinit(page, BLCKSZ); |
| 56 | |
| 57 | metad = BTPageGetMeta(page); |
| 58 | metad->btm_magic = BTREE_MAGIC; |
| 59 | metad->btm_version = BTREE_VERSION; |
| 60 | metad->btm_root = rootbknum; |
| 61 | metad->btm_level = level; |
| 62 | metad->btm_fastroot = rootbknum; |
| 63 | metad->btm_fastlevel = level; |
| 64 | metad->btm_oldest_btpo_xact = InvalidTransactionId; |
| 65 | metad->btm_last_cleanup_num_heap_tuples = -1.0; |
| 66 | |
| 67 | metaopaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 68 | metaopaque->btpo_flags = BTP_META; |
| 69 | |
| 70 | /* |
| 71 | * Set pd_lower just past the end of the metadata. This is essential, |
| 72 | * because without doing so, metadata will be lost if xlog.c compresses |
| 73 | * the page. |
| 74 | */ |
| 75 | ((PageHeader) page)->pd_lower = |
| 76 | ((char *) metad + sizeof(BTMetaPageData)) - (char *) page; |
| 77 | } |
| 78 | |
| 79 | /* |
| 80 | * _bt_upgrademetapage() -- Upgrade a meta-page from an old format to version |
| 81 | * 3, the last version that can be updated without broadly affecting |
| 82 | * on-disk compatibility. (A REINDEX is required to upgrade to v4.) |
| 83 | * |
| 84 | * This routine does purely in-memory image upgrade. Caller is |
| 85 | * responsible for locking, WAL-logging etc. |
| 86 | */ |
| 87 | void |
| 88 | _bt_upgrademetapage(Page page) |
| 89 | { |
| 90 | BTMetaPageData *metad; |
| 91 | BTPageOpaque metaopaque PG_USED_FOR_ASSERTS_ONLY; |
| 92 | |
| 93 | metad = BTPageGetMeta(page); |
| 94 | metaopaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 95 | |
| 96 | /* It must be really a meta page of upgradable version */ |
| 97 | Assert(metaopaque->btpo_flags & BTP_META); |
| 98 | Assert(metad->btm_version < BTREE_NOVAC_VERSION); |
| 99 | Assert(metad->btm_version >= BTREE_MIN_VERSION); |
| 100 | |
| 101 | /* Set version number and fill extra fields added into version 3 */ |
| 102 | metad->btm_version = BTREE_NOVAC_VERSION; |
| 103 | metad->btm_oldest_btpo_xact = InvalidTransactionId; |
| 104 | metad->btm_last_cleanup_num_heap_tuples = -1.0; |
| 105 | |
| 106 | /* Adjust pd_lower (see _bt_initmetapage() for details) */ |
| 107 | ((PageHeader) page)->pd_lower = |
| 108 | ((char *) metad + sizeof(BTMetaPageData)) - (char *) page; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * Get metadata from share-locked buffer containing metapage, while performing |
| 113 | * standard sanity checks. |
| 114 | * |
| 115 | * Callers that cache data returned here in local cache should note that an |
| 116 | * on-the-fly upgrade using _bt_upgrademetapage() can change the version field |
| 117 | * and BTREE_NOVAC_VERSION specific fields without invalidating local cache. |
| 118 | */ |
| 119 | static BTMetaPageData * |
| 120 | _bt_getmeta(Relation rel, Buffer metabuf) |
| 121 | { |
| 122 | Page metapg; |
| 123 | BTPageOpaque metaopaque; |
| 124 | BTMetaPageData *metad; |
| 125 | |
| 126 | metapg = BufferGetPage(metabuf); |
| 127 | metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg); |
| 128 | metad = BTPageGetMeta(metapg); |
| 129 | |
| 130 | /* sanity-check the metapage */ |
| 131 | if (!P_ISMETA(metaopaque) || |
| 132 | metad->btm_magic != BTREE_MAGIC) |
| 133 | ereport(ERROR, |
| 134 | (errcode(ERRCODE_INDEX_CORRUPTED), |
| 135 | errmsg("index \"%s\" is not a btree" , |
| 136 | RelationGetRelationName(rel)))); |
| 137 | |
| 138 | if (metad->btm_version < BTREE_MIN_VERSION || |
| 139 | metad->btm_version > BTREE_VERSION) |
| 140 | ereport(ERROR, |
| 141 | (errcode(ERRCODE_INDEX_CORRUPTED), |
| 142 | errmsg("version mismatch in index \"%s\": file version %d, " |
| 143 | "current version %d, minimal supported version %d" , |
| 144 | RelationGetRelationName(rel), |
| 145 | metad->btm_version, BTREE_VERSION, BTREE_MIN_VERSION))); |
| 146 | |
| 147 | return metad; |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * _bt_update_meta_cleanup_info() -- Update cleanup-related information in |
| 152 | * the metapage. |
| 153 | * |
| 154 | * This routine checks if provided cleanup-related information is matching |
| 155 | * to those written in the metapage. On mismatch, metapage is overwritten. |
| 156 | */ |
| 157 | void |
| 158 | _bt_update_meta_cleanup_info(Relation rel, TransactionId oldestBtpoXact, |
| 159 | float8 numHeapTuples) |
| 160 | { |
| 161 | Buffer metabuf; |
| 162 | Page metapg; |
| 163 | BTMetaPageData *metad; |
| 164 | bool needsRewrite = false; |
| 165 | XLogRecPtr recptr; |
| 166 | |
| 167 | /* read the metapage and check if it needs rewrite */ |
| 168 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
| 169 | metapg = BufferGetPage(metabuf); |
| 170 | metad = BTPageGetMeta(metapg); |
| 171 | |
| 172 | /* outdated version of metapage always needs rewrite */ |
| 173 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
| 174 | needsRewrite = true; |
| 175 | else if (metad->btm_oldest_btpo_xact != oldestBtpoXact || |
| 176 | metad->btm_last_cleanup_num_heap_tuples != numHeapTuples) |
| 177 | needsRewrite = true; |
| 178 | |
| 179 | if (!needsRewrite) |
| 180 | { |
| 181 | _bt_relbuf(rel, metabuf); |
| 182 | return; |
| 183 | } |
| 184 | |
| 185 | /* trade in our read lock for a write lock */ |
| 186 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 187 | LockBuffer(metabuf, BT_WRITE); |
| 188 | |
| 189 | START_CRIT_SECTION(); |
| 190 | |
| 191 | /* upgrade meta-page if needed */ |
| 192 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
| 193 | _bt_upgrademetapage(metapg); |
| 194 | |
| 195 | /* update cleanup-related information */ |
| 196 | metad->btm_oldest_btpo_xact = oldestBtpoXact; |
| 197 | metad->btm_last_cleanup_num_heap_tuples = numHeapTuples; |
| 198 | MarkBufferDirty(metabuf); |
| 199 | |
| 200 | /* write wal record if needed */ |
| 201 | if (RelationNeedsWAL(rel)) |
| 202 | { |
| 203 | xl_btree_metadata md; |
| 204 | |
| 205 | XLogBeginInsert(); |
| 206 | XLogRegisterBuffer(0, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
| 207 | |
| 208 | Assert(metad->btm_version >= BTREE_NOVAC_VERSION); |
| 209 | md.version = metad->btm_version; |
| 210 | md.root = metad->btm_root; |
| 211 | md.level = metad->btm_level; |
| 212 | md.fastroot = metad->btm_fastroot; |
| 213 | md.fastlevel = metad->btm_fastlevel; |
| 214 | md.oldest_btpo_xact = oldestBtpoXact; |
| 215 | md.last_cleanup_num_heap_tuples = numHeapTuples; |
| 216 | |
| 217 | XLogRegisterBufData(0, (char *) &md, sizeof(xl_btree_metadata)); |
| 218 | |
| 219 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_META_CLEANUP); |
| 220 | |
| 221 | PageSetLSN(metapg, recptr); |
| 222 | } |
| 223 | |
| 224 | END_CRIT_SECTION(); |
| 225 | _bt_relbuf(rel, metabuf); |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * _bt_getroot() -- Get the root page of the btree. |
| 230 | * |
| 231 | * Since the root page can move around the btree file, we have to read |
| 232 | * its location from the metadata page, and then read the root page |
| 233 | * itself. If no root page exists yet, we have to create one. The |
| 234 | * standard class of race conditions exists here; I think I covered |
| 235 | * them all in the intricate dance of lock requests below. |
| 236 | * |
| 237 | * The access type parameter (BT_READ or BT_WRITE) controls whether |
| 238 | * a new root page will be created or not. If access = BT_READ, |
| 239 | * and no root page exists, we just return InvalidBuffer. For |
| 240 | * BT_WRITE, we try to create the root page if it doesn't exist. |
| 241 | * NOTE that the returned root page will have only a read lock set |
| 242 | * on it even if access = BT_WRITE! |
| 243 | * |
| 244 | * The returned page is not necessarily the true root --- it could be |
| 245 | * a "fast root" (a page that is alone in its level due to deletions). |
| 246 | * Also, if the root page is split while we are "in flight" to it, |
| 247 | * what we will return is the old root, which is now just the leftmost |
| 248 | * page on a probably-not-very-wide level. For most purposes this is |
| 249 | * as good as or better than the true root, so we do not bother to |
| 250 | * insist on finding the true root. We do, however, guarantee to |
| 251 | * return a live (not deleted or half-dead) page. |
| 252 | * |
| 253 | * On successful return, the root page is pinned and read-locked. |
| 254 | * The metadata page is not locked or pinned on exit. |
| 255 | */ |
| 256 | Buffer |
| 257 | _bt_getroot(Relation rel, int access) |
| 258 | { |
| 259 | Buffer metabuf; |
| 260 | Buffer rootbuf; |
| 261 | Page rootpage; |
| 262 | BTPageOpaque rootopaque; |
| 263 | BlockNumber rootblkno; |
| 264 | uint32 rootlevel; |
| 265 | BTMetaPageData *metad; |
| 266 | |
| 267 | /* |
| 268 | * Try to use previously-cached metapage data to find the root. This |
| 269 | * normally saves one buffer access per index search, which is a very |
| 270 | * helpful savings in bufmgr traffic and hence contention. |
| 271 | */ |
| 272 | if (rel->rd_amcache != NULL) |
| 273 | { |
| 274 | metad = (BTMetaPageData *) rel->rd_amcache; |
| 275 | /* We shouldn't have cached it if any of these fail */ |
| 276 | Assert(metad->btm_magic == BTREE_MAGIC); |
| 277 | Assert(metad->btm_version >= BTREE_MIN_VERSION); |
| 278 | Assert(metad->btm_version <= BTREE_VERSION); |
| 279 | Assert(metad->btm_root != P_NONE); |
| 280 | |
| 281 | rootblkno = metad->btm_fastroot; |
| 282 | Assert(rootblkno != P_NONE); |
| 283 | rootlevel = metad->btm_fastlevel; |
| 284 | |
| 285 | rootbuf = _bt_getbuf(rel, rootblkno, BT_READ); |
| 286 | rootpage = BufferGetPage(rootbuf); |
| 287 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
| 288 | |
| 289 | /* |
| 290 | * Since the cache might be stale, we check the page more carefully |
| 291 | * here than normal. We *must* check that it's not deleted. If it's |
| 292 | * not alone on its level, then we reject too --- this may be overly |
| 293 | * paranoid but better safe than sorry. Note we don't check P_ISROOT, |
| 294 | * because that's not set in a "fast root". |
| 295 | */ |
| 296 | if (!P_IGNORE(rootopaque) && |
| 297 | rootopaque->btpo.level == rootlevel && |
| 298 | P_LEFTMOST(rootopaque) && |
| 299 | P_RIGHTMOST(rootopaque)) |
| 300 | { |
| 301 | /* OK, accept cached page as the root */ |
| 302 | return rootbuf; |
| 303 | } |
| 304 | _bt_relbuf(rel, rootbuf); |
| 305 | /* Cache is stale, throw it away */ |
| 306 | if (rel->rd_amcache) |
| 307 | pfree(rel->rd_amcache); |
| 308 | rel->rd_amcache = NULL; |
| 309 | } |
| 310 | |
| 311 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
| 312 | metad = _bt_getmeta(rel, metabuf); |
| 313 | |
| 314 | /* if no root page initialized yet, do it */ |
| 315 | if (metad->btm_root == P_NONE) |
| 316 | { |
| 317 | Page metapg; |
| 318 | |
| 319 | /* If access = BT_READ, caller doesn't want us to create root yet */ |
| 320 | if (access == BT_READ) |
| 321 | { |
| 322 | _bt_relbuf(rel, metabuf); |
| 323 | return InvalidBuffer; |
| 324 | } |
| 325 | |
| 326 | /* trade in our read lock for a write lock */ |
| 327 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 328 | LockBuffer(metabuf, BT_WRITE); |
| 329 | |
| 330 | /* |
| 331 | * Race condition: if someone else initialized the metadata between |
| 332 | * the time we released the read lock and acquired the write lock, we |
| 333 | * must avoid doing it again. |
| 334 | */ |
| 335 | if (metad->btm_root != P_NONE) |
| 336 | { |
| 337 | /* |
| 338 | * Metadata initialized by someone else. In order to guarantee no |
| 339 | * deadlocks, we have to release the metadata page and start all |
| 340 | * over again. (Is that really true? But it's hardly worth trying |
| 341 | * to optimize this case.) |
| 342 | */ |
| 343 | _bt_relbuf(rel, metabuf); |
| 344 | return _bt_getroot(rel, access); |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Get, initialize, write, and leave a lock of the appropriate type on |
| 349 | * the new root page. Since this is the first page in the tree, it's |
| 350 | * a leaf as well as the root. |
| 351 | */ |
| 352 | rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE); |
| 353 | rootblkno = BufferGetBlockNumber(rootbuf); |
| 354 | rootpage = BufferGetPage(rootbuf); |
| 355 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
| 356 | rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE; |
| 357 | rootopaque->btpo_flags = (BTP_LEAF | BTP_ROOT); |
| 358 | rootopaque->btpo.level = 0; |
| 359 | rootopaque->btpo_cycleid = 0; |
| 360 | /* Get raw page pointer for metapage */ |
| 361 | metapg = BufferGetPage(metabuf); |
| 362 | |
| 363 | /* NO ELOG(ERROR) till meta is updated */ |
| 364 | START_CRIT_SECTION(); |
| 365 | |
| 366 | /* upgrade metapage if needed */ |
| 367 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
| 368 | _bt_upgrademetapage(metapg); |
| 369 | |
| 370 | metad->btm_root = rootblkno; |
| 371 | metad->btm_level = 0; |
| 372 | metad->btm_fastroot = rootblkno; |
| 373 | metad->btm_fastlevel = 0; |
| 374 | metad->btm_oldest_btpo_xact = InvalidTransactionId; |
| 375 | metad->btm_last_cleanup_num_heap_tuples = -1.0; |
| 376 | |
| 377 | MarkBufferDirty(rootbuf); |
| 378 | MarkBufferDirty(metabuf); |
| 379 | |
| 380 | /* XLOG stuff */ |
| 381 | if (RelationNeedsWAL(rel)) |
| 382 | { |
| 383 | xl_btree_newroot xlrec; |
| 384 | XLogRecPtr recptr; |
| 385 | xl_btree_metadata md; |
| 386 | |
| 387 | XLogBeginInsert(); |
| 388 | XLogRegisterBuffer(0, rootbuf, REGBUF_WILL_INIT); |
| 389 | XLogRegisterBuffer(2, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
| 390 | |
| 391 | Assert(metad->btm_version >= BTREE_NOVAC_VERSION); |
| 392 | md.version = metad->btm_version; |
| 393 | md.root = rootblkno; |
| 394 | md.level = 0; |
| 395 | md.fastroot = rootblkno; |
| 396 | md.fastlevel = 0; |
| 397 | md.oldest_btpo_xact = InvalidTransactionId; |
| 398 | md.last_cleanup_num_heap_tuples = -1.0; |
| 399 | |
| 400 | XLogRegisterBufData(2, (char *) &md, sizeof(xl_btree_metadata)); |
| 401 | |
| 402 | xlrec.rootblk = rootblkno; |
| 403 | xlrec.level = 0; |
| 404 | |
| 405 | XLogRegisterData((char *) &xlrec, SizeOfBtreeNewroot); |
| 406 | |
| 407 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT); |
| 408 | |
| 409 | PageSetLSN(rootpage, recptr); |
| 410 | PageSetLSN(metapg, recptr); |
| 411 | } |
| 412 | |
| 413 | END_CRIT_SECTION(); |
| 414 | |
| 415 | /* |
| 416 | * swap root write lock for read lock. There is no danger of anyone |
| 417 | * else accessing the new root page while it's unlocked, since no one |
| 418 | * else knows where it is yet. |
| 419 | */ |
| 420 | LockBuffer(rootbuf, BUFFER_LOCK_UNLOCK); |
| 421 | LockBuffer(rootbuf, BT_READ); |
| 422 | |
| 423 | /* okay, metadata is correct, release lock on it without caching */ |
| 424 | _bt_relbuf(rel, metabuf); |
| 425 | } |
| 426 | else |
| 427 | { |
| 428 | rootblkno = metad->btm_fastroot; |
| 429 | Assert(rootblkno != P_NONE); |
| 430 | rootlevel = metad->btm_fastlevel; |
| 431 | |
| 432 | /* |
| 433 | * Cache the metapage data for next time |
| 434 | */ |
| 435 | rel->rd_amcache = MemoryContextAlloc(rel->rd_indexcxt, |
| 436 | sizeof(BTMetaPageData)); |
| 437 | memcpy(rel->rd_amcache, metad, sizeof(BTMetaPageData)); |
| 438 | |
| 439 | /* |
| 440 | * We are done with the metapage; arrange to release it via first |
| 441 | * _bt_relandgetbuf call |
| 442 | */ |
| 443 | rootbuf = metabuf; |
| 444 | |
| 445 | for (;;) |
| 446 | { |
| 447 | rootbuf = _bt_relandgetbuf(rel, rootbuf, rootblkno, BT_READ); |
| 448 | rootpage = BufferGetPage(rootbuf); |
| 449 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
| 450 | |
| 451 | if (!P_IGNORE(rootopaque)) |
| 452 | break; |
| 453 | |
| 454 | /* it's dead, Jim. step right one page */ |
| 455 | if (P_RIGHTMOST(rootopaque)) |
| 456 | elog(ERROR, "no live root page found in index \"%s\"" , |
| 457 | RelationGetRelationName(rel)); |
| 458 | rootblkno = rootopaque->btpo_next; |
| 459 | } |
| 460 | |
| 461 | /* Note: can't check btpo.level on deleted pages */ |
| 462 | if (rootopaque->btpo.level != rootlevel) |
| 463 | elog(ERROR, "root page %u of index \"%s\" has level %u, expected %u" , |
| 464 | rootblkno, RelationGetRelationName(rel), |
| 465 | rootopaque->btpo.level, rootlevel); |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * By here, we have a pin and read lock on the root page, and no lock set |
| 470 | * on the metadata page. Return the root page's buffer. |
| 471 | */ |
| 472 | return rootbuf; |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * _bt_gettrueroot() -- Get the true root page of the btree. |
| 477 | * |
| 478 | * This is the same as the BT_READ case of _bt_getroot(), except |
| 479 | * we follow the true-root link not the fast-root link. |
| 480 | * |
| 481 | * By the time we acquire lock on the root page, it might have been split and |
| 482 | * not be the true root anymore. This is okay for the present uses of this |
| 483 | * routine; we only really need to be able to move up at least one tree level |
| 484 | * from whatever non-root page we were at. If we ever do need to lock the |
| 485 | * one true root page, we could loop here, re-reading the metapage on each |
| 486 | * failure. (Note that it wouldn't do to hold the lock on the metapage while |
| 487 | * moving to the root --- that'd deadlock against any concurrent root split.) |
| 488 | */ |
| 489 | Buffer |
| 490 | _bt_gettrueroot(Relation rel) |
| 491 | { |
| 492 | Buffer metabuf; |
| 493 | Page metapg; |
| 494 | BTPageOpaque metaopaque; |
| 495 | Buffer rootbuf; |
| 496 | Page rootpage; |
| 497 | BTPageOpaque rootopaque; |
| 498 | BlockNumber rootblkno; |
| 499 | uint32 rootlevel; |
| 500 | BTMetaPageData *metad; |
| 501 | |
| 502 | /* |
| 503 | * We don't try to use cached metapage data here, since (a) this path is |
| 504 | * not performance-critical, and (b) if we are here it suggests our cache |
| 505 | * is out-of-date anyway. In light of point (b), it's probably safest to |
| 506 | * actively flush any cached metapage info. |
| 507 | */ |
| 508 | if (rel->rd_amcache) |
| 509 | pfree(rel->rd_amcache); |
| 510 | rel->rd_amcache = NULL; |
| 511 | |
| 512 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
| 513 | metapg = BufferGetPage(metabuf); |
| 514 | metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg); |
| 515 | metad = BTPageGetMeta(metapg); |
| 516 | |
| 517 | if (!P_ISMETA(metaopaque) || |
| 518 | metad->btm_magic != BTREE_MAGIC) |
| 519 | ereport(ERROR, |
| 520 | (errcode(ERRCODE_INDEX_CORRUPTED), |
| 521 | errmsg("index \"%s\" is not a btree" , |
| 522 | RelationGetRelationName(rel)))); |
| 523 | |
| 524 | if (metad->btm_version < BTREE_MIN_VERSION || |
| 525 | metad->btm_version > BTREE_VERSION) |
| 526 | ereport(ERROR, |
| 527 | (errcode(ERRCODE_INDEX_CORRUPTED), |
| 528 | errmsg("version mismatch in index \"%s\": file version %d, " |
| 529 | "current version %d, minimal supported version %d" , |
| 530 | RelationGetRelationName(rel), |
| 531 | metad->btm_version, BTREE_VERSION, BTREE_MIN_VERSION))); |
| 532 | |
| 533 | /* if no root page initialized yet, fail */ |
| 534 | if (metad->btm_root == P_NONE) |
| 535 | { |
| 536 | _bt_relbuf(rel, metabuf); |
| 537 | return InvalidBuffer; |
| 538 | } |
| 539 | |
| 540 | rootblkno = metad->btm_root; |
| 541 | rootlevel = metad->btm_level; |
| 542 | |
| 543 | /* |
| 544 | * We are done with the metapage; arrange to release it via first |
| 545 | * _bt_relandgetbuf call |
| 546 | */ |
| 547 | rootbuf = metabuf; |
| 548 | |
| 549 | for (;;) |
| 550 | { |
| 551 | rootbuf = _bt_relandgetbuf(rel, rootbuf, rootblkno, BT_READ); |
| 552 | rootpage = BufferGetPage(rootbuf); |
| 553 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
| 554 | |
| 555 | if (!P_IGNORE(rootopaque)) |
| 556 | break; |
| 557 | |
| 558 | /* it's dead, Jim. step right one page */ |
| 559 | if (P_RIGHTMOST(rootopaque)) |
| 560 | elog(ERROR, "no live root page found in index \"%s\"" , |
| 561 | RelationGetRelationName(rel)); |
| 562 | rootblkno = rootopaque->btpo_next; |
| 563 | } |
| 564 | |
| 565 | /* Note: can't check btpo.level on deleted pages */ |
| 566 | if (rootopaque->btpo.level != rootlevel) |
| 567 | elog(ERROR, "root page %u of index \"%s\" has level %u, expected %u" , |
| 568 | rootblkno, RelationGetRelationName(rel), |
| 569 | rootopaque->btpo.level, rootlevel); |
| 570 | |
| 571 | return rootbuf; |
| 572 | } |
| 573 | |
| 574 | /* |
| 575 | * _bt_getrootheight() -- Get the height of the btree search tree. |
| 576 | * |
| 577 | * We return the level (counting from zero) of the current fast root. |
| 578 | * This represents the number of tree levels we'd have to descend through |
| 579 | * to start any btree index search. |
| 580 | * |
| 581 | * This is used by the planner for cost-estimation purposes. Since it's |
| 582 | * only an estimate, slightly-stale data is fine, hence we don't worry |
| 583 | * about updating previously cached data. |
| 584 | */ |
| 585 | int |
| 586 | _bt_getrootheight(Relation rel) |
| 587 | { |
| 588 | BTMetaPageData *metad; |
| 589 | |
| 590 | if (rel->rd_amcache == NULL) |
| 591 | { |
| 592 | Buffer metabuf; |
| 593 | |
| 594 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
| 595 | metad = _bt_getmeta(rel, metabuf); |
| 596 | |
| 597 | /* |
| 598 | * If there's no root page yet, _bt_getroot() doesn't expect a cache |
| 599 | * to be made, so just stop here and report the index height is zero. |
| 600 | * (XXX perhaps _bt_getroot() should be changed to allow this case.) |
| 601 | */ |
| 602 | if (metad->btm_root == P_NONE) |
| 603 | { |
| 604 | _bt_relbuf(rel, metabuf); |
| 605 | return 0; |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | * Cache the metapage data for next time |
| 610 | */ |
| 611 | rel->rd_amcache = MemoryContextAlloc(rel->rd_indexcxt, |
| 612 | sizeof(BTMetaPageData)); |
| 613 | memcpy(rel->rd_amcache, metad, sizeof(BTMetaPageData)); |
| 614 | _bt_relbuf(rel, metabuf); |
| 615 | } |
| 616 | |
| 617 | /* Get cached page */ |
| 618 | metad = (BTMetaPageData *) rel->rd_amcache; |
| 619 | /* We shouldn't have cached it if any of these fail */ |
| 620 | Assert(metad->btm_magic == BTREE_MAGIC); |
| 621 | Assert(metad->btm_version >= BTREE_MIN_VERSION); |
| 622 | Assert(metad->btm_version <= BTREE_VERSION); |
| 623 | Assert(metad->btm_fastroot != P_NONE); |
| 624 | |
| 625 | return metad->btm_fastlevel; |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * _bt_heapkeyspace() -- is heap TID being treated as a key? |
| 630 | * |
| 631 | * This is used to determine the rules that must be used to descend a |
| 632 | * btree. Version 4 indexes treat heap TID as a tiebreaker attribute. |
| 633 | * pg_upgrade'd version 3 indexes need extra steps to preserve reasonable |
| 634 | * performance when inserting a new BTScanInsert-wise duplicate tuple |
| 635 | * among many leaf pages already full of such duplicates. |
| 636 | */ |
| 637 | bool |
| 638 | _bt_heapkeyspace(Relation rel) |
| 639 | { |
| 640 | BTMetaPageData *metad; |
| 641 | |
| 642 | if (rel->rd_amcache == NULL) |
| 643 | { |
| 644 | Buffer metabuf; |
| 645 | |
| 646 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); |
| 647 | metad = _bt_getmeta(rel, metabuf); |
| 648 | |
| 649 | /* |
| 650 | * If there's no root page yet, _bt_getroot() doesn't expect a cache |
| 651 | * to be made, so just stop here. (XXX perhaps _bt_getroot() should |
| 652 | * be changed to allow this case.) |
| 653 | */ |
| 654 | if (metad->btm_root == P_NONE) |
| 655 | { |
| 656 | uint32 btm_version = metad->btm_version; |
| 657 | |
| 658 | _bt_relbuf(rel, metabuf); |
| 659 | return btm_version > BTREE_NOVAC_VERSION; |
| 660 | } |
| 661 | |
| 662 | /* |
| 663 | * Cache the metapage data for next time |
| 664 | * |
| 665 | * An on-the-fly version upgrade performed by _bt_upgrademetapage() |
| 666 | * can change the nbtree version for an index without invalidating any |
| 667 | * local cache. This is okay because it can only happen when moving |
| 668 | * from version 2 to version 3, both of which are !heapkeyspace |
| 669 | * versions. |
| 670 | */ |
| 671 | rel->rd_amcache = MemoryContextAlloc(rel->rd_indexcxt, |
| 672 | sizeof(BTMetaPageData)); |
| 673 | memcpy(rel->rd_amcache, metad, sizeof(BTMetaPageData)); |
| 674 | _bt_relbuf(rel, metabuf); |
| 675 | } |
| 676 | |
| 677 | /* Get cached page */ |
| 678 | metad = (BTMetaPageData *) rel->rd_amcache; |
| 679 | /* We shouldn't have cached it if any of these fail */ |
| 680 | Assert(metad->btm_magic == BTREE_MAGIC); |
| 681 | Assert(metad->btm_version >= BTREE_MIN_VERSION); |
| 682 | Assert(metad->btm_version <= BTREE_VERSION); |
| 683 | Assert(metad->btm_fastroot != P_NONE); |
| 684 | |
| 685 | return metad->btm_version > BTREE_NOVAC_VERSION; |
| 686 | } |
| 687 | |
| 688 | /* |
| 689 | * _bt_checkpage() -- Verify that a freshly-read page looks sane. |
| 690 | */ |
| 691 | void |
| 692 | _bt_checkpage(Relation rel, Buffer buf) |
| 693 | { |
| 694 | Page page = BufferGetPage(buf); |
| 695 | |
| 696 | /* |
| 697 | * ReadBuffer verifies that every newly-read page passes |
| 698 | * PageHeaderIsValid, which means it either contains a reasonably sane |
| 699 | * page header or is all-zero. We have to defend against the all-zero |
| 700 | * case, however. |
| 701 | */ |
| 702 | if (PageIsNew(page)) |
| 703 | ereport(ERROR, |
| 704 | (errcode(ERRCODE_INDEX_CORRUPTED), |
| 705 | errmsg("index \"%s\" contains unexpected zero page at block %u" , |
| 706 | RelationGetRelationName(rel), |
| 707 | BufferGetBlockNumber(buf)), |
| 708 | errhint("Please REINDEX it." ))); |
| 709 | |
| 710 | /* |
| 711 | * Additionally check that the special area looks sane. |
| 712 | */ |
| 713 | if (PageGetSpecialSize(page) != MAXALIGN(sizeof(BTPageOpaqueData))) |
| 714 | ereport(ERROR, |
| 715 | (errcode(ERRCODE_INDEX_CORRUPTED), |
| 716 | errmsg("index \"%s\" contains corrupted page at block %u" , |
| 717 | RelationGetRelationName(rel), |
| 718 | BufferGetBlockNumber(buf)), |
| 719 | errhint("Please REINDEX it." ))); |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | * Log the reuse of a page from the FSM. |
| 724 | */ |
| 725 | static void |
| 726 | _bt_log_reuse_page(Relation rel, BlockNumber blkno, TransactionId latestRemovedXid) |
| 727 | { |
| 728 | xl_btree_reuse_page xlrec_reuse; |
| 729 | |
| 730 | /* |
| 731 | * Note that we don't register the buffer with the record, because this |
| 732 | * operation doesn't modify the page. This record only exists to provide a |
| 733 | * conflict point for Hot Standby. |
| 734 | */ |
| 735 | |
| 736 | /* XLOG stuff */ |
| 737 | xlrec_reuse.node = rel->rd_node; |
| 738 | xlrec_reuse.block = blkno; |
| 739 | xlrec_reuse.latestRemovedXid = latestRemovedXid; |
| 740 | |
| 741 | XLogBeginInsert(); |
| 742 | XLogRegisterData((char *) &xlrec_reuse, SizeOfBtreeReusePage); |
| 743 | |
| 744 | XLogInsert(RM_BTREE_ID, XLOG_BTREE_REUSE_PAGE); |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | * _bt_getbuf() -- Get a buffer by block number for read or write. |
| 749 | * |
| 750 | * blkno == P_NEW means to get an unallocated index page. The page |
| 751 | * will be initialized before returning it. |
| 752 | * |
| 753 | * When this routine returns, the appropriate lock is set on the |
| 754 | * requested buffer and its reference count has been incremented |
| 755 | * (ie, the buffer is "locked and pinned"). Also, we apply |
| 756 | * _bt_checkpage to sanity-check the page (except in P_NEW case). |
| 757 | */ |
| 758 | Buffer |
| 759 | _bt_getbuf(Relation rel, BlockNumber blkno, int access) |
| 760 | { |
| 761 | Buffer buf; |
| 762 | |
| 763 | if (blkno != P_NEW) |
| 764 | { |
| 765 | /* Read an existing block of the relation */ |
| 766 | buf = ReadBuffer(rel, blkno); |
| 767 | LockBuffer(buf, access); |
| 768 | _bt_checkpage(rel, buf); |
| 769 | } |
| 770 | else |
| 771 | { |
| 772 | bool needLock; |
| 773 | Page page; |
| 774 | |
| 775 | Assert(access == BT_WRITE); |
| 776 | |
| 777 | /* |
| 778 | * First see if the FSM knows of any free pages. |
| 779 | * |
| 780 | * We can't trust the FSM's report unreservedly; we have to check that |
| 781 | * the page is still free. (For example, an already-free page could |
| 782 | * have been re-used between the time the last VACUUM scanned it and |
| 783 | * the time the VACUUM made its FSM updates.) |
| 784 | * |
| 785 | * In fact, it's worse than that: we can't even assume that it's safe |
| 786 | * to take a lock on the reported page. If somebody else has a lock |
| 787 | * on it, or even worse our own caller does, we could deadlock. (The |
| 788 | * own-caller scenario is actually not improbable. Consider an index |
| 789 | * on a serial or timestamp column. Nearly all splits will be at the |
| 790 | * rightmost page, so it's entirely likely that _bt_split will call us |
| 791 | * while holding a lock on the page most recently acquired from FSM. A |
| 792 | * VACUUM running concurrently with the previous split could well have |
| 793 | * placed that page back in FSM.) |
| 794 | * |
| 795 | * To get around that, we ask for only a conditional lock on the |
| 796 | * reported page. If we fail, then someone else is using the page, |
| 797 | * and we may reasonably assume it's not free. (If we happen to be |
| 798 | * wrong, the worst consequence is the page will be lost to use till |
| 799 | * the next VACUUM, which is no big problem.) |
| 800 | */ |
| 801 | for (;;) |
| 802 | { |
| 803 | blkno = GetFreeIndexPage(rel); |
| 804 | if (blkno == InvalidBlockNumber) |
| 805 | break; |
| 806 | buf = ReadBuffer(rel, blkno); |
| 807 | if (ConditionalLockBuffer(buf)) |
| 808 | { |
| 809 | page = BufferGetPage(buf); |
| 810 | if (_bt_page_recyclable(page)) |
| 811 | { |
| 812 | /* |
| 813 | * If we are generating WAL for Hot Standby then create a |
| 814 | * WAL record that will allow us to conflict with queries |
| 815 | * running on standby, in case they have snapshots older |
| 816 | * than btpo.xact. This can only apply if the page does |
| 817 | * have a valid btpo.xact value, ie not if it's new. (We |
| 818 | * must check that because an all-zero page has no special |
| 819 | * space.) |
| 820 | */ |
| 821 | if (XLogStandbyInfoActive() && RelationNeedsWAL(rel) && |
| 822 | !PageIsNew(page)) |
| 823 | { |
| 824 | BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 825 | |
| 826 | _bt_log_reuse_page(rel, blkno, opaque->btpo.xact); |
| 827 | } |
| 828 | |
| 829 | /* Okay to use page. Re-initialize and return it */ |
| 830 | _bt_pageinit(page, BufferGetPageSize(buf)); |
| 831 | return buf; |
| 832 | } |
| 833 | elog(DEBUG2, "FSM returned nonrecyclable page" ); |
| 834 | _bt_relbuf(rel, buf); |
| 835 | } |
| 836 | else |
| 837 | { |
| 838 | elog(DEBUG2, "FSM returned nonlockable page" ); |
| 839 | /* couldn't get lock, so just drop pin */ |
| 840 | ReleaseBuffer(buf); |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Extend the relation by one page. |
| 846 | * |
| 847 | * We have to use a lock to ensure no one else is extending the rel at |
| 848 | * the same time, else we will both try to initialize the same new |
| 849 | * page. We can skip locking for new or temp relations, however, |
| 850 | * since no one else could be accessing them. |
| 851 | */ |
| 852 | needLock = !RELATION_IS_LOCAL(rel); |
| 853 | |
| 854 | if (needLock) |
| 855 | LockRelationForExtension(rel, ExclusiveLock); |
| 856 | |
| 857 | buf = ReadBuffer(rel, P_NEW); |
| 858 | |
| 859 | /* Acquire buffer lock on new page */ |
| 860 | LockBuffer(buf, BT_WRITE); |
| 861 | |
| 862 | /* |
| 863 | * Release the file-extension lock; it's now OK for someone else to |
| 864 | * extend the relation some more. Note that we cannot release this |
| 865 | * lock before we have buffer lock on the new page, or we risk a race |
| 866 | * condition against btvacuumscan --- see comments therein. |
| 867 | */ |
| 868 | if (needLock) |
| 869 | UnlockRelationForExtension(rel, ExclusiveLock); |
| 870 | |
| 871 | /* Initialize the new page before returning it */ |
| 872 | page = BufferGetPage(buf); |
| 873 | Assert(PageIsNew(page)); |
| 874 | _bt_pageinit(page, BufferGetPageSize(buf)); |
| 875 | } |
| 876 | |
| 877 | /* ref count and lock type are correct */ |
| 878 | return buf; |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * _bt_relandgetbuf() -- release a locked buffer and get another one. |
| 883 | * |
| 884 | * This is equivalent to _bt_relbuf followed by _bt_getbuf, with the |
| 885 | * exception that blkno may not be P_NEW. Also, if obuf is InvalidBuffer |
| 886 | * then it reduces to just _bt_getbuf; allowing this case simplifies some |
| 887 | * callers. |
| 888 | * |
| 889 | * The original motivation for using this was to avoid two entries to the |
| 890 | * bufmgr when one would do. However, now it's mainly just a notational |
| 891 | * convenience. The only case where it saves work over _bt_relbuf/_bt_getbuf |
| 892 | * is when the target page is the same one already in the buffer. |
| 893 | */ |
| 894 | Buffer |
| 895 | _bt_relandgetbuf(Relation rel, Buffer obuf, BlockNumber blkno, int access) |
| 896 | { |
| 897 | Buffer buf; |
| 898 | |
| 899 | Assert(blkno != P_NEW); |
| 900 | if (BufferIsValid(obuf)) |
| 901 | LockBuffer(obuf, BUFFER_LOCK_UNLOCK); |
| 902 | buf = ReleaseAndReadBuffer(obuf, rel, blkno); |
| 903 | LockBuffer(buf, access); |
| 904 | _bt_checkpage(rel, buf); |
| 905 | return buf; |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * _bt_relbuf() -- release a locked buffer. |
| 910 | * |
| 911 | * Lock and pin (refcount) are both dropped. |
| 912 | */ |
| 913 | void |
| 914 | _bt_relbuf(Relation rel, Buffer buf) |
| 915 | { |
| 916 | UnlockReleaseBuffer(buf); |
| 917 | } |
| 918 | |
| 919 | /* |
| 920 | * _bt_pageinit() -- Initialize a new page. |
| 921 | * |
| 922 | * On return, the page header is initialized; data space is empty; |
| 923 | * special space is zeroed out. |
| 924 | */ |
| 925 | void |
| 926 | _bt_pageinit(Page page, Size size) |
| 927 | { |
| 928 | PageInit(page, size, sizeof(BTPageOpaqueData)); |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * _bt_page_recyclable() -- Is an existing page recyclable? |
| 933 | * |
| 934 | * This exists to make sure _bt_getbuf and btvacuumscan have the same |
| 935 | * policy about whether a page is safe to re-use. But note that _bt_getbuf |
| 936 | * knows enough to distinguish the PageIsNew condition from the other one. |
| 937 | * At some point it might be appropriate to redesign this to have a three-way |
| 938 | * result value. |
| 939 | */ |
| 940 | bool |
| 941 | _bt_page_recyclable(Page page) |
| 942 | { |
| 943 | BTPageOpaque opaque; |
| 944 | |
| 945 | /* |
| 946 | * It's possible to find an all-zeroes page in an index --- for example, a |
| 947 | * backend might successfully extend the relation one page and then crash |
| 948 | * before it is able to make a WAL entry for adding the page. If we find a |
| 949 | * zeroed page then reclaim it. |
| 950 | */ |
| 951 | if (PageIsNew(page)) |
| 952 | return true; |
| 953 | |
| 954 | /* |
| 955 | * Otherwise, recycle if deleted and too old to have any processes |
| 956 | * interested in it. |
| 957 | */ |
| 958 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 959 | if (P_ISDELETED(opaque) && |
| 960 | TransactionIdPrecedes(opaque->btpo.xact, RecentGlobalXmin)) |
| 961 | return true; |
| 962 | return false; |
| 963 | } |
| 964 | |
| 965 | /* |
| 966 | * Delete item(s) from a btree page during VACUUM. |
| 967 | * |
| 968 | * This must only be used for deleting leaf items. Deleting an item on a |
| 969 | * non-leaf page has to be done as part of an atomic action that includes |
| 970 | * deleting the page it points to. |
| 971 | * |
| 972 | * This routine assumes that the caller has pinned and locked the buffer. |
| 973 | * Also, the given itemnos *must* appear in increasing order in the array. |
| 974 | * |
| 975 | * We record VACUUMs and b-tree deletes differently in WAL. InHotStandby |
| 976 | * we need to be able to pin all of the blocks in the btree in physical |
| 977 | * order when replaying the effects of a VACUUM, just as we do for the |
| 978 | * original VACUUM itself. lastBlockVacuumed allows us to tell whether an |
| 979 | * intermediate range of blocks has had no changes at all by VACUUM, |
| 980 | * and so must be scanned anyway during replay. We always write a WAL record |
| 981 | * for the last block in the index, whether or not it contained any items |
| 982 | * to be removed. This allows us to scan right up to end of index to |
| 983 | * ensure correct locking. |
| 984 | */ |
| 985 | void |
| 986 | _bt_delitems_vacuum(Relation rel, Buffer buf, |
| 987 | OffsetNumber *itemnos, int nitems, |
| 988 | BlockNumber lastBlockVacuumed) |
| 989 | { |
| 990 | Page page = BufferGetPage(buf); |
| 991 | BTPageOpaque opaque; |
| 992 | |
| 993 | /* No ereport(ERROR) until changes are logged */ |
| 994 | START_CRIT_SECTION(); |
| 995 | |
| 996 | /* Fix the page */ |
| 997 | if (nitems > 0) |
| 998 | PageIndexMultiDelete(page, itemnos, nitems); |
| 999 | |
| 1000 | /* |
| 1001 | * We can clear the vacuum cycle ID since this page has certainly been |
| 1002 | * processed by the current vacuum scan. |
| 1003 | */ |
| 1004 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1005 | opaque->btpo_cycleid = 0; |
| 1006 | |
| 1007 | /* |
| 1008 | * Mark the page as not containing any LP_DEAD items. This is not |
| 1009 | * certainly true (there might be some that have recently been marked, but |
| 1010 | * weren't included in our target-item list), but it will almost always be |
| 1011 | * true and it doesn't seem worth an additional page scan to check it. |
| 1012 | * Remember that BTP_HAS_GARBAGE is only a hint anyway. |
| 1013 | */ |
| 1014 | opaque->btpo_flags &= ~BTP_HAS_GARBAGE; |
| 1015 | |
| 1016 | MarkBufferDirty(buf); |
| 1017 | |
| 1018 | /* XLOG stuff */ |
| 1019 | if (RelationNeedsWAL(rel)) |
| 1020 | { |
| 1021 | XLogRecPtr recptr; |
| 1022 | xl_btree_vacuum xlrec_vacuum; |
| 1023 | |
| 1024 | xlrec_vacuum.lastBlockVacuumed = lastBlockVacuumed; |
| 1025 | |
| 1026 | XLogBeginInsert(); |
| 1027 | XLogRegisterBuffer(0, buf, REGBUF_STANDARD); |
| 1028 | XLogRegisterData((char *) &xlrec_vacuum, SizeOfBtreeVacuum); |
| 1029 | |
| 1030 | /* |
| 1031 | * The target-offsets array is not in the buffer, but pretend that it |
| 1032 | * is. When XLogInsert stores the whole buffer, the offsets array |
| 1033 | * need not be stored too. |
| 1034 | */ |
| 1035 | if (nitems > 0) |
| 1036 | XLogRegisterBufData(0, (char *) itemnos, nitems * sizeof(OffsetNumber)); |
| 1037 | |
| 1038 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_VACUUM); |
| 1039 | |
| 1040 | PageSetLSN(page, recptr); |
| 1041 | } |
| 1042 | |
| 1043 | END_CRIT_SECTION(); |
| 1044 | } |
| 1045 | |
| 1046 | /* |
| 1047 | * Delete item(s) from a btree page during single-page cleanup. |
| 1048 | * |
| 1049 | * As above, must only be used on leaf pages. |
| 1050 | * |
| 1051 | * This routine assumes that the caller has pinned and locked the buffer. |
| 1052 | * Also, the given itemnos *must* appear in increasing order in the array. |
| 1053 | * |
| 1054 | * This is nearly the same as _bt_delitems_vacuum as far as what it does to |
| 1055 | * the page, but the WAL logging considerations are quite different. See |
| 1056 | * comments for _bt_delitems_vacuum. |
| 1057 | */ |
| 1058 | void |
| 1059 | _bt_delitems_delete(Relation rel, Buffer buf, |
| 1060 | OffsetNumber *itemnos, int nitems, |
| 1061 | Relation heapRel) |
| 1062 | { |
| 1063 | Page page = BufferGetPage(buf); |
| 1064 | BTPageOpaque opaque; |
| 1065 | TransactionId latestRemovedXid = InvalidTransactionId; |
| 1066 | |
| 1067 | /* Shouldn't be called unless there's something to do */ |
| 1068 | Assert(nitems > 0); |
| 1069 | |
| 1070 | if (XLogStandbyInfoActive() && RelationNeedsWAL(rel)) |
| 1071 | latestRemovedXid = |
| 1072 | index_compute_xid_horizon_for_tuples(rel, heapRel, buf, |
| 1073 | itemnos, nitems); |
| 1074 | |
| 1075 | /* No ereport(ERROR) until changes are logged */ |
| 1076 | START_CRIT_SECTION(); |
| 1077 | |
| 1078 | /* Fix the page */ |
| 1079 | PageIndexMultiDelete(page, itemnos, nitems); |
| 1080 | |
| 1081 | /* |
| 1082 | * Unlike _bt_delitems_vacuum, we *must not* clear the vacuum cycle ID, |
| 1083 | * because this is not called by VACUUM. |
| 1084 | */ |
| 1085 | |
| 1086 | /* |
| 1087 | * Mark the page as not containing any LP_DEAD items. This is not |
| 1088 | * certainly true (there might be some that have recently been marked, but |
| 1089 | * weren't included in our target-item list), but it will almost always be |
| 1090 | * true and it doesn't seem worth an additional page scan to check it. |
| 1091 | * Remember that BTP_HAS_GARBAGE is only a hint anyway. |
| 1092 | */ |
| 1093 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1094 | opaque->btpo_flags &= ~BTP_HAS_GARBAGE; |
| 1095 | |
| 1096 | MarkBufferDirty(buf); |
| 1097 | |
| 1098 | /* XLOG stuff */ |
| 1099 | if (RelationNeedsWAL(rel)) |
| 1100 | { |
| 1101 | XLogRecPtr recptr; |
| 1102 | xl_btree_delete xlrec_delete; |
| 1103 | |
| 1104 | xlrec_delete.latestRemovedXid = latestRemovedXid; |
| 1105 | xlrec_delete.nitems = nitems; |
| 1106 | |
| 1107 | XLogBeginInsert(); |
| 1108 | XLogRegisterBuffer(0, buf, REGBUF_STANDARD); |
| 1109 | XLogRegisterData((char *) &xlrec_delete, SizeOfBtreeDelete); |
| 1110 | |
| 1111 | /* |
| 1112 | * We need the target-offsets array whether or not we store the whole |
| 1113 | * buffer, to allow us to find the latestRemovedXid on a standby |
| 1114 | * server. |
| 1115 | */ |
| 1116 | XLogRegisterData((char *) itemnos, nitems * sizeof(OffsetNumber)); |
| 1117 | |
| 1118 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_DELETE); |
| 1119 | |
| 1120 | PageSetLSN(page, recptr); |
| 1121 | } |
| 1122 | |
| 1123 | END_CRIT_SECTION(); |
| 1124 | } |
| 1125 | |
| 1126 | /* |
| 1127 | * Returns true, if the given block has the half-dead flag set. |
| 1128 | */ |
| 1129 | static bool |
| 1130 | _bt_is_page_halfdead(Relation rel, BlockNumber blk) |
| 1131 | { |
| 1132 | Buffer buf; |
| 1133 | Page page; |
| 1134 | BTPageOpaque opaque; |
| 1135 | bool result; |
| 1136 | |
| 1137 | buf = _bt_getbuf(rel, blk, BT_READ); |
| 1138 | page = BufferGetPage(buf); |
| 1139 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1140 | |
| 1141 | result = P_ISHALFDEAD(opaque); |
| 1142 | _bt_relbuf(rel, buf); |
| 1143 | |
| 1144 | return result; |
| 1145 | } |
| 1146 | |
| 1147 | /* |
| 1148 | * Subroutine to find the parent of the branch we're deleting. This climbs |
| 1149 | * up the tree until it finds a page with more than one child, i.e. a page |
| 1150 | * that will not be totally emptied by the deletion. The chain of pages below |
| 1151 | * it, with one downlink each, will form the branch that we need to delete. |
| 1152 | * |
| 1153 | * If we cannot remove the downlink from the parent, because it's the |
| 1154 | * rightmost entry, returns false. On success, *topparent and *topoff are set |
| 1155 | * to the buffer holding the parent, and the offset of the downlink in it. |
| 1156 | * *topparent is write-locked, the caller is responsible for releasing it when |
| 1157 | * done. *target is set to the topmost page in the branch to-be-deleted, i.e. |
| 1158 | * the page whose downlink *topparent / *topoff point to, and *rightsib to its |
| 1159 | * right sibling. |
| 1160 | * |
| 1161 | * "child" is the leaf page we wish to delete, and "stack" is a search stack |
| 1162 | * leading to it (it actually leads to the leftmost leaf page with a high key |
| 1163 | * matching that of the page to be deleted in !heapkeyspace indexes). Note |
| 1164 | * that we will update the stack entry(s) to reflect current downlink |
| 1165 | * positions --- this is essentially the same as the corresponding step of |
| 1166 | * splitting, and is not expected to affect caller. The caller should |
| 1167 | * initialize *target and *rightsib to the leaf page and its right sibling. |
| 1168 | * |
| 1169 | * Note: it's OK to release page locks on any internal pages between the leaf |
| 1170 | * and *topparent, because a safe deletion can't become unsafe due to |
| 1171 | * concurrent activity. An internal page can only acquire an entry if the |
| 1172 | * child is split, but that cannot happen as long as we hold a lock on the |
| 1173 | * leaf. |
| 1174 | */ |
| 1175 | static bool |
| 1176 | _bt_lock_branch_parent(Relation rel, BlockNumber child, BTStack stack, |
| 1177 | Buffer *topparent, OffsetNumber *topoff, |
| 1178 | BlockNumber *target, BlockNumber *rightsib) |
| 1179 | { |
| 1180 | BlockNumber parent; |
| 1181 | OffsetNumber poffset, |
| 1182 | maxoff; |
| 1183 | Buffer pbuf; |
| 1184 | Page page; |
| 1185 | BTPageOpaque opaque; |
| 1186 | BlockNumber leftsib; |
| 1187 | |
| 1188 | /* |
| 1189 | * Locate the downlink of "child" in the parent, updating the stack entry |
| 1190 | * if needed. This is how !heapkeyspace indexes deal with having |
| 1191 | * non-unique high keys in leaf level pages. Even heapkeyspace indexes |
| 1192 | * can have a stale stack due to insertions into the parent. |
| 1193 | */ |
| 1194 | stack->bts_btentry = child; |
| 1195 | pbuf = _bt_getstackbuf(rel, stack); |
| 1196 | if (pbuf == InvalidBuffer) |
| 1197 | elog(ERROR, "failed to re-find parent key in index \"%s\" for deletion target page %u" , |
| 1198 | RelationGetRelationName(rel), child); |
| 1199 | parent = stack->bts_blkno; |
| 1200 | poffset = stack->bts_offset; |
| 1201 | |
| 1202 | page = BufferGetPage(pbuf); |
| 1203 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1204 | maxoff = PageGetMaxOffsetNumber(page); |
| 1205 | |
| 1206 | /* |
| 1207 | * If the target is the rightmost child of its parent, then we can't |
| 1208 | * delete, unless it's also the only child. |
| 1209 | */ |
| 1210 | if (poffset >= maxoff) |
| 1211 | { |
| 1212 | /* It's rightmost child... */ |
| 1213 | if (poffset == P_FIRSTDATAKEY(opaque)) |
| 1214 | { |
| 1215 | /* |
| 1216 | * It's only child, so safe if parent would itself be removable. |
| 1217 | * We have to check the parent itself, and then recurse to test |
| 1218 | * the conditions at the parent's parent. |
| 1219 | */ |
| 1220 | if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || |
| 1221 | P_INCOMPLETE_SPLIT(opaque)) |
| 1222 | { |
| 1223 | _bt_relbuf(rel, pbuf); |
| 1224 | return false; |
| 1225 | } |
| 1226 | |
| 1227 | *target = parent; |
| 1228 | *rightsib = opaque->btpo_next; |
| 1229 | leftsib = opaque->btpo_prev; |
| 1230 | |
| 1231 | _bt_relbuf(rel, pbuf); |
| 1232 | |
| 1233 | /* |
| 1234 | * Like in _bt_pagedel, check that the left sibling is not marked |
| 1235 | * with INCOMPLETE_SPLIT flag. That would mean that there is no |
| 1236 | * downlink to the page to be deleted, and the page deletion |
| 1237 | * algorithm isn't prepared to handle that. |
| 1238 | */ |
| 1239 | if (leftsib != P_NONE) |
| 1240 | { |
| 1241 | Buffer lbuf; |
| 1242 | Page lpage; |
| 1243 | BTPageOpaque lopaque; |
| 1244 | |
| 1245 | lbuf = _bt_getbuf(rel, leftsib, BT_READ); |
| 1246 | lpage = BufferGetPage(lbuf); |
| 1247 | lopaque = (BTPageOpaque) PageGetSpecialPointer(lpage); |
| 1248 | |
| 1249 | /* |
| 1250 | * If the left sibling was concurrently split, so that its |
| 1251 | * next-pointer doesn't point to the current page anymore, the |
| 1252 | * split that created the current page must be completed. (We |
| 1253 | * don't allow splitting an incompletely split page again |
| 1254 | * until the previous split has been completed) |
| 1255 | */ |
| 1256 | if (lopaque->btpo_next == parent && |
| 1257 | P_INCOMPLETE_SPLIT(lopaque)) |
| 1258 | { |
| 1259 | _bt_relbuf(rel, lbuf); |
| 1260 | return false; |
| 1261 | } |
| 1262 | _bt_relbuf(rel, lbuf); |
| 1263 | } |
| 1264 | |
| 1265 | return _bt_lock_branch_parent(rel, parent, stack->bts_parent, |
| 1266 | topparent, topoff, target, rightsib); |
| 1267 | } |
| 1268 | else |
| 1269 | { |
| 1270 | /* Unsafe to delete */ |
| 1271 | _bt_relbuf(rel, pbuf); |
| 1272 | return false; |
| 1273 | } |
| 1274 | } |
| 1275 | else |
| 1276 | { |
| 1277 | /* Not rightmost child, so safe to delete */ |
| 1278 | *topparent = pbuf; |
| 1279 | *topoff = poffset; |
| 1280 | return true; |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | /* |
| 1285 | * _bt_pagedel() -- Delete a page from the b-tree, if legal to do so. |
| 1286 | * |
| 1287 | * This action unlinks the page from the b-tree structure, removing all |
| 1288 | * pointers leading to it --- but not touching its own left and right links. |
| 1289 | * The page cannot be physically reclaimed right away, since other processes |
| 1290 | * may currently be trying to follow links leading to the page; they have to |
| 1291 | * be allowed to use its right-link to recover. See nbtree/README. |
| 1292 | * |
| 1293 | * On entry, the target buffer must be pinned and locked (either read or write |
| 1294 | * lock is OK). This lock and pin will be dropped before exiting. |
| 1295 | * |
| 1296 | * Returns the number of pages successfully deleted (zero if page cannot |
| 1297 | * be deleted now; could be more than one if parent or sibling pages were |
| 1298 | * deleted too). |
| 1299 | * |
| 1300 | * NOTE: this leaks memory. Rather than trying to clean up everything |
| 1301 | * carefully, it's better to run it in a temp context that can be reset |
| 1302 | * frequently. |
| 1303 | */ |
| 1304 | int |
| 1305 | _bt_pagedel(Relation rel, Buffer buf) |
| 1306 | { |
| 1307 | int ndeleted = 0; |
| 1308 | BlockNumber rightsib; |
| 1309 | bool rightsib_empty; |
| 1310 | Page page; |
| 1311 | BTPageOpaque opaque; |
| 1312 | |
| 1313 | /* |
| 1314 | * "stack" is a search stack leading (approximately) to the target page. |
| 1315 | * It is initially NULL, but when iterating, we keep it to avoid |
| 1316 | * duplicated search effort. |
| 1317 | * |
| 1318 | * Also, when "stack" is not NULL, we have already checked that the |
| 1319 | * current page is not the right half of an incomplete split, i.e. the |
| 1320 | * left sibling does not have its INCOMPLETE_SPLIT flag set. |
| 1321 | */ |
| 1322 | BTStack stack = NULL; |
| 1323 | |
| 1324 | for (;;) |
| 1325 | { |
| 1326 | page = BufferGetPage(buf); |
| 1327 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1328 | |
| 1329 | /* |
| 1330 | * Internal pages are never deleted directly, only as part of deleting |
| 1331 | * the whole branch all the way down to leaf level. |
| 1332 | */ |
| 1333 | if (!P_ISLEAF(opaque)) |
| 1334 | { |
| 1335 | /* |
| 1336 | * Pre-9.4 page deletion only marked internal pages as half-dead, |
| 1337 | * but now we only use that flag on leaf pages. The old algorithm |
| 1338 | * was never supposed to leave half-dead pages in the tree, it was |
| 1339 | * just a transient state, but it was nevertheless possible in |
| 1340 | * error scenarios. We don't know how to deal with them here. They |
| 1341 | * are harmless as far as searches are considered, but inserts |
| 1342 | * into the deleted keyspace could add out-of-order downlinks in |
| 1343 | * the upper levels. Log a notice, hopefully the admin will notice |
| 1344 | * and reindex. |
| 1345 | */ |
| 1346 | if (P_ISHALFDEAD(opaque)) |
| 1347 | ereport(LOG, |
| 1348 | (errcode(ERRCODE_INDEX_CORRUPTED), |
| 1349 | errmsg("index \"%s\" contains a half-dead internal page" , |
| 1350 | RelationGetRelationName(rel)), |
| 1351 | errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it." ))); |
| 1352 | _bt_relbuf(rel, buf); |
| 1353 | return ndeleted; |
| 1354 | } |
| 1355 | |
| 1356 | /* |
| 1357 | * We can never delete rightmost pages nor root pages. While at it, |
| 1358 | * check that page is not already deleted and is empty. |
| 1359 | * |
| 1360 | * To keep the algorithm simple, we also never delete an incompletely |
| 1361 | * split page (they should be rare enough that this doesn't make any |
| 1362 | * meaningful difference to disk usage): |
| 1363 | * |
| 1364 | * The INCOMPLETE_SPLIT flag on the page tells us if the page is the |
| 1365 | * left half of an incomplete split, but ensuring that it's not the |
| 1366 | * right half is more complicated. For that, we have to check that |
| 1367 | * the left sibling doesn't have its INCOMPLETE_SPLIT flag set. On |
| 1368 | * the first iteration, we temporarily release the lock on the current |
| 1369 | * page, and check the left sibling and also construct a search stack |
| 1370 | * to. On subsequent iterations, we know we stepped right from a page |
| 1371 | * that passed these tests, so it's OK. |
| 1372 | */ |
| 1373 | if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) || |
| 1374 | P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page) || |
| 1375 | P_INCOMPLETE_SPLIT(opaque)) |
| 1376 | { |
| 1377 | /* Should never fail to delete a half-dead page */ |
| 1378 | Assert(!P_ISHALFDEAD(opaque)); |
| 1379 | |
| 1380 | _bt_relbuf(rel, buf); |
| 1381 | return ndeleted; |
| 1382 | } |
| 1383 | |
| 1384 | /* |
| 1385 | * First, remove downlink pointing to the page (or a parent of the |
| 1386 | * page, if we are going to delete a taller branch), and mark the page |
| 1387 | * as half-dead. |
| 1388 | */ |
| 1389 | if (!P_ISHALFDEAD(opaque)) |
| 1390 | { |
| 1391 | /* |
| 1392 | * We need an approximate pointer to the page's parent page. We |
| 1393 | * use a variant of the standard search mechanism to search for |
| 1394 | * the page's high key; this will give us a link to either the |
| 1395 | * current parent or someplace to its left (if there are multiple |
| 1396 | * equal high keys, which is possible with !heapkeyspace indexes). |
| 1397 | * |
| 1398 | * Also check if this is the right-half of an incomplete split |
| 1399 | * (see comment above). |
| 1400 | */ |
| 1401 | if (!stack) |
| 1402 | { |
| 1403 | BTScanInsert itup_key; |
| 1404 | ItemId itemid; |
| 1405 | IndexTuple targetkey; |
| 1406 | Buffer lbuf; |
| 1407 | BlockNumber leftsib; |
| 1408 | |
| 1409 | itemid = PageGetItemId(page, P_HIKEY); |
| 1410 | targetkey = CopyIndexTuple((IndexTuple) PageGetItem(page, itemid)); |
| 1411 | |
| 1412 | leftsib = opaque->btpo_prev; |
| 1413 | |
| 1414 | /* |
| 1415 | * To avoid deadlocks, we'd better drop the leaf page lock |
| 1416 | * before going further. |
| 1417 | */ |
| 1418 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 1419 | |
| 1420 | /* |
| 1421 | * Fetch the left sibling, to check that it's not marked with |
| 1422 | * INCOMPLETE_SPLIT flag. That would mean that the page |
| 1423 | * to-be-deleted doesn't have a downlink, and the page |
| 1424 | * deletion algorithm isn't prepared to handle that. |
| 1425 | */ |
| 1426 | if (!P_LEFTMOST(opaque)) |
| 1427 | { |
| 1428 | BTPageOpaque lopaque; |
| 1429 | Page lpage; |
| 1430 | |
| 1431 | lbuf = _bt_getbuf(rel, leftsib, BT_READ); |
| 1432 | lpage = BufferGetPage(lbuf); |
| 1433 | lopaque = (BTPageOpaque) PageGetSpecialPointer(lpage); |
| 1434 | |
| 1435 | /* |
| 1436 | * If the left sibling is split again by another backend, |
| 1437 | * after we released the lock, we know that the first |
| 1438 | * split must have finished, because we don't allow an |
| 1439 | * incompletely-split page to be split again. So we don't |
| 1440 | * need to walk right here. |
| 1441 | */ |
| 1442 | if (lopaque->btpo_next == BufferGetBlockNumber(buf) && |
| 1443 | P_INCOMPLETE_SPLIT(lopaque)) |
| 1444 | { |
| 1445 | ReleaseBuffer(buf); |
| 1446 | _bt_relbuf(rel, lbuf); |
| 1447 | return ndeleted; |
| 1448 | } |
| 1449 | _bt_relbuf(rel, lbuf); |
| 1450 | } |
| 1451 | |
| 1452 | /* we need an insertion scan key for the search, so build one */ |
| 1453 | itup_key = _bt_mkscankey(rel, targetkey); |
| 1454 | /* find the leftmost leaf page with matching pivot/high key */ |
| 1455 | itup_key->pivotsearch = true; |
| 1456 | stack = _bt_search(rel, itup_key, &lbuf, BT_READ, NULL); |
| 1457 | /* don't need a lock or second pin on the page */ |
| 1458 | _bt_relbuf(rel, lbuf); |
| 1459 | |
| 1460 | /* |
| 1461 | * Re-lock the leaf page, and start over, to re-check that the |
| 1462 | * page can still be deleted. |
| 1463 | */ |
| 1464 | LockBuffer(buf, BT_WRITE); |
| 1465 | continue; |
| 1466 | } |
| 1467 | |
| 1468 | if (!_bt_mark_page_halfdead(rel, buf, stack)) |
| 1469 | { |
| 1470 | _bt_relbuf(rel, buf); |
| 1471 | return ndeleted; |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | /* |
| 1476 | * Then unlink it from its siblings. Each call to |
| 1477 | * _bt_unlink_halfdead_page unlinks the topmost page from the branch, |
| 1478 | * making it shallower. Iterate until the leaf page is gone. |
| 1479 | */ |
| 1480 | rightsib_empty = false; |
| 1481 | while (P_ISHALFDEAD(opaque)) |
| 1482 | { |
| 1483 | /* will check for interrupts, once lock is released */ |
| 1484 | if (!_bt_unlink_halfdead_page(rel, buf, &rightsib_empty)) |
| 1485 | { |
| 1486 | /* _bt_unlink_halfdead_page already released buffer */ |
| 1487 | return ndeleted; |
| 1488 | } |
| 1489 | ndeleted++; |
| 1490 | } |
| 1491 | |
| 1492 | rightsib = opaque->btpo_next; |
| 1493 | |
| 1494 | _bt_relbuf(rel, buf); |
| 1495 | |
| 1496 | /* |
| 1497 | * Check here, as calling loops will have locks held, preventing |
| 1498 | * interrupts from being processed. |
| 1499 | */ |
| 1500 | CHECK_FOR_INTERRUPTS(); |
| 1501 | |
| 1502 | /* |
| 1503 | * The page has now been deleted. If its right sibling is completely |
| 1504 | * empty, it's possible that the reason we haven't deleted it earlier |
| 1505 | * is that it was the rightmost child of the parent. Now that we |
| 1506 | * removed the downlink for this page, the right sibling might now be |
| 1507 | * the only child of the parent, and could be removed. It would be |
| 1508 | * picked up by the next vacuum anyway, but might as well try to |
| 1509 | * remove it now, so loop back to process the right sibling. |
| 1510 | */ |
| 1511 | if (!rightsib_empty) |
| 1512 | break; |
| 1513 | |
| 1514 | buf = _bt_getbuf(rel, rightsib, BT_WRITE); |
| 1515 | } |
| 1516 | |
| 1517 | return ndeleted; |
| 1518 | } |
| 1519 | |
| 1520 | /* |
| 1521 | * First stage of page deletion. Remove the downlink to the top of the |
| 1522 | * branch being deleted, and mark the leaf page as half-dead. |
| 1523 | */ |
| 1524 | static bool |
| 1525 | _bt_mark_page_halfdead(Relation rel, Buffer leafbuf, BTStack stack) |
| 1526 | { |
| 1527 | BlockNumber leafblkno; |
| 1528 | BlockNumber leafrightsib; |
| 1529 | BlockNumber target; |
| 1530 | BlockNumber rightsib; |
| 1531 | ItemId itemid; |
| 1532 | Page page; |
| 1533 | BTPageOpaque opaque; |
| 1534 | Buffer topparent; |
| 1535 | OffsetNumber topoff; |
| 1536 | OffsetNumber nextoffset; |
| 1537 | IndexTuple itup; |
| 1538 | IndexTupleData trunctuple; |
| 1539 | |
| 1540 | page = BufferGetPage(leafbuf); |
| 1541 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1542 | |
| 1543 | Assert(!P_RIGHTMOST(opaque) && !P_ISROOT(opaque) && !P_ISDELETED(opaque) && |
| 1544 | !P_ISHALFDEAD(opaque) && P_ISLEAF(opaque) && |
| 1545 | P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page)); |
| 1546 | |
| 1547 | /* |
| 1548 | * Save info about the leaf page. |
| 1549 | */ |
| 1550 | leafblkno = BufferGetBlockNumber(leafbuf); |
| 1551 | leafrightsib = opaque->btpo_next; |
| 1552 | |
| 1553 | /* |
| 1554 | * Before attempting to lock the parent page, check that the right sibling |
| 1555 | * is not in half-dead state. A half-dead right sibling would have no |
| 1556 | * downlink in the parent, which would be highly confusing later when we |
| 1557 | * delete the downlink that follows the current page's downlink. (I |
| 1558 | * believe the deletion would work correctly, but it would fail the |
| 1559 | * cross-check we make that the following downlink points to the right |
| 1560 | * sibling of the delete page.) |
| 1561 | */ |
| 1562 | if (_bt_is_page_halfdead(rel, leafrightsib)) |
| 1563 | { |
| 1564 | elog(DEBUG1, "could not delete page %u because its right sibling %u is half-dead" , |
| 1565 | leafblkno, leafrightsib); |
| 1566 | return false; |
| 1567 | } |
| 1568 | |
| 1569 | /* |
| 1570 | * We cannot delete a page that is the rightmost child of its immediate |
| 1571 | * parent, unless it is the only child --- in which case the parent has to |
| 1572 | * be deleted too, and the same condition applies recursively to it. We |
| 1573 | * have to check this condition all the way up before trying to delete, |
| 1574 | * and lock the final parent of the to-be-deleted subtree. |
| 1575 | * |
| 1576 | * However, we won't need to repeat the above _bt_is_page_halfdead() check |
| 1577 | * for parent/ancestor pages because of the rightmost restriction. The |
| 1578 | * leaf check will apply to a right "cousin" leaf page rather than a |
| 1579 | * simple right sibling leaf page in cases where we actually go on to |
| 1580 | * perform internal page deletion. The right cousin leaf page is |
| 1581 | * representative of the left edge of the subtree to the right of the |
| 1582 | * to-be-deleted subtree as a whole. (Besides, internal pages are never |
| 1583 | * marked half-dead, so it isn't even possible to directly assess if an |
| 1584 | * internal page is part of some other to-be-deleted subtree.) |
| 1585 | */ |
| 1586 | rightsib = leafrightsib; |
| 1587 | target = leafblkno; |
| 1588 | if (!_bt_lock_branch_parent(rel, leafblkno, stack, |
| 1589 | &topparent, &topoff, &target, &rightsib)) |
| 1590 | return false; |
| 1591 | |
| 1592 | /* |
| 1593 | * Check that the parent-page index items we're about to delete/overwrite |
| 1594 | * contain what we expect. This can fail if the index has become corrupt |
| 1595 | * for some reason. We want to throw any error before entering the |
| 1596 | * critical section --- otherwise it'd be a PANIC. |
| 1597 | * |
| 1598 | * The test on the target item is just an Assert because |
| 1599 | * _bt_lock_branch_parent should have guaranteed it has the expected |
| 1600 | * contents. The test on the next-child downlink is known to sometimes |
| 1601 | * fail in the field, though. |
| 1602 | */ |
| 1603 | page = BufferGetPage(topparent); |
| 1604 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1605 | |
| 1606 | #ifdef USE_ASSERT_CHECKING |
| 1607 | itemid = PageGetItemId(page, topoff); |
| 1608 | itup = (IndexTuple) PageGetItem(page, itemid); |
| 1609 | Assert(BTreeInnerTupleGetDownLink(itup) == target); |
| 1610 | #endif |
| 1611 | |
| 1612 | nextoffset = OffsetNumberNext(topoff); |
| 1613 | itemid = PageGetItemId(page, nextoffset); |
| 1614 | itup = (IndexTuple) PageGetItem(page, itemid); |
| 1615 | if (BTreeInnerTupleGetDownLink(itup) != rightsib) |
| 1616 | elog(ERROR, "right sibling %u of block %u is not next child %u of block %u in index \"%s\"" , |
| 1617 | rightsib, target, BTreeInnerTupleGetDownLink(itup), |
| 1618 | BufferGetBlockNumber(topparent), RelationGetRelationName(rel)); |
| 1619 | |
| 1620 | /* |
| 1621 | * Any insert which would have gone on the leaf block will now go to its |
| 1622 | * right sibling. |
| 1623 | */ |
| 1624 | PredicateLockPageCombine(rel, leafblkno, leafrightsib); |
| 1625 | |
| 1626 | /* No ereport(ERROR) until changes are logged */ |
| 1627 | START_CRIT_SECTION(); |
| 1628 | |
| 1629 | /* |
| 1630 | * Update parent. The normal case is a tad tricky because we want to |
| 1631 | * delete the target's downlink and the *following* key. Easiest way is |
| 1632 | * to copy the right sibling's downlink over the target downlink, and then |
| 1633 | * delete the following item. |
| 1634 | */ |
| 1635 | page = BufferGetPage(topparent); |
| 1636 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1637 | |
| 1638 | itemid = PageGetItemId(page, topoff); |
| 1639 | itup = (IndexTuple) PageGetItem(page, itemid); |
| 1640 | BTreeInnerTupleSetDownLink(itup, rightsib); |
| 1641 | |
| 1642 | nextoffset = OffsetNumberNext(topoff); |
| 1643 | PageIndexTupleDelete(page, nextoffset); |
| 1644 | |
| 1645 | /* |
| 1646 | * Mark the leaf page as half-dead, and stamp it with a pointer to the |
| 1647 | * highest internal page in the branch we're deleting. We use the tid of |
| 1648 | * the high key to store it. |
| 1649 | */ |
| 1650 | page = BufferGetPage(leafbuf); |
| 1651 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1652 | opaque->btpo_flags |= BTP_HALF_DEAD; |
| 1653 | |
| 1654 | PageIndexTupleDelete(page, P_HIKEY); |
| 1655 | Assert(PageGetMaxOffsetNumber(page) == 0); |
| 1656 | MemSet(&trunctuple, 0, sizeof(IndexTupleData)); |
| 1657 | trunctuple.t_info = sizeof(IndexTupleData); |
| 1658 | if (target != leafblkno) |
| 1659 | BTreeTupleSetTopParent(&trunctuple, target); |
| 1660 | else |
| 1661 | BTreeTupleSetTopParent(&trunctuple, InvalidBlockNumber); |
| 1662 | |
| 1663 | if (PageAddItem(page, (Item) &trunctuple, sizeof(IndexTupleData), P_HIKEY, |
| 1664 | false, false) == InvalidOffsetNumber) |
| 1665 | elog(ERROR, "could not add dummy high key to half-dead page" ); |
| 1666 | |
| 1667 | /* Must mark buffers dirty before XLogInsert */ |
| 1668 | MarkBufferDirty(topparent); |
| 1669 | MarkBufferDirty(leafbuf); |
| 1670 | |
| 1671 | /* XLOG stuff */ |
| 1672 | if (RelationNeedsWAL(rel)) |
| 1673 | { |
| 1674 | xl_btree_mark_page_halfdead xlrec; |
| 1675 | XLogRecPtr recptr; |
| 1676 | |
| 1677 | xlrec.poffset = topoff; |
| 1678 | xlrec.leafblk = leafblkno; |
| 1679 | if (target != leafblkno) |
| 1680 | xlrec.topparent = target; |
| 1681 | else |
| 1682 | xlrec.topparent = InvalidBlockNumber; |
| 1683 | |
| 1684 | XLogBeginInsert(); |
| 1685 | XLogRegisterBuffer(0, leafbuf, REGBUF_WILL_INIT); |
| 1686 | XLogRegisterBuffer(1, topparent, REGBUF_STANDARD); |
| 1687 | |
| 1688 | page = BufferGetPage(leafbuf); |
| 1689 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1690 | xlrec.leftblk = opaque->btpo_prev; |
| 1691 | xlrec.rightblk = opaque->btpo_next; |
| 1692 | |
| 1693 | XLogRegisterData((char *) &xlrec, SizeOfBtreeMarkPageHalfDead); |
| 1694 | |
| 1695 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_MARK_PAGE_HALFDEAD); |
| 1696 | |
| 1697 | page = BufferGetPage(topparent); |
| 1698 | PageSetLSN(page, recptr); |
| 1699 | page = BufferGetPage(leafbuf); |
| 1700 | PageSetLSN(page, recptr); |
| 1701 | } |
| 1702 | |
| 1703 | END_CRIT_SECTION(); |
| 1704 | |
| 1705 | _bt_relbuf(rel, topparent); |
| 1706 | return true; |
| 1707 | } |
| 1708 | |
| 1709 | /* |
| 1710 | * Unlink a page in a branch of half-dead pages from its siblings. |
| 1711 | * |
| 1712 | * If the leaf page still has a downlink pointing to it, unlinks the highest |
| 1713 | * parent in the to-be-deleted branch instead of the leaf page. To get rid |
| 1714 | * of the whole branch, including the leaf page itself, iterate until the |
| 1715 | * leaf page is deleted. |
| 1716 | * |
| 1717 | * Returns 'false' if the page could not be unlinked (shouldn't happen). |
| 1718 | * If the (new) right sibling of the page is empty, *rightsib_empty is set |
| 1719 | * to true. |
| 1720 | * |
| 1721 | * Must hold pin and lock on leafbuf at entry (read or write doesn't matter). |
| 1722 | * On success exit, we'll be holding pin and write lock. On failure exit, |
| 1723 | * we'll release both pin and lock before returning (we define it that way |
| 1724 | * to avoid having to reacquire a lock we already released). |
| 1725 | */ |
| 1726 | static bool |
| 1727 | _bt_unlink_halfdead_page(Relation rel, Buffer leafbuf, bool *rightsib_empty) |
| 1728 | { |
| 1729 | BlockNumber leafblkno = BufferGetBlockNumber(leafbuf); |
| 1730 | BlockNumber leafleftsib; |
| 1731 | BlockNumber leafrightsib; |
| 1732 | BlockNumber target; |
| 1733 | BlockNumber leftsib; |
| 1734 | BlockNumber rightsib; |
| 1735 | Buffer lbuf = InvalidBuffer; |
| 1736 | Buffer buf; |
| 1737 | Buffer rbuf; |
| 1738 | Buffer metabuf = InvalidBuffer; |
| 1739 | Page metapg = NULL; |
| 1740 | BTMetaPageData *metad = NULL; |
| 1741 | ItemId itemid; |
| 1742 | Page page; |
| 1743 | BTPageOpaque opaque; |
| 1744 | bool rightsib_is_rightmost; |
| 1745 | int targetlevel; |
| 1746 | IndexTuple leafhikey; |
| 1747 | BlockNumber nextchild; |
| 1748 | |
| 1749 | page = BufferGetPage(leafbuf); |
| 1750 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1751 | |
| 1752 | Assert(P_ISLEAF(opaque) && P_ISHALFDEAD(opaque)); |
| 1753 | |
| 1754 | /* |
| 1755 | * Remember some information about the leaf page. |
| 1756 | */ |
| 1757 | itemid = PageGetItemId(page, P_HIKEY); |
| 1758 | leafhikey = (IndexTuple) PageGetItem(page, itemid); |
| 1759 | leafleftsib = opaque->btpo_prev; |
| 1760 | leafrightsib = opaque->btpo_next; |
| 1761 | |
| 1762 | LockBuffer(leafbuf, BUFFER_LOCK_UNLOCK); |
| 1763 | |
| 1764 | /* |
| 1765 | * Check here, as calling loops will have locks held, preventing |
| 1766 | * interrupts from being processed. |
| 1767 | */ |
| 1768 | CHECK_FOR_INTERRUPTS(); |
| 1769 | |
| 1770 | /* |
| 1771 | * If the leaf page still has a parent pointing to it (or a chain of |
| 1772 | * parents), we don't unlink the leaf page yet, but the topmost remaining |
| 1773 | * parent in the branch. Set 'target' and 'buf' to reference the page |
| 1774 | * actually being unlinked. |
| 1775 | */ |
| 1776 | target = BTreeTupleGetTopParent(leafhikey); |
| 1777 | |
| 1778 | if (target != InvalidBlockNumber) |
| 1779 | { |
| 1780 | Assert(target != leafblkno); |
| 1781 | |
| 1782 | /* fetch the block number of the topmost parent's left sibling */ |
| 1783 | buf = _bt_getbuf(rel, target, BT_READ); |
| 1784 | page = BufferGetPage(buf); |
| 1785 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1786 | leftsib = opaque->btpo_prev; |
| 1787 | targetlevel = opaque->btpo.level; |
| 1788 | |
| 1789 | /* |
| 1790 | * To avoid deadlocks, we'd better drop the target page lock before |
| 1791 | * going further. |
| 1792 | */ |
| 1793 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 1794 | } |
| 1795 | else |
| 1796 | { |
| 1797 | target = leafblkno; |
| 1798 | |
| 1799 | buf = leafbuf; |
| 1800 | leftsib = leafleftsib; |
| 1801 | targetlevel = 0; |
| 1802 | } |
| 1803 | |
| 1804 | /* |
| 1805 | * We have to lock the pages we need to modify in the standard order: |
| 1806 | * moving right, then up. Else we will deadlock against other writers. |
| 1807 | * |
| 1808 | * So, first lock the leaf page, if it's not the target. Then find and |
| 1809 | * write-lock the current left sibling of the target page. The sibling |
| 1810 | * that was current a moment ago could have split, so we may have to move |
| 1811 | * right. This search could fail if either the sibling or the target page |
| 1812 | * was deleted by someone else meanwhile; if so, give up. (Right now, |
| 1813 | * that should never happen, since page deletion is only done in VACUUM |
| 1814 | * and there shouldn't be multiple VACUUMs concurrently on the same |
| 1815 | * table.) |
| 1816 | */ |
| 1817 | if (target != leafblkno) |
| 1818 | LockBuffer(leafbuf, BT_WRITE); |
| 1819 | if (leftsib != P_NONE) |
| 1820 | { |
| 1821 | lbuf = _bt_getbuf(rel, leftsib, BT_WRITE); |
| 1822 | page = BufferGetPage(lbuf); |
| 1823 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1824 | while (P_ISDELETED(opaque) || opaque->btpo_next != target) |
| 1825 | { |
| 1826 | /* step right one page */ |
| 1827 | leftsib = opaque->btpo_next; |
| 1828 | _bt_relbuf(rel, lbuf); |
| 1829 | |
| 1830 | /* |
| 1831 | * It'd be good to check for interrupts here, but it's not easy to |
| 1832 | * do so because a lock is always held. This block isn't |
| 1833 | * frequently reached, so hopefully the consequences of not |
| 1834 | * checking interrupts aren't too bad. |
| 1835 | */ |
| 1836 | |
| 1837 | if (leftsib == P_NONE) |
| 1838 | { |
| 1839 | elog(LOG, "no left sibling (concurrent deletion?) of block %u in \"%s\"" , |
| 1840 | target, |
| 1841 | RelationGetRelationName(rel)); |
| 1842 | if (target != leafblkno) |
| 1843 | { |
| 1844 | /* we have only a pin on target, but pin+lock on leafbuf */ |
| 1845 | ReleaseBuffer(buf); |
| 1846 | _bt_relbuf(rel, leafbuf); |
| 1847 | } |
| 1848 | else |
| 1849 | { |
| 1850 | /* we have only a pin on leafbuf */ |
| 1851 | ReleaseBuffer(leafbuf); |
| 1852 | } |
| 1853 | return false; |
| 1854 | } |
| 1855 | lbuf = _bt_getbuf(rel, leftsib, BT_WRITE); |
| 1856 | page = BufferGetPage(lbuf); |
| 1857 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1858 | } |
| 1859 | } |
| 1860 | else |
| 1861 | lbuf = InvalidBuffer; |
| 1862 | |
| 1863 | /* |
| 1864 | * Next write-lock the target page itself. It should be okay to take just |
| 1865 | * a write lock not a superexclusive lock, since no scans would stop on an |
| 1866 | * empty page. |
| 1867 | */ |
| 1868 | LockBuffer(buf, BT_WRITE); |
| 1869 | page = BufferGetPage(buf); |
| 1870 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1871 | |
| 1872 | /* |
| 1873 | * Check page is still empty etc, else abandon deletion. This is just for |
| 1874 | * paranoia's sake; a half-dead page cannot resurrect because there can be |
| 1875 | * only one vacuum process running at a time. |
| 1876 | */ |
| 1877 | if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque)) |
| 1878 | { |
| 1879 | elog(ERROR, "half-dead page changed status unexpectedly in block %u of index \"%s\"" , |
| 1880 | target, RelationGetRelationName(rel)); |
| 1881 | } |
| 1882 | if (opaque->btpo_prev != leftsib) |
| 1883 | elog(ERROR, "left link changed unexpectedly in block %u of index \"%s\"" , |
| 1884 | target, RelationGetRelationName(rel)); |
| 1885 | |
| 1886 | if (target == leafblkno) |
| 1887 | { |
| 1888 | if (P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page) || |
| 1889 | !P_ISLEAF(opaque) || !P_ISHALFDEAD(opaque)) |
| 1890 | elog(ERROR, "half-dead page changed status unexpectedly in block %u of index \"%s\"" , |
| 1891 | target, RelationGetRelationName(rel)); |
| 1892 | nextchild = InvalidBlockNumber; |
| 1893 | } |
| 1894 | else |
| 1895 | { |
| 1896 | if (P_FIRSTDATAKEY(opaque) != PageGetMaxOffsetNumber(page) || |
| 1897 | P_ISLEAF(opaque)) |
| 1898 | elog(ERROR, "half-dead page changed status unexpectedly in block %u of index \"%s\"" , |
| 1899 | target, RelationGetRelationName(rel)); |
| 1900 | |
| 1901 | /* remember the next non-leaf child down in the branch. */ |
| 1902 | itemid = PageGetItemId(page, P_FIRSTDATAKEY(opaque)); |
| 1903 | nextchild = BTreeInnerTupleGetDownLink((IndexTuple) PageGetItem(page, itemid)); |
| 1904 | if (nextchild == leafblkno) |
| 1905 | nextchild = InvalidBlockNumber; |
| 1906 | } |
| 1907 | |
| 1908 | /* |
| 1909 | * And next write-lock the (current) right sibling. |
| 1910 | */ |
| 1911 | rightsib = opaque->btpo_next; |
| 1912 | rbuf = _bt_getbuf(rel, rightsib, BT_WRITE); |
| 1913 | page = BufferGetPage(rbuf); |
| 1914 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1915 | if (opaque->btpo_prev != target) |
| 1916 | elog(ERROR, "right sibling's left-link doesn't match: " |
| 1917 | "block %u links to %u instead of expected %u in index \"%s\"" , |
| 1918 | rightsib, opaque->btpo_prev, target, |
| 1919 | RelationGetRelationName(rel)); |
| 1920 | rightsib_is_rightmost = P_RIGHTMOST(opaque); |
| 1921 | *rightsib_empty = (P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page)); |
| 1922 | |
| 1923 | /* |
| 1924 | * If we are deleting the next-to-last page on the target's level, then |
| 1925 | * the rightsib is a candidate to become the new fast root. (In theory, it |
| 1926 | * might be possible to push the fast root even further down, but the odds |
| 1927 | * of doing so are slim, and the locking considerations daunting.) |
| 1928 | * |
| 1929 | * We don't support handling this in the case where the parent is becoming |
| 1930 | * half-dead, even though it theoretically could occur. |
| 1931 | * |
| 1932 | * We can safely acquire a lock on the metapage here --- see comments for |
| 1933 | * _bt_newroot(). |
| 1934 | */ |
| 1935 | if (leftsib == P_NONE && rightsib_is_rightmost) |
| 1936 | { |
| 1937 | page = BufferGetPage(rbuf); |
| 1938 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1939 | if (P_RIGHTMOST(opaque)) |
| 1940 | { |
| 1941 | /* rightsib will be the only one left on the level */ |
| 1942 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE); |
| 1943 | metapg = BufferGetPage(metabuf); |
| 1944 | metad = BTPageGetMeta(metapg); |
| 1945 | |
| 1946 | /* |
| 1947 | * The expected case here is btm_fastlevel == targetlevel+1; if |
| 1948 | * the fastlevel is <= targetlevel, something is wrong, and we |
| 1949 | * choose to overwrite it to fix it. |
| 1950 | */ |
| 1951 | if (metad->btm_fastlevel > targetlevel + 1) |
| 1952 | { |
| 1953 | /* no update wanted */ |
| 1954 | _bt_relbuf(rel, metabuf); |
| 1955 | metabuf = InvalidBuffer; |
| 1956 | } |
| 1957 | } |
| 1958 | } |
| 1959 | |
| 1960 | /* |
| 1961 | * Here we begin doing the deletion. |
| 1962 | */ |
| 1963 | |
| 1964 | /* No ereport(ERROR) until changes are logged */ |
| 1965 | START_CRIT_SECTION(); |
| 1966 | |
| 1967 | /* |
| 1968 | * Update siblings' side-links. Note the target page's side-links will |
| 1969 | * continue to point to the siblings. Asserts here are just rechecking |
| 1970 | * things we already verified above. |
| 1971 | */ |
| 1972 | if (BufferIsValid(lbuf)) |
| 1973 | { |
| 1974 | page = BufferGetPage(lbuf); |
| 1975 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1976 | Assert(opaque->btpo_next == target); |
| 1977 | opaque->btpo_next = rightsib; |
| 1978 | } |
| 1979 | page = BufferGetPage(rbuf); |
| 1980 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1981 | Assert(opaque->btpo_prev == target); |
| 1982 | opaque->btpo_prev = leftsib; |
| 1983 | |
| 1984 | /* |
| 1985 | * If we deleted a parent of the targeted leaf page, instead of the leaf |
| 1986 | * itself, update the leaf to point to the next remaining child in the |
| 1987 | * branch. |
| 1988 | */ |
| 1989 | if (target != leafblkno) |
| 1990 | BTreeTupleSetTopParent(leafhikey, nextchild); |
| 1991 | |
| 1992 | /* |
| 1993 | * Mark the page itself deleted. It can be recycled when all current |
| 1994 | * transactions are gone. Storing GetTopTransactionId() would work, but |
| 1995 | * we're in VACUUM and would not otherwise have an XID. Having already |
| 1996 | * updated links to the target, ReadNewTransactionId() suffices as an |
| 1997 | * upper bound. Any scan having retained a now-stale link is advertising |
| 1998 | * in its PGXACT an xmin less than or equal to the value we read here. It |
| 1999 | * will continue to do so, holding back RecentGlobalXmin, for the duration |
| 2000 | * of that scan. |
| 2001 | */ |
| 2002 | page = BufferGetPage(buf); |
| 2003 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2004 | opaque->btpo_flags &= ~BTP_HALF_DEAD; |
| 2005 | opaque->btpo_flags |= BTP_DELETED; |
| 2006 | opaque->btpo.xact = ReadNewTransactionId(); |
| 2007 | |
| 2008 | /* And update the metapage, if needed */ |
| 2009 | if (BufferIsValid(metabuf)) |
| 2010 | { |
| 2011 | /* upgrade metapage if needed */ |
| 2012 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
| 2013 | _bt_upgrademetapage(metapg); |
| 2014 | metad->btm_fastroot = rightsib; |
| 2015 | metad->btm_fastlevel = targetlevel; |
| 2016 | MarkBufferDirty(metabuf); |
| 2017 | } |
| 2018 | |
| 2019 | /* Must mark buffers dirty before XLogInsert */ |
| 2020 | MarkBufferDirty(rbuf); |
| 2021 | MarkBufferDirty(buf); |
| 2022 | if (BufferIsValid(lbuf)) |
| 2023 | MarkBufferDirty(lbuf); |
| 2024 | if (target != leafblkno) |
| 2025 | MarkBufferDirty(leafbuf); |
| 2026 | |
| 2027 | /* XLOG stuff */ |
| 2028 | if (RelationNeedsWAL(rel)) |
| 2029 | { |
| 2030 | xl_btree_unlink_page xlrec; |
| 2031 | xl_btree_metadata xlmeta; |
| 2032 | uint8 xlinfo; |
| 2033 | XLogRecPtr recptr; |
| 2034 | |
| 2035 | XLogBeginInsert(); |
| 2036 | |
| 2037 | XLogRegisterBuffer(0, buf, REGBUF_WILL_INIT); |
| 2038 | if (BufferIsValid(lbuf)) |
| 2039 | XLogRegisterBuffer(1, lbuf, REGBUF_STANDARD); |
| 2040 | XLogRegisterBuffer(2, rbuf, REGBUF_STANDARD); |
| 2041 | if (target != leafblkno) |
| 2042 | XLogRegisterBuffer(3, leafbuf, REGBUF_WILL_INIT); |
| 2043 | |
| 2044 | /* information on the unlinked block */ |
| 2045 | xlrec.leftsib = leftsib; |
| 2046 | xlrec.rightsib = rightsib; |
| 2047 | xlrec.btpo_xact = opaque->btpo.xact; |
| 2048 | |
| 2049 | /* information needed to recreate the leaf block (if not the target) */ |
| 2050 | xlrec.leafleftsib = leafleftsib; |
| 2051 | xlrec.leafrightsib = leafrightsib; |
| 2052 | xlrec.topparent = nextchild; |
| 2053 | |
| 2054 | XLogRegisterData((char *) &xlrec, SizeOfBtreeUnlinkPage); |
| 2055 | |
| 2056 | if (BufferIsValid(metabuf)) |
| 2057 | { |
| 2058 | XLogRegisterBuffer(4, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
| 2059 | |
| 2060 | Assert(metad->btm_version >= BTREE_NOVAC_VERSION); |
| 2061 | xlmeta.version = metad->btm_version; |
| 2062 | xlmeta.root = metad->btm_root; |
| 2063 | xlmeta.level = metad->btm_level; |
| 2064 | xlmeta.fastroot = metad->btm_fastroot; |
| 2065 | xlmeta.fastlevel = metad->btm_fastlevel; |
| 2066 | xlmeta.oldest_btpo_xact = metad->btm_oldest_btpo_xact; |
| 2067 | xlmeta.last_cleanup_num_heap_tuples = metad->btm_last_cleanup_num_heap_tuples; |
| 2068 | |
| 2069 | XLogRegisterBufData(4, (char *) &xlmeta, sizeof(xl_btree_metadata)); |
| 2070 | xlinfo = XLOG_BTREE_UNLINK_PAGE_META; |
| 2071 | } |
| 2072 | else |
| 2073 | xlinfo = XLOG_BTREE_UNLINK_PAGE; |
| 2074 | |
| 2075 | recptr = XLogInsert(RM_BTREE_ID, xlinfo); |
| 2076 | |
| 2077 | if (BufferIsValid(metabuf)) |
| 2078 | { |
| 2079 | PageSetLSN(metapg, recptr); |
| 2080 | } |
| 2081 | page = BufferGetPage(rbuf); |
| 2082 | PageSetLSN(page, recptr); |
| 2083 | page = BufferGetPage(buf); |
| 2084 | PageSetLSN(page, recptr); |
| 2085 | if (BufferIsValid(lbuf)) |
| 2086 | { |
| 2087 | page = BufferGetPage(lbuf); |
| 2088 | PageSetLSN(page, recptr); |
| 2089 | } |
| 2090 | if (target != leafblkno) |
| 2091 | { |
| 2092 | page = BufferGetPage(leafbuf); |
| 2093 | PageSetLSN(page, recptr); |
| 2094 | } |
| 2095 | } |
| 2096 | |
| 2097 | END_CRIT_SECTION(); |
| 2098 | |
| 2099 | /* release metapage */ |
| 2100 | if (BufferIsValid(metabuf)) |
| 2101 | _bt_relbuf(rel, metabuf); |
| 2102 | |
| 2103 | /* release siblings */ |
| 2104 | if (BufferIsValid(lbuf)) |
| 2105 | _bt_relbuf(rel, lbuf); |
| 2106 | _bt_relbuf(rel, rbuf); |
| 2107 | |
| 2108 | /* |
| 2109 | * Release the target, if it was not the leaf block. The leaf is always |
| 2110 | * kept locked. |
| 2111 | */ |
| 2112 | if (target != leafblkno) |
| 2113 | _bt_relbuf(rel, buf); |
| 2114 | |
| 2115 | return true; |
| 2116 | } |
| 2117 | |