| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nbtsearch.c |
| 4 | * Search code for postgres btrees. |
| 5 | * |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/access/nbtree/nbtsearch.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include "access/nbtree.h" |
| 19 | #include "access/relscan.h" |
| 20 | #include "miscadmin.h" |
| 21 | #include "pgstat.h" |
| 22 | #include "storage/predicate.h" |
| 23 | #include "utils/lsyscache.h" |
| 24 | #include "utils/rel.h" |
| 25 | |
| 26 | |
| 27 | static void _bt_drop_lock_and_maybe_pin(IndexScanDesc scan, BTScanPos sp); |
| 28 | static OffsetNumber _bt_binsrch(Relation rel, BTScanInsert key, Buffer buf); |
| 29 | static bool _bt_readpage(IndexScanDesc scan, ScanDirection dir, |
| 30 | OffsetNumber offnum); |
| 31 | static void _bt_saveitem(BTScanOpaque so, int itemIndex, |
| 32 | OffsetNumber offnum, IndexTuple itup); |
| 33 | static bool _bt_steppage(IndexScanDesc scan, ScanDirection dir); |
| 34 | static bool _bt_readnextpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir); |
| 35 | static bool _bt_parallel_readpage(IndexScanDesc scan, BlockNumber blkno, |
| 36 | ScanDirection dir); |
| 37 | static Buffer _bt_walk_left(Relation rel, Buffer buf, Snapshot snapshot); |
| 38 | static bool _bt_endpoint(IndexScanDesc scan, ScanDirection dir); |
| 39 | static inline void _bt_initialize_more_data(BTScanOpaque so, ScanDirection dir); |
| 40 | |
| 41 | |
| 42 | /* |
| 43 | * _bt_drop_lock_and_maybe_pin() |
| 44 | * |
| 45 | * Unlock the buffer; and if it is safe to release the pin, do that, too. It |
| 46 | * is safe if the scan is using an MVCC snapshot and the index is WAL-logged. |
| 47 | * This will prevent vacuum from stalling in a blocked state trying to read a |
| 48 | * page when a cursor is sitting on it -- at least in many important cases. |
| 49 | * |
| 50 | * Set the buffer to invalid if the pin is released, since the buffer may be |
| 51 | * re-used. If we need to go back to this block (for example, to apply |
| 52 | * LP_DEAD hints) we must get a fresh reference to the buffer. Hopefully it |
| 53 | * will remain in shared memory for as long as it takes to scan the index |
| 54 | * buffer page. |
| 55 | */ |
| 56 | static void |
| 57 | _bt_drop_lock_and_maybe_pin(IndexScanDesc scan, BTScanPos sp) |
| 58 | { |
| 59 | LockBuffer(sp->buf, BUFFER_LOCK_UNLOCK); |
| 60 | |
| 61 | if (IsMVCCSnapshot(scan->xs_snapshot) && |
| 62 | RelationNeedsWAL(scan->indexRelation) && |
| 63 | !scan->xs_want_itup) |
| 64 | { |
| 65 | ReleaseBuffer(sp->buf); |
| 66 | sp->buf = InvalidBuffer; |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | * _bt_search() -- Search the tree for a particular scankey, |
| 72 | * or more precisely for the first leaf page it could be on. |
| 73 | * |
| 74 | * The passed scankey is an insertion-type scankey (see nbtree/README), |
| 75 | * but it can omit the rightmost column(s) of the index. |
| 76 | * |
| 77 | * Return value is a stack of parent-page pointers. *bufP is set to the |
| 78 | * address of the leaf-page buffer, which is read-locked and pinned. |
| 79 | * No locks are held on the parent pages, however! |
| 80 | * |
| 81 | * If the snapshot parameter is not NULL, "old snapshot" checking will take |
| 82 | * place during the descent through the tree. This is not needed when |
| 83 | * positioning for an insert or delete, so NULL is used for those cases. |
| 84 | * |
| 85 | * The returned buffer is locked according to access parameter. Additionally, |
| 86 | * access = BT_WRITE will allow an empty root page to be created and returned. |
| 87 | * When access = BT_READ, an empty index will result in *bufP being set to |
| 88 | * InvalidBuffer. Also, in BT_WRITE mode, any incomplete splits encountered |
| 89 | * during the search will be finished. |
| 90 | */ |
| 91 | BTStack |
| 92 | _bt_search(Relation rel, BTScanInsert key, Buffer *bufP, int access, |
| 93 | Snapshot snapshot) |
| 94 | { |
| 95 | BTStack stack_in = NULL; |
| 96 | int page_access = BT_READ; |
| 97 | |
| 98 | /* Get the root page to start with */ |
| 99 | *bufP = _bt_getroot(rel, access); |
| 100 | |
| 101 | /* If index is empty and access = BT_READ, no root page is created. */ |
| 102 | if (!BufferIsValid(*bufP)) |
| 103 | return (BTStack) NULL; |
| 104 | |
| 105 | /* Loop iterates once per level descended in the tree */ |
| 106 | for (;;) |
| 107 | { |
| 108 | Page page; |
| 109 | BTPageOpaque opaque; |
| 110 | OffsetNumber offnum; |
| 111 | ItemId itemid; |
| 112 | IndexTuple itup; |
| 113 | BlockNumber blkno; |
| 114 | BlockNumber par_blkno; |
| 115 | BTStack new_stack; |
| 116 | |
| 117 | /* |
| 118 | * Race -- the page we just grabbed may have split since we read its |
| 119 | * pointer in the parent (or metapage). If it has, we may need to |
| 120 | * move right to its new sibling. Do that. |
| 121 | * |
| 122 | * In write-mode, allow _bt_moveright to finish any incomplete splits |
| 123 | * along the way. Strictly speaking, we'd only need to finish an |
| 124 | * incomplete split on the leaf page we're about to insert to, not on |
| 125 | * any of the upper levels (they are taken care of in _bt_getstackbuf, |
| 126 | * if the leaf page is split and we insert to the parent page). But |
| 127 | * this is a good opportunity to finish splits of internal pages too. |
| 128 | */ |
| 129 | *bufP = _bt_moveright(rel, key, *bufP, (access == BT_WRITE), stack_in, |
| 130 | page_access, snapshot); |
| 131 | |
| 132 | /* if this is a leaf page, we're done */ |
| 133 | page = BufferGetPage(*bufP); |
| 134 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 135 | if (P_ISLEAF(opaque)) |
| 136 | break; |
| 137 | |
| 138 | /* |
| 139 | * Find the appropriate item on the internal page, and get the child |
| 140 | * page that it points to. |
| 141 | */ |
| 142 | offnum = _bt_binsrch(rel, key, *bufP); |
| 143 | itemid = PageGetItemId(page, offnum); |
| 144 | itup = (IndexTuple) PageGetItem(page, itemid); |
| 145 | blkno = BTreeInnerTupleGetDownLink(itup); |
| 146 | par_blkno = BufferGetBlockNumber(*bufP); |
| 147 | |
| 148 | /* |
| 149 | * We need to save the location of the index entry we chose in the |
| 150 | * parent page on a stack. In case we split the tree, we'll use the |
| 151 | * stack to work back up to the parent page. We also save the actual |
| 152 | * downlink (block) to uniquely identify the index entry, in case it |
| 153 | * moves right while we're working lower in the tree. See the paper |
| 154 | * by Lehman and Yao for how this is detected and handled. (We use the |
| 155 | * child link during the second half of a page split -- if caller ends |
| 156 | * up splitting the child it usually ends up inserting a new pivot |
| 157 | * tuple for child's new right sibling immediately after the original |
| 158 | * bts_offset offset recorded here. The downlink block will be needed |
| 159 | * to check if bts_offset remains the position of this same pivot |
| 160 | * tuple.) |
| 161 | */ |
| 162 | new_stack = (BTStack) palloc(sizeof(BTStackData)); |
| 163 | new_stack->bts_blkno = par_blkno; |
| 164 | new_stack->bts_offset = offnum; |
| 165 | new_stack->bts_btentry = blkno; |
| 166 | new_stack->bts_parent = stack_in; |
| 167 | |
| 168 | /* |
| 169 | * Page level 1 is lowest non-leaf page level prior to leaves. So, if |
| 170 | * we're on the level 1 and asked to lock leaf page in write mode, |
| 171 | * then lock next page in write mode, because it must be a leaf. |
| 172 | */ |
| 173 | if (opaque->btpo.level == 1 && access == BT_WRITE) |
| 174 | page_access = BT_WRITE; |
| 175 | |
| 176 | /* drop the read lock on the parent page, acquire one on the child */ |
| 177 | *bufP = _bt_relandgetbuf(rel, *bufP, blkno, page_access); |
| 178 | |
| 179 | /* okay, all set to move down a level */ |
| 180 | stack_in = new_stack; |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * If we're asked to lock leaf in write mode, but didn't manage to, then |
| 185 | * relock. This should only happen when the root page is a leaf page (and |
| 186 | * the only page in the index other than the metapage). |
| 187 | */ |
| 188 | if (access == BT_WRITE && page_access == BT_READ) |
| 189 | { |
| 190 | /* trade in our read lock for a write lock */ |
| 191 | LockBuffer(*bufP, BUFFER_LOCK_UNLOCK); |
| 192 | LockBuffer(*bufP, BT_WRITE); |
| 193 | |
| 194 | /* |
| 195 | * If the page was split between the time that we surrendered our read |
| 196 | * lock and acquired our write lock, then this page may no longer be |
| 197 | * the right place for the key we want to insert. In this case, we |
| 198 | * need to move right in the tree. See Lehman and Yao for an |
| 199 | * excruciatingly precise description. |
| 200 | */ |
| 201 | *bufP = _bt_moveright(rel, key, *bufP, true, stack_in, BT_WRITE, |
| 202 | snapshot); |
| 203 | } |
| 204 | |
| 205 | return stack_in; |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * _bt_moveright() -- move right in the btree if necessary. |
| 210 | * |
| 211 | * When we follow a pointer to reach a page, it is possible that |
| 212 | * the page has changed in the meanwhile. If this happens, we're |
| 213 | * guaranteed that the page has "split right" -- that is, that any |
| 214 | * data that appeared on the page originally is either on the page |
| 215 | * or strictly to the right of it. |
| 216 | * |
| 217 | * This routine decides whether or not we need to move right in the |
| 218 | * tree by examining the high key entry on the page. If that entry is |
| 219 | * strictly less than the scankey, or <= the scankey in the |
| 220 | * key.nextkey=true case, then we followed the wrong link and we need |
| 221 | * to move right. |
| 222 | * |
| 223 | * The passed insertion-type scankey can omit the rightmost column(s) of the |
| 224 | * index. (see nbtree/README) |
| 225 | * |
| 226 | * When key.nextkey is false (the usual case), we are looking for the first |
| 227 | * item >= key. When key.nextkey is true, we are looking for the first item |
| 228 | * strictly greater than key. |
| 229 | * |
| 230 | * If forupdate is true, we will attempt to finish any incomplete splits |
| 231 | * that we encounter. This is required when locking a target page for an |
| 232 | * insertion, because we don't allow inserting on a page before the split |
| 233 | * is completed. 'stack' is only used if forupdate is true. |
| 234 | * |
| 235 | * On entry, we have the buffer pinned and a lock of the type specified by |
| 236 | * 'access'. If we move right, we release the buffer and lock and acquire |
| 237 | * the same on the right sibling. Return value is the buffer we stop at. |
| 238 | * |
| 239 | * If the snapshot parameter is not NULL, "old snapshot" checking will take |
| 240 | * place during the descent through the tree. This is not needed when |
| 241 | * positioning for an insert or delete, so NULL is used for those cases. |
| 242 | */ |
| 243 | Buffer |
| 244 | _bt_moveright(Relation rel, |
| 245 | BTScanInsert key, |
| 246 | Buffer buf, |
| 247 | bool forupdate, |
| 248 | BTStack stack, |
| 249 | int access, |
| 250 | Snapshot snapshot) |
| 251 | { |
| 252 | Page page; |
| 253 | BTPageOpaque opaque; |
| 254 | int32 cmpval; |
| 255 | |
| 256 | /* |
| 257 | * When nextkey = false (normal case): if the scan key that brought us to |
| 258 | * this page is > the high key stored on the page, then the page has split |
| 259 | * and we need to move right. (pg_upgrade'd !heapkeyspace indexes could |
| 260 | * have some duplicates to the right as well as the left, but that's |
| 261 | * something that's only ever dealt with on the leaf level, after |
| 262 | * _bt_search has found an initial leaf page.) |
| 263 | * |
| 264 | * When nextkey = true: move right if the scan key is >= page's high key. |
| 265 | * (Note that key.scantid cannot be set in this case.) |
| 266 | * |
| 267 | * The page could even have split more than once, so scan as far as |
| 268 | * needed. |
| 269 | * |
| 270 | * We also have to move right if we followed a link that brought us to a |
| 271 | * dead page. |
| 272 | */ |
| 273 | cmpval = key->nextkey ? 0 : 1; |
| 274 | |
| 275 | for (;;) |
| 276 | { |
| 277 | page = BufferGetPage(buf); |
| 278 | TestForOldSnapshot(snapshot, rel, page); |
| 279 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 280 | |
| 281 | if (P_RIGHTMOST(opaque)) |
| 282 | break; |
| 283 | |
| 284 | /* |
| 285 | * Finish any incomplete splits we encounter along the way. |
| 286 | */ |
| 287 | if (forupdate && P_INCOMPLETE_SPLIT(opaque)) |
| 288 | { |
| 289 | BlockNumber blkno = BufferGetBlockNumber(buf); |
| 290 | |
| 291 | /* upgrade our lock if necessary */ |
| 292 | if (access == BT_READ) |
| 293 | { |
| 294 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 295 | LockBuffer(buf, BT_WRITE); |
| 296 | } |
| 297 | |
| 298 | if (P_INCOMPLETE_SPLIT(opaque)) |
| 299 | _bt_finish_split(rel, buf, stack); |
| 300 | else |
| 301 | _bt_relbuf(rel, buf); |
| 302 | |
| 303 | /* re-acquire the lock in the right mode, and re-check */ |
| 304 | buf = _bt_getbuf(rel, blkno, access); |
| 305 | continue; |
| 306 | } |
| 307 | |
| 308 | if (P_IGNORE(opaque) || _bt_compare(rel, key, page, P_HIKEY) >= cmpval) |
| 309 | { |
| 310 | /* step right one page */ |
| 311 | buf = _bt_relandgetbuf(rel, buf, opaque->btpo_next, access); |
| 312 | continue; |
| 313 | } |
| 314 | else |
| 315 | break; |
| 316 | } |
| 317 | |
| 318 | if (P_IGNORE(opaque)) |
| 319 | elog(ERROR, "fell off the end of index \"%s\"" , |
| 320 | RelationGetRelationName(rel)); |
| 321 | |
| 322 | return buf; |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * _bt_binsrch() -- Do a binary search for a key on a particular page. |
| 327 | * |
| 328 | * On a leaf page, _bt_binsrch() returns the OffsetNumber of the first |
| 329 | * key >= given scankey, or > scankey if nextkey is true. (NOTE: in |
| 330 | * particular, this means it is possible to return a value 1 greater than the |
| 331 | * number of keys on the page, if the scankey is > all keys on the page.) |
| 332 | * |
| 333 | * On an internal (non-leaf) page, _bt_binsrch() returns the OffsetNumber |
| 334 | * of the last key < given scankey, or last key <= given scankey if nextkey |
| 335 | * is true. (Since _bt_compare treats the first data key of such a page as |
| 336 | * minus infinity, there will be at least one key < scankey, so the result |
| 337 | * always points at one of the keys on the page.) This key indicates the |
| 338 | * right place to descend to be sure we find all leaf keys >= given scankey |
| 339 | * (or leaf keys > given scankey when nextkey is true). |
| 340 | * |
| 341 | * This procedure is not responsible for walking right, it just examines |
| 342 | * the given page. _bt_binsrch() has no lock or refcount side effects |
| 343 | * on the buffer. |
| 344 | */ |
| 345 | static OffsetNumber |
| 346 | _bt_binsrch(Relation rel, |
| 347 | BTScanInsert key, |
| 348 | Buffer buf) |
| 349 | { |
| 350 | Page page; |
| 351 | BTPageOpaque opaque; |
| 352 | OffsetNumber low, |
| 353 | high; |
| 354 | int32 result, |
| 355 | cmpval; |
| 356 | |
| 357 | /* Requesting nextkey semantics while using scantid seems nonsensical */ |
| 358 | Assert(!key->nextkey || key->scantid == NULL); |
| 359 | |
| 360 | page = BufferGetPage(buf); |
| 361 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 362 | |
| 363 | low = P_FIRSTDATAKEY(opaque); |
| 364 | high = PageGetMaxOffsetNumber(page); |
| 365 | |
| 366 | /* |
| 367 | * If there are no keys on the page, return the first available slot. Note |
| 368 | * this covers two cases: the page is really empty (no keys), or it |
| 369 | * contains only a high key. The latter case is possible after vacuuming. |
| 370 | * This can never happen on an internal page, however, since they are |
| 371 | * never empty (an internal page must have children). |
| 372 | */ |
| 373 | if (unlikely(high < low)) |
| 374 | return low; |
| 375 | |
| 376 | /* |
| 377 | * Binary search to find the first key on the page >= scan key, or first |
| 378 | * key > scankey when nextkey is true. |
| 379 | * |
| 380 | * For nextkey=false (cmpval=1), the loop invariant is: all slots before |
| 381 | * 'low' are < scan key, all slots at or after 'high' are >= scan key. |
| 382 | * |
| 383 | * For nextkey=true (cmpval=0), the loop invariant is: all slots before |
| 384 | * 'low' are <= scan key, all slots at or after 'high' are > scan key. |
| 385 | * |
| 386 | * We can fall out when high == low. |
| 387 | */ |
| 388 | high++; /* establish the loop invariant for high */ |
| 389 | |
| 390 | cmpval = key->nextkey ? 0 : 1; /* select comparison value */ |
| 391 | |
| 392 | while (high > low) |
| 393 | { |
| 394 | OffsetNumber mid = low + ((high - low) / 2); |
| 395 | |
| 396 | /* We have low <= mid < high, so mid points at a real slot */ |
| 397 | |
| 398 | result = _bt_compare(rel, key, page, mid); |
| 399 | |
| 400 | if (result >= cmpval) |
| 401 | low = mid + 1; |
| 402 | else |
| 403 | high = mid; |
| 404 | } |
| 405 | |
| 406 | /* |
| 407 | * At this point we have high == low, but be careful: they could point |
| 408 | * past the last slot on the page. |
| 409 | * |
| 410 | * On a leaf page, we always return the first key >= scan key (resp. > |
| 411 | * scan key), which could be the last slot + 1. |
| 412 | */ |
| 413 | if (P_ISLEAF(opaque)) |
| 414 | return low; |
| 415 | |
| 416 | /* |
| 417 | * On a non-leaf page, return the last key < scan key (resp. <= scan key). |
| 418 | * There must be one if _bt_compare() is playing by the rules. |
| 419 | */ |
| 420 | Assert(low > P_FIRSTDATAKEY(opaque)); |
| 421 | |
| 422 | return OffsetNumberPrev(low); |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * |
| 427 | * _bt_binsrch_insert() -- Cacheable, incremental leaf page binary search. |
| 428 | * |
| 429 | * Like _bt_binsrch(), but with support for caching the binary search |
| 430 | * bounds. Only used during insertion, and only on the leaf page that it |
| 431 | * looks like caller will insert tuple on. Exclusive-locked and pinned |
| 432 | * leaf page is contained within insertstate. |
| 433 | * |
| 434 | * Caches the bounds fields in insertstate so that a subsequent call can |
| 435 | * reuse the low and strict high bounds of original binary search. Callers |
| 436 | * that use these fields directly must be prepared for the case where low |
| 437 | * and/or stricthigh are not on the same page (one or both exceed maxoff |
| 438 | * for the page). The case where there are no items on the page (high < |
| 439 | * low) makes bounds invalid. |
| 440 | * |
| 441 | * Caller is responsible for invalidating bounds when it modifies the page |
| 442 | * before calling here a second time. |
| 443 | */ |
| 444 | OffsetNumber |
| 445 | _bt_binsrch_insert(Relation rel, BTInsertState insertstate) |
| 446 | { |
| 447 | BTScanInsert key = insertstate->itup_key; |
| 448 | Page page; |
| 449 | BTPageOpaque opaque; |
| 450 | OffsetNumber low, |
| 451 | high, |
| 452 | stricthigh; |
| 453 | int32 result, |
| 454 | cmpval; |
| 455 | |
| 456 | page = BufferGetPage(insertstate->buf); |
| 457 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 458 | |
| 459 | Assert(P_ISLEAF(opaque)); |
| 460 | Assert(!key->nextkey); |
| 461 | |
| 462 | if (!insertstate->bounds_valid) |
| 463 | { |
| 464 | /* Start new binary search */ |
| 465 | low = P_FIRSTDATAKEY(opaque); |
| 466 | high = PageGetMaxOffsetNumber(page); |
| 467 | } |
| 468 | else |
| 469 | { |
| 470 | /* Restore result of previous binary search against same page */ |
| 471 | low = insertstate->low; |
| 472 | high = insertstate->stricthigh; |
| 473 | } |
| 474 | |
| 475 | /* If there are no keys on the page, return the first available slot */ |
| 476 | if (unlikely(high < low)) |
| 477 | { |
| 478 | /* Caller can't reuse bounds */ |
| 479 | insertstate->low = InvalidOffsetNumber; |
| 480 | insertstate->stricthigh = InvalidOffsetNumber; |
| 481 | insertstate->bounds_valid = false; |
| 482 | return low; |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * Binary search to find the first key on the page >= scan key. (nextkey |
| 487 | * is always false when inserting). |
| 488 | * |
| 489 | * The loop invariant is: all slots before 'low' are < scan key, all slots |
| 490 | * at or after 'high' are >= scan key. 'stricthigh' is > scan key, and is |
| 491 | * maintained to save additional search effort for caller. |
| 492 | * |
| 493 | * We can fall out when high == low. |
| 494 | */ |
| 495 | if (!insertstate->bounds_valid) |
| 496 | high++; /* establish the loop invariant for high */ |
| 497 | stricthigh = high; /* high initially strictly higher */ |
| 498 | |
| 499 | cmpval = 1; /* !nextkey comparison value */ |
| 500 | |
| 501 | while (high > low) |
| 502 | { |
| 503 | OffsetNumber mid = low + ((high - low) / 2); |
| 504 | |
| 505 | /* We have low <= mid < high, so mid points at a real slot */ |
| 506 | |
| 507 | result = _bt_compare(rel, key, page, mid); |
| 508 | |
| 509 | if (result >= cmpval) |
| 510 | low = mid + 1; |
| 511 | else |
| 512 | { |
| 513 | high = mid; |
| 514 | if (result != 0) |
| 515 | stricthigh = high; |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | * On a leaf page, a binary search always returns the first key >= scan |
| 521 | * key (at least in !nextkey case), which could be the last slot + 1. This |
| 522 | * is also the lower bound of cached search. |
| 523 | * |
| 524 | * stricthigh may also be the last slot + 1, which prevents caller from |
| 525 | * using bounds directly, but is still useful to us if we're called a |
| 526 | * second time with cached bounds (cached low will be < stricthigh when |
| 527 | * that happens). |
| 528 | */ |
| 529 | insertstate->low = low; |
| 530 | insertstate->stricthigh = stricthigh; |
| 531 | insertstate->bounds_valid = true; |
| 532 | |
| 533 | return low; |
| 534 | } |
| 535 | |
| 536 | /*---------- |
| 537 | * _bt_compare() -- Compare insertion-type scankey to tuple on a page. |
| 538 | * |
| 539 | * page/offnum: location of btree item to be compared to. |
| 540 | * |
| 541 | * This routine returns: |
| 542 | * <0 if scankey < tuple at offnum; |
| 543 | * 0 if scankey == tuple at offnum; |
| 544 | * >0 if scankey > tuple at offnum. |
| 545 | * NULLs in the keys are treated as sortable values. Therefore |
| 546 | * "equality" does not necessarily mean that the item should be |
| 547 | * returned to the caller as a matching key! |
| 548 | * |
| 549 | * CRUCIAL NOTE: on a non-leaf page, the first data key is assumed to be |
| 550 | * "minus infinity": this routine will always claim it is less than the |
| 551 | * scankey. The actual key value stored is explicitly truncated to 0 |
| 552 | * attributes (explicitly minus infinity) with version 3+ indexes, but |
| 553 | * that isn't relied upon. This allows us to implement the Lehman and |
| 554 | * Yao convention that the first down-link pointer is before the first |
| 555 | * key. See backend/access/nbtree/README for details. |
| 556 | *---------- |
| 557 | */ |
| 558 | int32 |
| 559 | _bt_compare(Relation rel, |
| 560 | BTScanInsert key, |
| 561 | Page page, |
| 562 | OffsetNumber offnum) |
| 563 | { |
| 564 | TupleDesc itupdesc = RelationGetDescr(rel); |
| 565 | BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 566 | IndexTuple itup; |
| 567 | ItemPointer heapTid; |
| 568 | ScanKey scankey; |
| 569 | int ncmpkey; |
| 570 | int ntupatts; |
| 571 | |
| 572 | Assert(_bt_check_natts(rel, key->heapkeyspace, page, offnum)); |
| 573 | Assert(key->keysz <= IndexRelationGetNumberOfKeyAttributes(rel)); |
| 574 | Assert(key->heapkeyspace || key->scantid == NULL); |
| 575 | |
| 576 | /* |
| 577 | * Force result ">" if target item is first data item on an internal page |
| 578 | * --- see NOTE above. |
| 579 | */ |
| 580 | if (!P_ISLEAF(opaque) && offnum == P_FIRSTDATAKEY(opaque)) |
| 581 | return 1; |
| 582 | |
| 583 | itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum)); |
| 584 | ntupatts = BTreeTupleGetNAtts(itup, rel); |
| 585 | |
| 586 | /* |
| 587 | * The scan key is set up with the attribute number associated with each |
| 588 | * term in the key. It is important that, if the index is multi-key, the |
| 589 | * scan contain the first k key attributes, and that they be in order. If |
| 590 | * you think about how multi-key ordering works, you'll understand why |
| 591 | * this is. |
| 592 | * |
| 593 | * We don't test for violation of this condition here, however. The |
| 594 | * initial setup for the index scan had better have gotten it right (see |
| 595 | * _bt_first). |
| 596 | */ |
| 597 | |
| 598 | ncmpkey = Min(ntupatts, key->keysz); |
| 599 | Assert(key->heapkeyspace || ncmpkey == key->keysz); |
| 600 | scankey = key->scankeys; |
| 601 | for (int i = 1; i <= ncmpkey; i++) |
| 602 | { |
| 603 | Datum datum; |
| 604 | bool isNull; |
| 605 | int32 result; |
| 606 | |
| 607 | datum = index_getattr(itup, scankey->sk_attno, itupdesc, &isNull); |
| 608 | |
| 609 | /* see comments about NULLs handling in btbuild */ |
| 610 | if (scankey->sk_flags & SK_ISNULL) /* key is NULL */ |
| 611 | { |
| 612 | if (isNull) |
| 613 | result = 0; /* NULL "=" NULL */ |
| 614 | else if (scankey->sk_flags & SK_BT_NULLS_FIRST) |
| 615 | result = -1; /* NULL "<" NOT_NULL */ |
| 616 | else |
| 617 | result = 1; /* NULL ">" NOT_NULL */ |
| 618 | } |
| 619 | else if (isNull) /* key is NOT_NULL and item is NULL */ |
| 620 | { |
| 621 | if (scankey->sk_flags & SK_BT_NULLS_FIRST) |
| 622 | result = 1; /* NOT_NULL ">" NULL */ |
| 623 | else |
| 624 | result = -1; /* NOT_NULL "<" NULL */ |
| 625 | } |
| 626 | else |
| 627 | { |
| 628 | /* |
| 629 | * The sk_func needs to be passed the index value as left arg and |
| 630 | * the sk_argument as right arg (they might be of different |
| 631 | * types). Since it is convenient for callers to think of |
| 632 | * _bt_compare as comparing the scankey to the index item, we have |
| 633 | * to flip the sign of the comparison result. (Unless it's a DESC |
| 634 | * column, in which case we *don't* flip the sign.) |
| 635 | */ |
| 636 | result = DatumGetInt32(FunctionCall2Coll(&scankey->sk_func, |
| 637 | scankey->sk_collation, |
| 638 | datum, |
| 639 | scankey->sk_argument)); |
| 640 | |
| 641 | if (!(scankey->sk_flags & SK_BT_DESC)) |
| 642 | INVERT_COMPARE_RESULT(result); |
| 643 | } |
| 644 | |
| 645 | /* if the keys are unequal, return the difference */ |
| 646 | if (result != 0) |
| 647 | return result; |
| 648 | |
| 649 | scankey++; |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * All non-truncated attributes (other than heap TID) were found to be |
| 654 | * equal. Treat truncated attributes as minus infinity when scankey has a |
| 655 | * key attribute value that would otherwise be compared directly. |
| 656 | * |
| 657 | * Note: it doesn't matter if ntupatts includes non-key attributes; |
| 658 | * scankey won't, so explicitly excluding non-key attributes isn't |
| 659 | * necessary. |
| 660 | */ |
| 661 | if (key->keysz > ntupatts) |
| 662 | return 1; |
| 663 | |
| 664 | /* |
| 665 | * Use the heap TID attribute and scantid to try to break the tie. The |
| 666 | * rules are the same as any other key attribute -- only the |
| 667 | * representation differs. |
| 668 | */ |
| 669 | heapTid = BTreeTupleGetHeapTID(itup); |
| 670 | if (key->scantid == NULL) |
| 671 | { |
| 672 | /* |
| 673 | * Most searches have a scankey that is considered greater than a |
| 674 | * truncated pivot tuple if and when the scankey has equal values for |
| 675 | * attributes up to and including the least significant untruncated |
| 676 | * attribute in tuple. |
| 677 | * |
| 678 | * For example, if an index has the minimum two attributes (single |
| 679 | * user key attribute, plus heap TID attribute), and a page's high key |
| 680 | * is ('foo', -inf), and scankey is ('foo', <omitted>), the search |
| 681 | * will not descend to the page to the left. The search will descend |
| 682 | * right instead. The truncated attribute in pivot tuple means that |
| 683 | * all non-pivot tuples on the page to the left are strictly < 'foo', |
| 684 | * so it isn't necessary to descend left. In other words, search |
| 685 | * doesn't have to descend left because it isn't interested in a match |
| 686 | * that has a heap TID value of -inf. |
| 687 | * |
| 688 | * However, some searches (pivotsearch searches) actually require that |
| 689 | * we descend left when this happens. -inf is treated as a possible |
| 690 | * match for omitted scankey attribute(s). This is needed by page |
| 691 | * deletion, which must re-find leaf pages that are targets for |
| 692 | * deletion using their high keys. |
| 693 | * |
| 694 | * Note: the heap TID part of the test ensures that scankey is being |
| 695 | * compared to a pivot tuple with one or more truncated key |
| 696 | * attributes. |
| 697 | * |
| 698 | * Note: pg_upgrade'd !heapkeyspace indexes must always descend to the |
| 699 | * left here, since they have no heap TID attribute (and cannot have |
| 700 | * any -inf key values in any case, since truncation can only remove |
| 701 | * non-key attributes). !heapkeyspace searches must always be |
| 702 | * prepared to deal with matches on both sides of the pivot once the |
| 703 | * leaf level is reached. |
| 704 | */ |
| 705 | if (key->heapkeyspace && !key->pivotsearch && |
| 706 | key->keysz == ntupatts && heapTid == NULL) |
| 707 | return 1; |
| 708 | |
| 709 | /* All provided scankey arguments found to be equal */ |
| 710 | return 0; |
| 711 | } |
| 712 | |
| 713 | /* |
| 714 | * Treat truncated heap TID as minus infinity, since scankey has a key |
| 715 | * attribute value (scantid) that would otherwise be compared directly |
| 716 | */ |
| 717 | Assert(key->keysz == IndexRelationGetNumberOfKeyAttributes(rel)); |
| 718 | if (heapTid == NULL) |
| 719 | return 1; |
| 720 | |
| 721 | Assert(ntupatts >= IndexRelationGetNumberOfKeyAttributes(rel)); |
| 722 | return ItemPointerCompare(key->scantid, heapTid); |
| 723 | } |
| 724 | |
| 725 | /* |
| 726 | * _bt_first() -- Find the first item in a scan. |
| 727 | * |
| 728 | * We need to be clever about the direction of scan, the search |
| 729 | * conditions, and the tree ordering. We find the first item (or, |
| 730 | * if backwards scan, the last item) in the tree that satisfies the |
| 731 | * qualifications in the scan key. On success exit, the page containing |
| 732 | * the current index tuple is pinned but not locked, and data about |
| 733 | * the matching tuple(s) on the page has been loaded into so->currPos. |
| 734 | * scan->xs_ctup.t_self is set to the heap TID of the current tuple, |
| 735 | * and if requested, scan->xs_itup points to a copy of the index tuple. |
| 736 | * |
| 737 | * If there are no matching items in the index, we return false, with no |
| 738 | * pins or locks held. |
| 739 | * |
| 740 | * Note that scan->keyData[], and the so->keyData[] scankey built from it, |
| 741 | * are both search-type scankeys (see nbtree/README for more about this). |
| 742 | * Within this routine, we build a temporary insertion-type scankey to use |
| 743 | * in locating the scan start position. |
| 744 | */ |
| 745 | bool |
| 746 | _bt_first(IndexScanDesc scan, ScanDirection dir) |
| 747 | { |
| 748 | Relation rel = scan->indexRelation; |
| 749 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 750 | Buffer buf; |
| 751 | BTStack stack; |
| 752 | OffsetNumber offnum; |
| 753 | StrategyNumber strat; |
| 754 | bool nextkey; |
| 755 | bool goback; |
| 756 | BTScanInsertData inskey; |
| 757 | ScanKey startKeys[INDEX_MAX_KEYS]; |
| 758 | ScanKeyData notnullkeys[INDEX_MAX_KEYS]; |
| 759 | int keysCount = 0; |
| 760 | int i; |
| 761 | bool status = true; |
| 762 | StrategyNumber strat_total; |
| 763 | BTScanPosItem *currItem; |
| 764 | BlockNumber blkno; |
| 765 | |
| 766 | Assert(!BTScanPosIsValid(so->currPos)); |
| 767 | |
| 768 | pgstat_count_index_scan(rel); |
| 769 | |
| 770 | /* |
| 771 | * Examine the scan keys and eliminate any redundant keys; also mark the |
| 772 | * keys that must be matched to continue the scan. |
| 773 | */ |
| 774 | _bt_preprocess_keys(scan); |
| 775 | |
| 776 | /* |
| 777 | * Quit now if _bt_preprocess_keys() discovered that the scan keys can |
| 778 | * never be satisfied (eg, x == 1 AND x > 2). |
| 779 | */ |
| 780 | if (!so->qual_ok) |
| 781 | return false; |
| 782 | |
| 783 | /* |
| 784 | * For parallel scans, get the starting page from shared state. If the |
| 785 | * scan has not started, proceed to find out first leaf page in the usual |
| 786 | * way while keeping other participating processes waiting. If the scan |
| 787 | * has already begun, use the page number from the shared structure. |
| 788 | */ |
| 789 | if (scan->parallel_scan != NULL) |
| 790 | { |
| 791 | status = _bt_parallel_seize(scan, &blkno); |
| 792 | if (!status) |
| 793 | return false; |
| 794 | else if (blkno == P_NONE) |
| 795 | { |
| 796 | _bt_parallel_done(scan); |
| 797 | return false; |
| 798 | } |
| 799 | else if (blkno != InvalidBlockNumber) |
| 800 | { |
| 801 | if (!_bt_parallel_readpage(scan, blkno, dir)) |
| 802 | return false; |
| 803 | goto readcomplete; |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | /*---------- |
| 808 | * Examine the scan keys to discover where we need to start the scan. |
| 809 | * |
| 810 | * We want to identify the keys that can be used as starting boundaries; |
| 811 | * these are =, >, or >= keys for a forward scan or =, <, <= keys for |
| 812 | * a backwards scan. We can use keys for multiple attributes so long as |
| 813 | * the prior attributes had only =, >= (resp. =, <=) keys. Once we accept |
| 814 | * a > or < boundary or find an attribute with no boundary (which can be |
| 815 | * thought of as the same as "> -infinity"), we can't use keys for any |
| 816 | * attributes to its right, because it would break our simplistic notion |
| 817 | * of what initial positioning strategy to use. |
| 818 | * |
| 819 | * When the scan keys include cross-type operators, _bt_preprocess_keys |
| 820 | * may not be able to eliminate redundant keys; in such cases we will |
| 821 | * arbitrarily pick a usable one for each attribute. This is correct |
| 822 | * but possibly not optimal behavior. (For example, with keys like |
| 823 | * "x >= 4 AND x >= 5" we would elect to scan starting at x=4 when |
| 824 | * x=5 would be more efficient.) Since the situation only arises given |
| 825 | * a poorly-worded query plus an incomplete opfamily, live with it. |
| 826 | * |
| 827 | * When both equality and inequality keys appear for a single attribute |
| 828 | * (again, only possible when cross-type operators appear), we *must* |
| 829 | * select one of the equality keys for the starting point, because |
| 830 | * _bt_checkkeys() will stop the scan as soon as an equality qual fails. |
| 831 | * For example, if we have keys like "x >= 4 AND x = 10" and we elect to |
| 832 | * start at x=4, we will fail and stop before reaching x=10. If multiple |
| 833 | * equality quals survive preprocessing, however, it doesn't matter which |
| 834 | * one we use --- by definition, they are either redundant or |
| 835 | * contradictory. |
| 836 | * |
| 837 | * Any regular (not SK_SEARCHNULL) key implies a NOT NULL qualifier. |
| 838 | * If the index stores nulls at the end of the index we'll be starting |
| 839 | * from, and we have no boundary key for the column (which means the key |
| 840 | * we deduced NOT NULL from is an inequality key that constrains the other |
| 841 | * end of the index), then we cons up an explicit SK_SEARCHNOTNULL key to |
| 842 | * use as a boundary key. If we didn't do this, we might find ourselves |
| 843 | * traversing a lot of null entries at the start of the scan. |
| 844 | * |
| 845 | * In this loop, row-comparison keys are treated the same as keys on their |
| 846 | * first (leftmost) columns. We'll add on lower-order columns of the row |
| 847 | * comparison below, if possible. |
| 848 | * |
| 849 | * The selected scan keys (at most one per index column) are remembered by |
| 850 | * storing their addresses into the local startKeys[] array. |
| 851 | *---------- |
| 852 | */ |
| 853 | strat_total = BTEqualStrategyNumber; |
| 854 | if (so->numberOfKeys > 0) |
| 855 | { |
| 856 | AttrNumber curattr; |
| 857 | ScanKey chosen; |
| 858 | ScanKey impliesNN; |
| 859 | ScanKey cur; |
| 860 | |
| 861 | /* |
| 862 | * chosen is the so-far-chosen key for the current attribute, if any. |
| 863 | * We don't cast the decision in stone until we reach keys for the |
| 864 | * next attribute. |
| 865 | */ |
| 866 | curattr = 1; |
| 867 | chosen = NULL; |
| 868 | /* Also remember any scankey that implies a NOT NULL constraint */ |
| 869 | impliesNN = NULL; |
| 870 | |
| 871 | /* |
| 872 | * Loop iterates from 0 to numberOfKeys inclusive; we use the last |
| 873 | * pass to handle after-last-key processing. Actual exit from the |
| 874 | * loop is at one of the "break" statements below. |
| 875 | */ |
| 876 | for (cur = so->keyData, i = 0;; cur++, i++) |
| 877 | { |
| 878 | if (i >= so->numberOfKeys || cur->sk_attno != curattr) |
| 879 | { |
| 880 | /* |
| 881 | * Done looking at keys for curattr. If we didn't find a |
| 882 | * usable boundary key, see if we can deduce a NOT NULL key. |
| 883 | */ |
| 884 | if (chosen == NULL && impliesNN != NULL && |
| 885 | ((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ? |
| 886 | ScanDirectionIsForward(dir) : |
| 887 | ScanDirectionIsBackward(dir))) |
| 888 | { |
| 889 | /* Yes, so build the key in notnullkeys[keysCount] */ |
| 890 | chosen = ¬nullkeys[keysCount]; |
| 891 | ScanKeyEntryInitialize(chosen, |
| 892 | (SK_SEARCHNOTNULL | SK_ISNULL | |
| 893 | (impliesNN->sk_flags & |
| 894 | (SK_BT_DESC | SK_BT_NULLS_FIRST))), |
| 895 | curattr, |
| 896 | ((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ? |
| 897 | BTGreaterStrategyNumber : |
| 898 | BTLessStrategyNumber), |
| 899 | InvalidOid, |
| 900 | InvalidOid, |
| 901 | InvalidOid, |
| 902 | (Datum) 0); |
| 903 | } |
| 904 | |
| 905 | /* |
| 906 | * If we still didn't find a usable boundary key, quit; else |
| 907 | * save the boundary key pointer in startKeys. |
| 908 | */ |
| 909 | if (chosen == NULL) |
| 910 | break; |
| 911 | startKeys[keysCount++] = chosen; |
| 912 | |
| 913 | /* |
| 914 | * Adjust strat_total, and quit if we have stored a > or < |
| 915 | * key. |
| 916 | */ |
| 917 | strat = chosen->sk_strategy; |
| 918 | if (strat != BTEqualStrategyNumber) |
| 919 | { |
| 920 | strat_total = strat; |
| 921 | if (strat == BTGreaterStrategyNumber || |
| 922 | strat == BTLessStrategyNumber) |
| 923 | break; |
| 924 | } |
| 925 | |
| 926 | /* |
| 927 | * Done if that was the last attribute, or if next key is not |
| 928 | * in sequence (implying no boundary key is available for the |
| 929 | * next attribute). |
| 930 | */ |
| 931 | if (i >= so->numberOfKeys || |
| 932 | cur->sk_attno != curattr + 1) |
| 933 | break; |
| 934 | |
| 935 | /* |
| 936 | * Reset for next attr. |
| 937 | */ |
| 938 | curattr = cur->sk_attno; |
| 939 | chosen = NULL; |
| 940 | impliesNN = NULL; |
| 941 | } |
| 942 | |
| 943 | /* |
| 944 | * Can we use this key as a starting boundary for this attr? |
| 945 | * |
| 946 | * If not, does it imply a NOT NULL constraint? (Because |
| 947 | * SK_SEARCHNULL keys are always assigned BTEqualStrategyNumber, |
| 948 | * *any* inequality key works for that; we need not test.) |
| 949 | */ |
| 950 | switch (cur->sk_strategy) |
| 951 | { |
| 952 | case BTLessStrategyNumber: |
| 953 | case BTLessEqualStrategyNumber: |
| 954 | if (chosen == NULL) |
| 955 | { |
| 956 | if (ScanDirectionIsBackward(dir)) |
| 957 | chosen = cur; |
| 958 | else |
| 959 | impliesNN = cur; |
| 960 | } |
| 961 | break; |
| 962 | case BTEqualStrategyNumber: |
| 963 | /* override any non-equality choice */ |
| 964 | chosen = cur; |
| 965 | break; |
| 966 | case BTGreaterEqualStrategyNumber: |
| 967 | case BTGreaterStrategyNumber: |
| 968 | if (chosen == NULL) |
| 969 | { |
| 970 | if (ScanDirectionIsForward(dir)) |
| 971 | chosen = cur; |
| 972 | else |
| 973 | impliesNN = cur; |
| 974 | } |
| 975 | break; |
| 976 | } |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | /* |
| 981 | * If we found no usable boundary keys, we have to start from one end of |
| 982 | * the tree. Walk down that edge to the first or last key, and scan from |
| 983 | * there. |
| 984 | */ |
| 985 | if (keysCount == 0) |
| 986 | { |
| 987 | bool match; |
| 988 | |
| 989 | match = _bt_endpoint(scan, dir); |
| 990 | |
| 991 | if (!match) |
| 992 | { |
| 993 | /* No match, so mark (parallel) scan finished */ |
| 994 | _bt_parallel_done(scan); |
| 995 | } |
| 996 | |
| 997 | return match; |
| 998 | } |
| 999 | |
| 1000 | /* |
| 1001 | * We want to start the scan somewhere within the index. Set up an |
| 1002 | * insertion scankey we can use to search for the boundary point we |
| 1003 | * identified above. The insertion scankey is built using the keys |
| 1004 | * identified by startKeys[]. (Remaining insertion scankey fields are |
| 1005 | * initialized after initial-positioning strategy is finalized.) |
| 1006 | */ |
| 1007 | Assert(keysCount <= INDEX_MAX_KEYS); |
| 1008 | for (i = 0; i < keysCount; i++) |
| 1009 | { |
| 1010 | ScanKey cur = startKeys[i]; |
| 1011 | |
| 1012 | Assert(cur->sk_attno == i + 1); |
| 1013 | |
| 1014 | if (cur->sk_flags & SK_ROW_HEADER) |
| 1015 | { |
| 1016 | /* |
| 1017 | * Row comparison header: look to the first row member instead. |
| 1018 | * |
| 1019 | * The member scankeys are already in insertion format (ie, they |
| 1020 | * have sk_func = 3-way-comparison function), but we have to watch |
| 1021 | * out for nulls, which _bt_preprocess_keys didn't check. A null |
| 1022 | * in the first row member makes the condition unmatchable, just |
| 1023 | * like qual_ok = false. |
| 1024 | */ |
| 1025 | ScanKey subkey = (ScanKey) DatumGetPointer(cur->sk_argument); |
| 1026 | |
| 1027 | Assert(subkey->sk_flags & SK_ROW_MEMBER); |
| 1028 | if (subkey->sk_flags & SK_ISNULL) |
| 1029 | { |
| 1030 | _bt_parallel_done(scan); |
| 1031 | return false; |
| 1032 | } |
| 1033 | memcpy(inskey.scankeys + i, subkey, sizeof(ScanKeyData)); |
| 1034 | |
| 1035 | /* |
| 1036 | * If the row comparison is the last positioning key we accepted, |
| 1037 | * try to add additional keys from the lower-order row members. |
| 1038 | * (If we accepted independent conditions on additional index |
| 1039 | * columns, we use those instead --- doesn't seem worth trying to |
| 1040 | * determine which is more restrictive.) Note that this is OK |
| 1041 | * even if the row comparison is of ">" or "<" type, because the |
| 1042 | * condition applied to all but the last row member is effectively |
| 1043 | * ">=" or "<=", and so the extra keys don't break the positioning |
| 1044 | * scheme. But, by the same token, if we aren't able to use all |
| 1045 | * the row members, then the part of the row comparison that we |
| 1046 | * did use has to be treated as just a ">=" or "<=" condition, and |
| 1047 | * so we'd better adjust strat_total accordingly. |
| 1048 | */ |
| 1049 | if (i == keysCount - 1) |
| 1050 | { |
| 1051 | bool used_all_subkeys = false; |
| 1052 | |
| 1053 | Assert(!(subkey->sk_flags & SK_ROW_END)); |
| 1054 | for (;;) |
| 1055 | { |
| 1056 | subkey++; |
| 1057 | Assert(subkey->sk_flags & SK_ROW_MEMBER); |
| 1058 | if (subkey->sk_attno != keysCount + 1) |
| 1059 | break; /* out-of-sequence, can't use it */ |
| 1060 | if (subkey->sk_strategy != cur->sk_strategy) |
| 1061 | break; /* wrong direction, can't use it */ |
| 1062 | if (subkey->sk_flags & SK_ISNULL) |
| 1063 | break; /* can't use null keys */ |
| 1064 | Assert(keysCount < INDEX_MAX_KEYS); |
| 1065 | memcpy(inskey.scankeys + keysCount, subkey, |
| 1066 | sizeof(ScanKeyData)); |
| 1067 | keysCount++; |
| 1068 | if (subkey->sk_flags & SK_ROW_END) |
| 1069 | { |
| 1070 | used_all_subkeys = true; |
| 1071 | break; |
| 1072 | } |
| 1073 | } |
| 1074 | if (!used_all_subkeys) |
| 1075 | { |
| 1076 | switch (strat_total) |
| 1077 | { |
| 1078 | case BTLessStrategyNumber: |
| 1079 | strat_total = BTLessEqualStrategyNumber; |
| 1080 | break; |
| 1081 | case BTGreaterStrategyNumber: |
| 1082 | strat_total = BTGreaterEqualStrategyNumber; |
| 1083 | break; |
| 1084 | } |
| 1085 | } |
| 1086 | break; /* done with outer loop */ |
| 1087 | } |
| 1088 | } |
| 1089 | else |
| 1090 | { |
| 1091 | /* |
| 1092 | * Ordinary comparison key. Transform the search-style scan key |
| 1093 | * to an insertion scan key by replacing the sk_func with the |
| 1094 | * appropriate btree comparison function. |
| 1095 | * |
| 1096 | * If scankey operator is not a cross-type comparison, we can use |
| 1097 | * the cached comparison function; otherwise gotta look it up in |
| 1098 | * the catalogs. (That can't lead to infinite recursion, since no |
| 1099 | * indexscan initiated by syscache lookup will use cross-data-type |
| 1100 | * operators.) |
| 1101 | * |
| 1102 | * We support the convention that sk_subtype == InvalidOid means |
| 1103 | * the opclass input type; this is a hack to simplify life for |
| 1104 | * ScanKeyInit(). |
| 1105 | */ |
| 1106 | if (cur->sk_subtype == rel->rd_opcintype[i] || |
| 1107 | cur->sk_subtype == InvalidOid) |
| 1108 | { |
| 1109 | FmgrInfo *procinfo; |
| 1110 | |
| 1111 | procinfo = index_getprocinfo(rel, cur->sk_attno, BTORDER_PROC); |
| 1112 | ScanKeyEntryInitializeWithInfo(inskey.scankeys + i, |
| 1113 | cur->sk_flags, |
| 1114 | cur->sk_attno, |
| 1115 | InvalidStrategy, |
| 1116 | cur->sk_subtype, |
| 1117 | cur->sk_collation, |
| 1118 | procinfo, |
| 1119 | cur->sk_argument); |
| 1120 | } |
| 1121 | else |
| 1122 | { |
| 1123 | RegProcedure cmp_proc; |
| 1124 | |
| 1125 | cmp_proc = get_opfamily_proc(rel->rd_opfamily[i], |
| 1126 | rel->rd_opcintype[i], |
| 1127 | cur->sk_subtype, |
| 1128 | BTORDER_PROC); |
| 1129 | if (!RegProcedureIsValid(cmp_proc)) |
| 1130 | elog(ERROR, "missing support function %d(%u,%u) for attribute %d of index \"%s\"" , |
| 1131 | BTORDER_PROC, rel->rd_opcintype[i], cur->sk_subtype, |
| 1132 | cur->sk_attno, RelationGetRelationName(rel)); |
| 1133 | ScanKeyEntryInitialize(inskey.scankeys + i, |
| 1134 | cur->sk_flags, |
| 1135 | cur->sk_attno, |
| 1136 | InvalidStrategy, |
| 1137 | cur->sk_subtype, |
| 1138 | cur->sk_collation, |
| 1139 | cmp_proc, |
| 1140 | cur->sk_argument); |
| 1141 | } |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | /*---------- |
| 1146 | * Examine the selected initial-positioning strategy to determine exactly |
| 1147 | * where we need to start the scan, and set flag variables to control the |
| 1148 | * code below. |
| 1149 | * |
| 1150 | * If nextkey = false, _bt_search and _bt_binsrch will locate the first |
| 1151 | * item >= scan key. If nextkey = true, they will locate the first |
| 1152 | * item > scan key. |
| 1153 | * |
| 1154 | * If goback = true, we will then step back one item, while if |
| 1155 | * goback = false, we will start the scan on the located item. |
| 1156 | *---------- |
| 1157 | */ |
| 1158 | switch (strat_total) |
| 1159 | { |
| 1160 | case BTLessStrategyNumber: |
| 1161 | |
| 1162 | /* |
| 1163 | * Find first item >= scankey, then back up one to arrive at last |
| 1164 | * item < scankey. (Note: this positioning strategy is only used |
| 1165 | * for a backward scan, so that is always the correct starting |
| 1166 | * position.) |
| 1167 | */ |
| 1168 | nextkey = false; |
| 1169 | goback = true; |
| 1170 | break; |
| 1171 | |
| 1172 | case BTLessEqualStrategyNumber: |
| 1173 | |
| 1174 | /* |
| 1175 | * Find first item > scankey, then back up one to arrive at last |
| 1176 | * item <= scankey. (Note: this positioning strategy is only used |
| 1177 | * for a backward scan, so that is always the correct starting |
| 1178 | * position.) |
| 1179 | */ |
| 1180 | nextkey = true; |
| 1181 | goback = true; |
| 1182 | break; |
| 1183 | |
| 1184 | case BTEqualStrategyNumber: |
| 1185 | |
| 1186 | /* |
| 1187 | * If a backward scan was specified, need to start with last equal |
| 1188 | * item not first one. |
| 1189 | */ |
| 1190 | if (ScanDirectionIsBackward(dir)) |
| 1191 | { |
| 1192 | /* |
| 1193 | * This is the same as the <= strategy. We will check at the |
| 1194 | * end whether the found item is actually =. |
| 1195 | */ |
| 1196 | nextkey = true; |
| 1197 | goback = true; |
| 1198 | } |
| 1199 | else |
| 1200 | { |
| 1201 | /* |
| 1202 | * This is the same as the >= strategy. We will check at the |
| 1203 | * end whether the found item is actually =. |
| 1204 | */ |
| 1205 | nextkey = false; |
| 1206 | goback = false; |
| 1207 | } |
| 1208 | break; |
| 1209 | |
| 1210 | case BTGreaterEqualStrategyNumber: |
| 1211 | |
| 1212 | /* |
| 1213 | * Find first item >= scankey. (This is only used for forward |
| 1214 | * scans.) |
| 1215 | */ |
| 1216 | nextkey = false; |
| 1217 | goback = false; |
| 1218 | break; |
| 1219 | |
| 1220 | case BTGreaterStrategyNumber: |
| 1221 | |
| 1222 | /* |
| 1223 | * Find first item > scankey. (This is only used for forward |
| 1224 | * scans.) |
| 1225 | */ |
| 1226 | nextkey = true; |
| 1227 | goback = false; |
| 1228 | break; |
| 1229 | |
| 1230 | default: |
| 1231 | /* can't get here, but keep compiler quiet */ |
| 1232 | elog(ERROR, "unrecognized strat_total: %d" , (int) strat_total); |
| 1233 | return false; |
| 1234 | } |
| 1235 | |
| 1236 | /* Initialize remaining insertion scan key fields */ |
| 1237 | inskey.heapkeyspace = _bt_heapkeyspace(rel); |
| 1238 | inskey.anynullkeys = false; /* unused */ |
| 1239 | inskey.nextkey = nextkey; |
| 1240 | inskey.pivotsearch = false; |
| 1241 | inskey.scantid = NULL; |
| 1242 | inskey.keysz = keysCount; |
| 1243 | |
| 1244 | /* |
| 1245 | * Use the manufactured insertion scan key to descend the tree and |
| 1246 | * position ourselves on the target leaf page. |
| 1247 | */ |
| 1248 | stack = _bt_search(rel, &inskey, &buf, BT_READ, scan->xs_snapshot); |
| 1249 | |
| 1250 | /* don't need to keep the stack around... */ |
| 1251 | _bt_freestack(stack); |
| 1252 | |
| 1253 | if (!BufferIsValid(buf)) |
| 1254 | { |
| 1255 | /* |
| 1256 | * We only get here if the index is completely empty. Lock relation |
| 1257 | * because nothing finer to lock exists. |
| 1258 | */ |
| 1259 | PredicateLockRelation(rel, scan->xs_snapshot); |
| 1260 | |
| 1261 | /* |
| 1262 | * mark parallel scan as done, so that all the workers can finish |
| 1263 | * their scan |
| 1264 | */ |
| 1265 | _bt_parallel_done(scan); |
| 1266 | BTScanPosInvalidate(so->currPos); |
| 1267 | |
| 1268 | return false; |
| 1269 | } |
| 1270 | else |
| 1271 | PredicateLockPage(rel, BufferGetBlockNumber(buf), |
| 1272 | scan->xs_snapshot); |
| 1273 | |
| 1274 | _bt_initialize_more_data(so, dir); |
| 1275 | |
| 1276 | /* position to the precise item on the page */ |
| 1277 | offnum = _bt_binsrch(rel, &inskey, buf); |
| 1278 | |
| 1279 | /* |
| 1280 | * If nextkey = false, we are positioned at the first item >= scan key, or |
| 1281 | * possibly at the end of a page on which all the existing items are less |
| 1282 | * than the scan key and we know that everything on later pages is greater |
| 1283 | * than or equal to scan key. |
| 1284 | * |
| 1285 | * If nextkey = true, we are positioned at the first item > scan key, or |
| 1286 | * possibly at the end of a page on which all the existing items are less |
| 1287 | * than or equal to the scan key and we know that everything on later |
| 1288 | * pages is greater than scan key. |
| 1289 | * |
| 1290 | * The actually desired starting point is either this item or the prior |
| 1291 | * one, or in the end-of-page case it's the first item on the next page or |
| 1292 | * the last item on this page. Adjust the starting offset if needed. (If |
| 1293 | * this results in an offset before the first item or after the last one, |
| 1294 | * _bt_readpage will report no items found, and then we'll step to the |
| 1295 | * next page as needed.) |
| 1296 | */ |
| 1297 | if (goback) |
| 1298 | offnum = OffsetNumberPrev(offnum); |
| 1299 | |
| 1300 | /* remember which buffer we have pinned, if any */ |
| 1301 | Assert(!BTScanPosIsValid(so->currPos)); |
| 1302 | so->currPos.buf = buf; |
| 1303 | |
| 1304 | /* |
| 1305 | * Now load data from the first page of the scan. |
| 1306 | */ |
| 1307 | if (!_bt_readpage(scan, dir, offnum)) |
| 1308 | { |
| 1309 | /* |
| 1310 | * There's no actually-matching data on this page. Try to advance to |
| 1311 | * the next page. Return false if there's no matching data at all. |
| 1312 | */ |
| 1313 | LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK); |
| 1314 | if (!_bt_steppage(scan, dir)) |
| 1315 | return false; |
| 1316 | } |
| 1317 | else |
| 1318 | { |
| 1319 | /* Drop the lock, and maybe the pin, on the current page */ |
| 1320 | _bt_drop_lock_and_maybe_pin(scan, &so->currPos); |
| 1321 | } |
| 1322 | |
| 1323 | readcomplete: |
| 1324 | /* OK, itemIndex says what to return */ |
| 1325 | currItem = &so->currPos.items[so->currPos.itemIndex]; |
| 1326 | scan->xs_heaptid = currItem->heapTid; |
| 1327 | if (scan->xs_want_itup) |
| 1328 | scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset); |
| 1329 | |
| 1330 | return true; |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * _bt_next() -- Get the next item in a scan. |
| 1335 | * |
| 1336 | * On entry, so->currPos describes the current page, which may be pinned |
| 1337 | * but is not locked, and so->currPos.itemIndex identifies which item was |
| 1338 | * previously returned. |
| 1339 | * |
| 1340 | * On successful exit, scan->xs_ctup.t_self is set to the TID of the |
| 1341 | * next heap tuple, and if requested, scan->xs_itup points to a copy of |
| 1342 | * the index tuple. so->currPos is updated as needed. |
| 1343 | * |
| 1344 | * On failure exit (no more tuples), we release pin and set |
| 1345 | * so->currPos.buf to InvalidBuffer. |
| 1346 | */ |
| 1347 | bool |
| 1348 | _bt_next(IndexScanDesc scan, ScanDirection dir) |
| 1349 | { |
| 1350 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 1351 | BTScanPosItem *currItem; |
| 1352 | |
| 1353 | /* |
| 1354 | * Advance to next tuple on current page; or if there's no more, try to |
| 1355 | * step to the next page with data. |
| 1356 | */ |
| 1357 | if (ScanDirectionIsForward(dir)) |
| 1358 | { |
| 1359 | if (++so->currPos.itemIndex > so->currPos.lastItem) |
| 1360 | { |
| 1361 | if (!_bt_steppage(scan, dir)) |
| 1362 | return false; |
| 1363 | } |
| 1364 | } |
| 1365 | else |
| 1366 | { |
| 1367 | if (--so->currPos.itemIndex < so->currPos.firstItem) |
| 1368 | { |
| 1369 | if (!_bt_steppage(scan, dir)) |
| 1370 | return false; |
| 1371 | } |
| 1372 | } |
| 1373 | |
| 1374 | /* OK, itemIndex says what to return */ |
| 1375 | currItem = &so->currPos.items[so->currPos.itemIndex]; |
| 1376 | scan->xs_heaptid = currItem->heapTid; |
| 1377 | if (scan->xs_want_itup) |
| 1378 | scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset); |
| 1379 | |
| 1380 | return true; |
| 1381 | } |
| 1382 | |
| 1383 | /* |
| 1384 | * _bt_readpage() -- Load data from current index page into so->currPos |
| 1385 | * |
| 1386 | * Caller must have pinned and read-locked so->currPos.buf; the buffer's state |
| 1387 | * is not changed here. Also, currPos.moreLeft and moreRight must be valid; |
| 1388 | * they are updated as appropriate. All other fields of so->currPos are |
| 1389 | * initialized from scratch here. |
| 1390 | * |
| 1391 | * We scan the current page starting at offnum and moving in the indicated |
| 1392 | * direction. All items matching the scan keys are loaded into currPos.items. |
| 1393 | * moreLeft or moreRight (as appropriate) is cleared if _bt_checkkeys reports |
| 1394 | * that there can be no more matching tuples in the current scan direction. |
| 1395 | * |
| 1396 | * In the case of a parallel scan, caller must have called _bt_parallel_seize |
| 1397 | * prior to calling this function; this function will invoke |
| 1398 | * _bt_parallel_release before returning. |
| 1399 | * |
| 1400 | * Returns true if any matching items found on the page, false if none. |
| 1401 | */ |
| 1402 | static bool |
| 1403 | _bt_readpage(IndexScanDesc scan, ScanDirection dir, OffsetNumber offnum) |
| 1404 | { |
| 1405 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 1406 | Page page; |
| 1407 | BTPageOpaque opaque; |
| 1408 | OffsetNumber minoff; |
| 1409 | OffsetNumber maxoff; |
| 1410 | int itemIndex; |
| 1411 | bool continuescan; |
| 1412 | int indnatts; |
| 1413 | |
| 1414 | /* |
| 1415 | * We must have the buffer pinned and locked, but the usual macro can't be |
| 1416 | * used here; this function is what makes it good for currPos. |
| 1417 | */ |
| 1418 | Assert(BufferIsValid(so->currPos.buf)); |
| 1419 | |
| 1420 | page = BufferGetPage(so->currPos.buf); |
| 1421 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1422 | |
| 1423 | /* allow next page be processed by parallel worker */ |
| 1424 | if (scan->parallel_scan) |
| 1425 | { |
| 1426 | if (ScanDirectionIsForward(dir)) |
| 1427 | _bt_parallel_release(scan, opaque->btpo_next); |
| 1428 | else |
| 1429 | _bt_parallel_release(scan, BufferGetBlockNumber(so->currPos.buf)); |
| 1430 | } |
| 1431 | |
| 1432 | continuescan = true; /* default assumption */ |
| 1433 | indnatts = IndexRelationGetNumberOfAttributes(scan->indexRelation); |
| 1434 | minoff = P_FIRSTDATAKEY(opaque); |
| 1435 | maxoff = PageGetMaxOffsetNumber(page); |
| 1436 | |
| 1437 | /* |
| 1438 | * We note the buffer's block number so that we can release the pin later. |
| 1439 | * This allows us to re-read the buffer if it is needed again for hinting. |
| 1440 | */ |
| 1441 | so->currPos.currPage = BufferGetBlockNumber(so->currPos.buf); |
| 1442 | |
| 1443 | /* |
| 1444 | * We save the LSN of the page as we read it, so that we know whether it |
| 1445 | * safe to apply LP_DEAD hints to the page later. This allows us to drop |
| 1446 | * the pin for MVCC scans, which allows vacuum to avoid blocking. |
| 1447 | */ |
| 1448 | so->currPos.lsn = BufferGetLSNAtomic(so->currPos.buf); |
| 1449 | |
| 1450 | /* |
| 1451 | * we must save the page's right-link while scanning it; this tells us |
| 1452 | * where to step right to after we're done with these items. There is no |
| 1453 | * corresponding need for the left-link, since splits always go right. |
| 1454 | */ |
| 1455 | so->currPos.nextPage = opaque->btpo_next; |
| 1456 | |
| 1457 | /* initialize tuple workspace to empty */ |
| 1458 | so->currPos.nextTupleOffset = 0; |
| 1459 | |
| 1460 | /* |
| 1461 | * Now that the current page has been made consistent, the macro should be |
| 1462 | * good. |
| 1463 | */ |
| 1464 | Assert(BTScanPosIsPinned(so->currPos)); |
| 1465 | |
| 1466 | if (ScanDirectionIsForward(dir)) |
| 1467 | { |
| 1468 | /* load items[] in ascending order */ |
| 1469 | itemIndex = 0; |
| 1470 | |
| 1471 | offnum = Max(offnum, minoff); |
| 1472 | |
| 1473 | while (offnum <= maxoff) |
| 1474 | { |
| 1475 | ItemId iid = PageGetItemId(page, offnum); |
| 1476 | IndexTuple itup; |
| 1477 | |
| 1478 | /* |
| 1479 | * If the scan specifies not to return killed tuples, then we |
| 1480 | * treat a killed tuple as not passing the qual |
| 1481 | */ |
| 1482 | if (scan->ignore_killed_tuples && ItemIdIsDead(iid)) |
| 1483 | { |
| 1484 | offnum = OffsetNumberNext(offnum); |
| 1485 | continue; |
| 1486 | } |
| 1487 | |
| 1488 | itup = (IndexTuple) PageGetItem(page, iid); |
| 1489 | |
| 1490 | if (_bt_checkkeys(scan, itup, indnatts, dir, &continuescan)) |
| 1491 | { |
| 1492 | /* tuple passes all scan key conditions, so remember it */ |
| 1493 | _bt_saveitem(so, itemIndex, offnum, itup); |
| 1494 | itemIndex++; |
| 1495 | } |
| 1496 | /* When !continuescan, there can't be any more matches, so stop */ |
| 1497 | if (!continuescan) |
| 1498 | break; |
| 1499 | |
| 1500 | offnum = OffsetNumberNext(offnum); |
| 1501 | } |
| 1502 | |
| 1503 | /* |
| 1504 | * We don't need to visit page to the right when the high key |
| 1505 | * indicates that no more matches will be found there. |
| 1506 | * |
| 1507 | * Checking the high key like this works out more often than you might |
| 1508 | * think. Leaf page splits pick a split point between the two most |
| 1509 | * dissimilar tuples (this is weighed against the need to evenly share |
| 1510 | * free space). Leaf pages with high key attribute values that can |
| 1511 | * only appear on non-pivot tuples on the right sibling page are |
| 1512 | * common. |
| 1513 | */ |
| 1514 | if (continuescan && !P_RIGHTMOST(opaque)) |
| 1515 | { |
| 1516 | ItemId iid = PageGetItemId(page, P_HIKEY); |
| 1517 | IndexTuple itup = (IndexTuple) PageGetItem(page, iid); |
| 1518 | int truncatt; |
| 1519 | |
| 1520 | truncatt = BTreeTupleGetNAtts(itup, scan->indexRelation); |
| 1521 | _bt_checkkeys(scan, itup, truncatt, dir, &continuescan); |
| 1522 | } |
| 1523 | |
| 1524 | if (!continuescan) |
| 1525 | so->currPos.moreRight = false; |
| 1526 | |
| 1527 | Assert(itemIndex <= MaxIndexTuplesPerPage); |
| 1528 | so->currPos.firstItem = 0; |
| 1529 | so->currPos.lastItem = itemIndex - 1; |
| 1530 | so->currPos.itemIndex = 0; |
| 1531 | } |
| 1532 | else |
| 1533 | { |
| 1534 | /* load items[] in descending order */ |
| 1535 | itemIndex = MaxIndexTuplesPerPage; |
| 1536 | |
| 1537 | offnum = Min(offnum, maxoff); |
| 1538 | |
| 1539 | while (offnum >= minoff) |
| 1540 | { |
| 1541 | ItemId iid = PageGetItemId(page, offnum); |
| 1542 | IndexTuple itup; |
| 1543 | bool tuple_alive; |
| 1544 | bool passes_quals; |
| 1545 | |
| 1546 | /* |
| 1547 | * If the scan specifies not to return killed tuples, then we |
| 1548 | * treat a killed tuple as not passing the qual. Most of the |
| 1549 | * time, it's a win to not bother examining the tuple's index |
| 1550 | * keys, but just skip to the next tuple (previous, actually, |
| 1551 | * since we're scanning backwards). However, if this is the first |
| 1552 | * tuple on the page, we do check the index keys, to prevent |
| 1553 | * uselessly advancing to the page to the left. This is similar |
| 1554 | * to the high key optimization used by forward scans. |
| 1555 | */ |
| 1556 | if (scan->ignore_killed_tuples && ItemIdIsDead(iid)) |
| 1557 | { |
| 1558 | Assert(offnum >= P_FIRSTDATAKEY(opaque)); |
| 1559 | if (offnum > P_FIRSTDATAKEY(opaque)) |
| 1560 | { |
| 1561 | offnum = OffsetNumberPrev(offnum); |
| 1562 | continue; |
| 1563 | } |
| 1564 | |
| 1565 | tuple_alive = false; |
| 1566 | } |
| 1567 | else |
| 1568 | tuple_alive = true; |
| 1569 | |
| 1570 | itup = (IndexTuple) PageGetItem(page, iid); |
| 1571 | |
| 1572 | passes_quals = _bt_checkkeys(scan, itup, indnatts, dir, |
| 1573 | &continuescan); |
| 1574 | if (passes_quals && tuple_alive) |
| 1575 | { |
| 1576 | /* tuple passes all scan key conditions, so remember it */ |
| 1577 | itemIndex--; |
| 1578 | _bt_saveitem(so, itemIndex, offnum, itup); |
| 1579 | } |
| 1580 | if (!continuescan) |
| 1581 | { |
| 1582 | /* there can't be any more matches, so stop */ |
| 1583 | so->currPos.moreLeft = false; |
| 1584 | break; |
| 1585 | } |
| 1586 | |
| 1587 | offnum = OffsetNumberPrev(offnum); |
| 1588 | } |
| 1589 | |
| 1590 | Assert(itemIndex >= 0); |
| 1591 | so->currPos.firstItem = itemIndex; |
| 1592 | so->currPos.lastItem = MaxIndexTuplesPerPage - 1; |
| 1593 | so->currPos.itemIndex = MaxIndexTuplesPerPage - 1; |
| 1594 | } |
| 1595 | |
| 1596 | return (so->currPos.firstItem <= so->currPos.lastItem); |
| 1597 | } |
| 1598 | |
| 1599 | /* Save an index item into so->currPos.items[itemIndex] */ |
| 1600 | static void |
| 1601 | _bt_saveitem(BTScanOpaque so, int itemIndex, |
| 1602 | OffsetNumber offnum, IndexTuple itup) |
| 1603 | { |
| 1604 | BTScanPosItem *currItem = &so->currPos.items[itemIndex]; |
| 1605 | |
| 1606 | currItem->heapTid = itup->t_tid; |
| 1607 | currItem->indexOffset = offnum; |
| 1608 | if (so->currTuples) |
| 1609 | { |
| 1610 | Size itupsz = IndexTupleSize(itup); |
| 1611 | |
| 1612 | currItem->tupleOffset = so->currPos.nextTupleOffset; |
| 1613 | memcpy(so->currTuples + so->currPos.nextTupleOffset, itup, itupsz); |
| 1614 | so->currPos.nextTupleOffset += MAXALIGN(itupsz); |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | /* |
| 1619 | * _bt_steppage() -- Step to next page containing valid data for scan |
| 1620 | * |
| 1621 | * On entry, if so->currPos.buf is valid the buffer is pinned but not locked; |
| 1622 | * if pinned, we'll drop the pin before moving to next page. The buffer is |
| 1623 | * not locked on entry. |
| 1624 | * |
| 1625 | * For success on a scan using a non-MVCC snapshot we hold a pin, but not a |
| 1626 | * read lock, on that page. If we do not hold the pin, we set so->currPos.buf |
| 1627 | * to InvalidBuffer. We return true to indicate success. |
| 1628 | */ |
| 1629 | static bool |
| 1630 | _bt_steppage(IndexScanDesc scan, ScanDirection dir) |
| 1631 | { |
| 1632 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 1633 | BlockNumber blkno = InvalidBlockNumber; |
| 1634 | bool status = true; |
| 1635 | |
| 1636 | Assert(BTScanPosIsValid(so->currPos)); |
| 1637 | |
| 1638 | /* Before leaving current page, deal with any killed items */ |
| 1639 | if (so->numKilled > 0) |
| 1640 | _bt_killitems(scan); |
| 1641 | |
| 1642 | /* |
| 1643 | * Before we modify currPos, make a copy of the page data if there was a |
| 1644 | * mark position that needs it. |
| 1645 | */ |
| 1646 | if (so->markItemIndex >= 0) |
| 1647 | { |
| 1648 | /* bump pin on current buffer for assignment to mark buffer */ |
| 1649 | if (BTScanPosIsPinned(so->currPos)) |
| 1650 | IncrBufferRefCount(so->currPos.buf); |
| 1651 | memcpy(&so->markPos, &so->currPos, |
| 1652 | offsetof(BTScanPosData, items[1]) + |
| 1653 | so->currPos.lastItem * sizeof(BTScanPosItem)); |
| 1654 | if (so->markTuples) |
| 1655 | memcpy(so->markTuples, so->currTuples, |
| 1656 | so->currPos.nextTupleOffset); |
| 1657 | so->markPos.itemIndex = so->markItemIndex; |
| 1658 | so->markItemIndex = -1; |
| 1659 | } |
| 1660 | |
| 1661 | if (ScanDirectionIsForward(dir)) |
| 1662 | { |
| 1663 | /* Walk right to the next page with data */ |
| 1664 | if (scan->parallel_scan != NULL) |
| 1665 | { |
| 1666 | /* |
| 1667 | * Seize the scan to get the next block number; if the scan has |
| 1668 | * ended already, bail out. |
| 1669 | */ |
| 1670 | status = _bt_parallel_seize(scan, &blkno); |
| 1671 | if (!status) |
| 1672 | { |
| 1673 | /* release the previous buffer, if pinned */ |
| 1674 | BTScanPosUnpinIfPinned(so->currPos); |
| 1675 | BTScanPosInvalidate(so->currPos); |
| 1676 | return false; |
| 1677 | } |
| 1678 | } |
| 1679 | else |
| 1680 | { |
| 1681 | /* Not parallel, so use the previously-saved nextPage link. */ |
| 1682 | blkno = so->currPos.nextPage; |
| 1683 | } |
| 1684 | |
| 1685 | /* Remember we left a page with data */ |
| 1686 | so->currPos.moreLeft = true; |
| 1687 | |
| 1688 | /* release the previous buffer, if pinned */ |
| 1689 | BTScanPosUnpinIfPinned(so->currPos); |
| 1690 | } |
| 1691 | else |
| 1692 | { |
| 1693 | /* Remember we left a page with data */ |
| 1694 | so->currPos.moreRight = true; |
| 1695 | |
| 1696 | if (scan->parallel_scan != NULL) |
| 1697 | { |
| 1698 | /* |
| 1699 | * Seize the scan to get the current block number; if the scan has |
| 1700 | * ended already, bail out. |
| 1701 | */ |
| 1702 | status = _bt_parallel_seize(scan, &blkno); |
| 1703 | BTScanPosUnpinIfPinned(so->currPos); |
| 1704 | if (!status) |
| 1705 | { |
| 1706 | BTScanPosInvalidate(so->currPos); |
| 1707 | return false; |
| 1708 | } |
| 1709 | } |
| 1710 | else |
| 1711 | { |
| 1712 | /* Not parallel, so just use our own notion of the current page */ |
| 1713 | blkno = so->currPos.currPage; |
| 1714 | } |
| 1715 | } |
| 1716 | |
| 1717 | if (!_bt_readnextpage(scan, blkno, dir)) |
| 1718 | return false; |
| 1719 | |
| 1720 | /* Drop the lock, and maybe the pin, on the current page */ |
| 1721 | _bt_drop_lock_and_maybe_pin(scan, &so->currPos); |
| 1722 | |
| 1723 | return true; |
| 1724 | } |
| 1725 | |
| 1726 | /* |
| 1727 | * _bt_readnextpage() -- Read next page containing valid data for scan |
| 1728 | * |
| 1729 | * On success exit, so->currPos is updated to contain data from the next |
| 1730 | * interesting page. Caller is responsible to release lock and pin on |
| 1731 | * buffer on success. We return true to indicate success. |
| 1732 | * |
| 1733 | * If there are no more matching records in the given direction, we drop all |
| 1734 | * locks and pins, set so->currPos.buf to InvalidBuffer, and return false. |
| 1735 | */ |
| 1736 | static bool |
| 1737 | _bt_readnextpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir) |
| 1738 | { |
| 1739 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 1740 | Relation rel; |
| 1741 | Page page; |
| 1742 | BTPageOpaque opaque; |
| 1743 | bool status = true; |
| 1744 | |
| 1745 | rel = scan->indexRelation; |
| 1746 | |
| 1747 | if (ScanDirectionIsForward(dir)) |
| 1748 | { |
| 1749 | for (;;) |
| 1750 | { |
| 1751 | /* |
| 1752 | * if we're at end of scan, give up and mark parallel scan as |
| 1753 | * done, so that all the workers can finish their scan |
| 1754 | */ |
| 1755 | if (blkno == P_NONE || !so->currPos.moreRight) |
| 1756 | { |
| 1757 | _bt_parallel_done(scan); |
| 1758 | BTScanPosInvalidate(so->currPos); |
| 1759 | return false; |
| 1760 | } |
| 1761 | /* check for interrupts while we're not holding any buffer lock */ |
| 1762 | CHECK_FOR_INTERRUPTS(); |
| 1763 | /* step right one page */ |
| 1764 | so->currPos.buf = _bt_getbuf(rel, blkno, BT_READ); |
| 1765 | page = BufferGetPage(so->currPos.buf); |
| 1766 | TestForOldSnapshot(scan->xs_snapshot, rel, page); |
| 1767 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1768 | /* check for deleted page */ |
| 1769 | if (!P_IGNORE(opaque)) |
| 1770 | { |
| 1771 | PredicateLockPage(rel, blkno, scan->xs_snapshot); |
| 1772 | /* see if there are any matches on this page */ |
| 1773 | /* note that this will clear moreRight if we can stop */ |
| 1774 | if (_bt_readpage(scan, dir, P_FIRSTDATAKEY(opaque))) |
| 1775 | break; |
| 1776 | } |
| 1777 | else if (scan->parallel_scan != NULL) |
| 1778 | { |
| 1779 | /* allow next page be processed by parallel worker */ |
| 1780 | _bt_parallel_release(scan, opaque->btpo_next); |
| 1781 | } |
| 1782 | |
| 1783 | /* nope, keep going */ |
| 1784 | if (scan->parallel_scan != NULL) |
| 1785 | { |
| 1786 | _bt_relbuf(rel, so->currPos.buf); |
| 1787 | status = _bt_parallel_seize(scan, &blkno); |
| 1788 | if (!status) |
| 1789 | { |
| 1790 | BTScanPosInvalidate(so->currPos); |
| 1791 | return false; |
| 1792 | } |
| 1793 | } |
| 1794 | else |
| 1795 | { |
| 1796 | blkno = opaque->btpo_next; |
| 1797 | _bt_relbuf(rel, so->currPos.buf); |
| 1798 | } |
| 1799 | } |
| 1800 | } |
| 1801 | else |
| 1802 | { |
| 1803 | /* |
| 1804 | * Should only happen in parallel cases, when some other backend |
| 1805 | * advanced the scan. |
| 1806 | */ |
| 1807 | if (so->currPos.currPage != blkno) |
| 1808 | { |
| 1809 | BTScanPosUnpinIfPinned(so->currPos); |
| 1810 | so->currPos.currPage = blkno; |
| 1811 | } |
| 1812 | |
| 1813 | /* |
| 1814 | * Walk left to the next page with data. This is much more complex |
| 1815 | * than the walk-right case because of the possibility that the page |
| 1816 | * to our left splits while we are in flight to it, plus the |
| 1817 | * possibility that the page we were on gets deleted after we leave |
| 1818 | * it. See nbtree/README for details. |
| 1819 | * |
| 1820 | * It might be possible to rearrange this code to have less overhead |
| 1821 | * in pinning and locking, but that would require capturing the left |
| 1822 | * pointer when the page is initially read, and using it here, along |
| 1823 | * with big changes to _bt_walk_left() and the code below. It is not |
| 1824 | * clear whether this would be a win, since if the page immediately to |
| 1825 | * the left splits after we read this page and before we step left, we |
| 1826 | * would need to visit more pages than with the current code. |
| 1827 | * |
| 1828 | * Note that if we change the code so that we drop the pin for a scan |
| 1829 | * which uses a non-MVCC snapshot, we will need to modify the code for |
| 1830 | * walking left, to allow for the possibility that a referenced page |
| 1831 | * has been deleted. As long as the buffer is pinned or the snapshot |
| 1832 | * is MVCC the page cannot move past the half-dead state to fully |
| 1833 | * deleted. |
| 1834 | */ |
| 1835 | if (BTScanPosIsPinned(so->currPos)) |
| 1836 | LockBuffer(so->currPos.buf, BT_READ); |
| 1837 | else |
| 1838 | so->currPos.buf = _bt_getbuf(rel, so->currPos.currPage, BT_READ); |
| 1839 | |
| 1840 | for (;;) |
| 1841 | { |
| 1842 | /* Done if we know there are no matching keys to the left */ |
| 1843 | if (!so->currPos.moreLeft) |
| 1844 | { |
| 1845 | _bt_relbuf(rel, so->currPos.buf); |
| 1846 | _bt_parallel_done(scan); |
| 1847 | BTScanPosInvalidate(so->currPos); |
| 1848 | return false; |
| 1849 | } |
| 1850 | |
| 1851 | /* Step to next physical page */ |
| 1852 | so->currPos.buf = _bt_walk_left(rel, so->currPos.buf, |
| 1853 | scan->xs_snapshot); |
| 1854 | |
| 1855 | /* if we're physically at end of index, return failure */ |
| 1856 | if (so->currPos.buf == InvalidBuffer) |
| 1857 | { |
| 1858 | _bt_parallel_done(scan); |
| 1859 | BTScanPosInvalidate(so->currPos); |
| 1860 | return false; |
| 1861 | } |
| 1862 | |
| 1863 | /* |
| 1864 | * Okay, we managed to move left to a non-deleted page. Done if |
| 1865 | * it's not half-dead and contains matching tuples. Else loop back |
| 1866 | * and do it all again. |
| 1867 | */ |
| 1868 | page = BufferGetPage(so->currPos.buf); |
| 1869 | TestForOldSnapshot(scan->xs_snapshot, rel, page); |
| 1870 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1871 | if (!P_IGNORE(opaque)) |
| 1872 | { |
| 1873 | PredicateLockPage(rel, BufferGetBlockNumber(so->currPos.buf), scan->xs_snapshot); |
| 1874 | /* see if there are any matches on this page */ |
| 1875 | /* note that this will clear moreLeft if we can stop */ |
| 1876 | if (_bt_readpage(scan, dir, PageGetMaxOffsetNumber(page))) |
| 1877 | break; |
| 1878 | } |
| 1879 | else if (scan->parallel_scan != NULL) |
| 1880 | { |
| 1881 | /* allow next page be processed by parallel worker */ |
| 1882 | _bt_parallel_release(scan, BufferGetBlockNumber(so->currPos.buf)); |
| 1883 | } |
| 1884 | |
| 1885 | /* |
| 1886 | * For parallel scans, get the last page scanned as it is quite |
| 1887 | * possible that by the time we try to seize the scan, some other |
| 1888 | * worker has already advanced the scan to a different page. We |
| 1889 | * must continue based on the latest page scanned by any worker. |
| 1890 | */ |
| 1891 | if (scan->parallel_scan != NULL) |
| 1892 | { |
| 1893 | _bt_relbuf(rel, so->currPos.buf); |
| 1894 | status = _bt_parallel_seize(scan, &blkno); |
| 1895 | if (!status) |
| 1896 | { |
| 1897 | BTScanPosInvalidate(so->currPos); |
| 1898 | return false; |
| 1899 | } |
| 1900 | so->currPos.buf = _bt_getbuf(rel, blkno, BT_READ); |
| 1901 | } |
| 1902 | } |
| 1903 | } |
| 1904 | |
| 1905 | return true; |
| 1906 | } |
| 1907 | |
| 1908 | /* |
| 1909 | * _bt_parallel_readpage() -- Read current page containing valid data for scan |
| 1910 | * |
| 1911 | * On success, release lock and maybe pin on buffer. We return true to |
| 1912 | * indicate success. |
| 1913 | */ |
| 1914 | static bool |
| 1915 | _bt_parallel_readpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir) |
| 1916 | { |
| 1917 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 1918 | |
| 1919 | _bt_initialize_more_data(so, dir); |
| 1920 | |
| 1921 | if (!_bt_readnextpage(scan, blkno, dir)) |
| 1922 | return false; |
| 1923 | |
| 1924 | /* Drop the lock, and maybe the pin, on the current page */ |
| 1925 | _bt_drop_lock_and_maybe_pin(scan, &so->currPos); |
| 1926 | |
| 1927 | return true; |
| 1928 | } |
| 1929 | |
| 1930 | /* |
| 1931 | * _bt_walk_left() -- step left one page, if possible |
| 1932 | * |
| 1933 | * The given buffer must be pinned and read-locked. This will be dropped |
| 1934 | * before stepping left. On return, we have pin and read lock on the |
| 1935 | * returned page, instead. |
| 1936 | * |
| 1937 | * Returns InvalidBuffer if there is no page to the left (no lock is held |
| 1938 | * in that case). |
| 1939 | * |
| 1940 | * When working on a non-leaf level, it is possible for the returned page |
| 1941 | * to be half-dead; the caller should check that condition and step left |
| 1942 | * again if it's important. |
| 1943 | */ |
| 1944 | static Buffer |
| 1945 | _bt_walk_left(Relation rel, Buffer buf, Snapshot snapshot) |
| 1946 | { |
| 1947 | Page page; |
| 1948 | BTPageOpaque opaque; |
| 1949 | |
| 1950 | page = BufferGetPage(buf); |
| 1951 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1952 | |
| 1953 | for (;;) |
| 1954 | { |
| 1955 | BlockNumber obknum; |
| 1956 | BlockNumber lblkno; |
| 1957 | BlockNumber blkno; |
| 1958 | int tries; |
| 1959 | |
| 1960 | /* if we're at end of tree, release buf and return failure */ |
| 1961 | if (P_LEFTMOST(opaque)) |
| 1962 | { |
| 1963 | _bt_relbuf(rel, buf); |
| 1964 | break; |
| 1965 | } |
| 1966 | /* remember original page we are stepping left from */ |
| 1967 | obknum = BufferGetBlockNumber(buf); |
| 1968 | /* step left */ |
| 1969 | blkno = lblkno = opaque->btpo_prev; |
| 1970 | _bt_relbuf(rel, buf); |
| 1971 | /* check for interrupts while we're not holding any buffer lock */ |
| 1972 | CHECK_FOR_INTERRUPTS(); |
| 1973 | buf = _bt_getbuf(rel, blkno, BT_READ); |
| 1974 | page = BufferGetPage(buf); |
| 1975 | TestForOldSnapshot(snapshot, rel, page); |
| 1976 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1977 | |
| 1978 | /* |
| 1979 | * If this isn't the page we want, walk right till we find what we |
| 1980 | * want --- but go no more than four hops (an arbitrary limit). If we |
| 1981 | * don't find the correct page by then, the most likely bet is that |
| 1982 | * the original page got deleted and isn't in the sibling chain at all |
| 1983 | * anymore, not that its left sibling got split more than four times. |
| 1984 | * |
| 1985 | * Note that it is correct to test P_ISDELETED not P_IGNORE here, |
| 1986 | * because half-dead pages are still in the sibling chain. Caller |
| 1987 | * must reject half-dead pages if wanted. |
| 1988 | */ |
| 1989 | tries = 0; |
| 1990 | for (;;) |
| 1991 | { |
| 1992 | if (!P_ISDELETED(opaque) && opaque->btpo_next == obknum) |
| 1993 | { |
| 1994 | /* Found desired page, return it */ |
| 1995 | return buf; |
| 1996 | } |
| 1997 | if (P_RIGHTMOST(opaque) || ++tries > 4) |
| 1998 | break; |
| 1999 | blkno = opaque->btpo_next; |
| 2000 | buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ); |
| 2001 | page = BufferGetPage(buf); |
| 2002 | TestForOldSnapshot(snapshot, rel, page); |
| 2003 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2004 | } |
| 2005 | |
| 2006 | /* Return to the original page to see what's up */ |
| 2007 | buf = _bt_relandgetbuf(rel, buf, obknum, BT_READ); |
| 2008 | page = BufferGetPage(buf); |
| 2009 | TestForOldSnapshot(snapshot, rel, page); |
| 2010 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2011 | if (P_ISDELETED(opaque)) |
| 2012 | { |
| 2013 | /* |
| 2014 | * It was deleted. Move right to first nondeleted page (there |
| 2015 | * must be one); that is the page that has acquired the deleted |
| 2016 | * one's keyspace, so stepping left from it will take us where we |
| 2017 | * want to be. |
| 2018 | */ |
| 2019 | for (;;) |
| 2020 | { |
| 2021 | if (P_RIGHTMOST(opaque)) |
| 2022 | elog(ERROR, "fell off the end of index \"%s\"" , |
| 2023 | RelationGetRelationName(rel)); |
| 2024 | blkno = opaque->btpo_next; |
| 2025 | buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ); |
| 2026 | page = BufferGetPage(buf); |
| 2027 | TestForOldSnapshot(snapshot, rel, page); |
| 2028 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2029 | if (!P_ISDELETED(opaque)) |
| 2030 | break; |
| 2031 | } |
| 2032 | |
| 2033 | /* |
| 2034 | * Now return to top of loop, resetting obknum to point to this |
| 2035 | * nondeleted page, and try again. |
| 2036 | */ |
| 2037 | } |
| 2038 | else |
| 2039 | { |
| 2040 | /* |
| 2041 | * It wasn't deleted; the explanation had better be that the page |
| 2042 | * to the left got split or deleted. Without this check, we'd go |
| 2043 | * into an infinite loop if there's anything wrong. |
| 2044 | */ |
| 2045 | if (opaque->btpo_prev == lblkno) |
| 2046 | elog(ERROR, "could not find left sibling of block %u in index \"%s\"" , |
| 2047 | obknum, RelationGetRelationName(rel)); |
| 2048 | /* Okay to try again with new lblkno value */ |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | return InvalidBuffer; |
| 2053 | } |
| 2054 | |
| 2055 | /* |
| 2056 | * _bt_get_endpoint() -- Find the first or last page on a given tree level |
| 2057 | * |
| 2058 | * If the index is empty, we will return InvalidBuffer; any other failure |
| 2059 | * condition causes ereport(). We will not return a dead page. |
| 2060 | * |
| 2061 | * The returned buffer is pinned and read-locked. |
| 2062 | */ |
| 2063 | Buffer |
| 2064 | _bt_get_endpoint(Relation rel, uint32 level, bool rightmost, |
| 2065 | Snapshot snapshot) |
| 2066 | { |
| 2067 | Buffer buf; |
| 2068 | Page page; |
| 2069 | BTPageOpaque opaque; |
| 2070 | OffsetNumber offnum; |
| 2071 | BlockNumber blkno; |
| 2072 | IndexTuple itup; |
| 2073 | |
| 2074 | /* |
| 2075 | * If we are looking for a leaf page, okay to descend from fast root; |
| 2076 | * otherwise better descend from true root. (There is no point in being |
| 2077 | * smarter about intermediate levels.) |
| 2078 | */ |
| 2079 | if (level == 0) |
| 2080 | buf = _bt_getroot(rel, BT_READ); |
| 2081 | else |
| 2082 | buf = _bt_gettrueroot(rel); |
| 2083 | |
| 2084 | if (!BufferIsValid(buf)) |
| 2085 | return InvalidBuffer; |
| 2086 | |
| 2087 | page = BufferGetPage(buf); |
| 2088 | TestForOldSnapshot(snapshot, rel, page); |
| 2089 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2090 | |
| 2091 | for (;;) |
| 2092 | { |
| 2093 | /* |
| 2094 | * If we landed on a deleted page, step right to find a live page |
| 2095 | * (there must be one). Also, if we want the rightmost page, step |
| 2096 | * right if needed to get to it (this could happen if the page split |
| 2097 | * since we obtained a pointer to it). |
| 2098 | */ |
| 2099 | while (P_IGNORE(opaque) || |
| 2100 | (rightmost && !P_RIGHTMOST(opaque))) |
| 2101 | { |
| 2102 | blkno = opaque->btpo_next; |
| 2103 | if (blkno == P_NONE) |
| 2104 | elog(ERROR, "fell off the end of index \"%s\"" , |
| 2105 | RelationGetRelationName(rel)); |
| 2106 | buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ); |
| 2107 | page = BufferGetPage(buf); |
| 2108 | TestForOldSnapshot(snapshot, rel, page); |
| 2109 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2110 | } |
| 2111 | |
| 2112 | /* Done? */ |
| 2113 | if (opaque->btpo.level == level) |
| 2114 | break; |
| 2115 | if (opaque->btpo.level < level) |
| 2116 | elog(ERROR, "btree level %u not found in index \"%s\"" , |
| 2117 | level, RelationGetRelationName(rel)); |
| 2118 | |
| 2119 | /* Descend to leftmost or rightmost child page */ |
| 2120 | if (rightmost) |
| 2121 | offnum = PageGetMaxOffsetNumber(page); |
| 2122 | else |
| 2123 | offnum = P_FIRSTDATAKEY(opaque); |
| 2124 | |
| 2125 | itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum)); |
| 2126 | blkno = BTreeInnerTupleGetDownLink(itup); |
| 2127 | |
| 2128 | buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ); |
| 2129 | page = BufferGetPage(buf); |
| 2130 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2131 | } |
| 2132 | |
| 2133 | return buf; |
| 2134 | } |
| 2135 | |
| 2136 | /* |
| 2137 | * _bt_endpoint() -- Find the first or last page in the index, and scan |
| 2138 | * from there to the first key satisfying all the quals. |
| 2139 | * |
| 2140 | * This is used by _bt_first() to set up a scan when we've determined |
| 2141 | * that the scan must start at the beginning or end of the index (for |
| 2142 | * a forward or backward scan respectively). Exit conditions are the |
| 2143 | * same as for _bt_first(). |
| 2144 | */ |
| 2145 | static bool |
| 2146 | _bt_endpoint(IndexScanDesc scan, ScanDirection dir) |
| 2147 | { |
| 2148 | Relation rel = scan->indexRelation; |
| 2149 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 2150 | Buffer buf; |
| 2151 | Page page; |
| 2152 | BTPageOpaque opaque; |
| 2153 | OffsetNumber start; |
| 2154 | BTScanPosItem *currItem; |
| 2155 | |
| 2156 | /* |
| 2157 | * Scan down to the leftmost or rightmost leaf page. This is a simplified |
| 2158 | * version of _bt_search(). We don't maintain a stack since we know we |
| 2159 | * won't need it. |
| 2160 | */ |
| 2161 | buf = _bt_get_endpoint(rel, 0, ScanDirectionIsBackward(dir), scan->xs_snapshot); |
| 2162 | |
| 2163 | if (!BufferIsValid(buf)) |
| 2164 | { |
| 2165 | /* |
| 2166 | * Empty index. Lock the whole relation, as nothing finer to lock |
| 2167 | * exists. |
| 2168 | */ |
| 2169 | PredicateLockRelation(rel, scan->xs_snapshot); |
| 2170 | BTScanPosInvalidate(so->currPos); |
| 2171 | return false; |
| 2172 | } |
| 2173 | |
| 2174 | PredicateLockPage(rel, BufferGetBlockNumber(buf), scan->xs_snapshot); |
| 2175 | page = BufferGetPage(buf); |
| 2176 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2177 | Assert(P_ISLEAF(opaque)); |
| 2178 | |
| 2179 | if (ScanDirectionIsForward(dir)) |
| 2180 | { |
| 2181 | /* There could be dead pages to the left, so not this: */ |
| 2182 | /* Assert(P_LEFTMOST(opaque)); */ |
| 2183 | |
| 2184 | start = P_FIRSTDATAKEY(opaque); |
| 2185 | } |
| 2186 | else if (ScanDirectionIsBackward(dir)) |
| 2187 | { |
| 2188 | Assert(P_RIGHTMOST(opaque)); |
| 2189 | |
| 2190 | start = PageGetMaxOffsetNumber(page); |
| 2191 | } |
| 2192 | else |
| 2193 | { |
| 2194 | elog(ERROR, "invalid scan direction: %d" , (int) dir); |
| 2195 | start = 0; /* keep compiler quiet */ |
| 2196 | } |
| 2197 | |
| 2198 | /* remember which buffer we have pinned */ |
| 2199 | so->currPos.buf = buf; |
| 2200 | |
| 2201 | _bt_initialize_more_data(so, dir); |
| 2202 | |
| 2203 | /* |
| 2204 | * Now load data from the first page of the scan. |
| 2205 | */ |
| 2206 | if (!_bt_readpage(scan, dir, start)) |
| 2207 | { |
| 2208 | /* |
| 2209 | * There's no actually-matching data on this page. Try to advance to |
| 2210 | * the next page. Return false if there's no matching data at all. |
| 2211 | */ |
| 2212 | LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK); |
| 2213 | if (!_bt_steppage(scan, dir)) |
| 2214 | return false; |
| 2215 | } |
| 2216 | else |
| 2217 | { |
| 2218 | /* Drop the lock, and maybe the pin, on the current page */ |
| 2219 | _bt_drop_lock_and_maybe_pin(scan, &so->currPos); |
| 2220 | } |
| 2221 | |
| 2222 | /* OK, itemIndex says what to return */ |
| 2223 | currItem = &so->currPos.items[so->currPos.itemIndex]; |
| 2224 | scan->xs_heaptid = currItem->heapTid; |
| 2225 | if (scan->xs_want_itup) |
| 2226 | scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset); |
| 2227 | |
| 2228 | return true; |
| 2229 | } |
| 2230 | |
| 2231 | /* |
| 2232 | * _bt_initialize_more_data() -- initialize moreLeft/moreRight appropriately |
| 2233 | * for scan direction |
| 2234 | */ |
| 2235 | static inline void |
| 2236 | _bt_initialize_more_data(BTScanOpaque so, ScanDirection dir) |
| 2237 | { |
| 2238 | /* initialize moreLeft/moreRight appropriately for scan direction */ |
| 2239 | if (ScanDirectionIsForward(dir)) |
| 2240 | { |
| 2241 | so->currPos.moreLeft = false; |
| 2242 | so->currPos.moreRight = true; |
| 2243 | } |
| 2244 | else |
| 2245 | { |
| 2246 | so->currPos.moreLeft = true; |
| 2247 | so->currPos.moreRight = false; |
| 2248 | } |
| 2249 | so->numKilled = 0; /* just paranoia */ |
| 2250 | so->markItemIndex = -1; /* ditto */ |
| 2251 | } |
| 2252 | |