1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * nbtsearch.c |
4 | * Search code for postgres btrees. |
5 | * |
6 | * |
7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
8 | * Portions Copyright (c) 1994, Regents of the University of California |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/access/nbtree/nbtsearch.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | |
16 | #include "postgres.h" |
17 | |
18 | #include "access/nbtree.h" |
19 | #include "access/relscan.h" |
20 | #include "miscadmin.h" |
21 | #include "pgstat.h" |
22 | #include "storage/predicate.h" |
23 | #include "utils/lsyscache.h" |
24 | #include "utils/rel.h" |
25 | |
26 | |
27 | static void _bt_drop_lock_and_maybe_pin(IndexScanDesc scan, BTScanPos sp); |
28 | static OffsetNumber _bt_binsrch(Relation rel, BTScanInsert key, Buffer buf); |
29 | static bool _bt_readpage(IndexScanDesc scan, ScanDirection dir, |
30 | OffsetNumber offnum); |
31 | static void _bt_saveitem(BTScanOpaque so, int itemIndex, |
32 | OffsetNumber offnum, IndexTuple itup); |
33 | static bool _bt_steppage(IndexScanDesc scan, ScanDirection dir); |
34 | static bool _bt_readnextpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir); |
35 | static bool _bt_parallel_readpage(IndexScanDesc scan, BlockNumber blkno, |
36 | ScanDirection dir); |
37 | static Buffer _bt_walk_left(Relation rel, Buffer buf, Snapshot snapshot); |
38 | static bool _bt_endpoint(IndexScanDesc scan, ScanDirection dir); |
39 | static inline void _bt_initialize_more_data(BTScanOpaque so, ScanDirection dir); |
40 | |
41 | |
42 | /* |
43 | * _bt_drop_lock_and_maybe_pin() |
44 | * |
45 | * Unlock the buffer; and if it is safe to release the pin, do that, too. It |
46 | * is safe if the scan is using an MVCC snapshot and the index is WAL-logged. |
47 | * This will prevent vacuum from stalling in a blocked state trying to read a |
48 | * page when a cursor is sitting on it -- at least in many important cases. |
49 | * |
50 | * Set the buffer to invalid if the pin is released, since the buffer may be |
51 | * re-used. If we need to go back to this block (for example, to apply |
52 | * LP_DEAD hints) we must get a fresh reference to the buffer. Hopefully it |
53 | * will remain in shared memory for as long as it takes to scan the index |
54 | * buffer page. |
55 | */ |
56 | static void |
57 | _bt_drop_lock_and_maybe_pin(IndexScanDesc scan, BTScanPos sp) |
58 | { |
59 | LockBuffer(sp->buf, BUFFER_LOCK_UNLOCK); |
60 | |
61 | if (IsMVCCSnapshot(scan->xs_snapshot) && |
62 | RelationNeedsWAL(scan->indexRelation) && |
63 | !scan->xs_want_itup) |
64 | { |
65 | ReleaseBuffer(sp->buf); |
66 | sp->buf = InvalidBuffer; |
67 | } |
68 | } |
69 | |
70 | /* |
71 | * _bt_search() -- Search the tree for a particular scankey, |
72 | * or more precisely for the first leaf page it could be on. |
73 | * |
74 | * The passed scankey is an insertion-type scankey (see nbtree/README), |
75 | * but it can omit the rightmost column(s) of the index. |
76 | * |
77 | * Return value is a stack of parent-page pointers. *bufP is set to the |
78 | * address of the leaf-page buffer, which is read-locked and pinned. |
79 | * No locks are held on the parent pages, however! |
80 | * |
81 | * If the snapshot parameter is not NULL, "old snapshot" checking will take |
82 | * place during the descent through the tree. This is not needed when |
83 | * positioning for an insert or delete, so NULL is used for those cases. |
84 | * |
85 | * The returned buffer is locked according to access parameter. Additionally, |
86 | * access = BT_WRITE will allow an empty root page to be created and returned. |
87 | * When access = BT_READ, an empty index will result in *bufP being set to |
88 | * InvalidBuffer. Also, in BT_WRITE mode, any incomplete splits encountered |
89 | * during the search will be finished. |
90 | */ |
91 | BTStack |
92 | _bt_search(Relation rel, BTScanInsert key, Buffer *bufP, int access, |
93 | Snapshot snapshot) |
94 | { |
95 | BTStack stack_in = NULL; |
96 | int page_access = BT_READ; |
97 | |
98 | /* Get the root page to start with */ |
99 | *bufP = _bt_getroot(rel, access); |
100 | |
101 | /* If index is empty and access = BT_READ, no root page is created. */ |
102 | if (!BufferIsValid(*bufP)) |
103 | return (BTStack) NULL; |
104 | |
105 | /* Loop iterates once per level descended in the tree */ |
106 | for (;;) |
107 | { |
108 | Page page; |
109 | BTPageOpaque opaque; |
110 | OffsetNumber offnum; |
111 | ItemId itemid; |
112 | IndexTuple itup; |
113 | BlockNumber blkno; |
114 | BlockNumber par_blkno; |
115 | BTStack new_stack; |
116 | |
117 | /* |
118 | * Race -- the page we just grabbed may have split since we read its |
119 | * pointer in the parent (or metapage). If it has, we may need to |
120 | * move right to its new sibling. Do that. |
121 | * |
122 | * In write-mode, allow _bt_moveright to finish any incomplete splits |
123 | * along the way. Strictly speaking, we'd only need to finish an |
124 | * incomplete split on the leaf page we're about to insert to, not on |
125 | * any of the upper levels (they are taken care of in _bt_getstackbuf, |
126 | * if the leaf page is split and we insert to the parent page). But |
127 | * this is a good opportunity to finish splits of internal pages too. |
128 | */ |
129 | *bufP = _bt_moveright(rel, key, *bufP, (access == BT_WRITE), stack_in, |
130 | page_access, snapshot); |
131 | |
132 | /* if this is a leaf page, we're done */ |
133 | page = BufferGetPage(*bufP); |
134 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
135 | if (P_ISLEAF(opaque)) |
136 | break; |
137 | |
138 | /* |
139 | * Find the appropriate item on the internal page, and get the child |
140 | * page that it points to. |
141 | */ |
142 | offnum = _bt_binsrch(rel, key, *bufP); |
143 | itemid = PageGetItemId(page, offnum); |
144 | itup = (IndexTuple) PageGetItem(page, itemid); |
145 | blkno = BTreeInnerTupleGetDownLink(itup); |
146 | par_blkno = BufferGetBlockNumber(*bufP); |
147 | |
148 | /* |
149 | * We need to save the location of the index entry we chose in the |
150 | * parent page on a stack. In case we split the tree, we'll use the |
151 | * stack to work back up to the parent page. We also save the actual |
152 | * downlink (block) to uniquely identify the index entry, in case it |
153 | * moves right while we're working lower in the tree. See the paper |
154 | * by Lehman and Yao for how this is detected and handled. (We use the |
155 | * child link during the second half of a page split -- if caller ends |
156 | * up splitting the child it usually ends up inserting a new pivot |
157 | * tuple for child's new right sibling immediately after the original |
158 | * bts_offset offset recorded here. The downlink block will be needed |
159 | * to check if bts_offset remains the position of this same pivot |
160 | * tuple.) |
161 | */ |
162 | new_stack = (BTStack) palloc(sizeof(BTStackData)); |
163 | new_stack->bts_blkno = par_blkno; |
164 | new_stack->bts_offset = offnum; |
165 | new_stack->bts_btentry = blkno; |
166 | new_stack->bts_parent = stack_in; |
167 | |
168 | /* |
169 | * Page level 1 is lowest non-leaf page level prior to leaves. So, if |
170 | * we're on the level 1 and asked to lock leaf page in write mode, |
171 | * then lock next page in write mode, because it must be a leaf. |
172 | */ |
173 | if (opaque->btpo.level == 1 && access == BT_WRITE) |
174 | page_access = BT_WRITE; |
175 | |
176 | /* drop the read lock on the parent page, acquire one on the child */ |
177 | *bufP = _bt_relandgetbuf(rel, *bufP, blkno, page_access); |
178 | |
179 | /* okay, all set to move down a level */ |
180 | stack_in = new_stack; |
181 | } |
182 | |
183 | /* |
184 | * If we're asked to lock leaf in write mode, but didn't manage to, then |
185 | * relock. This should only happen when the root page is a leaf page (and |
186 | * the only page in the index other than the metapage). |
187 | */ |
188 | if (access == BT_WRITE && page_access == BT_READ) |
189 | { |
190 | /* trade in our read lock for a write lock */ |
191 | LockBuffer(*bufP, BUFFER_LOCK_UNLOCK); |
192 | LockBuffer(*bufP, BT_WRITE); |
193 | |
194 | /* |
195 | * If the page was split between the time that we surrendered our read |
196 | * lock and acquired our write lock, then this page may no longer be |
197 | * the right place for the key we want to insert. In this case, we |
198 | * need to move right in the tree. See Lehman and Yao for an |
199 | * excruciatingly precise description. |
200 | */ |
201 | *bufP = _bt_moveright(rel, key, *bufP, true, stack_in, BT_WRITE, |
202 | snapshot); |
203 | } |
204 | |
205 | return stack_in; |
206 | } |
207 | |
208 | /* |
209 | * _bt_moveright() -- move right in the btree if necessary. |
210 | * |
211 | * When we follow a pointer to reach a page, it is possible that |
212 | * the page has changed in the meanwhile. If this happens, we're |
213 | * guaranteed that the page has "split right" -- that is, that any |
214 | * data that appeared on the page originally is either on the page |
215 | * or strictly to the right of it. |
216 | * |
217 | * This routine decides whether or not we need to move right in the |
218 | * tree by examining the high key entry on the page. If that entry is |
219 | * strictly less than the scankey, or <= the scankey in the |
220 | * key.nextkey=true case, then we followed the wrong link and we need |
221 | * to move right. |
222 | * |
223 | * The passed insertion-type scankey can omit the rightmost column(s) of the |
224 | * index. (see nbtree/README) |
225 | * |
226 | * When key.nextkey is false (the usual case), we are looking for the first |
227 | * item >= key. When key.nextkey is true, we are looking for the first item |
228 | * strictly greater than key. |
229 | * |
230 | * If forupdate is true, we will attempt to finish any incomplete splits |
231 | * that we encounter. This is required when locking a target page for an |
232 | * insertion, because we don't allow inserting on a page before the split |
233 | * is completed. 'stack' is only used if forupdate is true. |
234 | * |
235 | * On entry, we have the buffer pinned and a lock of the type specified by |
236 | * 'access'. If we move right, we release the buffer and lock and acquire |
237 | * the same on the right sibling. Return value is the buffer we stop at. |
238 | * |
239 | * If the snapshot parameter is not NULL, "old snapshot" checking will take |
240 | * place during the descent through the tree. This is not needed when |
241 | * positioning for an insert or delete, so NULL is used for those cases. |
242 | */ |
243 | Buffer |
244 | _bt_moveright(Relation rel, |
245 | BTScanInsert key, |
246 | Buffer buf, |
247 | bool forupdate, |
248 | BTStack stack, |
249 | int access, |
250 | Snapshot snapshot) |
251 | { |
252 | Page page; |
253 | BTPageOpaque opaque; |
254 | int32 cmpval; |
255 | |
256 | /* |
257 | * When nextkey = false (normal case): if the scan key that brought us to |
258 | * this page is > the high key stored on the page, then the page has split |
259 | * and we need to move right. (pg_upgrade'd !heapkeyspace indexes could |
260 | * have some duplicates to the right as well as the left, but that's |
261 | * something that's only ever dealt with on the leaf level, after |
262 | * _bt_search has found an initial leaf page.) |
263 | * |
264 | * When nextkey = true: move right if the scan key is >= page's high key. |
265 | * (Note that key.scantid cannot be set in this case.) |
266 | * |
267 | * The page could even have split more than once, so scan as far as |
268 | * needed. |
269 | * |
270 | * We also have to move right if we followed a link that brought us to a |
271 | * dead page. |
272 | */ |
273 | cmpval = key->nextkey ? 0 : 1; |
274 | |
275 | for (;;) |
276 | { |
277 | page = BufferGetPage(buf); |
278 | TestForOldSnapshot(snapshot, rel, page); |
279 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
280 | |
281 | if (P_RIGHTMOST(opaque)) |
282 | break; |
283 | |
284 | /* |
285 | * Finish any incomplete splits we encounter along the way. |
286 | */ |
287 | if (forupdate && P_INCOMPLETE_SPLIT(opaque)) |
288 | { |
289 | BlockNumber blkno = BufferGetBlockNumber(buf); |
290 | |
291 | /* upgrade our lock if necessary */ |
292 | if (access == BT_READ) |
293 | { |
294 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
295 | LockBuffer(buf, BT_WRITE); |
296 | } |
297 | |
298 | if (P_INCOMPLETE_SPLIT(opaque)) |
299 | _bt_finish_split(rel, buf, stack); |
300 | else |
301 | _bt_relbuf(rel, buf); |
302 | |
303 | /* re-acquire the lock in the right mode, and re-check */ |
304 | buf = _bt_getbuf(rel, blkno, access); |
305 | continue; |
306 | } |
307 | |
308 | if (P_IGNORE(opaque) || _bt_compare(rel, key, page, P_HIKEY) >= cmpval) |
309 | { |
310 | /* step right one page */ |
311 | buf = _bt_relandgetbuf(rel, buf, opaque->btpo_next, access); |
312 | continue; |
313 | } |
314 | else |
315 | break; |
316 | } |
317 | |
318 | if (P_IGNORE(opaque)) |
319 | elog(ERROR, "fell off the end of index \"%s\"" , |
320 | RelationGetRelationName(rel)); |
321 | |
322 | return buf; |
323 | } |
324 | |
325 | /* |
326 | * _bt_binsrch() -- Do a binary search for a key on a particular page. |
327 | * |
328 | * On a leaf page, _bt_binsrch() returns the OffsetNumber of the first |
329 | * key >= given scankey, or > scankey if nextkey is true. (NOTE: in |
330 | * particular, this means it is possible to return a value 1 greater than the |
331 | * number of keys on the page, if the scankey is > all keys on the page.) |
332 | * |
333 | * On an internal (non-leaf) page, _bt_binsrch() returns the OffsetNumber |
334 | * of the last key < given scankey, or last key <= given scankey if nextkey |
335 | * is true. (Since _bt_compare treats the first data key of such a page as |
336 | * minus infinity, there will be at least one key < scankey, so the result |
337 | * always points at one of the keys on the page.) This key indicates the |
338 | * right place to descend to be sure we find all leaf keys >= given scankey |
339 | * (or leaf keys > given scankey when nextkey is true). |
340 | * |
341 | * This procedure is not responsible for walking right, it just examines |
342 | * the given page. _bt_binsrch() has no lock or refcount side effects |
343 | * on the buffer. |
344 | */ |
345 | static OffsetNumber |
346 | _bt_binsrch(Relation rel, |
347 | BTScanInsert key, |
348 | Buffer buf) |
349 | { |
350 | Page page; |
351 | BTPageOpaque opaque; |
352 | OffsetNumber low, |
353 | high; |
354 | int32 result, |
355 | cmpval; |
356 | |
357 | /* Requesting nextkey semantics while using scantid seems nonsensical */ |
358 | Assert(!key->nextkey || key->scantid == NULL); |
359 | |
360 | page = BufferGetPage(buf); |
361 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
362 | |
363 | low = P_FIRSTDATAKEY(opaque); |
364 | high = PageGetMaxOffsetNumber(page); |
365 | |
366 | /* |
367 | * If there are no keys on the page, return the first available slot. Note |
368 | * this covers two cases: the page is really empty (no keys), or it |
369 | * contains only a high key. The latter case is possible after vacuuming. |
370 | * This can never happen on an internal page, however, since they are |
371 | * never empty (an internal page must have children). |
372 | */ |
373 | if (unlikely(high < low)) |
374 | return low; |
375 | |
376 | /* |
377 | * Binary search to find the first key on the page >= scan key, or first |
378 | * key > scankey when nextkey is true. |
379 | * |
380 | * For nextkey=false (cmpval=1), the loop invariant is: all slots before |
381 | * 'low' are < scan key, all slots at or after 'high' are >= scan key. |
382 | * |
383 | * For nextkey=true (cmpval=0), the loop invariant is: all slots before |
384 | * 'low' are <= scan key, all slots at or after 'high' are > scan key. |
385 | * |
386 | * We can fall out when high == low. |
387 | */ |
388 | high++; /* establish the loop invariant for high */ |
389 | |
390 | cmpval = key->nextkey ? 0 : 1; /* select comparison value */ |
391 | |
392 | while (high > low) |
393 | { |
394 | OffsetNumber mid = low + ((high - low) / 2); |
395 | |
396 | /* We have low <= mid < high, so mid points at a real slot */ |
397 | |
398 | result = _bt_compare(rel, key, page, mid); |
399 | |
400 | if (result >= cmpval) |
401 | low = mid + 1; |
402 | else |
403 | high = mid; |
404 | } |
405 | |
406 | /* |
407 | * At this point we have high == low, but be careful: they could point |
408 | * past the last slot on the page. |
409 | * |
410 | * On a leaf page, we always return the first key >= scan key (resp. > |
411 | * scan key), which could be the last slot + 1. |
412 | */ |
413 | if (P_ISLEAF(opaque)) |
414 | return low; |
415 | |
416 | /* |
417 | * On a non-leaf page, return the last key < scan key (resp. <= scan key). |
418 | * There must be one if _bt_compare() is playing by the rules. |
419 | */ |
420 | Assert(low > P_FIRSTDATAKEY(opaque)); |
421 | |
422 | return OffsetNumberPrev(low); |
423 | } |
424 | |
425 | /* |
426 | * |
427 | * _bt_binsrch_insert() -- Cacheable, incremental leaf page binary search. |
428 | * |
429 | * Like _bt_binsrch(), but with support for caching the binary search |
430 | * bounds. Only used during insertion, and only on the leaf page that it |
431 | * looks like caller will insert tuple on. Exclusive-locked and pinned |
432 | * leaf page is contained within insertstate. |
433 | * |
434 | * Caches the bounds fields in insertstate so that a subsequent call can |
435 | * reuse the low and strict high bounds of original binary search. Callers |
436 | * that use these fields directly must be prepared for the case where low |
437 | * and/or stricthigh are not on the same page (one or both exceed maxoff |
438 | * for the page). The case where there are no items on the page (high < |
439 | * low) makes bounds invalid. |
440 | * |
441 | * Caller is responsible for invalidating bounds when it modifies the page |
442 | * before calling here a second time. |
443 | */ |
444 | OffsetNumber |
445 | _bt_binsrch_insert(Relation rel, BTInsertState insertstate) |
446 | { |
447 | BTScanInsert key = insertstate->itup_key; |
448 | Page page; |
449 | BTPageOpaque opaque; |
450 | OffsetNumber low, |
451 | high, |
452 | stricthigh; |
453 | int32 result, |
454 | cmpval; |
455 | |
456 | page = BufferGetPage(insertstate->buf); |
457 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
458 | |
459 | Assert(P_ISLEAF(opaque)); |
460 | Assert(!key->nextkey); |
461 | |
462 | if (!insertstate->bounds_valid) |
463 | { |
464 | /* Start new binary search */ |
465 | low = P_FIRSTDATAKEY(opaque); |
466 | high = PageGetMaxOffsetNumber(page); |
467 | } |
468 | else |
469 | { |
470 | /* Restore result of previous binary search against same page */ |
471 | low = insertstate->low; |
472 | high = insertstate->stricthigh; |
473 | } |
474 | |
475 | /* If there are no keys on the page, return the first available slot */ |
476 | if (unlikely(high < low)) |
477 | { |
478 | /* Caller can't reuse bounds */ |
479 | insertstate->low = InvalidOffsetNumber; |
480 | insertstate->stricthigh = InvalidOffsetNumber; |
481 | insertstate->bounds_valid = false; |
482 | return low; |
483 | } |
484 | |
485 | /* |
486 | * Binary search to find the first key on the page >= scan key. (nextkey |
487 | * is always false when inserting). |
488 | * |
489 | * The loop invariant is: all slots before 'low' are < scan key, all slots |
490 | * at or after 'high' are >= scan key. 'stricthigh' is > scan key, and is |
491 | * maintained to save additional search effort for caller. |
492 | * |
493 | * We can fall out when high == low. |
494 | */ |
495 | if (!insertstate->bounds_valid) |
496 | high++; /* establish the loop invariant for high */ |
497 | stricthigh = high; /* high initially strictly higher */ |
498 | |
499 | cmpval = 1; /* !nextkey comparison value */ |
500 | |
501 | while (high > low) |
502 | { |
503 | OffsetNumber mid = low + ((high - low) / 2); |
504 | |
505 | /* We have low <= mid < high, so mid points at a real slot */ |
506 | |
507 | result = _bt_compare(rel, key, page, mid); |
508 | |
509 | if (result >= cmpval) |
510 | low = mid + 1; |
511 | else |
512 | { |
513 | high = mid; |
514 | if (result != 0) |
515 | stricthigh = high; |
516 | } |
517 | } |
518 | |
519 | /* |
520 | * On a leaf page, a binary search always returns the first key >= scan |
521 | * key (at least in !nextkey case), which could be the last slot + 1. This |
522 | * is also the lower bound of cached search. |
523 | * |
524 | * stricthigh may also be the last slot + 1, which prevents caller from |
525 | * using bounds directly, but is still useful to us if we're called a |
526 | * second time with cached bounds (cached low will be < stricthigh when |
527 | * that happens). |
528 | */ |
529 | insertstate->low = low; |
530 | insertstate->stricthigh = stricthigh; |
531 | insertstate->bounds_valid = true; |
532 | |
533 | return low; |
534 | } |
535 | |
536 | /*---------- |
537 | * _bt_compare() -- Compare insertion-type scankey to tuple on a page. |
538 | * |
539 | * page/offnum: location of btree item to be compared to. |
540 | * |
541 | * This routine returns: |
542 | * <0 if scankey < tuple at offnum; |
543 | * 0 if scankey == tuple at offnum; |
544 | * >0 if scankey > tuple at offnum. |
545 | * NULLs in the keys are treated as sortable values. Therefore |
546 | * "equality" does not necessarily mean that the item should be |
547 | * returned to the caller as a matching key! |
548 | * |
549 | * CRUCIAL NOTE: on a non-leaf page, the first data key is assumed to be |
550 | * "minus infinity": this routine will always claim it is less than the |
551 | * scankey. The actual key value stored is explicitly truncated to 0 |
552 | * attributes (explicitly minus infinity) with version 3+ indexes, but |
553 | * that isn't relied upon. This allows us to implement the Lehman and |
554 | * Yao convention that the first down-link pointer is before the first |
555 | * key. See backend/access/nbtree/README for details. |
556 | *---------- |
557 | */ |
558 | int32 |
559 | _bt_compare(Relation rel, |
560 | BTScanInsert key, |
561 | Page page, |
562 | OffsetNumber offnum) |
563 | { |
564 | TupleDesc itupdesc = RelationGetDescr(rel); |
565 | BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
566 | IndexTuple itup; |
567 | ItemPointer heapTid; |
568 | ScanKey scankey; |
569 | int ncmpkey; |
570 | int ntupatts; |
571 | |
572 | Assert(_bt_check_natts(rel, key->heapkeyspace, page, offnum)); |
573 | Assert(key->keysz <= IndexRelationGetNumberOfKeyAttributes(rel)); |
574 | Assert(key->heapkeyspace || key->scantid == NULL); |
575 | |
576 | /* |
577 | * Force result ">" if target item is first data item on an internal page |
578 | * --- see NOTE above. |
579 | */ |
580 | if (!P_ISLEAF(opaque) && offnum == P_FIRSTDATAKEY(opaque)) |
581 | return 1; |
582 | |
583 | itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum)); |
584 | ntupatts = BTreeTupleGetNAtts(itup, rel); |
585 | |
586 | /* |
587 | * The scan key is set up with the attribute number associated with each |
588 | * term in the key. It is important that, if the index is multi-key, the |
589 | * scan contain the first k key attributes, and that they be in order. If |
590 | * you think about how multi-key ordering works, you'll understand why |
591 | * this is. |
592 | * |
593 | * We don't test for violation of this condition here, however. The |
594 | * initial setup for the index scan had better have gotten it right (see |
595 | * _bt_first). |
596 | */ |
597 | |
598 | ncmpkey = Min(ntupatts, key->keysz); |
599 | Assert(key->heapkeyspace || ncmpkey == key->keysz); |
600 | scankey = key->scankeys; |
601 | for (int i = 1; i <= ncmpkey; i++) |
602 | { |
603 | Datum datum; |
604 | bool isNull; |
605 | int32 result; |
606 | |
607 | datum = index_getattr(itup, scankey->sk_attno, itupdesc, &isNull); |
608 | |
609 | /* see comments about NULLs handling in btbuild */ |
610 | if (scankey->sk_flags & SK_ISNULL) /* key is NULL */ |
611 | { |
612 | if (isNull) |
613 | result = 0; /* NULL "=" NULL */ |
614 | else if (scankey->sk_flags & SK_BT_NULLS_FIRST) |
615 | result = -1; /* NULL "<" NOT_NULL */ |
616 | else |
617 | result = 1; /* NULL ">" NOT_NULL */ |
618 | } |
619 | else if (isNull) /* key is NOT_NULL and item is NULL */ |
620 | { |
621 | if (scankey->sk_flags & SK_BT_NULLS_FIRST) |
622 | result = 1; /* NOT_NULL ">" NULL */ |
623 | else |
624 | result = -1; /* NOT_NULL "<" NULL */ |
625 | } |
626 | else |
627 | { |
628 | /* |
629 | * The sk_func needs to be passed the index value as left arg and |
630 | * the sk_argument as right arg (they might be of different |
631 | * types). Since it is convenient for callers to think of |
632 | * _bt_compare as comparing the scankey to the index item, we have |
633 | * to flip the sign of the comparison result. (Unless it's a DESC |
634 | * column, in which case we *don't* flip the sign.) |
635 | */ |
636 | result = DatumGetInt32(FunctionCall2Coll(&scankey->sk_func, |
637 | scankey->sk_collation, |
638 | datum, |
639 | scankey->sk_argument)); |
640 | |
641 | if (!(scankey->sk_flags & SK_BT_DESC)) |
642 | INVERT_COMPARE_RESULT(result); |
643 | } |
644 | |
645 | /* if the keys are unequal, return the difference */ |
646 | if (result != 0) |
647 | return result; |
648 | |
649 | scankey++; |
650 | } |
651 | |
652 | /* |
653 | * All non-truncated attributes (other than heap TID) were found to be |
654 | * equal. Treat truncated attributes as minus infinity when scankey has a |
655 | * key attribute value that would otherwise be compared directly. |
656 | * |
657 | * Note: it doesn't matter if ntupatts includes non-key attributes; |
658 | * scankey won't, so explicitly excluding non-key attributes isn't |
659 | * necessary. |
660 | */ |
661 | if (key->keysz > ntupatts) |
662 | return 1; |
663 | |
664 | /* |
665 | * Use the heap TID attribute and scantid to try to break the tie. The |
666 | * rules are the same as any other key attribute -- only the |
667 | * representation differs. |
668 | */ |
669 | heapTid = BTreeTupleGetHeapTID(itup); |
670 | if (key->scantid == NULL) |
671 | { |
672 | /* |
673 | * Most searches have a scankey that is considered greater than a |
674 | * truncated pivot tuple if and when the scankey has equal values for |
675 | * attributes up to and including the least significant untruncated |
676 | * attribute in tuple. |
677 | * |
678 | * For example, if an index has the minimum two attributes (single |
679 | * user key attribute, plus heap TID attribute), and a page's high key |
680 | * is ('foo', -inf), and scankey is ('foo', <omitted>), the search |
681 | * will not descend to the page to the left. The search will descend |
682 | * right instead. The truncated attribute in pivot tuple means that |
683 | * all non-pivot tuples on the page to the left are strictly < 'foo', |
684 | * so it isn't necessary to descend left. In other words, search |
685 | * doesn't have to descend left because it isn't interested in a match |
686 | * that has a heap TID value of -inf. |
687 | * |
688 | * However, some searches (pivotsearch searches) actually require that |
689 | * we descend left when this happens. -inf is treated as a possible |
690 | * match for omitted scankey attribute(s). This is needed by page |
691 | * deletion, which must re-find leaf pages that are targets for |
692 | * deletion using their high keys. |
693 | * |
694 | * Note: the heap TID part of the test ensures that scankey is being |
695 | * compared to a pivot tuple with one or more truncated key |
696 | * attributes. |
697 | * |
698 | * Note: pg_upgrade'd !heapkeyspace indexes must always descend to the |
699 | * left here, since they have no heap TID attribute (and cannot have |
700 | * any -inf key values in any case, since truncation can only remove |
701 | * non-key attributes). !heapkeyspace searches must always be |
702 | * prepared to deal with matches on both sides of the pivot once the |
703 | * leaf level is reached. |
704 | */ |
705 | if (key->heapkeyspace && !key->pivotsearch && |
706 | key->keysz == ntupatts && heapTid == NULL) |
707 | return 1; |
708 | |
709 | /* All provided scankey arguments found to be equal */ |
710 | return 0; |
711 | } |
712 | |
713 | /* |
714 | * Treat truncated heap TID as minus infinity, since scankey has a key |
715 | * attribute value (scantid) that would otherwise be compared directly |
716 | */ |
717 | Assert(key->keysz == IndexRelationGetNumberOfKeyAttributes(rel)); |
718 | if (heapTid == NULL) |
719 | return 1; |
720 | |
721 | Assert(ntupatts >= IndexRelationGetNumberOfKeyAttributes(rel)); |
722 | return ItemPointerCompare(key->scantid, heapTid); |
723 | } |
724 | |
725 | /* |
726 | * _bt_first() -- Find the first item in a scan. |
727 | * |
728 | * We need to be clever about the direction of scan, the search |
729 | * conditions, and the tree ordering. We find the first item (or, |
730 | * if backwards scan, the last item) in the tree that satisfies the |
731 | * qualifications in the scan key. On success exit, the page containing |
732 | * the current index tuple is pinned but not locked, and data about |
733 | * the matching tuple(s) on the page has been loaded into so->currPos. |
734 | * scan->xs_ctup.t_self is set to the heap TID of the current tuple, |
735 | * and if requested, scan->xs_itup points to a copy of the index tuple. |
736 | * |
737 | * If there are no matching items in the index, we return false, with no |
738 | * pins or locks held. |
739 | * |
740 | * Note that scan->keyData[], and the so->keyData[] scankey built from it, |
741 | * are both search-type scankeys (see nbtree/README for more about this). |
742 | * Within this routine, we build a temporary insertion-type scankey to use |
743 | * in locating the scan start position. |
744 | */ |
745 | bool |
746 | _bt_first(IndexScanDesc scan, ScanDirection dir) |
747 | { |
748 | Relation rel = scan->indexRelation; |
749 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
750 | Buffer buf; |
751 | BTStack stack; |
752 | OffsetNumber offnum; |
753 | StrategyNumber strat; |
754 | bool nextkey; |
755 | bool goback; |
756 | BTScanInsertData inskey; |
757 | ScanKey startKeys[INDEX_MAX_KEYS]; |
758 | ScanKeyData notnullkeys[INDEX_MAX_KEYS]; |
759 | int keysCount = 0; |
760 | int i; |
761 | bool status = true; |
762 | StrategyNumber strat_total; |
763 | BTScanPosItem *currItem; |
764 | BlockNumber blkno; |
765 | |
766 | Assert(!BTScanPosIsValid(so->currPos)); |
767 | |
768 | pgstat_count_index_scan(rel); |
769 | |
770 | /* |
771 | * Examine the scan keys and eliminate any redundant keys; also mark the |
772 | * keys that must be matched to continue the scan. |
773 | */ |
774 | _bt_preprocess_keys(scan); |
775 | |
776 | /* |
777 | * Quit now if _bt_preprocess_keys() discovered that the scan keys can |
778 | * never be satisfied (eg, x == 1 AND x > 2). |
779 | */ |
780 | if (!so->qual_ok) |
781 | return false; |
782 | |
783 | /* |
784 | * For parallel scans, get the starting page from shared state. If the |
785 | * scan has not started, proceed to find out first leaf page in the usual |
786 | * way while keeping other participating processes waiting. If the scan |
787 | * has already begun, use the page number from the shared structure. |
788 | */ |
789 | if (scan->parallel_scan != NULL) |
790 | { |
791 | status = _bt_parallel_seize(scan, &blkno); |
792 | if (!status) |
793 | return false; |
794 | else if (blkno == P_NONE) |
795 | { |
796 | _bt_parallel_done(scan); |
797 | return false; |
798 | } |
799 | else if (blkno != InvalidBlockNumber) |
800 | { |
801 | if (!_bt_parallel_readpage(scan, blkno, dir)) |
802 | return false; |
803 | goto readcomplete; |
804 | } |
805 | } |
806 | |
807 | /*---------- |
808 | * Examine the scan keys to discover where we need to start the scan. |
809 | * |
810 | * We want to identify the keys that can be used as starting boundaries; |
811 | * these are =, >, or >= keys for a forward scan or =, <, <= keys for |
812 | * a backwards scan. We can use keys for multiple attributes so long as |
813 | * the prior attributes had only =, >= (resp. =, <=) keys. Once we accept |
814 | * a > or < boundary or find an attribute with no boundary (which can be |
815 | * thought of as the same as "> -infinity"), we can't use keys for any |
816 | * attributes to its right, because it would break our simplistic notion |
817 | * of what initial positioning strategy to use. |
818 | * |
819 | * When the scan keys include cross-type operators, _bt_preprocess_keys |
820 | * may not be able to eliminate redundant keys; in such cases we will |
821 | * arbitrarily pick a usable one for each attribute. This is correct |
822 | * but possibly not optimal behavior. (For example, with keys like |
823 | * "x >= 4 AND x >= 5" we would elect to scan starting at x=4 when |
824 | * x=5 would be more efficient.) Since the situation only arises given |
825 | * a poorly-worded query plus an incomplete opfamily, live with it. |
826 | * |
827 | * When both equality and inequality keys appear for a single attribute |
828 | * (again, only possible when cross-type operators appear), we *must* |
829 | * select one of the equality keys for the starting point, because |
830 | * _bt_checkkeys() will stop the scan as soon as an equality qual fails. |
831 | * For example, if we have keys like "x >= 4 AND x = 10" and we elect to |
832 | * start at x=4, we will fail and stop before reaching x=10. If multiple |
833 | * equality quals survive preprocessing, however, it doesn't matter which |
834 | * one we use --- by definition, they are either redundant or |
835 | * contradictory. |
836 | * |
837 | * Any regular (not SK_SEARCHNULL) key implies a NOT NULL qualifier. |
838 | * If the index stores nulls at the end of the index we'll be starting |
839 | * from, and we have no boundary key for the column (which means the key |
840 | * we deduced NOT NULL from is an inequality key that constrains the other |
841 | * end of the index), then we cons up an explicit SK_SEARCHNOTNULL key to |
842 | * use as a boundary key. If we didn't do this, we might find ourselves |
843 | * traversing a lot of null entries at the start of the scan. |
844 | * |
845 | * In this loop, row-comparison keys are treated the same as keys on their |
846 | * first (leftmost) columns. We'll add on lower-order columns of the row |
847 | * comparison below, if possible. |
848 | * |
849 | * The selected scan keys (at most one per index column) are remembered by |
850 | * storing their addresses into the local startKeys[] array. |
851 | *---------- |
852 | */ |
853 | strat_total = BTEqualStrategyNumber; |
854 | if (so->numberOfKeys > 0) |
855 | { |
856 | AttrNumber curattr; |
857 | ScanKey chosen; |
858 | ScanKey impliesNN; |
859 | ScanKey cur; |
860 | |
861 | /* |
862 | * chosen is the so-far-chosen key for the current attribute, if any. |
863 | * We don't cast the decision in stone until we reach keys for the |
864 | * next attribute. |
865 | */ |
866 | curattr = 1; |
867 | chosen = NULL; |
868 | /* Also remember any scankey that implies a NOT NULL constraint */ |
869 | impliesNN = NULL; |
870 | |
871 | /* |
872 | * Loop iterates from 0 to numberOfKeys inclusive; we use the last |
873 | * pass to handle after-last-key processing. Actual exit from the |
874 | * loop is at one of the "break" statements below. |
875 | */ |
876 | for (cur = so->keyData, i = 0;; cur++, i++) |
877 | { |
878 | if (i >= so->numberOfKeys || cur->sk_attno != curattr) |
879 | { |
880 | /* |
881 | * Done looking at keys for curattr. If we didn't find a |
882 | * usable boundary key, see if we can deduce a NOT NULL key. |
883 | */ |
884 | if (chosen == NULL && impliesNN != NULL && |
885 | ((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ? |
886 | ScanDirectionIsForward(dir) : |
887 | ScanDirectionIsBackward(dir))) |
888 | { |
889 | /* Yes, so build the key in notnullkeys[keysCount] */ |
890 | chosen = ¬nullkeys[keysCount]; |
891 | ScanKeyEntryInitialize(chosen, |
892 | (SK_SEARCHNOTNULL | SK_ISNULL | |
893 | (impliesNN->sk_flags & |
894 | (SK_BT_DESC | SK_BT_NULLS_FIRST))), |
895 | curattr, |
896 | ((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ? |
897 | BTGreaterStrategyNumber : |
898 | BTLessStrategyNumber), |
899 | InvalidOid, |
900 | InvalidOid, |
901 | InvalidOid, |
902 | (Datum) 0); |
903 | } |
904 | |
905 | /* |
906 | * If we still didn't find a usable boundary key, quit; else |
907 | * save the boundary key pointer in startKeys. |
908 | */ |
909 | if (chosen == NULL) |
910 | break; |
911 | startKeys[keysCount++] = chosen; |
912 | |
913 | /* |
914 | * Adjust strat_total, and quit if we have stored a > or < |
915 | * key. |
916 | */ |
917 | strat = chosen->sk_strategy; |
918 | if (strat != BTEqualStrategyNumber) |
919 | { |
920 | strat_total = strat; |
921 | if (strat == BTGreaterStrategyNumber || |
922 | strat == BTLessStrategyNumber) |
923 | break; |
924 | } |
925 | |
926 | /* |
927 | * Done if that was the last attribute, or if next key is not |
928 | * in sequence (implying no boundary key is available for the |
929 | * next attribute). |
930 | */ |
931 | if (i >= so->numberOfKeys || |
932 | cur->sk_attno != curattr + 1) |
933 | break; |
934 | |
935 | /* |
936 | * Reset for next attr. |
937 | */ |
938 | curattr = cur->sk_attno; |
939 | chosen = NULL; |
940 | impliesNN = NULL; |
941 | } |
942 | |
943 | /* |
944 | * Can we use this key as a starting boundary for this attr? |
945 | * |
946 | * If not, does it imply a NOT NULL constraint? (Because |
947 | * SK_SEARCHNULL keys are always assigned BTEqualStrategyNumber, |
948 | * *any* inequality key works for that; we need not test.) |
949 | */ |
950 | switch (cur->sk_strategy) |
951 | { |
952 | case BTLessStrategyNumber: |
953 | case BTLessEqualStrategyNumber: |
954 | if (chosen == NULL) |
955 | { |
956 | if (ScanDirectionIsBackward(dir)) |
957 | chosen = cur; |
958 | else |
959 | impliesNN = cur; |
960 | } |
961 | break; |
962 | case BTEqualStrategyNumber: |
963 | /* override any non-equality choice */ |
964 | chosen = cur; |
965 | break; |
966 | case BTGreaterEqualStrategyNumber: |
967 | case BTGreaterStrategyNumber: |
968 | if (chosen == NULL) |
969 | { |
970 | if (ScanDirectionIsForward(dir)) |
971 | chosen = cur; |
972 | else |
973 | impliesNN = cur; |
974 | } |
975 | break; |
976 | } |
977 | } |
978 | } |
979 | |
980 | /* |
981 | * If we found no usable boundary keys, we have to start from one end of |
982 | * the tree. Walk down that edge to the first or last key, and scan from |
983 | * there. |
984 | */ |
985 | if (keysCount == 0) |
986 | { |
987 | bool match; |
988 | |
989 | match = _bt_endpoint(scan, dir); |
990 | |
991 | if (!match) |
992 | { |
993 | /* No match, so mark (parallel) scan finished */ |
994 | _bt_parallel_done(scan); |
995 | } |
996 | |
997 | return match; |
998 | } |
999 | |
1000 | /* |
1001 | * We want to start the scan somewhere within the index. Set up an |
1002 | * insertion scankey we can use to search for the boundary point we |
1003 | * identified above. The insertion scankey is built using the keys |
1004 | * identified by startKeys[]. (Remaining insertion scankey fields are |
1005 | * initialized after initial-positioning strategy is finalized.) |
1006 | */ |
1007 | Assert(keysCount <= INDEX_MAX_KEYS); |
1008 | for (i = 0; i < keysCount; i++) |
1009 | { |
1010 | ScanKey cur = startKeys[i]; |
1011 | |
1012 | Assert(cur->sk_attno == i + 1); |
1013 | |
1014 | if (cur->sk_flags & SK_ROW_HEADER) |
1015 | { |
1016 | /* |
1017 | * Row comparison header: look to the first row member instead. |
1018 | * |
1019 | * The member scankeys are already in insertion format (ie, they |
1020 | * have sk_func = 3-way-comparison function), but we have to watch |
1021 | * out for nulls, which _bt_preprocess_keys didn't check. A null |
1022 | * in the first row member makes the condition unmatchable, just |
1023 | * like qual_ok = false. |
1024 | */ |
1025 | ScanKey subkey = (ScanKey) DatumGetPointer(cur->sk_argument); |
1026 | |
1027 | Assert(subkey->sk_flags & SK_ROW_MEMBER); |
1028 | if (subkey->sk_flags & SK_ISNULL) |
1029 | { |
1030 | _bt_parallel_done(scan); |
1031 | return false; |
1032 | } |
1033 | memcpy(inskey.scankeys + i, subkey, sizeof(ScanKeyData)); |
1034 | |
1035 | /* |
1036 | * If the row comparison is the last positioning key we accepted, |
1037 | * try to add additional keys from the lower-order row members. |
1038 | * (If we accepted independent conditions on additional index |
1039 | * columns, we use those instead --- doesn't seem worth trying to |
1040 | * determine which is more restrictive.) Note that this is OK |
1041 | * even if the row comparison is of ">" or "<" type, because the |
1042 | * condition applied to all but the last row member is effectively |
1043 | * ">=" or "<=", and so the extra keys don't break the positioning |
1044 | * scheme. But, by the same token, if we aren't able to use all |
1045 | * the row members, then the part of the row comparison that we |
1046 | * did use has to be treated as just a ">=" or "<=" condition, and |
1047 | * so we'd better adjust strat_total accordingly. |
1048 | */ |
1049 | if (i == keysCount - 1) |
1050 | { |
1051 | bool used_all_subkeys = false; |
1052 | |
1053 | Assert(!(subkey->sk_flags & SK_ROW_END)); |
1054 | for (;;) |
1055 | { |
1056 | subkey++; |
1057 | Assert(subkey->sk_flags & SK_ROW_MEMBER); |
1058 | if (subkey->sk_attno != keysCount + 1) |
1059 | break; /* out-of-sequence, can't use it */ |
1060 | if (subkey->sk_strategy != cur->sk_strategy) |
1061 | break; /* wrong direction, can't use it */ |
1062 | if (subkey->sk_flags & SK_ISNULL) |
1063 | break; /* can't use null keys */ |
1064 | Assert(keysCount < INDEX_MAX_KEYS); |
1065 | memcpy(inskey.scankeys + keysCount, subkey, |
1066 | sizeof(ScanKeyData)); |
1067 | keysCount++; |
1068 | if (subkey->sk_flags & SK_ROW_END) |
1069 | { |
1070 | used_all_subkeys = true; |
1071 | break; |
1072 | } |
1073 | } |
1074 | if (!used_all_subkeys) |
1075 | { |
1076 | switch (strat_total) |
1077 | { |
1078 | case BTLessStrategyNumber: |
1079 | strat_total = BTLessEqualStrategyNumber; |
1080 | break; |
1081 | case BTGreaterStrategyNumber: |
1082 | strat_total = BTGreaterEqualStrategyNumber; |
1083 | break; |
1084 | } |
1085 | } |
1086 | break; /* done with outer loop */ |
1087 | } |
1088 | } |
1089 | else |
1090 | { |
1091 | /* |
1092 | * Ordinary comparison key. Transform the search-style scan key |
1093 | * to an insertion scan key by replacing the sk_func with the |
1094 | * appropriate btree comparison function. |
1095 | * |
1096 | * If scankey operator is not a cross-type comparison, we can use |
1097 | * the cached comparison function; otherwise gotta look it up in |
1098 | * the catalogs. (That can't lead to infinite recursion, since no |
1099 | * indexscan initiated by syscache lookup will use cross-data-type |
1100 | * operators.) |
1101 | * |
1102 | * We support the convention that sk_subtype == InvalidOid means |
1103 | * the opclass input type; this is a hack to simplify life for |
1104 | * ScanKeyInit(). |
1105 | */ |
1106 | if (cur->sk_subtype == rel->rd_opcintype[i] || |
1107 | cur->sk_subtype == InvalidOid) |
1108 | { |
1109 | FmgrInfo *procinfo; |
1110 | |
1111 | procinfo = index_getprocinfo(rel, cur->sk_attno, BTORDER_PROC); |
1112 | ScanKeyEntryInitializeWithInfo(inskey.scankeys + i, |
1113 | cur->sk_flags, |
1114 | cur->sk_attno, |
1115 | InvalidStrategy, |
1116 | cur->sk_subtype, |
1117 | cur->sk_collation, |
1118 | procinfo, |
1119 | cur->sk_argument); |
1120 | } |
1121 | else |
1122 | { |
1123 | RegProcedure cmp_proc; |
1124 | |
1125 | cmp_proc = get_opfamily_proc(rel->rd_opfamily[i], |
1126 | rel->rd_opcintype[i], |
1127 | cur->sk_subtype, |
1128 | BTORDER_PROC); |
1129 | if (!RegProcedureIsValid(cmp_proc)) |
1130 | elog(ERROR, "missing support function %d(%u,%u) for attribute %d of index \"%s\"" , |
1131 | BTORDER_PROC, rel->rd_opcintype[i], cur->sk_subtype, |
1132 | cur->sk_attno, RelationGetRelationName(rel)); |
1133 | ScanKeyEntryInitialize(inskey.scankeys + i, |
1134 | cur->sk_flags, |
1135 | cur->sk_attno, |
1136 | InvalidStrategy, |
1137 | cur->sk_subtype, |
1138 | cur->sk_collation, |
1139 | cmp_proc, |
1140 | cur->sk_argument); |
1141 | } |
1142 | } |
1143 | } |
1144 | |
1145 | /*---------- |
1146 | * Examine the selected initial-positioning strategy to determine exactly |
1147 | * where we need to start the scan, and set flag variables to control the |
1148 | * code below. |
1149 | * |
1150 | * If nextkey = false, _bt_search and _bt_binsrch will locate the first |
1151 | * item >= scan key. If nextkey = true, they will locate the first |
1152 | * item > scan key. |
1153 | * |
1154 | * If goback = true, we will then step back one item, while if |
1155 | * goback = false, we will start the scan on the located item. |
1156 | *---------- |
1157 | */ |
1158 | switch (strat_total) |
1159 | { |
1160 | case BTLessStrategyNumber: |
1161 | |
1162 | /* |
1163 | * Find first item >= scankey, then back up one to arrive at last |
1164 | * item < scankey. (Note: this positioning strategy is only used |
1165 | * for a backward scan, so that is always the correct starting |
1166 | * position.) |
1167 | */ |
1168 | nextkey = false; |
1169 | goback = true; |
1170 | break; |
1171 | |
1172 | case BTLessEqualStrategyNumber: |
1173 | |
1174 | /* |
1175 | * Find first item > scankey, then back up one to arrive at last |
1176 | * item <= scankey. (Note: this positioning strategy is only used |
1177 | * for a backward scan, so that is always the correct starting |
1178 | * position.) |
1179 | */ |
1180 | nextkey = true; |
1181 | goback = true; |
1182 | break; |
1183 | |
1184 | case BTEqualStrategyNumber: |
1185 | |
1186 | /* |
1187 | * If a backward scan was specified, need to start with last equal |
1188 | * item not first one. |
1189 | */ |
1190 | if (ScanDirectionIsBackward(dir)) |
1191 | { |
1192 | /* |
1193 | * This is the same as the <= strategy. We will check at the |
1194 | * end whether the found item is actually =. |
1195 | */ |
1196 | nextkey = true; |
1197 | goback = true; |
1198 | } |
1199 | else |
1200 | { |
1201 | /* |
1202 | * This is the same as the >= strategy. We will check at the |
1203 | * end whether the found item is actually =. |
1204 | */ |
1205 | nextkey = false; |
1206 | goback = false; |
1207 | } |
1208 | break; |
1209 | |
1210 | case BTGreaterEqualStrategyNumber: |
1211 | |
1212 | /* |
1213 | * Find first item >= scankey. (This is only used for forward |
1214 | * scans.) |
1215 | */ |
1216 | nextkey = false; |
1217 | goback = false; |
1218 | break; |
1219 | |
1220 | case BTGreaterStrategyNumber: |
1221 | |
1222 | /* |
1223 | * Find first item > scankey. (This is only used for forward |
1224 | * scans.) |
1225 | */ |
1226 | nextkey = true; |
1227 | goback = false; |
1228 | break; |
1229 | |
1230 | default: |
1231 | /* can't get here, but keep compiler quiet */ |
1232 | elog(ERROR, "unrecognized strat_total: %d" , (int) strat_total); |
1233 | return false; |
1234 | } |
1235 | |
1236 | /* Initialize remaining insertion scan key fields */ |
1237 | inskey.heapkeyspace = _bt_heapkeyspace(rel); |
1238 | inskey.anynullkeys = false; /* unused */ |
1239 | inskey.nextkey = nextkey; |
1240 | inskey.pivotsearch = false; |
1241 | inskey.scantid = NULL; |
1242 | inskey.keysz = keysCount; |
1243 | |
1244 | /* |
1245 | * Use the manufactured insertion scan key to descend the tree and |
1246 | * position ourselves on the target leaf page. |
1247 | */ |
1248 | stack = _bt_search(rel, &inskey, &buf, BT_READ, scan->xs_snapshot); |
1249 | |
1250 | /* don't need to keep the stack around... */ |
1251 | _bt_freestack(stack); |
1252 | |
1253 | if (!BufferIsValid(buf)) |
1254 | { |
1255 | /* |
1256 | * We only get here if the index is completely empty. Lock relation |
1257 | * because nothing finer to lock exists. |
1258 | */ |
1259 | PredicateLockRelation(rel, scan->xs_snapshot); |
1260 | |
1261 | /* |
1262 | * mark parallel scan as done, so that all the workers can finish |
1263 | * their scan |
1264 | */ |
1265 | _bt_parallel_done(scan); |
1266 | BTScanPosInvalidate(so->currPos); |
1267 | |
1268 | return false; |
1269 | } |
1270 | else |
1271 | PredicateLockPage(rel, BufferGetBlockNumber(buf), |
1272 | scan->xs_snapshot); |
1273 | |
1274 | _bt_initialize_more_data(so, dir); |
1275 | |
1276 | /* position to the precise item on the page */ |
1277 | offnum = _bt_binsrch(rel, &inskey, buf); |
1278 | |
1279 | /* |
1280 | * If nextkey = false, we are positioned at the first item >= scan key, or |
1281 | * possibly at the end of a page on which all the existing items are less |
1282 | * than the scan key and we know that everything on later pages is greater |
1283 | * than or equal to scan key. |
1284 | * |
1285 | * If nextkey = true, we are positioned at the first item > scan key, or |
1286 | * possibly at the end of a page on which all the existing items are less |
1287 | * than or equal to the scan key and we know that everything on later |
1288 | * pages is greater than scan key. |
1289 | * |
1290 | * The actually desired starting point is either this item or the prior |
1291 | * one, or in the end-of-page case it's the first item on the next page or |
1292 | * the last item on this page. Adjust the starting offset if needed. (If |
1293 | * this results in an offset before the first item or after the last one, |
1294 | * _bt_readpage will report no items found, and then we'll step to the |
1295 | * next page as needed.) |
1296 | */ |
1297 | if (goback) |
1298 | offnum = OffsetNumberPrev(offnum); |
1299 | |
1300 | /* remember which buffer we have pinned, if any */ |
1301 | Assert(!BTScanPosIsValid(so->currPos)); |
1302 | so->currPos.buf = buf; |
1303 | |
1304 | /* |
1305 | * Now load data from the first page of the scan. |
1306 | */ |
1307 | if (!_bt_readpage(scan, dir, offnum)) |
1308 | { |
1309 | /* |
1310 | * There's no actually-matching data on this page. Try to advance to |
1311 | * the next page. Return false if there's no matching data at all. |
1312 | */ |
1313 | LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK); |
1314 | if (!_bt_steppage(scan, dir)) |
1315 | return false; |
1316 | } |
1317 | else |
1318 | { |
1319 | /* Drop the lock, and maybe the pin, on the current page */ |
1320 | _bt_drop_lock_and_maybe_pin(scan, &so->currPos); |
1321 | } |
1322 | |
1323 | readcomplete: |
1324 | /* OK, itemIndex says what to return */ |
1325 | currItem = &so->currPos.items[so->currPos.itemIndex]; |
1326 | scan->xs_heaptid = currItem->heapTid; |
1327 | if (scan->xs_want_itup) |
1328 | scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset); |
1329 | |
1330 | return true; |
1331 | } |
1332 | |
1333 | /* |
1334 | * _bt_next() -- Get the next item in a scan. |
1335 | * |
1336 | * On entry, so->currPos describes the current page, which may be pinned |
1337 | * but is not locked, and so->currPos.itemIndex identifies which item was |
1338 | * previously returned. |
1339 | * |
1340 | * On successful exit, scan->xs_ctup.t_self is set to the TID of the |
1341 | * next heap tuple, and if requested, scan->xs_itup points to a copy of |
1342 | * the index tuple. so->currPos is updated as needed. |
1343 | * |
1344 | * On failure exit (no more tuples), we release pin and set |
1345 | * so->currPos.buf to InvalidBuffer. |
1346 | */ |
1347 | bool |
1348 | _bt_next(IndexScanDesc scan, ScanDirection dir) |
1349 | { |
1350 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
1351 | BTScanPosItem *currItem; |
1352 | |
1353 | /* |
1354 | * Advance to next tuple on current page; or if there's no more, try to |
1355 | * step to the next page with data. |
1356 | */ |
1357 | if (ScanDirectionIsForward(dir)) |
1358 | { |
1359 | if (++so->currPos.itemIndex > so->currPos.lastItem) |
1360 | { |
1361 | if (!_bt_steppage(scan, dir)) |
1362 | return false; |
1363 | } |
1364 | } |
1365 | else |
1366 | { |
1367 | if (--so->currPos.itemIndex < so->currPos.firstItem) |
1368 | { |
1369 | if (!_bt_steppage(scan, dir)) |
1370 | return false; |
1371 | } |
1372 | } |
1373 | |
1374 | /* OK, itemIndex says what to return */ |
1375 | currItem = &so->currPos.items[so->currPos.itemIndex]; |
1376 | scan->xs_heaptid = currItem->heapTid; |
1377 | if (scan->xs_want_itup) |
1378 | scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset); |
1379 | |
1380 | return true; |
1381 | } |
1382 | |
1383 | /* |
1384 | * _bt_readpage() -- Load data from current index page into so->currPos |
1385 | * |
1386 | * Caller must have pinned and read-locked so->currPos.buf; the buffer's state |
1387 | * is not changed here. Also, currPos.moreLeft and moreRight must be valid; |
1388 | * they are updated as appropriate. All other fields of so->currPos are |
1389 | * initialized from scratch here. |
1390 | * |
1391 | * We scan the current page starting at offnum and moving in the indicated |
1392 | * direction. All items matching the scan keys are loaded into currPos.items. |
1393 | * moreLeft or moreRight (as appropriate) is cleared if _bt_checkkeys reports |
1394 | * that there can be no more matching tuples in the current scan direction. |
1395 | * |
1396 | * In the case of a parallel scan, caller must have called _bt_parallel_seize |
1397 | * prior to calling this function; this function will invoke |
1398 | * _bt_parallel_release before returning. |
1399 | * |
1400 | * Returns true if any matching items found on the page, false if none. |
1401 | */ |
1402 | static bool |
1403 | _bt_readpage(IndexScanDesc scan, ScanDirection dir, OffsetNumber offnum) |
1404 | { |
1405 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
1406 | Page page; |
1407 | BTPageOpaque opaque; |
1408 | OffsetNumber minoff; |
1409 | OffsetNumber maxoff; |
1410 | int itemIndex; |
1411 | bool continuescan; |
1412 | int indnatts; |
1413 | |
1414 | /* |
1415 | * We must have the buffer pinned and locked, but the usual macro can't be |
1416 | * used here; this function is what makes it good for currPos. |
1417 | */ |
1418 | Assert(BufferIsValid(so->currPos.buf)); |
1419 | |
1420 | page = BufferGetPage(so->currPos.buf); |
1421 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1422 | |
1423 | /* allow next page be processed by parallel worker */ |
1424 | if (scan->parallel_scan) |
1425 | { |
1426 | if (ScanDirectionIsForward(dir)) |
1427 | _bt_parallel_release(scan, opaque->btpo_next); |
1428 | else |
1429 | _bt_parallel_release(scan, BufferGetBlockNumber(so->currPos.buf)); |
1430 | } |
1431 | |
1432 | continuescan = true; /* default assumption */ |
1433 | indnatts = IndexRelationGetNumberOfAttributes(scan->indexRelation); |
1434 | minoff = P_FIRSTDATAKEY(opaque); |
1435 | maxoff = PageGetMaxOffsetNumber(page); |
1436 | |
1437 | /* |
1438 | * We note the buffer's block number so that we can release the pin later. |
1439 | * This allows us to re-read the buffer if it is needed again for hinting. |
1440 | */ |
1441 | so->currPos.currPage = BufferGetBlockNumber(so->currPos.buf); |
1442 | |
1443 | /* |
1444 | * We save the LSN of the page as we read it, so that we know whether it |
1445 | * safe to apply LP_DEAD hints to the page later. This allows us to drop |
1446 | * the pin for MVCC scans, which allows vacuum to avoid blocking. |
1447 | */ |
1448 | so->currPos.lsn = BufferGetLSNAtomic(so->currPos.buf); |
1449 | |
1450 | /* |
1451 | * we must save the page's right-link while scanning it; this tells us |
1452 | * where to step right to after we're done with these items. There is no |
1453 | * corresponding need for the left-link, since splits always go right. |
1454 | */ |
1455 | so->currPos.nextPage = opaque->btpo_next; |
1456 | |
1457 | /* initialize tuple workspace to empty */ |
1458 | so->currPos.nextTupleOffset = 0; |
1459 | |
1460 | /* |
1461 | * Now that the current page has been made consistent, the macro should be |
1462 | * good. |
1463 | */ |
1464 | Assert(BTScanPosIsPinned(so->currPos)); |
1465 | |
1466 | if (ScanDirectionIsForward(dir)) |
1467 | { |
1468 | /* load items[] in ascending order */ |
1469 | itemIndex = 0; |
1470 | |
1471 | offnum = Max(offnum, minoff); |
1472 | |
1473 | while (offnum <= maxoff) |
1474 | { |
1475 | ItemId iid = PageGetItemId(page, offnum); |
1476 | IndexTuple itup; |
1477 | |
1478 | /* |
1479 | * If the scan specifies not to return killed tuples, then we |
1480 | * treat a killed tuple as not passing the qual |
1481 | */ |
1482 | if (scan->ignore_killed_tuples && ItemIdIsDead(iid)) |
1483 | { |
1484 | offnum = OffsetNumberNext(offnum); |
1485 | continue; |
1486 | } |
1487 | |
1488 | itup = (IndexTuple) PageGetItem(page, iid); |
1489 | |
1490 | if (_bt_checkkeys(scan, itup, indnatts, dir, &continuescan)) |
1491 | { |
1492 | /* tuple passes all scan key conditions, so remember it */ |
1493 | _bt_saveitem(so, itemIndex, offnum, itup); |
1494 | itemIndex++; |
1495 | } |
1496 | /* When !continuescan, there can't be any more matches, so stop */ |
1497 | if (!continuescan) |
1498 | break; |
1499 | |
1500 | offnum = OffsetNumberNext(offnum); |
1501 | } |
1502 | |
1503 | /* |
1504 | * We don't need to visit page to the right when the high key |
1505 | * indicates that no more matches will be found there. |
1506 | * |
1507 | * Checking the high key like this works out more often than you might |
1508 | * think. Leaf page splits pick a split point between the two most |
1509 | * dissimilar tuples (this is weighed against the need to evenly share |
1510 | * free space). Leaf pages with high key attribute values that can |
1511 | * only appear on non-pivot tuples on the right sibling page are |
1512 | * common. |
1513 | */ |
1514 | if (continuescan && !P_RIGHTMOST(opaque)) |
1515 | { |
1516 | ItemId iid = PageGetItemId(page, P_HIKEY); |
1517 | IndexTuple itup = (IndexTuple) PageGetItem(page, iid); |
1518 | int truncatt; |
1519 | |
1520 | truncatt = BTreeTupleGetNAtts(itup, scan->indexRelation); |
1521 | _bt_checkkeys(scan, itup, truncatt, dir, &continuescan); |
1522 | } |
1523 | |
1524 | if (!continuescan) |
1525 | so->currPos.moreRight = false; |
1526 | |
1527 | Assert(itemIndex <= MaxIndexTuplesPerPage); |
1528 | so->currPos.firstItem = 0; |
1529 | so->currPos.lastItem = itemIndex - 1; |
1530 | so->currPos.itemIndex = 0; |
1531 | } |
1532 | else |
1533 | { |
1534 | /* load items[] in descending order */ |
1535 | itemIndex = MaxIndexTuplesPerPage; |
1536 | |
1537 | offnum = Min(offnum, maxoff); |
1538 | |
1539 | while (offnum >= minoff) |
1540 | { |
1541 | ItemId iid = PageGetItemId(page, offnum); |
1542 | IndexTuple itup; |
1543 | bool tuple_alive; |
1544 | bool passes_quals; |
1545 | |
1546 | /* |
1547 | * If the scan specifies not to return killed tuples, then we |
1548 | * treat a killed tuple as not passing the qual. Most of the |
1549 | * time, it's a win to not bother examining the tuple's index |
1550 | * keys, but just skip to the next tuple (previous, actually, |
1551 | * since we're scanning backwards). However, if this is the first |
1552 | * tuple on the page, we do check the index keys, to prevent |
1553 | * uselessly advancing to the page to the left. This is similar |
1554 | * to the high key optimization used by forward scans. |
1555 | */ |
1556 | if (scan->ignore_killed_tuples && ItemIdIsDead(iid)) |
1557 | { |
1558 | Assert(offnum >= P_FIRSTDATAKEY(opaque)); |
1559 | if (offnum > P_FIRSTDATAKEY(opaque)) |
1560 | { |
1561 | offnum = OffsetNumberPrev(offnum); |
1562 | continue; |
1563 | } |
1564 | |
1565 | tuple_alive = false; |
1566 | } |
1567 | else |
1568 | tuple_alive = true; |
1569 | |
1570 | itup = (IndexTuple) PageGetItem(page, iid); |
1571 | |
1572 | passes_quals = _bt_checkkeys(scan, itup, indnatts, dir, |
1573 | &continuescan); |
1574 | if (passes_quals && tuple_alive) |
1575 | { |
1576 | /* tuple passes all scan key conditions, so remember it */ |
1577 | itemIndex--; |
1578 | _bt_saveitem(so, itemIndex, offnum, itup); |
1579 | } |
1580 | if (!continuescan) |
1581 | { |
1582 | /* there can't be any more matches, so stop */ |
1583 | so->currPos.moreLeft = false; |
1584 | break; |
1585 | } |
1586 | |
1587 | offnum = OffsetNumberPrev(offnum); |
1588 | } |
1589 | |
1590 | Assert(itemIndex >= 0); |
1591 | so->currPos.firstItem = itemIndex; |
1592 | so->currPos.lastItem = MaxIndexTuplesPerPage - 1; |
1593 | so->currPos.itemIndex = MaxIndexTuplesPerPage - 1; |
1594 | } |
1595 | |
1596 | return (so->currPos.firstItem <= so->currPos.lastItem); |
1597 | } |
1598 | |
1599 | /* Save an index item into so->currPos.items[itemIndex] */ |
1600 | static void |
1601 | _bt_saveitem(BTScanOpaque so, int itemIndex, |
1602 | OffsetNumber offnum, IndexTuple itup) |
1603 | { |
1604 | BTScanPosItem *currItem = &so->currPos.items[itemIndex]; |
1605 | |
1606 | currItem->heapTid = itup->t_tid; |
1607 | currItem->indexOffset = offnum; |
1608 | if (so->currTuples) |
1609 | { |
1610 | Size itupsz = IndexTupleSize(itup); |
1611 | |
1612 | currItem->tupleOffset = so->currPos.nextTupleOffset; |
1613 | memcpy(so->currTuples + so->currPos.nextTupleOffset, itup, itupsz); |
1614 | so->currPos.nextTupleOffset += MAXALIGN(itupsz); |
1615 | } |
1616 | } |
1617 | |
1618 | /* |
1619 | * _bt_steppage() -- Step to next page containing valid data for scan |
1620 | * |
1621 | * On entry, if so->currPos.buf is valid the buffer is pinned but not locked; |
1622 | * if pinned, we'll drop the pin before moving to next page. The buffer is |
1623 | * not locked on entry. |
1624 | * |
1625 | * For success on a scan using a non-MVCC snapshot we hold a pin, but not a |
1626 | * read lock, on that page. If we do not hold the pin, we set so->currPos.buf |
1627 | * to InvalidBuffer. We return true to indicate success. |
1628 | */ |
1629 | static bool |
1630 | _bt_steppage(IndexScanDesc scan, ScanDirection dir) |
1631 | { |
1632 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
1633 | BlockNumber blkno = InvalidBlockNumber; |
1634 | bool status = true; |
1635 | |
1636 | Assert(BTScanPosIsValid(so->currPos)); |
1637 | |
1638 | /* Before leaving current page, deal with any killed items */ |
1639 | if (so->numKilled > 0) |
1640 | _bt_killitems(scan); |
1641 | |
1642 | /* |
1643 | * Before we modify currPos, make a copy of the page data if there was a |
1644 | * mark position that needs it. |
1645 | */ |
1646 | if (so->markItemIndex >= 0) |
1647 | { |
1648 | /* bump pin on current buffer for assignment to mark buffer */ |
1649 | if (BTScanPosIsPinned(so->currPos)) |
1650 | IncrBufferRefCount(so->currPos.buf); |
1651 | memcpy(&so->markPos, &so->currPos, |
1652 | offsetof(BTScanPosData, items[1]) + |
1653 | so->currPos.lastItem * sizeof(BTScanPosItem)); |
1654 | if (so->markTuples) |
1655 | memcpy(so->markTuples, so->currTuples, |
1656 | so->currPos.nextTupleOffset); |
1657 | so->markPos.itemIndex = so->markItemIndex; |
1658 | so->markItemIndex = -1; |
1659 | } |
1660 | |
1661 | if (ScanDirectionIsForward(dir)) |
1662 | { |
1663 | /* Walk right to the next page with data */ |
1664 | if (scan->parallel_scan != NULL) |
1665 | { |
1666 | /* |
1667 | * Seize the scan to get the next block number; if the scan has |
1668 | * ended already, bail out. |
1669 | */ |
1670 | status = _bt_parallel_seize(scan, &blkno); |
1671 | if (!status) |
1672 | { |
1673 | /* release the previous buffer, if pinned */ |
1674 | BTScanPosUnpinIfPinned(so->currPos); |
1675 | BTScanPosInvalidate(so->currPos); |
1676 | return false; |
1677 | } |
1678 | } |
1679 | else |
1680 | { |
1681 | /* Not parallel, so use the previously-saved nextPage link. */ |
1682 | blkno = so->currPos.nextPage; |
1683 | } |
1684 | |
1685 | /* Remember we left a page with data */ |
1686 | so->currPos.moreLeft = true; |
1687 | |
1688 | /* release the previous buffer, if pinned */ |
1689 | BTScanPosUnpinIfPinned(so->currPos); |
1690 | } |
1691 | else |
1692 | { |
1693 | /* Remember we left a page with data */ |
1694 | so->currPos.moreRight = true; |
1695 | |
1696 | if (scan->parallel_scan != NULL) |
1697 | { |
1698 | /* |
1699 | * Seize the scan to get the current block number; if the scan has |
1700 | * ended already, bail out. |
1701 | */ |
1702 | status = _bt_parallel_seize(scan, &blkno); |
1703 | BTScanPosUnpinIfPinned(so->currPos); |
1704 | if (!status) |
1705 | { |
1706 | BTScanPosInvalidate(so->currPos); |
1707 | return false; |
1708 | } |
1709 | } |
1710 | else |
1711 | { |
1712 | /* Not parallel, so just use our own notion of the current page */ |
1713 | blkno = so->currPos.currPage; |
1714 | } |
1715 | } |
1716 | |
1717 | if (!_bt_readnextpage(scan, blkno, dir)) |
1718 | return false; |
1719 | |
1720 | /* Drop the lock, and maybe the pin, on the current page */ |
1721 | _bt_drop_lock_and_maybe_pin(scan, &so->currPos); |
1722 | |
1723 | return true; |
1724 | } |
1725 | |
1726 | /* |
1727 | * _bt_readnextpage() -- Read next page containing valid data for scan |
1728 | * |
1729 | * On success exit, so->currPos is updated to contain data from the next |
1730 | * interesting page. Caller is responsible to release lock and pin on |
1731 | * buffer on success. We return true to indicate success. |
1732 | * |
1733 | * If there are no more matching records in the given direction, we drop all |
1734 | * locks and pins, set so->currPos.buf to InvalidBuffer, and return false. |
1735 | */ |
1736 | static bool |
1737 | _bt_readnextpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir) |
1738 | { |
1739 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
1740 | Relation rel; |
1741 | Page page; |
1742 | BTPageOpaque opaque; |
1743 | bool status = true; |
1744 | |
1745 | rel = scan->indexRelation; |
1746 | |
1747 | if (ScanDirectionIsForward(dir)) |
1748 | { |
1749 | for (;;) |
1750 | { |
1751 | /* |
1752 | * if we're at end of scan, give up and mark parallel scan as |
1753 | * done, so that all the workers can finish their scan |
1754 | */ |
1755 | if (blkno == P_NONE || !so->currPos.moreRight) |
1756 | { |
1757 | _bt_parallel_done(scan); |
1758 | BTScanPosInvalidate(so->currPos); |
1759 | return false; |
1760 | } |
1761 | /* check for interrupts while we're not holding any buffer lock */ |
1762 | CHECK_FOR_INTERRUPTS(); |
1763 | /* step right one page */ |
1764 | so->currPos.buf = _bt_getbuf(rel, blkno, BT_READ); |
1765 | page = BufferGetPage(so->currPos.buf); |
1766 | TestForOldSnapshot(scan->xs_snapshot, rel, page); |
1767 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1768 | /* check for deleted page */ |
1769 | if (!P_IGNORE(opaque)) |
1770 | { |
1771 | PredicateLockPage(rel, blkno, scan->xs_snapshot); |
1772 | /* see if there are any matches on this page */ |
1773 | /* note that this will clear moreRight if we can stop */ |
1774 | if (_bt_readpage(scan, dir, P_FIRSTDATAKEY(opaque))) |
1775 | break; |
1776 | } |
1777 | else if (scan->parallel_scan != NULL) |
1778 | { |
1779 | /* allow next page be processed by parallel worker */ |
1780 | _bt_parallel_release(scan, opaque->btpo_next); |
1781 | } |
1782 | |
1783 | /* nope, keep going */ |
1784 | if (scan->parallel_scan != NULL) |
1785 | { |
1786 | _bt_relbuf(rel, so->currPos.buf); |
1787 | status = _bt_parallel_seize(scan, &blkno); |
1788 | if (!status) |
1789 | { |
1790 | BTScanPosInvalidate(so->currPos); |
1791 | return false; |
1792 | } |
1793 | } |
1794 | else |
1795 | { |
1796 | blkno = opaque->btpo_next; |
1797 | _bt_relbuf(rel, so->currPos.buf); |
1798 | } |
1799 | } |
1800 | } |
1801 | else |
1802 | { |
1803 | /* |
1804 | * Should only happen in parallel cases, when some other backend |
1805 | * advanced the scan. |
1806 | */ |
1807 | if (so->currPos.currPage != blkno) |
1808 | { |
1809 | BTScanPosUnpinIfPinned(so->currPos); |
1810 | so->currPos.currPage = blkno; |
1811 | } |
1812 | |
1813 | /* |
1814 | * Walk left to the next page with data. This is much more complex |
1815 | * than the walk-right case because of the possibility that the page |
1816 | * to our left splits while we are in flight to it, plus the |
1817 | * possibility that the page we were on gets deleted after we leave |
1818 | * it. See nbtree/README for details. |
1819 | * |
1820 | * It might be possible to rearrange this code to have less overhead |
1821 | * in pinning and locking, but that would require capturing the left |
1822 | * pointer when the page is initially read, and using it here, along |
1823 | * with big changes to _bt_walk_left() and the code below. It is not |
1824 | * clear whether this would be a win, since if the page immediately to |
1825 | * the left splits after we read this page and before we step left, we |
1826 | * would need to visit more pages than with the current code. |
1827 | * |
1828 | * Note that if we change the code so that we drop the pin for a scan |
1829 | * which uses a non-MVCC snapshot, we will need to modify the code for |
1830 | * walking left, to allow for the possibility that a referenced page |
1831 | * has been deleted. As long as the buffer is pinned or the snapshot |
1832 | * is MVCC the page cannot move past the half-dead state to fully |
1833 | * deleted. |
1834 | */ |
1835 | if (BTScanPosIsPinned(so->currPos)) |
1836 | LockBuffer(so->currPos.buf, BT_READ); |
1837 | else |
1838 | so->currPos.buf = _bt_getbuf(rel, so->currPos.currPage, BT_READ); |
1839 | |
1840 | for (;;) |
1841 | { |
1842 | /* Done if we know there are no matching keys to the left */ |
1843 | if (!so->currPos.moreLeft) |
1844 | { |
1845 | _bt_relbuf(rel, so->currPos.buf); |
1846 | _bt_parallel_done(scan); |
1847 | BTScanPosInvalidate(so->currPos); |
1848 | return false; |
1849 | } |
1850 | |
1851 | /* Step to next physical page */ |
1852 | so->currPos.buf = _bt_walk_left(rel, so->currPos.buf, |
1853 | scan->xs_snapshot); |
1854 | |
1855 | /* if we're physically at end of index, return failure */ |
1856 | if (so->currPos.buf == InvalidBuffer) |
1857 | { |
1858 | _bt_parallel_done(scan); |
1859 | BTScanPosInvalidate(so->currPos); |
1860 | return false; |
1861 | } |
1862 | |
1863 | /* |
1864 | * Okay, we managed to move left to a non-deleted page. Done if |
1865 | * it's not half-dead and contains matching tuples. Else loop back |
1866 | * and do it all again. |
1867 | */ |
1868 | page = BufferGetPage(so->currPos.buf); |
1869 | TestForOldSnapshot(scan->xs_snapshot, rel, page); |
1870 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1871 | if (!P_IGNORE(opaque)) |
1872 | { |
1873 | PredicateLockPage(rel, BufferGetBlockNumber(so->currPos.buf), scan->xs_snapshot); |
1874 | /* see if there are any matches on this page */ |
1875 | /* note that this will clear moreLeft if we can stop */ |
1876 | if (_bt_readpage(scan, dir, PageGetMaxOffsetNumber(page))) |
1877 | break; |
1878 | } |
1879 | else if (scan->parallel_scan != NULL) |
1880 | { |
1881 | /* allow next page be processed by parallel worker */ |
1882 | _bt_parallel_release(scan, BufferGetBlockNumber(so->currPos.buf)); |
1883 | } |
1884 | |
1885 | /* |
1886 | * For parallel scans, get the last page scanned as it is quite |
1887 | * possible that by the time we try to seize the scan, some other |
1888 | * worker has already advanced the scan to a different page. We |
1889 | * must continue based on the latest page scanned by any worker. |
1890 | */ |
1891 | if (scan->parallel_scan != NULL) |
1892 | { |
1893 | _bt_relbuf(rel, so->currPos.buf); |
1894 | status = _bt_parallel_seize(scan, &blkno); |
1895 | if (!status) |
1896 | { |
1897 | BTScanPosInvalidate(so->currPos); |
1898 | return false; |
1899 | } |
1900 | so->currPos.buf = _bt_getbuf(rel, blkno, BT_READ); |
1901 | } |
1902 | } |
1903 | } |
1904 | |
1905 | return true; |
1906 | } |
1907 | |
1908 | /* |
1909 | * _bt_parallel_readpage() -- Read current page containing valid data for scan |
1910 | * |
1911 | * On success, release lock and maybe pin on buffer. We return true to |
1912 | * indicate success. |
1913 | */ |
1914 | static bool |
1915 | _bt_parallel_readpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir) |
1916 | { |
1917 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
1918 | |
1919 | _bt_initialize_more_data(so, dir); |
1920 | |
1921 | if (!_bt_readnextpage(scan, blkno, dir)) |
1922 | return false; |
1923 | |
1924 | /* Drop the lock, and maybe the pin, on the current page */ |
1925 | _bt_drop_lock_and_maybe_pin(scan, &so->currPos); |
1926 | |
1927 | return true; |
1928 | } |
1929 | |
1930 | /* |
1931 | * _bt_walk_left() -- step left one page, if possible |
1932 | * |
1933 | * The given buffer must be pinned and read-locked. This will be dropped |
1934 | * before stepping left. On return, we have pin and read lock on the |
1935 | * returned page, instead. |
1936 | * |
1937 | * Returns InvalidBuffer if there is no page to the left (no lock is held |
1938 | * in that case). |
1939 | * |
1940 | * When working on a non-leaf level, it is possible for the returned page |
1941 | * to be half-dead; the caller should check that condition and step left |
1942 | * again if it's important. |
1943 | */ |
1944 | static Buffer |
1945 | _bt_walk_left(Relation rel, Buffer buf, Snapshot snapshot) |
1946 | { |
1947 | Page page; |
1948 | BTPageOpaque opaque; |
1949 | |
1950 | page = BufferGetPage(buf); |
1951 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1952 | |
1953 | for (;;) |
1954 | { |
1955 | BlockNumber obknum; |
1956 | BlockNumber lblkno; |
1957 | BlockNumber blkno; |
1958 | int tries; |
1959 | |
1960 | /* if we're at end of tree, release buf and return failure */ |
1961 | if (P_LEFTMOST(opaque)) |
1962 | { |
1963 | _bt_relbuf(rel, buf); |
1964 | break; |
1965 | } |
1966 | /* remember original page we are stepping left from */ |
1967 | obknum = BufferGetBlockNumber(buf); |
1968 | /* step left */ |
1969 | blkno = lblkno = opaque->btpo_prev; |
1970 | _bt_relbuf(rel, buf); |
1971 | /* check for interrupts while we're not holding any buffer lock */ |
1972 | CHECK_FOR_INTERRUPTS(); |
1973 | buf = _bt_getbuf(rel, blkno, BT_READ); |
1974 | page = BufferGetPage(buf); |
1975 | TestForOldSnapshot(snapshot, rel, page); |
1976 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
1977 | |
1978 | /* |
1979 | * If this isn't the page we want, walk right till we find what we |
1980 | * want --- but go no more than four hops (an arbitrary limit). If we |
1981 | * don't find the correct page by then, the most likely bet is that |
1982 | * the original page got deleted and isn't in the sibling chain at all |
1983 | * anymore, not that its left sibling got split more than four times. |
1984 | * |
1985 | * Note that it is correct to test P_ISDELETED not P_IGNORE here, |
1986 | * because half-dead pages are still in the sibling chain. Caller |
1987 | * must reject half-dead pages if wanted. |
1988 | */ |
1989 | tries = 0; |
1990 | for (;;) |
1991 | { |
1992 | if (!P_ISDELETED(opaque) && opaque->btpo_next == obknum) |
1993 | { |
1994 | /* Found desired page, return it */ |
1995 | return buf; |
1996 | } |
1997 | if (P_RIGHTMOST(opaque) || ++tries > 4) |
1998 | break; |
1999 | blkno = opaque->btpo_next; |
2000 | buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ); |
2001 | page = BufferGetPage(buf); |
2002 | TestForOldSnapshot(snapshot, rel, page); |
2003 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
2004 | } |
2005 | |
2006 | /* Return to the original page to see what's up */ |
2007 | buf = _bt_relandgetbuf(rel, buf, obknum, BT_READ); |
2008 | page = BufferGetPage(buf); |
2009 | TestForOldSnapshot(snapshot, rel, page); |
2010 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
2011 | if (P_ISDELETED(opaque)) |
2012 | { |
2013 | /* |
2014 | * It was deleted. Move right to first nondeleted page (there |
2015 | * must be one); that is the page that has acquired the deleted |
2016 | * one's keyspace, so stepping left from it will take us where we |
2017 | * want to be. |
2018 | */ |
2019 | for (;;) |
2020 | { |
2021 | if (P_RIGHTMOST(opaque)) |
2022 | elog(ERROR, "fell off the end of index \"%s\"" , |
2023 | RelationGetRelationName(rel)); |
2024 | blkno = opaque->btpo_next; |
2025 | buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ); |
2026 | page = BufferGetPage(buf); |
2027 | TestForOldSnapshot(snapshot, rel, page); |
2028 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
2029 | if (!P_ISDELETED(opaque)) |
2030 | break; |
2031 | } |
2032 | |
2033 | /* |
2034 | * Now return to top of loop, resetting obknum to point to this |
2035 | * nondeleted page, and try again. |
2036 | */ |
2037 | } |
2038 | else |
2039 | { |
2040 | /* |
2041 | * It wasn't deleted; the explanation had better be that the page |
2042 | * to the left got split or deleted. Without this check, we'd go |
2043 | * into an infinite loop if there's anything wrong. |
2044 | */ |
2045 | if (opaque->btpo_prev == lblkno) |
2046 | elog(ERROR, "could not find left sibling of block %u in index \"%s\"" , |
2047 | obknum, RelationGetRelationName(rel)); |
2048 | /* Okay to try again with new lblkno value */ |
2049 | } |
2050 | } |
2051 | |
2052 | return InvalidBuffer; |
2053 | } |
2054 | |
2055 | /* |
2056 | * _bt_get_endpoint() -- Find the first or last page on a given tree level |
2057 | * |
2058 | * If the index is empty, we will return InvalidBuffer; any other failure |
2059 | * condition causes ereport(). We will not return a dead page. |
2060 | * |
2061 | * The returned buffer is pinned and read-locked. |
2062 | */ |
2063 | Buffer |
2064 | _bt_get_endpoint(Relation rel, uint32 level, bool rightmost, |
2065 | Snapshot snapshot) |
2066 | { |
2067 | Buffer buf; |
2068 | Page page; |
2069 | BTPageOpaque opaque; |
2070 | OffsetNumber offnum; |
2071 | BlockNumber blkno; |
2072 | IndexTuple itup; |
2073 | |
2074 | /* |
2075 | * If we are looking for a leaf page, okay to descend from fast root; |
2076 | * otherwise better descend from true root. (There is no point in being |
2077 | * smarter about intermediate levels.) |
2078 | */ |
2079 | if (level == 0) |
2080 | buf = _bt_getroot(rel, BT_READ); |
2081 | else |
2082 | buf = _bt_gettrueroot(rel); |
2083 | |
2084 | if (!BufferIsValid(buf)) |
2085 | return InvalidBuffer; |
2086 | |
2087 | page = BufferGetPage(buf); |
2088 | TestForOldSnapshot(snapshot, rel, page); |
2089 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
2090 | |
2091 | for (;;) |
2092 | { |
2093 | /* |
2094 | * If we landed on a deleted page, step right to find a live page |
2095 | * (there must be one). Also, if we want the rightmost page, step |
2096 | * right if needed to get to it (this could happen if the page split |
2097 | * since we obtained a pointer to it). |
2098 | */ |
2099 | while (P_IGNORE(opaque) || |
2100 | (rightmost && !P_RIGHTMOST(opaque))) |
2101 | { |
2102 | blkno = opaque->btpo_next; |
2103 | if (blkno == P_NONE) |
2104 | elog(ERROR, "fell off the end of index \"%s\"" , |
2105 | RelationGetRelationName(rel)); |
2106 | buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ); |
2107 | page = BufferGetPage(buf); |
2108 | TestForOldSnapshot(snapshot, rel, page); |
2109 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
2110 | } |
2111 | |
2112 | /* Done? */ |
2113 | if (opaque->btpo.level == level) |
2114 | break; |
2115 | if (opaque->btpo.level < level) |
2116 | elog(ERROR, "btree level %u not found in index \"%s\"" , |
2117 | level, RelationGetRelationName(rel)); |
2118 | |
2119 | /* Descend to leftmost or rightmost child page */ |
2120 | if (rightmost) |
2121 | offnum = PageGetMaxOffsetNumber(page); |
2122 | else |
2123 | offnum = P_FIRSTDATAKEY(opaque); |
2124 | |
2125 | itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum)); |
2126 | blkno = BTreeInnerTupleGetDownLink(itup); |
2127 | |
2128 | buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ); |
2129 | page = BufferGetPage(buf); |
2130 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
2131 | } |
2132 | |
2133 | return buf; |
2134 | } |
2135 | |
2136 | /* |
2137 | * _bt_endpoint() -- Find the first or last page in the index, and scan |
2138 | * from there to the first key satisfying all the quals. |
2139 | * |
2140 | * This is used by _bt_first() to set up a scan when we've determined |
2141 | * that the scan must start at the beginning or end of the index (for |
2142 | * a forward or backward scan respectively). Exit conditions are the |
2143 | * same as for _bt_first(). |
2144 | */ |
2145 | static bool |
2146 | _bt_endpoint(IndexScanDesc scan, ScanDirection dir) |
2147 | { |
2148 | Relation rel = scan->indexRelation; |
2149 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
2150 | Buffer buf; |
2151 | Page page; |
2152 | BTPageOpaque opaque; |
2153 | OffsetNumber start; |
2154 | BTScanPosItem *currItem; |
2155 | |
2156 | /* |
2157 | * Scan down to the leftmost or rightmost leaf page. This is a simplified |
2158 | * version of _bt_search(). We don't maintain a stack since we know we |
2159 | * won't need it. |
2160 | */ |
2161 | buf = _bt_get_endpoint(rel, 0, ScanDirectionIsBackward(dir), scan->xs_snapshot); |
2162 | |
2163 | if (!BufferIsValid(buf)) |
2164 | { |
2165 | /* |
2166 | * Empty index. Lock the whole relation, as nothing finer to lock |
2167 | * exists. |
2168 | */ |
2169 | PredicateLockRelation(rel, scan->xs_snapshot); |
2170 | BTScanPosInvalidate(so->currPos); |
2171 | return false; |
2172 | } |
2173 | |
2174 | PredicateLockPage(rel, BufferGetBlockNumber(buf), scan->xs_snapshot); |
2175 | page = BufferGetPage(buf); |
2176 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
2177 | Assert(P_ISLEAF(opaque)); |
2178 | |
2179 | if (ScanDirectionIsForward(dir)) |
2180 | { |
2181 | /* There could be dead pages to the left, so not this: */ |
2182 | /* Assert(P_LEFTMOST(opaque)); */ |
2183 | |
2184 | start = P_FIRSTDATAKEY(opaque); |
2185 | } |
2186 | else if (ScanDirectionIsBackward(dir)) |
2187 | { |
2188 | Assert(P_RIGHTMOST(opaque)); |
2189 | |
2190 | start = PageGetMaxOffsetNumber(page); |
2191 | } |
2192 | else |
2193 | { |
2194 | elog(ERROR, "invalid scan direction: %d" , (int) dir); |
2195 | start = 0; /* keep compiler quiet */ |
2196 | } |
2197 | |
2198 | /* remember which buffer we have pinned */ |
2199 | so->currPos.buf = buf; |
2200 | |
2201 | _bt_initialize_more_data(so, dir); |
2202 | |
2203 | /* |
2204 | * Now load data from the first page of the scan. |
2205 | */ |
2206 | if (!_bt_readpage(scan, dir, start)) |
2207 | { |
2208 | /* |
2209 | * There's no actually-matching data on this page. Try to advance to |
2210 | * the next page. Return false if there's no matching data at all. |
2211 | */ |
2212 | LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK); |
2213 | if (!_bt_steppage(scan, dir)) |
2214 | return false; |
2215 | } |
2216 | else |
2217 | { |
2218 | /* Drop the lock, and maybe the pin, on the current page */ |
2219 | _bt_drop_lock_and_maybe_pin(scan, &so->currPos); |
2220 | } |
2221 | |
2222 | /* OK, itemIndex says what to return */ |
2223 | currItem = &so->currPos.items[so->currPos.itemIndex]; |
2224 | scan->xs_heaptid = currItem->heapTid; |
2225 | if (scan->xs_want_itup) |
2226 | scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset); |
2227 | |
2228 | return true; |
2229 | } |
2230 | |
2231 | /* |
2232 | * _bt_initialize_more_data() -- initialize moreLeft/moreRight appropriately |
2233 | * for scan direction |
2234 | */ |
2235 | static inline void |
2236 | _bt_initialize_more_data(BTScanOpaque so, ScanDirection dir) |
2237 | { |
2238 | /* initialize moreLeft/moreRight appropriately for scan direction */ |
2239 | if (ScanDirectionIsForward(dir)) |
2240 | { |
2241 | so->currPos.moreLeft = false; |
2242 | so->currPos.moreRight = true; |
2243 | } |
2244 | else |
2245 | { |
2246 | so->currPos.moreLeft = true; |
2247 | so->currPos.moreRight = false; |
2248 | } |
2249 | so->numKilled = 0; /* just paranoia */ |
2250 | so->markItemIndex = -1; /* ditto */ |
2251 | } |
2252 | |