| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nbtutils.c |
| 4 | * Utility code for Postgres btree implementation. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/access/nbtree/nbtutils.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include <time.h> |
| 19 | |
| 20 | #include "access/nbtree.h" |
| 21 | #include "access/reloptions.h" |
| 22 | #include "access/relscan.h" |
| 23 | #include "commands/progress.h" |
| 24 | #include "miscadmin.h" |
| 25 | #include "utils/array.h" |
| 26 | #include "utils/datum.h" |
| 27 | #include "utils/lsyscache.h" |
| 28 | #include "utils/memutils.h" |
| 29 | #include "utils/rel.h" |
| 30 | |
| 31 | |
| 32 | typedef struct BTSortArrayContext |
| 33 | { |
| 34 | FmgrInfo flinfo; |
| 35 | Oid collation; |
| 36 | bool reverse; |
| 37 | } BTSortArrayContext; |
| 38 | |
| 39 | static Datum _bt_find_extreme_element(IndexScanDesc scan, ScanKey skey, |
| 40 | StrategyNumber strat, |
| 41 | Datum *elems, int nelems); |
| 42 | static int _bt_sort_array_elements(IndexScanDesc scan, ScanKey skey, |
| 43 | bool reverse, |
| 44 | Datum *elems, int nelems); |
| 45 | static int _bt_compare_array_elements(const void *a, const void *b, void *arg); |
| 46 | static bool _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op, |
| 47 | ScanKey leftarg, ScanKey rightarg, |
| 48 | bool *result); |
| 49 | static bool _bt_fix_scankey_strategy(ScanKey skey, int16 *indoption); |
| 50 | static void _bt_mark_scankey_required(ScanKey skey); |
| 51 | static bool _bt_check_rowcompare(ScanKey skey, |
| 52 | IndexTuple tuple, int tupnatts, TupleDesc tupdesc, |
| 53 | ScanDirection dir, bool *continuescan); |
| 54 | static int _bt_keep_natts(Relation rel, IndexTuple lastleft, |
| 55 | IndexTuple firstright, BTScanInsert itup_key); |
| 56 | |
| 57 | |
| 58 | /* |
| 59 | * _bt_mkscankey |
| 60 | * Build an insertion scan key that contains comparison data from itup |
| 61 | * as well as comparator routines appropriate to the key datatypes. |
| 62 | * |
| 63 | * When itup is a non-pivot tuple, the returned insertion scan key is |
| 64 | * suitable for finding a place for it to go on the leaf level. Pivot |
| 65 | * tuples can be used to re-find leaf page with matching high key, but |
| 66 | * then caller needs to set scan key's pivotsearch field to true. This |
| 67 | * allows caller to search for a leaf page with a matching high key, |
| 68 | * which is usually to the left of the first leaf page a non-pivot match |
| 69 | * might appear on. |
| 70 | * |
| 71 | * The result is intended for use with _bt_compare() and _bt_truncate(). |
| 72 | * Callers that don't need to fill out the insertion scankey arguments |
| 73 | * (e.g. they use an ad-hoc comparison routine, or only need a scankey |
| 74 | * for _bt_truncate()) can pass a NULL index tuple. The scankey will |
| 75 | * be initialized as if an "all truncated" pivot tuple was passed |
| 76 | * instead. |
| 77 | * |
| 78 | * Note that we may occasionally have to share lock the metapage to |
| 79 | * determine whether or not the keys in the index are expected to be |
| 80 | * unique (i.e. if this is a "heapkeyspace" index). We assume a |
| 81 | * heapkeyspace index when caller passes a NULL tuple, allowing index |
| 82 | * build callers to avoid accessing the non-existent metapage. |
| 83 | */ |
| 84 | BTScanInsert |
| 85 | _bt_mkscankey(Relation rel, IndexTuple itup) |
| 86 | { |
| 87 | BTScanInsert key; |
| 88 | ScanKey skey; |
| 89 | TupleDesc itupdesc; |
| 90 | int indnkeyatts; |
| 91 | int16 *indoption; |
| 92 | int tupnatts; |
| 93 | int i; |
| 94 | |
| 95 | itupdesc = RelationGetDescr(rel); |
| 96 | indnkeyatts = IndexRelationGetNumberOfKeyAttributes(rel); |
| 97 | indoption = rel->rd_indoption; |
| 98 | tupnatts = itup ? BTreeTupleGetNAtts(itup, rel) : 0; |
| 99 | |
| 100 | Assert(tupnatts <= IndexRelationGetNumberOfAttributes(rel)); |
| 101 | |
| 102 | /* |
| 103 | * We'll execute search using scan key constructed on key columns. |
| 104 | * Truncated attributes and non-key attributes are omitted from the final |
| 105 | * scan key. |
| 106 | */ |
| 107 | key = palloc(offsetof(BTScanInsertData, scankeys) + |
| 108 | sizeof(ScanKeyData) * indnkeyatts); |
| 109 | key->heapkeyspace = itup == NULL || _bt_heapkeyspace(rel); |
| 110 | key->anynullkeys = false; /* initial assumption */ |
| 111 | key->nextkey = false; |
| 112 | key->pivotsearch = false; |
| 113 | key->keysz = Min(indnkeyatts, tupnatts); |
| 114 | key->scantid = key->heapkeyspace && itup ? |
| 115 | BTreeTupleGetHeapTID(itup) : NULL; |
| 116 | skey = key->scankeys; |
| 117 | for (i = 0; i < indnkeyatts; i++) |
| 118 | { |
| 119 | FmgrInfo *procinfo; |
| 120 | Datum arg; |
| 121 | bool null; |
| 122 | int flags; |
| 123 | |
| 124 | /* |
| 125 | * We can use the cached (default) support procs since no cross-type |
| 126 | * comparison can be needed. |
| 127 | */ |
| 128 | procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC); |
| 129 | |
| 130 | /* |
| 131 | * Key arguments built from truncated attributes (or when caller |
| 132 | * provides no tuple) are defensively represented as NULL values. They |
| 133 | * should never be used. |
| 134 | */ |
| 135 | if (i < tupnatts) |
| 136 | arg = index_getattr(itup, i + 1, itupdesc, &null); |
| 137 | else |
| 138 | { |
| 139 | arg = (Datum) 0; |
| 140 | null = true; |
| 141 | } |
| 142 | flags = (null ? SK_ISNULL : 0) | (indoption[i] << SK_BT_INDOPTION_SHIFT); |
| 143 | ScanKeyEntryInitializeWithInfo(&skey[i], |
| 144 | flags, |
| 145 | (AttrNumber) (i + 1), |
| 146 | InvalidStrategy, |
| 147 | InvalidOid, |
| 148 | rel->rd_indcollation[i], |
| 149 | procinfo, |
| 150 | arg); |
| 151 | /* Record if any key attribute is NULL (or truncated) */ |
| 152 | if (null) |
| 153 | key->anynullkeys = true; |
| 154 | } |
| 155 | |
| 156 | return key; |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * free a retracement stack made by _bt_search. |
| 161 | */ |
| 162 | void |
| 163 | _bt_freestack(BTStack stack) |
| 164 | { |
| 165 | BTStack ostack; |
| 166 | |
| 167 | while (stack != NULL) |
| 168 | { |
| 169 | ostack = stack; |
| 170 | stack = stack->bts_parent; |
| 171 | pfree(ostack); |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | |
| 176 | /* |
| 177 | * _bt_preprocess_array_keys() -- Preprocess SK_SEARCHARRAY scan keys |
| 178 | * |
| 179 | * If there are any SK_SEARCHARRAY scan keys, deconstruct the array(s) and |
| 180 | * set up BTArrayKeyInfo info for each one that is an equality-type key. |
| 181 | * Prepare modified scan keys in so->arrayKeyData, which will hold the current |
| 182 | * array elements during each primitive indexscan operation. For inequality |
| 183 | * array keys, it's sufficient to find the extreme element value and replace |
| 184 | * the whole array with that scalar value. |
| 185 | * |
| 186 | * Note: the reason we need so->arrayKeyData, rather than just scribbling |
| 187 | * on scan->keyData, is that callers are permitted to call btrescan without |
| 188 | * supplying a new set of scankey data. |
| 189 | */ |
| 190 | void |
| 191 | _bt_preprocess_array_keys(IndexScanDesc scan) |
| 192 | { |
| 193 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 194 | int numberOfKeys = scan->numberOfKeys; |
| 195 | int16 *indoption = scan->indexRelation->rd_indoption; |
| 196 | int numArrayKeys; |
| 197 | ScanKey cur; |
| 198 | int i; |
| 199 | MemoryContext oldContext; |
| 200 | |
| 201 | /* Quick check to see if there are any array keys */ |
| 202 | numArrayKeys = 0; |
| 203 | for (i = 0; i < numberOfKeys; i++) |
| 204 | { |
| 205 | cur = &scan->keyData[i]; |
| 206 | if (cur->sk_flags & SK_SEARCHARRAY) |
| 207 | { |
| 208 | numArrayKeys++; |
| 209 | Assert(!(cur->sk_flags & (SK_ROW_HEADER | SK_SEARCHNULL | SK_SEARCHNOTNULL))); |
| 210 | /* If any arrays are null as a whole, we can quit right now. */ |
| 211 | if (cur->sk_flags & SK_ISNULL) |
| 212 | { |
| 213 | so->numArrayKeys = -1; |
| 214 | so->arrayKeyData = NULL; |
| 215 | return; |
| 216 | } |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | /* Quit if nothing to do. */ |
| 221 | if (numArrayKeys == 0) |
| 222 | { |
| 223 | so->numArrayKeys = 0; |
| 224 | so->arrayKeyData = NULL; |
| 225 | return; |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * Make a scan-lifespan context to hold array-associated data, or reset it |
| 230 | * if we already have one from a previous rescan cycle. |
| 231 | */ |
| 232 | if (so->arrayContext == NULL) |
| 233 | so->arrayContext = AllocSetContextCreate(CurrentMemoryContext, |
| 234 | "BTree array context" , |
| 235 | ALLOCSET_SMALL_SIZES); |
| 236 | else |
| 237 | MemoryContextReset(so->arrayContext); |
| 238 | |
| 239 | oldContext = MemoryContextSwitchTo(so->arrayContext); |
| 240 | |
| 241 | /* Create modifiable copy of scan->keyData in the workspace context */ |
| 242 | so->arrayKeyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData)); |
| 243 | memcpy(so->arrayKeyData, |
| 244 | scan->keyData, |
| 245 | scan->numberOfKeys * sizeof(ScanKeyData)); |
| 246 | |
| 247 | /* Allocate space for per-array data in the workspace context */ |
| 248 | so->arrayKeys = (BTArrayKeyInfo *) palloc0(numArrayKeys * sizeof(BTArrayKeyInfo)); |
| 249 | |
| 250 | /* Now process each array key */ |
| 251 | numArrayKeys = 0; |
| 252 | for (i = 0; i < numberOfKeys; i++) |
| 253 | { |
| 254 | ArrayType *arrayval; |
| 255 | int16 elmlen; |
| 256 | bool elmbyval; |
| 257 | char elmalign; |
| 258 | int num_elems; |
| 259 | Datum *elem_values; |
| 260 | bool *elem_nulls; |
| 261 | int num_nonnulls; |
| 262 | int j; |
| 263 | |
| 264 | cur = &so->arrayKeyData[i]; |
| 265 | if (!(cur->sk_flags & SK_SEARCHARRAY)) |
| 266 | continue; |
| 267 | |
| 268 | /* |
| 269 | * First, deconstruct the array into elements. Anything allocated |
| 270 | * here (including a possibly detoasted array value) is in the |
| 271 | * workspace context. |
| 272 | */ |
| 273 | arrayval = DatumGetArrayTypeP(cur->sk_argument); |
| 274 | /* We could cache this data, but not clear it's worth it */ |
| 275 | get_typlenbyvalalign(ARR_ELEMTYPE(arrayval), |
| 276 | &elmlen, &elmbyval, &elmalign); |
| 277 | deconstruct_array(arrayval, |
| 278 | ARR_ELEMTYPE(arrayval), |
| 279 | elmlen, elmbyval, elmalign, |
| 280 | &elem_values, &elem_nulls, &num_elems); |
| 281 | |
| 282 | /* |
| 283 | * Compress out any null elements. We can ignore them since we assume |
| 284 | * all btree operators are strict. |
| 285 | */ |
| 286 | num_nonnulls = 0; |
| 287 | for (j = 0; j < num_elems; j++) |
| 288 | { |
| 289 | if (!elem_nulls[j]) |
| 290 | elem_values[num_nonnulls++] = elem_values[j]; |
| 291 | } |
| 292 | |
| 293 | /* We could pfree(elem_nulls) now, but not worth the cycles */ |
| 294 | |
| 295 | /* If there's no non-nulls, the scan qual is unsatisfiable */ |
| 296 | if (num_nonnulls == 0) |
| 297 | { |
| 298 | numArrayKeys = -1; |
| 299 | break; |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * If the comparison operator is not equality, then the array qual |
| 304 | * degenerates to a simple comparison against the smallest or largest |
| 305 | * non-null array element, as appropriate. |
| 306 | */ |
| 307 | switch (cur->sk_strategy) |
| 308 | { |
| 309 | case BTLessStrategyNumber: |
| 310 | case BTLessEqualStrategyNumber: |
| 311 | cur->sk_argument = |
| 312 | _bt_find_extreme_element(scan, cur, |
| 313 | BTGreaterStrategyNumber, |
| 314 | elem_values, num_nonnulls); |
| 315 | continue; |
| 316 | case BTEqualStrategyNumber: |
| 317 | /* proceed with rest of loop */ |
| 318 | break; |
| 319 | case BTGreaterEqualStrategyNumber: |
| 320 | case BTGreaterStrategyNumber: |
| 321 | cur->sk_argument = |
| 322 | _bt_find_extreme_element(scan, cur, |
| 323 | BTLessStrategyNumber, |
| 324 | elem_values, num_nonnulls); |
| 325 | continue; |
| 326 | default: |
| 327 | elog(ERROR, "unrecognized StrategyNumber: %d" , |
| 328 | (int) cur->sk_strategy); |
| 329 | break; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * Sort the non-null elements and eliminate any duplicates. We must |
| 334 | * sort in the same ordering used by the index column, so that the |
| 335 | * successive primitive indexscans produce data in index order. |
| 336 | */ |
| 337 | num_elems = _bt_sort_array_elements(scan, cur, |
| 338 | (indoption[cur->sk_attno - 1] & INDOPTION_DESC) != 0, |
| 339 | elem_values, num_nonnulls); |
| 340 | |
| 341 | /* |
| 342 | * And set up the BTArrayKeyInfo data. |
| 343 | */ |
| 344 | so->arrayKeys[numArrayKeys].scan_key = i; |
| 345 | so->arrayKeys[numArrayKeys].num_elems = num_elems; |
| 346 | so->arrayKeys[numArrayKeys].elem_values = elem_values; |
| 347 | numArrayKeys++; |
| 348 | } |
| 349 | |
| 350 | so->numArrayKeys = numArrayKeys; |
| 351 | |
| 352 | MemoryContextSwitchTo(oldContext); |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * _bt_find_extreme_element() -- get least or greatest array element |
| 357 | * |
| 358 | * scan and skey identify the index column, whose opfamily determines the |
| 359 | * comparison semantics. strat should be BTLessStrategyNumber to get the |
| 360 | * least element, or BTGreaterStrategyNumber to get the greatest. |
| 361 | */ |
| 362 | static Datum |
| 363 | _bt_find_extreme_element(IndexScanDesc scan, ScanKey skey, |
| 364 | StrategyNumber strat, |
| 365 | Datum *elems, int nelems) |
| 366 | { |
| 367 | Relation rel = scan->indexRelation; |
| 368 | Oid elemtype, |
| 369 | cmp_op; |
| 370 | RegProcedure cmp_proc; |
| 371 | FmgrInfo flinfo; |
| 372 | Datum result; |
| 373 | int i; |
| 374 | |
| 375 | /* |
| 376 | * Determine the nominal datatype of the array elements. We have to |
| 377 | * support the convention that sk_subtype == InvalidOid means the opclass |
| 378 | * input type; this is a hack to simplify life for ScanKeyInit(). |
| 379 | */ |
| 380 | elemtype = skey->sk_subtype; |
| 381 | if (elemtype == InvalidOid) |
| 382 | elemtype = rel->rd_opcintype[skey->sk_attno - 1]; |
| 383 | |
| 384 | /* |
| 385 | * Look up the appropriate comparison operator in the opfamily. |
| 386 | * |
| 387 | * Note: it's possible that this would fail, if the opfamily is |
| 388 | * incomplete, but it seems quite unlikely that an opfamily would omit |
| 389 | * non-cross-type comparison operators for any datatype that it supports |
| 390 | * at all. |
| 391 | */ |
| 392 | cmp_op = get_opfamily_member(rel->rd_opfamily[skey->sk_attno - 1], |
| 393 | elemtype, |
| 394 | elemtype, |
| 395 | strat); |
| 396 | if (!OidIsValid(cmp_op)) |
| 397 | elog(ERROR, "missing operator %d(%u,%u) in opfamily %u" , |
| 398 | strat, elemtype, elemtype, |
| 399 | rel->rd_opfamily[skey->sk_attno - 1]); |
| 400 | cmp_proc = get_opcode(cmp_op); |
| 401 | if (!RegProcedureIsValid(cmp_proc)) |
| 402 | elog(ERROR, "missing oprcode for operator %u" , cmp_op); |
| 403 | |
| 404 | fmgr_info(cmp_proc, &flinfo); |
| 405 | |
| 406 | Assert(nelems > 0); |
| 407 | result = elems[0]; |
| 408 | for (i = 1; i < nelems; i++) |
| 409 | { |
| 410 | if (DatumGetBool(FunctionCall2Coll(&flinfo, |
| 411 | skey->sk_collation, |
| 412 | elems[i], |
| 413 | result))) |
| 414 | result = elems[i]; |
| 415 | } |
| 416 | |
| 417 | return result; |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * _bt_sort_array_elements() -- sort and de-dup array elements |
| 422 | * |
| 423 | * The array elements are sorted in-place, and the new number of elements |
| 424 | * after duplicate removal is returned. |
| 425 | * |
| 426 | * scan and skey identify the index column, whose opfamily determines the |
| 427 | * comparison semantics. If reverse is true, we sort in descending order. |
| 428 | */ |
| 429 | static int |
| 430 | _bt_sort_array_elements(IndexScanDesc scan, ScanKey skey, |
| 431 | bool reverse, |
| 432 | Datum *elems, int nelems) |
| 433 | { |
| 434 | Relation rel = scan->indexRelation; |
| 435 | Oid elemtype; |
| 436 | RegProcedure cmp_proc; |
| 437 | BTSortArrayContext cxt; |
| 438 | int last_non_dup; |
| 439 | int i; |
| 440 | |
| 441 | if (nelems <= 1) |
| 442 | return nelems; /* no work to do */ |
| 443 | |
| 444 | /* |
| 445 | * Determine the nominal datatype of the array elements. We have to |
| 446 | * support the convention that sk_subtype == InvalidOid means the opclass |
| 447 | * input type; this is a hack to simplify life for ScanKeyInit(). |
| 448 | */ |
| 449 | elemtype = skey->sk_subtype; |
| 450 | if (elemtype == InvalidOid) |
| 451 | elemtype = rel->rd_opcintype[skey->sk_attno - 1]; |
| 452 | |
| 453 | /* |
| 454 | * Look up the appropriate comparison function in the opfamily. |
| 455 | * |
| 456 | * Note: it's possible that this would fail, if the opfamily is |
| 457 | * incomplete, but it seems quite unlikely that an opfamily would omit |
| 458 | * non-cross-type support functions for any datatype that it supports at |
| 459 | * all. |
| 460 | */ |
| 461 | cmp_proc = get_opfamily_proc(rel->rd_opfamily[skey->sk_attno - 1], |
| 462 | elemtype, |
| 463 | elemtype, |
| 464 | BTORDER_PROC); |
| 465 | if (!RegProcedureIsValid(cmp_proc)) |
| 466 | elog(ERROR, "missing support function %d(%u,%u) in opfamily %u" , |
| 467 | BTORDER_PROC, elemtype, elemtype, |
| 468 | rel->rd_opfamily[skey->sk_attno - 1]); |
| 469 | |
| 470 | /* Sort the array elements */ |
| 471 | fmgr_info(cmp_proc, &cxt.flinfo); |
| 472 | cxt.collation = skey->sk_collation; |
| 473 | cxt.reverse = reverse; |
| 474 | qsort_arg((void *) elems, nelems, sizeof(Datum), |
| 475 | _bt_compare_array_elements, (void *) &cxt); |
| 476 | |
| 477 | /* Now scan the sorted elements and remove duplicates */ |
| 478 | last_non_dup = 0; |
| 479 | for (i = 1; i < nelems; i++) |
| 480 | { |
| 481 | int32 compare; |
| 482 | |
| 483 | compare = DatumGetInt32(FunctionCall2Coll(&cxt.flinfo, |
| 484 | cxt.collation, |
| 485 | elems[last_non_dup], |
| 486 | elems[i])); |
| 487 | if (compare != 0) |
| 488 | elems[++last_non_dup] = elems[i]; |
| 489 | } |
| 490 | |
| 491 | return last_non_dup + 1; |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * qsort_arg comparator for sorting array elements |
| 496 | */ |
| 497 | static int |
| 498 | _bt_compare_array_elements(const void *a, const void *b, void *arg) |
| 499 | { |
| 500 | Datum da = *((const Datum *) a); |
| 501 | Datum db = *((const Datum *) b); |
| 502 | BTSortArrayContext *cxt = (BTSortArrayContext *) arg; |
| 503 | int32 compare; |
| 504 | |
| 505 | compare = DatumGetInt32(FunctionCall2Coll(&cxt->flinfo, |
| 506 | cxt->collation, |
| 507 | da, db)); |
| 508 | if (cxt->reverse) |
| 509 | INVERT_COMPARE_RESULT(compare); |
| 510 | return compare; |
| 511 | } |
| 512 | |
| 513 | /* |
| 514 | * _bt_start_array_keys() -- Initialize array keys at start of a scan |
| 515 | * |
| 516 | * Set up the cur_elem counters and fill in the first sk_argument value for |
| 517 | * each array scankey. We can't do this until we know the scan direction. |
| 518 | */ |
| 519 | void |
| 520 | _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir) |
| 521 | { |
| 522 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 523 | int i; |
| 524 | |
| 525 | for (i = 0; i < so->numArrayKeys; i++) |
| 526 | { |
| 527 | BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i]; |
| 528 | ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key]; |
| 529 | |
| 530 | Assert(curArrayKey->num_elems > 0); |
| 531 | if (ScanDirectionIsBackward(dir)) |
| 532 | curArrayKey->cur_elem = curArrayKey->num_elems - 1; |
| 533 | else |
| 534 | curArrayKey->cur_elem = 0; |
| 535 | skey->sk_argument = curArrayKey->elem_values[curArrayKey->cur_elem]; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * _bt_advance_array_keys() -- Advance to next set of array elements |
| 541 | * |
| 542 | * Returns true if there is another set of values to consider, false if not. |
| 543 | * On true result, the scankeys are initialized with the next set of values. |
| 544 | */ |
| 545 | bool |
| 546 | _bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir) |
| 547 | { |
| 548 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 549 | bool found = false; |
| 550 | int i; |
| 551 | |
| 552 | /* |
| 553 | * We must advance the last array key most quickly, since it will |
| 554 | * correspond to the lowest-order index column among the available |
| 555 | * qualifications. This is necessary to ensure correct ordering of output |
| 556 | * when there are multiple array keys. |
| 557 | */ |
| 558 | for (i = so->numArrayKeys - 1; i >= 0; i--) |
| 559 | { |
| 560 | BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i]; |
| 561 | ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key]; |
| 562 | int cur_elem = curArrayKey->cur_elem; |
| 563 | int num_elems = curArrayKey->num_elems; |
| 564 | |
| 565 | if (ScanDirectionIsBackward(dir)) |
| 566 | { |
| 567 | if (--cur_elem < 0) |
| 568 | { |
| 569 | cur_elem = num_elems - 1; |
| 570 | found = false; /* need to advance next array key */ |
| 571 | } |
| 572 | else |
| 573 | found = true; |
| 574 | } |
| 575 | else |
| 576 | { |
| 577 | if (++cur_elem >= num_elems) |
| 578 | { |
| 579 | cur_elem = 0; |
| 580 | found = false; /* need to advance next array key */ |
| 581 | } |
| 582 | else |
| 583 | found = true; |
| 584 | } |
| 585 | |
| 586 | curArrayKey->cur_elem = cur_elem; |
| 587 | skey->sk_argument = curArrayKey->elem_values[cur_elem]; |
| 588 | if (found) |
| 589 | break; |
| 590 | } |
| 591 | |
| 592 | /* advance parallel scan */ |
| 593 | if (scan->parallel_scan != NULL) |
| 594 | _bt_parallel_advance_array_keys(scan); |
| 595 | |
| 596 | return found; |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * _bt_mark_array_keys() -- Handle array keys during btmarkpos |
| 601 | * |
| 602 | * Save the current state of the array keys as the "mark" position. |
| 603 | */ |
| 604 | void |
| 605 | _bt_mark_array_keys(IndexScanDesc scan) |
| 606 | { |
| 607 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 608 | int i; |
| 609 | |
| 610 | for (i = 0; i < so->numArrayKeys; i++) |
| 611 | { |
| 612 | BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i]; |
| 613 | |
| 614 | curArrayKey->mark_elem = curArrayKey->cur_elem; |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | * _bt_restore_array_keys() -- Handle array keys during btrestrpos |
| 620 | * |
| 621 | * Restore the array keys to where they were when the mark was set. |
| 622 | */ |
| 623 | void |
| 624 | _bt_restore_array_keys(IndexScanDesc scan) |
| 625 | { |
| 626 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 627 | bool changed = false; |
| 628 | int i; |
| 629 | |
| 630 | /* Restore each array key to its position when the mark was set */ |
| 631 | for (i = 0; i < so->numArrayKeys; i++) |
| 632 | { |
| 633 | BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i]; |
| 634 | ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key]; |
| 635 | int mark_elem = curArrayKey->mark_elem; |
| 636 | |
| 637 | if (curArrayKey->cur_elem != mark_elem) |
| 638 | { |
| 639 | curArrayKey->cur_elem = mark_elem; |
| 640 | skey->sk_argument = curArrayKey->elem_values[mark_elem]; |
| 641 | changed = true; |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * If we changed any keys, we must redo _bt_preprocess_keys. That might |
| 647 | * sound like overkill, but in cases with multiple keys per index column |
| 648 | * it seems necessary to do the full set of pushups. |
| 649 | */ |
| 650 | if (changed) |
| 651 | { |
| 652 | _bt_preprocess_keys(scan); |
| 653 | /* The mark should have been set on a consistent set of keys... */ |
| 654 | Assert(so->qual_ok); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | |
| 659 | /* |
| 660 | * _bt_preprocess_keys() -- Preprocess scan keys |
| 661 | * |
| 662 | * The given search-type keys (in scan->keyData[] or so->arrayKeyData[]) |
| 663 | * are copied to so->keyData[] with possible transformation. |
| 664 | * scan->numberOfKeys is the number of input keys, so->numberOfKeys gets |
| 665 | * the number of output keys (possibly less, never greater). |
| 666 | * |
| 667 | * The output keys are marked with additional sk_flag bits beyond the |
| 668 | * system-standard bits supplied by the caller. The DESC and NULLS_FIRST |
| 669 | * indoption bits for the relevant index attribute are copied into the flags. |
| 670 | * Also, for a DESC column, we commute (flip) all the sk_strategy numbers |
| 671 | * so that the index sorts in the desired direction. |
| 672 | * |
| 673 | * One key purpose of this routine is to discover which scan keys must be |
| 674 | * satisfied to continue the scan. It also attempts to eliminate redundant |
| 675 | * keys and detect contradictory keys. (If the index opfamily provides |
| 676 | * incomplete sets of cross-type operators, we may fail to detect redundant |
| 677 | * or contradictory keys, but we can survive that.) |
| 678 | * |
| 679 | * The output keys must be sorted by index attribute. Presently we expect |
| 680 | * (but verify) that the input keys are already so sorted --- this is done |
| 681 | * by match_clauses_to_index() in indxpath.c. Some reordering of the keys |
| 682 | * within each attribute may be done as a byproduct of the processing here, |
| 683 | * but no other code depends on that. |
| 684 | * |
| 685 | * The output keys are marked with flags SK_BT_REQFWD and/or SK_BT_REQBKWD |
| 686 | * if they must be satisfied in order to continue the scan forward or backward |
| 687 | * respectively. _bt_checkkeys uses these flags. For example, if the quals |
| 688 | * are "x = 1 AND y < 4 AND z < 5", then _bt_checkkeys will reject a tuple |
| 689 | * (1,2,7), but we must continue the scan in case there are tuples (1,3,z). |
| 690 | * But once we reach tuples like (1,4,z) we can stop scanning because no |
| 691 | * later tuples could match. This is reflected by marking the x and y keys, |
| 692 | * but not the z key, with SK_BT_REQFWD. In general, the keys for leading |
| 693 | * attributes with "=" keys are marked both SK_BT_REQFWD and SK_BT_REQBKWD. |
| 694 | * For the first attribute without an "=" key, any "<" and "<=" keys are |
| 695 | * marked SK_BT_REQFWD while any ">" and ">=" keys are marked SK_BT_REQBKWD. |
| 696 | * This can be seen to be correct by considering the above example. Note |
| 697 | * in particular that if there are no keys for a given attribute, the keys for |
| 698 | * subsequent attributes can never be required; for instance "WHERE y = 4" |
| 699 | * requires a full-index scan. |
| 700 | * |
| 701 | * If possible, redundant keys are eliminated: we keep only the tightest |
| 702 | * >/>= bound and the tightest </<= bound, and if there's an = key then |
| 703 | * that's the only one returned. (So, we return either a single = key, |
| 704 | * or one or two boundary-condition keys for each attr.) However, if we |
| 705 | * cannot compare two keys for lack of a suitable cross-type operator, |
| 706 | * we cannot eliminate either. If there are two such keys of the same |
| 707 | * operator strategy, the second one is just pushed into the output array |
| 708 | * without further processing here. We may also emit both >/>= or both |
| 709 | * </<= keys if we can't compare them. The logic about required keys still |
| 710 | * works if we don't eliminate redundant keys. |
| 711 | * |
| 712 | * Note that one reason we need direction-sensitive required-key flags is |
| 713 | * precisely that we may not be able to eliminate redundant keys. Suppose |
| 714 | * we have "x > 4::int AND x > 10::bigint", and we are unable to determine |
| 715 | * which key is more restrictive for lack of a suitable cross-type operator. |
| 716 | * _bt_first will arbitrarily pick one of the keys to do the initial |
| 717 | * positioning with. If it picks x > 4, then the x > 10 condition will fail |
| 718 | * until we reach index entries > 10; but we can't stop the scan just because |
| 719 | * x > 10 is failing. On the other hand, if we are scanning backwards, then |
| 720 | * failure of either key is indeed enough to stop the scan. (In general, when |
| 721 | * inequality keys are present, the initial-positioning code only promises to |
| 722 | * position before the first possible match, not exactly at the first match, |
| 723 | * for a forward scan; or after the last match for a backward scan.) |
| 724 | * |
| 725 | * As a byproduct of this work, we can detect contradictory quals such |
| 726 | * as "x = 1 AND x > 2". If we see that, we return so->qual_ok = false, |
| 727 | * indicating the scan need not be run at all since no tuples can match. |
| 728 | * (In this case we do not bother completing the output key array!) |
| 729 | * Again, missing cross-type operators might cause us to fail to prove the |
| 730 | * quals contradictory when they really are, but the scan will work correctly. |
| 731 | * |
| 732 | * Row comparison keys are currently also treated without any smarts: |
| 733 | * we just transfer them into the preprocessed array without any |
| 734 | * editorialization. We can treat them the same as an ordinary inequality |
| 735 | * comparison on the row's first index column, for the purposes of the logic |
| 736 | * about required keys. |
| 737 | * |
| 738 | * Note: the reason we have to copy the preprocessed scan keys into private |
| 739 | * storage is that we are modifying the array based on comparisons of the |
| 740 | * key argument values, which could change on a rescan or after moving to |
| 741 | * new elements of array keys. Therefore we can't overwrite the source data. |
| 742 | */ |
| 743 | void |
| 744 | _bt_preprocess_keys(IndexScanDesc scan) |
| 745 | { |
| 746 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 747 | int numberOfKeys = scan->numberOfKeys; |
| 748 | int16 *indoption = scan->indexRelation->rd_indoption; |
| 749 | int new_numberOfKeys; |
| 750 | int numberOfEqualCols; |
| 751 | ScanKey inkeys; |
| 752 | ScanKey outkeys; |
| 753 | ScanKey cur; |
| 754 | ScanKey xform[BTMaxStrategyNumber]; |
| 755 | bool test_result; |
| 756 | int i, |
| 757 | j; |
| 758 | AttrNumber attno; |
| 759 | |
| 760 | /* initialize result variables */ |
| 761 | so->qual_ok = true; |
| 762 | so->numberOfKeys = 0; |
| 763 | |
| 764 | if (numberOfKeys < 1) |
| 765 | return; /* done if qual-less scan */ |
| 766 | |
| 767 | /* |
| 768 | * Read so->arrayKeyData if array keys are present, else scan->keyData |
| 769 | */ |
| 770 | if (so->arrayKeyData != NULL) |
| 771 | inkeys = so->arrayKeyData; |
| 772 | else |
| 773 | inkeys = scan->keyData; |
| 774 | |
| 775 | outkeys = so->keyData; |
| 776 | cur = &inkeys[0]; |
| 777 | /* we check that input keys are correctly ordered */ |
| 778 | if (cur->sk_attno < 1) |
| 779 | elog(ERROR, "btree index keys must be ordered by attribute" ); |
| 780 | |
| 781 | /* We can short-circuit most of the work if there's just one key */ |
| 782 | if (numberOfKeys == 1) |
| 783 | { |
| 784 | /* Apply indoption to scankey (might change sk_strategy!) */ |
| 785 | if (!_bt_fix_scankey_strategy(cur, indoption)) |
| 786 | so->qual_ok = false; |
| 787 | memcpy(outkeys, cur, sizeof(ScanKeyData)); |
| 788 | so->numberOfKeys = 1; |
| 789 | /* We can mark the qual as required if it's for first index col */ |
| 790 | if (cur->sk_attno == 1) |
| 791 | _bt_mark_scankey_required(outkeys); |
| 792 | return; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * Otherwise, do the full set of pushups. |
| 797 | */ |
| 798 | new_numberOfKeys = 0; |
| 799 | numberOfEqualCols = 0; |
| 800 | |
| 801 | /* |
| 802 | * Initialize for processing of keys for attr 1. |
| 803 | * |
| 804 | * xform[i] points to the currently best scan key of strategy type i+1; it |
| 805 | * is NULL if we haven't yet found such a key for this attr. |
| 806 | */ |
| 807 | attno = 1; |
| 808 | memset(xform, 0, sizeof(xform)); |
| 809 | |
| 810 | /* |
| 811 | * Loop iterates from 0 to numberOfKeys inclusive; we use the last pass to |
| 812 | * handle after-last-key processing. Actual exit from the loop is at the |
| 813 | * "break" statement below. |
| 814 | */ |
| 815 | for (i = 0;; cur++, i++) |
| 816 | { |
| 817 | if (i < numberOfKeys) |
| 818 | { |
| 819 | /* Apply indoption to scankey (might change sk_strategy!) */ |
| 820 | if (!_bt_fix_scankey_strategy(cur, indoption)) |
| 821 | { |
| 822 | /* NULL can't be matched, so give up */ |
| 823 | so->qual_ok = false; |
| 824 | return; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * If we are at the end of the keys for a particular attr, finish up |
| 830 | * processing and emit the cleaned-up keys. |
| 831 | */ |
| 832 | if (i == numberOfKeys || cur->sk_attno != attno) |
| 833 | { |
| 834 | int priorNumberOfEqualCols = numberOfEqualCols; |
| 835 | |
| 836 | /* check input keys are correctly ordered */ |
| 837 | if (i < numberOfKeys && cur->sk_attno < attno) |
| 838 | elog(ERROR, "btree index keys must be ordered by attribute" ); |
| 839 | |
| 840 | /* |
| 841 | * If = has been specified, all other keys can be eliminated as |
| 842 | * redundant. If we have a case like key = 1 AND key > 2, we can |
| 843 | * set qual_ok to false and abandon further processing. |
| 844 | * |
| 845 | * We also have to deal with the case of "key IS NULL", which is |
| 846 | * unsatisfiable in combination with any other index condition. By |
| 847 | * the time we get here, that's been classified as an equality |
| 848 | * check, and we've rejected any combination of it with a regular |
| 849 | * equality condition; but not with other types of conditions. |
| 850 | */ |
| 851 | if (xform[BTEqualStrategyNumber - 1]) |
| 852 | { |
| 853 | ScanKey eq = xform[BTEqualStrategyNumber - 1]; |
| 854 | |
| 855 | for (j = BTMaxStrategyNumber; --j >= 0;) |
| 856 | { |
| 857 | ScanKey chk = xform[j]; |
| 858 | |
| 859 | if (!chk || j == (BTEqualStrategyNumber - 1)) |
| 860 | continue; |
| 861 | |
| 862 | if (eq->sk_flags & SK_SEARCHNULL) |
| 863 | { |
| 864 | /* IS NULL is contradictory to anything else */ |
| 865 | so->qual_ok = false; |
| 866 | return; |
| 867 | } |
| 868 | |
| 869 | if (_bt_compare_scankey_args(scan, chk, eq, chk, |
| 870 | &test_result)) |
| 871 | { |
| 872 | if (!test_result) |
| 873 | { |
| 874 | /* keys proven mutually contradictory */ |
| 875 | so->qual_ok = false; |
| 876 | return; |
| 877 | } |
| 878 | /* else discard the redundant non-equality key */ |
| 879 | xform[j] = NULL; |
| 880 | } |
| 881 | /* else, cannot determine redundancy, keep both keys */ |
| 882 | } |
| 883 | /* track number of attrs for which we have "=" keys */ |
| 884 | numberOfEqualCols++; |
| 885 | } |
| 886 | |
| 887 | /* try to keep only one of <, <= */ |
| 888 | if (xform[BTLessStrategyNumber - 1] |
| 889 | && xform[BTLessEqualStrategyNumber - 1]) |
| 890 | { |
| 891 | ScanKey lt = xform[BTLessStrategyNumber - 1]; |
| 892 | ScanKey le = xform[BTLessEqualStrategyNumber - 1]; |
| 893 | |
| 894 | if (_bt_compare_scankey_args(scan, le, lt, le, |
| 895 | &test_result)) |
| 896 | { |
| 897 | if (test_result) |
| 898 | xform[BTLessEqualStrategyNumber - 1] = NULL; |
| 899 | else |
| 900 | xform[BTLessStrategyNumber - 1] = NULL; |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | /* try to keep only one of >, >= */ |
| 905 | if (xform[BTGreaterStrategyNumber - 1] |
| 906 | && xform[BTGreaterEqualStrategyNumber - 1]) |
| 907 | { |
| 908 | ScanKey gt = xform[BTGreaterStrategyNumber - 1]; |
| 909 | ScanKey ge = xform[BTGreaterEqualStrategyNumber - 1]; |
| 910 | |
| 911 | if (_bt_compare_scankey_args(scan, ge, gt, ge, |
| 912 | &test_result)) |
| 913 | { |
| 914 | if (test_result) |
| 915 | xform[BTGreaterEqualStrategyNumber - 1] = NULL; |
| 916 | else |
| 917 | xform[BTGreaterStrategyNumber - 1] = NULL; |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * Emit the cleaned-up keys into the outkeys[] array, and then |
| 923 | * mark them if they are required. They are required (possibly |
| 924 | * only in one direction) if all attrs before this one had "=". |
| 925 | */ |
| 926 | for (j = BTMaxStrategyNumber; --j >= 0;) |
| 927 | { |
| 928 | if (xform[j]) |
| 929 | { |
| 930 | ScanKey outkey = &outkeys[new_numberOfKeys++]; |
| 931 | |
| 932 | memcpy(outkey, xform[j], sizeof(ScanKeyData)); |
| 933 | if (priorNumberOfEqualCols == attno - 1) |
| 934 | _bt_mark_scankey_required(outkey); |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | /* |
| 939 | * Exit loop here if done. |
| 940 | */ |
| 941 | if (i == numberOfKeys) |
| 942 | break; |
| 943 | |
| 944 | /* Re-initialize for new attno */ |
| 945 | attno = cur->sk_attno; |
| 946 | memset(xform, 0, sizeof(xform)); |
| 947 | } |
| 948 | |
| 949 | /* check strategy this key's operator corresponds to */ |
| 950 | j = cur->sk_strategy - 1; |
| 951 | |
| 952 | /* if row comparison, push it directly to the output array */ |
| 953 | if (cur->sk_flags & SK_ROW_HEADER) |
| 954 | { |
| 955 | ScanKey outkey = &outkeys[new_numberOfKeys++]; |
| 956 | |
| 957 | memcpy(outkey, cur, sizeof(ScanKeyData)); |
| 958 | if (numberOfEqualCols == attno - 1) |
| 959 | _bt_mark_scankey_required(outkey); |
| 960 | |
| 961 | /* |
| 962 | * We don't support RowCompare using equality; such a qual would |
| 963 | * mess up the numberOfEqualCols tracking. |
| 964 | */ |
| 965 | Assert(j != (BTEqualStrategyNumber - 1)); |
| 966 | continue; |
| 967 | } |
| 968 | |
| 969 | /* have we seen one of these before? */ |
| 970 | if (xform[j] == NULL) |
| 971 | { |
| 972 | /* nope, so remember this scankey */ |
| 973 | xform[j] = cur; |
| 974 | } |
| 975 | else |
| 976 | { |
| 977 | /* yup, keep only the more restrictive key */ |
| 978 | if (_bt_compare_scankey_args(scan, cur, cur, xform[j], |
| 979 | &test_result)) |
| 980 | { |
| 981 | if (test_result) |
| 982 | xform[j] = cur; |
| 983 | else if (j == (BTEqualStrategyNumber - 1)) |
| 984 | { |
| 985 | /* key == a && key == b, but a != b */ |
| 986 | so->qual_ok = false; |
| 987 | return; |
| 988 | } |
| 989 | /* else old key is more restrictive, keep it */ |
| 990 | } |
| 991 | else |
| 992 | { |
| 993 | /* |
| 994 | * We can't determine which key is more restrictive. Keep the |
| 995 | * previous one in xform[j] and push this one directly to the |
| 996 | * output array. |
| 997 | */ |
| 998 | ScanKey outkey = &outkeys[new_numberOfKeys++]; |
| 999 | |
| 1000 | memcpy(outkey, cur, sizeof(ScanKeyData)); |
| 1001 | if (numberOfEqualCols == attno - 1) |
| 1002 | _bt_mark_scankey_required(outkey); |
| 1003 | } |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | so->numberOfKeys = new_numberOfKeys; |
| 1008 | } |
| 1009 | |
| 1010 | /* |
| 1011 | * Compare two scankey values using a specified operator. |
| 1012 | * |
| 1013 | * The test we want to perform is logically "leftarg op rightarg", where |
| 1014 | * leftarg and rightarg are the sk_argument values in those ScanKeys, and |
| 1015 | * the comparison operator is the one in the op ScanKey. However, in |
| 1016 | * cross-data-type situations we may need to look up the correct operator in |
| 1017 | * the index's opfamily: it is the one having amopstrategy = op->sk_strategy |
| 1018 | * and amoplefttype/amoprighttype equal to the two argument datatypes. |
| 1019 | * |
| 1020 | * If the opfamily doesn't supply a complete set of cross-type operators we |
| 1021 | * may not be able to make the comparison. If we can make the comparison |
| 1022 | * we store the operator result in *result and return true. We return false |
| 1023 | * if the comparison could not be made. |
| 1024 | * |
| 1025 | * Note: op always points at the same ScanKey as either leftarg or rightarg. |
| 1026 | * Since we don't scribble on the scankeys, this aliasing should cause no |
| 1027 | * trouble. |
| 1028 | * |
| 1029 | * Note: this routine needs to be insensitive to any DESC option applied |
| 1030 | * to the index column. For example, "x < 4" is a tighter constraint than |
| 1031 | * "x < 5" regardless of which way the index is sorted. |
| 1032 | */ |
| 1033 | static bool |
| 1034 | _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op, |
| 1035 | ScanKey leftarg, ScanKey rightarg, |
| 1036 | bool *result) |
| 1037 | { |
| 1038 | Relation rel = scan->indexRelation; |
| 1039 | Oid lefttype, |
| 1040 | righttype, |
| 1041 | optype, |
| 1042 | opcintype, |
| 1043 | cmp_op; |
| 1044 | StrategyNumber strat; |
| 1045 | |
| 1046 | /* |
| 1047 | * First, deal with cases where one or both args are NULL. This should |
| 1048 | * only happen when the scankeys represent IS NULL/NOT NULL conditions. |
| 1049 | */ |
| 1050 | if ((leftarg->sk_flags | rightarg->sk_flags) & SK_ISNULL) |
| 1051 | { |
| 1052 | bool leftnull, |
| 1053 | rightnull; |
| 1054 | |
| 1055 | if (leftarg->sk_flags & SK_ISNULL) |
| 1056 | { |
| 1057 | Assert(leftarg->sk_flags & (SK_SEARCHNULL | SK_SEARCHNOTNULL)); |
| 1058 | leftnull = true; |
| 1059 | } |
| 1060 | else |
| 1061 | leftnull = false; |
| 1062 | if (rightarg->sk_flags & SK_ISNULL) |
| 1063 | { |
| 1064 | Assert(rightarg->sk_flags & (SK_SEARCHNULL | SK_SEARCHNOTNULL)); |
| 1065 | rightnull = true; |
| 1066 | } |
| 1067 | else |
| 1068 | rightnull = false; |
| 1069 | |
| 1070 | /* |
| 1071 | * We treat NULL as either greater than or less than all other values. |
| 1072 | * Since true > false, the tests below work correctly for NULLS LAST |
| 1073 | * logic. If the index is NULLS FIRST, we need to flip the strategy. |
| 1074 | */ |
| 1075 | strat = op->sk_strategy; |
| 1076 | if (op->sk_flags & SK_BT_NULLS_FIRST) |
| 1077 | strat = BTCommuteStrategyNumber(strat); |
| 1078 | |
| 1079 | switch (strat) |
| 1080 | { |
| 1081 | case BTLessStrategyNumber: |
| 1082 | *result = (leftnull < rightnull); |
| 1083 | break; |
| 1084 | case BTLessEqualStrategyNumber: |
| 1085 | *result = (leftnull <= rightnull); |
| 1086 | break; |
| 1087 | case BTEqualStrategyNumber: |
| 1088 | *result = (leftnull == rightnull); |
| 1089 | break; |
| 1090 | case BTGreaterEqualStrategyNumber: |
| 1091 | *result = (leftnull >= rightnull); |
| 1092 | break; |
| 1093 | case BTGreaterStrategyNumber: |
| 1094 | *result = (leftnull > rightnull); |
| 1095 | break; |
| 1096 | default: |
| 1097 | elog(ERROR, "unrecognized StrategyNumber: %d" , (int) strat); |
| 1098 | *result = false; /* keep compiler quiet */ |
| 1099 | break; |
| 1100 | } |
| 1101 | return true; |
| 1102 | } |
| 1103 | |
| 1104 | /* |
| 1105 | * The opfamily we need to worry about is identified by the index column. |
| 1106 | */ |
| 1107 | Assert(leftarg->sk_attno == rightarg->sk_attno); |
| 1108 | |
| 1109 | opcintype = rel->rd_opcintype[leftarg->sk_attno - 1]; |
| 1110 | |
| 1111 | /* |
| 1112 | * Determine the actual datatypes of the ScanKey arguments. We have to |
| 1113 | * support the convention that sk_subtype == InvalidOid means the opclass |
| 1114 | * input type; this is a hack to simplify life for ScanKeyInit(). |
| 1115 | */ |
| 1116 | lefttype = leftarg->sk_subtype; |
| 1117 | if (lefttype == InvalidOid) |
| 1118 | lefttype = opcintype; |
| 1119 | righttype = rightarg->sk_subtype; |
| 1120 | if (righttype == InvalidOid) |
| 1121 | righttype = opcintype; |
| 1122 | optype = op->sk_subtype; |
| 1123 | if (optype == InvalidOid) |
| 1124 | optype = opcintype; |
| 1125 | |
| 1126 | /* |
| 1127 | * If leftarg and rightarg match the types expected for the "op" scankey, |
| 1128 | * we can use its already-looked-up comparison function. |
| 1129 | */ |
| 1130 | if (lefttype == opcintype && righttype == optype) |
| 1131 | { |
| 1132 | *result = DatumGetBool(FunctionCall2Coll(&op->sk_func, |
| 1133 | op->sk_collation, |
| 1134 | leftarg->sk_argument, |
| 1135 | rightarg->sk_argument)); |
| 1136 | return true; |
| 1137 | } |
| 1138 | |
| 1139 | /* |
| 1140 | * Otherwise, we need to go to the syscache to find the appropriate |
| 1141 | * operator. (This cannot result in infinite recursion, since no |
| 1142 | * indexscan initiated by syscache lookup will use cross-data-type |
| 1143 | * operators.) |
| 1144 | * |
| 1145 | * If the sk_strategy was flipped by _bt_fix_scankey_strategy, we have to |
| 1146 | * un-flip it to get the correct opfamily member. |
| 1147 | */ |
| 1148 | strat = op->sk_strategy; |
| 1149 | if (op->sk_flags & SK_BT_DESC) |
| 1150 | strat = BTCommuteStrategyNumber(strat); |
| 1151 | |
| 1152 | cmp_op = get_opfamily_member(rel->rd_opfamily[leftarg->sk_attno - 1], |
| 1153 | lefttype, |
| 1154 | righttype, |
| 1155 | strat); |
| 1156 | if (OidIsValid(cmp_op)) |
| 1157 | { |
| 1158 | RegProcedure cmp_proc = get_opcode(cmp_op); |
| 1159 | |
| 1160 | if (RegProcedureIsValid(cmp_proc)) |
| 1161 | { |
| 1162 | *result = DatumGetBool(OidFunctionCall2Coll(cmp_proc, |
| 1163 | op->sk_collation, |
| 1164 | leftarg->sk_argument, |
| 1165 | rightarg->sk_argument)); |
| 1166 | return true; |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | /* Can't make the comparison */ |
| 1171 | *result = false; /* suppress compiler warnings */ |
| 1172 | return false; |
| 1173 | } |
| 1174 | |
| 1175 | /* |
| 1176 | * Adjust a scankey's strategy and flags setting as needed for indoptions. |
| 1177 | * |
| 1178 | * We copy the appropriate indoption value into the scankey sk_flags |
| 1179 | * (shifting to avoid clobbering system-defined flag bits). Also, if |
| 1180 | * the DESC option is set, commute (flip) the operator strategy number. |
| 1181 | * |
| 1182 | * A secondary purpose is to check for IS NULL/NOT NULL scankeys and set up |
| 1183 | * the strategy field correctly for them. |
| 1184 | * |
| 1185 | * Lastly, for ordinary scankeys (not IS NULL/NOT NULL), we check for a |
| 1186 | * NULL comparison value. Since all btree operators are assumed strict, |
| 1187 | * a NULL means that the qual cannot be satisfied. We return true if the |
| 1188 | * comparison value isn't NULL, or false if the scan should be abandoned. |
| 1189 | * |
| 1190 | * This function is applied to the *input* scankey structure; therefore |
| 1191 | * on a rescan we will be looking at already-processed scankeys. Hence |
| 1192 | * we have to be careful not to re-commute the strategy if we already did it. |
| 1193 | * It's a bit ugly to modify the caller's copy of the scankey but in practice |
| 1194 | * there shouldn't be any problem, since the index's indoptions are certainly |
| 1195 | * not going to change while the scankey survives. |
| 1196 | */ |
| 1197 | static bool |
| 1198 | _bt_fix_scankey_strategy(ScanKey skey, int16 *indoption) |
| 1199 | { |
| 1200 | int addflags; |
| 1201 | |
| 1202 | addflags = indoption[skey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT; |
| 1203 | |
| 1204 | /* |
| 1205 | * We treat all btree operators as strict (even if they're not so marked |
| 1206 | * in pg_proc). This means that it is impossible for an operator condition |
| 1207 | * with a NULL comparison constant to succeed, and we can reject it right |
| 1208 | * away. |
| 1209 | * |
| 1210 | * However, we now also support "x IS NULL" clauses as search conditions, |
| 1211 | * so in that case keep going. The planner has not filled in any |
| 1212 | * particular strategy in this case, so set it to BTEqualStrategyNumber |
| 1213 | * --- we can treat IS NULL as an equality operator for purposes of search |
| 1214 | * strategy. |
| 1215 | * |
| 1216 | * Likewise, "x IS NOT NULL" is supported. We treat that as either "less |
| 1217 | * than NULL" in a NULLS LAST index, or "greater than NULL" in a NULLS |
| 1218 | * FIRST index. |
| 1219 | * |
| 1220 | * Note: someday we might have to fill in sk_collation from the index |
| 1221 | * column's collation. At the moment this is a non-issue because we'll |
| 1222 | * never actually call the comparison operator on a NULL. |
| 1223 | */ |
| 1224 | if (skey->sk_flags & SK_ISNULL) |
| 1225 | { |
| 1226 | /* SK_ISNULL shouldn't be set in a row header scankey */ |
| 1227 | Assert(!(skey->sk_flags & SK_ROW_HEADER)); |
| 1228 | |
| 1229 | /* Set indoption flags in scankey (might be done already) */ |
| 1230 | skey->sk_flags |= addflags; |
| 1231 | |
| 1232 | /* Set correct strategy for IS NULL or NOT NULL search */ |
| 1233 | if (skey->sk_flags & SK_SEARCHNULL) |
| 1234 | { |
| 1235 | skey->sk_strategy = BTEqualStrategyNumber; |
| 1236 | skey->sk_subtype = InvalidOid; |
| 1237 | skey->sk_collation = InvalidOid; |
| 1238 | } |
| 1239 | else if (skey->sk_flags & SK_SEARCHNOTNULL) |
| 1240 | { |
| 1241 | if (skey->sk_flags & SK_BT_NULLS_FIRST) |
| 1242 | skey->sk_strategy = BTGreaterStrategyNumber; |
| 1243 | else |
| 1244 | skey->sk_strategy = BTLessStrategyNumber; |
| 1245 | skey->sk_subtype = InvalidOid; |
| 1246 | skey->sk_collation = InvalidOid; |
| 1247 | } |
| 1248 | else |
| 1249 | { |
| 1250 | /* regular qual, so it cannot be satisfied */ |
| 1251 | return false; |
| 1252 | } |
| 1253 | |
| 1254 | /* Needn't do the rest */ |
| 1255 | return true; |
| 1256 | } |
| 1257 | |
| 1258 | /* Adjust strategy for DESC, if we didn't already */ |
| 1259 | if ((addflags & SK_BT_DESC) && !(skey->sk_flags & SK_BT_DESC)) |
| 1260 | skey->sk_strategy = BTCommuteStrategyNumber(skey->sk_strategy); |
| 1261 | skey->sk_flags |= addflags; |
| 1262 | |
| 1263 | /* If it's a row header, fix row member flags and strategies similarly */ |
| 1264 | if (skey->sk_flags & SK_ROW_HEADER) |
| 1265 | { |
| 1266 | ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument); |
| 1267 | |
| 1268 | for (;;) |
| 1269 | { |
| 1270 | Assert(subkey->sk_flags & SK_ROW_MEMBER); |
| 1271 | addflags = indoption[subkey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT; |
| 1272 | if ((addflags & SK_BT_DESC) && !(subkey->sk_flags & SK_BT_DESC)) |
| 1273 | subkey->sk_strategy = BTCommuteStrategyNumber(subkey->sk_strategy); |
| 1274 | subkey->sk_flags |= addflags; |
| 1275 | if (subkey->sk_flags & SK_ROW_END) |
| 1276 | break; |
| 1277 | subkey++; |
| 1278 | } |
| 1279 | } |
| 1280 | |
| 1281 | return true; |
| 1282 | } |
| 1283 | |
| 1284 | /* |
| 1285 | * Mark a scankey as "required to continue the scan". |
| 1286 | * |
| 1287 | * Depending on the operator type, the key may be required for both scan |
| 1288 | * directions or just one. Also, if the key is a row comparison header, |
| 1289 | * we have to mark its first subsidiary ScanKey as required. (Subsequent |
| 1290 | * subsidiary ScanKeys are normally for lower-order columns, and thus |
| 1291 | * cannot be required, since they're after the first non-equality scankey.) |
| 1292 | * |
| 1293 | * Note: when we set required-key flag bits in a subsidiary scankey, we are |
| 1294 | * scribbling on a data structure belonging to the index AM's caller, not on |
| 1295 | * our private copy. This should be OK because the marking will not change |
| 1296 | * from scan to scan within a query, and so we'd just re-mark the same way |
| 1297 | * anyway on a rescan. Something to keep an eye on though. |
| 1298 | */ |
| 1299 | static void |
| 1300 | _bt_mark_scankey_required(ScanKey skey) |
| 1301 | { |
| 1302 | int addflags; |
| 1303 | |
| 1304 | switch (skey->sk_strategy) |
| 1305 | { |
| 1306 | case BTLessStrategyNumber: |
| 1307 | case BTLessEqualStrategyNumber: |
| 1308 | addflags = SK_BT_REQFWD; |
| 1309 | break; |
| 1310 | case BTEqualStrategyNumber: |
| 1311 | addflags = SK_BT_REQFWD | SK_BT_REQBKWD; |
| 1312 | break; |
| 1313 | case BTGreaterEqualStrategyNumber: |
| 1314 | case BTGreaterStrategyNumber: |
| 1315 | addflags = SK_BT_REQBKWD; |
| 1316 | break; |
| 1317 | default: |
| 1318 | elog(ERROR, "unrecognized StrategyNumber: %d" , |
| 1319 | (int) skey->sk_strategy); |
| 1320 | addflags = 0; /* keep compiler quiet */ |
| 1321 | break; |
| 1322 | } |
| 1323 | |
| 1324 | skey->sk_flags |= addflags; |
| 1325 | |
| 1326 | if (skey->sk_flags & SK_ROW_HEADER) |
| 1327 | { |
| 1328 | ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument); |
| 1329 | |
| 1330 | /* First subkey should be same column/operator as the header */ |
| 1331 | Assert(subkey->sk_flags & SK_ROW_MEMBER); |
| 1332 | Assert(subkey->sk_attno == skey->sk_attno); |
| 1333 | Assert(subkey->sk_strategy == skey->sk_strategy); |
| 1334 | subkey->sk_flags |= addflags; |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | /* |
| 1339 | * Test whether an indextuple satisfies all the scankey conditions. |
| 1340 | * |
| 1341 | * Return true if so, false if not. If the tuple fails to pass the qual, |
| 1342 | * we also determine whether there's any need to continue the scan beyond |
| 1343 | * this tuple, and set *continuescan accordingly. See comments for |
| 1344 | * _bt_preprocess_keys(), above, about how this is done. |
| 1345 | * |
| 1346 | * Forward scan callers can pass a high key tuple in the hopes of having |
| 1347 | * us set *continuescan to false, and avoiding an unnecessary visit to |
| 1348 | * the page to the right. |
| 1349 | * |
| 1350 | * scan: index scan descriptor (containing a search-type scankey) |
| 1351 | * tuple: index tuple to test |
| 1352 | * tupnatts: number of attributes in tupnatts (high key may be truncated) |
| 1353 | * dir: direction we are scanning in |
| 1354 | * continuescan: output parameter (will be set correctly in all cases) |
| 1355 | */ |
| 1356 | bool |
| 1357 | _bt_checkkeys(IndexScanDesc scan, IndexTuple tuple, int tupnatts, |
| 1358 | ScanDirection dir, bool *continuescan) |
| 1359 | { |
| 1360 | TupleDesc tupdesc; |
| 1361 | BTScanOpaque so; |
| 1362 | int keysz; |
| 1363 | int ikey; |
| 1364 | ScanKey key; |
| 1365 | |
| 1366 | Assert(BTreeTupleGetNAtts(tuple, scan->indexRelation) == tupnatts); |
| 1367 | |
| 1368 | *continuescan = true; /* default assumption */ |
| 1369 | |
| 1370 | tupdesc = RelationGetDescr(scan->indexRelation); |
| 1371 | so = (BTScanOpaque) scan->opaque; |
| 1372 | keysz = so->numberOfKeys; |
| 1373 | |
| 1374 | for (key = so->keyData, ikey = 0; ikey < keysz; key++, ikey++) |
| 1375 | { |
| 1376 | Datum datum; |
| 1377 | bool isNull; |
| 1378 | Datum test; |
| 1379 | |
| 1380 | if (key->sk_attno > tupnatts) |
| 1381 | { |
| 1382 | /* |
| 1383 | * This attribute is truncated (must be high key). The value for |
| 1384 | * this attribute in the first non-pivot tuple on the page to the |
| 1385 | * right could be any possible value. Assume that truncated |
| 1386 | * attribute passes the qual. |
| 1387 | */ |
| 1388 | Assert(ScanDirectionIsForward(dir)); |
| 1389 | continue; |
| 1390 | } |
| 1391 | |
| 1392 | /* row-comparison keys need special processing */ |
| 1393 | if (key->sk_flags & SK_ROW_HEADER) |
| 1394 | { |
| 1395 | if (_bt_check_rowcompare(key, tuple, tupnatts, tupdesc, dir, |
| 1396 | continuescan)) |
| 1397 | continue; |
| 1398 | return false; |
| 1399 | } |
| 1400 | |
| 1401 | datum = index_getattr(tuple, |
| 1402 | key->sk_attno, |
| 1403 | tupdesc, |
| 1404 | &isNull); |
| 1405 | |
| 1406 | if (key->sk_flags & SK_ISNULL) |
| 1407 | { |
| 1408 | /* Handle IS NULL/NOT NULL tests */ |
| 1409 | if (key->sk_flags & SK_SEARCHNULL) |
| 1410 | { |
| 1411 | if (isNull) |
| 1412 | continue; /* tuple satisfies this qual */ |
| 1413 | } |
| 1414 | else |
| 1415 | { |
| 1416 | Assert(key->sk_flags & SK_SEARCHNOTNULL); |
| 1417 | if (!isNull) |
| 1418 | continue; /* tuple satisfies this qual */ |
| 1419 | } |
| 1420 | |
| 1421 | /* |
| 1422 | * Tuple fails this qual. If it's a required qual for the current |
| 1423 | * scan direction, then we can conclude no further tuples will |
| 1424 | * pass, either. |
| 1425 | */ |
| 1426 | if ((key->sk_flags & SK_BT_REQFWD) && |
| 1427 | ScanDirectionIsForward(dir)) |
| 1428 | *continuescan = false; |
| 1429 | else if ((key->sk_flags & SK_BT_REQBKWD) && |
| 1430 | ScanDirectionIsBackward(dir)) |
| 1431 | *continuescan = false; |
| 1432 | |
| 1433 | /* |
| 1434 | * In any case, this indextuple doesn't match the qual. |
| 1435 | */ |
| 1436 | return false; |
| 1437 | } |
| 1438 | |
| 1439 | if (isNull) |
| 1440 | { |
| 1441 | if (key->sk_flags & SK_BT_NULLS_FIRST) |
| 1442 | { |
| 1443 | /* |
| 1444 | * Since NULLs are sorted before non-NULLs, we know we have |
| 1445 | * reached the lower limit of the range of values for this |
| 1446 | * index attr. On a backward scan, we can stop if this qual |
| 1447 | * is one of the "must match" subset. We can stop regardless |
| 1448 | * of whether the qual is > or <, so long as it's required, |
| 1449 | * because it's not possible for any future tuples to pass. On |
| 1450 | * a forward scan, however, we must keep going, because we may |
| 1451 | * have initially positioned to the start of the index. |
| 1452 | */ |
| 1453 | if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) && |
| 1454 | ScanDirectionIsBackward(dir)) |
| 1455 | *continuescan = false; |
| 1456 | } |
| 1457 | else |
| 1458 | { |
| 1459 | /* |
| 1460 | * Since NULLs are sorted after non-NULLs, we know we have |
| 1461 | * reached the upper limit of the range of values for this |
| 1462 | * index attr. On a forward scan, we can stop if this qual is |
| 1463 | * one of the "must match" subset. We can stop regardless of |
| 1464 | * whether the qual is > or <, so long as it's required, |
| 1465 | * because it's not possible for any future tuples to pass. On |
| 1466 | * a backward scan, however, we must keep going, because we |
| 1467 | * may have initially positioned to the end of the index. |
| 1468 | */ |
| 1469 | if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) && |
| 1470 | ScanDirectionIsForward(dir)) |
| 1471 | *continuescan = false; |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | * In any case, this indextuple doesn't match the qual. |
| 1476 | */ |
| 1477 | return false; |
| 1478 | } |
| 1479 | |
| 1480 | test = FunctionCall2Coll(&key->sk_func, key->sk_collation, |
| 1481 | datum, key->sk_argument); |
| 1482 | |
| 1483 | if (!DatumGetBool(test)) |
| 1484 | { |
| 1485 | /* |
| 1486 | * Tuple fails this qual. If it's a required qual for the current |
| 1487 | * scan direction, then we can conclude no further tuples will |
| 1488 | * pass, either. |
| 1489 | * |
| 1490 | * Note: because we stop the scan as soon as any required equality |
| 1491 | * qual fails, it is critical that equality quals be used for the |
| 1492 | * initial positioning in _bt_first() when they are available. See |
| 1493 | * comments in _bt_first(). |
| 1494 | */ |
| 1495 | if ((key->sk_flags & SK_BT_REQFWD) && |
| 1496 | ScanDirectionIsForward(dir)) |
| 1497 | *continuescan = false; |
| 1498 | else if ((key->sk_flags & SK_BT_REQBKWD) && |
| 1499 | ScanDirectionIsBackward(dir)) |
| 1500 | *continuescan = false; |
| 1501 | |
| 1502 | /* |
| 1503 | * In any case, this indextuple doesn't match the qual. |
| 1504 | */ |
| 1505 | return false; |
| 1506 | } |
| 1507 | } |
| 1508 | |
| 1509 | /* If we get here, the tuple passes all index quals. */ |
| 1510 | return true; |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * Test whether an indextuple satisfies a row-comparison scan condition. |
| 1515 | * |
| 1516 | * Return true if so, false if not. If not, also clear *continuescan if |
| 1517 | * it's not possible for any future tuples in the current scan direction |
| 1518 | * to pass the qual. |
| 1519 | * |
| 1520 | * This is a subroutine for _bt_checkkeys, which see for more info. |
| 1521 | */ |
| 1522 | static bool |
| 1523 | _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, int tupnatts, |
| 1524 | TupleDesc tupdesc, ScanDirection dir, bool *continuescan) |
| 1525 | { |
| 1526 | ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument); |
| 1527 | int32 cmpresult = 0; |
| 1528 | bool result; |
| 1529 | |
| 1530 | /* First subkey should be same as the header says */ |
| 1531 | Assert(subkey->sk_attno == skey->sk_attno); |
| 1532 | |
| 1533 | /* Loop over columns of the row condition */ |
| 1534 | for (;;) |
| 1535 | { |
| 1536 | Datum datum; |
| 1537 | bool isNull; |
| 1538 | |
| 1539 | Assert(subkey->sk_flags & SK_ROW_MEMBER); |
| 1540 | |
| 1541 | if (subkey->sk_attno > tupnatts) |
| 1542 | { |
| 1543 | /* |
| 1544 | * This attribute is truncated (must be high key). The value for |
| 1545 | * this attribute in the first non-pivot tuple on the page to the |
| 1546 | * right could be any possible value. Assume that truncated |
| 1547 | * attribute passes the qual. |
| 1548 | */ |
| 1549 | Assert(ScanDirectionIsForward(dir)); |
| 1550 | cmpresult = 0; |
| 1551 | if (subkey->sk_flags & SK_ROW_END) |
| 1552 | break; |
| 1553 | subkey++; |
| 1554 | continue; |
| 1555 | } |
| 1556 | |
| 1557 | datum = index_getattr(tuple, |
| 1558 | subkey->sk_attno, |
| 1559 | tupdesc, |
| 1560 | &isNull); |
| 1561 | |
| 1562 | if (isNull) |
| 1563 | { |
| 1564 | if (subkey->sk_flags & SK_BT_NULLS_FIRST) |
| 1565 | { |
| 1566 | /* |
| 1567 | * Since NULLs are sorted before non-NULLs, we know we have |
| 1568 | * reached the lower limit of the range of values for this |
| 1569 | * index attr. On a backward scan, we can stop if this qual |
| 1570 | * is one of the "must match" subset. We can stop regardless |
| 1571 | * of whether the qual is > or <, so long as it's required, |
| 1572 | * because it's not possible for any future tuples to pass. On |
| 1573 | * a forward scan, however, we must keep going, because we may |
| 1574 | * have initially positioned to the start of the index. |
| 1575 | */ |
| 1576 | if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) && |
| 1577 | ScanDirectionIsBackward(dir)) |
| 1578 | *continuescan = false; |
| 1579 | } |
| 1580 | else |
| 1581 | { |
| 1582 | /* |
| 1583 | * Since NULLs are sorted after non-NULLs, we know we have |
| 1584 | * reached the upper limit of the range of values for this |
| 1585 | * index attr. On a forward scan, we can stop if this qual is |
| 1586 | * one of the "must match" subset. We can stop regardless of |
| 1587 | * whether the qual is > or <, so long as it's required, |
| 1588 | * because it's not possible for any future tuples to pass. On |
| 1589 | * a backward scan, however, we must keep going, because we |
| 1590 | * may have initially positioned to the end of the index. |
| 1591 | */ |
| 1592 | if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) && |
| 1593 | ScanDirectionIsForward(dir)) |
| 1594 | *continuescan = false; |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * In any case, this indextuple doesn't match the qual. |
| 1599 | */ |
| 1600 | return false; |
| 1601 | } |
| 1602 | |
| 1603 | if (subkey->sk_flags & SK_ISNULL) |
| 1604 | { |
| 1605 | /* |
| 1606 | * Unlike the simple-scankey case, this isn't a disallowed case. |
| 1607 | * But it can never match. If all the earlier row comparison |
| 1608 | * columns are required for the scan direction, we can stop the |
| 1609 | * scan, because there can't be another tuple that will succeed. |
| 1610 | */ |
| 1611 | if (subkey != (ScanKey) DatumGetPointer(skey->sk_argument)) |
| 1612 | subkey--; |
| 1613 | if ((subkey->sk_flags & SK_BT_REQFWD) && |
| 1614 | ScanDirectionIsForward(dir)) |
| 1615 | *continuescan = false; |
| 1616 | else if ((subkey->sk_flags & SK_BT_REQBKWD) && |
| 1617 | ScanDirectionIsBackward(dir)) |
| 1618 | *continuescan = false; |
| 1619 | return false; |
| 1620 | } |
| 1621 | |
| 1622 | /* Perform the test --- three-way comparison not bool operator */ |
| 1623 | cmpresult = DatumGetInt32(FunctionCall2Coll(&subkey->sk_func, |
| 1624 | subkey->sk_collation, |
| 1625 | datum, |
| 1626 | subkey->sk_argument)); |
| 1627 | |
| 1628 | if (subkey->sk_flags & SK_BT_DESC) |
| 1629 | INVERT_COMPARE_RESULT(cmpresult); |
| 1630 | |
| 1631 | /* Done comparing if unequal, else advance to next column */ |
| 1632 | if (cmpresult != 0) |
| 1633 | break; |
| 1634 | |
| 1635 | if (subkey->sk_flags & SK_ROW_END) |
| 1636 | break; |
| 1637 | subkey++; |
| 1638 | } |
| 1639 | |
| 1640 | /* |
| 1641 | * At this point cmpresult indicates the overall result of the row |
| 1642 | * comparison, and subkey points to the deciding column (or the last |
| 1643 | * column if the result is "="). |
| 1644 | */ |
| 1645 | switch (subkey->sk_strategy) |
| 1646 | { |
| 1647 | /* EQ and NE cases aren't allowed here */ |
| 1648 | case BTLessStrategyNumber: |
| 1649 | result = (cmpresult < 0); |
| 1650 | break; |
| 1651 | case BTLessEqualStrategyNumber: |
| 1652 | result = (cmpresult <= 0); |
| 1653 | break; |
| 1654 | case BTGreaterEqualStrategyNumber: |
| 1655 | result = (cmpresult >= 0); |
| 1656 | break; |
| 1657 | case BTGreaterStrategyNumber: |
| 1658 | result = (cmpresult > 0); |
| 1659 | break; |
| 1660 | default: |
| 1661 | elog(ERROR, "unrecognized RowCompareType: %d" , |
| 1662 | (int) subkey->sk_strategy); |
| 1663 | result = 0; /* keep compiler quiet */ |
| 1664 | break; |
| 1665 | } |
| 1666 | |
| 1667 | if (!result) |
| 1668 | { |
| 1669 | /* |
| 1670 | * Tuple fails this qual. If it's a required qual for the current |
| 1671 | * scan direction, then we can conclude no further tuples will pass, |
| 1672 | * either. Note we have to look at the deciding column, not |
| 1673 | * necessarily the first or last column of the row condition. |
| 1674 | */ |
| 1675 | if ((subkey->sk_flags & SK_BT_REQFWD) && |
| 1676 | ScanDirectionIsForward(dir)) |
| 1677 | *continuescan = false; |
| 1678 | else if ((subkey->sk_flags & SK_BT_REQBKWD) && |
| 1679 | ScanDirectionIsBackward(dir)) |
| 1680 | *continuescan = false; |
| 1681 | } |
| 1682 | |
| 1683 | return result; |
| 1684 | } |
| 1685 | |
| 1686 | /* |
| 1687 | * _bt_killitems - set LP_DEAD state for items an indexscan caller has |
| 1688 | * told us were killed |
| 1689 | * |
| 1690 | * scan->opaque, referenced locally through so, contains information about the |
| 1691 | * current page and killed tuples thereon (generally, this should only be |
| 1692 | * called if so->numKilled > 0). |
| 1693 | * |
| 1694 | * The caller does not have a lock on the page and may or may not have the |
| 1695 | * page pinned in a buffer. Note that read-lock is sufficient for setting |
| 1696 | * LP_DEAD status (which is only a hint). |
| 1697 | * |
| 1698 | * We match items by heap TID before assuming they are the right ones to |
| 1699 | * delete. We cope with cases where items have moved right due to insertions. |
| 1700 | * If an item has moved off the current page due to a split, we'll fail to |
| 1701 | * find it and do nothing (this is not an error case --- we assume the item |
| 1702 | * will eventually get marked in a future indexscan). |
| 1703 | * |
| 1704 | * Note that if we hold a pin on the target page continuously from initially |
| 1705 | * reading the items until applying this function, VACUUM cannot have deleted |
| 1706 | * any items from the page, and so there is no need to search left from the |
| 1707 | * recorded offset. (This observation also guarantees that the item is still |
| 1708 | * the right one to delete, which might otherwise be questionable since heap |
| 1709 | * TIDs can get recycled.) This holds true even if the page has been modified |
| 1710 | * by inserts and page splits, so there is no need to consult the LSN. |
| 1711 | * |
| 1712 | * If the pin was released after reading the page, then we re-read it. If it |
| 1713 | * has been modified since we read it (as determined by the LSN), we dare not |
| 1714 | * flag any entries because it is possible that the old entry was vacuumed |
| 1715 | * away and the TID was re-used by a completely different heap tuple. |
| 1716 | */ |
| 1717 | void |
| 1718 | _bt_killitems(IndexScanDesc scan) |
| 1719 | { |
| 1720 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 1721 | Page page; |
| 1722 | BTPageOpaque opaque; |
| 1723 | OffsetNumber minoff; |
| 1724 | OffsetNumber maxoff; |
| 1725 | int i; |
| 1726 | int numKilled = so->numKilled; |
| 1727 | bool killedsomething = false; |
| 1728 | |
| 1729 | Assert(BTScanPosIsValid(so->currPos)); |
| 1730 | |
| 1731 | /* |
| 1732 | * Always reset the scan state, so we don't look for same items on other |
| 1733 | * pages. |
| 1734 | */ |
| 1735 | so->numKilled = 0; |
| 1736 | |
| 1737 | if (BTScanPosIsPinned(so->currPos)) |
| 1738 | { |
| 1739 | /* |
| 1740 | * We have held the pin on this page since we read the index tuples, |
| 1741 | * so all we need to do is lock it. The pin will have prevented |
| 1742 | * re-use of any TID on the page, so there is no need to check the |
| 1743 | * LSN. |
| 1744 | */ |
| 1745 | LockBuffer(so->currPos.buf, BT_READ); |
| 1746 | |
| 1747 | page = BufferGetPage(so->currPos.buf); |
| 1748 | } |
| 1749 | else |
| 1750 | { |
| 1751 | Buffer buf; |
| 1752 | |
| 1753 | /* Attempt to re-read the buffer, getting pin and lock. */ |
| 1754 | buf = _bt_getbuf(scan->indexRelation, so->currPos.currPage, BT_READ); |
| 1755 | |
| 1756 | /* It might not exist anymore; in which case we can't hint it. */ |
| 1757 | if (!BufferIsValid(buf)) |
| 1758 | return; |
| 1759 | |
| 1760 | page = BufferGetPage(buf); |
| 1761 | if (BufferGetLSNAtomic(buf) == so->currPos.lsn) |
| 1762 | so->currPos.buf = buf; |
| 1763 | else |
| 1764 | { |
| 1765 | /* Modified while not pinned means hinting is not safe. */ |
| 1766 | _bt_relbuf(scan->indexRelation, buf); |
| 1767 | return; |
| 1768 | } |
| 1769 | } |
| 1770 | |
| 1771 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1772 | minoff = P_FIRSTDATAKEY(opaque); |
| 1773 | maxoff = PageGetMaxOffsetNumber(page); |
| 1774 | |
| 1775 | for (i = 0; i < numKilled; i++) |
| 1776 | { |
| 1777 | int itemIndex = so->killedItems[i]; |
| 1778 | BTScanPosItem *kitem = &so->currPos.items[itemIndex]; |
| 1779 | OffsetNumber offnum = kitem->indexOffset; |
| 1780 | |
| 1781 | Assert(itemIndex >= so->currPos.firstItem && |
| 1782 | itemIndex <= so->currPos.lastItem); |
| 1783 | if (offnum < minoff) |
| 1784 | continue; /* pure paranoia */ |
| 1785 | while (offnum <= maxoff) |
| 1786 | { |
| 1787 | ItemId iid = PageGetItemId(page, offnum); |
| 1788 | IndexTuple ituple = (IndexTuple) PageGetItem(page, iid); |
| 1789 | |
| 1790 | if (ItemPointerEquals(&ituple->t_tid, &kitem->heapTid)) |
| 1791 | { |
| 1792 | /* found the item */ |
| 1793 | ItemIdMarkDead(iid); |
| 1794 | killedsomething = true; |
| 1795 | break; /* out of inner search loop */ |
| 1796 | } |
| 1797 | offnum = OffsetNumberNext(offnum); |
| 1798 | } |
| 1799 | } |
| 1800 | |
| 1801 | /* |
| 1802 | * Since this can be redone later if needed, mark as dirty hint. |
| 1803 | * |
| 1804 | * Whenever we mark anything LP_DEAD, we also set the page's |
| 1805 | * BTP_HAS_GARBAGE flag, which is likewise just a hint. |
| 1806 | */ |
| 1807 | if (killedsomething) |
| 1808 | { |
| 1809 | opaque->btpo_flags |= BTP_HAS_GARBAGE; |
| 1810 | MarkBufferDirtyHint(so->currPos.buf, true); |
| 1811 | } |
| 1812 | |
| 1813 | LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK); |
| 1814 | } |
| 1815 | |
| 1816 | |
| 1817 | /* |
| 1818 | * The following routines manage a shared-memory area in which we track |
| 1819 | * assignment of "vacuum cycle IDs" to currently-active btree vacuuming |
| 1820 | * operations. There is a single counter which increments each time we |
| 1821 | * start a vacuum to assign it a cycle ID. Since multiple vacuums could |
| 1822 | * be active concurrently, we have to track the cycle ID for each active |
| 1823 | * vacuum; this requires at most MaxBackends entries (usually far fewer). |
| 1824 | * We assume at most one vacuum can be active for a given index. |
| 1825 | * |
| 1826 | * Access to the shared memory area is controlled by BtreeVacuumLock. |
| 1827 | * In principle we could use a separate lmgr locktag for each index, |
| 1828 | * but a single LWLock is much cheaper, and given the short time that |
| 1829 | * the lock is ever held, the concurrency hit should be minimal. |
| 1830 | */ |
| 1831 | |
| 1832 | typedef struct BTOneVacInfo |
| 1833 | { |
| 1834 | LockRelId relid; /* global identifier of an index */ |
| 1835 | BTCycleId cycleid; /* cycle ID for its active VACUUM */ |
| 1836 | } BTOneVacInfo; |
| 1837 | |
| 1838 | typedef struct BTVacInfo |
| 1839 | { |
| 1840 | BTCycleId cycle_ctr; /* cycle ID most recently assigned */ |
| 1841 | int num_vacuums; /* number of currently active VACUUMs */ |
| 1842 | int max_vacuums; /* allocated length of vacuums[] array */ |
| 1843 | BTOneVacInfo vacuums[FLEXIBLE_ARRAY_MEMBER]; |
| 1844 | } BTVacInfo; |
| 1845 | |
| 1846 | static BTVacInfo *btvacinfo; |
| 1847 | |
| 1848 | |
| 1849 | /* |
| 1850 | * _bt_vacuum_cycleid --- get the active vacuum cycle ID for an index, |
| 1851 | * or zero if there is no active VACUUM |
| 1852 | * |
| 1853 | * Note: for correct interlocking, the caller must already hold pin and |
| 1854 | * exclusive lock on each buffer it will store the cycle ID into. This |
| 1855 | * ensures that even if a VACUUM starts immediately afterwards, it cannot |
| 1856 | * process those pages until the page split is complete. |
| 1857 | */ |
| 1858 | BTCycleId |
| 1859 | _bt_vacuum_cycleid(Relation rel) |
| 1860 | { |
| 1861 | BTCycleId result = 0; |
| 1862 | int i; |
| 1863 | |
| 1864 | /* Share lock is enough since this is a read-only operation */ |
| 1865 | LWLockAcquire(BtreeVacuumLock, LW_SHARED); |
| 1866 | |
| 1867 | for (i = 0; i < btvacinfo->num_vacuums; i++) |
| 1868 | { |
| 1869 | BTOneVacInfo *vac = &btvacinfo->vacuums[i]; |
| 1870 | |
| 1871 | if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId && |
| 1872 | vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId) |
| 1873 | { |
| 1874 | result = vac->cycleid; |
| 1875 | break; |
| 1876 | } |
| 1877 | } |
| 1878 | |
| 1879 | LWLockRelease(BtreeVacuumLock); |
| 1880 | return result; |
| 1881 | } |
| 1882 | |
| 1883 | /* |
| 1884 | * _bt_start_vacuum --- assign a cycle ID to a just-starting VACUUM operation |
| 1885 | * |
| 1886 | * Note: the caller must guarantee that it will eventually call |
| 1887 | * _bt_end_vacuum, else we'll permanently leak an array slot. To ensure |
| 1888 | * that this happens even in elog(FATAL) scenarios, the appropriate coding |
| 1889 | * is not just a PG_TRY, but |
| 1890 | * PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel)) |
| 1891 | */ |
| 1892 | BTCycleId |
| 1893 | _bt_start_vacuum(Relation rel) |
| 1894 | { |
| 1895 | BTCycleId result; |
| 1896 | int i; |
| 1897 | BTOneVacInfo *vac; |
| 1898 | |
| 1899 | LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE); |
| 1900 | |
| 1901 | /* |
| 1902 | * Assign the next cycle ID, being careful to avoid zero as well as the |
| 1903 | * reserved high values. |
| 1904 | */ |
| 1905 | result = ++(btvacinfo->cycle_ctr); |
| 1906 | if (result == 0 || result > MAX_BT_CYCLE_ID) |
| 1907 | result = btvacinfo->cycle_ctr = 1; |
| 1908 | |
| 1909 | /* Let's just make sure there's no entry already for this index */ |
| 1910 | for (i = 0; i < btvacinfo->num_vacuums; i++) |
| 1911 | { |
| 1912 | vac = &btvacinfo->vacuums[i]; |
| 1913 | if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId && |
| 1914 | vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId) |
| 1915 | { |
| 1916 | /* |
| 1917 | * Unlike most places in the backend, we have to explicitly |
| 1918 | * release our LWLock before throwing an error. This is because |
| 1919 | * we expect _bt_end_vacuum() to be called before transaction |
| 1920 | * abort cleanup can run to release LWLocks. |
| 1921 | */ |
| 1922 | LWLockRelease(BtreeVacuumLock); |
| 1923 | elog(ERROR, "multiple active vacuums for index \"%s\"" , |
| 1924 | RelationGetRelationName(rel)); |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | /* OK, add an entry */ |
| 1929 | if (btvacinfo->num_vacuums >= btvacinfo->max_vacuums) |
| 1930 | { |
| 1931 | LWLockRelease(BtreeVacuumLock); |
| 1932 | elog(ERROR, "out of btvacinfo slots" ); |
| 1933 | } |
| 1934 | vac = &btvacinfo->vacuums[btvacinfo->num_vacuums]; |
| 1935 | vac->relid = rel->rd_lockInfo.lockRelId; |
| 1936 | vac->cycleid = result; |
| 1937 | btvacinfo->num_vacuums++; |
| 1938 | |
| 1939 | LWLockRelease(BtreeVacuumLock); |
| 1940 | return result; |
| 1941 | } |
| 1942 | |
| 1943 | /* |
| 1944 | * _bt_end_vacuum --- mark a btree VACUUM operation as done |
| 1945 | * |
| 1946 | * Note: this is deliberately coded not to complain if no entry is found; |
| 1947 | * this allows the caller to put PG_TRY around the start_vacuum operation. |
| 1948 | */ |
| 1949 | void |
| 1950 | _bt_end_vacuum(Relation rel) |
| 1951 | { |
| 1952 | int i; |
| 1953 | |
| 1954 | LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE); |
| 1955 | |
| 1956 | /* Find the array entry */ |
| 1957 | for (i = 0; i < btvacinfo->num_vacuums; i++) |
| 1958 | { |
| 1959 | BTOneVacInfo *vac = &btvacinfo->vacuums[i]; |
| 1960 | |
| 1961 | if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId && |
| 1962 | vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId) |
| 1963 | { |
| 1964 | /* Remove it by shifting down the last entry */ |
| 1965 | *vac = btvacinfo->vacuums[btvacinfo->num_vacuums - 1]; |
| 1966 | btvacinfo->num_vacuums--; |
| 1967 | break; |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | LWLockRelease(BtreeVacuumLock); |
| 1972 | } |
| 1973 | |
| 1974 | /* |
| 1975 | * _bt_end_vacuum wrapped as an on_shmem_exit callback function |
| 1976 | */ |
| 1977 | void |
| 1978 | _bt_end_vacuum_callback(int code, Datum arg) |
| 1979 | { |
| 1980 | _bt_end_vacuum((Relation) DatumGetPointer(arg)); |
| 1981 | } |
| 1982 | |
| 1983 | /* |
| 1984 | * BTreeShmemSize --- report amount of shared memory space needed |
| 1985 | */ |
| 1986 | Size |
| 1987 | BTreeShmemSize(void) |
| 1988 | { |
| 1989 | Size size; |
| 1990 | |
| 1991 | size = offsetof(BTVacInfo, vacuums); |
| 1992 | size = add_size(size, mul_size(MaxBackends, sizeof(BTOneVacInfo))); |
| 1993 | return size; |
| 1994 | } |
| 1995 | |
| 1996 | /* |
| 1997 | * BTreeShmemInit --- initialize this module's shared memory |
| 1998 | */ |
| 1999 | void |
| 2000 | BTreeShmemInit(void) |
| 2001 | { |
| 2002 | bool found; |
| 2003 | |
| 2004 | btvacinfo = (BTVacInfo *) ShmemInitStruct("BTree Vacuum State" , |
| 2005 | BTreeShmemSize(), |
| 2006 | &found); |
| 2007 | |
| 2008 | if (!IsUnderPostmaster) |
| 2009 | { |
| 2010 | /* Initialize shared memory area */ |
| 2011 | Assert(!found); |
| 2012 | |
| 2013 | /* |
| 2014 | * It doesn't really matter what the cycle counter starts at, but |
| 2015 | * having it always start the same doesn't seem good. Seed with |
| 2016 | * low-order bits of time() instead. |
| 2017 | */ |
| 2018 | btvacinfo->cycle_ctr = (BTCycleId) time(NULL); |
| 2019 | |
| 2020 | btvacinfo->num_vacuums = 0; |
| 2021 | btvacinfo->max_vacuums = MaxBackends; |
| 2022 | } |
| 2023 | else |
| 2024 | Assert(found); |
| 2025 | } |
| 2026 | |
| 2027 | bytea * |
| 2028 | btoptions(Datum reloptions, bool validate) |
| 2029 | { |
| 2030 | return default_reloptions(reloptions, validate, RELOPT_KIND_BTREE); |
| 2031 | } |
| 2032 | |
| 2033 | /* |
| 2034 | * btproperty() -- Check boolean properties of indexes. |
| 2035 | * |
| 2036 | * This is optional, but handling AMPROP_RETURNABLE here saves opening the rel |
| 2037 | * to call btcanreturn. |
| 2038 | */ |
| 2039 | bool |
| 2040 | btproperty(Oid index_oid, int attno, |
| 2041 | IndexAMProperty prop, const char *propname, |
| 2042 | bool *res, bool *isnull) |
| 2043 | { |
| 2044 | switch (prop) |
| 2045 | { |
| 2046 | case AMPROP_RETURNABLE: |
| 2047 | /* answer only for columns, not AM or whole index */ |
| 2048 | if (attno == 0) |
| 2049 | return false; |
| 2050 | /* otherwise, btree can always return data */ |
| 2051 | *res = true; |
| 2052 | return true; |
| 2053 | |
| 2054 | default: |
| 2055 | return false; /* punt to generic code */ |
| 2056 | } |
| 2057 | } |
| 2058 | |
| 2059 | /* |
| 2060 | * btbuildphasename() -- Return name of index build phase. |
| 2061 | */ |
| 2062 | char * |
| 2063 | btbuildphasename(int64 phasenum) |
| 2064 | { |
| 2065 | switch (phasenum) |
| 2066 | { |
| 2067 | case PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE: |
| 2068 | return "initializing" ; |
| 2069 | case PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN: |
| 2070 | return "scanning table" ; |
| 2071 | case PROGRESS_BTREE_PHASE_PERFORMSORT_1: |
| 2072 | return "sorting live tuples" ; |
| 2073 | case PROGRESS_BTREE_PHASE_PERFORMSORT_2: |
| 2074 | return "sorting dead tuples" ; |
| 2075 | case PROGRESS_BTREE_PHASE_LEAF_LOAD: |
| 2076 | return "loading tuples in tree" ; |
| 2077 | default: |
| 2078 | return NULL; |
| 2079 | } |
| 2080 | } |
| 2081 | |
| 2082 | /* |
| 2083 | * _bt_truncate() -- create tuple without unneeded suffix attributes. |
| 2084 | * |
| 2085 | * Returns truncated pivot index tuple allocated in caller's memory context, |
| 2086 | * with key attributes copied from caller's firstright argument. If rel is |
| 2087 | * an INCLUDE index, non-key attributes will definitely be truncated away, |
| 2088 | * since they're not part of the key space. More aggressive suffix |
| 2089 | * truncation can take place when it's clear that the returned tuple does not |
| 2090 | * need one or more suffix key attributes. We only need to keep firstright |
| 2091 | * attributes up to and including the first non-lastleft-equal attribute. |
| 2092 | * Caller's insertion scankey is used to compare the tuples; the scankey's |
| 2093 | * argument values are not considered here. |
| 2094 | * |
| 2095 | * Sometimes this routine will return a new pivot tuple that takes up more |
| 2096 | * space than firstright, because a new heap TID attribute had to be added to |
| 2097 | * distinguish lastleft from firstright. This should only happen when the |
| 2098 | * caller is in the process of splitting a leaf page that has many logical |
| 2099 | * duplicates, where it's unavoidable. |
| 2100 | * |
| 2101 | * Note that returned tuple's t_tid offset will hold the number of attributes |
| 2102 | * present, so the original item pointer offset is not represented. Caller |
| 2103 | * should only change truncated tuple's downlink. Note also that truncated |
| 2104 | * key attributes are treated as containing "minus infinity" values by |
| 2105 | * _bt_compare(). |
| 2106 | * |
| 2107 | * In the worst case (when a heap TID is appended) the size of the returned |
| 2108 | * tuple is the size of the first right tuple plus an additional MAXALIGN()'d |
| 2109 | * item pointer. This guarantee is important, since callers need to stay |
| 2110 | * under the 1/3 of a page restriction on tuple size. If this routine is ever |
| 2111 | * taught to truncate within an attribute/datum, it will need to avoid |
| 2112 | * returning an enlarged tuple to caller when truncation + TOAST compression |
| 2113 | * ends up enlarging the final datum. |
| 2114 | */ |
| 2115 | IndexTuple |
| 2116 | _bt_truncate(Relation rel, IndexTuple lastleft, IndexTuple firstright, |
| 2117 | BTScanInsert itup_key) |
| 2118 | { |
| 2119 | TupleDesc itupdesc = RelationGetDescr(rel); |
| 2120 | int16 natts = IndexRelationGetNumberOfAttributes(rel); |
| 2121 | int16 nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel); |
| 2122 | int keepnatts; |
| 2123 | IndexTuple pivot; |
| 2124 | ItemPointer pivotheaptid; |
| 2125 | Size newsize; |
| 2126 | |
| 2127 | /* |
| 2128 | * We should only ever truncate leaf index tuples. It's never okay to |
| 2129 | * truncate a second time. |
| 2130 | */ |
| 2131 | Assert(BTreeTupleGetNAtts(lastleft, rel) == natts); |
| 2132 | Assert(BTreeTupleGetNAtts(firstright, rel) == natts); |
| 2133 | |
| 2134 | /* Determine how many attributes must be kept in truncated tuple */ |
| 2135 | keepnatts = _bt_keep_natts(rel, lastleft, firstright, itup_key); |
| 2136 | |
| 2137 | #ifdef DEBUG_NO_TRUNCATE |
| 2138 | /* Force truncation to be ineffective for testing purposes */ |
| 2139 | keepnatts = nkeyatts + 1; |
| 2140 | #endif |
| 2141 | |
| 2142 | if (keepnatts <= natts) |
| 2143 | { |
| 2144 | IndexTuple tidpivot; |
| 2145 | |
| 2146 | pivot = index_truncate_tuple(itupdesc, firstright, keepnatts); |
| 2147 | |
| 2148 | /* |
| 2149 | * If there is a distinguishing key attribute within new pivot tuple, |
| 2150 | * there is no need to add an explicit heap TID attribute |
| 2151 | */ |
| 2152 | if (keepnatts <= nkeyatts) |
| 2153 | { |
| 2154 | BTreeTupleSetNAtts(pivot, keepnatts); |
| 2155 | return pivot; |
| 2156 | } |
| 2157 | |
| 2158 | /* |
| 2159 | * Only truncation of non-key attributes was possible, since key |
| 2160 | * attributes are all equal. It's necessary to add a heap TID |
| 2161 | * attribute to the new pivot tuple. |
| 2162 | */ |
| 2163 | Assert(natts != nkeyatts); |
| 2164 | newsize = IndexTupleSize(pivot) + MAXALIGN(sizeof(ItemPointerData)); |
| 2165 | tidpivot = palloc0(newsize); |
| 2166 | memcpy(tidpivot, pivot, IndexTupleSize(pivot)); |
| 2167 | /* cannot leak memory here */ |
| 2168 | pfree(pivot); |
| 2169 | pivot = tidpivot; |
| 2170 | } |
| 2171 | else |
| 2172 | { |
| 2173 | /* |
| 2174 | * No truncation was possible, since key attributes are all equal. |
| 2175 | * It's necessary to add a heap TID attribute to the new pivot tuple. |
| 2176 | */ |
| 2177 | Assert(natts == nkeyatts); |
| 2178 | newsize = IndexTupleSize(firstright) + MAXALIGN(sizeof(ItemPointerData)); |
| 2179 | pivot = palloc0(newsize); |
| 2180 | memcpy(pivot, firstright, IndexTupleSize(firstright)); |
| 2181 | } |
| 2182 | |
| 2183 | /* |
| 2184 | * We have to use heap TID as a unique-ifier in the new pivot tuple, since |
| 2185 | * no non-TID key attribute in the right item readily distinguishes the |
| 2186 | * right side of the split from the left side. Use enlarged space that |
| 2187 | * holds a copy of first right tuple; place a heap TID value within the |
| 2188 | * extra space that remains at the end. |
| 2189 | * |
| 2190 | * nbtree conceptualizes this case as an inability to truncate away any |
| 2191 | * key attribute. We must use an alternative representation of heap TID |
| 2192 | * within pivots because heap TID is only treated as an attribute within |
| 2193 | * nbtree (e.g., there is no pg_attribute entry). |
| 2194 | */ |
| 2195 | Assert(itup_key->heapkeyspace); |
| 2196 | pivot->t_info &= ~INDEX_SIZE_MASK; |
| 2197 | pivot->t_info |= newsize; |
| 2198 | |
| 2199 | /* |
| 2200 | * Lehman & Yao use lastleft as the leaf high key in all cases, but don't |
| 2201 | * consider suffix truncation. It seems like a good idea to follow that |
| 2202 | * example in cases where no truncation takes place -- use lastleft's heap |
| 2203 | * TID. (This is also the closest value to negative infinity that's |
| 2204 | * legally usable.) |
| 2205 | */ |
| 2206 | pivotheaptid = (ItemPointer) ((char *) pivot + newsize - |
| 2207 | sizeof(ItemPointerData)); |
| 2208 | ItemPointerCopy(&lastleft->t_tid, pivotheaptid); |
| 2209 | |
| 2210 | /* |
| 2211 | * Lehman and Yao require that the downlink to the right page, which is to |
| 2212 | * be inserted into the parent page in the second phase of a page split be |
| 2213 | * a strict lower bound on items on the right page, and a non-strict upper |
| 2214 | * bound for items on the left page. Assert that heap TIDs follow these |
| 2215 | * invariants, since a heap TID value is apparently needed as a |
| 2216 | * tiebreaker. |
| 2217 | */ |
| 2218 | #ifndef DEBUG_NO_TRUNCATE |
| 2219 | Assert(ItemPointerCompare(&lastleft->t_tid, &firstright->t_tid) < 0); |
| 2220 | Assert(ItemPointerCompare(pivotheaptid, &lastleft->t_tid) >= 0); |
| 2221 | Assert(ItemPointerCompare(pivotheaptid, &firstright->t_tid) < 0); |
| 2222 | #else |
| 2223 | |
| 2224 | /* |
| 2225 | * Those invariants aren't guaranteed to hold for lastleft + firstright |
| 2226 | * heap TID attribute values when they're considered here only because |
| 2227 | * DEBUG_NO_TRUNCATE is defined (a heap TID is probably not actually |
| 2228 | * needed as a tiebreaker). DEBUG_NO_TRUNCATE must therefore use a heap |
| 2229 | * TID value that always works as a strict lower bound for items to the |
| 2230 | * right. In particular, it must avoid using firstright's leading key |
| 2231 | * attribute values along with lastleft's heap TID value when lastleft's |
| 2232 | * TID happens to be greater than firstright's TID. |
| 2233 | */ |
| 2234 | ItemPointerCopy(&firstright->t_tid, pivotheaptid); |
| 2235 | |
| 2236 | /* |
| 2237 | * Pivot heap TID should never be fully equal to firstright. Note that |
| 2238 | * the pivot heap TID will still end up equal to lastleft's heap TID when |
| 2239 | * that's the only usable value. |
| 2240 | */ |
| 2241 | ItemPointerSetOffsetNumber(pivotheaptid, |
| 2242 | OffsetNumberPrev(ItemPointerGetOffsetNumber(pivotheaptid))); |
| 2243 | Assert(ItemPointerCompare(pivotheaptid, &firstright->t_tid) < 0); |
| 2244 | #endif |
| 2245 | |
| 2246 | BTreeTupleSetNAtts(pivot, nkeyatts); |
| 2247 | BTreeTupleSetAltHeapTID(pivot); |
| 2248 | |
| 2249 | return pivot; |
| 2250 | } |
| 2251 | |
| 2252 | /* |
| 2253 | * _bt_keep_natts - how many key attributes to keep when truncating. |
| 2254 | * |
| 2255 | * Caller provides two tuples that enclose a split point. Caller's insertion |
| 2256 | * scankey is used to compare the tuples; the scankey's argument values are |
| 2257 | * not considered here. |
| 2258 | * |
| 2259 | * This can return a number of attributes that is one greater than the |
| 2260 | * number of key attributes for the index relation. This indicates that the |
| 2261 | * caller must use a heap TID as a unique-ifier in new pivot tuple. |
| 2262 | */ |
| 2263 | static int |
| 2264 | _bt_keep_natts(Relation rel, IndexTuple lastleft, IndexTuple firstright, |
| 2265 | BTScanInsert itup_key) |
| 2266 | { |
| 2267 | int nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel); |
| 2268 | TupleDesc itupdesc = RelationGetDescr(rel); |
| 2269 | int keepnatts; |
| 2270 | ScanKey scankey; |
| 2271 | |
| 2272 | /* |
| 2273 | * Be consistent about the representation of BTREE_VERSION 2/3 tuples |
| 2274 | * across Postgres versions; don't allow new pivot tuples to have |
| 2275 | * truncated key attributes there. _bt_compare() treats truncated key |
| 2276 | * attributes as having the value minus infinity, which would break |
| 2277 | * searches within !heapkeyspace indexes. |
| 2278 | */ |
| 2279 | if (!itup_key->heapkeyspace) |
| 2280 | { |
| 2281 | Assert(nkeyatts != IndexRelationGetNumberOfAttributes(rel)); |
| 2282 | return nkeyatts; |
| 2283 | } |
| 2284 | |
| 2285 | scankey = itup_key->scankeys; |
| 2286 | keepnatts = 1; |
| 2287 | for (int attnum = 1; attnum <= nkeyatts; attnum++, scankey++) |
| 2288 | { |
| 2289 | Datum datum1, |
| 2290 | datum2; |
| 2291 | bool isNull1, |
| 2292 | isNull2; |
| 2293 | |
| 2294 | datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1); |
| 2295 | datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2); |
| 2296 | |
| 2297 | if (isNull1 != isNull2) |
| 2298 | break; |
| 2299 | |
| 2300 | if (!isNull1 && |
| 2301 | DatumGetInt32(FunctionCall2Coll(&scankey->sk_func, |
| 2302 | scankey->sk_collation, |
| 2303 | datum1, |
| 2304 | datum2)) != 0) |
| 2305 | break; |
| 2306 | |
| 2307 | keepnatts++; |
| 2308 | } |
| 2309 | |
| 2310 | return keepnatts; |
| 2311 | } |
| 2312 | |
| 2313 | /* |
| 2314 | * _bt_keep_natts_fast - fast bitwise variant of _bt_keep_natts. |
| 2315 | * |
| 2316 | * This is exported so that a candidate split point can have its effect on |
| 2317 | * suffix truncation inexpensively evaluated ahead of time when finding a |
| 2318 | * split location. A naive bitwise approach to datum comparisons is used to |
| 2319 | * save cycles. |
| 2320 | * |
| 2321 | * The approach taken here usually provides the same answer as _bt_keep_natts |
| 2322 | * will (for the same pair of tuples from a heapkeyspace index), since the |
| 2323 | * majority of btree opclasses can never indicate that two datums are equal |
| 2324 | * unless they're bitwise equal (once detoasted). Similarly, result may |
| 2325 | * differ from the _bt_keep_natts result when either tuple has TOASTed datums, |
| 2326 | * though this is barely possible in practice. |
| 2327 | * |
| 2328 | * These issues must be acceptable to callers, typically because they're only |
| 2329 | * concerned about making suffix truncation as effective as possible without |
| 2330 | * leaving excessive amounts of free space on either side of page split. |
| 2331 | * Callers can rely on the fact that attributes considered equal here are |
| 2332 | * definitely also equal according to _bt_keep_natts. |
| 2333 | */ |
| 2334 | int |
| 2335 | _bt_keep_natts_fast(Relation rel, IndexTuple lastleft, IndexTuple firstright) |
| 2336 | { |
| 2337 | TupleDesc itupdesc = RelationGetDescr(rel); |
| 2338 | int keysz = IndexRelationGetNumberOfKeyAttributes(rel); |
| 2339 | int keepnatts; |
| 2340 | |
| 2341 | keepnatts = 1; |
| 2342 | for (int attnum = 1; attnum <= keysz; attnum++) |
| 2343 | { |
| 2344 | Datum datum1, |
| 2345 | datum2; |
| 2346 | bool isNull1, |
| 2347 | isNull2; |
| 2348 | Form_pg_attribute att; |
| 2349 | |
| 2350 | datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1); |
| 2351 | datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2); |
| 2352 | att = TupleDescAttr(itupdesc, attnum - 1); |
| 2353 | |
| 2354 | if (isNull1 != isNull2) |
| 2355 | break; |
| 2356 | |
| 2357 | if (!isNull1 && |
| 2358 | !datumIsEqual(datum1, datum2, att->attbyval, att->attlen)) |
| 2359 | break; |
| 2360 | |
| 2361 | keepnatts++; |
| 2362 | } |
| 2363 | |
| 2364 | return keepnatts; |
| 2365 | } |
| 2366 | |
| 2367 | /* |
| 2368 | * _bt_check_natts() -- Verify tuple has expected number of attributes. |
| 2369 | * |
| 2370 | * Returns value indicating if the expected number of attributes were found |
| 2371 | * for a particular offset on page. This can be used as a general purpose |
| 2372 | * sanity check. |
| 2373 | * |
| 2374 | * Testing a tuple directly with BTreeTupleGetNAtts() should generally be |
| 2375 | * preferred to calling here. That's usually more convenient, and is always |
| 2376 | * more explicit. Call here instead when offnum's tuple may be a negative |
| 2377 | * infinity tuple that uses the pre-v11 on-disk representation, or when a low |
| 2378 | * context check is appropriate. This routine is as strict as possible about |
| 2379 | * what is expected on each version of btree. |
| 2380 | */ |
| 2381 | bool |
| 2382 | _bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum) |
| 2383 | { |
| 2384 | int16 natts = IndexRelationGetNumberOfAttributes(rel); |
| 2385 | int16 nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel); |
| 2386 | BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2387 | IndexTuple itup; |
| 2388 | int tupnatts; |
| 2389 | |
| 2390 | /* |
| 2391 | * We cannot reliably test a deleted or half-deleted page, since they have |
| 2392 | * dummy high keys |
| 2393 | */ |
| 2394 | if (P_IGNORE(opaque)) |
| 2395 | return true; |
| 2396 | |
| 2397 | Assert(offnum >= FirstOffsetNumber && |
| 2398 | offnum <= PageGetMaxOffsetNumber(page)); |
| 2399 | |
| 2400 | /* |
| 2401 | * Mask allocated for number of keys in index tuple must be able to fit |
| 2402 | * maximum possible number of index attributes |
| 2403 | */ |
| 2404 | StaticAssertStmt(BT_N_KEYS_OFFSET_MASK >= INDEX_MAX_KEYS, |
| 2405 | "BT_N_KEYS_OFFSET_MASK can't fit INDEX_MAX_KEYS" ); |
| 2406 | |
| 2407 | itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum)); |
| 2408 | tupnatts = BTreeTupleGetNAtts(itup, rel); |
| 2409 | |
| 2410 | if (P_ISLEAF(opaque)) |
| 2411 | { |
| 2412 | if (offnum >= P_FIRSTDATAKEY(opaque)) |
| 2413 | { |
| 2414 | /* |
| 2415 | * Non-pivot tuples currently never use alternative heap TID |
| 2416 | * representation -- even those within heapkeyspace indexes |
| 2417 | */ |
| 2418 | if ((itup->t_info & INDEX_ALT_TID_MASK) != 0) |
| 2419 | return false; |
| 2420 | |
| 2421 | /* |
| 2422 | * Leaf tuples that are not the page high key (non-pivot tuples) |
| 2423 | * should never be truncated. (Note that tupnatts must have been |
| 2424 | * inferred, rather than coming from an explicit on-disk |
| 2425 | * representation.) |
| 2426 | */ |
| 2427 | return tupnatts == natts; |
| 2428 | } |
| 2429 | else |
| 2430 | { |
| 2431 | /* |
| 2432 | * Rightmost page doesn't contain a page high key, so tuple was |
| 2433 | * checked above as ordinary leaf tuple |
| 2434 | */ |
| 2435 | Assert(!P_RIGHTMOST(opaque)); |
| 2436 | |
| 2437 | /* |
| 2438 | * !heapkeyspace high key tuple contains only key attributes. Note |
| 2439 | * that tupnatts will only have been explicitly represented in |
| 2440 | * !heapkeyspace indexes that happen to have non-key attributes. |
| 2441 | */ |
| 2442 | if (!heapkeyspace) |
| 2443 | return tupnatts == nkeyatts; |
| 2444 | |
| 2445 | /* Use generic heapkeyspace pivot tuple handling */ |
| 2446 | } |
| 2447 | } |
| 2448 | else /* !P_ISLEAF(opaque) */ |
| 2449 | { |
| 2450 | if (offnum == P_FIRSTDATAKEY(opaque)) |
| 2451 | { |
| 2452 | /* |
| 2453 | * The first tuple on any internal page (possibly the first after |
| 2454 | * its high key) is its negative infinity tuple. Negative |
| 2455 | * infinity tuples are always truncated to zero attributes. They |
| 2456 | * are a particular kind of pivot tuple. |
| 2457 | */ |
| 2458 | if (heapkeyspace) |
| 2459 | return tupnatts == 0; |
| 2460 | |
| 2461 | /* |
| 2462 | * The number of attributes won't be explicitly represented if the |
| 2463 | * negative infinity tuple was generated during a page split that |
| 2464 | * occurred with a version of Postgres before v11. There must be |
| 2465 | * a problem when there is an explicit representation that is |
| 2466 | * non-zero, or when there is no explicit representation and the |
| 2467 | * tuple is evidently not a pre-pg_upgrade tuple. |
| 2468 | * |
| 2469 | * Prior to v11, downlinks always had P_HIKEY as their offset. Use |
| 2470 | * that to decide if the tuple is a pre-v11 tuple. |
| 2471 | */ |
| 2472 | return tupnatts == 0 || |
| 2473 | ((itup->t_info & INDEX_ALT_TID_MASK) == 0 && |
| 2474 | ItemPointerGetOffsetNumber(&(itup->t_tid)) == P_HIKEY); |
| 2475 | } |
| 2476 | else |
| 2477 | { |
| 2478 | /* |
| 2479 | * !heapkeyspace downlink tuple with separator key contains only |
| 2480 | * key attributes. Note that tupnatts will only have been |
| 2481 | * explicitly represented in !heapkeyspace indexes that happen to |
| 2482 | * have non-key attributes. |
| 2483 | */ |
| 2484 | if (!heapkeyspace) |
| 2485 | return tupnatts == nkeyatts; |
| 2486 | |
| 2487 | /* Use generic heapkeyspace pivot tuple handling */ |
| 2488 | } |
| 2489 | |
| 2490 | } |
| 2491 | |
| 2492 | /* Handle heapkeyspace pivot tuples (excluding minus infinity items) */ |
| 2493 | Assert(heapkeyspace); |
| 2494 | |
| 2495 | /* |
| 2496 | * Explicit representation of the number of attributes is mandatory with |
| 2497 | * heapkeyspace index pivot tuples, regardless of whether or not there are |
| 2498 | * non-key attributes. |
| 2499 | */ |
| 2500 | if ((itup->t_info & INDEX_ALT_TID_MASK) == 0) |
| 2501 | return false; |
| 2502 | |
| 2503 | /* |
| 2504 | * Heap TID is a tiebreaker key attribute, so it cannot be untruncated |
| 2505 | * when any other key attribute is truncated |
| 2506 | */ |
| 2507 | if (BTreeTupleGetHeapTID(itup) != NULL && tupnatts != nkeyatts) |
| 2508 | return false; |
| 2509 | |
| 2510 | /* |
| 2511 | * Pivot tuple must have at least one untruncated key attribute (minus |
| 2512 | * infinity pivot tuples are the only exception). Pivot tuples can never |
| 2513 | * represent that there is a value present for a key attribute that |
| 2514 | * exceeds pg_index.indnkeyatts for the index. |
| 2515 | */ |
| 2516 | return tupnatts > 0 && tupnatts <= nkeyatts; |
| 2517 | } |
| 2518 | |
| 2519 | /* |
| 2520 | * |
| 2521 | * _bt_check_third_page() -- check whether tuple fits on a btree page at all. |
| 2522 | * |
| 2523 | * We actually need to be able to fit three items on every page, so restrict |
| 2524 | * any one item to 1/3 the per-page available space. Note that itemsz should |
| 2525 | * not include the ItemId overhead. |
| 2526 | * |
| 2527 | * It might be useful to apply TOAST methods rather than throw an error here. |
| 2528 | * Using out of line storage would break assumptions made by suffix truncation |
| 2529 | * and by contrib/amcheck, though. |
| 2530 | */ |
| 2531 | void |
| 2532 | _bt_check_third_page(Relation rel, Relation heap, bool needheaptidspace, |
| 2533 | Page page, IndexTuple newtup) |
| 2534 | { |
| 2535 | Size itemsz; |
| 2536 | BTPageOpaque opaque; |
| 2537 | |
| 2538 | itemsz = MAXALIGN(IndexTupleSize(newtup)); |
| 2539 | |
| 2540 | /* Double check item size against limit */ |
| 2541 | if (itemsz <= BTMaxItemSize(page)) |
| 2542 | return; |
| 2543 | |
| 2544 | /* |
| 2545 | * Tuple is probably too large to fit on page, but it's possible that the |
| 2546 | * index uses version 2 or version 3, or that page is an internal page, in |
| 2547 | * which case a slightly higher limit applies. |
| 2548 | */ |
| 2549 | if (!needheaptidspace && itemsz <= BTMaxItemSizeNoHeapTid(page)) |
| 2550 | return; |
| 2551 | |
| 2552 | /* |
| 2553 | * Internal page insertions cannot fail here, because that would mean that |
| 2554 | * an earlier leaf level insertion that should have failed didn't |
| 2555 | */ |
| 2556 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2557 | if (!P_ISLEAF(opaque)) |
| 2558 | elog(ERROR, "cannot insert oversized tuple of size %zu on internal page of index \"%s\"" , |
| 2559 | itemsz, RelationGetRelationName(rel)); |
| 2560 | |
| 2561 | ereport(ERROR, |
| 2562 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 2563 | errmsg("index row size %zu exceeds btree version %u maximum %zu for index \"%s\"" , |
| 2564 | itemsz, |
| 2565 | needheaptidspace ? BTREE_VERSION : BTREE_NOVAC_VERSION, |
| 2566 | needheaptidspace ? BTMaxItemSize(page) : |
| 2567 | BTMaxItemSizeNoHeapTid(page), |
| 2568 | RelationGetRelationName(rel)), |
| 2569 | errdetail("Index row references tuple (%u,%u) in relation \"%s\"." , |
| 2570 | ItemPointerGetBlockNumber(&newtup->t_tid), |
| 2571 | ItemPointerGetOffsetNumber(&newtup->t_tid), |
| 2572 | RelationGetRelationName(heap)), |
| 2573 | errhint("Values larger than 1/3 of a buffer page cannot be indexed.\n" |
| 2574 | "Consider a function index of an MD5 hash of the value, " |
| 2575 | "or use full text indexing." ), |
| 2576 | errtableconstraint(heap, RelationGetRelationName(rel)))); |
| 2577 | } |
| 2578 | |