1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * twophase.c |
4 | * Two-phase commit support functions. |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * IDENTIFICATION |
10 | * src/backend/access/transam/twophase.c |
11 | * |
12 | * NOTES |
13 | * Each global transaction is associated with a global transaction |
14 | * identifier (GID). The client assigns a GID to a postgres |
15 | * transaction with the PREPARE TRANSACTION command. |
16 | * |
17 | * We keep all active global transactions in a shared memory array. |
18 | * When the PREPARE TRANSACTION command is issued, the GID is |
19 | * reserved for the transaction in the array. This is done before |
20 | * a WAL entry is made, because the reservation checks for duplicate |
21 | * GIDs and aborts the transaction if there already is a global |
22 | * transaction in prepared state with the same GID. |
23 | * |
24 | * A global transaction (gxact) also has dummy PGXACT and PGPROC; this is |
25 | * what keeps the XID considered running by TransactionIdIsInProgress. |
26 | * It is also convenient as a PGPROC to hook the gxact's locks to. |
27 | * |
28 | * Information to recover prepared transactions in case of crash is |
29 | * now stored in WAL for the common case. In some cases there will be |
30 | * an extended period between preparing a GXACT and commit/abort, in |
31 | * which case we need to separately record prepared transaction data |
32 | * in permanent storage. This includes locking information, pending |
33 | * notifications etc. All that state information is written to the |
34 | * per-transaction state file in the pg_twophase directory. |
35 | * All prepared transactions will be written prior to shutdown. |
36 | * |
37 | * Life track of state data is following: |
38 | * |
39 | * * On PREPARE TRANSACTION backend writes state data only to the WAL and |
40 | * stores pointer to the start of the WAL record in |
41 | * gxact->prepare_start_lsn. |
42 | * * If COMMIT occurs before checkpoint then backend reads data from WAL |
43 | * using prepare_start_lsn. |
44 | * * On checkpoint state data copied to files in pg_twophase directory and |
45 | * fsynced |
46 | * * If COMMIT happens after checkpoint then backend reads state data from |
47 | * files |
48 | * |
49 | * During replay and replication, TwoPhaseState also holds information |
50 | * about active prepared transactions that haven't been moved to disk yet. |
51 | * |
52 | * Replay of twophase records happens by the following rules: |
53 | * |
54 | * * At the beginning of recovery, pg_twophase is scanned once, filling |
55 | * TwoPhaseState with entries marked with gxact->inredo and |
56 | * gxact->ondisk. Two-phase file data older than the XID horizon of |
57 | * the redo position are discarded. |
58 | * * On PREPARE redo, the transaction is added to TwoPhaseState->prepXacts. |
59 | * gxact->inredo is set to true for such entries. |
60 | * * On Checkpoint we iterate through TwoPhaseState->prepXacts entries |
61 | * that have gxact->inredo set and are behind the redo_horizon. We |
62 | * save them to disk and then switch gxact->ondisk to true. |
63 | * * On COMMIT/ABORT we delete the entry from TwoPhaseState->prepXacts. |
64 | * If gxact->ondisk is true, the corresponding entry from the disk |
65 | * is additionally deleted. |
66 | * * RecoverPreparedTransactions(), StandbyRecoverPreparedTransactions() |
67 | * and PrescanPreparedTransactions() have been modified to go through |
68 | * gxact->inredo entries that have not made it to disk. |
69 | * |
70 | *------------------------------------------------------------------------- |
71 | */ |
72 | #include "postgres.h" |
73 | |
74 | #include <fcntl.h> |
75 | #include <sys/stat.h> |
76 | #include <time.h> |
77 | #include <unistd.h> |
78 | |
79 | #include "access/commit_ts.h" |
80 | #include "access/htup_details.h" |
81 | #include "access/subtrans.h" |
82 | #include "access/transam.h" |
83 | #include "access/twophase.h" |
84 | #include "access/twophase_rmgr.h" |
85 | #include "access/xact.h" |
86 | #include "access/xlog.h" |
87 | #include "access/xloginsert.h" |
88 | #include "access/xlogutils.h" |
89 | #include "access/xlogreader.h" |
90 | #include "catalog/pg_type.h" |
91 | #include "catalog/storage.h" |
92 | #include "funcapi.h" |
93 | #include "miscadmin.h" |
94 | #include "pg_trace.h" |
95 | #include "pgstat.h" |
96 | #include "replication/origin.h" |
97 | #include "replication/syncrep.h" |
98 | #include "replication/walsender.h" |
99 | #include "storage/fd.h" |
100 | #include "storage/ipc.h" |
101 | #include "storage/md.h" |
102 | #include "storage/predicate.h" |
103 | #include "storage/proc.h" |
104 | #include "storage/procarray.h" |
105 | #include "storage/sinvaladt.h" |
106 | #include "storage/smgr.h" |
107 | #include "utils/builtins.h" |
108 | #include "utils/memutils.h" |
109 | #include "utils/timestamp.h" |
110 | |
111 | |
112 | /* |
113 | * Directory where Two-phase commit files reside within PGDATA |
114 | */ |
115 | #define TWOPHASE_DIR "pg_twophase" |
116 | |
117 | /* GUC variable, can't be changed after startup */ |
118 | int max_prepared_xacts = 0; |
119 | |
120 | /* |
121 | * This struct describes one global transaction that is in prepared state |
122 | * or attempting to become prepared. |
123 | * |
124 | * The lifecycle of a global transaction is: |
125 | * |
126 | * 1. After checking that the requested GID is not in use, set up an entry in |
127 | * the TwoPhaseState->prepXacts array with the correct GID and valid = false, |
128 | * and mark it as locked by my backend. |
129 | * |
130 | * 2. After successfully completing prepare, set valid = true and enter the |
131 | * referenced PGPROC into the global ProcArray. |
132 | * |
133 | * 3. To begin COMMIT PREPARED or ROLLBACK PREPARED, check that the entry is |
134 | * valid and not locked, then mark the entry as locked by storing my current |
135 | * backend ID into locking_backend. This prevents concurrent attempts to |
136 | * commit or rollback the same prepared xact. |
137 | * |
138 | * 4. On completion of COMMIT PREPARED or ROLLBACK PREPARED, remove the entry |
139 | * from the ProcArray and the TwoPhaseState->prepXacts array and return it to |
140 | * the freelist. |
141 | * |
142 | * Note that if the preparing transaction fails between steps 1 and 2, the |
143 | * entry must be removed so that the GID and the GlobalTransaction struct |
144 | * can be reused. See AtAbort_Twophase(). |
145 | * |
146 | * typedef struct GlobalTransactionData *GlobalTransaction appears in |
147 | * twophase.h |
148 | */ |
149 | |
150 | typedef struct GlobalTransactionData |
151 | { |
152 | GlobalTransaction next; /* list link for free list */ |
153 | int pgprocno; /* ID of associated dummy PGPROC */ |
154 | BackendId dummyBackendId; /* similar to backend id for backends */ |
155 | TimestampTz prepared_at; /* time of preparation */ |
156 | |
157 | /* |
158 | * Note that we need to keep track of two LSNs for each GXACT. We keep |
159 | * track of the start LSN because this is the address we must use to read |
160 | * state data back from WAL when committing a prepared GXACT. We keep |
161 | * track of the end LSN because that is the LSN we need to wait for prior |
162 | * to commit. |
163 | */ |
164 | XLogRecPtr prepare_start_lsn; /* XLOG offset of prepare record start */ |
165 | XLogRecPtr prepare_end_lsn; /* XLOG offset of prepare record end */ |
166 | TransactionId xid; /* The GXACT id */ |
167 | |
168 | Oid owner; /* ID of user that executed the xact */ |
169 | BackendId locking_backend; /* backend currently working on the xact */ |
170 | bool valid; /* true if PGPROC entry is in proc array */ |
171 | bool ondisk; /* true if prepare state file is on disk */ |
172 | bool inredo; /* true if entry was added via xlog_redo */ |
173 | char gid[GIDSIZE]; /* The GID assigned to the prepared xact */ |
174 | } GlobalTransactionData; |
175 | |
176 | /* |
177 | * Two Phase Commit shared state. Access to this struct is protected |
178 | * by TwoPhaseStateLock. |
179 | */ |
180 | typedef struct TwoPhaseStateData |
181 | { |
182 | /* Head of linked list of free GlobalTransactionData structs */ |
183 | GlobalTransaction freeGXacts; |
184 | |
185 | /* Number of valid prepXacts entries. */ |
186 | int numPrepXacts; |
187 | |
188 | /* There are max_prepared_xacts items in this array */ |
189 | GlobalTransaction prepXacts[FLEXIBLE_ARRAY_MEMBER]; |
190 | } TwoPhaseStateData; |
191 | |
192 | static TwoPhaseStateData *TwoPhaseState; |
193 | |
194 | /* |
195 | * Global transaction entry currently locked by us, if any. Note that any |
196 | * access to the entry pointed to by this variable must be protected by |
197 | * TwoPhaseStateLock, though obviously the pointer itself doesn't need to be |
198 | * (since it's just local memory). |
199 | */ |
200 | static GlobalTransaction MyLockedGxact = NULL; |
201 | |
202 | static bool twophaseExitRegistered = false; |
203 | |
204 | static void RecordTransactionCommitPrepared(TransactionId xid, |
205 | int nchildren, |
206 | TransactionId *children, |
207 | int nrels, |
208 | RelFileNode *rels, |
209 | int ninvalmsgs, |
210 | SharedInvalidationMessage *invalmsgs, |
211 | bool initfileinval, |
212 | const char *gid); |
213 | static void RecordTransactionAbortPrepared(TransactionId xid, |
214 | int nchildren, |
215 | TransactionId *children, |
216 | int nrels, |
217 | RelFileNode *rels, |
218 | const char *gid); |
219 | static void ProcessRecords(char *bufptr, TransactionId xid, |
220 | const TwoPhaseCallback callbacks[]); |
221 | static void RemoveGXact(GlobalTransaction gxact); |
222 | |
223 | static void XlogReadTwoPhaseData(XLogRecPtr lsn, char **buf, int *len); |
224 | static char *ProcessTwoPhaseBuffer(TransactionId xid, |
225 | XLogRecPtr prepare_start_lsn, |
226 | bool fromdisk, bool setParent, bool setNextXid); |
227 | static void MarkAsPreparingGuts(GlobalTransaction gxact, TransactionId xid, |
228 | const char *gid, TimestampTz prepared_at, Oid owner, |
229 | Oid databaseid); |
230 | static void RemoveTwoPhaseFile(TransactionId xid, bool giveWarning); |
231 | static void RecreateTwoPhaseFile(TransactionId xid, void *content, int len); |
232 | |
233 | /* |
234 | * Initialization of shared memory |
235 | */ |
236 | Size |
237 | TwoPhaseShmemSize(void) |
238 | { |
239 | Size size; |
240 | |
241 | /* Need the fixed struct, the array of pointers, and the GTD structs */ |
242 | size = offsetof(TwoPhaseStateData, prepXacts); |
243 | size = add_size(size, mul_size(max_prepared_xacts, |
244 | sizeof(GlobalTransaction))); |
245 | size = MAXALIGN(size); |
246 | size = add_size(size, mul_size(max_prepared_xacts, |
247 | sizeof(GlobalTransactionData))); |
248 | |
249 | return size; |
250 | } |
251 | |
252 | void |
253 | TwoPhaseShmemInit(void) |
254 | { |
255 | bool found; |
256 | |
257 | TwoPhaseState = ShmemInitStruct("Prepared Transaction Table" , |
258 | TwoPhaseShmemSize(), |
259 | &found); |
260 | if (!IsUnderPostmaster) |
261 | { |
262 | GlobalTransaction gxacts; |
263 | int i; |
264 | |
265 | Assert(!found); |
266 | TwoPhaseState->freeGXacts = NULL; |
267 | TwoPhaseState->numPrepXacts = 0; |
268 | |
269 | /* |
270 | * Initialize the linked list of free GlobalTransactionData structs |
271 | */ |
272 | gxacts = (GlobalTransaction) |
273 | ((char *) TwoPhaseState + |
274 | MAXALIGN(offsetof(TwoPhaseStateData, prepXacts) + |
275 | sizeof(GlobalTransaction) * max_prepared_xacts)); |
276 | for (i = 0; i < max_prepared_xacts; i++) |
277 | { |
278 | /* insert into linked list */ |
279 | gxacts[i].next = TwoPhaseState->freeGXacts; |
280 | TwoPhaseState->freeGXacts = &gxacts[i]; |
281 | |
282 | /* associate it with a PGPROC assigned by InitProcGlobal */ |
283 | gxacts[i].pgprocno = PreparedXactProcs[i].pgprocno; |
284 | |
285 | /* |
286 | * Assign a unique ID for each dummy proc, so that the range of |
287 | * dummy backend IDs immediately follows the range of normal |
288 | * backend IDs. We don't dare to assign a real backend ID to dummy |
289 | * procs, because prepared transactions don't take part in cache |
290 | * invalidation like a real backend ID would imply, but having a |
291 | * unique ID for them is nevertheless handy. This arrangement |
292 | * allows you to allocate an array of size (MaxBackends + |
293 | * max_prepared_xacts + 1), and have a slot for every backend and |
294 | * prepared transaction. Currently multixact.c uses that |
295 | * technique. |
296 | */ |
297 | gxacts[i].dummyBackendId = MaxBackends + 1 + i; |
298 | } |
299 | } |
300 | else |
301 | Assert(found); |
302 | } |
303 | |
304 | /* |
305 | * Exit hook to unlock the global transaction entry we're working on. |
306 | */ |
307 | static void |
308 | AtProcExit_Twophase(int code, Datum arg) |
309 | { |
310 | /* same logic as abort */ |
311 | AtAbort_Twophase(); |
312 | } |
313 | |
314 | /* |
315 | * Abort hook to unlock the global transaction entry we're working on. |
316 | */ |
317 | void |
318 | AtAbort_Twophase(void) |
319 | { |
320 | if (MyLockedGxact == NULL) |
321 | return; |
322 | |
323 | /* |
324 | * What to do with the locked global transaction entry? If we were in the |
325 | * process of preparing the transaction, but haven't written the WAL |
326 | * record and state file yet, the transaction must not be considered as |
327 | * prepared. Likewise, if we are in the process of finishing an |
328 | * already-prepared transaction, and fail after having already written the |
329 | * 2nd phase commit or rollback record to the WAL, the transaction should |
330 | * not be considered as prepared anymore. In those cases, just remove the |
331 | * entry from shared memory. |
332 | * |
333 | * Otherwise, the entry must be left in place so that the transaction can |
334 | * be finished later, so just unlock it. |
335 | * |
336 | * If we abort during prepare, after having written the WAL record, we |
337 | * might not have transferred all locks and other state to the prepared |
338 | * transaction yet. Likewise, if we abort during commit or rollback, |
339 | * after having written the WAL record, we might not have released all the |
340 | * resources held by the transaction yet. In those cases, the in-memory |
341 | * state can be wrong, but it's too late to back out. |
342 | */ |
343 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
344 | if (!MyLockedGxact->valid) |
345 | RemoveGXact(MyLockedGxact); |
346 | else |
347 | MyLockedGxact->locking_backend = InvalidBackendId; |
348 | LWLockRelease(TwoPhaseStateLock); |
349 | |
350 | MyLockedGxact = NULL; |
351 | } |
352 | |
353 | /* |
354 | * This is called after we have finished transferring state to the prepared |
355 | * PGXACT entry. |
356 | */ |
357 | void |
358 | PostPrepare_Twophase(void) |
359 | { |
360 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
361 | MyLockedGxact->locking_backend = InvalidBackendId; |
362 | LWLockRelease(TwoPhaseStateLock); |
363 | |
364 | MyLockedGxact = NULL; |
365 | } |
366 | |
367 | |
368 | /* |
369 | * MarkAsPreparing |
370 | * Reserve the GID for the given transaction. |
371 | */ |
372 | GlobalTransaction |
373 | MarkAsPreparing(TransactionId xid, const char *gid, |
374 | TimestampTz prepared_at, Oid owner, Oid databaseid) |
375 | { |
376 | GlobalTransaction gxact; |
377 | int i; |
378 | |
379 | if (strlen(gid) >= GIDSIZE) |
380 | ereport(ERROR, |
381 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
382 | errmsg("transaction identifier \"%s\" is too long" , |
383 | gid))); |
384 | |
385 | /* fail immediately if feature is disabled */ |
386 | if (max_prepared_xacts == 0) |
387 | ereport(ERROR, |
388 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
389 | errmsg("prepared transactions are disabled" ), |
390 | errhint("Set max_prepared_transactions to a nonzero value." ))); |
391 | |
392 | /* on first call, register the exit hook */ |
393 | if (!twophaseExitRegistered) |
394 | { |
395 | before_shmem_exit(AtProcExit_Twophase, 0); |
396 | twophaseExitRegistered = true; |
397 | } |
398 | |
399 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
400 | |
401 | /* Check for conflicting GID */ |
402 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
403 | { |
404 | gxact = TwoPhaseState->prepXacts[i]; |
405 | if (strcmp(gxact->gid, gid) == 0) |
406 | { |
407 | ereport(ERROR, |
408 | (errcode(ERRCODE_DUPLICATE_OBJECT), |
409 | errmsg("transaction identifier \"%s\" is already in use" , |
410 | gid))); |
411 | } |
412 | } |
413 | |
414 | /* Get a free gxact from the freelist */ |
415 | if (TwoPhaseState->freeGXacts == NULL) |
416 | ereport(ERROR, |
417 | (errcode(ERRCODE_OUT_OF_MEMORY), |
418 | errmsg("maximum number of prepared transactions reached" ), |
419 | errhint("Increase max_prepared_transactions (currently %d)." , |
420 | max_prepared_xacts))); |
421 | gxact = TwoPhaseState->freeGXacts; |
422 | TwoPhaseState->freeGXacts = gxact->next; |
423 | |
424 | MarkAsPreparingGuts(gxact, xid, gid, prepared_at, owner, databaseid); |
425 | |
426 | gxact->ondisk = false; |
427 | |
428 | /* And insert it into the active array */ |
429 | Assert(TwoPhaseState->numPrepXacts < max_prepared_xacts); |
430 | TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts++] = gxact; |
431 | |
432 | LWLockRelease(TwoPhaseStateLock); |
433 | |
434 | return gxact; |
435 | } |
436 | |
437 | /* |
438 | * MarkAsPreparingGuts |
439 | * |
440 | * This uses a gxact struct and puts it into the active array. |
441 | * NOTE: this is also used when reloading a gxact after a crash; so avoid |
442 | * assuming that we can use very much backend context. |
443 | * |
444 | * Note: This function should be called with appropriate locks held. |
445 | */ |
446 | static void |
447 | MarkAsPreparingGuts(GlobalTransaction gxact, TransactionId xid, const char *gid, |
448 | TimestampTz prepared_at, Oid owner, Oid databaseid) |
449 | { |
450 | PGPROC *proc; |
451 | PGXACT *pgxact; |
452 | int i; |
453 | |
454 | Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); |
455 | |
456 | Assert(gxact != NULL); |
457 | proc = &ProcGlobal->allProcs[gxact->pgprocno]; |
458 | pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; |
459 | |
460 | /* Initialize the PGPROC entry */ |
461 | MemSet(proc, 0, sizeof(PGPROC)); |
462 | proc->pgprocno = gxact->pgprocno; |
463 | SHMQueueElemInit(&(proc->links)); |
464 | proc->waitStatus = STATUS_OK; |
465 | /* We set up the gxact's VXID as InvalidBackendId/XID */ |
466 | proc->lxid = (LocalTransactionId) xid; |
467 | pgxact->xid = xid; |
468 | pgxact->xmin = InvalidTransactionId; |
469 | pgxact->delayChkpt = false; |
470 | pgxact->vacuumFlags = 0; |
471 | proc->pid = 0; |
472 | proc->backendId = InvalidBackendId; |
473 | proc->databaseId = databaseid; |
474 | proc->roleId = owner; |
475 | proc->tempNamespaceId = InvalidOid; |
476 | proc->isBackgroundWorker = false; |
477 | proc->lwWaiting = false; |
478 | proc->lwWaitMode = 0; |
479 | proc->waitLock = NULL; |
480 | proc->waitProcLock = NULL; |
481 | for (i = 0; i < NUM_LOCK_PARTITIONS; i++) |
482 | SHMQueueInit(&(proc->myProcLocks[i])); |
483 | /* subxid data must be filled later by GXactLoadSubxactData */ |
484 | pgxact->overflowed = false; |
485 | pgxact->nxids = 0; |
486 | |
487 | gxact->prepared_at = prepared_at; |
488 | gxact->xid = xid; |
489 | gxact->owner = owner; |
490 | gxact->locking_backend = MyBackendId; |
491 | gxact->valid = false; |
492 | gxact->inredo = false; |
493 | strcpy(gxact->gid, gid); |
494 | |
495 | /* |
496 | * Remember that we have this GlobalTransaction entry locked for us. If we |
497 | * abort after this, we must release it. |
498 | */ |
499 | MyLockedGxact = gxact; |
500 | } |
501 | |
502 | /* |
503 | * GXactLoadSubxactData |
504 | * |
505 | * If the transaction being persisted had any subtransactions, this must |
506 | * be called before MarkAsPrepared() to load information into the dummy |
507 | * PGPROC. |
508 | */ |
509 | static void |
510 | GXactLoadSubxactData(GlobalTransaction gxact, int nsubxacts, |
511 | TransactionId *children) |
512 | { |
513 | PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno]; |
514 | PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; |
515 | |
516 | /* We need no extra lock since the GXACT isn't valid yet */ |
517 | if (nsubxacts > PGPROC_MAX_CACHED_SUBXIDS) |
518 | { |
519 | pgxact->overflowed = true; |
520 | nsubxacts = PGPROC_MAX_CACHED_SUBXIDS; |
521 | } |
522 | if (nsubxacts > 0) |
523 | { |
524 | memcpy(proc->subxids.xids, children, |
525 | nsubxacts * sizeof(TransactionId)); |
526 | pgxact->nxids = nsubxacts; |
527 | } |
528 | } |
529 | |
530 | /* |
531 | * MarkAsPrepared |
532 | * Mark the GXACT as fully valid, and enter it into the global ProcArray. |
533 | * |
534 | * lock_held indicates whether caller already holds TwoPhaseStateLock. |
535 | */ |
536 | static void |
537 | MarkAsPrepared(GlobalTransaction gxact, bool lock_held) |
538 | { |
539 | /* Lock here may be overkill, but I'm not convinced of that ... */ |
540 | if (!lock_held) |
541 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
542 | Assert(!gxact->valid); |
543 | gxact->valid = true; |
544 | if (!lock_held) |
545 | LWLockRelease(TwoPhaseStateLock); |
546 | |
547 | /* |
548 | * Put it into the global ProcArray so TransactionIdIsInProgress considers |
549 | * the XID as still running. |
550 | */ |
551 | ProcArrayAdd(&ProcGlobal->allProcs[gxact->pgprocno]); |
552 | } |
553 | |
554 | /* |
555 | * LockGXact |
556 | * Locate the prepared transaction and mark it busy for COMMIT or PREPARE. |
557 | */ |
558 | static GlobalTransaction |
559 | LockGXact(const char *gid, Oid user) |
560 | { |
561 | int i; |
562 | |
563 | /* on first call, register the exit hook */ |
564 | if (!twophaseExitRegistered) |
565 | { |
566 | before_shmem_exit(AtProcExit_Twophase, 0); |
567 | twophaseExitRegistered = true; |
568 | } |
569 | |
570 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
571 | |
572 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
573 | { |
574 | GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; |
575 | PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno]; |
576 | |
577 | /* Ignore not-yet-valid GIDs */ |
578 | if (!gxact->valid) |
579 | continue; |
580 | if (strcmp(gxact->gid, gid) != 0) |
581 | continue; |
582 | |
583 | /* Found it, but has someone else got it locked? */ |
584 | if (gxact->locking_backend != InvalidBackendId) |
585 | ereport(ERROR, |
586 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
587 | errmsg("prepared transaction with identifier \"%s\" is busy" , |
588 | gid))); |
589 | |
590 | if (user != gxact->owner && !superuser_arg(user)) |
591 | ereport(ERROR, |
592 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
593 | errmsg("permission denied to finish prepared transaction" ), |
594 | errhint("Must be superuser or the user that prepared the transaction." ))); |
595 | |
596 | /* |
597 | * Note: it probably would be possible to allow committing from |
598 | * another database; but at the moment NOTIFY is known not to work and |
599 | * there may be some other issues as well. Hence disallow until |
600 | * someone gets motivated to make it work. |
601 | */ |
602 | if (MyDatabaseId != proc->databaseId) |
603 | ereport(ERROR, |
604 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
605 | errmsg("prepared transaction belongs to another database" ), |
606 | errhint("Connect to the database where the transaction was prepared to finish it." ))); |
607 | |
608 | /* OK for me to lock it */ |
609 | gxact->locking_backend = MyBackendId; |
610 | MyLockedGxact = gxact; |
611 | |
612 | LWLockRelease(TwoPhaseStateLock); |
613 | |
614 | return gxact; |
615 | } |
616 | |
617 | LWLockRelease(TwoPhaseStateLock); |
618 | |
619 | ereport(ERROR, |
620 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
621 | errmsg("prepared transaction with identifier \"%s\" does not exist" , |
622 | gid))); |
623 | |
624 | /* NOTREACHED */ |
625 | return NULL; |
626 | } |
627 | |
628 | /* |
629 | * RemoveGXact |
630 | * Remove the prepared transaction from the shared memory array. |
631 | * |
632 | * NB: caller should have already removed it from ProcArray |
633 | */ |
634 | static void |
635 | RemoveGXact(GlobalTransaction gxact) |
636 | { |
637 | int i; |
638 | |
639 | Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); |
640 | |
641 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
642 | { |
643 | if (gxact == TwoPhaseState->prepXacts[i]) |
644 | { |
645 | /* remove from the active array */ |
646 | TwoPhaseState->numPrepXacts--; |
647 | TwoPhaseState->prepXacts[i] = TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts]; |
648 | |
649 | /* and put it back in the freelist */ |
650 | gxact->next = TwoPhaseState->freeGXacts; |
651 | TwoPhaseState->freeGXacts = gxact; |
652 | |
653 | return; |
654 | } |
655 | } |
656 | |
657 | elog(ERROR, "failed to find %p in GlobalTransaction array" , gxact); |
658 | } |
659 | |
660 | /* |
661 | * Returns an array of all prepared transactions for the user-level |
662 | * function pg_prepared_xact. |
663 | * |
664 | * The returned array and all its elements are copies of internal data |
665 | * structures, to minimize the time we need to hold the TwoPhaseStateLock. |
666 | * |
667 | * WARNING -- we return even those transactions that are not fully prepared |
668 | * yet. The caller should filter them out if he doesn't want them. |
669 | * |
670 | * The returned array is palloc'd. |
671 | */ |
672 | static int |
673 | GetPreparedTransactionList(GlobalTransaction *gxacts) |
674 | { |
675 | GlobalTransaction array; |
676 | int num; |
677 | int i; |
678 | |
679 | LWLockAcquire(TwoPhaseStateLock, LW_SHARED); |
680 | |
681 | if (TwoPhaseState->numPrepXacts == 0) |
682 | { |
683 | LWLockRelease(TwoPhaseStateLock); |
684 | |
685 | *gxacts = NULL; |
686 | return 0; |
687 | } |
688 | |
689 | num = TwoPhaseState->numPrepXacts; |
690 | array = (GlobalTransaction) palloc(sizeof(GlobalTransactionData) * num); |
691 | *gxacts = array; |
692 | for (i = 0; i < num; i++) |
693 | memcpy(array + i, TwoPhaseState->prepXacts[i], |
694 | sizeof(GlobalTransactionData)); |
695 | |
696 | LWLockRelease(TwoPhaseStateLock); |
697 | |
698 | return num; |
699 | } |
700 | |
701 | |
702 | /* Working status for pg_prepared_xact */ |
703 | typedef struct |
704 | { |
705 | GlobalTransaction array; |
706 | int ngxacts; |
707 | int currIdx; |
708 | } Working_State; |
709 | |
710 | /* |
711 | * pg_prepared_xact |
712 | * Produce a view with one row per prepared transaction. |
713 | * |
714 | * This function is here so we don't have to export the |
715 | * GlobalTransactionData struct definition. |
716 | */ |
717 | Datum |
718 | pg_prepared_xact(PG_FUNCTION_ARGS) |
719 | { |
720 | FuncCallContext *funcctx; |
721 | Working_State *status; |
722 | |
723 | if (SRF_IS_FIRSTCALL()) |
724 | { |
725 | TupleDesc tupdesc; |
726 | MemoryContext oldcontext; |
727 | |
728 | /* create a function context for cross-call persistence */ |
729 | funcctx = SRF_FIRSTCALL_INIT(); |
730 | |
731 | /* |
732 | * Switch to memory context appropriate for multiple function calls |
733 | */ |
734 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
735 | |
736 | /* build tupdesc for result tuples */ |
737 | /* this had better match pg_prepared_xacts view in system_views.sql */ |
738 | tupdesc = CreateTemplateTupleDesc(5); |
739 | TupleDescInitEntry(tupdesc, (AttrNumber) 1, "transaction" , |
740 | XIDOID, -1, 0); |
741 | TupleDescInitEntry(tupdesc, (AttrNumber) 2, "gid" , |
742 | TEXTOID, -1, 0); |
743 | TupleDescInitEntry(tupdesc, (AttrNumber) 3, "prepared" , |
744 | TIMESTAMPTZOID, -1, 0); |
745 | TupleDescInitEntry(tupdesc, (AttrNumber) 4, "ownerid" , |
746 | OIDOID, -1, 0); |
747 | TupleDescInitEntry(tupdesc, (AttrNumber) 5, "dbid" , |
748 | OIDOID, -1, 0); |
749 | |
750 | funcctx->tuple_desc = BlessTupleDesc(tupdesc); |
751 | |
752 | /* |
753 | * Collect all the 2PC status information that we will format and send |
754 | * out as a result set. |
755 | */ |
756 | status = (Working_State *) palloc(sizeof(Working_State)); |
757 | funcctx->user_fctx = (void *) status; |
758 | |
759 | status->ngxacts = GetPreparedTransactionList(&status->array); |
760 | status->currIdx = 0; |
761 | |
762 | MemoryContextSwitchTo(oldcontext); |
763 | } |
764 | |
765 | funcctx = SRF_PERCALL_SETUP(); |
766 | status = (Working_State *) funcctx->user_fctx; |
767 | |
768 | while (status->array != NULL && status->currIdx < status->ngxacts) |
769 | { |
770 | GlobalTransaction gxact = &status->array[status->currIdx++]; |
771 | PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno]; |
772 | PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; |
773 | Datum values[5]; |
774 | bool nulls[5]; |
775 | HeapTuple tuple; |
776 | Datum result; |
777 | |
778 | if (!gxact->valid) |
779 | continue; |
780 | |
781 | /* |
782 | * Form tuple with appropriate data. |
783 | */ |
784 | MemSet(values, 0, sizeof(values)); |
785 | MemSet(nulls, 0, sizeof(nulls)); |
786 | |
787 | values[0] = TransactionIdGetDatum(pgxact->xid); |
788 | values[1] = CStringGetTextDatum(gxact->gid); |
789 | values[2] = TimestampTzGetDatum(gxact->prepared_at); |
790 | values[3] = ObjectIdGetDatum(gxact->owner); |
791 | values[4] = ObjectIdGetDatum(proc->databaseId); |
792 | |
793 | tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); |
794 | result = HeapTupleGetDatum(tuple); |
795 | SRF_RETURN_NEXT(funcctx, result); |
796 | } |
797 | |
798 | SRF_RETURN_DONE(funcctx); |
799 | } |
800 | |
801 | /* |
802 | * TwoPhaseGetGXact |
803 | * Get the GlobalTransaction struct for a prepared transaction |
804 | * specified by XID |
805 | * |
806 | * If lock_held is set to true, TwoPhaseStateLock will not be taken, so the |
807 | * caller had better hold it. |
808 | */ |
809 | static GlobalTransaction |
810 | TwoPhaseGetGXact(TransactionId xid, bool lock_held) |
811 | { |
812 | GlobalTransaction result = NULL; |
813 | int i; |
814 | |
815 | static TransactionId cached_xid = InvalidTransactionId; |
816 | static GlobalTransaction cached_gxact = NULL; |
817 | |
818 | Assert(!lock_held || LWLockHeldByMe(TwoPhaseStateLock)); |
819 | |
820 | /* |
821 | * During a recovery, COMMIT PREPARED, or ABORT PREPARED, we'll be called |
822 | * repeatedly for the same XID. We can save work with a simple cache. |
823 | */ |
824 | if (xid == cached_xid) |
825 | return cached_gxact; |
826 | |
827 | if (!lock_held) |
828 | LWLockAcquire(TwoPhaseStateLock, LW_SHARED); |
829 | |
830 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
831 | { |
832 | GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; |
833 | PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; |
834 | |
835 | if (pgxact->xid == xid) |
836 | { |
837 | result = gxact; |
838 | break; |
839 | } |
840 | } |
841 | |
842 | if (!lock_held) |
843 | LWLockRelease(TwoPhaseStateLock); |
844 | |
845 | if (result == NULL) /* should not happen */ |
846 | elog(ERROR, "failed to find GlobalTransaction for xid %u" , xid); |
847 | |
848 | cached_xid = xid; |
849 | cached_gxact = result; |
850 | |
851 | return result; |
852 | } |
853 | |
854 | /* |
855 | * TwoPhaseGetDummyBackendId |
856 | * Get the dummy backend ID for prepared transaction specified by XID |
857 | * |
858 | * Dummy backend IDs are similar to real backend IDs of real backends. |
859 | * They start at MaxBackends + 1, and are unique across all currently active |
860 | * real backends and prepared transactions. If lock_held is set to true, |
861 | * TwoPhaseStateLock will not be taken, so the caller had better hold it. |
862 | */ |
863 | BackendId |
864 | TwoPhaseGetDummyBackendId(TransactionId xid, bool lock_held) |
865 | { |
866 | GlobalTransaction gxact = TwoPhaseGetGXact(xid, lock_held); |
867 | |
868 | return gxact->dummyBackendId; |
869 | } |
870 | |
871 | /* |
872 | * TwoPhaseGetDummyProc |
873 | * Get the PGPROC that represents a prepared transaction specified by XID |
874 | * |
875 | * If lock_held is set to true, TwoPhaseStateLock will not be taken, so the |
876 | * caller had better hold it. |
877 | */ |
878 | PGPROC * |
879 | TwoPhaseGetDummyProc(TransactionId xid, bool lock_held) |
880 | { |
881 | GlobalTransaction gxact = TwoPhaseGetGXact(xid, lock_held); |
882 | |
883 | return &ProcGlobal->allProcs[gxact->pgprocno]; |
884 | } |
885 | |
886 | /************************************************************************/ |
887 | /* State file support */ |
888 | /************************************************************************/ |
889 | |
890 | #define TwoPhaseFilePath(path, xid) \ |
891 | snprintf(path, MAXPGPATH, TWOPHASE_DIR "/%08X", xid) |
892 | |
893 | /* |
894 | * 2PC state file format: |
895 | * |
896 | * 1. TwoPhaseFileHeader |
897 | * 2. TransactionId[] (subtransactions) |
898 | * 3. RelFileNode[] (files to be deleted at commit) |
899 | * 4. RelFileNode[] (files to be deleted at abort) |
900 | * 5. SharedInvalidationMessage[] (inval messages to be sent at commit) |
901 | * 6. TwoPhaseRecordOnDisk |
902 | * 7. ... |
903 | * 8. TwoPhaseRecordOnDisk (end sentinel, rmid == TWOPHASE_RM_END_ID) |
904 | * 9. checksum (CRC-32C) |
905 | * |
906 | * Each segment except the final checksum is MAXALIGN'd. |
907 | */ |
908 | |
909 | /* |
910 | * Header for a 2PC state file |
911 | */ |
912 | #define TWOPHASE_MAGIC 0x57F94534 /* format identifier */ |
913 | |
914 | typedef struct |
915 | { |
916 | uint32 ; /* format identifier */ |
917 | uint32 ; /* actual file length */ |
918 | TransactionId ; /* original transaction XID */ |
919 | Oid ; /* OID of database it was in */ |
920 | TimestampTz ; /* time of preparation */ |
921 | Oid ; /* user running the transaction */ |
922 | int32 ; /* number of following subxact XIDs */ |
923 | int32 ; /* number of delete-on-commit rels */ |
924 | int32 ; /* number of delete-on-abort rels */ |
925 | int32 ; /* number of cache invalidation messages */ |
926 | bool ; /* does relcache init file need invalidation? */ |
927 | uint16 ; /* length of the GID - GID follows the header */ |
928 | XLogRecPtr ; /* lsn of this record at origin node */ |
929 | TimestampTz ; /* time of prepare at origin node */ |
930 | } ; |
931 | |
932 | /* |
933 | * Header for each record in a state file |
934 | * |
935 | * NOTE: len counts only the rmgr data, not the TwoPhaseRecordOnDisk header. |
936 | * The rmgr data will be stored starting on a MAXALIGN boundary. |
937 | */ |
938 | typedef struct TwoPhaseRecordOnDisk |
939 | { |
940 | uint32 len; /* length of rmgr data */ |
941 | TwoPhaseRmgrId rmid; /* resource manager for this record */ |
942 | uint16 info; /* flag bits for use by rmgr */ |
943 | } TwoPhaseRecordOnDisk; |
944 | |
945 | /* |
946 | * During prepare, the state file is assembled in memory before writing it |
947 | * to WAL and the actual state file. We use a chain of StateFileChunk blocks |
948 | * for that. |
949 | */ |
950 | typedef struct StateFileChunk |
951 | { |
952 | char *data; |
953 | uint32 len; |
954 | struct StateFileChunk *next; |
955 | } StateFileChunk; |
956 | |
957 | static struct xllist |
958 | { |
959 | StateFileChunk *head; /* first data block in the chain */ |
960 | StateFileChunk *tail; /* last block in chain */ |
961 | uint32 num_chunks; |
962 | uint32 bytes_free; /* free bytes left in tail block */ |
963 | uint32 total_len; /* total data bytes in chain */ |
964 | } records; |
965 | |
966 | |
967 | /* |
968 | * Append a block of data to records data structure. |
969 | * |
970 | * NB: each block is padded to a MAXALIGN multiple. This must be |
971 | * accounted for when the file is later read! |
972 | * |
973 | * The data is copied, so the caller is free to modify it afterwards. |
974 | */ |
975 | static void |
976 | save_state_data(const void *data, uint32 len) |
977 | { |
978 | uint32 padlen = MAXALIGN(len); |
979 | |
980 | if (padlen > records.bytes_free) |
981 | { |
982 | records.tail->next = palloc0(sizeof(StateFileChunk)); |
983 | records.tail = records.tail->next; |
984 | records.tail->len = 0; |
985 | records.tail->next = NULL; |
986 | records.num_chunks++; |
987 | |
988 | records.bytes_free = Max(padlen, 512); |
989 | records.tail->data = palloc(records.bytes_free); |
990 | } |
991 | |
992 | memcpy(((char *) records.tail->data) + records.tail->len, data, len); |
993 | records.tail->len += padlen; |
994 | records.bytes_free -= padlen; |
995 | records.total_len += padlen; |
996 | } |
997 | |
998 | /* |
999 | * Start preparing a state file. |
1000 | * |
1001 | * Initializes data structure and inserts the 2PC file header record. |
1002 | */ |
1003 | void |
1004 | StartPrepare(GlobalTransaction gxact) |
1005 | { |
1006 | PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno]; |
1007 | PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; |
1008 | TransactionId xid = pgxact->xid; |
1009 | TwoPhaseFileHeader hdr; |
1010 | TransactionId *children; |
1011 | RelFileNode *commitrels; |
1012 | RelFileNode *abortrels; |
1013 | SharedInvalidationMessage *invalmsgs; |
1014 | |
1015 | /* Initialize linked list */ |
1016 | records.head = palloc0(sizeof(StateFileChunk)); |
1017 | records.head->len = 0; |
1018 | records.head->next = NULL; |
1019 | |
1020 | records.bytes_free = Max(sizeof(TwoPhaseFileHeader), 512); |
1021 | records.head->data = palloc(records.bytes_free); |
1022 | |
1023 | records.tail = records.head; |
1024 | records.num_chunks = 1; |
1025 | |
1026 | records.total_len = 0; |
1027 | |
1028 | /* Create header */ |
1029 | hdr.magic = TWOPHASE_MAGIC; |
1030 | hdr.total_len = 0; /* EndPrepare will fill this in */ |
1031 | hdr.xid = xid; |
1032 | hdr.database = proc->databaseId; |
1033 | hdr.prepared_at = gxact->prepared_at; |
1034 | hdr.owner = gxact->owner; |
1035 | hdr.nsubxacts = xactGetCommittedChildren(&children); |
1036 | hdr.ncommitrels = smgrGetPendingDeletes(true, &commitrels); |
1037 | hdr.nabortrels = smgrGetPendingDeletes(false, &abortrels); |
1038 | hdr.ninvalmsgs = xactGetCommittedInvalidationMessages(&invalmsgs, |
1039 | &hdr.initfileinval); |
1040 | hdr.gidlen = strlen(gxact->gid) + 1; /* Include '\0' */ |
1041 | |
1042 | save_state_data(&hdr, sizeof(TwoPhaseFileHeader)); |
1043 | save_state_data(gxact->gid, hdr.gidlen); |
1044 | |
1045 | /* |
1046 | * Add the additional info about subxacts, deletable files and cache |
1047 | * invalidation messages. |
1048 | */ |
1049 | if (hdr.nsubxacts > 0) |
1050 | { |
1051 | save_state_data(children, hdr.nsubxacts * sizeof(TransactionId)); |
1052 | /* While we have the child-xact data, stuff it in the gxact too */ |
1053 | GXactLoadSubxactData(gxact, hdr.nsubxacts, children); |
1054 | } |
1055 | if (hdr.ncommitrels > 0) |
1056 | { |
1057 | save_state_data(commitrels, hdr.ncommitrels * sizeof(RelFileNode)); |
1058 | pfree(commitrels); |
1059 | } |
1060 | if (hdr.nabortrels > 0) |
1061 | { |
1062 | save_state_data(abortrels, hdr.nabortrels * sizeof(RelFileNode)); |
1063 | pfree(abortrels); |
1064 | } |
1065 | if (hdr.ninvalmsgs > 0) |
1066 | { |
1067 | save_state_data(invalmsgs, |
1068 | hdr.ninvalmsgs * sizeof(SharedInvalidationMessage)); |
1069 | pfree(invalmsgs); |
1070 | } |
1071 | } |
1072 | |
1073 | /* |
1074 | * Finish preparing state data and writing it to WAL. |
1075 | */ |
1076 | void |
1077 | EndPrepare(GlobalTransaction gxact) |
1078 | { |
1079 | TwoPhaseFileHeader *hdr; |
1080 | StateFileChunk *record; |
1081 | bool replorigin; |
1082 | |
1083 | /* Add the end sentinel to the list of 2PC records */ |
1084 | RegisterTwoPhaseRecord(TWOPHASE_RM_END_ID, 0, |
1085 | NULL, 0); |
1086 | |
1087 | /* Go back and fill in total_len in the file header record */ |
1088 | hdr = (TwoPhaseFileHeader *) records.head->data; |
1089 | Assert(hdr->magic == TWOPHASE_MAGIC); |
1090 | hdr->total_len = records.total_len + sizeof(pg_crc32c); |
1091 | |
1092 | replorigin = (replorigin_session_origin != InvalidRepOriginId && |
1093 | replorigin_session_origin != DoNotReplicateId); |
1094 | |
1095 | if (replorigin) |
1096 | { |
1097 | Assert(replorigin_session_origin_lsn != InvalidXLogRecPtr); |
1098 | hdr->origin_lsn = replorigin_session_origin_lsn; |
1099 | hdr->origin_timestamp = replorigin_session_origin_timestamp; |
1100 | } |
1101 | else |
1102 | { |
1103 | hdr->origin_lsn = InvalidXLogRecPtr; |
1104 | hdr->origin_timestamp = 0; |
1105 | } |
1106 | |
1107 | /* |
1108 | * If the data size exceeds MaxAllocSize, we won't be able to read it in |
1109 | * ReadTwoPhaseFile. Check for that now, rather than fail in the case |
1110 | * where we write data to file and then re-read at commit time. |
1111 | */ |
1112 | if (hdr->total_len > MaxAllocSize) |
1113 | ereport(ERROR, |
1114 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
1115 | errmsg("two-phase state file maximum length exceeded" ))); |
1116 | |
1117 | /* |
1118 | * Now writing 2PC state data to WAL. We let the WAL's CRC protection |
1119 | * cover us, so no need to calculate a separate CRC. |
1120 | * |
1121 | * We have to set delayChkpt here, too; otherwise a checkpoint starting |
1122 | * immediately after the WAL record is inserted could complete without |
1123 | * fsync'ing our state file. (This is essentially the same kind of race |
1124 | * condition as the COMMIT-to-clog-write case that RecordTransactionCommit |
1125 | * uses delayChkpt for; see notes there.) |
1126 | * |
1127 | * We save the PREPARE record's location in the gxact for later use by |
1128 | * CheckPointTwoPhase. |
1129 | */ |
1130 | XLogEnsureRecordSpace(0, records.num_chunks); |
1131 | |
1132 | START_CRIT_SECTION(); |
1133 | |
1134 | MyPgXact->delayChkpt = true; |
1135 | |
1136 | XLogBeginInsert(); |
1137 | for (record = records.head; record != NULL; record = record->next) |
1138 | XLogRegisterData(record->data, record->len); |
1139 | |
1140 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
1141 | |
1142 | gxact->prepare_end_lsn = XLogInsert(RM_XACT_ID, XLOG_XACT_PREPARE); |
1143 | |
1144 | if (replorigin) |
1145 | { |
1146 | /* Move LSNs forward for this replication origin */ |
1147 | replorigin_session_advance(replorigin_session_origin_lsn, |
1148 | gxact->prepare_end_lsn); |
1149 | } |
1150 | |
1151 | XLogFlush(gxact->prepare_end_lsn); |
1152 | |
1153 | /* If we crash now, we have prepared: WAL replay will fix things */ |
1154 | |
1155 | /* Store record's start location to read that later on Commit */ |
1156 | gxact->prepare_start_lsn = ProcLastRecPtr; |
1157 | |
1158 | /* |
1159 | * Mark the prepared transaction as valid. As soon as xact.c marks |
1160 | * MyPgXact as not running our XID (which it will do immediately after |
1161 | * this function returns), others can commit/rollback the xact. |
1162 | * |
1163 | * NB: a side effect of this is to make a dummy ProcArray entry for the |
1164 | * prepared XID. This must happen before we clear the XID from MyPgXact, |
1165 | * else there is a window where the XID is not running according to |
1166 | * TransactionIdIsInProgress, and onlookers would be entitled to assume |
1167 | * the xact crashed. Instead we have a window where the same XID appears |
1168 | * twice in ProcArray, which is OK. |
1169 | */ |
1170 | MarkAsPrepared(gxact, false); |
1171 | |
1172 | /* |
1173 | * Now we can mark ourselves as out of the commit critical section: a |
1174 | * checkpoint starting after this will certainly see the gxact as a |
1175 | * candidate for fsyncing. |
1176 | */ |
1177 | MyPgXact->delayChkpt = false; |
1178 | |
1179 | /* |
1180 | * Remember that we have this GlobalTransaction entry locked for us. If |
1181 | * we crash after this point, it's too late to abort, but we must unlock |
1182 | * it so that the prepared transaction can be committed or rolled back. |
1183 | */ |
1184 | MyLockedGxact = gxact; |
1185 | |
1186 | END_CRIT_SECTION(); |
1187 | |
1188 | /* |
1189 | * Wait for synchronous replication, if required. |
1190 | * |
1191 | * Note that at this stage we have marked the prepare, but still show as |
1192 | * running in the procarray (twice!) and continue to hold locks. |
1193 | */ |
1194 | SyncRepWaitForLSN(gxact->prepare_end_lsn, false); |
1195 | |
1196 | records.tail = records.head = NULL; |
1197 | records.num_chunks = 0; |
1198 | } |
1199 | |
1200 | /* |
1201 | * Register a 2PC record to be written to state file. |
1202 | */ |
1203 | void |
1204 | RegisterTwoPhaseRecord(TwoPhaseRmgrId rmid, uint16 info, |
1205 | const void *data, uint32 len) |
1206 | { |
1207 | TwoPhaseRecordOnDisk record; |
1208 | |
1209 | record.rmid = rmid; |
1210 | record.info = info; |
1211 | record.len = len; |
1212 | save_state_data(&record, sizeof(TwoPhaseRecordOnDisk)); |
1213 | if (len > 0) |
1214 | save_state_data(data, len); |
1215 | } |
1216 | |
1217 | |
1218 | /* |
1219 | * Read and validate the state file for xid. |
1220 | * |
1221 | * If it looks OK (has a valid magic number and CRC), return the palloc'd |
1222 | * contents of the file, issuing an error when finding corrupted data. If |
1223 | * missing_ok is true, which indicates that missing files can be safely |
1224 | * ignored, then return NULL. This state can be reached when doing recovery. |
1225 | */ |
1226 | static char * |
1227 | ReadTwoPhaseFile(TransactionId xid, bool missing_ok) |
1228 | { |
1229 | char path[MAXPGPATH]; |
1230 | char *buf; |
1231 | TwoPhaseFileHeader *hdr; |
1232 | int fd; |
1233 | struct stat stat; |
1234 | uint32 crc_offset; |
1235 | pg_crc32c calc_crc, |
1236 | file_crc; |
1237 | int r; |
1238 | |
1239 | TwoPhaseFilePath(path, xid); |
1240 | |
1241 | fd = OpenTransientFile(path, O_RDONLY | PG_BINARY); |
1242 | if (fd < 0) |
1243 | { |
1244 | if (missing_ok && errno == ENOENT) |
1245 | return NULL; |
1246 | |
1247 | ereport(ERROR, |
1248 | (errcode_for_file_access(), |
1249 | errmsg("could not open file \"%s\": %m" , path))); |
1250 | } |
1251 | |
1252 | /* |
1253 | * Check file length. We can determine a lower bound pretty easily. We |
1254 | * set an upper bound to avoid palloc() failure on a corrupt file, though |
1255 | * we can't guarantee that we won't get an out of memory error anyway, |
1256 | * even on a valid file. |
1257 | */ |
1258 | if (fstat(fd, &stat)) |
1259 | ereport(ERROR, |
1260 | (errcode_for_file_access(), |
1261 | errmsg("could not stat file \"%s\": %m" , path))); |
1262 | |
1263 | if (stat.st_size < (MAXALIGN(sizeof(TwoPhaseFileHeader)) + |
1264 | MAXALIGN(sizeof(TwoPhaseRecordOnDisk)) + |
1265 | sizeof(pg_crc32c)) || |
1266 | stat.st_size > MaxAllocSize) |
1267 | ereport(ERROR, |
1268 | (errcode(ERRCODE_DATA_CORRUPTED), |
1269 | errmsg_plural("incorrect size of file \"%s\": %zu byte" , |
1270 | "incorrect size of file \"%s\": %zu bytes" , |
1271 | (Size) stat.st_size, path, |
1272 | (Size) stat.st_size))); |
1273 | |
1274 | crc_offset = stat.st_size - sizeof(pg_crc32c); |
1275 | if (crc_offset != MAXALIGN(crc_offset)) |
1276 | ereport(ERROR, |
1277 | (errcode(ERRCODE_DATA_CORRUPTED), |
1278 | errmsg("incorrect alignment of CRC offset for file \"%s\"" , |
1279 | path))); |
1280 | |
1281 | /* |
1282 | * OK, slurp in the file. |
1283 | */ |
1284 | buf = (char *) palloc(stat.st_size); |
1285 | |
1286 | pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_READ); |
1287 | r = read(fd, buf, stat.st_size); |
1288 | if (r != stat.st_size) |
1289 | { |
1290 | if (r < 0) |
1291 | ereport(ERROR, |
1292 | (errcode_for_file_access(), |
1293 | errmsg("could not read file \"%s\": %m" , path))); |
1294 | else |
1295 | ereport(ERROR, |
1296 | (errmsg("could not read file \"%s\": read %d of %zu" , |
1297 | path, r, (Size) stat.st_size))); |
1298 | } |
1299 | |
1300 | pgstat_report_wait_end(); |
1301 | |
1302 | if (CloseTransientFile(fd)) |
1303 | ereport(ERROR, |
1304 | (errcode_for_file_access(), |
1305 | errmsg("could not close file \"%s\": %m" , path))); |
1306 | |
1307 | hdr = (TwoPhaseFileHeader *) buf; |
1308 | if (hdr->magic != TWOPHASE_MAGIC) |
1309 | ereport(ERROR, |
1310 | (errcode(ERRCODE_DATA_CORRUPTED), |
1311 | errmsg("invalid magic number stored in file \"%s\"" , |
1312 | path))); |
1313 | |
1314 | if (hdr->total_len != stat.st_size) |
1315 | ereport(ERROR, |
1316 | (errcode(ERRCODE_DATA_CORRUPTED), |
1317 | errmsg("invalid size stored in file \"%s\"" , |
1318 | path))); |
1319 | |
1320 | INIT_CRC32C(calc_crc); |
1321 | COMP_CRC32C(calc_crc, buf, crc_offset); |
1322 | FIN_CRC32C(calc_crc); |
1323 | |
1324 | file_crc = *((pg_crc32c *) (buf + crc_offset)); |
1325 | |
1326 | if (!EQ_CRC32C(calc_crc, file_crc)) |
1327 | ereport(ERROR, |
1328 | (errcode(ERRCODE_DATA_CORRUPTED), |
1329 | errmsg("calculated CRC checksum does not match value stored in file \"%s\"" , |
1330 | path))); |
1331 | |
1332 | return buf; |
1333 | } |
1334 | |
1335 | /* |
1336 | * ParsePrepareRecord |
1337 | */ |
1338 | void |
1339 | ParsePrepareRecord(uint8 info, char *xlrec, xl_xact_parsed_prepare *parsed) |
1340 | { |
1341 | TwoPhaseFileHeader *hdr; |
1342 | char *bufptr; |
1343 | |
1344 | hdr = (TwoPhaseFileHeader *) xlrec; |
1345 | bufptr = xlrec + MAXALIGN(sizeof(TwoPhaseFileHeader)); |
1346 | |
1347 | parsed->origin_lsn = hdr->origin_lsn; |
1348 | parsed->origin_timestamp = hdr->origin_timestamp; |
1349 | parsed->twophase_xid = hdr->xid; |
1350 | parsed->dbId = hdr->database; |
1351 | parsed->nsubxacts = hdr->nsubxacts; |
1352 | parsed->nrels = hdr->ncommitrels; |
1353 | parsed->nabortrels = hdr->nabortrels; |
1354 | parsed->nmsgs = hdr->ninvalmsgs; |
1355 | |
1356 | strncpy(parsed->twophase_gid, bufptr, hdr->gidlen); |
1357 | bufptr += MAXALIGN(hdr->gidlen); |
1358 | |
1359 | parsed->subxacts = (TransactionId *) bufptr; |
1360 | bufptr += MAXALIGN(hdr->nsubxacts * sizeof(TransactionId)); |
1361 | |
1362 | parsed->xnodes = (RelFileNode *) bufptr; |
1363 | bufptr += MAXALIGN(hdr->ncommitrels * sizeof(RelFileNode)); |
1364 | |
1365 | parsed->abortnodes = (RelFileNode *) bufptr; |
1366 | bufptr += MAXALIGN(hdr->nabortrels * sizeof(RelFileNode)); |
1367 | |
1368 | parsed->msgs = (SharedInvalidationMessage *) bufptr; |
1369 | bufptr += MAXALIGN(hdr->ninvalmsgs * sizeof(SharedInvalidationMessage)); |
1370 | } |
1371 | |
1372 | |
1373 | |
1374 | /* |
1375 | * Reads 2PC data from xlog. During checkpoint this data will be moved to |
1376 | * twophase files and ReadTwoPhaseFile should be used instead. |
1377 | * |
1378 | * Note clearly that this function can access WAL during normal operation, |
1379 | * similarly to the way WALSender or Logical Decoding would do. |
1380 | * |
1381 | */ |
1382 | static void |
1383 | XlogReadTwoPhaseData(XLogRecPtr lsn, char **buf, int *len) |
1384 | { |
1385 | XLogRecord *record; |
1386 | XLogReaderState *xlogreader; |
1387 | char *errormsg; |
1388 | |
1389 | xlogreader = XLogReaderAllocate(wal_segment_size, &read_local_xlog_page, |
1390 | NULL); |
1391 | if (!xlogreader) |
1392 | ereport(ERROR, |
1393 | (errcode(ERRCODE_OUT_OF_MEMORY), |
1394 | errmsg("out of memory" ), |
1395 | errdetail("Failed while allocating a WAL reading processor." ))); |
1396 | |
1397 | record = XLogReadRecord(xlogreader, lsn, &errormsg); |
1398 | if (record == NULL) |
1399 | ereport(ERROR, |
1400 | (errcode_for_file_access(), |
1401 | errmsg("could not read two-phase state from WAL at %X/%X" , |
1402 | (uint32) (lsn >> 32), |
1403 | (uint32) lsn))); |
1404 | |
1405 | if (XLogRecGetRmid(xlogreader) != RM_XACT_ID || |
1406 | (XLogRecGetInfo(xlogreader) & XLOG_XACT_OPMASK) != XLOG_XACT_PREPARE) |
1407 | ereport(ERROR, |
1408 | (errcode_for_file_access(), |
1409 | errmsg("expected two-phase state data is not present in WAL at %X/%X" , |
1410 | (uint32) (lsn >> 32), |
1411 | (uint32) lsn))); |
1412 | |
1413 | if (len != NULL) |
1414 | *len = XLogRecGetDataLen(xlogreader); |
1415 | |
1416 | *buf = palloc(sizeof(char) * XLogRecGetDataLen(xlogreader)); |
1417 | memcpy(*buf, XLogRecGetData(xlogreader), sizeof(char) * XLogRecGetDataLen(xlogreader)); |
1418 | |
1419 | XLogReaderFree(xlogreader); |
1420 | } |
1421 | |
1422 | |
1423 | /* |
1424 | * Confirms an xid is prepared, during recovery |
1425 | */ |
1426 | bool |
1427 | StandbyTransactionIdIsPrepared(TransactionId xid) |
1428 | { |
1429 | char *buf; |
1430 | TwoPhaseFileHeader *hdr; |
1431 | bool result; |
1432 | |
1433 | Assert(TransactionIdIsValid(xid)); |
1434 | |
1435 | if (max_prepared_xacts <= 0) |
1436 | return false; /* nothing to do */ |
1437 | |
1438 | /* Read and validate file */ |
1439 | buf = ReadTwoPhaseFile(xid, true); |
1440 | if (buf == NULL) |
1441 | return false; |
1442 | |
1443 | /* Check header also */ |
1444 | hdr = (TwoPhaseFileHeader *) buf; |
1445 | result = TransactionIdEquals(hdr->xid, xid); |
1446 | pfree(buf); |
1447 | |
1448 | return result; |
1449 | } |
1450 | |
1451 | /* |
1452 | * FinishPreparedTransaction: execute COMMIT PREPARED or ROLLBACK PREPARED |
1453 | */ |
1454 | void |
1455 | FinishPreparedTransaction(const char *gid, bool isCommit) |
1456 | { |
1457 | GlobalTransaction gxact; |
1458 | PGPROC *proc; |
1459 | PGXACT *pgxact; |
1460 | TransactionId xid; |
1461 | char *buf; |
1462 | char *bufptr; |
1463 | TwoPhaseFileHeader *hdr; |
1464 | TransactionId latestXid; |
1465 | TransactionId *children; |
1466 | RelFileNode *commitrels; |
1467 | RelFileNode *abortrels; |
1468 | RelFileNode *delrels; |
1469 | int ndelrels; |
1470 | SharedInvalidationMessage *invalmsgs; |
1471 | |
1472 | /* |
1473 | * Validate the GID, and lock the GXACT to ensure that two backends do not |
1474 | * try to commit the same GID at once. |
1475 | */ |
1476 | gxact = LockGXact(gid, GetUserId()); |
1477 | proc = &ProcGlobal->allProcs[gxact->pgprocno]; |
1478 | pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; |
1479 | xid = pgxact->xid; |
1480 | |
1481 | /* |
1482 | * Read and validate 2PC state data. State data will typically be stored |
1483 | * in WAL files if the LSN is after the last checkpoint record, or moved |
1484 | * to disk if for some reason they have lived for a long time. |
1485 | */ |
1486 | if (gxact->ondisk) |
1487 | buf = ReadTwoPhaseFile(xid, false); |
1488 | else |
1489 | XlogReadTwoPhaseData(gxact->prepare_start_lsn, &buf, NULL); |
1490 | |
1491 | |
1492 | /* |
1493 | * Disassemble the header area |
1494 | */ |
1495 | hdr = (TwoPhaseFileHeader *) buf; |
1496 | Assert(TransactionIdEquals(hdr->xid, xid)); |
1497 | bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader)); |
1498 | bufptr += MAXALIGN(hdr->gidlen); |
1499 | children = (TransactionId *) bufptr; |
1500 | bufptr += MAXALIGN(hdr->nsubxacts * sizeof(TransactionId)); |
1501 | commitrels = (RelFileNode *) bufptr; |
1502 | bufptr += MAXALIGN(hdr->ncommitrels * sizeof(RelFileNode)); |
1503 | abortrels = (RelFileNode *) bufptr; |
1504 | bufptr += MAXALIGN(hdr->nabortrels * sizeof(RelFileNode)); |
1505 | invalmsgs = (SharedInvalidationMessage *) bufptr; |
1506 | bufptr += MAXALIGN(hdr->ninvalmsgs * sizeof(SharedInvalidationMessage)); |
1507 | |
1508 | /* compute latestXid among all children */ |
1509 | latestXid = TransactionIdLatest(xid, hdr->nsubxacts, children); |
1510 | |
1511 | /* Prevent cancel/die interrupt while cleaning up */ |
1512 | HOLD_INTERRUPTS(); |
1513 | |
1514 | /* |
1515 | * The order of operations here is critical: make the XLOG entry for |
1516 | * commit or abort, then mark the transaction committed or aborted in |
1517 | * pg_xact, then remove its PGPROC from the global ProcArray (which means |
1518 | * TransactionIdIsInProgress will stop saying the prepared xact is in |
1519 | * progress), then run the post-commit or post-abort callbacks. The |
1520 | * callbacks will release the locks the transaction held. |
1521 | */ |
1522 | if (isCommit) |
1523 | RecordTransactionCommitPrepared(xid, |
1524 | hdr->nsubxacts, children, |
1525 | hdr->ncommitrels, commitrels, |
1526 | hdr->ninvalmsgs, invalmsgs, |
1527 | hdr->initfileinval, gid); |
1528 | else |
1529 | RecordTransactionAbortPrepared(xid, |
1530 | hdr->nsubxacts, children, |
1531 | hdr->nabortrels, abortrels, |
1532 | gid); |
1533 | |
1534 | ProcArrayRemove(proc, latestXid); |
1535 | |
1536 | /* |
1537 | * In case we fail while running the callbacks, mark the gxact invalid so |
1538 | * no one else will try to commit/rollback, and so it will be recycled if |
1539 | * we fail after this point. It is still locked by our backend so it |
1540 | * won't go away yet. |
1541 | * |
1542 | * (We assume it's safe to do this without taking TwoPhaseStateLock.) |
1543 | */ |
1544 | gxact->valid = false; |
1545 | |
1546 | /* |
1547 | * We have to remove any files that were supposed to be dropped. For |
1548 | * consistency with the regular xact.c code paths, must do this before |
1549 | * releasing locks, so do it before running the callbacks. |
1550 | * |
1551 | * NB: this code knows that we couldn't be dropping any temp rels ... |
1552 | */ |
1553 | if (isCommit) |
1554 | { |
1555 | delrels = commitrels; |
1556 | ndelrels = hdr->ncommitrels; |
1557 | } |
1558 | else |
1559 | { |
1560 | delrels = abortrels; |
1561 | ndelrels = hdr->nabortrels; |
1562 | } |
1563 | |
1564 | /* Make sure files supposed to be dropped are dropped */ |
1565 | DropRelationFiles(delrels, ndelrels, false); |
1566 | |
1567 | /* |
1568 | * Handle cache invalidation messages. |
1569 | * |
1570 | * Relcache init file invalidation requires processing both before and |
1571 | * after we send the SI messages. See AtEOXact_Inval() |
1572 | */ |
1573 | if (hdr->initfileinval) |
1574 | RelationCacheInitFilePreInvalidate(); |
1575 | SendSharedInvalidMessages(invalmsgs, hdr->ninvalmsgs); |
1576 | if (hdr->initfileinval) |
1577 | RelationCacheInitFilePostInvalidate(); |
1578 | |
1579 | /* |
1580 | * Acquire the two-phase lock. We want to work on the two-phase callbacks |
1581 | * while holding it to avoid potential conflicts with other transactions |
1582 | * attempting to use the same GID, so the lock is released once the shared |
1583 | * memory state is cleared. |
1584 | */ |
1585 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
1586 | |
1587 | /* And now do the callbacks */ |
1588 | if (isCommit) |
1589 | ProcessRecords(bufptr, xid, twophase_postcommit_callbacks); |
1590 | else |
1591 | ProcessRecords(bufptr, xid, twophase_postabort_callbacks); |
1592 | |
1593 | PredicateLockTwoPhaseFinish(xid, isCommit); |
1594 | |
1595 | /* Clear shared memory state */ |
1596 | RemoveGXact(gxact); |
1597 | |
1598 | /* |
1599 | * Release the lock as all callbacks are called and shared memory cleanup |
1600 | * is done. |
1601 | */ |
1602 | LWLockRelease(TwoPhaseStateLock); |
1603 | |
1604 | /* Count the prepared xact as committed or aborted */ |
1605 | AtEOXact_PgStat(isCommit, false); |
1606 | |
1607 | /* |
1608 | * And now we can clean up any files we may have left. |
1609 | */ |
1610 | if (gxact->ondisk) |
1611 | RemoveTwoPhaseFile(xid, true); |
1612 | |
1613 | MyLockedGxact = NULL; |
1614 | |
1615 | RESUME_INTERRUPTS(); |
1616 | |
1617 | pfree(buf); |
1618 | } |
1619 | |
1620 | /* |
1621 | * Scan 2PC state data in memory and call the indicated callbacks for each 2PC record. |
1622 | */ |
1623 | static void |
1624 | ProcessRecords(char *bufptr, TransactionId xid, |
1625 | const TwoPhaseCallback callbacks[]) |
1626 | { |
1627 | for (;;) |
1628 | { |
1629 | TwoPhaseRecordOnDisk *record = (TwoPhaseRecordOnDisk *) bufptr; |
1630 | |
1631 | Assert(record->rmid <= TWOPHASE_RM_MAX_ID); |
1632 | if (record->rmid == TWOPHASE_RM_END_ID) |
1633 | break; |
1634 | |
1635 | bufptr += MAXALIGN(sizeof(TwoPhaseRecordOnDisk)); |
1636 | |
1637 | if (callbacks[record->rmid] != NULL) |
1638 | callbacks[record->rmid] (xid, record->info, |
1639 | (void *) bufptr, record->len); |
1640 | |
1641 | bufptr += MAXALIGN(record->len); |
1642 | } |
1643 | } |
1644 | |
1645 | /* |
1646 | * Remove the 2PC file for the specified XID. |
1647 | * |
1648 | * If giveWarning is false, do not complain about file-not-present; |
1649 | * this is an expected case during WAL replay. |
1650 | */ |
1651 | static void |
1652 | RemoveTwoPhaseFile(TransactionId xid, bool giveWarning) |
1653 | { |
1654 | char path[MAXPGPATH]; |
1655 | |
1656 | TwoPhaseFilePath(path, xid); |
1657 | if (unlink(path)) |
1658 | if (errno != ENOENT || giveWarning) |
1659 | ereport(WARNING, |
1660 | (errcode_for_file_access(), |
1661 | errmsg("could not remove file \"%s\": %m" , path))); |
1662 | } |
1663 | |
1664 | /* |
1665 | * Recreates a state file. This is used in WAL replay and during |
1666 | * checkpoint creation. |
1667 | * |
1668 | * Note: content and len don't include CRC. |
1669 | */ |
1670 | static void |
1671 | RecreateTwoPhaseFile(TransactionId xid, void *content, int len) |
1672 | { |
1673 | char path[MAXPGPATH]; |
1674 | pg_crc32c statefile_crc; |
1675 | int fd; |
1676 | |
1677 | /* Recompute CRC */ |
1678 | INIT_CRC32C(statefile_crc); |
1679 | COMP_CRC32C(statefile_crc, content, len); |
1680 | FIN_CRC32C(statefile_crc); |
1681 | |
1682 | TwoPhaseFilePath(path, xid); |
1683 | |
1684 | fd = OpenTransientFile(path, |
1685 | O_CREAT | O_TRUNC | O_WRONLY | PG_BINARY); |
1686 | if (fd < 0) |
1687 | ereport(ERROR, |
1688 | (errcode_for_file_access(), |
1689 | errmsg("could not recreate file \"%s\": %m" , path))); |
1690 | |
1691 | /* Write content and CRC */ |
1692 | errno = 0; |
1693 | pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_WRITE); |
1694 | if (write(fd, content, len) != len) |
1695 | { |
1696 | /* if write didn't set errno, assume problem is no disk space */ |
1697 | if (errno == 0) |
1698 | errno = ENOSPC; |
1699 | ereport(ERROR, |
1700 | (errcode_for_file_access(), |
1701 | errmsg("could not write file \"%s\": %m" , path))); |
1702 | } |
1703 | if (write(fd, &statefile_crc, sizeof(pg_crc32c)) != sizeof(pg_crc32c)) |
1704 | { |
1705 | /* if write didn't set errno, assume problem is no disk space */ |
1706 | if (errno == 0) |
1707 | errno = ENOSPC; |
1708 | ereport(ERROR, |
1709 | (errcode_for_file_access(), |
1710 | errmsg("could not write file \"%s\": %m" , path))); |
1711 | } |
1712 | pgstat_report_wait_end(); |
1713 | |
1714 | /* |
1715 | * We must fsync the file because the end-of-replay checkpoint will not do |
1716 | * so, there being no GXACT in shared memory yet to tell it to. |
1717 | */ |
1718 | pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_SYNC); |
1719 | if (pg_fsync(fd) != 0) |
1720 | ereport(ERROR, |
1721 | (errcode_for_file_access(), |
1722 | errmsg("could not fsync file \"%s\": %m" , path))); |
1723 | pgstat_report_wait_end(); |
1724 | |
1725 | if (CloseTransientFile(fd) != 0) |
1726 | ereport(ERROR, |
1727 | (errcode_for_file_access(), |
1728 | errmsg("could not close file \"%s\": %m" , path))); |
1729 | } |
1730 | |
1731 | /* |
1732 | * CheckPointTwoPhase -- handle 2PC component of checkpointing. |
1733 | * |
1734 | * We must fsync the state file of any GXACT that is valid or has been |
1735 | * generated during redo and has a PREPARE LSN <= the checkpoint's redo |
1736 | * horizon. (If the gxact isn't valid yet, has not been generated in |
1737 | * redo, or has a later LSN, this checkpoint is not responsible for |
1738 | * fsyncing it.) |
1739 | * |
1740 | * This is deliberately run as late as possible in the checkpoint sequence, |
1741 | * because GXACTs ordinarily have short lifespans, and so it is quite |
1742 | * possible that GXACTs that were valid at checkpoint start will no longer |
1743 | * exist if we wait a little bit. With typical checkpoint settings this |
1744 | * will be about 3 minutes for an online checkpoint, so as a result we |
1745 | * expect that there will be no GXACTs that need to be copied to disk. |
1746 | * |
1747 | * If a GXACT remains valid across multiple checkpoints, it will already |
1748 | * be on disk so we don't bother to repeat that write. |
1749 | */ |
1750 | void |
1751 | CheckPointTwoPhase(XLogRecPtr redo_horizon) |
1752 | { |
1753 | int i; |
1754 | int serialized_xacts = 0; |
1755 | |
1756 | if (max_prepared_xacts <= 0) |
1757 | return; /* nothing to do */ |
1758 | |
1759 | TRACE_POSTGRESQL_TWOPHASE_CHECKPOINT_START(); |
1760 | |
1761 | /* |
1762 | * We are expecting there to be zero GXACTs that need to be copied to |
1763 | * disk, so we perform all I/O while holding TwoPhaseStateLock for |
1764 | * simplicity. This prevents any new xacts from preparing while this |
1765 | * occurs, which shouldn't be a problem since the presence of long-lived |
1766 | * prepared xacts indicates the transaction manager isn't active. |
1767 | * |
1768 | * It's also possible to move I/O out of the lock, but on every error we |
1769 | * should check whether somebody committed our transaction in different |
1770 | * backend. Let's leave this optimization for future, if somebody will |
1771 | * spot that this place cause bottleneck. |
1772 | * |
1773 | * Note that it isn't possible for there to be a GXACT with a |
1774 | * prepare_end_lsn set prior to the last checkpoint yet is marked invalid, |
1775 | * because of the efforts with delayChkpt. |
1776 | */ |
1777 | LWLockAcquire(TwoPhaseStateLock, LW_SHARED); |
1778 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
1779 | { |
1780 | /* |
1781 | * Note that we are using gxact not pgxact so this works in recovery |
1782 | * also |
1783 | */ |
1784 | GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; |
1785 | |
1786 | if ((gxact->valid || gxact->inredo) && |
1787 | !gxact->ondisk && |
1788 | gxact->prepare_end_lsn <= redo_horizon) |
1789 | { |
1790 | char *buf; |
1791 | int len; |
1792 | |
1793 | XlogReadTwoPhaseData(gxact->prepare_start_lsn, &buf, &len); |
1794 | RecreateTwoPhaseFile(gxact->xid, buf, len); |
1795 | gxact->ondisk = true; |
1796 | gxact->prepare_start_lsn = InvalidXLogRecPtr; |
1797 | gxact->prepare_end_lsn = InvalidXLogRecPtr; |
1798 | pfree(buf); |
1799 | serialized_xacts++; |
1800 | } |
1801 | } |
1802 | LWLockRelease(TwoPhaseStateLock); |
1803 | |
1804 | /* |
1805 | * Flush unconditionally the parent directory to make any information |
1806 | * durable on disk. Two-phase files could have been removed and those |
1807 | * removals need to be made persistent as well as any files newly created |
1808 | * previously since the last checkpoint. |
1809 | */ |
1810 | fsync_fname(TWOPHASE_DIR, true); |
1811 | |
1812 | TRACE_POSTGRESQL_TWOPHASE_CHECKPOINT_DONE(); |
1813 | |
1814 | if (log_checkpoints && serialized_xacts > 0) |
1815 | ereport(LOG, |
1816 | (errmsg_plural("%u two-phase state file was written " |
1817 | "for a long-running prepared transaction" , |
1818 | "%u two-phase state files were written " |
1819 | "for long-running prepared transactions" , |
1820 | serialized_xacts, |
1821 | serialized_xacts))); |
1822 | } |
1823 | |
1824 | /* |
1825 | * restoreTwoPhaseData |
1826 | * |
1827 | * Scan pg_twophase and fill TwoPhaseState depending on the on-disk data. |
1828 | * This is called once at the beginning of recovery, saving any extra |
1829 | * lookups in the future. Two-phase files that are newer than the |
1830 | * minimum XID horizon are discarded on the way. |
1831 | */ |
1832 | void |
1833 | restoreTwoPhaseData(void) |
1834 | { |
1835 | DIR *cldir; |
1836 | struct dirent *clde; |
1837 | |
1838 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
1839 | cldir = AllocateDir(TWOPHASE_DIR); |
1840 | while ((clde = ReadDir(cldir, TWOPHASE_DIR)) != NULL) |
1841 | { |
1842 | if (strlen(clde->d_name) == 8 && |
1843 | strspn(clde->d_name, "0123456789ABCDEF" ) == 8) |
1844 | { |
1845 | TransactionId xid; |
1846 | char *buf; |
1847 | |
1848 | xid = (TransactionId) strtoul(clde->d_name, NULL, 16); |
1849 | |
1850 | buf = ProcessTwoPhaseBuffer(xid, InvalidXLogRecPtr, |
1851 | true, false, false); |
1852 | if (buf == NULL) |
1853 | continue; |
1854 | |
1855 | PrepareRedoAdd(buf, InvalidXLogRecPtr, |
1856 | InvalidXLogRecPtr, InvalidRepOriginId); |
1857 | } |
1858 | } |
1859 | LWLockRelease(TwoPhaseStateLock); |
1860 | FreeDir(cldir); |
1861 | } |
1862 | |
1863 | /* |
1864 | * PrescanPreparedTransactions |
1865 | * |
1866 | * Scan the shared memory entries of TwoPhaseState and determine the range |
1867 | * of valid XIDs present. This is run during database startup, after we |
1868 | * have completed reading WAL. ShmemVariableCache->nextFullXid has been set to |
1869 | * one more than the highest XID for which evidence exists in WAL. |
1870 | * |
1871 | * We throw away any prepared xacts with main XID beyond nextFullXid --- if any |
1872 | * are present, it suggests that the DBA has done a PITR recovery to an |
1873 | * earlier point in time without cleaning out pg_twophase. We dare not |
1874 | * try to recover such prepared xacts since they likely depend on database |
1875 | * state that doesn't exist now. |
1876 | * |
1877 | * However, we will advance nextFullXid beyond any subxact XIDs belonging to |
1878 | * valid prepared xacts. We need to do this since subxact commit doesn't |
1879 | * write a WAL entry, and so there might be no evidence in WAL of those |
1880 | * subxact XIDs. |
1881 | * |
1882 | * On corrupted two-phase files, fail immediately. Keeping around broken |
1883 | * entries and let replay continue causes harm on the system, and a new |
1884 | * backup should be rolled in. |
1885 | * |
1886 | * Our other responsibility is to determine and return the oldest valid XID |
1887 | * among the prepared xacts (if none, return ShmemVariableCache->nextFullXid). |
1888 | * This is needed to synchronize pg_subtrans startup properly. |
1889 | * |
1890 | * If xids_p and nxids_p are not NULL, pointer to a palloc'd array of all |
1891 | * top-level xids is stored in *xids_p. The number of entries in the array |
1892 | * is returned in *nxids_p. |
1893 | */ |
1894 | TransactionId |
1895 | PrescanPreparedTransactions(TransactionId **xids_p, int *nxids_p) |
1896 | { |
1897 | FullTransactionId nextFullXid = ShmemVariableCache->nextFullXid; |
1898 | TransactionId origNextXid = XidFromFullTransactionId(nextFullXid); |
1899 | TransactionId result = origNextXid; |
1900 | TransactionId *xids = NULL; |
1901 | int nxids = 0; |
1902 | int allocsize = 0; |
1903 | int i; |
1904 | |
1905 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
1906 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
1907 | { |
1908 | TransactionId xid; |
1909 | char *buf; |
1910 | GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; |
1911 | |
1912 | Assert(gxact->inredo); |
1913 | |
1914 | xid = gxact->xid; |
1915 | |
1916 | buf = ProcessTwoPhaseBuffer(xid, |
1917 | gxact->prepare_start_lsn, |
1918 | gxact->ondisk, false, true); |
1919 | |
1920 | if (buf == NULL) |
1921 | continue; |
1922 | |
1923 | /* |
1924 | * OK, we think this file is valid. Incorporate xid into the |
1925 | * running-minimum result. |
1926 | */ |
1927 | if (TransactionIdPrecedes(xid, result)) |
1928 | result = xid; |
1929 | |
1930 | if (xids_p) |
1931 | { |
1932 | if (nxids == allocsize) |
1933 | { |
1934 | if (nxids == 0) |
1935 | { |
1936 | allocsize = 10; |
1937 | xids = palloc(allocsize * sizeof(TransactionId)); |
1938 | } |
1939 | else |
1940 | { |
1941 | allocsize = allocsize * 2; |
1942 | xids = repalloc(xids, allocsize * sizeof(TransactionId)); |
1943 | } |
1944 | } |
1945 | xids[nxids++] = xid; |
1946 | } |
1947 | |
1948 | pfree(buf); |
1949 | } |
1950 | LWLockRelease(TwoPhaseStateLock); |
1951 | |
1952 | if (xids_p) |
1953 | { |
1954 | *xids_p = xids; |
1955 | *nxids_p = nxids; |
1956 | } |
1957 | |
1958 | return result; |
1959 | } |
1960 | |
1961 | /* |
1962 | * StandbyRecoverPreparedTransactions |
1963 | * |
1964 | * Scan the shared memory entries of TwoPhaseState and setup all the required |
1965 | * information to allow standby queries to treat prepared transactions as still |
1966 | * active. |
1967 | * |
1968 | * This is never called at the end of recovery - we use |
1969 | * RecoverPreparedTransactions() at that point. |
1970 | * |
1971 | * The lack of calls to SubTransSetParent() calls here is by design; |
1972 | * those calls are made by RecoverPreparedTransactions() at the end of recovery |
1973 | * for those xacts that need this. |
1974 | */ |
1975 | void |
1976 | StandbyRecoverPreparedTransactions(void) |
1977 | { |
1978 | int i; |
1979 | |
1980 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
1981 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
1982 | { |
1983 | TransactionId xid; |
1984 | char *buf; |
1985 | GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; |
1986 | |
1987 | Assert(gxact->inredo); |
1988 | |
1989 | xid = gxact->xid; |
1990 | |
1991 | buf = ProcessTwoPhaseBuffer(xid, |
1992 | gxact->prepare_start_lsn, |
1993 | gxact->ondisk, false, false); |
1994 | if (buf != NULL) |
1995 | pfree(buf); |
1996 | } |
1997 | LWLockRelease(TwoPhaseStateLock); |
1998 | } |
1999 | |
2000 | /* |
2001 | * RecoverPreparedTransactions |
2002 | * |
2003 | * Scan the shared memory entries of TwoPhaseState and reload the state for |
2004 | * each prepared transaction (reacquire locks, etc). |
2005 | * |
2006 | * This is run at the end of recovery, but before we allow backends to write |
2007 | * WAL. |
2008 | * |
2009 | * At the end of recovery the way we take snapshots will change. We now need |
2010 | * to mark all running transactions with their full SubTransSetParent() info |
2011 | * to allow normal snapshots to work correctly if snapshots overflow. |
2012 | * We do this here because by definition prepared transactions are the only |
2013 | * type of write transaction still running, so this is necessary and |
2014 | * complete. |
2015 | */ |
2016 | void |
2017 | RecoverPreparedTransactions(void) |
2018 | { |
2019 | int i; |
2020 | |
2021 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
2022 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
2023 | { |
2024 | TransactionId xid; |
2025 | char *buf; |
2026 | GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; |
2027 | char *bufptr; |
2028 | TwoPhaseFileHeader *hdr; |
2029 | TransactionId *subxids; |
2030 | const char *gid; |
2031 | |
2032 | xid = gxact->xid; |
2033 | |
2034 | /* |
2035 | * Reconstruct subtrans state for the transaction --- needed because |
2036 | * pg_subtrans is not preserved over a restart. Note that we are |
2037 | * linking all the subtransactions directly to the top-level XID; |
2038 | * there may originally have been a more complex hierarchy, but |
2039 | * there's no need to restore that exactly. It's possible that |
2040 | * SubTransSetParent has been set before, if the prepared transaction |
2041 | * generated xid assignment records. |
2042 | */ |
2043 | buf = ProcessTwoPhaseBuffer(xid, |
2044 | gxact->prepare_start_lsn, |
2045 | gxact->ondisk, true, false); |
2046 | if (buf == NULL) |
2047 | continue; |
2048 | |
2049 | ereport(LOG, |
2050 | (errmsg("recovering prepared transaction %u from shared memory" , xid))); |
2051 | |
2052 | hdr = (TwoPhaseFileHeader *) buf; |
2053 | Assert(TransactionIdEquals(hdr->xid, xid)); |
2054 | bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader)); |
2055 | gid = (const char *) bufptr; |
2056 | bufptr += MAXALIGN(hdr->gidlen); |
2057 | subxids = (TransactionId *) bufptr; |
2058 | bufptr += MAXALIGN(hdr->nsubxacts * sizeof(TransactionId)); |
2059 | bufptr += MAXALIGN(hdr->ncommitrels * sizeof(RelFileNode)); |
2060 | bufptr += MAXALIGN(hdr->nabortrels * sizeof(RelFileNode)); |
2061 | bufptr += MAXALIGN(hdr->ninvalmsgs * sizeof(SharedInvalidationMessage)); |
2062 | |
2063 | /* |
2064 | * Recreate its GXACT and dummy PGPROC. But, check whether it was |
2065 | * added in redo and already has a shmem entry for it. |
2066 | */ |
2067 | MarkAsPreparingGuts(gxact, xid, gid, |
2068 | hdr->prepared_at, |
2069 | hdr->owner, hdr->database); |
2070 | |
2071 | /* recovered, so reset the flag for entries generated by redo */ |
2072 | gxact->inredo = false; |
2073 | |
2074 | GXactLoadSubxactData(gxact, hdr->nsubxacts, subxids); |
2075 | MarkAsPrepared(gxact, true); |
2076 | |
2077 | LWLockRelease(TwoPhaseStateLock); |
2078 | |
2079 | /* |
2080 | * Recover other state (notably locks) using resource managers. |
2081 | */ |
2082 | ProcessRecords(bufptr, xid, twophase_recover_callbacks); |
2083 | |
2084 | /* |
2085 | * Release locks held by the standby process after we process each |
2086 | * prepared transaction. As a result, we don't need too many |
2087 | * additional locks at any one time. |
2088 | */ |
2089 | if (InHotStandby) |
2090 | StandbyReleaseLockTree(xid, hdr->nsubxacts, subxids); |
2091 | |
2092 | /* |
2093 | * We're done with recovering this transaction. Clear MyLockedGxact, |
2094 | * like we do in PrepareTransaction() during normal operation. |
2095 | */ |
2096 | PostPrepare_Twophase(); |
2097 | |
2098 | pfree(buf); |
2099 | |
2100 | LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); |
2101 | } |
2102 | |
2103 | LWLockRelease(TwoPhaseStateLock); |
2104 | } |
2105 | |
2106 | /* |
2107 | * ProcessTwoPhaseBuffer |
2108 | * |
2109 | * Given a transaction id, read it either from disk or read it directly |
2110 | * via shmem xlog record pointer using the provided "prepare_start_lsn". |
2111 | * |
2112 | * If setParent is true, set up subtransaction parent linkages. |
2113 | * |
2114 | * If setNextXid is true, set ShmemVariableCache->nextFullXid to the newest |
2115 | * value scanned. |
2116 | */ |
2117 | static char * |
2118 | ProcessTwoPhaseBuffer(TransactionId xid, |
2119 | XLogRecPtr prepare_start_lsn, |
2120 | bool fromdisk, |
2121 | bool setParent, bool setNextXid) |
2122 | { |
2123 | FullTransactionId nextFullXid = ShmemVariableCache->nextFullXid; |
2124 | TransactionId origNextXid = XidFromFullTransactionId(nextFullXid); |
2125 | TransactionId *subxids; |
2126 | char *buf; |
2127 | TwoPhaseFileHeader *hdr; |
2128 | int i; |
2129 | |
2130 | Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); |
2131 | |
2132 | if (!fromdisk) |
2133 | Assert(prepare_start_lsn != InvalidXLogRecPtr); |
2134 | |
2135 | /* Already processed? */ |
2136 | if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid)) |
2137 | { |
2138 | if (fromdisk) |
2139 | { |
2140 | ereport(WARNING, |
2141 | (errmsg("removing stale two-phase state file for transaction %u" , |
2142 | xid))); |
2143 | RemoveTwoPhaseFile(xid, true); |
2144 | } |
2145 | else |
2146 | { |
2147 | ereport(WARNING, |
2148 | (errmsg("removing stale two-phase state from memory for transaction %u" , |
2149 | xid))); |
2150 | PrepareRedoRemove(xid, true); |
2151 | } |
2152 | return NULL; |
2153 | } |
2154 | |
2155 | /* Reject XID if too new */ |
2156 | if (TransactionIdFollowsOrEquals(xid, origNextXid)) |
2157 | { |
2158 | if (fromdisk) |
2159 | { |
2160 | ereport(WARNING, |
2161 | (errmsg("removing future two-phase state file for transaction %u" , |
2162 | xid))); |
2163 | RemoveTwoPhaseFile(xid, true); |
2164 | } |
2165 | else |
2166 | { |
2167 | ereport(WARNING, |
2168 | (errmsg("removing future two-phase state from memory for transaction %u" , |
2169 | xid))); |
2170 | PrepareRedoRemove(xid, true); |
2171 | } |
2172 | return NULL; |
2173 | } |
2174 | |
2175 | if (fromdisk) |
2176 | { |
2177 | /* Read and validate file */ |
2178 | buf = ReadTwoPhaseFile(xid, false); |
2179 | } |
2180 | else |
2181 | { |
2182 | /* Read xlog data */ |
2183 | XlogReadTwoPhaseData(prepare_start_lsn, &buf, NULL); |
2184 | } |
2185 | |
2186 | /* Deconstruct header */ |
2187 | hdr = (TwoPhaseFileHeader *) buf; |
2188 | if (!TransactionIdEquals(hdr->xid, xid)) |
2189 | { |
2190 | if (fromdisk) |
2191 | ereport(ERROR, |
2192 | (errcode(ERRCODE_DATA_CORRUPTED), |
2193 | errmsg("corrupted two-phase state file for transaction %u" , |
2194 | xid))); |
2195 | else |
2196 | ereport(ERROR, |
2197 | (errcode(ERRCODE_DATA_CORRUPTED), |
2198 | errmsg("corrupted two-phase state in memory for transaction %u" , |
2199 | xid))); |
2200 | } |
2201 | |
2202 | /* |
2203 | * Examine subtransaction XIDs ... they should all follow main XID, and |
2204 | * they may force us to advance nextFullXid. |
2205 | */ |
2206 | subxids = (TransactionId *) (buf + |
2207 | MAXALIGN(sizeof(TwoPhaseFileHeader)) + |
2208 | MAXALIGN(hdr->gidlen)); |
2209 | for (i = 0; i < hdr->nsubxacts; i++) |
2210 | { |
2211 | TransactionId subxid = subxids[i]; |
2212 | |
2213 | Assert(TransactionIdFollows(subxid, xid)); |
2214 | |
2215 | /* update nextFullXid if needed */ |
2216 | if (setNextXid) |
2217 | AdvanceNextFullTransactionIdPastXid(subxid); |
2218 | |
2219 | if (setParent) |
2220 | SubTransSetParent(subxid, xid); |
2221 | } |
2222 | |
2223 | return buf; |
2224 | } |
2225 | |
2226 | |
2227 | /* |
2228 | * RecordTransactionCommitPrepared |
2229 | * |
2230 | * This is basically the same as RecordTransactionCommit (q.v. if you change |
2231 | * this function): in particular, we must set the delayChkpt flag to avoid a |
2232 | * race condition. |
2233 | * |
2234 | * We know the transaction made at least one XLOG entry (its PREPARE), |
2235 | * so it is never possible to optimize out the commit record. |
2236 | */ |
2237 | static void |
2238 | RecordTransactionCommitPrepared(TransactionId xid, |
2239 | int nchildren, |
2240 | TransactionId *children, |
2241 | int nrels, |
2242 | RelFileNode *rels, |
2243 | int ninvalmsgs, |
2244 | SharedInvalidationMessage *invalmsgs, |
2245 | bool initfileinval, |
2246 | const char *gid) |
2247 | { |
2248 | XLogRecPtr recptr; |
2249 | TimestampTz committs = GetCurrentTimestamp(); |
2250 | bool replorigin; |
2251 | |
2252 | /* |
2253 | * Are we using the replication origins feature? Or, in other words, are |
2254 | * we replaying remote actions? |
2255 | */ |
2256 | replorigin = (replorigin_session_origin != InvalidRepOriginId && |
2257 | replorigin_session_origin != DoNotReplicateId); |
2258 | |
2259 | START_CRIT_SECTION(); |
2260 | |
2261 | /* See notes in RecordTransactionCommit */ |
2262 | MyPgXact->delayChkpt = true; |
2263 | |
2264 | /* |
2265 | * Emit the XLOG commit record. Note that we mark 2PC commits as |
2266 | * potentially having AccessExclusiveLocks since we don't know whether or |
2267 | * not they do. |
2268 | */ |
2269 | recptr = XactLogCommitRecord(committs, |
2270 | nchildren, children, nrels, rels, |
2271 | ninvalmsgs, invalmsgs, |
2272 | initfileinval, false, |
2273 | MyXactFlags | XACT_FLAGS_ACQUIREDACCESSEXCLUSIVELOCK, |
2274 | xid, gid); |
2275 | |
2276 | |
2277 | if (replorigin) |
2278 | /* Move LSNs forward for this replication origin */ |
2279 | replorigin_session_advance(replorigin_session_origin_lsn, |
2280 | XactLastRecEnd); |
2281 | |
2282 | /* |
2283 | * Record commit timestamp. The value comes from plain commit timestamp |
2284 | * if replorigin is not enabled, or replorigin already set a value for us |
2285 | * in replorigin_session_origin_timestamp otherwise. |
2286 | * |
2287 | * We don't need to WAL-log anything here, as the commit record written |
2288 | * above already contains the data. |
2289 | */ |
2290 | if (!replorigin || replorigin_session_origin_timestamp == 0) |
2291 | replorigin_session_origin_timestamp = committs; |
2292 | |
2293 | TransactionTreeSetCommitTsData(xid, nchildren, children, |
2294 | replorigin_session_origin_timestamp, |
2295 | replorigin_session_origin, false); |
2296 | |
2297 | /* |
2298 | * We don't currently try to sleep before flush here ... nor is there any |
2299 | * support for async commit of a prepared xact (the very idea is probably |
2300 | * a contradiction) |
2301 | */ |
2302 | |
2303 | /* Flush XLOG to disk */ |
2304 | XLogFlush(recptr); |
2305 | |
2306 | /* Mark the transaction committed in pg_xact */ |
2307 | TransactionIdCommitTree(xid, nchildren, children); |
2308 | |
2309 | /* Checkpoint can proceed now */ |
2310 | MyPgXact->delayChkpt = false; |
2311 | |
2312 | END_CRIT_SECTION(); |
2313 | |
2314 | /* |
2315 | * Wait for synchronous replication, if required. |
2316 | * |
2317 | * Note that at this stage we have marked clog, but still show as running |
2318 | * in the procarray and continue to hold locks. |
2319 | */ |
2320 | SyncRepWaitForLSN(recptr, true); |
2321 | } |
2322 | |
2323 | /* |
2324 | * RecordTransactionAbortPrepared |
2325 | * |
2326 | * This is basically the same as RecordTransactionAbort. |
2327 | * |
2328 | * We know the transaction made at least one XLOG entry (its PREPARE), |
2329 | * so it is never possible to optimize out the abort record. |
2330 | */ |
2331 | static void |
2332 | RecordTransactionAbortPrepared(TransactionId xid, |
2333 | int nchildren, |
2334 | TransactionId *children, |
2335 | int nrels, |
2336 | RelFileNode *rels, |
2337 | const char *gid) |
2338 | { |
2339 | XLogRecPtr recptr; |
2340 | |
2341 | /* |
2342 | * Catch the scenario where we aborted partway through |
2343 | * RecordTransactionCommitPrepared ... |
2344 | */ |
2345 | if (TransactionIdDidCommit(xid)) |
2346 | elog(PANIC, "cannot abort transaction %u, it was already committed" , |
2347 | xid); |
2348 | |
2349 | START_CRIT_SECTION(); |
2350 | |
2351 | /* |
2352 | * Emit the XLOG commit record. Note that we mark 2PC aborts as |
2353 | * potentially having AccessExclusiveLocks since we don't know whether or |
2354 | * not they do. |
2355 | */ |
2356 | recptr = XactLogAbortRecord(GetCurrentTimestamp(), |
2357 | nchildren, children, |
2358 | nrels, rels, |
2359 | MyXactFlags | XACT_FLAGS_ACQUIREDACCESSEXCLUSIVELOCK, |
2360 | xid, gid); |
2361 | |
2362 | /* Always flush, since we're about to remove the 2PC state file */ |
2363 | XLogFlush(recptr); |
2364 | |
2365 | /* |
2366 | * Mark the transaction aborted in clog. This is not absolutely necessary |
2367 | * but we may as well do it while we are here. |
2368 | */ |
2369 | TransactionIdAbortTree(xid, nchildren, children); |
2370 | |
2371 | END_CRIT_SECTION(); |
2372 | |
2373 | /* |
2374 | * Wait for synchronous replication, if required. |
2375 | * |
2376 | * Note that at this stage we have marked clog, but still show as running |
2377 | * in the procarray and continue to hold locks. |
2378 | */ |
2379 | SyncRepWaitForLSN(recptr, false); |
2380 | } |
2381 | |
2382 | /* |
2383 | * PrepareRedoAdd |
2384 | * |
2385 | * Store pointers to the start/end of the WAL record along with the xid in |
2386 | * a gxact entry in shared memory TwoPhaseState structure. If caller |
2387 | * specifies InvalidXLogRecPtr as WAL location to fetch the two-phase |
2388 | * data, the entry is marked as located on disk. |
2389 | */ |
2390 | void |
2391 | PrepareRedoAdd(char *buf, XLogRecPtr start_lsn, |
2392 | XLogRecPtr end_lsn, RepOriginId origin_id) |
2393 | { |
2394 | TwoPhaseFileHeader *hdr = (TwoPhaseFileHeader *) buf; |
2395 | char *bufptr; |
2396 | const char *gid; |
2397 | GlobalTransaction gxact; |
2398 | |
2399 | Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); |
2400 | Assert(RecoveryInProgress()); |
2401 | |
2402 | bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader)); |
2403 | gid = (const char *) bufptr; |
2404 | |
2405 | /* |
2406 | * Reserve the GID for the given transaction in the redo code path. |
2407 | * |
2408 | * This creates a gxact struct and puts it into the active array. |
2409 | * |
2410 | * In redo, this struct is mainly used to track PREPARE/COMMIT entries in |
2411 | * shared memory. Hence, we only fill up the bare minimum contents here. |
2412 | * The gxact also gets marked with gxact->inredo set to true to indicate |
2413 | * that it got added in the redo phase |
2414 | */ |
2415 | |
2416 | /* Get a free gxact from the freelist */ |
2417 | if (TwoPhaseState->freeGXacts == NULL) |
2418 | ereport(ERROR, |
2419 | (errcode(ERRCODE_OUT_OF_MEMORY), |
2420 | errmsg("maximum number of prepared transactions reached" ), |
2421 | errhint("Increase max_prepared_transactions (currently %d)." , |
2422 | max_prepared_xacts))); |
2423 | gxact = TwoPhaseState->freeGXacts; |
2424 | TwoPhaseState->freeGXacts = gxact->next; |
2425 | |
2426 | gxact->prepared_at = hdr->prepared_at; |
2427 | gxact->prepare_start_lsn = start_lsn; |
2428 | gxact->prepare_end_lsn = end_lsn; |
2429 | gxact->xid = hdr->xid; |
2430 | gxact->owner = hdr->owner; |
2431 | gxact->locking_backend = InvalidBackendId; |
2432 | gxact->valid = false; |
2433 | gxact->ondisk = XLogRecPtrIsInvalid(start_lsn); |
2434 | gxact->inredo = true; /* yes, added in redo */ |
2435 | strcpy(gxact->gid, gid); |
2436 | |
2437 | /* And insert it into the active array */ |
2438 | Assert(TwoPhaseState->numPrepXacts < max_prepared_xacts); |
2439 | TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts++] = gxact; |
2440 | |
2441 | if (origin_id != InvalidRepOriginId) |
2442 | { |
2443 | /* recover apply progress */ |
2444 | replorigin_advance(origin_id, hdr->origin_lsn, end_lsn, |
2445 | false /* backward */ , false /* WAL */ ); |
2446 | } |
2447 | |
2448 | elog(DEBUG2, "added 2PC data in shared memory for transaction %u" , gxact->xid); |
2449 | } |
2450 | |
2451 | /* |
2452 | * PrepareRedoRemove |
2453 | * |
2454 | * Remove the corresponding gxact entry from TwoPhaseState. Also remove |
2455 | * the 2PC file if a prepared transaction was saved via an earlier checkpoint. |
2456 | * |
2457 | * Caller must hold TwoPhaseStateLock in exclusive mode, because TwoPhaseState |
2458 | * is updated. |
2459 | */ |
2460 | void |
2461 | PrepareRedoRemove(TransactionId xid, bool giveWarning) |
2462 | { |
2463 | GlobalTransaction gxact = NULL; |
2464 | int i; |
2465 | bool found = false; |
2466 | |
2467 | Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); |
2468 | Assert(RecoveryInProgress()); |
2469 | |
2470 | for (i = 0; i < TwoPhaseState->numPrepXacts; i++) |
2471 | { |
2472 | gxact = TwoPhaseState->prepXacts[i]; |
2473 | |
2474 | if (gxact->xid == xid) |
2475 | { |
2476 | Assert(gxact->inredo); |
2477 | found = true; |
2478 | break; |
2479 | } |
2480 | } |
2481 | |
2482 | /* |
2483 | * Just leave if there is nothing, this is expected during WAL replay. |
2484 | */ |
2485 | if (!found) |
2486 | return; |
2487 | |
2488 | /* |
2489 | * And now we can clean up any files we may have left. |
2490 | */ |
2491 | elog(DEBUG2, "removing 2PC data for transaction %u" , xid); |
2492 | if (gxact->ondisk) |
2493 | RemoveTwoPhaseFile(xid, giveWarning); |
2494 | RemoveGXact(gxact); |
2495 | |
2496 | return; |
2497 | } |
2498 | |