| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * execExprInterp.c |
| 4 | * Interpreted evaluation of an expression step list. |
| 5 | * |
| 6 | * This file provides either a "direct threaded" (for gcc, clang and |
| 7 | * compatible) or a "switch threaded" (for all compilers) implementation of |
| 8 | * expression evaluation. The former is amongst the fastest known methods |
| 9 | * of interpreting programs without resorting to assembly level work, or |
| 10 | * just-in-time compilation, but it requires support for computed gotos. |
| 11 | * The latter is amongst the fastest approaches doable in standard C. |
| 12 | * |
| 13 | * In either case we use ExprEvalStep->opcode to dispatch to the code block |
| 14 | * within ExecInterpExpr() that implements the specific opcode type. |
| 15 | * |
| 16 | * Switch-threading uses a plain switch() statement to perform the |
| 17 | * dispatch. This has the advantages of being plain C and allowing the |
| 18 | * compiler to warn if implementation of a specific opcode has been forgotten. |
| 19 | * The disadvantage is that dispatches will, as commonly implemented by |
| 20 | * compilers, happen from a single location, requiring more jumps and causing |
| 21 | * bad branch prediction. |
| 22 | * |
| 23 | * In direct threading, we use gcc's label-as-values extension - also adopted |
| 24 | * by some other compilers - to replace ExprEvalStep->opcode with the address |
| 25 | * of the block implementing the instruction. Dispatch to the next instruction |
| 26 | * is done by a "computed goto". This allows for better branch prediction |
| 27 | * (as the jumps are happening from different locations) and fewer jumps |
| 28 | * (as no preparatory jump to a common dispatch location is needed). |
| 29 | * |
| 30 | * When using direct threading, ExecReadyInterpretedExpr will replace |
| 31 | * each step's opcode field with the address of the relevant code block and |
| 32 | * ExprState->flags will contain EEO_FLAG_DIRECT_THREADED to remember that |
| 33 | * that's been done. |
| 34 | * |
| 35 | * For very simple instructions the overhead of the full interpreter |
| 36 | * "startup", as minimal as it is, is noticeable. Therefore |
| 37 | * ExecReadyInterpretedExpr will choose to implement certain simple |
| 38 | * opcode patterns using special fast-path routines (ExecJust*). |
| 39 | * |
| 40 | * Complex or uncommon instructions are not implemented in-line in |
| 41 | * ExecInterpExpr(), rather we call out to a helper function appearing later |
| 42 | * in this file. For one reason, there'd not be a noticeable performance |
| 43 | * benefit, but more importantly those complex routines are intended to be |
| 44 | * shared between different expression evaluation approaches. For instance |
| 45 | * a JIT compiler would generate calls to them. (This is why they are |
| 46 | * exported rather than being "static" in this file.) |
| 47 | * |
| 48 | * |
| 49 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 50 | * Portions Copyright (c) 1994, Regents of the University of California |
| 51 | * |
| 52 | * IDENTIFICATION |
| 53 | * src/backend/executor/execExprInterp.c |
| 54 | * |
| 55 | *------------------------------------------------------------------------- |
| 56 | */ |
| 57 | #include "postgres.h" |
| 58 | |
| 59 | #include "access/tuptoaster.h" |
| 60 | #include "catalog/pg_type.h" |
| 61 | #include "commands/sequence.h" |
| 62 | #include "executor/execExpr.h" |
| 63 | #include "executor/nodeSubplan.h" |
| 64 | #include "funcapi.h" |
| 65 | #include "utils/memutils.h" |
| 66 | #include "miscadmin.h" |
| 67 | #include "nodes/nodeFuncs.h" |
| 68 | #include "parser/parsetree.h" |
| 69 | #include "pgstat.h" |
| 70 | #include "utils/builtins.h" |
| 71 | #include "utils/date.h" |
| 72 | #include "utils/datum.h" |
| 73 | #include "utils/expandedrecord.h" |
| 74 | #include "utils/lsyscache.h" |
| 75 | #include "utils/timestamp.h" |
| 76 | #include "utils/typcache.h" |
| 77 | #include "utils/xml.h" |
| 78 | |
| 79 | |
| 80 | /* |
| 81 | * Use computed-goto-based opcode dispatch when computed gotos are available. |
| 82 | * But use a separate symbol so that it's easy to adjust locally in this file |
| 83 | * for development and testing. |
| 84 | */ |
| 85 | #ifdef HAVE_COMPUTED_GOTO |
| 86 | #define EEO_USE_COMPUTED_GOTO |
| 87 | #endif /* HAVE_COMPUTED_GOTO */ |
| 88 | |
| 89 | /* |
| 90 | * Macros for opcode dispatch. |
| 91 | * |
| 92 | * EEO_SWITCH - just hides the switch if not in use. |
| 93 | * EEO_CASE - labels the implementation of named expression step type. |
| 94 | * EEO_DISPATCH - jump to the implementation of the step type for 'op'. |
| 95 | * EEO_OPCODE - compute opcode required by used expression evaluation method. |
| 96 | * EEO_NEXT - increment 'op' and jump to correct next step type. |
| 97 | * EEO_JUMP - jump to the specified step number within the current expression. |
| 98 | */ |
| 99 | #if defined(EEO_USE_COMPUTED_GOTO) |
| 100 | |
| 101 | /* struct for jump target -> opcode lookup table */ |
| 102 | typedef struct ExprEvalOpLookup |
| 103 | { |
| 104 | const void *opcode; |
| 105 | ExprEvalOp op; |
| 106 | } ExprEvalOpLookup; |
| 107 | |
| 108 | /* to make dispatch_table accessible outside ExecInterpExpr() */ |
| 109 | static const void **dispatch_table = NULL; |
| 110 | |
| 111 | /* jump target -> opcode lookup table */ |
| 112 | static ExprEvalOpLookup reverse_dispatch_table[EEOP_LAST]; |
| 113 | |
| 114 | #define EEO_SWITCH() |
| 115 | #define EEO_CASE(name) CASE_##name: |
| 116 | #define EEO_DISPATCH() goto *((void *) op->opcode) |
| 117 | #define EEO_OPCODE(opcode) ((intptr_t) dispatch_table[opcode]) |
| 118 | |
| 119 | #else /* !EEO_USE_COMPUTED_GOTO */ |
| 120 | |
| 121 | #define EEO_SWITCH() starteval: switch ((ExprEvalOp) op->opcode) |
| 122 | #define EEO_CASE(name) case name: |
| 123 | #define EEO_DISPATCH() goto starteval |
| 124 | #define EEO_OPCODE(opcode) (opcode) |
| 125 | |
| 126 | #endif /* EEO_USE_COMPUTED_GOTO */ |
| 127 | |
| 128 | #define EEO_NEXT() \ |
| 129 | do { \ |
| 130 | op++; \ |
| 131 | EEO_DISPATCH(); \ |
| 132 | } while (0) |
| 133 | |
| 134 | #define EEO_JUMP(stepno) \ |
| 135 | do { \ |
| 136 | op = &state->steps[stepno]; \ |
| 137 | EEO_DISPATCH(); \ |
| 138 | } while (0) |
| 139 | |
| 140 | |
| 141 | static Datum ExecInterpExpr(ExprState *state, ExprContext *econtext, bool *isnull); |
| 142 | static void ExecInitInterpreter(void); |
| 143 | |
| 144 | /* support functions */ |
| 145 | static void CheckVarSlotCompatibility(TupleTableSlot *slot, int attnum, Oid vartype); |
| 146 | static void CheckOpSlotCompatibility(ExprEvalStep *op, TupleTableSlot *slot); |
| 147 | static TupleDesc get_cached_rowtype(Oid type_id, int32 typmod, |
| 148 | TupleDesc *cache_field, ExprContext *econtext); |
| 149 | static void ShutdownTupleDescRef(Datum arg); |
| 150 | static void ExecEvalRowNullInt(ExprState *state, ExprEvalStep *op, |
| 151 | ExprContext *econtext, bool checkisnull); |
| 152 | |
| 153 | /* fast-path evaluation functions */ |
| 154 | static Datum ExecJustInnerVar(ExprState *state, ExprContext *econtext, bool *isnull); |
| 155 | static Datum ExecJustOuterVar(ExprState *state, ExprContext *econtext, bool *isnull); |
| 156 | static Datum ExecJustScanVar(ExprState *state, ExprContext *econtext, bool *isnull); |
| 157 | static Datum ExecJustConst(ExprState *state, ExprContext *econtext, bool *isnull); |
| 158 | static Datum ExecJustAssignInnerVar(ExprState *state, ExprContext *econtext, bool *isnull); |
| 159 | static Datum ExecJustAssignOuterVar(ExprState *state, ExprContext *econtext, bool *isnull); |
| 160 | static Datum ExecJustAssignScanVar(ExprState *state, ExprContext *econtext, bool *isnull); |
| 161 | static Datum ExecJustApplyFuncToCase(ExprState *state, ExprContext *econtext, bool *isnull); |
| 162 | |
| 163 | |
| 164 | /* |
| 165 | * Prepare ExprState for interpreted execution. |
| 166 | */ |
| 167 | void |
| 168 | ExecReadyInterpretedExpr(ExprState *state) |
| 169 | { |
| 170 | /* Ensure one-time interpreter setup has been done */ |
| 171 | ExecInitInterpreter(); |
| 172 | |
| 173 | /* Simple validity checks on expression */ |
| 174 | Assert(state->steps_len >= 1); |
| 175 | Assert(state->steps[state->steps_len - 1].opcode == EEOP_DONE); |
| 176 | |
| 177 | /* |
| 178 | * Don't perform redundant initialization. This is unreachable in current |
| 179 | * cases, but might be hit if there's additional expression evaluation |
| 180 | * methods that rely on interpreted execution to work. |
| 181 | */ |
| 182 | if (state->flags & EEO_FLAG_INTERPRETER_INITIALIZED) |
| 183 | return; |
| 184 | |
| 185 | /* |
| 186 | * First time through, check whether attribute matches Var. Might not be |
| 187 | * ok anymore, due to schema changes. We do that by setting up a callback |
| 188 | * that does checking on the first call, which then sets the evalfunc |
| 189 | * callback to the actual method of execution. |
| 190 | */ |
| 191 | state->evalfunc = ExecInterpExprStillValid; |
| 192 | |
| 193 | /* DIRECT_THREADED should not already be set */ |
| 194 | Assert((state->flags & EEO_FLAG_DIRECT_THREADED) == 0); |
| 195 | |
| 196 | /* |
| 197 | * There shouldn't be any errors before the expression is fully |
| 198 | * initialized, and even if so, it'd lead to the expression being |
| 199 | * abandoned. So we can set the flag now and save some code. |
| 200 | */ |
| 201 | state->flags |= EEO_FLAG_INTERPRETER_INITIALIZED; |
| 202 | |
| 203 | /* |
| 204 | * Select fast-path evalfuncs for very simple expressions. "Starting up" |
| 205 | * the full interpreter is a measurable overhead for these, and these |
| 206 | * patterns occur often enough to be worth optimizing. |
| 207 | */ |
| 208 | if (state->steps_len == 3) |
| 209 | { |
| 210 | ExprEvalOp step0 = state->steps[0].opcode; |
| 211 | ExprEvalOp step1 = state->steps[1].opcode; |
| 212 | |
| 213 | if (step0 == EEOP_INNER_FETCHSOME && |
| 214 | step1 == EEOP_INNER_VAR) |
| 215 | { |
| 216 | state->evalfunc_private = (void *) ExecJustInnerVar; |
| 217 | return; |
| 218 | } |
| 219 | else if (step0 == EEOP_OUTER_FETCHSOME && |
| 220 | step1 == EEOP_OUTER_VAR) |
| 221 | { |
| 222 | state->evalfunc_private = (void *) ExecJustOuterVar; |
| 223 | return; |
| 224 | } |
| 225 | else if (step0 == EEOP_SCAN_FETCHSOME && |
| 226 | step1 == EEOP_SCAN_VAR) |
| 227 | { |
| 228 | state->evalfunc_private = (void *) ExecJustScanVar; |
| 229 | return; |
| 230 | } |
| 231 | else if (step0 == EEOP_INNER_FETCHSOME && |
| 232 | step1 == EEOP_ASSIGN_INNER_VAR) |
| 233 | { |
| 234 | state->evalfunc_private = (void *) ExecJustAssignInnerVar; |
| 235 | return; |
| 236 | } |
| 237 | else if (step0 == EEOP_OUTER_FETCHSOME && |
| 238 | step1 == EEOP_ASSIGN_OUTER_VAR) |
| 239 | { |
| 240 | state->evalfunc_private = (void *) ExecJustAssignOuterVar; |
| 241 | return; |
| 242 | } |
| 243 | else if (step0 == EEOP_SCAN_FETCHSOME && |
| 244 | step1 == EEOP_ASSIGN_SCAN_VAR) |
| 245 | { |
| 246 | state->evalfunc_private = (void *) ExecJustAssignScanVar; |
| 247 | return; |
| 248 | } |
| 249 | else if (step0 == EEOP_CASE_TESTVAL && |
| 250 | step1 == EEOP_FUNCEXPR_STRICT && |
| 251 | state->steps[0].d.casetest.value) |
| 252 | { |
| 253 | state->evalfunc_private = (void *) ExecJustApplyFuncToCase; |
| 254 | return; |
| 255 | } |
| 256 | } |
| 257 | else if (state->steps_len == 2 && |
| 258 | state->steps[0].opcode == EEOP_CONST) |
| 259 | { |
| 260 | state->evalfunc_private = (void *) ExecJustConst; |
| 261 | return; |
| 262 | } |
| 263 | |
| 264 | #if defined(EEO_USE_COMPUTED_GOTO) |
| 265 | |
| 266 | /* |
| 267 | * In the direct-threaded implementation, replace each opcode with the |
| 268 | * address to jump to. (Use ExecEvalStepOp() to get back the opcode.) |
| 269 | */ |
| 270 | { |
| 271 | int off; |
| 272 | |
| 273 | for (off = 0; off < state->steps_len; off++) |
| 274 | { |
| 275 | ExprEvalStep *op = &state->steps[off]; |
| 276 | |
| 277 | op->opcode = EEO_OPCODE(op->opcode); |
| 278 | } |
| 279 | |
| 280 | state->flags |= EEO_FLAG_DIRECT_THREADED; |
| 281 | } |
| 282 | #endif /* EEO_USE_COMPUTED_GOTO */ |
| 283 | |
| 284 | state->evalfunc_private = (void *) ExecInterpExpr; |
| 285 | } |
| 286 | |
| 287 | |
| 288 | /* |
| 289 | * Evaluate expression identified by "state" in the execution context |
| 290 | * given by "econtext". *isnull is set to the is-null flag for the result, |
| 291 | * and the Datum value is the function result. |
| 292 | * |
| 293 | * As a special case, return the dispatch table's address if state is NULL. |
| 294 | * This is used by ExecInitInterpreter to set up the dispatch_table global. |
| 295 | * (Only applies when EEO_USE_COMPUTED_GOTO is defined.) |
| 296 | */ |
| 297 | static Datum |
| 298 | ExecInterpExpr(ExprState *state, ExprContext *econtext, bool *isnull) |
| 299 | { |
| 300 | ExprEvalStep *op; |
| 301 | TupleTableSlot *resultslot; |
| 302 | TupleTableSlot *innerslot; |
| 303 | TupleTableSlot *outerslot; |
| 304 | TupleTableSlot *scanslot; |
| 305 | |
| 306 | /* |
| 307 | * This array has to be in the same order as enum ExprEvalOp. |
| 308 | */ |
| 309 | #if defined(EEO_USE_COMPUTED_GOTO) |
| 310 | static const void *const dispatch_table[] = { |
| 311 | &&CASE_EEOP_DONE, |
| 312 | &&CASE_EEOP_INNER_FETCHSOME, |
| 313 | &&CASE_EEOP_OUTER_FETCHSOME, |
| 314 | &&CASE_EEOP_SCAN_FETCHSOME, |
| 315 | &&CASE_EEOP_INNER_VAR, |
| 316 | &&CASE_EEOP_OUTER_VAR, |
| 317 | &&CASE_EEOP_SCAN_VAR, |
| 318 | &&CASE_EEOP_INNER_SYSVAR, |
| 319 | &&CASE_EEOP_OUTER_SYSVAR, |
| 320 | &&CASE_EEOP_SCAN_SYSVAR, |
| 321 | &&CASE_EEOP_WHOLEROW, |
| 322 | &&CASE_EEOP_ASSIGN_INNER_VAR, |
| 323 | &&CASE_EEOP_ASSIGN_OUTER_VAR, |
| 324 | &&CASE_EEOP_ASSIGN_SCAN_VAR, |
| 325 | &&CASE_EEOP_ASSIGN_TMP, |
| 326 | &&CASE_EEOP_ASSIGN_TMP_MAKE_RO, |
| 327 | &&CASE_EEOP_CONST, |
| 328 | &&CASE_EEOP_FUNCEXPR, |
| 329 | &&CASE_EEOP_FUNCEXPR_STRICT, |
| 330 | &&CASE_EEOP_FUNCEXPR_FUSAGE, |
| 331 | &&CASE_EEOP_FUNCEXPR_STRICT_FUSAGE, |
| 332 | &&CASE_EEOP_BOOL_AND_STEP_FIRST, |
| 333 | &&CASE_EEOP_BOOL_AND_STEP, |
| 334 | &&CASE_EEOP_BOOL_AND_STEP_LAST, |
| 335 | &&CASE_EEOP_BOOL_OR_STEP_FIRST, |
| 336 | &&CASE_EEOP_BOOL_OR_STEP, |
| 337 | &&CASE_EEOP_BOOL_OR_STEP_LAST, |
| 338 | &&CASE_EEOP_BOOL_NOT_STEP, |
| 339 | &&CASE_EEOP_QUAL, |
| 340 | &&CASE_EEOP_JUMP, |
| 341 | &&CASE_EEOP_JUMP_IF_NULL, |
| 342 | &&CASE_EEOP_JUMP_IF_NOT_NULL, |
| 343 | &&CASE_EEOP_JUMP_IF_NOT_TRUE, |
| 344 | &&CASE_EEOP_NULLTEST_ISNULL, |
| 345 | &&CASE_EEOP_NULLTEST_ISNOTNULL, |
| 346 | &&CASE_EEOP_NULLTEST_ROWISNULL, |
| 347 | &&CASE_EEOP_NULLTEST_ROWISNOTNULL, |
| 348 | &&CASE_EEOP_BOOLTEST_IS_TRUE, |
| 349 | &&CASE_EEOP_BOOLTEST_IS_NOT_TRUE, |
| 350 | &&CASE_EEOP_BOOLTEST_IS_FALSE, |
| 351 | &&CASE_EEOP_BOOLTEST_IS_NOT_FALSE, |
| 352 | &&CASE_EEOP_PARAM_EXEC, |
| 353 | &&CASE_EEOP_PARAM_EXTERN, |
| 354 | &&CASE_EEOP_PARAM_CALLBACK, |
| 355 | &&CASE_EEOP_CASE_TESTVAL, |
| 356 | &&CASE_EEOP_MAKE_READONLY, |
| 357 | &&CASE_EEOP_IOCOERCE, |
| 358 | &&CASE_EEOP_DISTINCT, |
| 359 | &&CASE_EEOP_NOT_DISTINCT, |
| 360 | &&CASE_EEOP_NULLIF, |
| 361 | &&CASE_EEOP_SQLVALUEFUNCTION, |
| 362 | &&CASE_EEOP_CURRENTOFEXPR, |
| 363 | &&CASE_EEOP_NEXTVALUEEXPR, |
| 364 | &&CASE_EEOP_ARRAYEXPR, |
| 365 | &&CASE_EEOP_ARRAYCOERCE, |
| 366 | &&CASE_EEOP_ROW, |
| 367 | &&CASE_EEOP_ROWCOMPARE_STEP, |
| 368 | &&CASE_EEOP_ROWCOMPARE_FINAL, |
| 369 | &&CASE_EEOP_MINMAX, |
| 370 | &&CASE_EEOP_FIELDSELECT, |
| 371 | &&CASE_EEOP_FIELDSTORE_DEFORM, |
| 372 | &&CASE_EEOP_FIELDSTORE_FORM, |
| 373 | &&CASE_EEOP_SBSREF_SUBSCRIPT, |
| 374 | &&CASE_EEOP_SBSREF_OLD, |
| 375 | &&CASE_EEOP_SBSREF_ASSIGN, |
| 376 | &&CASE_EEOP_SBSREF_FETCH, |
| 377 | &&CASE_EEOP_DOMAIN_TESTVAL, |
| 378 | &&CASE_EEOP_DOMAIN_NOTNULL, |
| 379 | &&CASE_EEOP_DOMAIN_CHECK, |
| 380 | &&CASE_EEOP_CONVERT_ROWTYPE, |
| 381 | &&CASE_EEOP_SCALARARRAYOP, |
| 382 | &&CASE_EEOP_XMLEXPR, |
| 383 | &&CASE_EEOP_AGGREF, |
| 384 | &&CASE_EEOP_GROUPING_FUNC, |
| 385 | &&CASE_EEOP_WINDOW_FUNC, |
| 386 | &&CASE_EEOP_SUBPLAN, |
| 387 | &&CASE_EEOP_ALTERNATIVE_SUBPLAN, |
| 388 | &&CASE_EEOP_AGG_STRICT_DESERIALIZE, |
| 389 | &&CASE_EEOP_AGG_DESERIALIZE, |
| 390 | &&CASE_EEOP_AGG_STRICT_INPUT_CHECK_ARGS, |
| 391 | &&CASE_EEOP_AGG_STRICT_INPUT_CHECK_NULLS, |
| 392 | &&CASE_EEOP_AGG_INIT_TRANS, |
| 393 | &&CASE_EEOP_AGG_STRICT_TRANS_CHECK, |
| 394 | &&CASE_EEOP_AGG_PLAIN_TRANS_BYVAL, |
| 395 | &&CASE_EEOP_AGG_PLAIN_TRANS, |
| 396 | &&CASE_EEOP_AGG_ORDERED_TRANS_DATUM, |
| 397 | &&CASE_EEOP_AGG_ORDERED_TRANS_TUPLE, |
| 398 | &&CASE_EEOP_LAST |
| 399 | }; |
| 400 | |
| 401 | StaticAssertStmt(EEOP_LAST + 1 == lengthof(dispatch_table), |
| 402 | "dispatch_table out of whack with ExprEvalOp" ); |
| 403 | |
| 404 | if (unlikely(state == NULL)) |
| 405 | return PointerGetDatum(dispatch_table); |
| 406 | #else |
| 407 | Assert(state != NULL); |
| 408 | #endif /* EEO_USE_COMPUTED_GOTO */ |
| 409 | |
| 410 | /* setup state */ |
| 411 | op = state->steps; |
| 412 | resultslot = state->resultslot; |
| 413 | innerslot = econtext->ecxt_innertuple; |
| 414 | outerslot = econtext->ecxt_outertuple; |
| 415 | scanslot = econtext->ecxt_scantuple; |
| 416 | |
| 417 | #if defined(EEO_USE_COMPUTED_GOTO) |
| 418 | EEO_DISPATCH(); |
| 419 | #endif |
| 420 | |
| 421 | EEO_SWITCH() |
| 422 | { |
| 423 | EEO_CASE(EEOP_DONE) |
| 424 | { |
| 425 | goto out; |
| 426 | } |
| 427 | |
| 428 | EEO_CASE(EEOP_INNER_FETCHSOME) |
| 429 | { |
| 430 | CheckOpSlotCompatibility(op, innerslot); |
| 431 | |
| 432 | slot_getsomeattrs(innerslot, op->d.fetch.last_var); |
| 433 | |
| 434 | EEO_NEXT(); |
| 435 | } |
| 436 | |
| 437 | EEO_CASE(EEOP_OUTER_FETCHSOME) |
| 438 | { |
| 439 | CheckOpSlotCompatibility(op, outerslot); |
| 440 | |
| 441 | slot_getsomeattrs(outerslot, op->d.fetch.last_var); |
| 442 | |
| 443 | EEO_NEXT(); |
| 444 | } |
| 445 | |
| 446 | EEO_CASE(EEOP_SCAN_FETCHSOME) |
| 447 | { |
| 448 | CheckOpSlotCompatibility(op, scanslot); |
| 449 | |
| 450 | slot_getsomeattrs(scanslot, op->d.fetch.last_var); |
| 451 | |
| 452 | EEO_NEXT(); |
| 453 | } |
| 454 | |
| 455 | EEO_CASE(EEOP_INNER_VAR) |
| 456 | { |
| 457 | int attnum = op->d.var.attnum; |
| 458 | |
| 459 | /* |
| 460 | * Since we already extracted all referenced columns from the |
| 461 | * tuple with a FETCHSOME step, we can just grab the value |
| 462 | * directly out of the slot's decomposed-data arrays. But let's |
| 463 | * have an Assert to check that that did happen. |
| 464 | */ |
| 465 | Assert(attnum >= 0 && attnum < innerslot->tts_nvalid); |
| 466 | *op->resvalue = innerslot->tts_values[attnum]; |
| 467 | *op->resnull = innerslot->tts_isnull[attnum]; |
| 468 | |
| 469 | EEO_NEXT(); |
| 470 | } |
| 471 | |
| 472 | EEO_CASE(EEOP_OUTER_VAR) |
| 473 | { |
| 474 | int attnum = op->d.var.attnum; |
| 475 | |
| 476 | /* See EEOP_INNER_VAR comments */ |
| 477 | |
| 478 | Assert(attnum >= 0 && attnum < outerslot->tts_nvalid); |
| 479 | *op->resvalue = outerslot->tts_values[attnum]; |
| 480 | *op->resnull = outerslot->tts_isnull[attnum]; |
| 481 | |
| 482 | EEO_NEXT(); |
| 483 | } |
| 484 | |
| 485 | EEO_CASE(EEOP_SCAN_VAR) |
| 486 | { |
| 487 | int attnum = op->d.var.attnum; |
| 488 | |
| 489 | /* See EEOP_INNER_VAR comments */ |
| 490 | |
| 491 | Assert(attnum >= 0 && attnum < scanslot->tts_nvalid); |
| 492 | *op->resvalue = scanslot->tts_values[attnum]; |
| 493 | *op->resnull = scanslot->tts_isnull[attnum]; |
| 494 | |
| 495 | EEO_NEXT(); |
| 496 | } |
| 497 | |
| 498 | EEO_CASE(EEOP_INNER_SYSVAR) |
| 499 | { |
| 500 | ExecEvalSysVar(state, op, econtext, innerslot); |
| 501 | EEO_NEXT(); |
| 502 | } |
| 503 | |
| 504 | EEO_CASE(EEOP_OUTER_SYSVAR) |
| 505 | { |
| 506 | ExecEvalSysVar(state, op, econtext, outerslot); |
| 507 | EEO_NEXT(); |
| 508 | } |
| 509 | |
| 510 | EEO_CASE(EEOP_SCAN_SYSVAR) |
| 511 | { |
| 512 | ExecEvalSysVar(state, op, econtext, scanslot); |
| 513 | EEO_NEXT(); |
| 514 | } |
| 515 | |
| 516 | EEO_CASE(EEOP_WHOLEROW) |
| 517 | { |
| 518 | /* too complex for an inline implementation */ |
| 519 | ExecEvalWholeRowVar(state, op, econtext); |
| 520 | |
| 521 | EEO_NEXT(); |
| 522 | } |
| 523 | |
| 524 | EEO_CASE(EEOP_ASSIGN_INNER_VAR) |
| 525 | { |
| 526 | int resultnum = op->d.assign_var.resultnum; |
| 527 | int attnum = op->d.assign_var.attnum; |
| 528 | |
| 529 | /* |
| 530 | * We do not need CheckVarSlotCompatibility here; that was taken |
| 531 | * care of at compilation time. But see EEOP_INNER_VAR comments. |
| 532 | */ |
| 533 | Assert(attnum >= 0 && attnum < innerslot->tts_nvalid); |
| 534 | resultslot->tts_values[resultnum] = innerslot->tts_values[attnum]; |
| 535 | resultslot->tts_isnull[resultnum] = innerslot->tts_isnull[attnum]; |
| 536 | |
| 537 | EEO_NEXT(); |
| 538 | } |
| 539 | |
| 540 | EEO_CASE(EEOP_ASSIGN_OUTER_VAR) |
| 541 | { |
| 542 | int resultnum = op->d.assign_var.resultnum; |
| 543 | int attnum = op->d.assign_var.attnum; |
| 544 | |
| 545 | /* |
| 546 | * We do not need CheckVarSlotCompatibility here; that was taken |
| 547 | * care of at compilation time. But see EEOP_INNER_VAR comments. |
| 548 | */ |
| 549 | Assert(attnum >= 0 && attnum < outerslot->tts_nvalid); |
| 550 | resultslot->tts_values[resultnum] = outerslot->tts_values[attnum]; |
| 551 | resultslot->tts_isnull[resultnum] = outerslot->tts_isnull[attnum]; |
| 552 | |
| 553 | EEO_NEXT(); |
| 554 | } |
| 555 | |
| 556 | EEO_CASE(EEOP_ASSIGN_SCAN_VAR) |
| 557 | { |
| 558 | int resultnum = op->d.assign_var.resultnum; |
| 559 | int attnum = op->d.assign_var.attnum; |
| 560 | |
| 561 | /* |
| 562 | * We do not need CheckVarSlotCompatibility here; that was taken |
| 563 | * care of at compilation time. But see EEOP_INNER_VAR comments. |
| 564 | */ |
| 565 | Assert(attnum >= 0 && attnum < scanslot->tts_nvalid); |
| 566 | resultslot->tts_values[resultnum] = scanslot->tts_values[attnum]; |
| 567 | resultslot->tts_isnull[resultnum] = scanslot->tts_isnull[attnum]; |
| 568 | |
| 569 | EEO_NEXT(); |
| 570 | } |
| 571 | |
| 572 | EEO_CASE(EEOP_ASSIGN_TMP) |
| 573 | { |
| 574 | int resultnum = op->d.assign_tmp.resultnum; |
| 575 | |
| 576 | resultslot->tts_values[resultnum] = state->resvalue; |
| 577 | resultslot->tts_isnull[resultnum] = state->resnull; |
| 578 | |
| 579 | EEO_NEXT(); |
| 580 | } |
| 581 | |
| 582 | EEO_CASE(EEOP_ASSIGN_TMP_MAKE_RO) |
| 583 | { |
| 584 | int resultnum = op->d.assign_tmp.resultnum; |
| 585 | |
| 586 | resultslot->tts_isnull[resultnum] = state->resnull; |
| 587 | if (!resultslot->tts_isnull[resultnum]) |
| 588 | resultslot->tts_values[resultnum] = |
| 589 | MakeExpandedObjectReadOnlyInternal(state->resvalue); |
| 590 | else |
| 591 | resultslot->tts_values[resultnum] = state->resvalue; |
| 592 | |
| 593 | EEO_NEXT(); |
| 594 | } |
| 595 | |
| 596 | EEO_CASE(EEOP_CONST) |
| 597 | { |
| 598 | *op->resnull = op->d.constval.isnull; |
| 599 | *op->resvalue = op->d.constval.value; |
| 600 | |
| 601 | EEO_NEXT(); |
| 602 | } |
| 603 | |
| 604 | /* |
| 605 | * Function-call implementations. Arguments have previously been |
| 606 | * evaluated directly into fcinfo->args. |
| 607 | * |
| 608 | * As both STRICT checks and function-usage are noticeable performance |
| 609 | * wise, and function calls are a very hot-path (they also back |
| 610 | * operators!), it's worth having so many separate opcodes. |
| 611 | * |
| 612 | * Note: the reason for using a temporary variable "d", here and in |
| 613 | * other places, is that some compilers think "*op->resvalue = f();" |
| 614 | * requires them to evaluate op->resvalue into a register before |
| 615 | * calling f(), just in case f() is able to modify op->resvalue |
| 616 | * somehow. The extra line of code can save a useless register spill |
| 617 | * and reload across the function call. |
| 618 | */ |
| 619 | EEO_CASE(EEOP_FUNCEXPR) |
| 620 | { |
| 621 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
| 622 | Datum d; |
| 623 | |
| 624 | fcinfo->isnull = false; |
| 625 | d = op->d.func.fn_addr(fcinfo); |
| 626 | *op->resvalue = d; |
| 627 | *op->resnull = fcinfo->isnull; |
| 628 | |
| 629 | EEO_NEXT(); |
| 630 | } |
| 631 | |
| 632 | EEO_CASE(EEOP_FUNCEXPR_STRICT) |
| 633 | { |
| 634 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
| 635 | NullableDatum *args = fcinfo->args; |
| 636 | int argno; |
| 637 | Datum d; |
| 638 | |
| 639 | /* strict function, so check for NULL args */ |
| 640 | for (argno = 0; argno < op->d.func.nargs; argno++) |
| 641 | { |
| 642 | if (args[argno].isnull) |
| 643 | { |
| 644 | *op->resnull = true; |
| 645 | goto strictfail; |
| 646 | } |
| 647 | } |
| 648 | fcinfo->isnull = false; |
| 649 | d = op->d.func.fn_addr(fcinfo); |
| 650 | *op->resvalue = d; |
| 651 | *op->resnull = fcinfo->isnull; |
| 652 | |
| 653 | strictfail: |
| 654 | EEO_NEXT(); |
| 655 | } |
| 656 | |
| 657 | EEO_CASE(EEOP_FUNCEXPR_FUSAGE) |
| 658 | { |
| 659 | /* not common enough to inline */ |
| 660 | ExecEvalFuncExprFusage(state, op, econtext); |
| 661 | |
| 662 | EEO_NEXT(); |
| 663 | } |
| 664 | |
| 665 | EEO_CASE(EEOP_FUNCEXPR_STRICT_FUSAGE) |
| 666 | { |
| 667 | /* not common enough to inline */ |
| 668 | ExecEvalFuncExprStrictFusage(state, op, econtext); |
| 669 | |
| 670 | EEO_NEXT(); |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * If any of its clauses is FALSE, an AND's result is FALSE regardless |
| 675 | * of the states of the rest of the clauses, so we can stop evaluating |
| 676 | * and return FALSE immediately. If none are FALSE and one or more is |
| 677 | * NULL, we return NULL; otherwise we return TRUE. This makes sense |
| 678 | * when you interpret NULL as "don't know": perhaps one of the "don't |
| 679 | * knows" would have been FALSE if we'd known its value. Only when |
| 680 | * all the inputs are known to be TRUE can we state confidently that |
| 681 | * the AND's result is TRUE. |
| 682 | */ |
| 683 | EEO_CASE(EEOP_BOOL_AND_STEP_FIRST) |
| 684 | { |
| 685 | *op->d.boolexpr.anynull = false; |
| 686 | |
| 687 | /* |
| 688 | * EEOP_BOOL_AND_STEP_FIRST resets anynull, otherwise it's the |
| 689 | * same as EEOP_BOOL_AND_STEP - so fall through to that. |
| 690 | */ |
| 691 | |
| 692 | /* FALL THROUGH */ |
| 693 | } |
| 694 | |
| 695 | EEO_CASE(EEOP_BOOL_AND_STEP) |
| 696 | { |
| 697 | if (*op->resnull) |
| 698 | { |
| 699 | *op->d.boolexpr.anynull = true; |
| 700 | } |
| 701 | else if (!DatumGetBool(*op->resvalue)) |
| 702 | { |
| 703 | /* result is already set to FALSE, need not change it */ |
| 704 | /* bail out early */ |
| 705 | EEO_JUMP(op->d.boolexpr.jumpdone); |
| 706 | } |
| 707 | |
| 708 | EEO_NEXT(); |
| 709 | } |
| 710 | |
| 711 | EEO_CASE(EEOP_BOOL_AND_STEP_LAST) |
| 712 | { |
| 713 | if (*op->resnull) |
| 714 | { |
| 715 | /* result is already set to NULL, need not change it */ |
| 716 | } |
| 717 | else if (!DatumGetBool(*op->resvalue)) |
| 718 | { |
| 719 | /* result is already set to FALSE, need not change it */ |
| 720 | |
| 721 | /* |
| 722 | * No point jumping early to jumpdone - would be same target |
| 723 | * (as this is the last argument to the AND expression), |
| 724 | * except more expensive. |
| 725 | */ |
| 726 | } |
| 727 | else if (*op->d.boolexpr.anynull) |
| 728 | { |
| 729 | *op->resvalue = (Datum) 0; |
| 730 | *op->resnull = true; |
| 731 | } |
| 732 | else |
| 733 | { |
| 734 | /* result is already set to TRUE, need not change it */ |
| 735 | } |
| 736 | |
| 737 | EEO_NEXT(); |
| 738 | } |
| 739 | |
| 740 | /* |
| 741 | * If any of its clauses is TRUE, an OR's result is TRUE regardless of |
| 742 | * the states of the rest of the clauses, so we can stop evaluating |
| 743 | * and return TRUE immediately. If none are TRUE and one or more is |
| 744 | * NULL, we return NULL; otherwise we return FALSE. This makes sense |
| 745 | * when you interpret NULL as "don't know": perhaps one of the "don't |
| 746 | * knows" would have been TRUE if we'd known its value. Only when all |
| 747 | * the inputs are known to be FALSE can we state confidently that the |
| 748 | * OR's result is FALSE. |
| 749 | */ |
| 750 | EEO_CASE(EEOP_BOOL_OR_STEP_FIRST) |
| 751 | { |
| 752 | *op->d.boolexpr.anynull = false; |
| 753 | |
| 754 | /* |
| 755 | * EEOP_BOOL_OR_STEP_FIRST resets anynull, otherwise it's the same |
| 756 | * as EEOP_BOOL_OR_STEP - so fall through to that. |
| 757 | */ |
| 758 | |
| 759 | /* FALL THROUGH */ |
| 760 | } |
| 761 | |
| 762 | EEO_CASE(EEOP_BOOL_OR_STEP) |
| 763 | { |
| 764 | if (*op->resnull) |
| 765 | { |
| 766 | *op->d.boolexpr.anynull = true; |
| 767 | } |
| 768 | else if (DatumGetBool(*op->resvalue)) |
| 769 | { |
| 770 | /* result is already set to TRUE, need not change it */ |
| 771 | /* bail out early */ |
| 772 | EEO_JUMP(op->d.boolexpr.jumpdone); |
| 773 | } |
| 774 | |
| 775 | EEO_NEXT(); |
| 776 | } |
| 777 | |
| 778 | EEO_CASE(EEOP_BOOL_OR_STEP_LAST) |
| 779 | { |
| 780 | if (*op->resnull) |
| 781 | { |
| 782 | /* result is already set to NULL, need not change it */ |
| 783 | } |
| 784 | else if (DatumGetBool(*op->resvalue)) |
| 785 | { |
| 786 | /* result is already set to TRUE, need not change it */ |
| 787 | |
| 788 | /* |
| 789 | * No point jumping to jumpdone - would be same target (as |
| 790 | * this is the last argument to the AND expression), except |
| 791 | * more expensive. |
| 792 | */ |
| 793 | } |
| 794 | else if (*op->d.boolexpr.anynull) |
| 795 | { |
| 796 | *op->resvalue = (Datum) 0; |
| 797 | *op->resnull = true; |
| 798 | } |
| 799 | else |
| 800 | { |
| 801 | /* result is already set to FALSE, need not change it */ |
| 802 | } |
| 803 | |
| 804 | EEO_NEXT(); |
| 805 | } |
| 806 | |
| 807 | EEO_CASE(EEOP_BOOL_NOT_STEP) |
| 808 | { |
| 809 | /* |
| 810 | * Evaluation of 'not' is simple... if expr is false, then return |
| 811 | * 'true' and vice versa. It's safe to do this even on a |
| 812 | * nominally null value, so we ignore resnull; that means that |
| 813 | * NULL in produces NULL out, which is what we want. |
| 814 | */ |
| 815 | *op->resvalue = BoolGetDatum(!DatumGetBool(*op->resvalue)); |
| 816 | |
| 817 | EEO_NEXT(); |
| 818 | } |
| 819 | |
| 820 | EEO_CASE(EEOP_QUAL) |
| 821 | { |
| 822 | /* simplified version of BOOL_AND_STEP for use by ExecQual() */ |
| 823 | |
| 824 | /* If argument (also result) is false or null ... */ |
| 825 | if (*op->resnull || |
| 826 | !DatumGetBool(*op->resvalue)) |
| 827 | { |
| 828 | /* ... bail out early, returning FALSE */ |
| 829 | *op->resnull = false; |
| 830 | *op->resvalue = BoolGetDatum(false); |
| 831 | EEO_JUMP(op->d.qualexpr.jumpdone); |
| 832 | } |
| 833 | |
| 834 | /* |
| 835 | * Otherwise, leave the TRUE value in place, in case this is the |
| 836 | * last qual. Then, TRUE is the correct answer. |
| 837 | */ |
| 838 | |
| 839 | EEO_NEXT(); |
| 840 | } |
| 841 | |
| 842 | EEO_CASE(EEOP_JUMP) |
| 843 | { |
| 844 | /* Unconditionally jump to target step */ |
| 845 | EEO_JUMP(op->d.jump.jumpdone); |
| 846 | } |
| 847 | |
| 848 | EEO_CASE(EEOP_JUMP_IF_NULL) |
| 849 | { |
| 850 | /* Transfer control if current result is null */ |
| 851 | if (*op->resnull) |
| 852 | EEO_JUMP(op->d.jump.jumpdone); |
| 853 | |
| 854 | EEO_NEXT(); |
| 855 | } |
| 856 | |
| 857 | EEO_CASE(EEOP_JUMP_IF_NOT_NULL) |
| 858 | { |
| 859 | /* Transfer control if current result is non-null */ |
| 860 | if (!*op->resnull) |
| 861 | EEO_JUMP(op->d.jump.jumpdone); |
| 862 | |
| 863 | EEO_NEXT(); |
| 864 | } |
| 865 | |
| 866 | EEO_CASE(EEOP_JUMP_IF_NOT_TRUE) |
| 867 | { |
| 868 | /* Transfer control if current result is null or false */ |
| 869 | if (*op->resnull || !DatumGetBool(*op->resvalue)) |
| 870 | EEO_JUMP(op->d.jump.jumpdone); |
| 871 | |
| 872 | EEO_NEXT(); |
| 873 | } |
| 874 | |
| 875 | EEO_CASE(EEOP_NULLTEST_ISNULL) |
| 876 | { |
| 877 | *op->resvalue = BoolGetDatum(*op->resnull); |
| 878 | *op->resnull = false; |
| 879 | |
| 880 | EEO_NEXT(); |
| 881 | } |
| 882 | |
| 883 | EEO_CASE(EEOP_NULLTEST_ISNOTNULL) |
| 884 | { |
| 885 | *op->resvalue = BoolGetDatum(!*op->resnull); |
| 886 | *op->resnull = false; |
| 887 | |
| 888 | EEO_NEXT(); |
| 889 | } |
| 890 | |
| 891 | EEO_CASE(EEOP_NULLTEST_ROWISNULL) |
| 892 | { |
| 893 | /* out of line implementation: too large */ |
| 894 | ExecEvalRowNull(state, op, econtext); |
| 895 | |
| 896 | EEO_NEXT(); |
| 897 | } |
| 898 | |
| 899 | EEO_CASE(EEOP_NULLTEST_ROWISNOTNULL) |
| 900 | { |
| 901 | /* out of line implementation: too large */ |
| 902 | ExecEvalRowNotNull(state, op, econtext); |
| 903 | |
| 904 | EEO_NEXT(); |
| 905 | } |
| 906 | |
| 907 | /* BooleanTest implementations for all booltesttypes */ |
| 908 | |
| 909 | EEO_CASE(EEOP_BOOLTEST_IS_TRUE) |
| 910 | { |
| 911 | if (*op->resnull) |
| 912 | { |
| 913 | *op->resvalue = BoolGetDatum(false); |
| 914 | *op->resnull = false; |
| 915 | } |
| 916 | /* else, input value is the correct output as well */ |
| 917 | |
| 918 | EEO_NEXT(); |
| 919 | } |
| 920 | |
| 921 | EEO_CASE(EEOP_BOOLTEST_IS_NOT_TRUE) |
| 922 | { |
| 923 | if (*op->resnull) |
| 924 | { |
| 925 | *op->resvalue = BoolGetDatum(true); |
| 926 | *op->resnull = false; |
| 927 | } |
| 928 | else |
| 929 | *op->resvalue = BoolGetDatum(!DatumGetBool(*op->resvalue)); |
| 930 | |
| 931 | EEO_NEXT(); |
| 932 | } |
| 933 | |
| 934 | EEO_CASE(EEOP_BOOLTEST_IS_FALSE) |
| 935 | { |
| 936 | if (*op->resnull) |
| 937 | { |
| 938 | *op->resvalue = BoolGetDatum(false); |
| 939 | *op->resnull = false; |
| 940 | } |
| 941 | else |
| 942 | *op->resvalue = BoolGetDatum(!DatumGetBool(*op->resvalue)); |
| 943 | |
| 944 | EEO_NEXT(); |
| 945 | } |
| 946 | |
| 947 | EEO_CASE(EEOP_BOOLTEST_IS_NOT_FALSE) |
| 948 | { |
| 949 | if (*op->resnull) |
| 950 | { |
| 951 | *op->resvalue = BoolGetDatum(true); |
| 952 | *op->resnull = false; |
| 953 | } |
| 954 | /* else, input value is the correct output as well */ |
| 955 | |
| 956 | EEO_NEXT(); |
| 957 | } |
| 958 | |
| 959 | EEO_CASE(EEOP_PARAM_EXEC) |
| 960 | { |
| 961 | /* out of line implementation: too large */ |
| 962 | ExecEvalParamExec(state, op, econtext); |
| 963 | |
| 964 | EEO_NEXT(); |
| 965 | } |
| 966 | |
| 967 | EEO_CASE(EEOP_PARAM_EXTERN) |
| 968 | { |
| 969 | /* out of line implementation: too large */ |
| 970 | ExecEvalParamExtern(state, op, econtext); |
| 971 | EEO_NEXT(); |
| 972 | } |
| 973 | |
| 974 | EEO_CASE(EEOP_PARAM_CALLBACK) |
| 975 | { |
| 976 | /* allow an extension module to supply a PARAM_EXTERN value */ |
| 977 | op->d.cparam.paramfunc(state, op, econtext); |
| 978 | EEO_NEXT(); |
| 979 | } |
| 980 | |
| 981 | EEO_CASE(EEOP_CASE_TESTVAL) |
| 982 | { |
| 983 | /* |
| 984 | * Normally upper parts of the expression tree have setup the |
| 985 | * values to be returned here, but some parts of the system |
| 986 | * currently misuse {caseValue,domainValue}_{datum,isNull} to set |
| 987 | * run-time data. So if no values have been set-up, use |
| 988 | * ExprContext's. This isn't pretty, but also not *that* ugly, |
| 989 | * and this is unlikely to be performance sensitive enough to |
| 990 | * worry about an extra branch. |
| 991 | */ |
| 992 | if (op->d.casetest.value) |
| 993 | { |
| 994 | *op->resvalue = *op->d.casetest.value; |
| 995 | *op->resnull = *op->d.casetest.isnull; |
| 996 | } |
| 997 | else |
| 998 | { |
| 999 | *op->resvalue = econtext->caseValue_datum; |
| 1000 | *op->resnull = econtext->caseValue_isNull; |
| 1001 | } |
| 1002 | |
| 1003 | EEO_NEXT(); |
| 1004 | } |
| 1005 | |
| 1006 | EEO_CASE(EEOP_DOMAIN_TESTVAL) |
| 1007 | { |
| 1008 | /* |
| 1009 | * See EEOP_CASE_TESTVAL comment. |
| 1010 | */ |
| 1011 | if (op->d.casetest.value) |
| 1012 | { |
| 1013 | *op->resvalue = *op->d.casetest.value; |
| 1014 | *op->resnull = *op->d.casetest.isnull; |
| 1015 | } |
| 1016 | else |
| 1017 | { |
| 1018 | *op->resvalue = econtext->domainValue_datum; |
| 1019 | *op->resnull = econtext->domainValue_isNull; |
| 1020 | } |
| 1021 | |
| 1022 | EEO_NEXT(); |
| 1023 | } |
| 1024 | |
| 1025 | EEO_CASE(EEOP_MAKE_READONLY) |
| 1026 | { |
| 1027 | /* |
| 1028 | * Force a varlena value that might be read multiple times to R/O |
| 1029 | */ |
| 1030 | if (!*op->d.make_readonly.isnull) |
| 1031 | *op->resvalue = |
| 1032 | MakeExpandedObjectReadOnlyInternal(*op->d.make_readonly.value); |
| 1033 | *op->resnull = *op->d.make_readonly.isnull; |
| 1034 | |
| 1035 | EEO_NEXT(); |
| 1036 | } |
| 1037 | |
| 1038 | EEO_CASE(EEOP_IOCOERCE) |
| 1039 | { |
| 1040 | /* |
| 1041 | * Evaluate a CoerceViaIO node. This can be quite a hot path, so |
| 1042 | * inline as much work as possible. The source value is in our |
| 1043 | * result variable. |
| 1044 | */ |
| 1045 | char *str; |
| 1046 | |
| 1047 | /* call output function (similar to OutputFunctionCall) */ |
| 1048 | if (*op->resnull) |
| 1049 | { |
| 1050 | /* output functions are not called on nulls */ |
| 1051 | str = NULL; |
| 1052 | } |
| 1053 | else |
| 1054 | { |
| 1055 | FunctionCallInfo fcinfo_out; |
| 1056 | |
| 1057 | fcinfo_out = op->d.iocoerce.fcinfo_data_out; |
| 1058 | fcinfo_out->args[0].value = *op->resvalue; |
| 1059 | fcinfo_out->args[0].isnull = false; |
| 1060 | |
| 1061 | fcinfo_out->isnull = false; |
| 1062 | str = DatumGetCString(FunctionCallInvoke(fcinfo_out)); |
| 1063 | |
| 1064 | /* OutputFunctionCall assumes result isn't null */ |
| 1065 | Assert(!fcinfo_out->isnull); |
| 1066 | } |
| 1067 | |
| 1068 | /* call input function (similar to InputFunctionCall) */ |
| 1069 | if (!op->d.iocoerce.finfo_in->fn_strict || str != NULL) |
| 1070 | { |
| 1071 | FunctionCallInfo fcinfo_in; |
| 1072 | Datum d; |
| 1073 | |
| 1074 | fcinfo_in = op->d.iocoerce.fcinfo_data_in; |
| 1075 | fcinfo_in->args[0].value = PointerGetDatum(str); |
| 1076 | fcinfo_in->args[0].isnull = *op->resnull; |
| 1077 | /* second and third arguments are already set up */ |
| 1078 | |
| 1079 | fcinfo_in->isnull = false; |
| 1080 | d = FunctionCallInvoke(fcinfo_in); |
| 1081 | *op->resvalue = d; |
| 1082 | |
| 1083 | /* Should get null result if and only if str is NULL */ |
| 1084 | if (str == NULL) |
| 1085 | { |
| 1086 | Assert(*op->resnull); |
| 1087 | Assert(fcinfo_in->isnull); |
| 1088 | } |
| 1089 | else |
| 1090 | { |
| 1091 | Assert(!*op->resnull); |
| 1092 | Assert(!fcinfo_in->isnull); |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | EEO_NEXT(); |
| 1097 | } |
| 1098 | |
| 1099 | EEO_CASE(EEOP_DISTINCT) |
| 1100 | { |
| 1101 | /* |
| 1102 | * IS DISTINCT FROM must evaluate arguments (already done into |
| 1103 | * fcinfo->args) to determine whether they are NULL; if either is |
| 1104 | * NULL then the result is determined. If neither is NULL, then |
| 1105 | * proceed to evaluate the comparison function, which is just the |
| 1106 | * type's standard equality operator. We need not care whether |
| 1107 | * that function is strict. Because the handling of nulls is |
| 1108 | * different, we can't just reuse EEOP_FUNCEXPR. |
| 1109 | */ |
| 1110 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
| 1111 | |
| 1112 | /* check function arguments for NULLness */ |
| 1113 | if (fcinfo->args[0].isnull && fcinfo->args[1].isnull) |
| 1114 | { |
| 1115 | /* Both NULL? Then is not distinct... */ |
| 1116 | *op->resvalue = BoolGetDatum(false); |
| 1117 | *op->resnull = false; |
| 1118 | } |
| 1119 | else if (fcinfo->args[0].isnull || fcinfo->args[1].isnull) |
| 1120 | { |
| 1121 | /* Only one is NULL? Then is distinct... */ |
| 1122 | *op->resvalue = BoolGetDatum(true); |
| 1123 | *op->resnull = false; |
| 1124 | } |
| 1125 | else |
| 1126 | { |
| 1127 | /* Neither null, so apply the equality function */ |
| 1128 | Datum eqresult; |
| 1129 | |
| 1130 | fcinfo->isnull = false; |
| 1131 | eqresult = op->d.func.fn_addr(fcinfo); |
| 1132 | /* Must invert result of "="; safe to do even if null */ |
| 1133 | *op->resvalue = BoolGetDatum(!DatumGetBool(eqresult)); |
| 1134 | *op->resnull = fcinfo->isnull; |
| 1135 | } |
| 1136 | |
| 1137 | EEO_NEXT(); |
| 1138 | } |
| 1139 | |
| 1140 | /* see EEOP_DISTINCT for comments, this is just inverted */ |
| 1141 | EEO_CASE(EEOP_NOT_DISTINCT) |
| 1142 | { |
| 1143 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
| 1144 | |
| 1145 | if (fcinfo->args[0].isnull && fcinfo->args[1].isnull) |
| 1146 | { |
| 1147 | *op->resvalue = BoolGetDatum(true); |
| 1148 | *op->resnull = false; |
| 1149 | } |
| 1150 | else if (fcinfo->args[0].isnull || fcinfo->args[1].isnull) |
| 1151 | { |
| 1152 | *op->resvalue = BoolGetDatum(false); |
| 1153 | *op->resnull = false; |
| 1154 | } |
| 1155 | else |
| 1156 | { |
| 1157 | Datum eqresult; |
| 1158 | |
| 1159 | fcinfo->isnull = false; |
| 1160 | eqresult = op->d.func.fn_addr(fcinfo); |
| 1161 | *op->resvalue = eqresult; |
| 1162 | *op->resnull = fcinfo->isnull; |
| 1163 | } |
| 1164 | |
| 1165 | EEO_NEXT(); |
| 1166 | } |
| 1167 | |
| 1168 | EEO_CASE(EEOP_NULLIF) |
| 1169 | { |
| 1170 | /* |
| 1171 | * The arguments are already evaluated into fcinfo->args. |
| 1172 | */ |
| 1173 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
| 1174 | |
| 1175 | /* if either argument is NULL they can't be equal */ |
| 1176 | if (!fcinfo->args[0].isnull && !fcinfo->args[1].isnull) |
| 1177 | { |
| 1178 | Datum result; |
| 1179 | |
| 1180 | fcinfo->isnull = false; |
| 1181 | result = op->d.func.fn_addr(fcinfo); |
| 1182 | |
| 1183 | /* if the arguments are equal return null */ |
| 1184 | if (!fcinfo->isnull && DatumGetBool(result)) |
| 1185 | { |
| 1186 | *op->resvalue = (Datum) 0; |
| 1187 | *op->resnull = true; |
| 1188 | |
| 1189 | EEO_NEXT(); |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | /* Arguments aren't equal, so return the first one */ |
| 1194 | *op->resvalue = fcinfo->args[0].value; |
| 1195 | *op->resnull = fcinfo->args[0].isnull; |
| 1196 | |
| 1197 | EEO_NEXT(); |
| 1198 | } |
| 1199 | |
| 1200 | EEO_CASE(EEOP_SQLVALUEFUNCTION) |
| 1201 | { |
| 1202 | /* |
| 1203 | * Doesn't seem worthwhile to have an inline implementation |
| 1204 | * efficiency-wise. |
| 1205 | */ |
| 1206 | ExecEvalSQLValueFunction(state, op); |
| 1207 | |
| 1208 | EEO_NEXT(); |
| 1209 | } |
| 1210 | |
| 1211 | EEO_CASE(EEOP_CURRENTOFEXPR) |
| 1212 | { |
| 1213 | /* error invocation uses space, and shouldn't ever occur */ |
| 1214 | ExecEvalCurrentOfExpr(state, op); |
| 1215 | |
| 1216 | EEO_NEXT(); |
| 1217 | } |
| 1218 | |
| 1219 | EEO_CASE(EEOP_NEXTVALUEEXPR) |
| 1220 | { |
| 1221 | /* |
| 1222 | * Doesn't seem worthwhile to have an inline implementation |
| 1223 | * efficiency-wise. |
| 1224 | */ |
| 1225 | ExecEvalNextValueExpr(state, op); |
| 1226 | |
| 1227 | EEO_NEXT(); |
| 1228 | } |
| 1229 | |
| 1230 | EEO_CASE(EEOP_ARRAYEXPR) |
| 1231 | { |
| 1232 | /* too complex for an inline implementation */ |
| 1233 | ExecEvalArrayExpr(state, op); |
| 1234 | |
| 1235 | EEO_NEXT(); |
| 1236 | } |
| 1237 | |
| 1238 | EEO_CASE(EEOP_ARRAYCOERCE) |
| 1239 | { |
| 1240 | /* too complex for an inline implementation */ |
| 1241 | ExecEvalArrayCoerce(state, op, econtext); |
| 1242 | |
| 1243 | EEO_NEXT(); |
| 1244 | } |
| 1245 | |
| 1246 | EEO_CASE(EEOP_ROW) |
| 1247 | { |
| 1248 | /* too complex for an inline implementation */ |
| 1249 | ExecEvalRow(state, op); |
| 1250 | |
| 1251 | EEO_NEXT(); |
| 1252 | } |
| 1253 | |
| 1254 | EEO_CASE(EEOP_ROWCOMPARE_STEP) |
| 1255 | { |
| 1256 | FunctionCallInfo fcinfo = op->d.rowcompare_step.fcinfo_data; |
| 1257 | Datum d; |
| 1258 | |
| 1259 | /* force NULL result if strict fn and NULL input */ |
| 1260 | if (op->d.rowcompare_step.finfo->fn_strict && |
| 1261 | (fcinfo->args[0].isnull || fcinfo->args[1].isnull)) |
| 1262 | { |
| 1263 | *op->resnull = true; |
| 1264 | EEO_JUMP(op->d.rowcompare_step.jumpnull); |
| 1265 | } |
| 1266 | |
| 1267 | /* Apply comparison function */ |
| 1268 | fcinfo->isnull = false; |
| 1269 | d = op->d.rowcompare_step.fn_addr(fcinfo); |
| 1270 | *op->resvalue = d; |
| 1271 | |
| 1272 | /* force NULL result if NULL function result */ |
| 1273 | if (fcinfo->isnull) |
| 1274 | { |
| 1275 | *op->resnull = true; |
| 1276 | EEO_JUMP(op->d.rowcompare_step.jumpnull); |
| 1277 | } |
| 1278 | *op->resnull = false; |
| 1279 | |
| 1280 | /* If unequal, no need to compare remaining columns */ |
| 1281 | if (DatumGetInt32(*op->resvalue) != 0) |
| 1282 | { |
| 1283 | EEO_JUMP(op->d.rowcompare_step.jumpdone); |
| 1284 | } |
| 1285 | |
| 1286 | EEO_NEXT(); |
| 1287 | } |
| 1288 | |
| 1289 | EEO_CASE(EEOP_ROWCOMPARE_FINAL) |
| 1290 | { |
| 1291 | int32 cmpresult = DatumGetInt32(*op->resvalue); |
| 1292 | RowCompareType rctype = op->d.rowcompare_final.rctype; |
| 1293 | |
| 1294 | *op->resnull = false; |
| 1295 | switch (rctype) |
| 1296 | { |
| 1297 | /* EQ and NE cases aren't allowed here */ |
| 1298 | case ROWCOMPARE_LT: |
| 1299 | *op->resvalue = BoolGetDatum(cmpresult < 0); |
| 1300 | break; |
| 1301 | case ROWCOMPARE_LE: |
| 1302 | *op->resvalue = BoolGetDatum(cmpresult <= 0); |
| 1303 | break; |
| 1304 | case ROWCOMPARE_GE: |
| 1305 | *op->resvalue = BoolGetDatum(cmpresult >= 0); |
| 1306 | break; |
| 1307 | case ROWCOMPARE_GT: |
| 1308 | *op->resvalue = BoolGetDatum(cmpresult > 0); |
| 1309 | break; |
| 1310 | default: |
| 1311 | Assert(false); |
| 1312 | break; |
| 1313 | } |
| 1314 | |
| 1315 | EEO_NEXT(); |
| 1316 | } |
| 1317 | |
| 1318 | EEO_CASE(EEOP_MINMAX) |
| 1319 | { |
| 1320 | /* too complex for an inline implementation */ |
| 1321 | ExecEvalMinMax(state, op); |
| 1322 | |
| 1323 | EEO_NEXT(); |
| 1324 | } |
| 1325 | |
| 1326 | EEO_CASE(EEOP_FIELDSELECT) |
| 1327 | { |
| 1328 | /* too complex for an inline implementation */ |
| 1329 | ExecEvalFieldSelect(state, op, econtext); |
| 1330 | |
| 1331 | EEO_NEXT(); |
| 1332 | } |
| 1333 | |
| 1334 | EEO_CASE(EEOP_FIELDSTORE_DEFORM) |
| 1335 | { |
| 1336 | /* too complex for an inline implementation */ |
| 1337 | ExecEvalFieldStoreDeForm(state, op, econtext); |
| 1338 | |
| 1339 | EEO_NEXT(); |
| 1340 | } |
| 1341 | |
| 1342 | EEO_CASE(EEOP_FIELDSTORE_FORM) |
| 1343 | { |
| 1344 | /* too complex for an inline implementation */ |
| 1345 | ExecEvalFieldStoreForm(state, op, econtext); |
| 1346 | |
| 1347 | EEO_NEXT(); |
| 1348 | } |
| 1349 | |
| 1350 | EEO_CASE(EEOP_SBSREF_SUBSCRIPT) |
| 1351 | { |
| 1352 | /* Process an array subscript */ |
| 1353 | |
| 1354 | /* too complex for an inline implementation */ |
| 1355 | if (ExecEvalSubscriptingRef(state, op)) |
| 1356 | { |
| 1357 | EEO_NEXT(); |
| 1358 | } |
| 1359 | else |
| 1360 | { |
| 1361 | /* Subscript is null, short-circuit SubscriptingRef to NULL */ |
| 1362 | EEO_JUMP(op->d.sbsref_subscript.jumpdone); |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | EEO_CASE(EEOP_SBSREF_OLD) |
| 1367 | { |
| 1368 | /* |
| 1369 | * Fetch the old value in an sbsref assignment, in case it's |
| 1370 | * referenced (via a CaseTestExpr) inside the assignment |
| 1371 | * expression. |
| 1372 | */ |
| 1373 | |
| 1374 | /* too complex for an inline implementation */ |
| 1375 | ExecEvalSubscriptingRefOld(state, op); |
| 1376 | |
| 1377 | EEO_NEXT(); |
| 1378 | } |
| 1379 | |
| 1380 | /* |
| 1381 | * Perform SubscriptingRef assignment |
| 1382 | */ |
| 1383 | EEO_CASE(EEOP_SBSREF_ASSIGN) |
| 1384 | { |
| 1385 | /* too complex for an inline implementation */ |
| 1386 | ExecEvalSubscriptingRefAssign(state, op); |
| 1387 | |
| 1388 | EEO_NEXT(); |
| 1389 | } |
| 1390 | |
| 1391 | /* |
| 1392 | * Fetch subset of an array. |
| 1393 | */ |
| 1394 | EEO_CASE(EEOP_SBSREF_FETCH) |
| 1395 | { |
| 1396 | /* too complex for an inline implementation */ |
| 1397 | ExecEvalSubscriptingRefFetch(state, op); |
| 1398 | |
| 1399 | EEO_NEXT(); |
| 1400 | } |
| 1401 | |
| 1402 | EEO_CASE(EEOP_CONVERT_ROWTYPE) |
| 1403 | { |
| 1404 | /* too complex for an inline implementation */ |
| 1405 | ExecEvalConvertRowtype(state, op, econtext); |
| 1406 | |
| 1407 | EEO_NEXT(); |
| 1408 | } |
| 1409 | |
| 1410 | EEO_CASE(EEOP_SCALARARRAYOP) |
| 1411 | { |
| 1412 | /* too complex for an inline implementation */ |
| 1413 | ExecEvalScalarArrayOp(state, op); |
| 1414 | |
| 1415 | EEO_NEXT(); |
| 1416 | } |
| 1417 | |
| 1418 | EEO_CASE(EEOP_DOMAIN_NOTNULL) |
| 1419 | { |
| 1420 | /* too complex for an inline implementation */ |
| 1421 | ExecEvalConstraintNotNull(state, op); |
| 1422 | |
| 1423 | EEO_NEXT(); |
| 1424 | } |
| 1425 | |
| 1426 | EEO_CASE(EEOP_DOMAIN_CHECK) |
| 1427 | { |
| 1428 | /* too complex for an inline implementation */ |
| 1429 | ExecEvalConstraintCheck(state, op); |
| 1430 | |
| 1431 | EEO_NEXT(); |
| 1432 | } |
| 1433 | |
| 1434 | EEO_CASE(EEOP_XMLEXPR) |
| 1435 | { |
| 1436 | /* too complex for an inline implementation */ |
| 1437 | ExecEvalXmlExpr(state, op); |
| 1438 | |
| 1439 | EEO_NEXT(); |
| 1440 | } |
| 1441 | |
| 1442 | EEO_CASE(EEOP_AGGREF) |
| 1443 | { |
| 1444 | /* |
| 1445 | * Returns a Datum whose value is the precomputed aggregate value |
| 1446 | * found in the given expression context. |
| 1447 | */ |
| 1448 | AggrefExprState *aggref = op->d.aggref.astate; |
| 1449 | |
| 1450 | Assert(econtext->ecxt_aggvalues != NULL); |
| 1451 | |
| 1452 | *op->resvalue = econtext->ecxt_aggvalues[aggref->aggno]; |
| 1453 | *op->resnull = econtext->ecxt_aggnulls[aggref->aggno]; |
| 1454 | |
| 1455 | EEO_NEXT(); |
| 1456 | } |
| 1457 | |
| 1458 | EEO_CASE(EEOP_GROUPING_FUNC) |
| 1459 | { |
| 1460 | /* too complex/uncommon for an inline implementation */ |
| 1461 | ExecEvalGroupingFunc(state, op); |
| 1462 | |
| 1463 | EEO_NEXT(); |
| 1464 | } |
| 1465 | |
| 1466 | EEO_CASE(EEOP_WINDOW_FUNC) |
| 1467 | { |
| 1468 | /* |
| 1469 | * Like Aggref, just return a precomputed value from the econtext. |
| 1470 | */ |
| 1471 | WindowFuncExprState *wfunc = op->d.window_func.wfstate; |
| 1472 | |
| 1473 | Assert(econtext->ecxt_aggvalues != NULL); |
| 1474 | |
| 1475 | *op->resvalue = econtext->ecxt_aggvalues[wfunc->wfuncno]; |
| 1476 | *op->resnull = econtext->ecxt_aggnulls[wfunc->wfuncno]; |
| 1477 | |
| 1478 | EEO_NEXT(); |
| 1479 | } |
| 1480 | |
| 1481 | EEO_CASE(EEOP_SUBPLAN) |
| 1482 | { |
| 1483 | /* too complex for an inline implementation */ |
| 1484 | ExecEvalSubPlan(state, op, econtext); |
| 1485 | |
| 1486 | EEO_NEXT(); |
| 1487 | } |
| 1488 | |
| 1489 | EEO_CASE(EEOP_ALTERNATIVE_SUBPLAN) |
| 1490 | { |
| 1491 | /* too complex for an inline implementation */ |
| 1492 | ExecEvalAlternativeSubPlan(state, op, econtext); |
| 1493 | |
| 1494 | EEO_NEXT(); |
| 1495 | } |
| 1496 | |
| 1497 | /* evaluate a strict aggregate deserialization function */ |
| 1498 | EEO_CASE(EEOP_AGG_STRICT_DESERIALIZE) |
| 1499 | { |
| 1500 | /* Don't call a strict deserialization function with NULL input */ |
| 1501 | if (op->d.agg_deserialize.fcinfo_data->args[0].isnull) |
| 1502 | EEO_JUMP(op->d.agg_deserialize.jumpnull); |
| 1503 | |
| 1504 | /* fallthrough */ |
| 1505 | } |
| 1506 | |
| 1507 | /* evaluate aggregate deserialization function (non-strict portion) */ |
| 1508 | EEO_CASE(EEOP_AGG_DESERIALIZE) |
| 1509 | { |
| 1510 | FunctionCallInfo fcinfo = op->d.agg_deserialize.fcinfo_data; |
| 1511 | AggState *aggstate = op->d.agg_deserialize.aggstate; |
| 1512 | MemoryContext oldContext; |
| 1513 | |
| 1514 | /* |
| 1515 | * We run the deserialization functions in per-input-tuple memory |
| 1516 | * context. |
| 1517 | */ |
| 1518 | oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory); |
| 1519 | fcinfo->isnull = false; |
| 1520 | *op->resvalue = FunctionCallInvoke(fcinfo); |
| 1521 | *op->resnull = fcinfo->isnull; |
| 1522 | MemoryContextSwitchTo(oldContext); |
| 1523 | |
| 1524 | EEO_NEXT(); |
| 1525 | } |
| 1526 | |
| 1527 | /* |
| 1528 | * Check that a strict aggregate transition / combination function's |
| 1529 | * input is not NULL. |
| 1530 | */ |
| 1531 | EEO_CASE(EEOP_AGG_STRICT_INPUT_CHECK_NULLS) |
| 1532 | { |
| 1533 | int argno; |
| 1534 | bool *nulls = op->d.agg_strict_input_check.nulls; |
| 1535 | int nargs = op->d.agg_strict_input_check.nargs; |
| 1536 | |
| 1537 | for (argno = 0; argno < nargs; argno++) |
| 1538 | { |
| 1539 | if (nulls[argno]) |
| 1540 | EEO_JUMP(op->d.agg_strict_input_check.jumpnull); |
| 1541 | } |
| 1542 | EEO_NEXT(); |
| 1543 | } |
| 1544 | |
| 1545 | EEO_CASE(EEOP_AGG_STRICT_INPUT_CHECK_ARGS) |
| 1546 | { |
| 1547 | int argno; |
| 1548 | NullableDatum *args = op->d.agg_strict_input_check.args; |
| 1549 | int nargs = op->d.agg_strict_input_check.nargs; |
| 1550 | |
| 1551 | for (argno = 0; argno < nargs; argno++) |
| 1552 | { |
| 1553 | if (args[argno].isnull) |
| 1554 | EEO_JUMP(op->d.agg_strict_input_check.jumpnull); |
| 1555 | } |
| 1556 | EEO_NEXT(); |
| 1557 | } |
| 1558 | |
| 1559 | /* |
| 1560 | * Initialize an aggregate's first value if necessary. |
| 1561 | */ |
| 1562 | EEO_CASE(EEOP_AGG_INIT_TRANS) |
| 1563 | { |
| 1564 | AggState *aggstate; |
| 1565 | AggStatePerGroup pergroup; |
| 1566 | |
| 1567 | aggstate = op->d.agg_init_trans.aggstate; |
| 1568 | pergroup = &aggstate->all_pergroups |
| 1569 | [op->d.agg_init_trans.setoff] |
| 1570 | [op->d.agg_init_trans.transno]; |
| 1571 | |
| 1572 | /* If transValue has not yet been initialized, do so now. */ |
| 1573 | if (pergroup->noTransValue) |
| 1574 | { |
| 1575 | AggStatePerTrans pertrans = op->d.agg_init_trans.pertrans; |
| 1576 | |
| 1577 | aggstate->curaggcontext = op->d.agg_init_trans.aggcontext; |
| 1578 | aggstate->current_set = op->d.agg_init_trans.setno; |
| 1579 | |
| 1580 | ExecAggInitGroup(aggstate, pertrans, pergroup); |
| 1581 | |
| 1582 | /* copied trans value from input, done this round */ |
| 1583 | EEO_JUMP(op->d.agg_init_trans.jumpnull); |
| 1584 | } |
| 1585 | |
| 1586 | EEO_NEXT(); |
| 1587 | } |
| 1588 | |
| 1589 | /* check that a strict aggregate's input isn't NULL */ |
| 1590 | EEO_CASE(EEOP_AGG_STRICT_TRANS_CHECK) |
| 1591 | { |
| 1592 | AggState *aggstate; |
| 1593 | AggStatePerGroup pergroup; |
| 1594 | |
| 1595 | aggstate = op->d.agg_strict_trans_check.aggstate; |
| 1596 | pergroup = &aggstate->all_pergroups |
| 1597 | [op->d.agg_strict_trans_check.setoff] |
| 1598 | [op->d.agg_strict_trans_check.transno]; |
| 1599 | |
| 1600 | if (unlikely(pergroup->transValueIsNull)) |
| 1601 | EEO_JUMP(op->d.agg_strict_trans_check.jumpnull); |
| 1602 | |
| 1603 | EEO_NEXT(); |
| 1604 | } |
| 1605 | |
| 1606 | /* |
| 1607 | * Evaluate aggregate transition / combine function that has a |
| 1608 | * by-value transition type. That's a separate case from the |
| 1609 | * by-reference implementation because it's a bit simpler. |
| 1610 | */ |
| 1611 | EEO_CASE(EEOP_AGG_PLAIN_TRANS_BYVAL) |
| 1612 | { |
| 1613 | AggState *aggstate; |
| 1614 | AggStatePerTrans pertrans; |
| 1615 | AggStatePerGroup pergroup; |
| 1616 | FunctionCallInfo fcinfo; |
| 1617 | MemoryContext oldContext; |
| 1618 | Datum newVal; |
| 1619 | |
| 1620 | aggstate = op->d.agg_trans.aggstate; |
| 1621 | pertrans = op->d.agg_trans.pertrans; |
| 1622 | |
| 1623 | pergroup = &aggstate->all_pergroups |
| 1624 | [op->d.agg_trans.setoff] |
| 1625 | [op->d.agg_trans.transno]; |
| 1626 | |
| 1627 | Assert(pertrans->transtypeByVal); |
| 1628 | |
| 1629 | fcinfo = pertrans->transfn_fcinfo; |
| 1630 | |
| 1631 | /* cf. select_current_set() */ |
| 1632 | aggstate->curaggcontext = op->d.agg_trans.aggcontext; |
| 1633 | aggstate->current_set = op->d.agg_trans.setno; |
| 1634 | |
| 1635 | /* set up aggstate->curpertrans for AggGetAggref() */ |
| 1636 | aggstate->curpertrans = pertrans; |
| 1637 | |
| 1638 | /* invoke transition function in per-tuple context */ |
| 1639 | oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory); |
| 1640 | |
| 1641 | fcinfo->args[0].value = pergroup->transValue; |
| 1642 | fcinfo->args[0].isnull = pergroup->transValueIsNull; |
| 1643 | fcinfo->isnull = false; /* just in case transfn doesn't set it */ |
| 1644 | |
| 1645 | newVal = FunctionCallInvoke(fcinfo); |
| 1646 | |
| 1647 | pergroup->transValue = newVal; |
| 1648 | pergroup->transValueIsNull = fcinfo->isnull; |
| 1649 | |
| 1650 | MemoryContextSwitchTo(oldContext); |
| 1651 | |
| 1652 | EEO_NEXT(); |
| 1653 | } |
| 1654 | |
| 1655 | /* |
| 1656 | * Evaluate aggregate transition / combine function that has a |
| 1657 | * by-reference transition type. |
| 1658 | * |
| 1659 | * Could optimize a bit further by splitting off by-reference |
| 1660 | * fixed-length types, but currently that doesn't seem worth it. |
| 1661 | */ |
| 1662 | EEO_CASE(EEOP_AGG_PLAIN_TRANS) |
| 1663 | { |
| 1664 | AggState *aggstate; |
| 1665 | AggStatePerTrans pertrans; |
| 1666 | AggStatePerGroup pergroup; |
| 1667 | FunctionCallInfo fcinfo; |
| 1668 | MemoryContext oldContext; |
| 1669 | Datum newVal; |
| 1670 | |
| 1671 | aggstate = op->d.agg_trans.aggstate; |
| 1672 | pertrans = op->d.agg_trans.pertrans; |
| 1673 | |
| 1674 | pergroup = &aggstate->all_pergroups |
| 1675 | [op->d.agg_trans.setoff] |
| 1676 | [op->d.agg_trans.transno]; |
| 1677 | |
| 1678 | Assert(!pertrans->transtypeByVal); |
| 1679 | |
| 1680 | fcinfo = pertrans->transfn_fcinfo; |
| 1681 | |
| 1682 | /* cf. select_current_set() */ |
| 1683 | aggstate->curaggcontext = op->d.agg_trans.aggcontext; |
| 1684 | aggstate->current_set = op->d.agg_trans.setno; |
| 1685 | |
| 1686 | /* set up aggstate->curpertrans for AggGetAggref() */ |
| 1687 | aggstate->curpertrans = pertrans; |
| 1688 | |
| 1689 | /* invoke transition function in per-tuple context */ |
| 1690 | oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory); |
| 1691 | |
| 1692 | fcinfo->args[0].value = pergroup->transValue; |
| 1693 | fcinfo->args[0].isnull = pergroup->transValueIsNull; |
| 1694 | fcinfo->isnull = false; /* just in case transfn doesn't set it */ |
| 1695 | |
| 1696 | newVal = FunctionCallInvoke(fcinfo); |
| 1697 | |
| 1698 | /* |
| 1699 | * For pass-by-ref datatype, must copy the new value into |
| 1700 | * aggcontext and free the prior transValue. But if transfn |
| 1701 | * returned a pointer to its first input, we don't need to do |
| 1702 | * anything. Also, if transfn returned a pointer to a R/W |
| 1703 | * expanded object that is already a child of the aggcontext, |
| 1704 | * assume we can adopt that value without copying it. |
| 1705 | */ |
| 1706 | if (DatumGetPointer(newVal) != DatumGetPointer(pergroup->transValue)) |
| 1707 | newVal = ExecAggTransReparent(aggstate, pertrans, |
| 1708 | newVal, fcinfo->isnull, |
| 1709 | pergroup->transValue, |
| 1710 | pergroup->transValueIsNull); |
| 1711 | |
| 1712 | pergroup->transValue = newVal; |
| 1713 | pergroup->transValueIsNull = fcinfo->isnull; |
| 1714 | |
| 1715 | MemoryContextSwitchTo(oldContext); |
| 1716 | |
| 1717 | EEO_NEXT(); |
| 1718 | } |
| 1719 | |
| 1720 | /* process single-column ordered aggregate datum */ |
| 1721 | EEO_CASE(EEOP_AGG_ORDERED_TRANS_DATUM) |
| 1722 | { |
| 1723 | /* too complex for an inline implementation */ |
| 1724 | ExecEvalAggOrderedTransDatum(state, op, econtext); |
| 1725 | |
| 1726 | EEO_NEXT(); |
| 1727 | } |
| 1728 | |
| 1729 | /* process multi-column ordered aggregate tuple */ |
| 1730 | EEO_CASE(EEOP_AGG_ORDERED_TRANS_TUPLE) |
| 1731 | { |
| 1732 | /* too complex for an inline implementation */ |
| 1733 | ExecEvalAggOrderedTransTuple(state, op, econtext); |
| 1734 | |
| 1735 | EEO_NEXT(); |
| 1736 | } |
| 1737 | |
| 1738 | EEO_CASE(EEOP_LAST) |
| 1739 | { |
| 1740 | /* unreachable */ |
| 1741 | Assert(false); |
| 1742 | goto out; |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | out: |
| 1747 | *isnull = state->resnull; |
| 1748 | return state->resvalue; |
| 1749 | } |
| 1750 | |
| 1751 | /* |
| 1752 | * Expression evaluation callback that performs extra checks before executing |
| 1753 | * the expression. Declared extern so other methods of execution can use it |
| 1754 | * too. |
| 1755 | */ |
| 1756 | Datum |
| 1757 | ExecInterpExprStillValid(ExprState *state, ExprContext *econtext, bool *isNull) |
| 1758 | { |
| 1759 | /* |
| 1760 | * First time through, check whether attribute matches Var. Might not be |
| 1761 | * ok anymore, due to schema changes. |
| 1762 | */ |
| 1763 | CheckExprStillValid(state, econtext); |
| 1764 | |
| 1765 | /* skip the check during further executions */ |
| 1766 | state->evalfunc = (ExprStateEvalFunc) state->evalfunc_private; |
| 1767 | |
| 1768 | /* and actually execute */ |
| 1769 | return state->evalfunc(state, econtext, isNull); |
| 1770 | } |
| 1771 | |
| 1772 | /* |
| 1773 | * Check that an expression is still valid in the face of potential schema |
| 1774 | * changes since the plan has been created. |
| 1775 | */ |
| 1776 | void |
| 1777 | CheckExprStillValid(ExprState *state, ExprContext *econtext) |
| 1778 | { |
| 1779 | int i = 0; |
| 1780 | TupleTableSlot *innerslot; |
| 1781 | TupleTableSlot *outerslot; |
| 1782 | TupleTableSlot *scanslot; |
| 1783 | |
| 1784 | innerslot = econtext->ecxt_innertuple; |
| 1785 | outerslot = econtext->ecxt_outertuple; |
| 1786 | scanslot = econtext->ecxt_scantuple; |
| 1787 | |
| 1788 | for (i = 0; i < state->steps_len; i++) |
| 1789 | { |
| 1790 | ExprEvalStep *op = &state->steps[i]; |
| 1791 | |
| 1792 | switch (ExecEvalStepOp(state, op)) |
| 1793 | { |
| 1794 | case EEOP_INNER_VAR: |
| 1795 | { |
| 1796 | int attnum = op->d.var.attnum; |
| 1797 | |
| 1798 | CheckVarSlotCompatibility(innerslot, attnum + 1, op->d.var.vartype); |
| 1799 | break; |
| 1800 | } |
| 1801 | |
| 1802 | case EEOP_OUTER_VAR: |
| 1803 | { |
| 1804 | int attnum = op->d.var.attnum; |
| 1805 | |
| 1806 | CheckVarSlotCompatibility(outerslot, attnum + 1, op->d.var.vartype); |
| 1807 | break; |
| 1808 | } |
| 1809 | |
| 1810 | case EEOP_SCAN_VAR: |
| 1811 | { |
| 1812 | int attnum = op->d.var.attnum; |
| 1813 | |
| 1814 | CheckVarSlotCompatibility(scanslot, attnum + 1, op->d.var.vartype); |
| 1815 | break; |
| 1816 | } |
| 1817 | default: |
| 1818 | break; |
| 1819 | } |
| 1820 | } |
| 1821 | } |
| 1822 | |
| 1823 | /* |
| 1824 | * Check whether a user attribute in a slot can be referenced by a Var |
| 1825 | * expression. This should succeed unless there have been schema changes |
| 1826 | * since the expression tree has been created. |
| 1827 | */ |
| 1828 | static void |
| 1829 | CheckVarSlotCompatibility(TupleTableSlot *slot, int attnum, Oid vartype) |
| 1830 | { |
| 1831 | /* |
| 1832 | * What we have to check for here is the possibility of an attribute |
| 1833 | * having been dropped or changed in type since the plan tree was created. |
| 1834 | * Ideally the plan will get invalidated and not re-used, but just in |
| 1835 | * case, we keep these defenses. Fortunately it's sufficient to check |
| 1836 | * once on the first time through. |
| 1837 | * |
| 1838 | * Note: ideally we'd check typmod as well as typid, but that seems |
| 1839 | * impractical at the moment: in many cases the tupdesc will have been |
| 1840 | * generated by ExecTypeFromTL(), and that can't guarantee to generate an |
| 1841 | * accurate typmod in all cases, because some expression node types don't |
| 1842 | * carry typmod. Fortunately, for precisely that reason, there should be |
| 1843 | * no places with a critical dependency on the typmod of a value. |
| 1844 | * |
| 1845 | * System attributes don't require checking since their types never |
| 1846 | * change. |
| 1847 | */ |
| 1848 | if (attnum > 0) |
| 1849 | { |
| 1850 | TupleDesc slot_tupdesc = slot->tts_tupleDescriptor; |
| 1851 | Form_pg_attribute attr; |
| 1852 | |
| 1853 | if (attnum > slot_tupdesc->natts) /* should never happen */ |
| 1854 | elog(ERROR, "attribute number %d exceeds number of columns %d" , |
| 1855 | attnum, slot_tupdesc->natts); |
| 1856 | |
| 1857 | attr = TupleDescAttr(slot_tupdesc, attnum - 1); |
| 1858 | |
| 1859 | if (attr->attisdropped) |
| 1860 | ereport(ERROR, |
| 1861 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
| 1862 | errmsg("attribute %d of type %s has been dropped" , |
| 1863 | attnum, format_type_be(slot_tupdesc->tdtypeid)))); |
| 1864 | |
| 1865 | if (vartype != attr->atttypid) |
| 1866 | ereport(ERROR, |
| 1867 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1868 | errmsg("attribute %d of type %s has wrong type" , |
| 1869 | attnum, format_type_be(slot_tupdesc->tdtypeid)), |
| 1870 | errdetail("Table has type %s, but query expects %s." , |
| 1871 | format_type_be(attr->atttypid), |
| 1872 | format_type_be(vartype)))); |
| 1873 | } |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * Verify that the slot is compatible with a EEOP_*_FETCHSOME operation. |
| 1878 | */ |
| 1879 | static void |
| 1880 | CheckOpSlotCompatibility(ExprEvalStep *op, TupleTableSlot *slot) |
| 1881 | { |
| 1882 | #ifdef USE_ASSERT_CHECKING |
| 1883 | /* there's nothing to check */ |
| 1884 | if (!op->d.fetch.fixed) |
| 1885 | return; |
| 1886 | |
| 1887 | /* |
| 1888 | * Should probably fixed at some point, but for now it's easier to allow |
| 1889 | * buffer and heap tuples to be used interchangeably. |
| 1890 | */ |
| 1891 | if (slot->tts_ops == &TTSOpsBufferHeapTuple && |
| 1892 | op->d.fetch.kind == &TTSOpsHeapTuple) |
| 1893 | return; |
| 1894 | if (slot->tts_ops == &TTSOpsHeapTuple && |
| 1895 | op->d.fetch.kind == &TTSOpsBufferHeapTuple) |
| 1896 | return; |
| 1897 | |
| 1898 | /* |
| 1899 | * At the moment we consider it OK if a virtual slot is used instead of a |
| 1900 | * specific type of slot, as a virtual slot never needs to be deformed. |
| 1901 | */ |
| 1902 | if (slot->tts_ops == &TTSOpsVirtual) |
| 1903 | return; |
| 1904 | |
| 1905 | Assert(op->d.fetch.kind == slot->tts_ops); |
| 1906 | #endif |
| 1907 | } |
| 1908 | |
| 1909 | /* |
| 1910 | * get_cached_rowtype: utility function to lookup a rowtype tupdesc |
| 1911 | * |
| 1912 | * type_id, typmod: identity of the rowtype |
| 1913 | * cache_field: where to cache the TupleDesc pointer in expression state node |
| 1914 | * (field must be initialized to NULL) |
| 1915 | * econtext: expression context we are executing in |
| 1916 | * |
| 1917 | * NOTE: because the shutdown callback will be called during plan rescan, |
| 1918 | * must be prepared to re-do this during any node execution; cannot call |
| 1919 | * just once during expression initialization. |
| 1920 | */ |
| 1921 | static TupleDesc |
| 1922 | get_cached_rowtype(Oid type_id, int32 typmod, |
| 1923 | TupleDesc *cache_field, ExprContext *econtext) |
| 1924 | { |
| 1925 | TupleDesc tupDesc = *cache_field; |
| 1926 | |
| 1927 | /* Do lookup if no cached value or if requested type changed */ |
| 1928 | if (tupDesc == NULL || |
| 1929 | type_id != tupDesc->tdtypeid || |
| 1930 | typmod != tupDesc->tdtypmod) |
| 1931 | { |
| 1932 | tupDesc = lookup_rowtype_tupdesc(type_id, typmod); |
| 1933 | |
| 1934 | if (*cache_field) |
| 1935 | { |
| 1936 | /* Release old tupdesc; but callback is already registered */ |
| 1937 | ReleaseTupleDesc(*cache_field); |
| 1938 | } |
| 1939 | else |
| 1940 | { |
| 1941 | /* Need to register shutdown callback to release tupdesc */ |
| 1942 | RegisterExprContextCallback(econtext, |
| 1943 | ShutdownTupleDescRef, |
| 1944 | PointerGetDatum(cache_field)); |
| 1945 | } |
| 1946 | *cache_field = tupDesc; |
| 1947 | } |
| 1948 | return tupDesc; |
| 1949 | } |
| 1950 | |
| 1951 | /* |
| 1952 | * Callback function to release a tupdesc refcount at econtext shutdown |
| 1953 | */ |
| 1954 | static void |
| 1955 | ShutdownTupleDescRef(Datum arg) |
| 1956 | { |
| 1957 | TupleDesc *cache_field = (TupleDesc *) DatumGetPointer(arg); |
| 1958 | |
| 1959 | if (*cache_field) |
| 1960 | ReleaseTupleDesc(*cache_field); |
| 1961 | *cache_field = NULL; |
| 1962 | } |
| 1963 | |
| 1964 | /* |
| 1965 | * Fast-path functions, for very simple expressions |
| 1966 | */ |
| 1967 | |
| 1968 | /* Simple reference to inner Var */ |
| 1969 | static Datum |
| 1970 | ExecJustInnerVar(ExprState *state, ExprContext *econtext, bool *isnull) |
| 1971 | { |
| 1972 | ExprEvalStep *op = &state->steps[1]; |
| 1973 | int attnum = op->d.var.attnum + 1; |
| 1974 | TupleTableSlot *slot = econtext->ecxt_innertuple; |
| 1975 | |
| 1976 | CheckOpSlotCompatibility(&state->steps[0], slot); |
| 1977 | |
| 1978 | /* |
| 1979 | * Since we use slot_getattr(), we don't need to implement the FETCHSOME |
| 1980 | * step explicitly, and we also needn't Assert that the attnum is in range |
| 1981 | * --- slot_getattr() will take care of any problems. |
| 1982 | */ |
| 1983 | return slot_getattr(slot, attnum, isnull); |
| 1984 | } |
| 1985 | |
| 1986 | /* Simple reference to outer Var */ |
| 1987 | static Datum |
| 1988 | ExecJustOuterVar(ExprState *state, ExprContext *econtext, bool *isnull) |
| 1989 | { |
| 1990 | ExprEvalStep *op = &state->steps[1]; |
| 1991 | int attnum = op->d.var.attnum + 1; |
| 1992 | TupleTableSlot *slot = econtext->ecxt_outertuple; |
| 1993 | |
| 1994 | CheckOpSlotCompatibility(&state->steps[0], slot); |
| 1995 | |
| 1996 | /* See comments in ExecJustInnerVar */ |
| 1997 | return slot_getattr(slot, attnum, isnull); |
| 1998 | } |
| 1999 | |
| 2000 | /* Simple reference to scan Var */ |
| 2001 | static Datum |
| 2002 | ExecJustScanVar(ExprState *state, ExprContext *econtext, bool *isnull) |
| 2003 | { |
| 2004 | ExprEvalStep *op = &state->steps[1]; |
| 2005 | int attnum = op->d.var.attnum + 1; |
| 2006 | TupleTableSlot *slot = econtext->ecxt_scantuple; |
| 2007 | |
| 2008 | CheckOpSlotCompatibility(&state->steps[0], slot); |
| 2009 | |
| 2010 | /* See comments in ExecJustInnerVar */ |
| 2011 | return slot_getattr(slot, attnum, isnull); |
| 2012 | } |
| 2013 | |
| 2014 | /* Simple Const expression */ |
| 2015 | static Datum |
| 2016 | ExecJustConst(ExprState *state, ExprContext *econtext, bool *isnull) |
| 2017 | { |
| 2018 | ExprEvalStep *op = &state->steps[0]; |
| 2019 | |
| 2020 | *isnull = op->d.constval.isnull; |
| 2021 | return op->d.constval.value; |
| 2022 | } |
| 2023 | |
| 2024 | /* Evaluate inner Var and assign to appropriate column of result tuple */ |
| 2025 | static Datum |
| 2026 | ExecJustAssignInnerVar(ExprState *state, ExprContext *econtext, bool *isnull) |
| 2027 | { |
| 2028 | ExprEvalStep *op = &state->steps[1]; |
| 2029 | int attnum = op->d.assign_var.attnum + 1; |
| 2030 | int resultnum = op->d.assign_var.resultnum; |
| 2031 | TupleTableSlot *inslot = econtext->ecxt_innertuple; |
| 2032 | TupleTableSlot *outslot = state->resultslot; |
| 2033 | |
| 2034 | CheckOpSlotCompatibility(&state->steps[0], inslot); |
| 2035 | |
| 2036 | /* |
| 2037 | * We do not need CheckVarSlotCompatibility here; that was taken care of |
| 2038 | * at compilation time. |
| 2039 | * |
| 2040 | * Since we use slot_getattr(), we don't need to implement the FETCHSOME |
| 2041 | * step explicitly, and we also needn't Assert that the attnum is in range |
| 2042 | * --- slot_getattr() will take care of any problems. |
| 2043 | */ |
| 2044 | outslot->tts_values[resultnum] = |
| 2045 | slot_getattr(inslot, attnum, &outslot->tts_isnull[resultnum]); |
| 2046 | return 0; |
| 2047 | } |
| 2048 | |
| 2049 | /* Evaluate outer Var and assign to appropriate column of result tuple */ |
| 2050 | static Datum |
| 2051 | ExecJustAssignOuterVar(ExprState *state, ExprContext *econtext, bool *isnull) |
| 2052 | { |
| 2053 | ExprEvalStep *op = &state->steps[1]; |
| 2054 | int attnum = op->d.assign_var.attnum + 1; |
| 2055 | int resultnum = op->d.assign_var.resultnum; |
| 2056 | TupleTableSlot *inslot = econtext->ecxt_outertuple; |
| 2057 | TupleTableSlot *outslot = state->resultslot; |
| 2058 | |
| 2059 | CheckOpSlotCompatibility(&state->steps[0], inslot); |
| 2060 | |
| 2061 | /* See comments in ExecJustAssignInnerVar */ |
| 2062 | outslot->tts_values[resultnum] = |
| 2063 | slot_getattr(inslot, attnum, &outslot->tts_isnull[resultnum]); |
| 2064 | return 0; |
| 2065 | } |
| 2066 | |
| 2067 | /* Evaluate scan Var and assign to appropriate column of result tuple */ |
| 2068 | static Datum |
| 2069 | ExecJustAssignScanVar(ExprState *state, ExprContext *econtext, bool *isnull) |
| 2070 | { |
| 2071 | ExprEvalStep *op = &state->steps[1]; |
| 2072 | int attnum = op->d.assign_var.attnum + 1; |
| 2073 | int resultnum = op->d.assign_var.resultnum; |
| 2074 | TupleTableSlot *inslot = econtext->ecxt_scantuple; |
| 2075 | TupleTableSlot *outslot = state->resultslot; |
| 2076 | |
| 2077 | CheckOpSlotCompatibility(&state->steps[0], inslot); |
| 2078 | |
| 2079 | /* See comments in ExecJustAssignInnerVar */ |
| 2080 | outslot->tts_values[resultnum] = |
| 2081 | slot_getattr(inslot, attnum, &outslot->tts_isnull[resultnum]); |
| 2082 | return 0; |
| 2083 | } |
| 2084 | |
| 2085 | /* Evaluate CASE_TESTVAL and apply a strict function to it */ |
| 2086 | static Datum |
| 2087 | ExecJustApplyFuncToCase(ExprState *state, ExprContext *econtext, bool *isnull) |
| 2088 | { |
| 2089 | ExprEvalStep *op = &state->steps[0]; |
| 2090 | FunctionCallInfo fcinfo; |
| 2091 | NullableDatum *args; |
| 2092 | int argno; |
| 2093 | Datum d; |
| 2094 | |
| 2095 | /* |
| 2096 | * XXX with some redesign of the CaseTestExpr mechanism, maybe we could |
| 2097 | * get rid of this data shuffling? |
| 2098 | */ |
| 2099 | *op->resvalue = *op->d.casetest.value; |
| 2100 | *op->resnull = *op->d.casetest.isnull; |
| 2101 | |
| 2102 | op++; |
| 2103 | |
| 2104 | fcinfo = op->d.func.fcinfo_data; |
| 2105 | args = fcinfo->args; |
| 2106 | |
| 2107 | /* strict function, so check for NULL args */ |
| 2108 | for (argno = 0; argno < op->d.func.nargs; argno++) |
| 2109 | { |
| 2110 | if (args[argno].isnull) |
| 2111 | { |
| 2112 | *isnull = true; |
| 2113 | return (Datum) 0; |
| 2114 | } |
| 2115 | } |
| 2116 | fcinfo->isnull = false; |
| 2117 | d = op->d.func.fn_addr(fcinfo); |
| 2118 | *isnull = fcinfo->isnull; |
| 2119 | return d; |
| 2120 | } |
| 2121 | |
| 2122 | #if defined(EEO_USE_COMPUTED_GOTO) |
| 2123 | /* |
| 2124 | * Comparator used when building address->opcode lookup table for |
| 2125 | * ExecEvalStepOp() in the threaded dispatch case. |
| 2126 | */ |
| 2127 | static int |
| 2128 | dispatch_compare_ptr(const void *a, const void *b) |
| 2129 | { |
| 2130 | const ExprEvalOpLookup *la = (const ExprEvalOpLookup *) a; |
| 2131 | const ExprEvalOpLookup *lb = (const ExprEvalOpLookup *) b; |
| 2132 | |
| 2133 | if (la->opcode < lb->opcode) |
| 2134 | return -1; |
| 2135 | else if (la->opcode > lb->opcode) |
| 2136 | return 1; |
| 2137 | return 0; |
| 2138 | } |
| 2139 | #endif |
| 2140 | |
| 2141 | /* |
| 2142 | * Do one-time initialization of interpretation machinery. |
| 2143 | */ |
| 2144 | static void |
| 2145 | ExecInitInterpreter(void) |
| 2146 | { |
| 2147 | #if defined(EEO_USE_COMPUTED_GOTO) |
| 2148 | /* Set up externally-visible pointer to dispatch table */ |
| 2149 | if (dispatch_table == NULL) |
| 2150 | { |
| 2151 | int i; |
| 2152 | |
| 2153 | dispatch_table = (const void **) |
| 2154 | DatumGetPointer(ExecInterpExpr(NULL, NULL, NULL)); |
| 2155 | |
| 2156 | /* build reverse lookup table */ |
| 2157 | for (i = 0; i < EEOP_LAST; i++) |
| 2158 | { |
| 2159 | reverse_dispatch_table[i].opcode = dispatch_table[i]; |
| 2160 | reverse_dispatch_table[i].op = (ExprEvalOp) i; |
| 2161 | } |
| 2162 | |
| 2163 | /* make it bsearch()able */ |
| 2164 | qsort(reverse_dispatch_table, |
| 2165 | EEOP_LAST /* nmembers */ , |
| 2166 | sizeof(ExprEvalOpLookup), |
| 2167 | dispatch_compare_ptr); |
| 2168 | } |
| 2169 | #endif |
| 2170 | } |
| 2171 | |
| 2172 | /* |
| 2173 | * Function to return the opcode of an expression step. |
| 2174 | * |
| 2175 | * When direct-threading is in use, ExprState->opcode isn't easily |
| 2176 | * decipherable. This function returns the appropriate enum member. |
| 2177 | */ |
| 2178 | ExprEvalOp |
| 2179 | ExecEvalStepOp(ExprState *state, ExprEvalStep *op) |
| 2180 | { |
| 2181 | #if defined(EEO_USE_COMPUTED_GOTO) |
| 2182 | if (state->flags & EEO_FLAG_DIRECT_THREADED) |
| 2183 | { |
| 2184 | ExprEvalOpLookup key; |
| 2185 | ExprEvalOpLookup *res; |
| 2186 | |
| 2187 | key.opcode = (void *) op->opcode; |
| 2188 | res = bsearch(&key, |
| 2189 | reverse_dispatch_table, |
| 2190 | EEOP_LAST /* nmembers */ , |
| 2191 | sizeof(ExprEvalOpLookup), |
| 2192 | dispatch_compare_ptr); |
| 2193 | Assert(res); /* unknown ops shouldn't get looked up */ |
| 2194 | return res->op; |
| 2195 | } |
| 2196 | #endif |
| 2197 | return (ExprEvalOp) op->opcode; |
| 2198 | } |
| 2199 | |
| 2200 | |
| 2201 | /* |
| 2202 | * Out-of-line helper functions for complex instructions. |
| 2203 | */ |
| 2204 | |
| 2205 | /* |
| 2206 | * Evaluate EEOP_FUNCEXPR_FUSAGE |
| 2207 | */ |
| 2208 | void |
| 2209 | ExecEvalFuncExprFusage(ExprState *state, ExprEvalStep *op, |
| 2210 | ExprContext *econtext) |
| 2211 | { |
| 2212 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
| 2213 | PgStat_FunctionCallUsage fcusage; |
| 2214 | Datum d; |
| 2215 | |
| 2216 | pgstat_init_function_usage(fcinfo, &fcusage); |
| 2217 | |
| 2218 | fcinfo->isnull = false; |
| 2219 | d = op->d.func.fn_addr(fcinfo); |
| 2220 | *op->resvalue = d; |
| 2221 | *op->resnull = fcinfo->isnull; |
| 2222 | |
| 2223 | pgstat_end_function_usage(&fcusage, true); |
| 2224 | } |
| 2225 | |
| 2226 | /* |
| 2227 | * Evaluate EEOP_FUNCEXPR_STRICT_FUSAGE |
| 2228 | */ |
| 2229 | void |
| 2230 | ExecEvalFuncExprStrictFusage(ExprState *state, ExprEvalStep *op, |
| 2231 | ExprContext *econtext) |
| 2232 | { |
| 2233 | |
| 2234 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
| 2235 | PgStat_FunctionCallUsage fcusage; |
| 2236 | NullableDatum *args = fcinfo->args; |
| 2237 | int argno; |
| 2238 | Datum d; |
| 2239 | |
| 2240 | /* strict function, so check for NULL args */ |
| 2241 | for (argno = 0; argno < op->d.func.nargs; argno++) |
| 2242 | { |
| 2243 | if (args[argno].isnull) |
| 2244 | { |
| 2245 | *op->resnull = true; |
| 2246 | return; |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | pgstat_init_function_usage(fcinfo, &fcusage); |
| 2251 | |
| 2252 | fcinfo->isnull = false; |
| 2253 | d = op->d.func.fn_addr(fcinfo); |
| 2254 | *op->resvalue = d; |
| 2255 | *op->resnull = fcinfo->isnull; |
| 2256 | |
| 2257 | pgstat_end_function_usage(&fcusage, true); |
| 2258 | } |
| 2259 | |
| 2260 | /* |
| 2261 | * Evaluate a PARAM_EXEC parameter. |
| 2262 | * |
| 2263 | * PARAM_EXEC params (internal executor parameters) are stored in the |
| 2264 | * ecxt_param_exec_vals array, and can be accessed by array index. |
| 2265 | */ |
| 2266 | void |
| 2267 | ExecEvalParamExec(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 2268 | { |
| 2269 | ParamExecData *prm; |
| 2270 | |
| 2271 | prm = &(econtext->ecxt_param_exec_vals[op->d.param.paramid]); |
| 2272 | if (unlikely(prm->execPlan != NULL)) |
| 2273 | { |
| 2274 | /* Parameter not evaluated yet, so go do it */ |
| 2275 | ExecSetParamPlan(prm->execPlan, econtext); |
| 2276 | /* ExecSetParamPlan should have processed this param... */ |
| 2277 | Assert(prm->execPlan == NULL); |
| 2278 | } |
| 2279 | *op->resvalue = prm->value; |
| 2280 | *op->resnull = prm->isnull; |
| 2281 | } |
| 2282 | |
| 2283 | /* |
| 2284 | * Evaluate a PARAM_EXTERN parameter. |
| 2285 | * |
| 2286 | * PARAM_EXTERN parameters must be sought in ecxt_param_list_info. |
| 2287 | */ |
| 2288 | void |
| 2289 | ExecEvalParamExtern(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 2290 | { |
| 2291 | ParamListInfo paramInfo = econtext->ecxt_param_list_info; |
| 2292 | int paramId = op->d.param.paramid; |
| 2293 | |
| 2294 | if (likely(paramInfo && |
| 2295 | paramId > 0 && paramId <= paramInfo->numParams)) |
| 2296 | { |
| 2297 | ParamExternData *prm; |
| 2298 | ParamExternData prmdata; |
| 2299 | |
| 2300 | /* give hook a chance in case parameter is dynamic */ |
| 2301 | if (paramInfo->paramFetch != NULL) |
| 2302 | prm = paramInfo->paramFetch(paramInfo, paramId, false, &prmdata); |
| 2303 | else |
| 2304 | prm = ¶mInfo->params[paramId - 1]; |
| 2305 | |
| 2306 | if (likely(OidIsValid(prm->ptype))) |
| 2307 | { |
| 2308 | /* safety check in case hook did something unexpected */ |
| 2309 | if (unlikely(prm->ptype != op->d.param.paramtype)) |
| 2310 | ereport(ERROR, |
| 2311 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2312 | errmsg("type of parameter %d (%s) does not match that when preparing the plan (%s)" , |
| 2313 | paramId, |
| 2314 | format_type_be(prm->ptype), |
| 2315 | format_type_be(op->d.param.paramtype)))); |
| 2316 | *op->resvalue = prm->value; |
| 2317 | *op->resnull = prm->isnull; |
| 2318 | return; |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | ereport(ERROR, |
| 2323 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 2324 | errmsg("no value found for parameter %d" , paramId))); |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * Evaluate a SQLValueFunction expression. |
| 2329 | */ |
| 2330 | void |
| 2331 | ExecEvalSQLValueFunction(ExprState *state, ExprEvalStep *op) |
| 2332 | { |
| 2333 | LOCAL_FCINFO(fcinfo, 0); |
| 2334 | SQLValueFunction *svf = op->d.sqlvaluefunction.svf; |
| 2335 | |
| 2336 | *op->resnull = false; |
| 2337 | |
| 2338 | /* |
| 2339 | * Note: current_schema() can return NULL. current_user() etc currently |
| 2340 | * cannot, but might as well code those cases the same way for safety. |
| 2341 | */ |
| 2342 | switch (svf->op) |
| 2343 | { |
| 2344 | case SVFOP_CURRENT_DATE: |
| 2345 | *op->resvalue = DateADTGetDatum(GetSQLCurrentDate()); |
| 2346 | break; |
| 2347 | case SVFOP_CURRENT_TIME: |
| 2348 | case SVFOP_CURRENT_TIME_N: |
| 2349 | *op->resvalue = TimeTzADTPGetDatum(GetSQLCurrentTime(svf->typmod)); |
| 2350 | break; |
| 2351 | case SVFOP_CURRENT_TIMESTAMP: |
| 2352 | case SVFOP_CURRENT_TIMESTAMP_N: |
| 2353 | *op->resvalue = TimestampTzGetDatum(GetSQLCurrentTimestamp(svf->typmod)); |
| 2354 | break; |
| 2355 | case SVFOP_LOCALTIME: |
| 2356 | case SVFOP_LOCALTIME_N: |
| 2357 | *op->resvalue = TimeADTGetDatum(GetSQLLocalTime(svf->typmod)); |
| 2358 | break; |
| 2359 | case SVFOP_LOCALTIMESTAMP: |
| 2360 | case SVFOP_LOCALTIMESTAMP_N: |
| 2361 | *op->resvalue = TimestampGetDatum(GetSQLLocalTimestamp(svf->typmod)); |
| 2362 | break; |
| 2363 | case SVFOP_CURRENT_ROLE: |
| 2364 | case SVFOP_CURRENT_USER: |
| 2365 | case SVFOP_USER: |
| 2366 | InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL); |
| 2367 | *op->resvalue = current_user(fcinfo); |
| 2368 | *op->resnull = fcinfo->isnull; |
| 2369 | break; |
| 2370 | case SVFOP_SESSION_USER: |
| 2371 | InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL); |
| 2372 | *op->resvalue = session_user(fcinfo); |
| 2373 | *op->resnull = fcinfo->isnull; |
| 2374 | break; |
| 2375 | case SVFOP_CURRENT_CATALOG: |
| 2376 | InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL); |
| 2377 | *op->resvalue = current_database(fcinfo); |
| 2378 | *op->resnull = fcinfo->isnull; |
| 2379 | break; |
| 2380 | case SVFOP_CURRENT_SCHEMA: |
| 2381 | InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL); |
| 2382 | *op->resvalue = current_schema(fcinfo); |
| 2383 | *op->resnull = fcinfo->isnull; |
| 2384 | break; |
| 2385 | } |
| 2386 | } |
| 2387 | |
| 2388 | /* |
| 2389 | * Raise error if a CURRENT OF expression is evaluated. |
| 2390 | * |
| 2391 | * The planner should convert CURRENT OF into a TidScan qualification, or some |
| 2392 | * other special handling in a ForeignScan node. So we have to be able to do |
| 2393 | * ExecInitExpr on a CurrentOfExpr, but we shouldn't ever actually execute it. |
| 2394 | * If we get here, we suppose we must be dealing with CURRENT OF on a foreign |
| 2395 | * table whose FDW doesn't handle it, and complain accordingly. |
| 2396 | */ |
| 2397 | void |
| 2398 | ExecEvalCurrentOfExpr(ExprState *state, ExprEvalStep *op) |
| 2399 | { |
| 2400 | ereport(ERROR, |
| 2401 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2402 | errmsg("WHERE CURRENT OF is not supported for this table type" ))); |
| 2403 | } |
| 2404 | |
| 2405 | /* |
| 2406 | * Evaluate NextValueExpr. |
| 2407 | */ |
| 2408 | void |
| 2409 | ExecEvalNextValueExpr(ExprState *state, ExprEvalStep *op) |
| 2410 | { |
| 2411 | int64 newval = nextval_internal(op->d.nextvalueexpr.seqid, false); |
| 2412 | |
| 2413 | switch (op->d.nextvalueexpr.seqtypid) |
| 2414 | { |
| 2415 | case INT2OID: |
| 2416 | *op->resvalue = Int16GetDatum((int16) newval); |
| 2417 | break; |
| 2418 | case INT4OID: |
| 2419 | *op->resvalue = Int32GetDatum((int32) newval); |
| 2420 | break; |
| 2421 | case INT8OID: |
| 2422 | *op->resvalue = Int64GetDatum((int64) newval); |
| 2423 | break; |
| 2424 | default: |
| 2425 | elog(ERROR, "unsupported sequence type %u" , |
| 2426 | op->d.nextvalueexpr.seqtypid); |
| 2427 | } |
| 2428 | *op->resnull = false; |
| 2429 | } |
| 2430 | |
| 2431 | /* |
| 2432 | * Evaluate NullTest / IS NULL for rows. |
| 2433 | */ |
| 2434 | void |
| 2435 | ExecEvalRowNull(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 2436 | { |
| 2437 | ExecEvalRowNullInt(state, op, econtext, true); |
| 2438 | } |
| 2439 | |
| 2440 | /* |
| 2441 | * Evaluate NullTest / IS NOT NULL for rows. |
| 2442 | */ |
| 2443 | void |
| 2444 | ExecEvalRowNotNull(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 2445 | { |
| 2446 | ExecEvalRowNullInt(state, op, econtext, false); |
| 2447 | } |
| 2448 | |
| 2449 | /* Common code for IS [NOT] NULL on a row value */ |
| 2450 | static void |
| 2451 | ExecEvalRowNullInt(ExprState *state, ExprEvalStep *op, |
| 2452 | ExprContext *econtext, bool checkisnull) |
| 2453 | { |
| 2454 | Datum value = *op->resvalue; |
| 2455 | bool isnull = *op->resnull; |
| 2456 | HeapTupleHeader tuple; |
| 2457 | Oid tupType; |
| 2458 | int32 tupTypmod; |
| 2459 | TupleDesc tupDesc; |
| 2460 | HeapTupleData tmptup; |
| 2461 | int att; |
| 2462 | |
| 2463 | *op->resnull = false; |
| 2464 | |
| 2465 | /* NULL row variables are treated just as NULL scalar columns */ |
| 2466 | if (isnull) |
| 2467 | { |
| 2468 | *op->resvalue = BoolGetDatum(checkisnull); |
| 2469 | return; |
| 2470 | } |
| 2471 | |
| 2472 | /* |
| 2473 | * The SQL standard defines IS [NOT] NULL for a non-null rowtype argument |
| 2474 | * as: |
| 2475 | * |
| 2476 | * "R IS NULL" is true if every field is the null value. |
| 2477 | * |
| 2478 | * "R IS NOT NULL" is true if no field is the null value. |
| 2479 | * |
| 2480 | * This definition is (apparently intentionally) not recursive; so our |
| 2481 | * tests on the fields are primitive attisnull tests, not recursive checks |
| 2482 | * to see if they are all-nulls or no-nulls rowtypes. |
| 2483 | * |
| 2484 | * The standard does not consider the possibility of zero-field rows, but |
| 2485 | * here we consider them to vacuously satisfy both predicates. |
| 2486 | */ |
| 2487 | |
| 2488 | tuple = DatumGetHeapTupleHeader(value); |
| 2489 | |
| 2490 | tupType = HeapTupleHeaderGetTypeId(tuple); |
| 2491 | tupTypmod = HeapTupleHeaderGetTypMod(tuple); |
| 2492 | |
| 2493 | /* Lookup tupdesc if first time through or if type changes */ |
| 2494 | tupDesc = get_cached_rowtype(tupType, tupTypmod, |
| 2495 | &op->d.nulltest_row.argdesc, |
| 2496 | econtext); |
| 2497 | |
| 2498 | /* |
| 2499 | * heap_attisnull needs a HeapTuple not a bare HeapTupleHeader. |
| 2500 | */ |
| 2501 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple); |
| 2502 | tmptup.t_data = tuple; |
| 2503 | |
| 2504 | for (att = 1; att <= tupDesc->natts; att++) |
| 2505 | { |
| 2506 | /* ignore dropped columns */ |
| 2507 | if (TupleDescAttr(tupDesc, att - 1)->attisdropped) |
| 2508 | continue; |
| 2509 | if (heap_attisnull(&tmptup, att, tupDesc)) |
| 2510 | { |
| 2511 | /* null field disproves IS NOT NULL */ |
| 2512 | if (!checkisnull) |
| 2513 | { |
| 2514 | *op->resvalue = BoolGetDatum(false); |
| 2515 | return; |
| 2516 | } |
| 2517 | } |
| 2518 | else |
| 2519 | { |
| 2520 | /* non-null field disproves IS NULL */ |
| 2521 | if (checkisnull) |
| 2522 | { |
| 2523 | *op->resvalue = BoolGetDatum(false); |
| 2524 | return; |
| 2525 | } |
| 2526 | } |
| 2527 | } |
| 2528 | |
| 2529 | *op->resvalue = BoolGetDatum(true); |
| 2530 | } |
| 2531 | |
| 2532 | /* |
| 2533 | * Evaluate an ARRAY[] expression. |
| 2534 | * |
| 2535 | * The individual array elements (or subarrays) have already been evaluated |
| 2536 | * into op->d.arrayexpr.elemvalues[]/elemnulls[]. |
| 2537 | */ |
| 2538 | void |
| 2539 | ExecEvalArrayExpr(ExprState *state, ExprEvalStep *op) |
| 2540 | { |
| 2541 | ArrayType *result; |
| 2542 | Oid element_type = op->d.arrayexpr.elemtype; |
| 2543 | int nelems = op->d.arrayexpr.nelems; |
| 2544 | int ndims = 0; |
| 2545 | int dims[MAXDIM]; |
| 2546 | int lbs[MAXDIM]; |
| 2547 | |
| 2548 | /* Set non-null as default */ |
| 2549 | *op->resnull = false; |
| 2550 | |
| 2551 | if (!op->d.arrayexpr.multidims) |
| 2552 | { |
| 2553 | /* Elements are presumably of scalar type */ |
| 2554 | Datum *dvalues = op->d.arrayexpr.elemvalues; |
| 2555 | bool *dnulls = op->d.arrayexpr.elemnulls; |
| 2556 | |
| 2557 | /* setup for 1-D array of the given length */ |
| 2558 | ndims = 1; |
| 2559 | dims[0] = nelems; |
| 2560 | lbs[0] = 1; |
| 2561 | |
| 2562 | result = construct_md_array(dvalues, dnulls, ndims, dims, lbs, |
| 2563 | element_type, |
| 2564 | op->d.arrayexpr.elemlength, |
| 2565 | op->d.arrayexpr.elembyval, |
| 2566 | op->d.arrayexpr.elemalign); |
| 2567 | } |
| 2568 | else |
| 2569 | { |
| 2570 | /* Must be nested array expressions */ |
| 2571 | int nbytes = 0; |
| 2572 | int nitems = 0; |
| 2573 | int outer_nelems = 0; |
| 2574 | int elem_ndims = 0; |
| 2575 | int *elem_dims = NULL; |
| 2576 | int *elem_lbs = NULL; |
| 2577 | bool firstone = true; |
| 2578 | bool havenulls = false; |
| 2579 | bool haveempty = false; |
| 2580 | char **subdata; |
| 2581 | bits8 **subbitmaps; |
| 2582 | int *subbytes; |
| 2583 | int *subnitems; |
| 2584 | int32 dataoffset; |
| 2585 | char *dat; |
| 2586 | int iitem; |
| 2587 | int elemoff; |
| 2588 | int i; |
| 2589 | |
| 2590 | subdata = (char **) palloc(nelems * sizeof(char *)); |
| 2591 | subbitmaps = (bits8 **) palloc(nelems * sizeof(bits8 *)); |
| 2592 | subbytes = (int *) palloc(nelems * sizeof(int)); |
| 2593 | subnitems = (int *) palloc(nelems * sizeof(int)); |
| 2594 | |
| 2595 | /* loop through and get data area from each element */ |
| 2596 | for (elemoff = 0; elemoff < nelems; elemoff++) |
| 2597 | { |
| 2598 | Datum arraydatum; |
| 2599 | bool eisnull; |
| 2600 | ArrayType *array; |
| 2601 | int this_ndims; |
| 2602 | |
| 2603 | arraydatum = op->d.arrayexpr.elemvalues[elemoff]; |
| 2604 | eisnull = op->d.arrayexpr.elemnulls[elemoff]; |
| 2605 | |
| 2606 | /* temporarily ignore null subarrays */ |
| 2607 | if (eisnull) |
| 2608 | { |
| 2609 | haveempty = true; |
| 2610 | continue; |
| 2611 | } |
| 2612 | |
| 2613 | array = DatumGetArrayTypeP(arraydatum); |
| 2614 | |
| 2615 | /* run-time double-check on element type */ |
| 2616 | if (element_type != ARR_ELEMTYPE(array)) |
| 2617 | ereport(ERROR, |
| 2618 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2619 | errmsg("cannot merge incompatible arrays" ), |
| 2620 | errdetail("Array with element type %s cannot be " |
| 2621 | "included in ARRAY construct with element type %s." , |
| 2622 | format_type_be(ARR_ELEMTYPE(array)), |
| 2623 | format_type_be(element_type)))); |
| 2624 | |
| 2625 | this_ndims = ARR_NDIM(array); |
| 2626 | /* temporarily ignore zero-dimensional subarrays */ |
| 2627 | if (this_ndims <= 0) |
| 2628 | { |
| 2629 | haveempty = true; |
| 2630 | continue; |
| 2631 | } |
| 2632 | |
| 2633 | if (firstone) |
| 2634 | { |
| 2635 | /* Get sub-array details from first member */ |
| 2636 | elem_ndims = this_ndims; |
| 2637 | ndims = elem_ndims + 1; |
| 2638 | if (ndims <= 0 || ndims > MAXDIM) |
| 2639 | ereport(ERROR, |
| 2640 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 2641 | errmsg("number of array dimensions (%d) exceeds " \ |
| 2642 | "the maximum allowed (%d)" , ndims, MAXDIM))); |
| 2643 | |
| 2644 | elem_dims = (int *) palloc(elem_ndims * sizeof(int)); |
| 2645 | memcpy(elem_dims, ARR_DIMS(array), elem_ndims * sizeof(int)); |
| 2646 | elem_lbs = (int *) palloc(elem_ndims * sizeof(int)); |
| 2647 | memcpy(elem_lbs, ARR_LBOUND(array), elem_ndims * sizeof(int)); |
| 2648 | |
| 2649 | firstone = false; |
| 2650 | } |
| 2651 | else |
| 2652 | { |
| 2653 | /* Check other sub-arrays are compatible */ |
| 2654 | if (elem_ndims != this_ndims || |
| 2655 | memcmp(elem_dims, ARR_DIMS(array), |
| 2656 | elem_ndims * sizeof(int)) != 0 || |
| 2657 | memcmp(elem_lbs, ARR_LBOUND(array), |
| 2658 | elem_ndims * sizeof(int)) != 0) |
| 2659 | ereport(ERROR, |
| 2660 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2661 | errmsg("multidimensional arrays must have array " |
| 2662 | "expressions with matching dimensions" ))); |
| 2663 | } |
| 2664 | |
| 2665 | subdata[outer_nelems] = ARR_DATA_PTR(array); |
| 2666 | subbitmaps[outer_nelems] = ARR_NULLBITMAP(array); |
| 2667 | subbytes[outer_nelems] = ARR_SIZE(array) - ARR_DATA_OFFSET(array); |
| 2668 | nbytes += subbytes[outer_nelems]; |
| 2669 | subnitems[outer_nelems] = ArrayGetNItems(this_ndims, |
| 2670 | ARR_DIMS(array)); |
| 2671 | nitems += subnitems[outer_nelems]; |
| 2672 | havenulls |= ARR_HASNULL(array); |
| 2673 | outer_nelems++; |
| 2674 | } |
| 2675 | |
| 2676 | /* |
| 2677 | * If all items were null or empty arrays, return an empty array; |
| 2678 | * otherwise, if some were and some weren't, raise error. (Note: we |
| 2679 | * must special-case this somehow to avoid trying to generate a 1-D |
| 2680 | * array formed from empty arrays. It's not ideal...) |
| 2681 | */ |
| 2682 | if (haveempty) |
| 2683 | { |
| 2684 | if (ndims == 0) /* didn't find any nonempty array */ |
| 2685 | { |
| 2686 | *op->resvalue = PointerGetDatum(construct_empty_array(element_type)); |
| 2687 | return; |
| 2688 | } |
| 2689 | ereport(ERROR, |
| 2690 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2691 | errmsg("multidimensional arrays must have array " |
| 2692 | "expressions with matching dimensions" ))); |
| 2693 | } |
| 2694 | |
| 2695 | /* setup for multi-D array */ |
| 2696 | dims[0] = outer_nelems; |
| 2697 | lbs[0] = 1; |
| 2698 | for (i = 1; i < ndims; i++) |
| 2699 | { |
| 2700 | dims[i] = elem_dims[i - 1]; |
| 2701 | lbs[i] = elem_lbs[i - 1]; |
| 2702 | } |
| 2703 | |
| 2704 | if (havenulls) |
| 2705 | { |
| 2706 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems); |
| 2707 | nbytes += dataoffset; |
| 2708 | } |
| 2709 | else |
| 2710 | { |
| 2711 | dataoffset = 0; /* marker for no null bitmap */ |
| 2712 | nbytes += ARR_OVERHEAD_NONULLS(ndims); |
| 2713 | } |
| 2714 | |
| 2715 | result = (ArrayType *) palloc(nbytes); |
| 2716 | SET_VARSIZE(result, nbytes); |
| 2717 | result->ndim = ndims; |
| 2718 | result->dataoffset = dataoffset; |
| 2719 | result->elemtype = element_type; |
| 2720 | memcpy(ARR_DIMS(result), dims, ndims * sizeof(int)); |
| 2721 | memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int)); |
| 2722 | |
| 2723 | dat = ARR_DATA_PTR(result); |
| 2724 | iitem = 0; |
| 2725 | for (i = 0; i < outer_nelems; i++) |
| 2726 | { |
| 2727 | memcpy(dat, subdata[i], subbytes[i]); |
| 2728 | dat += subbytes[i]; |
| 2729 | if (havenulls) |
| 2730 | array_bitmap_copy(ARR_NULLBITMAP(result), iitem, |
| 2731 | subbitmaps[i], 0, |
| 2732 | subnitems[i]); |
| 2733 | iitem += subnitems[i]; |
| 2734 | } |
| 2735 | } |
| 2736 | |
| 2737 | *op->resvalue = PointerGetDatum(result); |
| 2738 | } |
| 2739 | |
| 2740 | /* |
| 2741 | * Evaluate an ArrayCoerceExpr expression. |
| 2742 | * |
| 2743 | * Source array is in step's result variable. |
| 2744 | */ |
| 2745 | void |
| 2746 | ExecEvalArrayCoerce(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 2747 | { |
| 2748 | Datum arraydatum; |
| 2749 | |
| 2750 | /* NULL array -> NULL result */ |
| 2751 | if (*op->resnull) |
| 2752 | return; |
| 2753 | |
| 2754 | arraydatum = *op->resvalue; |
| 2755 | |
| 2756 | /* |
| 2757 | * If it's binary-compatible, modify the element type in the array header, |
| 2758 | * but otherwise leave the array as we received it. |
| 2759 | */ |
| 2760 | if (op->d.arraycoerce.elemexprstate == NULL) |
| 2761 | { |
| 2762 | /* Detoast input array if necessary, and copy in any case */ |
| 2763 | ArrayType *array = DatumGetArrayTypePCopy(arraydatum); |
| 2764 | |
| 2765 | ARR_ELEMTYPE(array) = op->d.arraycoerce.resultelemtype; |
| 2766 | *op->resvalue = PointerGetDatum(array); |
| 2767 | return; |
| 2768 | } |
| 2769 | |
| 2770 | /* |
| 2771 | * Use array_map to apply the sub-expression to each array element. |
| 2772 | */ |
| 2773 | *op->resvalue = array_map(arraydatum, |
| 2774 | op->d.arraycoerce.elemexprstate, |
| 2775 | econtext, |
| 2776 | op->d.arraycoerce.resultelemtype, |
| 2777 | op->d.arraycoerce.amstate); |
| 2778 | } |
| 2779 | |
| 2780 | /* |
| 2781 | * Evaluate a ROW() expression. |
| 2782 | * |
| 2783 | * The individual columns have already been evaluated into |
| 2784 | * op->d.row.elemvalues[]/elemnulls[]. |
| 2785 | */ |
| 2786 | void |
| 2787 | ExecEvalRow(ExprState *state, ExprEvalStep *op) |
| 2788 | { |
| 2789 | HeapTuple tuple; |
| 2790 | |
| 2791 | /* build tuple from evaluated field values */ |
| 2792 | tuple = heap_form_tuple(op->d.row.tupdesc, |
| 2793 | op->d.row.elemvalues, |
| 2794 | op->d.row.elemnulls); |
| 2795 | |
| 2796 | *op->resvalue = HeapTupleGetDatum(tuple); |
| 2797 | *op->resnull = false; |
| 2798 | } |
| 2799 | |
| 2800 | /* |
| 2801 | * Evaluate GREATEST() or LEAST() expression (note this is *not* MIN()/MAX()). |
| 2802 | * |
| 2803 | * All of the to-be-compared expressions have already been evaluated into |
| 2804 | * op->d.minmax.values[]/nulls[]. |
| 2805 | */ |
| 2806 | void |
| 2807 | ExecEvalMinMax(ExprState *state, ExprEvalStep *op) |
| 2808 | { |
| 2809 | Datum *values = op->d.minmax.values; |
| 2810 | bool *nulls = op->d.minmax.nulls; |
| 2811 | FunctionCallInfo fcinfo = op->d.minmax.fcinfo_data; |
| 2812 | MinMaxOp operator = op->d.minmax.op; |
| 2813 | int off; |
| 2814 | |
| 2815 | /* set at initialization */ |
| 2816 | Assert(fcinfo->args[0].isnull == false); |
| 2817 | Assert(fcinfo->args[1].isnull == false); |
| 2818 | |
| 2819 | /* default to null result */ |
| 2820 | *op->resnull = true; |
| 2821 | |
| 2822 | for (off = 0; off < op->d.minmax.nelems; off++) |
| 2823 | { |
| 2824 | /* ignore NULL inputs */ |
| 2825 | if (nulls[off]) |
| 2826 | continue; |
| 2827 | |
| 2828 | if (*op->resnull) |
| 2829 | { |
| 2830 | /* first nonnull input, adopt value */ |
| 2831 | *op->resvalue = values[off]; |
| 2832 | *op->resnull = false; |
| 2833 | } |
| 2834 | else |
| 2835 | { |
| 2836 | int cmpresult; |
| 2837 | |
| 2838 | /* apply comparison function */ |
| 2839 | fcinfo->args[0].value = *op->resvalue; |
| 2840 | fcinfo->args[1].value = values[off]; |
| 2841 | |
| 2842 | fcinfo->isnull = false; |
| 2843 | cmpresult = DatumGetInt32(FunctionCallInvoke(fcinfo)); |
| 2844 | if (fcinfo->isnull) /* probably should not happen */ |
| 2845 | continue; |
| 2846 | |
| 2847 | if (cmpresult > 0 && operator == IS_LEAST) |
| 2848 | *op->resvalue = values[off]; |
| 2849 | else if (cmpresult < 0 && operator == IS_GREATEST) |
| 2850 | *op->resvalue = values[off]; |
| 2851 | } |
| 2852 | } |
| 2853 | } |
| 2854 | |
| 2855 | /* |
| 2856 | * Evaluate a FieldSelect node. |
| 2857 | * |
| 2858 | * Source record is in step's result variable. |
| 2859 | */ |
| 2860 | void |
| 2861 | ExecEvalFieldSelect(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 2862 | { |
| 2863 | AttrNumber fieldnum = op->d.fieldselect.fieldnum; |
| 2864 | Datum tupDatum; |
| 2865 | HeapTupleHeader tuple; |
| 2866 | Oid tupType; |
| 2867 | int32 tupTypmod; |
| 2868 | TupleDesc tupDesc; |
| 2869 | Form_pg_attribute attr; |
| 2870 | HeapTupleData tmptup; |
| 2871 | |
| 2872 | /* NULL record -> NULL result */ |
| 2873 | if (*op->resnull) |
| 2874 | return; |
| 2875 | |
| 2876 | tupDatum = *op->resvalue; |
| 2877 | |
| 2878 | /* We can special-case expanded records for speed */ |
| 2879 | if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(tupDatum))) |
| 2880 | { |
| 2881 | ExpandedRecordHeader *erh = (ExpandedRecordHeader *) DatumGetEOHP(tupDatum); |
| 2882 | |
| 2883 | Assert(erh->er_magic == ER_MAGIC); |
| 2884 | |
| 2885 | /* Extract record's TupleDesc */ |
| 2886 | tupDesc = expanded_record_get_tupdesc(erh); |
| 2887 | |
| 2888 | /* |
| 2889 | * Find field's attr record. Note we don't support system columns |
| 2890 | * here: a datum tuple doesn't have valid values for most of the |
| 2891 | * interesting system columns anyway. |
| 2892 | */ |
| 2893 | if (fieldnum <= 0) /* should never happen */ |
| 2894 | elog(ERROR, "unsupported reference to system column %d in FieldSelect" , |
| 2895 | fieldnum); |
| 2896 | if (fieldnum > tupDesc->natts) /* should never happen */ |
| 2897 | elog(ERROR, "attribute number %d exceeds number of columns %d" , |
| 2898 | fieldnum, tupDesc->natts); |
| 2899 | attr = TupleDescAttr(tupDesc, fieldnum - 1); |
| 2900 | |
| 2901 | /* Check for dropped column, and force a NULL result if so */ |
| 2902 | if (attr->attisdropped) |
| 2903 | { |
| 2904 | *op->resnull = true; |
| 2905 | return; |
| 2906 | } |
| 2907 | |
| 2908 | /* Check for type mismatch --- possible after ALTER COLUMN TYPE? */ |
| 2909 | /* As in CheckVarSlotCompatibility, we should but can't check typmod */ |
| 2910 | if (op->d.fieldselect.resulttype != attr->atttypid) |
| 2911 | ereport(ERROR, |
| 2912 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2913 | errmsg("attribute %d has wrong type" , fieldnum), |
| 2914 | errdetail("Table has type %s, but query expects %s." , |
| 2915 | format_type_be(attr->atttypid), |
| 2916 | format_type_be(op->d.fieldselect.resulttype)))); |
| 2917 | |
| 2918 | /* extract the field */ |
| 2919 | *op->resvalue = expanded_record_get_field(erh, fieldnum, |
| 2920 | op->resnull); |
| 2921 | } |
| 2922 | else |
| 2923 | { |
| 2924 | /* Get the composite datum and extract its type fields */ |
| 2925 | tuple = DatumGetHeapTupleHeader(tupDatum); |
| 2926 | |
| 2927 | tupType = HeapTupleHeaderGetTypeId(tuple); |
| 2928 | tupTypmod = HeapTupleHeaderGetTypMod(tuple); |
| 2929 | |
| 2930 | /* Lookup tupdesc if first time through or if type changes */ |
| 2931 | tupDesc = get_cached_rowtype(tupType, tupTypmod, |
| 2932 | &op->d.fieldselect.argdesc, |
| 2933 | econtext); |
| 2934 | |
| 2935 | /* |
| 2936 | * Find field's attr record. Note we don't support system columns |
| 2937 | * here: a datum tuple doesn't have valid values for most of the |
| 2938 | * interesting system columns anyway. |
| 2939 | */ |
| 2940 | if (fieldnum <= 0) /* should never happen */ |
| 2941 | elog(ERROR, "unsupported reference to system column %d in FieldSelect" , |
| 2942 | fieldnum); |
| 2943 | if (fieldnum > tupDesc->natts) /* should never happen */ |
| 2944 | elog(ERROR, "attribute number %d exceeds number of columns %d" , |
| 2945 | fieldnum, tupDesc->natts); |
| 2946 | attr = TupleDescAttr(tupDesc, fieldnum - 1); |
| 2947 | |
| 2948 | /* Check for dropped column, and force a NULL result if so */ |
| 2949 | if (attr->attisdropped) |
| 2950 | { |
| 2951 | *op->resnull = true; |
| 2952 | return; |
| 2953 | } |
| 2954 | |
| 2955 | /* Check for type mismatch --- possible after ALTER COLUMN TYPE? */ |
| 2956 | /* As in CheckVarSlotCompatibility, we should but can't check typmod */ |
| 2957 | if (op->d.fieldselect.resulttype != attr->atttypid) |
| 2958 | ereport(ERROR, |
| 2959 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2960 | errmsg("attribute %d has wrong type" , fieldnum), |
| 2961 | errdetail("Table has type %s, but query expects %s." , |
| 2962 | format_type_be(attr->atttypid), |
| 2963 | format_type_be(op->d.fieldselect.resulttype)))); |
| 2964 | |
| 2965 | /* heap_getattr needs a HeapTuple not a bare HeapTupleHeader */ |
| 2966 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple); |
| 2967 | tmptup.t_data = tuple; |
| 2968 | |
| 2969 | /* extract the field */ |
| 2970 | *op->resvalue = heap_getattr(&tmptup, |
| 2971 | fieldnum, |
| 2972 | tupDesc, |
| 2973 | op->resnull); |
| 2974 | } |
| 2975 | } |
| 2976 | |
| 2977 | /* |
| 2978 | * Deform source tuple, filling in the step's values/nulls arrays, before |
| 2979 | * evaluating individual new values as part of a FieldStore expression. |
| 2980 | * Subsequent steps will overwrite individual elements of the values/nulls |
| 2981 | * arrays with the new field values, and then FIELDSTORE_FORM will build the |
| 2982 | * new tuple value. |
| 2983 | * |
| 2984 | * Source record is in step's result variable. |
| 2985 | */ |
| 2986 | void |
| 2987 | ExecEvalFieldStoreDeForm(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 2988 | { |
| 2989 | TupleDesc tupDesc; |
| 2990 | |
| 2991 | /* Lookup tupdesc if first time through or after rescan */ |
| 2992 | tupDesc = get_cached_rowtype(op->d.fieldstore.fstore->resulttype, -1, |
| 2993 | op->d.fieldstore.argdesc, econtext); |
| 2994 | |
| 2995 | /* Check that current tupdesc doesn't have more fields than we allocated */ |
| 2996 | if (unlikely(tupDesc->natts > op->d.fieldstore.ncolumns)) |
| 2997 | elog(ERROR, "too many columns in composite type %u" , |
| 2998 | op->d.fieldstore.fstore->resulttype); |
| 2999 | |
| 3000 | if (*op->resnull) |
| 3001 | { |
| 3002 | /* Convert null input tuple into an all-nulls row */ |
| 3003 | memset(op->d.fieldstore.nulls, true, |
| 3004 | op->d.fieldstore.ncolumns * sizeof(bool)); |
| 3005 | } |
| 3006 | else |
| 3007 | { |
| 3008 | /* |
| 3009 | * heap_deform_tuple needs a HeapTuple not a bare HeapTupleHeader. We |
| 3010 | * set all the fields in the struct just in case. |
| 3011 | */ |
| 3012 | Datum tupDatum = *op->resvalue; |
| 3013 | HeapTupleHeader tuphdr; |
| 3014 | HeapTupleData tmptup; |
| 3015 | |
| 3016 | tuphdr = DatumGetHeapTupleHeader(tupDatum); |
| 3017 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuphdr); |
| 3018 | ItemPointerSetInvalid(&(tmptup.t_self)); |
| 3019 | tmptup.t_tableOid = InvalidOid; |
| 3020 | tmptup.t_data = tuphdr; |
| 3021 | |
| 3022 | heap_deform_tuple(&tmptup, tupDesc, |
| 3023 | op->d.fieldstore.values, |
| 3024 | op->d.fieldstore.nulls); |
| 3025 | } |
| 3026 | } |
| 3027 | |
| 3028 | /* |
| 3029 | * Compute the new composite datum after each individual field value of a |
| 3030 | * FieldStore expression has been evaluated. |
| 3031 | */ |
| 3032 | void |
| 3033 | ExecEvalFieldStoreForm(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 3034 | { |
| 3035 | HeapTuple tuple; |
| 3036 | |
| 3037 | /* argdesc should already be valid from the DeForm step */ |
| 3038 | tuple = heap_form_tuple(*op->d.fieldstore.argdesc, |
| 3039 | op->d.fieldstore.values, |
| 3040 | op->d.fieldstore.nulls); |
| 3041 | |
| 3042 | *op->resvalue = HeapTupleGetDatum(tuple); |
| 3043 | *op->resnull = false; |
| 3044 | } |
| 3045 | |
| 3046 | /* |
| 3047 | * Process a subscript in a SubscriptingRef expression. |
| 3048 | * |
| 3049 | * If subscript is NULL, throw error in assignment case, or in fetch case |
| 3050 | * set result to NULL and return false (instructing caller to skip the rest |
| 3051 | * of the SubscriptingRef sequence). |
| 3052 | * |
| 3053 | * Subscript expression result is in subscriptvalue/subscriptnull. |
| 3054 | * On success, integer subscript value has been saved in upperindex[] or |
| 3055 | * lowerindex[] for use later. |
| 3056 | */ |
| 3057 | bool |
| 3058 | ExecEvalSubscriptingRef(ExprState *state, ExprEvalStep *op) |
| 3059 | { |
| 3060 | SubscriptingRefState *sbsrefstate = op->d.sbsref_subscript.state; |
| 3061 | int *indexes; |
| 3062 | int off; |
| 3063 | |
| 3064 | /* If any index expr yields NULL, result is NULL or error */ |
| 3065 | if (sbsrefstate->subscriptnull) |
| 3066 | { |
| 3067 | if (sbsrefstate->isassignment) |
| 3068 | ereport(ERROR, |
| 3069 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 3070 | errmsg("array subscript in assignment must not be null" ))); |
| 3071 | *op->resnull = true; |
| 3072 | return false; |
| 3073 | } |
| 3074 | |
| 3075 | /* Convert datum to int, save in appropriate place */ |
| 3076 | if (op->d.sbsref_subscript.isupper) |
| 3077 | indexes = sbsrefstate->upperindex; |
| 3078 | else |
| 3079 | indexes = sbsrefstate->lowerindex; |
| 3080 | off = op->d.sbsref_subscript.off; |
| 3081 | |
| 3082 | indexes[off] = DatumGetInt32(sbsrefstate->subscriptvalue); |
| 3083 | |
| 3084 | return true; |
| 3085 | } |
| 3086 | |
| 3087 | /* |
| 3088 | * Evaluate SubscriptingRef fetch. |
| 3089 | * |
| 3090 | * Source container is in step's result variable. |
| 3091 | */ |
| 3092 | void |
| 3093 | ExecEvalSubscriptingRefFetch(ExprState *state, ExprEvalStep *op) |
| 3094 | { |
| 3095 | SubscriptingRefState *sbsrefstate = op->d.sbsref.state; |
| 3096 | |
| 3097 | /* Should not get here if source container (or any subscript) is null */ |
| 3098 | Assert(!(*op->resnull)); |
| 3099 | |
| 3100 | if (sbsrefstate->numlower == 0) |
| 3101 | { |
| 3102 | /* Scalar case */ |
| 3103 | *op->resvalue = array_get_element(*op->resvalue, |
| 3104 | sbsrefstate->numupper, |
| 3105 | sbsrefstate->upperindex, |
| 3106 | sbsrefstate->refattrlength, |
| 3107 | sbsrefstate->refelemlength, |
| 3108 | sbsrefstate->refelembyval, |
| 3109 | sbsrefstate->refelemalign, |
| 3110 | op->resnull); |
| 3111 | } |
| 3112 | else |
| 3113 | { |
| 3114 | /* Slice case */ |
| 3115 | *op->resvalue = array_get_slice(*op->resvalue, |
| 3116 | sbsrefstate->numupper, |
| 3117 | sbsrefstate->upperindex, |
| 3118 | sbsrefstate->lowerindex, |
| 3119 | sbsrefstate->upperprovided, |
| 3120 | sbsrefstate->lowerprovided, |
| 3121 | sbsrefstate->refattrlength, |
| 3122 | sbsrefstate->refelemlength, |
| 3123 | sbsrefstate->refelembyval, |
| 3124 | sbsrefstate->refelemalign); |
| 3125 | } |
| 3126 | } |
| 3127 | |
| 3128 | /* |
| 3129 | * Compute old container element/slice value for a SubscriptingRef assignment |
| 3130 | * expression. Will only be generated if the new-value subexpression |
| 3131 | * contains SubscriptingRef or FieldStore. The value is stored into the |
| 3132 | * SubscriptingRefState's prevvalue/prevnull fields. |
| 3133 | */ |
| 3134 | void |
| 3135 | ExecEvalSubscriptingRefOld(ExprState *state, ExprEvalStep *op) |
| 3136 | { |
| 3137 | SubscriptingRefState *sbsrefstate = op->d.sbsref.state; |
| 3138 | |
| 3139 | if (*op->resnull) |
| 3140 | { |
| 3141 | /* whole array is null, so any element or slice is too */ |
| 3142 | sbsrefstate->prevvalue = (Datum) 0; |
| 3143 | sbsrefstate->prevnull = true; |
| 3144 | } |
| 3145 | else if (sbsrefstate->numlower == 0) |
| 3146 | { |
| 3147 | /* Scalar case */ |
| 3148 | sbsrefstate->prevvalue = array_get_element(*op->resvalue, |
| 3149 | sbsrefstate->numupper, |
| 3150 | sbsrefstate->upperindex, |
| 3151 | sbsrefstate->refattrlength, |
| 3152 | sbsrefstate->refelemlength, |
| 3153 | sbsrefstate->refelembyval, |
| 3154 | sbsrefstate->refelemalign, |
| 3155 | &sbsrefstate->prevnull); |
| 3156 | } |
| 3157 | else |
| 3158 | { |
| 3159 | /* Slice case */ |
| 3160 | /* this is currently unreachable */ |
| 3161 | sbsrefstate->prevvalue = array_get_slice(*op->resvalue, |
| 3162 | sbsrefstate->numupper, |
| 3163 | sbsrefstate->upperindex, |
| 3164 | sbsrefstate->lowerindex, |
| 3165 | sbsrefstate->upperprovided, |
| 3166 | sbsrefstate->lowerprovided, |
| 3167 | sbsrefstate->refattrlength, |
| 3168 | sbsrefstate->refelemlength, |
| 3169 | sbsrefstate->refelembyval, |
| 3170 | sbsrefstate->refelemalign); |
| 3171 | sbsrefstate->prevnull = false; |
| 3172 | } |
| 3173 | } |
| 3174 | |
| 3175 | /* |
| 3176 | * Evaluate SubscriptingRef assignment. |
| 3177 | * |
| 3178 | * Input container (possibly null) is in result area, replacement value is in |
| 3179 | * SubscriptingRefState's replacevalue/replacenull. |
| 3180 | */ |
| 3181 | void |
| 3182 | ExecEvalSubscriptingRefAssign(ExprState *state, ExprEvalStep *op) |
| 3183 | { |
| 3184 | SubscriptingRefState *sbsrefstate = op->d.sbsref_subscript.state; |
| 3185 | |
| 3186 | /* |
| 3187 | * For an assignment to a fixed-length container type, both the original |
| 3188 | * container and the value to be assigned into it must be non-NULL, else |
| 3189 | * we punt and return the original container. |
| 3190 | */ |
| 3191 | if (sbsrefstate->refattrlength > 0) |
| 3192 | { |
| 3193 | if (*op->resnull || sbsrefstate->replacenull) |
| 3194 | return; |
| 3195 | } |
| 3196 | |
| 3197 | /* |
| 3198 | * For assignment to varlena arrays, we handle a NULL original array by |
| 3199 | * substituting an empty (zero-dimensional) array; insertion of the new |
| 3200 | * element will result in a singleton array value. It does not matter |
| 3201 | * whether the new element is NULL. |
| 3202 | */ |
| 3203 | if (*op->resnull) |
| 3204 | { |
| 3205 | *op->resvalue = PointerGetDatum(construct_empty_array(sbsrefstate->refelemtype)); |
| 3206 | *op->resnull = false; |
| 3207 | } |
| 3208 | |
| 3209 | if (sbsrefstate->numlower == 0) |
| 3210 | { |
| 3211 | /* Scalar case */ |
| 3212 | *op->resvalue = array_set_element(*op->resvalue, |
| 3213 | sbsrefstate->numupper, |
| 3214 | sbsrefstate->upperindex, |
| 3215 | sbsrefstate->replacevalue, |
| 3216 | sbsrefstate->replacenull, |
| 3217 | sbsrefstate->refattrlength, |
| 3218 | sbsrefstate->refelemlength, |
| 3219 | sbsrefstate->refelembyval, |
| 3220 | sbsrefstate->refelemalign); |
| 3221 | } |
| 3222 | else |
| 3223 | { |
| 3224 | /* Slice case */ |
| 3225 | *op->resvalue = array_set_slice(*op->resvalue, |
| 3226 | sbsrefstate->numupper, |
| 3227 | sbsrefstate->upperindex, |
| 3228 | sbsrefstate->lowerindex, |
| 3229 | sbsrefstate->upperprovided, |
| 3230 | sbsrefstate->lowerprovided, |
| 3231 | sbsrefstate->replacevalue, |
| 3232 | sbsrefstate->replacenull, |
| 3233 | sbsrefstate->refattrlength, |
| 3234 | sbsrefstate->refelemlength, |
| 3235 | sbsrefstate->refelembyval, |
| 3236 | sbsrefstate->refelemalign); |
| 3237 | } |
| 3238 | } |
| 3239 | |
| 3240 | /* |
| 3241 | * Evaluate a rowtype coercion operation. |
| 3242 | * This may require rearranging field positions. |
| 3243 | * |
| 3244 | * Source record is in step's result variable. |
| 3245 | */ |
| 3246 | void |
| 3247 | ExecEvalConvertRowtype(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 3248 | { |
| 3249 | ConvertRowtypeExpr *convert = op->d.convert_rowtype.convert; |
| 3250 | HeapTuple result; |
| 3251 | Datum tupDatum; |
| 3252 | HeapTupleHeader tuple; |
| 3253 | HeapTupleData tmptup; |
| 3254 | TupleDesc indesc, |
| 3255 | outdesc; |
| 3256 | |
| 3257 | /* NULL in -> NULL out */ |
| 3258 | if (*op->resnull) |
| 3259 | return; |
| 3260 | |
| 3261 | tupDatum = *op->resvalue; |
| 3262 | tuple = DatumGetHeapTupleHeader(tupDatum); |
| 3263 | |
| 3264 | /* Lookup tupdescs if first time through or after rescan */ |
| 3265 | if (op->d.convert_rowtype.indesc == NULL) |
| 3266 | { |
| 3267 | get_cached_rowtype(exprType((Node *) convert->arg), -1, |
| 3268 | &op->d.convert_rowtype.indesc, |
| 3269 | econtext); |
| 3270 | op->d.convert_rowtype.initialized = false; |
| 3271 | } |
| 3272 | if (op->d.convert_rowtype.outdesc == NULL) |
| 3273 | { |
| 3274 | get_cached_rowtype(convert->resulttype, -1, |
| 3275 | &op->d.convert_rowtype.outdesc, |
| 3276 | econtext); |
| 3277 | op->d.convert_rowtype.initialized = false; |
| 3278 | } |
| 3279 | |
| 3280 | indesc = op->d.convert_rowtype.indesc; |
| 3281 | outdesc = op->d.convert_rowtype.outdesc; |
| 3282 | |
| 3283 | /* |
| 3284 | * We used to be able to assert that incoming tuples are marked with |
| 3285 | * exactly the rowtype of indesc. However, now that ExecEvalWholeRowVar |
| 3286 | * might change the tuples' marking to plain RECORD due to inserting |
| 3287 | * aliases, we can only make this weak test: |
| 3288 | */ |
| 3289 | Assert(HeapTupleHeaderGetTypeId(tuple) == indesc->tdtypeid || |
| 3290 | HeapTupleHeaderGetTypeId(tuple) == RECORDOID); |
| 3291 | |
| 3292 | /* if first time through, initialize conversion map */ |
| 3293 | if (!op->d.convert_rowtype.initialized) |
| 3294 | { |
| 3295 | MemoryContext old_cxt; |
| 3296 | |
| 3297 | /* allocate map in long-lived memory context */ |
| 3298 | old_cxt = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
| 3299 | |
| 3300 | /* prepare map from old to new attribute numbers */ |
| 3301 | op->d.convert_rowtype.map = |
| 3302 | convert_tuples_by_name(indesc, outdesc, |
| 3303 | gettext_noop("could not convert row type" )); |
| 3304 | op->d.convert_rowtype.initialized = true; |
| 3305 | |
| 3306 | MemoryContextSwitchTo(old_cxt); |
| 3307 | } |
| 3308 | |
| 3309 | /* Following steps need a HeapTuple not a bare HeapTupleHeader */ |
| 3310 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple); |
| 3311 | tmptup.t_data = tuple; |
| 3312 | |
| 3313 | if (op->d.convert_rowtype.map != NULL) |
| 3314 | { |
| 3315 | /* Full conversion with attribute rearrangement needed */ |
| 3316 | result = execute_attr_map_tuple(&tmptup, op->d.convert_rowtype.map); |
| 3317 | /* Result already has appropriate composite-datum header fields */ |
| 3318 | *op->resvalue = HeapTupleGetDatum(result); |
| 3319 | } |
| 3320 | else |
| 3321 | { |
| 3322 | /* |
| 3323 | * The tuple is physically compatible as-is, but we need to insert the |
| 3324 | * destination rowtype OID in its composite-datum header field, so we |
| 3325 | * have to copy it anyway. heap_copy_tuple_as_datum() is convenient |
| 3326 | * for this since it will both make the physical copy and insert the |
| 3327 | * correct composite header fields. Note that we aren't expecting to |
| 3328 | * have to flatten any toasted fields: the input was a composite |
| 3329 | * datum, so it shouldn't contain any. So heap_copy_tuple_as_datum() |
| 3330 | * is overkill here, but its check for external fields is cheap. |
| 3331 | */ |
| 3332 | *op->resvalue = heap_copy_tuple_as_datum(&tmptup, outdesc); |
| 3333 | } |
| 3334 | } |
| 3335 | |
| 3336 | /* |
| 3337 | * Evaluate "scalar op ANY/ALL (array)". |
| 3338 | * |
| 3339 | * Source array is in our result area, scalar arg is already evaluated into |
| 3340 | * fcinfo->args[0]. |
| 3341 | * |
| 3342 | * The operator always yields boolean, and we combine the results across all |
| 3343 | * array elements using OR and AND (for ANY and ALL respectively). Of course |
| 3344 | * we short-circuit as soon as the result is known. |
| 3345 | */ |
| 3346 | void |
| 3347 | ExecEvalScalarArrayOp(ExprState *state, ExprEvalStep *op) |
| 3348 | { |
| 3349 | FunctionCallInfo fcinfo = op->d.scalararrayop.fcinfo_data; |
| 3350 | bool useOr = op->d.scalararrayop.useOr; |
| 3351 | bool strictfunc = op->d.scalararrayop.finfo->fn_strict; |
| 3352 | ArrayType *arr; |
| 3353 | int nitems; |
| 3354 | Datum result; |
| 3355 | bool resultnull; |
| 3356 | int i; |
| 3357 | int16 typlen; |
| 3358 | bool typbyval; |
| 3359 | char typalign; |
| 3360 | char *s; |
| 3361 | bits8 *bitmap; |
| 3362 | int bitmask; |
| 3363 | |
| 3364 | /* |
| 3365 | * If the array is NULL then we return NULL --- it's not very meaningful |
| 3366 | * to do anything else, even if the operator isn't strict. |
| 3367 | */ |
| 3368 | if (*op->resnull) |
| 3369 | return; |
| 3370 | |
| 3371 | /* Else okay to fetch and detoast the array */ |
| 3372 | arr = DatumGetArrayTypeP(*op->resvalue); |
| 3373 | |
| 3374 | /* |
| 3375 | * If the array is empty, we return either FALSE or TRUE per the useOr |
| 3376 | * flag. This is correct even if the scalar is NULL; since we would |
| 3377 | * evaluate the operator zero times, it matters not whether it would want |
| 3378 | * to return NULL. |
| 3379 | */ |
| 3380 | nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr)); |
| 3381 | if (nitems <= 0) |
| 3382 | { |
| 3383 | *op->resvalue = BoolGetDatum(!useOr); |
| 3384 | *op->resnull = false; |
| 3385 | return; |
| 3386 | } |
| 3387 | |
| 3388 | /* |
| 3389 | * If the scalar is NULL, and the function is strict, return NULL; no |
| 3390 | * point in iterating the loop. |
| 3391 | */ |
| 3392 | if (fcinfo->args[0].isnull && strictfunc) |
| 3393 | { |
| 3394 | *op->resnull = true; |
| 3395 | return; |
| 3396 | } |
| 3397 | |
| 3398 | /* |
| 3399 | * We arrange to look up info about the element type only once per series |
| 3400 | * of calls, assuming the element type doesn't change underneath us. |
| 3401 | */ |
| 3402 | if (op->d.scalararrayop.element_type != ARR_ELEMTYPE(arr)) |
| 3403 | { |
| 3404 | get_typlenbyvalalign(ARR_ELEMTYPE(arr), |
| 3405 | &op->d.scalararrayop.typlen, |
| 3406 | &op->d.scalararrayop.typbyval, |
| 3407 | &op->d.scalararrayop.typalign); |
| 3408 | op->d.scalararrayop.element_type = ARR_ELEMTYPE(arr); |
| 3409 | } |
| 3410 | |
| 3411 | typlen = op->d.scalararrayop.typlen; |
| 3412 | typbyval = op->d.scalararrayop.typbyval; |
| 3413 | typalign = op->d.scalararrayop.typalign; |
| 3414 | |
| 3415 | /* Initialize result appropriately depending on useOr */ |
| 3416 | result = BoolGetDatum(!useOr); |
| 3417 | resultnull = false; |
| 3418 | |
| 3419 | /* Loop over the array elements */ |
| 3420 | s = (char *) ARR_DATA_PTR(arr); |
| 3421 | bitmap = ARR_NULLBITMAP(arr); |
| 3422 | bitmask = 1; |
| 3423 | |
| 3424 | for (i = 0; i < nitems; i++) |
| 3425 | { |
| 3426 | Datum elt; |
| 3427 | Datum thisresult; |
| 3428 | |
| 3429 | /* Get array element, checking for NULL */ |
| 3430 | if (bitmap && (*bitmap & bitmask) == 0) |
| 3431 | { |
| 3432 | fcinfo->args[1].value = (Datum) 0; |
| 3433 | fcinfo->args[1].isnull = true; |
| 3434 | } |
| 3435 | else |
| 3436 | { |
| 3437 | elt = fetch_att(s, typbyval, typlen); |
| 3438 | s = att_addlength_pointer(s, typlen, s); |
| 3439 | s = (char *) att_align_nominal(s, typalign); |
| 3440 | fcinfo->args[1].value = elt; |
| 3441 | fcinfo->args[1].isnull = false; |
| 3442 | } |
| 3443 | |
| 3444 | /* Call comparison function */ |
| 3445 | if (fcinfo->args[1].isnull && strictfunc) |
| 3446 | { |
| 3447 | fcinfo->isnull = true; |
| 3448 | thisresult = (Datum) 0; |
| 3449 | } |
| 3450 | else |
| 3451 | { |
| 3452 | fcinfo->isnull = false; |
| 3453 | thisresult = op->d.scalararrayop.fn_addr(fcinfo); |
| 3454 | } |
| 3455 | |
| 3456 | /* Combine results per OR or AND semantics */ |
| 3457 | if (fcinfo->isnull) |
| 3458 | resultnull = true; |
| 3459 | else if (useOr) |
| 3460 | { |
| 3461 | if (DatumGetBool(thisresult)) |
| 3462 | { |
| 3463 | result = BoolGetDatum(true); |
| 3464 | resultnull = false; |
| 3465 | break; /* needn't look at any more elements */ |
| 3466 | } |
| 3467 | } |
| 3468 | else |
| 3469 | { |
| 3470 | if (!DatumGetBool(thisresult)) |
| 3471 | { |
| 3472 | result = BoolGetDatum(false); |
| 3473 | resultnull = false; |
| 3474 | break; /* needn't look at any more elements */ |
| 3475 | } |
| 3476 | } |
| 3477 | |
| 3478 | /* advance bitmap pointer if any */ |
| 3479 | if (bitmap) |
| 3480 | { |
| 3481 | bitmask <<= 1; |
| 3482 | if (bitmask == 0x100) |
| 3483 | { |
| 3484 | bitmap++; |
| 3485 | bitmask = 1; |
| 3486 | } |
| 3487 | } |
| 3488 | } |
| 3489 | |
| 3490 | *op->resvalue = result; |
| 3491 | *op->resnull = resultnull; |
| 3492 | } |
| 3493 | |
| 3494 | /* |
| 3495 | * Evaluate a NOT NULL domain constraint. |
| 3496 | */ |
| 3497 | void |
| 3498 | ExecEvalConstraintNotNull(ExprState *state, ExprEvalStep *op) |
| 3499 | { |
| 3500 | if (*op->resnull) |
| 3501 | ereport(ERROR, |
| 3502 | (errcode(ERRCODE_NOT_NULL_VIOLATION), |
| 3503 | errmsg("domain %s does not allow null values" , |
| 3504 | format_type_be(op->d.domaincheck.resulttype)), |
| 3505 | errdatatype(op->d.domaincheck.resulttype))); |
| 3506 | } |
| 3507 | |
| 3508 | /* |
| 3509 | * Evaluate a CHECK domain constraint. |
| 3510 | */ |
| 3511 | void |
| 3512 | ExecEvalConstraintCheck(ExprState *state, ExprEvalStep *op) |
| 3513 | { |
| 3514 | if (!*op->d.domaincheck.checknull && |
| 3515 | !DatumGetBool(*op->d.domaincheck.checkvalue)) |
| 3516 | ereport(ERROR, |
| 3517 | (errcode(ERRCODE_CHECK_VIOLATION), |
| 3518 | errmsg("value for domain %s violates check constraint \"%s\"" , |
| 3519 | format_type_be(op->d.domaincheck.resulttype), |
| 3520 | op->d.domaincheck.constraintname), |
| 3521 | errdomainconstraint(op->d.domaincheck.resulttype, |
| 3522 | op->d.domaincheck.constraintname))); |
| 3523 | } |
| 3524 | |
| 3525 | /* |
| 3526 | * Evaluate the various forms of XmlExpr. |
| 3527 | * |
| 3528 | * Arguments have been evaluated into named_argvalue/named_argnull |
| 3529 | * and/or argvalue/argnull arrays. |
| 3530 | */ |
| 3531 | void |
| 3532 | ExecEvalXmlExpr(ExprState *state, ExprEvalStep *op) |
| 3533 | { |
| 3534 | XmlExpr *xexpr = op->d.xmlexpr.xexpr; |
| 3535 | Datum value; |
| 3536 | int i; |
| 3537 | |
| 3538 | *op->resnull = true; /* until we get a result */ |
| 3539 | *op->resvalue = (Datum) 0; |
| 3540 | |
| 3541 | switch (xexpr->op) |
| 3542 | { |
| 3543 | case IS_XMLCONCAT: |
| 3544 | { |
| 3545 | Datum *argvalue = op->d.xmlexpr.argvalue; |
| 3546 | bool *argnull = op->d.xmlexpr.argnull; |
| 3547 | List *values = NIL; |
| 3548 | |
| 3549 | for (i = 0; i < list_length(xexpr->args); i++) |
| 3550 | { |
| 3551 | if (!argnull[i]) |
| 3552 | values = lappend(values, DatumGetPointer(argvalue[i])); |
| 3553 | } |
| 3554 | |
| 3555 | if (values != NIL) |
| 3556 | { |
| 3557 | *op->resvalue = PointerGetDatum(xmlconcat(values)); |
| 3558 | *op->resnull = false; |
| 3559 | } |
| 3560 | } |
| 3561 | break; |
| 3562 | |
| 3563 | case IS_XMLFOREST: |
| 3564 | { |
| 3565 | Datum *argvalue = op->d.xmlexpr.named_argvalue; |
| 3566 | bool *argnull = op->d.xmlexpr.named_argnull; |
| 3567 | StringInfoData buf; |
| 3568 | ListCell *lc; |
| 3569 | ListCell *lc2; |
| 3570 | |
| 3571 | initStringInfo(&buf); |
| 3572 | |
| 3573 | i = 0; |
| 3574 | forboth(lc, xexpr->named_args, lc2, xexpr->arg_names) |
| 3575 | { |
| 3576 | Expr *e = (Expr *) lfirst(lc); |
| 3577 | char *argname = strVal(lfirst(lc2)); |
| 3578 | |
| 3579 | if (!argnull[i]) |
| 3580 | { |
| 3581 | value = argvalue[i]; |
| 3582 | appendStringInfo(&buf, "<%s>%s</%s>" , |
| 3583 | argname, |
| 3584 | map_sql_value_to_xml_value(value, |
| 3585 | exprType((Node *) e), true), |
| 3586 | argname); |
| 3587 | *op->resnull = false; |
| 3588 | } |
| 3589 | i++; |
| 3590 | } |
| 3591 | |
| 3592 | if (!*op->resnull) |
| 3593 | { |
| 3594 | text *result; |
| 3595 | |
| 3596 | result = cstring_to_text_with_len(buf.data, buf.len); |
| 3597 | *op->resvalue = PointerGetDatum(result); |
| 3598 | } |
| 3599 | |
| 3600 | pfree(buf.data); |
| 3601 | } |
| 3602 | break; |
| 3603 | |
| 3604 | case IS_XMLELEMENT: |
| 3605 | *op->resvalue = PointerGetDatum(xmlelement(xexpr, |
| 3606 | op->d.xmlexpr.named_argvalue, |
| 3607 | op->d.xmlexpr.named_argnull, |
| 3608 | op->d.xmlexpr.argvalue, |
| 3609 | op->d.xmlexpr.argnull)); |
| 3610 | *op->resnull = false; |
| 3611 | break; |
| 3612 | |
| 3613 | case IS_XMLPARSE: |
| 3614 | { |
| 3615 | Datum *argvalue = op->d.xmlexpr.argvalue; |
| 3616 | bool *argnull = op->d.xmlexpr.argnull; |
| 3617 | text *data; |
| 3618 | bool preserve_whitespace; |
| 3619 | |
| 3620 | /* arguments are known to be text, bool */ |
| 3621 | Assert(list_length(xexpr->args) == 2); |
| 3622 | |
| 3623 | if (argnull[0]) |
| 3624 | return; |
| 3625 | value = argvalue[0]; |
| 3626 | data = DatumGetTextPP(value); |
| 3627 | |
| 3628 | if (argnull[1]) /* probably can't happen */ |
| 3629 | return; |
| 3630 | value = argvalue[1]; |
| 3631 | preserve_whitespace = DatumGetBool(value); |
| 3632 | |
| 3633 | *op->resvalue = PointerGetDatum(xmlparse(data, |
| 3634 | xexpr->xmloption, |
| 3635 | preserve_whitespace)); |
| 3636 | *op->resnull = false; |
| 3637 | } |
| 3638 | break; |
| 3639 | |
| 3640 | case IS_XMLPI: |
| 3641 | { |
| 3642 | text *arg; |
| 3643 | bool isnull; |
| 3644 | |
| 3645 | /* optional argument is known to be text */ |
| 3646 | Assert(list_length(xexpr->args) <= 1); |
| 3647 | |
| 3648 | if (xexpr->args) |
| 3649 | { |
| 3650 | isnull = op->d.xmlexpr.argnull[0]; |
| 3651 | if (isnull) |
| 3652 | arg = NULL; |
| 3653 | else |
| 3654 | arg = DatumGetTextPP(op->d.xmlexpr.argvalue[0]); |
| 3655 | } |
| 3656 | else |
| 3657 | { |
| 3658 | arg = NULL; |
| 3659 | isnull = false; |
| 3660 | } |
| 3661 | |
| 3662 | *op->resvalue = PointerGetDatum(xmlpi(xexpr->name, |
| 3663 | arg, |
| 3664 | isnull, |
| 3665 | op->resnull)); |
| 3666 | } |
| 3667 | break; |
| 3668 | |
| 3669 | case IS_XMLROOT: |
| 3670 | { |
| 3671 | Datum *argvalue = op->d.xmlexpr.argvalue; |
| 3672 | bool *argnull = op->d.xmlexpr.argnull; |
| 3673 | xmltype *data; |
| 3674 | text *version; |
| 3675 | int standalone; |
| 3676 | |
| 3677 | /* arguments are known to be xml, text, int */ |
| 3678 | Assert(list_length(xexpr->args) == 3); |
| 3679 | |
| 3680 | if (argnull[0]) |
| 3681 | return; |
| 3682 | data = DatumGetXmlP(argvalue[0]); |
| 3683 | |
| 3684 | if (argnull[1]) |
| 3685 | version = NULL; |
| 3686 | else |
| 3687 | version = DatumGetTextPP(argvalue[1]); |
| 3688 | |
| 3689 | Assert(!argnull[2]); /* always present */ |
| 3690 | standalone = DatumGetInt32(argvalue[2]); |
| 3691 | |
| 3692 | *op->resvalue = PointerGetDatum(xmlroot(data, |
| 3693 | version, |
| 3694 | standalone)); |
| 3695 | *op->resnull = false; |
| 3696 | } |
| 3697 | break; |
| 3698 | |
| 3699 | case IS_XMLSERIALIZE: |
| 3700 | { |
| 3701 | Datum *argvalue = op->d.xmlexpr.argvalue; |
| 3702 | bool *argnull = op->d.xmlexpr.argnull; |
| 3703 | |
| 3704 | /* argument type is known to be xml */ |
| 3705 | Assert(list_length(xexpr->args) == 1); |
| 3706 | |
| 3707 | if (argnull[0]) |
| 3708 | return; |
| 3709 | value = argvalue[0]; |
| 3710 | |
| 3711 | *op->resvalue = PointerGetDatum( |
| 3712 | xmltotext_with_xmloption(DatumGetXmlP(value), |
| 3713 | xexpr->xmloption)); |
| 3714 | *op->resnull = false; |
| 3715 | } |
| 3716 | break; |
| 3717 | |
| 3718 | case IS_DOCUMENT: |
| 3719 | { |
| 3720 | Datum *argvalue = op->d.xmlexpr.argvalue; |
| 3721 | bool *argnull = op->d.xmlexpr.argnull; |
| 3722 | |
| 3723 | /* optional argument is known to be xml */ |
| 3724 | Assert(list_length(xexpr->args) == 1); |
| 3725 | |
| 3726 | if (argnull[0]) |
| 3727 | return; |
| 3728 | value = argvalue[0]; |
| 3729 | |
| 3730 | *op->resvalue = |
| 3731 | BoolGetDatum(xml_is_document(DatumGetXmlP(value))); |
| 3732 | *op->resnull = false; |
| 3733 | } |
| 3734 | break; |
| 3735 | |
| 3736 | default: |
| 3737 | elog(ERROR, "unrecognized XML operation" ); |
| 3738 | break; |
| 3739 | } |
| 3740 | } |
| 3741 | |
| 3742 | /* |
| 3743 | * ExecEvalGroupingFunc |
| 3744 | * |
| 3745 | * Computes a bitmask with a bit for each (unevaluated) argument expression |
| 3746 | * (rightmost arg is least significant bit). |
| 3747 | * |
| 3748 | * A bit is set if the corresponding expression is NOT part of the set of |
| 3749 | * grouping expressions in the current grouping set. |
| 3750 | */ |
| 3751 | void |
| 3752 | ExecEvalGroupingFunc(ExprState *state, ExprEvalStep *op) |
| 3753 | { |
| 3754 | int result = 0; |
| 3755 | Bitmapset *grouped_cols = op->d.grouping_func.parent->grouped_cols; |
| 3756 | ListCell *lc; |
| 3757 | |
| 3758 | foreach(lc, op->d.grouping_func.clauses) |
| 3759 | { |
| 3760 | int attnum = lfirst_int(lc); |
| 3761 | |
| 3762 | result <<= 1; |
| 3763 | |
| 3764 | if (!bms_is_member(attnum, grouped_cols)) |
| 3765 | result |= 1; |
| 3766 | } |
| 3767 | |
| 3768 | *op->resvalue = Int32GetDatum(result); |
| 3769 | *op->resnull = false; |
| 3770 | } |
| 3771 | |
| 3772 | /* |
| 3773 | * Hand off evaluation of a subplan to nodeSubplan.c |
| 3774 | */ |
| 3775 | void |
| 3776 | ExecEvalSubPlan(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 3777 | { |
| 3778 | SubPlanState *sstate = op->d.subplan.sstate; |
| 3779 | |
| 3780 | /* could potentially be nested, so make sure there's enough stack */ |
| 3781 | check_stack_depth(); |
| 3782 | |
| 3783 | *op->resvalue = ExecSubPlan(sstate, econtext, op->resnull); |
| 3784 | } |
| 3785 | |
| 3786 | /* |
| 3787 | * Hand off evaluation of an alternative subplan to nodeSubplan.c |
| 3788 | */ |
| 3789 | void |
| 3790 | ExecEvalAlternativeSubPlan(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 3791 | { |
| 3792 | AlternativeSubPlanState *asstate = op->d.alternative_subplan.asstate; |
| 3793 | |
| 3794 | /* could potentially be nested, so make sure there's enough stack */ |
| 3795 | check_stack_depth(); |
| 3796 | |
| 3797 | *op->resvalue = ExecAlternativeSubPlan(asstate, econtext, op->resnull); |
| 3798 | } |
| 3799 | |
| 3800 | /* |
| 3801 | * Evaluate a wholerow Var expression. |
| 3802 | * |
| 3803 | * Returns a Datum whose value is the value of a whole-row range variable |
| 3804 | * with respect to given expression context. |
| 3805 | */ |
| 3806 | void |
| 3807 | ExecEvalWholeRowVar(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
| 3808 | { |
| 3809 | Var *variable = op->d.wholerow.var; |
| 3810 | TupleTableSlot *slot; |
| 3811 | TupleDesc output_tupdesc; |
| 3812 | MemoryContext oldcontext; |
| 3813 | HeapTupleHeader dtuple; |
| 3814 | HeapTuple tuple; |
| 3815 | |
| 3816 | /* This was checked by ExecInitExpr */ |
| 3817 | Assert(variable->varattno == InvalidAttrNumber); |
| 3818 | |
| 3819 | /* Get the input slot we want */ |
| 3820 | switch (variable->varno) |
| 3821 | { |
| 3822 | case INNER_VAR: |
| 3823 | /* get the tuple from the inner node */ |
| 3824 | slot = econtext->ecxt_innertuple; |
| 3825 | break; |
| 3826 | |
| 3827 | case OUTER_VAR: |
| 3828 | /* get the tuple from the outer node */ |
| 3829 | slot = econtext->ecxt_outertuple; |
| 3830 | break; |
| 3831 | |
| 3832 | /* INDEX_VAR is handled by default case */ |
| 3833 | |
| 3834 | default: |
| 3835 | /* get the tuple from the relation being scanned */ |
| 3836 | slot = econtext->ecxt_scantuple; |
| 3837 | break; |
| 3838 | } |
| 3839 | |
| 3840 | /* Apply the junkfilter if any */ |
| 3841 | if (op->d.wholerow.junkFilter != NULL) |
| 3842 | slot = ExecFilterJunk(op->d.wholerow.junkFilter, slot); |
| 3843 | |
| 3844 | /* |
| 3845 | * If first time through, obtain tuple descriptor and check compatibility. |
| 3846 | * |
| 3847 | * XXX: It'd be great if this could be moved to the expression |
| 3848 | * initialization phase, but due to using slots that's currently not |
| 3849 | * feasible. |
| 3850 | */ |
| 3851 | if (op->d.wholerow.first) |
| 3852 | { |
| 3853 | /* optimistically assume we don't need slow path */ |
| 3854 | op->d.wholerow.slow = false; |
| 3855 | |
| 3856 | /* |
| 3857 | * If the Var identifies a named composite type, we must check that |
| 3858 | * the actual tuple type is compatible with it. |
| 3859 | */ |
| 3860 | if (variable->vartype != RECORDOID) |
| 3861 | { |
| 3862 | TupleDesc var_tupdesc; |
| 3863 | TupleDesc slot_tupdesc; |
| 3864 | int i; |
| 3865 | |
| 3866 | /* |
| 3867 | * We really only care about numbers of attributes and data types. |
| 3868 | * Also, we can ignore type mismatch on columns that are dropped |
| 3869 | * in the destination type, so long as (1) the physical storage |
| 3870 | * matches or (2) the actual column value is NULL. Case (1) is |
| 3871 | * helpful in some cases involving out-of-date cached plans, while |
| 3872 | * case (2) is expected behavior in situations such as an INSERT |
| 3873 | * into a table with dropped columns (the planner typically |
| 3874 | * generates an INT4 NULL regardless of the dropped column type). |
| 3875 | * If we find a dropped column and cannot verify that case (1) |
| 3876 | * holds, we have to use the slow path to check (2) for each row. |
| 3877 | * |
| 3878 | * If vartype is a domain over composite, just look through that |
| 3879 | * to the base composite type. |
| 3880 | */ |
| 3881 | var_tupdesc = lookup_rowtype_tupdesc_domain(variable->vartype, |
| 3882 | -1, false); |
| 3883 | |
| 3884 | slot_tupdesc = slot->tts_tupleDescriptor; |
| 3885 | |
| 3886 | if (var_tupdesc->natts != slot_tupdesc->natts) |
| 3887 | ereport(ERROR, |
| 3888 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 3889 | errmsg("table row type and query-specified row type do not match" ), |
| 3890 | errdetail_plural("Table row contains %d attribute, but query expects %d." , |
| 3891 | "Table row contains %d attributes, but query expects %d." , |
| 3892 | slot_tupdesc->natts, |
| 3893 | slot_tupdesc->natts, |
| 3894 | var_tupdesc->natts))); |
| 3895 | |
| 3896 | for (i = 0; i < var_tupdesc->natts; i++) |
| 3897 | { |
| 3898 | Form_pg_attribute vattr = TupleDescAttr(var_tupdesc, i); |
| 3899 | Form_pg_attribute sattr = TupleDescAttr(slot_tupdesc, i); |
| 3900 | |
| 3901 | if (vattr->atttypid == sattr->atttypid) |
| 3902 | continue; /* no worries */ |
| 3903 | if (!vattr->attisdropped) |
| 3904 | ereport(ERROR, |
| 3905 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 3906 | errmsg("table row type and query-specified row type do not match" ), |
| 3907 | errdetail("Table has type %s at ordinal position %d, but query expects %s." , |
| 3908 | format_type_be(sattr->atttypid), |
| 3909 | i + 1, |
| 3910 | format_type_be(vattr->atttypid)))); |
| 3911 | |
| 3912 | if (vattr->attlen != sattr->attlen || |
| 3913 | vattr->attalign != sattr->attalign) |
| 3914 | op->d.wholerow.slow = true; /* need to check for nulls */ |
| 3915 | } |
| 3916 | |
| 3917 | /* |
| 3918 | * Use the variable's declared rowtype as the descriptor for the |
| 3919 | * output values, modulo possibly assigning new column names |
| 3920 | * below. In particular, we *must* absorb any attisdropped |
| 3921 | * markings. |
| 3922 | */ |
| 3923 | oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
| 3924 | output_tupdesc = CreateTupleDescCopy(var_tupdesc); |
| 3925 | MemoryContextSwitchTo(oldcontext); |
| 3926 | |
| 3927 | ReleaseTupleDesc(var_tupdesc); |
| 3928 | } |
| 3929 | else |
| 3930 | { |
| 3931 | /* |
| 3932 | * In the RECORD case, we use the input slot's rowtype as the |
| 3933 | * descriptor for the output values, modulo possibly assigning new |
| 3934 | * column names below. |
| 3935 | */ |
| 3936 | oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
| 3937 | output_tupdesc = CreateTupleDescCopy(slot->tts_tupleDescriptor); |
| 3938 | MemoryContextSwitchTo(oldcontext); |
| 3939 | } |
| 3940 | |
| 3941 | /* |
| 3942 | * Construct a tuple descriptor for the composite values we'll |
| 3943 | * produce, and make sure its record type is "blessed". The main |
| 3944 | * reason to do this is to be sure that operations such as |
| 3945 | * row_to_json() will see the desired column names when they look up |
| 3946 | * the descriptor from the type information embedded in the composite |
| 3947 | * values. |
| 3948 | * |
| 3949 | * We already got the correct physical datatype info above, but now we |
| 3950 | * should try to find the source RTE and adopt its column aliases, in |
| 3951 | * case they are different from the original rowtype's names. For |
| 3952 | * example, in "SELECT foo(t) FROM tab t(x,y)", the first two columns |
| 3953 | * in the composite output should be named "x" and "y" regardless of |
| 3954 | * tab's column names. |
| 3955 | * |
| 3956 | * If we can't locate the RTE, assume the column names we've got are |
| 3957 | * OK. (As of this writing, the only cases where we can't locate the |
| 3958 | * RTE are in execution of trigger WHEN clauses, and then the Var will |
| 3959 | * have the trigger's relation's rowtype, so its names are fine.) |
| 3960 | * Also, if the creator of the RTE didn't bother to fill in an eref |
| 3961 | * field, assume our column names are OK. (This happens in COPY, and |
| 3962 | * perhaps other places.) |
| 3963 | */ |
| 3964 | if (econtext->ecxt_estate && |
| 3965 | variable->varno <= econtext->ecxt_estate->es_range_table_size) |
| 3966 | { |
| 3967 | RangeTblEntry *rte = exec_rt_fetch(variable->varno, |
| 3968 | econtext->ecxt_estate); |
| 3969 | |
| 3970 | if (rte->eref) |
| 3971 | ExecTypeSetColNames(output_tupdesc, rte->eref->colnames); |
| 3972 | } |
| 3973 | |
| 3974 | /* Bless the tupdesc if needed, and save it in the execution state */ |
| 3975 | op->d.wholerow.tupdesc = BlessTupleDesc(output_tupdesc); |
| 3976 | |
| 3977 | op->d.wholerow.first = false; |
| 3978 | } |
| 3979 | |
| 3980 | /* |
| 3981 | * Make sure all columns of the slot are accessible in the slot's |
| 3982 | * Datum/isnull arrays. |
| 3983 | */ |
| 3984 | slot_getallattrs(slot); |
| 3985 | |
| 3986 | if (op->d.wholerow.slow) |
| 3987 | { |
| 3988 | /* Check to see if any dropped attributes are non-null */ |
| 3989 | TupleDesc tupleDesc = slot->tts_tupleDescriptor; |
| 3990 | TupleDesc var_tupdesc = op->d.wholerow.tupdesc; |
| 3991 | int i; |
| 3992 | |
| 3993 | Assert(var_tupdesc->natts == tupleDesc->natts); |
| 3994 | |
| 3995 | for (i = 0; i < var_tupdesc->natts; i++) |
| 3996 | { |
| 3997 | Form_pg_attribute vattr = TupleDescAttr(var_tupdesc, i); |
| 3998 | Form_pg_attribute sattr = TupleDescAttr(tupleDesc, i); |
| 3999 | |
| 4000 | if (!vattr->attisdropped) |
| 4001 | continue; /* already checked non-dropped cols */ |
| 4002 | if (slot->tts_isnull[i]) |
| 4003 | continue; /* null is always okay */ |
| 4004 | if (vattr->attlen != sattr->attlen || |
| 4005 | vattr->attalign != sattr->attalign) |
| 4006 | ereport(ERROR, |
| 4007 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 4008 | errmsg("table row type and query-specified row type do not match" ), |
| 4009 | errdetail("Physical storage mismatch on dropped attribute at ordinal position %d." , |
| 4010 | i + 1))); |
| 4011 | } |
| 4012 | } |
| 4013 | |
| 4014 | /* |
| 4015 | * Build a composite datum, making sure any toasted fields get detoasted. |
| 4016 | * |
| 4017 | * (Note: it is critical that we not change the slot's state here.) |
| 4018 | */ |
| 4019 | tuple = toast_build_flattened_tuple(slot->tts_tupleDescriptor, |
| 4020 | slot->tts_values, |
| 4021 | slot->tts_isnull); |
| 4022 | dtuple = tuple->t_data; |
| 4023 | |
| 4024 | /* |
| 4025 | * Label the datum with the composite type info we identified before. |
| 4026 | * |
| 4027 | * (Note: we could skip doing this by passing op->d.wholerow.tupdesc to |
| 4028 | * the tuple build step; but that seems a tad risky so let's not.) |
| 4029 | */ |
| 4030 | HeapTupleHeaderSetTypeId(dtuple, op->d.wholerow.tupdesc->tdtypeid); |
| 4031 | HeapTupleHeaderSetTypMod(dtuple, op->d.wholerow.tupdesc->tdtypmod); |
| 4032 | |
| 4033 | *op->resvalue = PointerGetDatum(dtuple); |
| 4034 | *op->resnull = false; |
| 4035 | } |
| 4036 | |
| 4037 | void |
| 4038 | ExecEvalSysVar(ExprState *state, ExprEvalStep *op, ExprContext *econtext, |
| 4039 | TupleTableSlot *slot) |
| 4040 | { |
| 4041 | Datum d; |
| 4042 | |
| 4043 | /* slot_getsysattr has sufficient defenses against bad attnums */ |
| 4044 | d = slot_getsysattr(slot, |
| 4045 | op->d.var.attnum, |
| 4046 | op->resnull); |
| 4047 | *op->resvalue = d; |
| 4048 | /* this ought to be unreachable, but it's cheap enough to check */ |
| 4049 | if (unlikely(*op->resnull)) |
| 4050 | elog(ERROR, "failed to fetch attribute from slot" ); |
| 4051 | } |
| 4052 | |
| 4053 | /* |
| 4054 | * Transition value has not been initialized. This is the first non-NULL input |
| 4055 | * value for a group. We use it as the initial value for transValue. |
| 4056 | */ |
| 4057 | void |
| 4058 | ExecAggInitGroup(AggState *aggstate, AggStatePerTrans pertrans, AggStatePerGroup pergroup) |
| 4059 | { |
| 4060 | FunctionCallInfo fcinfo = pertrans->transfn_fcinfo; |
| 4061 | MemoryContext oldContext; |
| 4062 | |
| 4063 | /* |
| 4064 | * We must copy the datum into aggcontext if it is pass-by-ref. We do not |
| 4065 | * need to pfree the old transValue, since it's NULL. (We already checked |
| 4066 | * that the agg's input type is binary-compatible with its transtype, so |
| 4067 | * straight copy here is OK.) |
| 4068 | */ |
| 4069 | oldContext = MemoryContextSwitchTo( |
| 4070 | aggstate->curaggcontext->ecxt_per_tuple_memory); |
| 4071 | pergroup->transValue = datumCopy(fcinfo->args[1].value, |
| 4072 | pertrans->transtypeByVal, |
| 4073 | pertrans->transtypeLen); |
| 4074 | pergroup->transValueIsNull = false; |
| 4075 | pergroup->noTransValue = false; |
| 4076 | MemoryContextSwitchTo(oldContext); |
| 4077 | } |
| 4078 | |
| 4079 | /* |
| 4080 | * Ensure that the current transition value is a child of the aggcontext, |
| 4081 | * rather than the per-tuple context. |
| 4082 | * |
| 4083 | * NB: This can change the current memory context. |
| 4084 | */ |
| 4085 | Datum |
| 4086 | ExecAggTransReparent(AggState *aggstate, AggStatePerTrans pertrans, |
| 4087 | Datum newValue, bool newValueIsNull, |
| 4088 | Datum oldValue, bool oldValueIsNull) |
| 4089 | { |
| 4090 | if (!newValueIsNull) |
| 4091 | { |
| 4092 | MemoryContextSwitchTo(aggstate->curaggcontext->ecxt_per_tuple_memory); |
| 4093 | if (DatumIsReadWriteExpandedObject(newValue, |
| 4094 | false, |
| 4095 | pertrans->transtypeLen) && |
| 4096 | MemoryContextGetParent(DatumGetEOHP(newValue)->eoh_context) == CurrentMemoryContext) |
| 4097 | /* do nothing */ ; |
| 4098 | else |
| 4099 | newValue = datumCopy(newValue, |
| 4100 | pertrans->transtypeByVal, |
| 4101 | pertrans->transtypeLen); |
| 4102 | } |
| 4103 | if (!oldValueIsNull) |
| 4104 | { |
| 4105 | if (DatumIsReadWriteExpandedObject(oldValue, |
| 4106 | false, |
| 4107 | pertrans->transtypeLen)) |
| 4108 | DeleteExpandedObject(oldValue); |
| 4109 | else |
| 4110 | pfree(DatumGetPointer(oldValue)); |
| 4111 | } |
| 4112 | |
| 4113 | return newValue; |
| 4114 | } |
| 4115 | |
| 4116 | /* |
| 4117 | * Invoke ordered transition function, with a datum argument. |
| 4118 | */ |
| 4119 | void |
| 4120 | ExecEvalAggOrderedTransDatum(ExprState *state, ExprEvalStep *op, |
| 4121 | ExprContext *econtext) |
| 4122 | { |
| 4123 | AggStatePerTrans pertrans = op->d.agg_trans.pertrans; |
| 4124 | int setno = op->d.agg_trans.setno; |
| 4125 | |
| 4126 | tuplesort_putdatum(pertrans->sortstates[setno], |
| 4127 | *op->resvalue, *op->resnull); |
| 4128 | } |
| 4129 | |
| 4130 | /* |
| 4131 | * Invoke ordered transition function, with a tuple argument. |
| 4132 | */ |
| 4133 | void |
| 4134 | ExecEvalAggOrderedTransTuple(ExprState *state, ExprEvalStep *op, |
| 4135 | ExprContext *econtext) |
| 4136 | { |
| 4137 | AggStatePerTrans pertrans = op->d.agg_trans.pertrans; |
| 4138 | int setno = op->d.agg_trans.setno; |
| 4139 | |
| 4140 | ExecClearTuple(pertrans->sortslot); |
| 4141 | pertrans->sortslot->tts_nvalid = pertrans->numInputs; |
| 4142 | ExecStoreVirtualTuple(pertrans->sortslot); |
| 4143 | tuplesort_puttupleslot(pertrans->sortstates[setno], pertrans->sortslot); |
| 4144 | } |
| 4145 | |