1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * execExprInterp.c |
4 | * Interpreted evaluation of an expression step list. |
5 | * |
6 | * This file provides either a "direct threaded" (for gcc, clang and |
7 | * compatible) or a "switch threaded" (for all compilers) implementation of |
8 | * expression evaluation. The former is amongst the fastest known methods |
9 | * of interpreting programs without resorting to assembly level work, or |
10 | * just-in-time compilation, but it requires support for computed gotos. |
11 | * The latter is amongst the fastest approaches doable in standard C. |
12 | * |
13 | * In either case we use ExprEvalStep->opcode to dispatch to the code block |
14 | * within ExecInterpExpr() that implements the specific opcode type. |
15 | * |
16 | * Switch-threading uses a plain switch() statement to perform the |
17 | * dispatch. This has the advantages of being plain C and allowing the |
18 | * compiler to warn if implementation of a specific opcode has been forgotten. |
19 | * The disadvantage is that dispatches will, as commonly implemented by |
20 | * compilers, happen from a single location, requiring more jumps and causing |
21 | * bad branch prediction. |
22 | * |
23 | * In direct threading, we use gcc's label-as-values extension - also adopted |
24 | * by some other compilers - to replace ExprEvalStep->opcode with the address |
25 | * of the block implementing the instruction. Dispatch to the next instruction |
26 | * is done by a "computed goto". This allows for better branch prediction |
27 | * (as the jumps are happening from different locations) and fewer jumps |
28 | * (as no preparatory jump to a common dispatch location is needed). |
29 | * |
30 | * When using direct threading, ExecReadyInterpretedExpr will replace |
31 | * each step's opcode field with the address of the relevant code block and |
32 | * ExprState->flags will contain EEO_FLAG_DIRECT_THREADED to remember that |
33 | * that's been done. |
34 | * |
35 | * For very simple instructions the overhead of the full interpreter |
36 | * "startup", as minimal as it is, is noticeable. Therefore |
37 | * ExecReadyInterpretedExpr will choose to implement certain simple |
38 | * opcode patterns using special fast-path routines (ExecJust*). |
39 | * |
40 | * Complex or uncommon instructions are not implemented in-line in |
41 | * ExecInterpExpr(), rather we call out to a helper function appearing later |
42 | * in this file. For one reason, there'd not be a noticeable performance |
43 | * benefit, but more importantly those complex routines are intended to be |
44 | * shared between different expression evaluation approaches. For instance |
45 | * a JIT compiler would generate calls to them. (This is why they are |
46 | * exported rather than being "static" in this file.) |
47 | * |
48 | * |
49 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
50 | * Portions Copyright (c) 1994, Regents of the University of California |
51 | * |
52 | * IDENTIFICATION |
53 | * src/backend/executor/execExprInterp.c |
54 | * |
55 | *------------------------------------------------------------------------- |
56 | */ |
57 | #include "postgres.h" |
58 | |
59 | #include "access/tuptoaster.h" |
60 | #include "catalog/pg_type.h" |
61 | #include "commands/sequence.h" |
62 | #include "executor/execExpr.h" |
63 | #include "executor/nodeSubplan.h" |
64 | #include "funcapi.h" |
65 | #include "utils/memutils.h" |
66 | #include "miscadmin.h" |
67 | #include "nodes/nodeFuncs.h" |
68 | #include "parser/parsetree.h" |
69 | #include "pgstat.h" |
70 | #include "utils/builtins.h" |
71 | #include "utils/date.h" |
72 | #include "utils/datum.h" |
73 | #include "utils/expandedrecord.h" |
74 | #include "utils/lsyscache.h" |
75 | #include "utils/timestamp.h" |
76 | #include "utils/typcache.h" |
77 | #include "utils/xml.h" |
78 | |
79 | |
80 | /* |
81 | * Use computed-goto-based opcode dispatch when computed gotos are available. |
82 | * But use a separate symbol so that it's easy to adjust locally in this file |
83 | * for development and testing. |
84 | */ |
85 | #ifdef HAVE_COMPUTED_GOTO |
86 | #define EEO_USE_COMPUTED_GOTO |
87 | #endif /* HAVE_COMPUTED_GOTO */ |
88 | |
89 | /* |
90 | * Macros for opcode dispatch. |
91 | * |
92 | * EEO_SWITCH - just hides the switch if not in use. |
93 | * EEO_CASE - labels the implementation of named expression step type. |
94 | * EEO_DISPATCH - jump to the implementation of the step type for 'op'. |
95 | * EEO_OPCODE - compute opcode required by used expression evaluation method. |
96 | * EEO_NEXT - increment 'op' and jump to correct next step type. |
97 | * EEO_JUMP - jump to the specified step number within the current expression. |
98 | */ |
99 | #if defined(EEO_USE_COMPUTED_GOTO) |
100 | |
101 | /* struct for jump target -> opcode lookup table */ |
102 | typedef struct ExprEvalOpLookup |
103 | { |
104 | const void *opcode; |
105 | ExprEvalOp op; |
106 | } ExprEvalOpLookup; |
107 | |
108 | /* to make dispatch_table accessible outside ExecInterpExpr() */ |
109 | static const void **dispatch_table = NULL; |
110 | |
111 | /* jump target -> opcode lookup table */ |
112 | static ExprEvalOpLookup reverse_dispatch_table[EEOP_LAST]; |
113 | |
114 | #define EEO_SWITCH() |
115 | #define EEO_CASE(name) CASE_##name: |
116 | #define EEO_DISPATCH() goto *((void *) op->opcode) |
117 | #define EEO_OPCODE(opcode) ((intptr_t) dispatch_table[opcode]) |
118 | |
119 | #else /* !EEO_USE_COMPUTED_GOTO */ |
120 | |
121 | #define EEO_SWITCH() starteval: switch ((ExprEvalOp) op->opcode) |
122 | #define EEO_CASE(name) case name: |
123 | #define EEO_DISPATCH() goto starteval |
124 | #define EEO_OPCODE(opcode) (opcode) |
125 | |
126 | #endif /* EEO_USE_COMPUTED_GOTO */ |
127 | |
128 | #define EEO_NEXT() \ |
129 | do { \ |
130 | op++; \ |
131 | EEO_DISPATCH(); \ |
132 | } while (0) |
133 | |
134 | #define EEO_JUMP(stepno) \ |
135 | do { \ |
136 | op = &state->steps[stepno]; \ |
137 | EEO_DISPATCH(); \ |
138 | } while (0) |
139 | |
140 | |
141 | static Datum ExecInterpExpr(ExprState *state, ExprContext *econtext, bool *isnull); |
142 | static void ExecInitInterpreter(void); |
143 | |
144 | /* support functions */ |
145 | static void CheckVarSlotCompatibility(TupleTableSlot *slot, int attnum, Oid vartype); |
146 | static void CheckOpSlotCompatibility(ExprEvalStep *op, TupleTableSlot *slot); |
147 | static TupleDesc get_cached_rowtype(Oid type_id, int32 typmod, |
148 | TupleDesc *cache_field, ExprContext *econtext); |
149 | static void ShutdownTupleDescRef(Datum arg); |
150 | static void ExecEvalRowNullInt(ExprState *state, ExprEvalStep *op, |
151 | ExprContext *econtext, bool checkisnull); |
152 | |
153 | /* fast-path evaluation functions */ |
154 | static Datum ExecJustInnerVar(ExprState *state, ExprContext *econtext, bool *isnull); |
155 | static Datum ExecJustOuterVar(ExprState *state, ExprContext *econtext, bool *isnull); |
156 | static Datum ExecJustScanVar(ExprState *state, ExprContext *econtext, bool *isnull); |
157 | static Datum ExecJustConst(ExprState *state, ExprContext *econtext, bool *isnull); |
158 | static Datum ExecJustAssignInnerVar(ExprState *state, ExprContext *econtext, bool *isnull); |
159 | static Datum ExecJustAssignOuterVar(ExprState *state, ExprContext *econtext, bool *isnull); |
160 | static Datum ExecJustAssignScanVar(ExprState *state, ExprContext *econtext, bool *isnull); |
161 | static Datum ExecJustApplyFuncToCase(ExprState *state, ExprContext *econtext, bool *isnull); |
162 | |
163 | |
164 | /* |
165 | * Prepare ExprState for interpreted execution. |
166 | */ |
167 | void |
168 | ExecReadyInterpretedExpr(ExprState *state) |
169 | { |
170 | /* Ensure one-time interpreter setup has been done */ |
171 | ExecInitInterpreter(); |
172 | |
173 | /* Simple validity checks on expression */ |
174 | Assert(state->steps_len >= 1); |
175 | Assert(state->steps[state->steps_len - 1].opcode == EEOP_DONE); |
176 | |
177 | /* |
178 | * Don't perform redundant initialization. This is unreachable in current |
179 | * cases, but might be hit if there's additional expression evaluation |
180 | * methods that rely on interpreted execution to work. |
181 | */ |
182 | if (state->flags & EEO_FLAG_INTERPRETER_INITIALIZED) |
183 | return; |
184 | |
185 | /* |
186 | * First time through, check whether attribute matches Var. Might not be |
187 | * ok anymore, due to schema changes. We do that by setting up a callback |
188 | * that does checking on the first call, which then sets the evalfunc |
189 | * callback to the actual method of execution. |
190 | */ |
191 | state->evalfunc = ExecInterpExprStillValid; |
192 | |
193 | /* DIRECT_THREADED should not already be set */ |
194 | Assert((state->flags & EEO_FLAG_DIRECT_THREADED) == 0); |
195 | |
196 | /* |
197 | * There shouldn't be any errors before the expression is fully |
198 | * initialized, and even if so, it'd lead to the expression being |
199 | * abandoned. So we can set the flag now and save some code. |
200 | */ |
201 | state->flags |= EEO_FLAG_INTERPRETER_INITIALIZED; |
202 | |
203 | /* |
204 | * Select fast-path evalfuncs for very simple expressions. "Starting up" |
205 | * the full interpreter is a measurable overhead for these, and these |
206 | * patterns occur often enough to be worth optimizing. |
207 | */ |
208 | if (state->steps_len == 3) |
209 | { |
210 | ExprEvalOp step0 = state->steps[0].opcode; |
211 | ExprEvalOp step1 = state->steps[1].opcode; |
212 | |
213 | if (step0 == EEOP_INNER_FETCHSOME && |
214 | step1 == EEOP_INNER_VAR) |
215 | { |
216 | state->evalfunc_private = (void *) ExecJustInnerVar; |
217 | return; |
218 | } |
219 | else if (step0 == EEOP_OUTER_FETCHSOME && |
220 | step1 == EEOP_OUTER_VAR) |
221 | { |
222 | state->evalfunc_private = (void *) ExecJustOuterVar; |
223 | return; |
224 | } |
225 | else if (step0 == EEOP_SCAN_FETCHSOME && |
226 | step1 == EEOP_SCAN_VAR) |
227 | { |
228 | state->evalfunc_private = (void *) ExecJustScanVar; |
229 | return; |
230 | } |
231 | else if (step0 == EEOP_INNER_FETCHSOME && |
232 | step1 == EEOP_ASSIGN_INNER_VAR) |
233 | { |
234 | state->evalfunc_private = (void *) ExecJustAssignInnerVar; |
235 | return; |
236 | } |
237 | else if (step0 == EEOP_OUTER_FETCHSOME && |
238 | step1 == EEOP_ASSIGN_OUTER_VAR) |
239 | { |
240 | state->evalfunc_private = (void *) ExecJustAssignOuterVar; |
241 | return; |
242 | } |
243 | else if (step0 == EEOP_SCAN_FETCHSOME && |
244 | step1 == EEOP_ASSIGN_SCAN_VAR) |
245 | { |
246 | state->evalfunc_private = (void *) ExecJustAssignScanVar; |
247 | return; |
248 | } |
249 | else if (step0 == EEOP_CASE_TESTVAL && |
250 | step1 == EEOP_FUNCEXPR_STRICT && |
251 | state->steps[0].d.casetest.value) |
252 | { |
253 | state->evalfunc_private = (void *) ExecJustApplyFuncToCase; |
254 | return; |
255 | } |
256 | } |
257 | else if (state->steps_len == 2 && |
258 | state->steps[0].opcode == EEOP_CONST) |
259 | { |
260 | state->evalfunc_private = (void *) ExecJustConst; |
261 | return; |
262 | } |
263 | |
264 | #if defined(EEO_USE_COMPUTED_GOTO) |
265 | |
266 | /* |
267 | * In the direct-threaded implementation, replace each opcode with the |
268 | * address to jump to. (Use ExecEvalStepOp() to get back the opcode.) |
269 | */ |
270 | { |
271 | int off; |
272 | |
273 | for (off = 0; off < state->steps_len; off++) |
274 | { |
275 | ExprEvalStep *op = &state->steps[off]; |
276 | |
277 | op->opcode = EEO_OPCODE(op->opcode); |
278 | } |
279 | |
280 | state->flags |= EEO_FLAG_DIRECT_THREADED; |
281 | } |
282 | #endif /* EEO_USE_COMPUTED_GOTO */ |
283 | |
284 | state->evalfunc_private = (void *) ExecInterpExpr; |
285 | } |
286 | |
287 | |
288 | /* |
289 | * Evaluate expression identified by "state" in the execution context |
290 | * given by "econtext". *isnull is set to the is-null flag for the result, |
291 | * and the Datum value is the function result. |
292 | * |
293 | * As a special case, return the dispatch table's address if state is NULL. |
294 | * This is used by ExecInitInterpreter to set up the dispatch_table global. |
295 | * (Only applies when EEO_USE_COMPUTED_GOTO is defined.) |
296 | */ |
297 | static Datum |
298 | ExecInterpExpr(ExprState *state, ExprContext *econtext, bool *isnull) |
299 | { |
300 | ExprEvalStep *op; |
301 | TupleTableSlot *resultslot; |
302 | TupleTableSlot *innerslot; |
303 | TupleTableSlot *outerslot; |
304 | TupleTableSlot *scanslot; |
305 | |
306 | /* |
307 | * This array has to be in the same order as enum ExprEvalOp. |
308 | */ |
309 | #if defined(EEO_USE_COMPUTED_GOTO) |
310 | static const void *const dispatch_table[] = { |
311 | &&CASE_EEOP_DONE, |
312 | &&CASE_EEOP_INNER_FETCHSOME, |
313 | &&CASE_EEOP_OUTER_FETCHSOME, |
314 | &&CASE_EEOP_SCAN_FETCHSOME, |
315 | &&CASE_EEOP_INNER_VAR, |
316 | &&CASE_EEOP_OUTER_VAR, |
317 | &&CASE_EEOP_SCAN_VAR, |
318 | &&CASE_EEOP_INNER_SYSVAR, |
319 | &&CASE_EEOP_OUTER_SYSVAR, |
320 | &&CASE_EEOP_SCAN_SYSVAR, |
321 | &&CASE_EEOP_WHOLEROW, |
322 | &&CASE_EEOP_ASSIGN_INNER_VAR, |
323 | &&CASE_EEOP_ASSIGN_OUTER_VAR, |
324 | &&CASE_EEOP_ASSIGN_SCAN_VAR, |
325 | &&CASE_EEOP_ASSIGN_TMP, |
326 | &&CASE_EEOP_ASSIGN_TMP_MAKE_RO, |
327 | &&CASE_EEOP_CONST, |
328 | &&CASE_EEOP_FUNCEXPR, |
329 | &&CASE_EEOP_FUNCEXPR_STRICT, |
330 | &&CASE_EEOP_FUNCEXPR_FUSAGE, |
331 | &&CASE_EEOP_FUNCEXPR_STRICT_FUSAGE, |
332 | &&CASE_EEOP_BOOL_AND_STEP_FIRST, |
333 | &&CASE_EEOP_BOOL_AND_STEP, |
334 | &&CASE_EEOP_BOOL_AND_STEP_LAST, |
335 | &&CASE_EEOP_BOOL_OR_STEP_FIRST, |
336 | &&CASE_EEOP_BOOL_OR_STEP, |
337 | &&CASE_EEOP_BOOL_OR_STEP_LAST, |
338 | &&CASE_EEOP_BOOL_NOT_STEP, |
339 | &&CASE_EEOP_QUAL, |
340 | &&CASE_EEOP_JUMP, |
341 | &&CASE_EEOP_JUMP_IF_NULL, |
342 | &&CASE_EEOP_JUMP_IF_NOT_NULL, |
343 | &&CASE_EEOP_JUMP_IF_NOT_TRUE, |
344 | &&CASE_EEOP_NULLTEST_ISNULL, |
345 | &&CASE_EEOP_NULLTEST_ISNOTNULL, |
346 | &&CASE_EEOP_NULLTEST_ROWISNULL, |
347 | &&CASE_EEOP_NULLTEST_ROWISNOTNULL, |
348 | &&CASE_EEOP_BOOLTEST_IS_TRUE, |
349 | &&CASE_EEOP_BOOLTEST_IS_NOT_TRUE, |
350 | &&CASE_EEOP_BOOLTEST_IS_FALSE, |
351 | &&CASE_EEOP_BOOLTEST_IS_NOT_FALSE, |
352 | &&CASE_EEOP_PARAM_EXEC, |
353 | &&CASE_EEOP_PARAM_EXTERN, |
354 | &&CASE_EEOP_PARAM_CALLBACK, |
355 | &&CASE_EEOP_CASE_TESTVAL, |
356 | &&CASE_EEOP_MAKE_READONLY, |
357 | &&CASE_EEOP_IOCOERCE, |
358 | &&CASE_EEOP_DISTINCT, |
359 | &&CASE_EEOP_NOT_DISTINCT, |
360 | &&CASE_EEOP_NULLIF, |
361 | &&CASE_EEOP_SQLVALUEFUNCTION, |
362 | &&CASE_EEOP_CURRENTOFEXPR, |
363 | &&CASE_EEOP_NEXTVALUEEXPR, |
364 | &&CASE_EEOP_ARRAYEXPR, |
365 | &&CASE_EEOP_ARRAYCOERCE, |
366 | &&CASE_EEOP_ROW, |
367 | &&CASE_EEOP_ROWCOMPARE_STEP, |
368 | &&CASE_EEOP_ROWCOMPARE_FINAL, |
369 | &&CASE_EEOP_MINMAX, |
370 | &&CASE_EEOP_FIELDSELECT, |
371 | &&CASE_EEOP_FIELDSTORE_DEFORM, |
372 | &&CASE_EEOP_FIELDSTORE_FORM, |
373 | &&CASE_EEOP_SBSREF_SUBSCRIPT, |
374 | &&CASE_EEOP_SBSREF_OLD, |
375 | &&CASE_EEOP_SBSREF_ASSIGN, |
376 | &&CASE_EEOP_SBSREF_FETCH, |
377 | &&CASE_EEOP_DOMAIN_TESTVAL, |
378 | &&CASE_EEOP_DOMAIN_NOTNULL, |
379 | &&CASE_EEOP_DOMAIN_CHECK, |
380 | &&CASE_EEOP_CONVERT_ROWTYPE, |
381 | &&CASE_EEOP_SCALARARRAYOP, |
382 | &&CASE_EEOP_XMLEXPR, |
383 | &&CASE_EEOP_AGGREF, |
384 | &&CASE_EEOP_GROUPING_FUNC, |
385 | &&CASE_EEOP_WINDOW_FUNC, |
386 | &&CASE_EEOP_SUBPLAN, |
387 | &&CASE_EEOP_ALTERNATIVE_SUBPLAN, |
388 | &&CASE_EEOP_AGG_STRICT_DESERIALIZE, |
389 | &&CASE_EEOP_AGG_DESERIALIZE, |
390 | &&CASE_EEOP_AGG_STRICT_INPUT_CHECK_ARGS, |
391 | &&CASE_EEOP_AGG_STRICT_INPUT_CHECK_NULLS, |
392 | &&CASE_EEOP_AGG_INIT_TRANS, |
393 | &&CASE_EEOP_AGG_STRICT_TRANS_CHECK, |
394 | &&CASE_EEOP_AGG_PLAIN_TRANS_BYVAL, |
395 | &&CASE_EEOP_AGG_PLAIN_TRANS, |
396 | &&CASE_EEOP_AGG_ORDERED_TRANS_DATUM, |
397 | &&CASE_EEOP_AGG_ORDERED_TRANS_TUPLE, |
398 | &&CASE_EEOP_LAST |
399 | }; |
400 | |
401 | StaticAssertStmt(EEOP_LAST + 1 == lengthof(dispatch_table), |
402 | "dispatch_table out of whack with ExprEvalOp" ); |
403 | |
404 | if (unlikely(state == NULL)) |
405 | return PointerGetDatum(dispatch_table); |
406 | #else |
407 | Assert(state != NULL); |
408 | #endif /* EEO_USE_COMPUTED_GOTO */ |
409 | |
410 | /* setup state */ |
411 | op = state->steps; |
412 | resultslot = state->resultslot; |
413 | innerslot = econtext->ecxt_innertuple; |
414 | outerslot = econtext->ecxt_outertuple; |
415 | scanslot = econtext->ecxt_scantuple; |
416 | |
417 | #if defined(EEO_USE_COMPUTED_GOTO) |
418 | EEO_DISPATCH(); |
419 | #endif |
420 | |
421 | EEO_SWITCH() |
422 | { |
423 | EEO_CASE(EEOP_DONE) |
424 | { |
425 | goto out; |
426 | } |
427 | |
428 | EEO_CASE(EEOP_INNER_FETCHSOME) |
429 | { |
430 | CheckOpSlotCompatibility(op, innerslot); |
431 | |
432 | slot_getsomeattrs(innerslot, op->d.fetch.last_var); |
433 | |
434 | EEO_NEXT(); |
435 | } |
436 | |
437 | EEO_CASE(EEOP_OUTER_FETCHSOME) |
438 | { |
439 | CheckOpSlotCompatibility(op, outerslot); |
440 | |
441 | slot_getsomeattrs(outerslot, op->d.fetch.last_var); |
442 | |
443 | EEO_NEXT(); |
444 | } |
445 | |
446 | EEO_CASE(EEOP_SCAN_FETCHSOME) |
447 | { |
448 | CheckOpSlotCompatibility(op, scanslot); |
449 | |
450 | slot_getsomeattrs(scanslot, op->d.fetch.last_var); |
451 | |
452 | EEO_NEXT(); |
453 | } |
454 | |
455 | EEO_CASE(EEOP_INNER_VAR) |
456 | { |
457 | int attnum = op->d.var.attnum; |
458 | |
459 | /* |
460 | * Since we already extracted all referenced columns from the |
461 | * tuple with a FETCHSOME step, we can just grab the value |
462 | * directly out of the slot's decomposed-data arrays. But let's |
463 | * have an Assert to check that that did happen. |
464 | */ |
465 | Assert(attnum >= 0 && attnum < innerslot->tts_nvalid); |
466 | *op->resvalue = innerslot->tts_values[attnum]; |
467 | *op->resnull = innerslot->tts_isnull[attnum]; |
468 | |
469 | EEO_NEXT(); |
470 | } |
471 | |
472 | EEO_CASE(EEOP_OUTER_VAR) |
473 | { |
474 | int attnum = op->d.var.attnum; |
475 | |
476 | /* See EEOP_INNER_VAR comments */ |
477 | |
478 | Assert(attnum >= 0 && attnum < outerslot->tts_nvalid); |
479 | *op->resvalue = outerslot->tts_values[attnum]; |
480 | *op->resnull = outerslot->tts_isnull[attnum]; |
481 | |
482 | EEO_NEXT(); |
483 | } |
484 | |
485 | EEO_CASE(EEOP_SCAN_VAR) |
486 | { |
487 | int attnum = op->d.var.attnum; |
488 | |
489 | /* See EEOP_INNER_VAR comments */ |
490 | |
491 | Assert(attnum >= 0 && attnum < scanslot->tts_nvalid); |
492 | *op->resvalue = scanslot->tts_values[attnum]; |
493 | *op->resnull = scanslot->tts_isnull[attnum]; |
494 | |
495 | EEO_NEXT(); |
496 | } |
497 | |
498 | EEO_CASE(EEOP_INNER_SYSVAR) |
499 | { |
500 | ExecEvalSysVar(state, op, econtext, innerslot); |
501 | EEO_NEXT(); |
502 | } |
503 | |
504 | EEO_CASE(EEOP_OUTER_SYSVAR) |
505 | { |
506 | ExecEvalSysVar(state, op, econtext, outerslot); |
507 | EEO_NEXT(); |
508 | } |
509 | |
510 | EEO_CASE(EEOP_SCAN_SYSVAR) |
511 | { |
512 | ExecEvalSysVar(state, op, econtext, scanslot); |
513 | EEO_NEXT(); |
514 | } |
515 | |
516 | EEO_CASE(EEOP_WHOLEROW) |
517 | { |
518 | /* too complex for an inline implementation */ |
519 | ExecEvalWholeRowVar(state, op, econtext); |
520 | |
521 | EEO_NEXT(); |
522 | } |
523 | |
524 | EEO_CASE(EEOP_ASSIGN_INNER_VAR) |
525 | { |
526 | int resultnum = op->d.assign_var.resultnum; |
527 | int attnum = op->d.assign_var.attnum; |
528 | |
529 | /* |
530 | * We do not need CheckVarSlotCompatibility here; that was taken |
531 | * care of at compilation time. But see EEOP_INNER_VAR comments. |
532 | */ |
533 | Assert(attnum >= 0 && attnum < innerslot->tts_nvalid); |
534 | resultslot->tts_values[resultnum] = innerslot->tts_values[attnum]; |
535 | resultslot->tts_isnull[resultnum] = innerslot->tts_isnull[attnum]; |
536 | |
537 | EEO_NEXT(); |
538 | } |
539 | |
540 | EEO_CASE(EEOP_ASSIGN_OUTER_VAR) |
541 | { |
542 | int resultnum = op->d.assign_var.resultnum; |
543 | int attnum = op->d.assign_var.attnum; |
544 | |
545 | /* |
546 | * We do not need CheckVarSlotCompatibility here; that was taken |
547 | * care of at compilation time. But see EEOP_INNER_VAR comments. |
548 | */ |
549 | Assert(attnum >= 0 && attnum < outerslot->tts_nvalid); |
550 | resultslot->tts_values[resultnum] = outerslot->tts_values[attnum]; |
551 | resultslot->tts_isnull[resultnum] = outerslot->tts_isnull[attnum]; |
552 | |
553 | EEO_NEXT(); |
554 | } |
555 | |
556 | EEO_CASE(EEOP_ASSIGN_SCAN_VAR) |
557 | { |
558 | int resultnum = op->d.assign_var.resultnum; |
559 | int attnum = op->d.assign_var.attnum; |
560 | |
561 | /* |
562 | * We do not need CheckVarSlotCompatibility here; that was taken |
563 | * care of at compilation time. But see EEOP_INNER_VAR comments. |
564 | */ |
565 | Assert(attnum >= 0 && attnum < scanslot->tts_nvalid); |
566 | resultslot->tts_values[resultnum] = scanslot->tts_values[attnum]; |
567 | resultslot->tts_isnull[resultnum] = scanslot->tts_isnull[attnum]; |
568 | |
569 | EEO_NEXT(); |
570 | } |
571 | |
572 | EEO_CASE(EEOP_ASSIGN_TMP) |
573 | { |
574 | int resultnum = op->d.assign_tmp.resultnum; |
575 | |
576 | resultslot->tts_values[resultnum] = state->resvalue; |
577 | resultslot->tts_isnull[resultnum] = state->resnull; |
578 | |
579 | EEO_NEXT(); |
580 | } |
581 | |
582 | EEO_CASE(EEOP_ASSIGN_TMP_MAKE_RO) |
583 | { |
584 | int resultnum = op->d.assign_tmp.resultnum; |
585 | |
586 | resultslot->tts_isnull[resultnum] = state->resnull; |
587 | if (!resultslot->tts_isnull[resultnum]) |
588 | resultslot->tts_values[resultnum] = |
589 | MakeExpandedObjectReadOnlyInternal(state->resvalue); |
590 | else |
591 | resultslot->tts_values[resultnum] = state->resvalue; |
592 | |
593 | EEO_NEXT(); |
594 | } |
595 | |
596 | EEO_CASE(EEOP_CONST) |
597 | { |
598 | *op->resnull = op->d.constval.isnull; |
599 | *op->resvalue = op->d.constval.value; |
600 | |
601 | EEO_NEXT(); |
602 | } |
603 | |
604 | /* |
605 | * Function-call implementations. Arguments have previously been |
606 | * evaluated directly into fcinfo->args. |
607 | * |
608 | * As both STRICT checks and function-usage are noticeable performance |
609 | * wise, and function calls are a very hot-path (they also back |
610 | * operators!), it's worth having so many separate opcodes. |
611 | * |
612 | * Note: the reason for using a temporary variable "d", here and in |
613 | * other places, is that some compilers think "*op->resvalue = f();" |
614 | * requires them to evaluate op->resvalue into a register before |
615 | * calling f(), just in case f() is able to modify op->resvalue |
616 | * somehow. The extra line of code can save a useless register spill |
617 | * and reload across the function call. |
618 | */ |
619 | EEO_CASE(EEOP_FUNCEXPR) |
620 | { |
621 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
622 | Datum d; |
623 | |
624 | fcinfo->isnull = false; |
625 | d = op->d.func.fn_addr(fcinfo); |
626 | *op->resvalue = d; |
627 | *op->resnull = fcinfo->isnull; |
628 | |
629 | EEO_NEXT(); |
630 | } |
631 | |
632 | EEO_CASE(EEOP_FUNCEXPR_STRICT) |
633 | { |
634 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
635 | NullableDatum *args = fcinfo->args; |
636 | int argno; |
637 | Datum d; |
638 | |
639 | /* strict function, so check for NULL args */ |
640 | for (argno = 0; argno < op->d.func.nargs; argno++) |
641 | { |
642 | if (args[argno].isnull) |
643 | { |
644 | *op->resnull = true; |
645 | goto strictfail; |
646 | } |
647 | } |
648 | fcinfo->isnull = false; |
649 | d = op->d.func.fn_addr(fcinfo); |
650 | *op->resvalue = d; |
651 | *op->resnull = fcinfo->isnull; |
652 | |
653 | strictfail: |
654 | EEO_NEXT(); |
655 | } |
656 | |
657 | EEO_CASE(EEOP_FUNCEXPR_FUSAGE) |
658 | { |
659 | /* not common enough to inline */ |
660 | ExecEvalFuncExprFusage(state, op, econtext); |
661 | |
662 | EEO_NEXT(); |
663 | } |
664 | |
665 | EEO_CASE(EEOP_FUNCEXPR_STRICT_FUSAGE) |
666 | { |
667 | /* not common enough to inline */ |
668 | ExecEvalFuncExprStrictFusage(state, op, econtext); |
669 | |
670 | EEO_NEXT(); |
671 | } |
672 | |
673 | /* |
674 | * If any of its clauses is FALSE, an AND's result is FALSE regardless |
675 | * of the states of the rest of the clauses, so we can stop evaluating |
676 | * and return FALSE immediately. If none are FALSE and one or more is |
677 | * NULL, we return NULL; otherwise we return TRUE. This makes sense |
678 | * when you interpret NULL as "don't know": perhaps one of the "don't |
679 | * knows" would have been FALSE if we'd known its value. Only when |
680 | * all the inputs are known to be TRUE can we state confidently that |
681 | * the AND's result is TRUE. |
682 | */ |
683 | EEO_CASE(EEOP_BOOL_AND_STEP_FIRST) |
684 | { |
685 | *op->d.boolexpr.anynull = false; |
686 | |
687 | /* |
688 | * EEOP_BOOL_AND_STEP_FIRST resets anynull, otherwise it's the |
689 | * same as EEOP_BOOL_AND_STEP - so fall through to that. |
690 | */ |
691 | |
692 | /* FALL THROUGH */ |
693 | } |
694 | |
695 | EEO_CASE(EEOP_BOOL_AND_STEP) |
696 | { |
697 | if (*op->resnull) |
698 | { |
699 | *op->d.boolexpr.anynull = true; |
700 | } |
701 | else if (!DatumGetBool(*op->resvalue)) |
702 | { |
703 | /* result is already set to FALSE, need not change it */ |
704 | /* bail out early */ |
705 | EEO_JUMP(op->d.boolexpr.jumpdone); |
706 | } |
707 | |
708 | EEO_NEXT(); |
709 | } |
710 | |
711 | EEO_CASE(EEOP_BOOL_AND_STEP_LAST) |
712 | { |
713 | if (*op->resnull) |
714 | { |
715 | /* result is already set to NULL, need not change it */ |
716 | } |
717 | else if (!DatumGetBool(*op->resvalue)) |
718 | { |
719 | /* result is already set to FALSE, need not change it */ |
720 | |
721 | /* |
722 | * No point jumping early to jumpdone - would be same target |
723 | * (as this is the last argument to the AND expression), |
724 | * except more expensive. |
725 | */ |
726 | } |
727 | else if (*op->d.boolexpr.anynull) |
728 | { |
729 | *op->resvalue = (Datum) 0; |
730 | *op->resnull = true; |
731 | } |
732 | else |
733 | { |
734 | /* result is already set to TRUE, need not change it */ |
735 | } |
736 | |
737 | EEO_NEXT(); |
738 | } |
739 | |
740 | /* |
741 | * If any of its clauses is TRUE, an OR's result is TRUE regardless of |
742 | * the states of the rest of the clauses, so we can stop evaluating |
743 | * and return TRUE immediately. If none are TRUE and one or more is |
744 | * NULL, we return NULL; otherwise we return FALSE. This makes sense |
745 | * when you interpret NULL as "don't know": perhaps one of the "don't |
746 | * knows" would have been TRUE if we'd known its value. Only when all |
747 | * the inputs are known to be FALSE can we state confidently that the |
748 | * OR's result is FALSE. |
749 | */ |
750 | EEO_CASE(EEOP_BOOL_OR_STEP_FIRST) |
751 | { |
752 | *op->d.boolexpr.anynull = false; |
753 | |
754 | /* |
755 | * EEOP_BOOL_OR_STEP_FIRST resets anynull, otherwise it's the same |
756 | * as EEOP_BOOL_OR_STEP - so fall through to that. |
757 | */ |
758 | |
759 | /* FALL THROUGH */ |
760 | } |
761 | |
762 | EEO_CASE(EEOP_BOOL_OR_STEP) |
763 | { |
764 | if (*op->resnull) |
765 | { |
766 | *op->d.boolexpr.anynull = true; |
767 | } |
768 | else if (DatumGetBool(*op->resvalue)) |
769 | { |
770 | /* result is already set to TRUE, need not change it */ |
771 | /* bail out early */ |
772 | EEO_JUMP(op->d.boolexpr.jumpdone); |
773 | } |
774 | |
775 | EEO_NEXT(); |
776 | } |
777 | |
778 | EEO_CASE(EEOP_BOOL_OR_STEP_LAST) |
779 | { |
780 | if (*op->resnull) |
781 | { |
782 | /* result is already set to NULL, need not change it */ |
783 | } |
784 | else if (DatumGetBool(*op->resvalue)) |
785 | { |
786 | /* result is already set to TRUE, need not change it */ |
787 | |
788 | /* |
789 | * No point jumping to jumpdone - would be same target (as |
790 | * this is the last argument to the AND expression), except |
791 | * more expensive. |
792 | */ |
793 | } |
794 | else if (*op->d.boolexpr.anynull) |
795 | { |
796 | *op->resvalue = (Datum) 0; |
797 | *op->resnull = true; |
798 | } |
799 | else |
800 | { |
801 | /* result is already set to FALSE, need not change it */ |
802 | } |
803 | |
804 | EEO_NEXT(); |
805 | } |
806 | |
807 | EEO_CASE(EEOP_BOOL_NOT_STEP) |
808 | { |
809 | /* |
810 | * Evaluation of 'not' is simple... if expr is false, then return |
811 | * 'true' and vice versa. It's safe to do this even on a |
812 | * nominally null value, so we ignore resnull; that means that |
813 | * NULL in produces NULL out, which is what we want. |
814 | */ |
815 | *op->resvalue = BoolGetDatum(!DatumGetBool(*op->resvalue)); |
816 | |
817 | EEO_NEXT(); |
818 | } |
819 | |
820 | EEO_CASE(EEOP_QUAL) |
821 | { |
822 | /* simplified version of BOOL_AND_STEP for use by ExecQual() */ |
823 | |
824 | /* If argument (also result) is false or null ... */ |
825 | if (*op->resnull || |
826 | !DatumGetBool(*op->resvalue)) |
827 | { |
828 | /* ... bail out early, returning FALSE */ |
829 | *op->resnull = false; |
830 | *op->resvalue = BoolGetDatum(false); |
831 | EEO_JUMP(op->d.qualexpr.jumpdone); |
832 | } |
833 | |
834 | /* |
835 | * Otherwise, leave the TRUE value in place, in case this is the |
836 | * last qual. Then, TRUE is the correct answer. |
837 | */ |
838 | |
839 | EEO_NEXT(); |
840 | } |
841 | |
842 | EEO_CASE(EEOP_JUMP) |
843 | { |
844 | /* Unconditionally jump to target step */ |
845 | EEO_JUMP(op->d.jump.jumpdone); |
846 | } |
847 | |
848 | EEO_CASE(EEOP_JUMP_IF_NULL) |
849 | { |
850 | /* Transfer control if current result is null */ |
851 | if (*op->resnull) |
852 | EEO_JUMP(op->d.jump.jumpdone); |
853 | |
854 | EEO_NEXT(); |
855 | } |
856 | |
857 | EEO_CASE(EEOP_JUMP_IF_NOT_NULL) |
858 | { |
859 | /* Transfer control if current result is non-null */ |
860 | if (!*op->resnull) |
861 | EEO_JUMP(op->d.jump.jumpdone); |
862 | |
863 | EEO_NEXT(); |
864 | } |
865 | |
866 | EEO_CASE(EEOP_JUMP_IF_NOT_TRUE) |
867 | { |
868 | /* Transfer control if current result is null or false */ |
869 | if (*op->resnull || !DatumGetBool(*op->resvalue)) |
870 | EEO_JUMP(op->d.jump.jumpdone); |
871 | |
872 | EEO_NEXT(); |
873 | } |
874 | |
875 | EEO_CASE(EEOP_NULLTEST_ISNULL) |
876 | { |
877 | *op->resvalue = BoolGetDatum(*op->resnull); |
878 | *op->resnull = false; |
879 | |
880 | EEO_NEXT(); |
881 | } |
882 | |
883 | EEO_CASE(EEOP_NULLTEST_ISNOTNULL) |
884 | { |
885 | *op->resvalue = BoolGetDatum(!*op->resnull); |
886 | *op->resnull = false; |
887 | |
888 | EEO_NEXT(); |
889 | } |
890 | |
891 | EEO_CASE(EEOP_NULLTEST_ROWISNULL) |
892 | { |
893 | /* out of line implementation: too large */ |
894 | ExecEvalRowNull(state, op, econtext); |
895 | |
896 | EEO_NEXT(); |
897 | } |
898 | |
899 | EEO_CASE(EEOP_NULLTEST_ROWISNOTNULL) |
900 | { |
901 | /* out of line implementation: too large */ |
902 | ExecEvalRowNotNull(state, op, econtext); |
903 | |
904 | EEO_NEXT(); |
905 | } |
906 | |
907 | /* BooleanTest implementations for all booltesttypes */ |
908 | |
909 | EEO_CASE(EEOP_BOOLTEST_IS_TRUE) |
910 | { |
911 | if (*op->resnull) |
912 | { |
913 | *op->resvalue = BoolGetDatum(false); |
914 | *op->resnull = false; |
915 | } |
916 | /* else, input value is the correct output as well */ |
917 | |
918 | EEO_NEXT(); |
919 | } |
920 | |
921 | EEO_CASE(EEOP_BOOLTEST_IS_NOT_TRUE) |
922 | { |
923 | if (*op->resnull) |
924 | { |
925 | *op->resvalue = BoolGetDatum(true); |
926 | *op->resnull = false; |
927 | } |
928 | else |
929 | *op->resvalue = BoolGetDatum(!DatumGetBool(*op->resvalue)); |
930 | |
931 | EEO_NEXT(); |
932 | } |
933 | |
934 | EEO_CASE(EEOP_BOOLTEST_IS_FALSE) |
935 | { |
936 | if (*op->resnull) |
937 | { |
938 | *op->resvalue = BoolGetDatum(false); |
939 | *op->resnull = false; |
940 | } |
941 | else |
942 | *op->resvalue = BoolGetDatum(!DatumGetBool(*op->resvalue)); |
943 | |
944 | EEO_NEXT(); |
945 | } |
946 | |
947 | EEO_CASE(EEOP_BOOLTEST_IS_NOT_FALSE) |
948 | { |
949 | if (*op->resnull) |
950 | { |
951 | *op->resvalue = BoolGetDatum(true); |
952 | *op->resnull = false; |
953 | } |
954 | /* else, input value is the correct output as well */ |
955 | |
956 | EEO_NEXT(); |
957 | } |
958 | |
959 | EEO_CASE(EEOP_PARAM_EXEC) |
960 | { |
961 | /* out of line implementation: too large */ |
962 | ExecEvalParamExec(state, op, econtext); |
963 | |
964 | EEO_NEXT(); |
965 | } |
966 | |
967 | EEO_CASE(EEOP_PARAM_EXTERN) |
968 | { |
969 | /* out of line implementation: too large */ |
970 | ExecEvalParamExtern(state, op, econtext); |
971 | EEO_NEXT(); |
972 | } |
973 | |
974 | EEO_CASE(EEOP_PARAM_CALLBACK) |
975 | { |
976 | /* allow an extension module to supply a PARAM_EXTERN value */ |
977 | op->d.cparam.paramfunc(state, op, econtext); |
978 | EEO_NEXT(); |
979 | } |
980 | |
981 | EEO_CASE(EEOP_CASE_TESTVAL) |
982 | { |
983 | /* |
984 | * Normally upper parts of the expression tree have setup the |
985 | * values to be returned here, but some parts of the system |
986 | * currently misuse {caseValue,domainValue}_{datum,isNull} to set |
987 | * run-time data. So if no values have been set-up, use |
988 | * ExprContext's. This isn't pretty, but also not *that* ugly, |
989 | * and this is unlikely to be performance sensitive enough to |
990 | * worry about an extra branch. |
991 | */ |
992 | if (op->d.casetest.value) |
993 | { |
994 | *op->resvalue = *op->d.casetest.value; |
995 | *op->resnull = *op->d.casetest.isnull; |
996 | } |
997 | else |
998 | { |
999 | *op->resvalue = econtext->caseValue_datum; |
1000 | *op->resnull = econtext->caseValue_isNull; |
1001 | } |
1002 | |
1003 | EEO_NEXT(); |
1004 | } |
1005 | |
1006 | EEO_CASE(EEOP_DOMAIN_TESTVAL) |
1007 | { |
1008 | /* |
1009 | * See EEOP_CASE_TESTVAL comment. |
1010 | */ |
1011 | if (op->d.casetest.value) |
1012 | { |
1013 | *op->resvalue = *op->d.casetest.value; |
1014 | *op->resnull = *op->d.casetest.isnull; |
1015 | } |
1016 | else |
1017 | { |
1018 | *op->resvalue = econtext->domainValue_datum; |
1019 | *op->resnull = econtext->domainValue_isNull; |
1020 | } |
1021 | |
1022 | EEO_NEXT(); |
1023 | } |
1024 | |
1025 | EEO_CASE(EEOP_MAKE_READONLY) |
1026 | { |
1027 | /* |
1028 | * Force a varlena value that might be read multiple times to R/O |
1029 | */ |
1030 | if (!*op->d.make_readonly.isnull) |
1031 | *op->resvalue = |
1032 | MakeExpandedObjectReadOnlyInternal(*op->d.make_readonly.value); |
1033 | *op->resnull = *op->d.make_readonly.isnull; |
1034 | |
1035 | EEO_NEXT(); |
1036 | } |
1037 | |
1038 | EEO_CASE(EEOP_IOCOERCE) |
1039 | { |
1040 | /* |
1041 | * Evaluate a CoerceViaIO node. This can be quite a hot path, so |
1042 | * inline as much work as possible. The source value is in our |
1043 | * result variable. |
1044 | */ |
1045 | char *str; |
1046 | |
1047 | /* call output function (similar to OutputFunctionCall) */ |
1048 | if (*op->resnull) |
1049 | { |
1050 | /* output functions are not called on nulls */ |
1051 | str = NULL; |
1052 | } |
1053 | else |
1054 | { |
1055 | FunctionCallInfo fcinfo_out; |
1056 | |
1057 | fcinfo_out = op->d.iocoerce.fcinfo_data_out; |
1058 | fcinfo_out->args[0].value = *op->resvalue; |
1059 | fcinfo_out->args[0].isnull = false; |
1060 | |
1061 | fcinfo_out->isnull = false; |
1062 | str = DatumGetCString(FunctionCallInvoke(fcinfo_out)); |
1063 | |
1064 | /* OutputFunctionCall assumes result isn't null */ |
1065 | Assert(!fcinfo_out->isnull); |
1066 | } |
1067 | |
1068 | /* call input function (similar to InputFunctionCall) */ |
1069 | if (!op->d.iocoerce.finfo_in->fn_strict || str != NULL) |
1070 | { |
1071 | FunctionCallInfo fcinfo_in; |
1072 | Datum d; |
1073 | |
1074 | fcinfo_in = op->d.iocoerce.fcinfo_data_in; |
1075 | fcinfo_in->args[0].value = PointerGetDatum(str); |
1076 | fcinfo_in->args[0].isnull = *op->resnull; |
1077 | /* second and third arguments are already set up */ |
1078 | |
1079 | fcinfo_in->isnull = false; |
1080 | d = FunctionCallInvoke(fcinfo_in); |
1081 | *op->resvalue = d; |
1082 | |
1083 | /* Should get null result if and only if str is NULL */ |
1084 | if (str == NULL) |
1085 | { |
1086 | Assert(*op->resnull); |
1087 | Assert(fcinfo_in->isnull); |
1088 | } |
1089 | else |
1090 | { |
1091 | Assert(!*op->resnull); |
1092 | Assert(!fcinfo_in->isnull); |
1093 | } |
1094 | } |
1095 | |
1096 | EEO_NEXT(); |
1097 | } |
1098 | |
1099 | EEO_CASE(EEOP_DISTINCT) |
1100 | { |
1101 | /* |
1102 | * IS DISTINCT FROM must evaluate arguments (already done into |
1103 | * fcinfo->args) to determine whether they are NULL; if either is |
1104 | * NULL then the result is determined. If neither is NULL, then |
1105 | * proceed to evaluate the comparison function, which is just the |
1106 | * type's standard equality operator. We need not care whether |
1107 | * that function is strict. Because the handling of nulls is |
1108 | * different, we can't just reuse EEOP_FUNCEXPR. |
1109 | */ |
1110 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
1111 | |
1112 | /* check function arguments for NULLness */ |
1113 | if (fcinfo->args[0].isnull && fcinfo->args[1].isnull) |
1114 | { |
1115 | /* Both NULL? Then is not distinct... */ |
1116 | *op->resvalue = BoolGetDatum(false); |
1117 | *op->resnull = false; |
1118 | } |
1119 | else if (fcinfo->args[0].isnull || fcinfo->args[1].isnull) |
1120 | { |
1121 | /* Only one is NULL? Then is distinct... */ |
1122 | *op->resvalue = BoolGetDatum(true); |
1123 | *op->resnull = false; |
1124 | } |
1125 | else |
1126 | { |
1127 | /* Neither null, so apply the equality function */ |
1128 | Datum eqresult; |
1129 | |
1130 | fcinfo->isnull = false; |
1131 | eqresult = op->d.func.fn_addr(fcinfo); |
1132 | /* Must invert result of "="; safe to do even if null */ |
1133 | *op->resvalue = BoolGetDatum(!DatumGetBool(eqresult)); |
1134 | *op->resnull = fcinfo->isnull; |
1135 | } |
1136 | |
1137 | EEO_NEXT(); |
1138 | } |
1139 | |
1140 | /* see EEOP_DISTINCT for comments, this is just inverted */ |
1141 | EEO_CASE(EEOP_NOT_DISTINCT) |
1142 | { |
1143 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
1144 | |
1145 | if (fcinfo->args[0].isnull && fcinfo->args[1].isnull) |
1146 | { |
1147 | *op->resvalue = BoolGetDatum(true); |
1148 | *op->resnull = false; |
1149 | } |
1150 | else if (fcinfo->args[0].isnull || fcinfo->args[1].isnull) |
1151 | { |
1152 | *op->resvalue = BoolGetDatum(false); |
1153 | *op->resnull = false; |
1154 | } |
1155 | else |
1156 | { |
1157 | Datum eqresult; |
1158 | |
1159 | fcinfo->isnull = false; |
1160 | eqresult = op->d.func.fn_addr(fcinfo); |
1161 | *op->resvalue = eqresult; |
1162 | *op->resnull = fcinfo->isnull; |
1163 | } |
1164 | |
1165 | EEO_NEXT(); |
1166 | } |
1167 | |
1168 | EEO_CASE(EEOP_NULLIF) |
1169 | { |
1170 | /* |
1171 | * The arguments are already evaluated into fcinfo->args. |
1172 | */ |
1173 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
1174 | |
1175 | /* if either argument is NULL they can't be equal */ |
1176 | if (!fcinfo->args[0].isnull && !fcinfo->args[1].isnull) |
1177 | { |
1178 | Datum result; |
1179 | |
1180 | fcinfo->isnull = false; |
1181 | result = op->d.func.fn_addr(fcinfo); |
1182 | |
1183 | /* if the arguments are equal return null */ |
1184 | if (!fcinfo->isnull && DatumGetBool(result)) |
1185 | { |
1186 | *op->resvalue = (Datum) 0; |
1187 | *op->resnull = true; |
1188 | |
1189 | EEO_NEXT(); |
1190 | } |
1191 | } |
1192 | |
1193 | /* Arguments aren't equal, so return the first one */ |
1194 | *op->resvalue = fcinfo->args[0].value; |
1195 | *op->resnull = fcinfo->args[0].isnull; |
1196 | |
1197 | EEO_NEXT(); |
1198 | } |
1199 | |
1200 | EEO_CASE(EEOP_SQLVALUEFUNCTION) |
1201 | { |
1202 | /* |
1203 | * Doesn't seem worthwhile to have an inline implementation |
1204 | * efficiency-wise. |
1205 | */ |
1206 | ExecEvalSQLValueFunction(state, op); |
1207 | |
1208 | EEO_NEXT(); |
1209 | } |
1210 | |
1211 | EEO_CASE(EEOP_CURRENTOFEXPR) |
1212 | { |
1213 | /* error invocation uses space, and shouldn't ever occur */ |
1214 | ExecEvalCurrentOfExpr(state, op); |
1215 | |
1216 | EEO_NEXT(); |
1217 | } |
1218 | |
1219 | EEO_CASE(EEOP_NEXTVALUEEXPR) |
1220 | { |
1221 | /* |
1222 | * Doesn't seem worthwhile to have an inline implementation |
1223 | * efficiency-wise. |
1224 | */ |
1225 | ExecEvalNextValueExpr(state, op); |
1226 | |
1227 | EEO_NEXT(); |
1228 | } |
1229 | |
1230 | EEO_CASE(EEOP_ARRAYEXPR) |
1231 | { |
1232 | /* too complex for an inline implementation */ |
1233 | ExecEvalArrayExpr(state, op); |
1234 | |
1235 | EEO_NEXT(); |
1236 | } |
1237 | |
1238 | EEO_CASE(EEOP_ARRAYCOERCE) |
1239 | { |
1240 | /* too complex for an inline implementation */ |
1241 | ExecEvalArrayCoerce(state, op, econtext); |
1242 | |
1243 | EEO_NEXT(); |
1244 | } |
1245 | |
1246 | EEO_CASE(EEOP_ROW) |
1247 | { |
1248 | /* too complex for an inline implementation */ |
1249 | ExecEvalRow(state, op); |
1250 | |
1251 | EEO_NEXT(); |
1252 | } |
1253 | |
1254 | EEO_CASE(EEOP_ROWCOMPARE_STEP) |
1255 | { |
1256 | FunctionCallInfo fcinfo = op->d.rowcompare_step.fcinfo_data; |
1257 | Datum d; |
1258 | |
1259 | /* force NULL result if strict fn and NULL input */ |
1260 | if (op->d.rowcompare_step.finfo->fn_strict && |
1261 | (fcinfo->args[0].isnull || fcinfo->args[1].isnull)) |
1262 | { |
1263 | *op->resnull = true; |
1264 | EEO_JUMP(op->d.rowcompare_step.jumpnull); |
1265 | } |
1266 | |
1267 | /* Apply comparison function */ |
1268 | fcinfo->isnull = false; |
1269 | d = op->d.rowcompare_step.fn_addr(fcinfo); |
1270 | *op->resvalue = d; |
1271 | |
1272 | /* force NULL result if NULL function result */ |
1273 | if (fcinfo->isnull) |
1274 | { |
1275 | *op->resnull = true; |
1276 | EEO_JUMP(op->d.rowcompare_step.jumpnull); |
1277 | } |
1278 | *op->resnull = false; |
1279 | |
1280 | /* If unequal, no need to compare remaining columns */ |
1281 | if (DatumGetInt32(*op->resvalue) != 0) |
1282 | { |
1283 | EEO_JUMP(op->d.rowcompare_step.jumpdone); |
1284 | } |
1285 | |
1286 | EEO_NEXT(); |
1287 | } |
1288 | |
1289 | EEO_CASE(EEOP_ROWCOMPARE_FINAL) |
1290 | { |
1291 | int32 cmpresult = DatumGetInt32(*op->resvalue); |
1292 | RowCompareType rctype = op->d.rowcompare_final.rctype; |
1293 | |
1294 | *op->resnull = false; |
1295 | switch (rctype) |
1296 | { |
1297 | /* EQ and NE cases aren't allowed here */ |
1298 | case ROWCOMPARE_LT: |
1299 | *op->resvalue = BoolGetDatum(cmpresult < 0); |
1300 | break; |
1301 | case ROWCOMPARE_LE: |
1302 | *op->resvalue = BoolGetDatum(cmpresult <= 0); |
1303 | break; |
1304 | case ROWCOMPARE_GE: |
1305 | *op->resvalue = BoolGetDatum(cmpresult >= 0); |
1306 | break; |
1307 | case ROWCOMPARE_GT: |
1308 | *op->resvalue = BoolGetDatum(cmpresult > 0); |
1309 | break; |
1310 | default: |
1311 | Assert(false); |
1312 | break; |
1313 | } |
1314 | |
1315 | EEO_NEXT(); |
1316 | } |
1317 | |
1318 | EEO_CASE(EEOP_MINMAX) |
1319 | { |
1320 | /* too complex for an inline implementation */ |
1321 | ExecEvalMinMax(state, op); |
1322 | |
1323 | EEO_NEXT(); |
1324 | } |
1325 | |
1326 | EEO_CASE(EEOP_FIELDSELECT) |
1327 | { |
1328 | /* too complex for an inline implementation */ |
1329 | ExecEvalFieldSelect(state, op, econtext); |
1330 | |
1331 | EEO_NEXT(); |
1332 | } |
1333 | |
1334 | EEO_CASE(EEOP_FIELDSTORE_DEFORM) |
1335 | { |
1336 | /* too complex for an inline implementation */ |
1337 | ExecEvalFieldStoreDeForm(state, op, econtext); |
1338 | |
1339 | EEO_NEXT(); |
1340 | } |
1341 | |
1342 | EEO_CASE(EEOP_FIELDSTORE_FORM) |
1343 | { |
1344 | /* too complex for an inline implementation */ |
1345 | ExecEvalFieldStoreForm(state, op, econtext); |
1346 | |
1347 | EEO_NEXT(); |
1348 | } |
1349 | |
1350 | EEO_CASE(EEOP_SBSREF_SUBSCRIPT) |
1351 | { |
1352 | /* Process an array subscript */ |
1353 | |
1354 | /* too complex for an inline implementation */ |
1355 | if (ExecEvalSubscriptingRef(state, op)) |
1356 | { |
1357 | EEO_NEXT(); |
1358 | } |
1359 | else |
1360 | { |
1361 | /* Subscript is null, short-circuit SubscriptingRef to NULL */ |
1362 | EEO_JUMP(op->d.sbsref_subscript.jumpdone); |
1363 | } |
1364 | } |
1365 | |
1366 | EEO_CASE(EEOP_SBSREF_OLD) |
1367 | { |
1368 | /* |
1369 | * Fetch the old value in an sbsref assignment, in case it's |
1370 | * referenced (via a CaseTestExpr) inside the assignment |
1371 | * expression. |
1372 | */ |
1373 | |
1374 | /* too complex for an inline implementation */ |
1375 | ExecEvalSubscriptingRefOld(state, op); |
1376 | |
1377 | EEO_NEXT(); |
1378 | } |
1379 | |
1380 | /* |
1381 | * Perform SubscriptingRef assignment |
1382 | */ |
1383 | EEO_CASE(EEOP_SBSREF_ASSIGN) |
1384 | { |
1385 | /* too complex for an inline implementation */ |
1386 | ExecEvalSubscriptingRefAssign(state, op); |
1387 | |
1388 | EEO_NEXT(); |
1389 | } |
1390 | |
1391 | /* |
1392 | * Fetch subset of an array. |
1393 | */ |
1394 | EEO_CASE(EEOP_SBSREF_FETCH) |
1395 | { |
1396 | /* too complex for an inline implementation */ |
1397 | ExecEvalSubscriptingRefFetch(state, op); |
1398 | |
1399 | EEO_NEXT(); |
1400 | } |
1401 | |
1402 | EEO_CASE(EEOP_CONVERT_ROWTYPE) |
1403 | { |
1404 | /* too complex for an inline implementation */ |
1405 | ExecEvalConvertRowtype(state, op, econtext); |
1406 | |
1407 | EEO_NEXT(); |
1408 | } |
1409 | |
1410 | EEO_CASE(EEOP_SCALARARRAYOP) |
1411 | { |
1412 | /* too complex for an inline implementation */ |
1413 | ExecEvalScalarArrayOp(state, op); |
1414 | |
1415 | EEO_NEXT(); |
1416 | } |
1417 | |
1418 | EEO_CASE(EEOP_DOMAIN_NOTNULL) |
1419 | { |
1420 | /* too complex for an inline implementation */ |
1421 | ExecEvalConstraintNotNull(state, op); |
1422 | |
1423 | EEO_NEXT(); |
1424 | } |
1425 | |
1426 | EEO_CASE(EEOP_DOMAIN_CHECK) |
1427 | { |
1428 | /* too complex for an inline implementation */ |
1429 | ExecEvalConstraintCheck(state, op); |
1430 | |
1431 | EEO_NEXT(); |
1432 | } |
1433 | |
1434 | EEO_CASE(EEOP_XMLEXPR) |
1435 | { |
1436 | /* too complex for an inline implementation */ |
1437 | ExecEvalXmlExpr(state, op); |
1438 | |
1439 | EEO_NEXT(); |
1440 | } |
1441 | |
1442 | EEO_CASE(EEOP_AGGREF) |
1443 | { |
1444 | /* |
1445 | * Returns a Datum whose value is the precomputed aggregate value |
1446 | * found in the given expression context. |
1447 | */ |
1448 | AggrefExprState *aggref = op->d.aggref.astate; |
1449 | |
1450 | Assert(econtext->ecxt_aggvalues != NULL); |
1451 | |
1452 | *op->resvalue = econtext->ecxt_aggvalues[aggref->aggno]; |
1453 | *op->resnull = econtext->ecxt_aggnulls[aggref->aggno]; |
1454 | |
1455 | EEO_NEXT(); |
1456 | } |
1457 | |
1458 | EEO_CASE(EEOP_GROUPING_FUNC) |
1459 | { |
1460 | /* too complex/uncommon for an inline implementation */ |
1461 | ExecEvalGroupingFunc(state, op); |
1462 | |
1463 | EEO_NEXT(); |
1464 | } |
1465 | |
1466 | EEO_CASE(EEOP_WINDOW_FUNC) |
1467 | { |
1468 | /* |
1469 | * Like Aggref, just return a precomputed value from the econtext. |
1470 | */ |
1471 | WindowFuncExprState *wfunc = op->d.window_func.wfstate; |
1472 | |
1473 | Assert(econtext->ecxt_aggvalues != NULL); |
1474 | |
1475 | *op->resvalue = econtext->ecxt_aggvalues[wfunc->wfuncno]; |
1476 | *op->resnull = econtext->ecxt_aggnulls[wfunc->wfuncno]; |
1477 | |
1478 | EEO_NEXT(); |
1479 | } |
1480 | |
1481 | EEO_CASE(EEOP_SUBPLAN) |
1482 | { |
1483 | /* too complex for an inline implementation */ |
1484 | ExecEvalSubPlan(state, op, econtext); |
1485 | |
1486 | EEO_NEXT(); |
1487 | } |
1488 | |
1489 | EEO_CASE(EEOP_ALTERNATIVE_SUBPLAN) |
1490 | { |
1491 | /* too complex for an inline implementation */ |
1492 | ExecEvalAlternativeSubPlan(state, op, econtext); |
1493 | |
1494 | EEO_NEXT(); |
1495 | } |
1496 | |
1497 | /* evaluate a strict aggregate deserialization function */ |
1498 | EEO_CASE(EEOP_AGG_STRICT_DESERIALIZE) |
1499 | { |
1500 | /* Don't call a strict deserialization function with NULL input */ |
1501 | if (op->d.agg_deserialize.fcinfo_data->args[0].isnull) |
1502 | EEO_JUMP(op->d.agg_deserialize.jumpnull); |
1503 | |
1504 | /* fallthrough */ |
1505 | } |
1506 | |
1507 | /* evaluate aggregate deserialization function (non-strict portion) */ |
1508 | EEO_CASE(EEOP_AGG_DESERIALIZE) |
1509 | { |
1510 | FunctionCallInfo fcinfo = op->d.agg_deserialize.fcinfo_data; |
1511 | AggState *aggstate = op->d.agg_deserialize.aggstate; |
1512 | MemoryContext oldContext; |
1513 | |
1514 | /* |
1515 | * We run the deserialization functions in per-input-tuple memory |
1516 | * context. |
1517 | */ |
1518 | oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory); |
1519 | fcinfo->isnull = false; |
1520 | *op->resvalue = FunctionCallInvoke(fcinfo); |
1521 | *op->resnull = fcinfo->isnull; |
1522 | MemoryContextSwitchTo(oldContext); |
1523 | |
1524 | EEO_NEXT(); |
1525 | } |
1526 | |
1527 | /* |
1528 | * Check that a strict aggregate transition / combination function's |
1529 | * input is not NULL. |
1530 | */ |
1531 | EEO_CASE(EEOP_AGG_STRICT_INPUT_CHECK_NULLS) |
1532 | { |
1533 | int argno; |
1534 | bool *nulls = op->d.agg_strict_input_check.nulls; |
1535 | int nargs = op->d.agg_strict_input_check.nargs; |
1536 | |
1537 | for (argno = 0; argno < nargs; argno++) |
1538 | { |
1539 | if (nulls[argno]) |
1540 | EEO_JUMP(op->d.agg_strict_input_check.jumpnull); |
1541 | } |
1542 | EEO_NEXT(); |
1543 | } |
1544 | |
1545 | EEO_CASE(EEOP_AGG_STRICT_INPUT_CHECK_ARGS) |
1546 | { |
1547 | int argno; |
1548 | NullableDatum *args = op->d.agg_strict_input_check.args; |
1549 | int nargs = op->d.agg_strict_input_check.nargs; |
1550 | |
1551 | for (argno = 0; argno < nargs; argno++) |
1552 | { |
1553 | if (args[argno].isnull) |
1554 | EEO_JUMP(op->d.agg_strict_input_check.jumpnull); |
1555 | } |
1556 | EEO_NEXT(); |
1557 | } |
1558 | |
1559 | /* |
1560 | * Initialize an aggregate's first value if necessary. |
1561 | */ |
1562 | EEO_CASE(EEOP_AGG_INIT_TRANS) |
1563 | { |
1564 | AggState *aggstate; |
1565 | AggStatePerGroup pergroup; |
1566 | |
1567 | aggstate = op->d.agg_init_trans.aggstate; |
1568 | pergroup = &aggstate->all_pergroups |
1569 | [op->d.agg_init_trans.setoff] |
1570 | [op->d.agg_init_trans.transno]; |
1571 | |
1572 | /* If transValue has not yet been initialized, do so now. */ |
1573 | if (pergroup->noTransValue) |
1574 | { |
1575 | AggStatePerTrans pertrans = op->d.agg_init_trans.pertrans; |
1576 | |
1577 | aggstate->curaggcontext = op->d.agg_init_trans.aggcontext; |
1578 | aggstate->current_set = op->d.agg_init_trans.setno; |
1579 | |
1580 | ExecAggInitGroup(aggstate, pertrans, pergroup); |
1581 | |
1582 | /* copied trans value from input, done this round */ |
1583 | EEO_JUMP(op->d.agg_init_trans.jumpnull); |
1584 | } |
1585 | |
1586 | EEO_NEXT(); |
1587 | } |
1588 | |
1589 | /* check that a strict aggregate's input isn't NULL */ |
1590 | EEO_CASE(EEOP_AGG_STRICT_TRANS_CHECK) |
1591 | { |
1592 | AggState *aggstate; |
1593 | AggStatePerGroup pergroup; |
1594 | |
1595 | aggstate = op->d.agg_strict_trans_check.aggstate; |
1596 | pergroup = &aggstate->all_pergroups |
1597 | [op->d.agg_strict_trans_check.setoff] |
1598 | [op->d.agg_strict_trans_check.transno]; |
1599 | |
1600 | if (unlikely(pergroup->transValueIsNull)) |
1601 | EEO_JUMP(op->d.agg_strict_trans_check.jumpnull); |
1602 | |
1603 | EEO_NEXT(); |
1604 | } |
1605 | |
1606 | /* |
1607 | * Evaluate aggregate transition / combine function that has a |
1608 | * by-value transition type. That's a separate case from the |
1609 | * by-reference implementation because it's a bit simpler. |
1610 | */ |
1611 | EEO_CASE(EEOP_AGG_PLAIN_TRANS_BYVAL) |
1612 | { |
1613 | AggState *aggstate; |
1614 | AggStatePerTrans pertrans; |
1615 | AggStatePerGroup pergroup; |
1616 | FunctionCallInfo fcinfo; |
1617 | MemoryContext oldContext; |
1618 | Datum newVal; |
1619 | |
1620 | aggstate = op->d.agg_trans.aggstate; |
1621 | pertrans = op->d.agg_trans.pertrans; |
1622 | |
1623 | pergroup = &aggstate->all_pergroups |
1624 | [op->d.agg_trans.setoff] |
1625 | [op->d.agg_trans.transno]; |
1626 | |
1627 | Assert(pertrans->transtypeByVal); |
1628 | |
1629 | fcinfo = pertrans->transfn_fcinfo; |
1630 | |
1631 | /* cf. select_current_set() */ |
1632 | aggstate->curaggcontext = op->d.agg_trans.aggcontext; |
1633 | aggstate->current_set = op->d.agg_trans.setno; |
1634 | |
1635 | /* set up aggstate->curpertrans for AggGetAggref() */ |
1636 | aggstate->curpertrans = pertrans; |
1637 | |
1638 | /* invoke transition function in per-tuple context */ |
1639 | oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory); |
1640 | |
1641 | fcinfo->args[0].value = pergroup->transValue; |
1642 | fcinfo->args[0].isnull = pergroup->transValueIsNull; |
1643 | fcinfo->isnull = false; /* just in case transfn doesn't set it */ |
1644 | |
1645 | newVal = FunctionCallInvoke(fcinfo); |
1646 | |
1647 | pergroup->transValue = newVal; |
1648 | pergroup->transValueIsNull = fcinfo->isnull; |
1649 | |
1650 | MemoryContextSwitchTo(oldContext); |
1651 | |
1652 | EEO_NEXT(); |
1653 | } |
1654 | |
1655 | /* |
1656 | * Evaluate aggregate transition / combine function that has a |
1657 | * by-reference transition type. |
1658 | * |
1659 | * Could optimize a bit further by splitting off by-reference |
1660 | * fixed-length types, but currently that doesn't seem worth it. |
1661 | */ |
1662 | EEO_CASE(EEOP_AGG_PLAIN_TRANS) |
1663 | { |
1664 | AggState *aggstate; |
1665 | AggStatePerTrans pertrans; |
1666 | AggStatePerGroup pergroup; |
1667 | FunctionCallInfo fcinfo; |
1668 | MemoryContext oldContext; |
1669 | Datum newVal; |
1670 | |
1671 | aggstate = op->d.agg_trans.aggstate; |
1672 | pertrans = op->d.agg_trans.pertrans; |
1673 | |
1674 | pergroup = &aggstate->all_pergroups |
1675 | [op->d.agg_trans.setoff] |
1676 | [op->d.agg_trans.transno]; |
1677 | |
1678 | Assert(!pertrans->transtypeByVal); |
1679 | |
1680 | fcinfo = pertrans->transfn_fcinfo; |
1681 | |
1682 | /* cf. select_current_set() */ |
1683 | aggstate->curaggcontext = op->d.agg_trans.aggcontext; |
1684 | aggstate->current_set = op->d.agg_trans.setno; |
1685 | |
1686 | /* set up aggstate->curpertrans for AggGetAggref() */ |
1687 | aggstate->curpertrans = pertrans; |
1688 | |
1689 | /* invoke transition function in per-tuple context */ |
1690 | oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory); |
1691 | |
1692 | fcinfo->args[0].value = pergroup->transValue; |
1693 | fcinfo->args[0].isnull = pergroup->transValueIsNull; |
1694 | fcinfo->isnull = false; /* just in case transfn doesn't set it */ |
1695 | |
1696 | newVal = FunctionCallInvoke(fcinfo); |
1697 | |
1698 | /* |
1699 | * For pass-by-ref datatype, must copy the new value into |
1700 | * aggcontext and free the prior transValue. But if transfn |
1701 | * returned a pointer to its first input, we don't need to do |
1702 | * anything. Also, if transfn returned a pointer to a R/W |
1703 | * expanded object that is already a child of the aggcontext, |
1704 | * assume we can adopt that value without copying it. |
1705 | */ |
1706 | if (DatumGetPointer(newVal) != DatumGetPointer(pergroup->transValue)) |
1707 | newVal = ExecAggTransReparent(aggstate, pertrans, |
1708 | newVal, fcinfo->isnull, |
1709 | pergroup->transValue, |
1710 | pergroup->transValueIsNull); |
1711 | |
1712 | pergroup->transValue = newVal; |
1713 | pergroup->transValueIsNull = fcinfo->isnull; |
1714 | |
1715 | MemoryContextSwitchTo(oldContext); |
1716 | |
1717 | EEO_NEXT(); |
1718 | } |
1719 | |
1720 | /* process single-column ordered aggregate datum */ |
1721 | EEO_CASE(EEOP_AGG_ORDERED_TRANS_DATUM) |
1722 | { |
1723 | /* too complex for an inline implementation */ |
1724 | ExecEvalAggOrderedTransDatum(state, op, econtext); |
1725 | |
1726 | EEO_NEXT(); |
1727 | } |
1728 | |
1729 | /* process multi-column ordered aggregate tuple */ |
1730 | EEO_CASE(EEOP_AGG_ORDERED_TRANS_TUPLE) |
1731 | { |
1732 | /* too complex for an inline implementation */ |
1733 | ExecEvalAggOrderedTransTuple(state, op, econtext); |
1734 | |
1735 | EEO_NEXT(); |
1736 | } |
1737 | |
1738 | EEO_CASE(EEOP_LAST) |
1739 | { |
1740 | /* unreachable */ |
1741 | Assert(false); |
1742 | goto out; |
1743 | } |
1744 | } |
1745 | |
1746 | out: |
1747 | *isnull = state->resnull; |
1748 | return state->resvalue; |
1749 | } |
1750 | |
1751 | /* |
1752 | * Expression evaluation callback that performs extra checks before executing |
1753 | * the expression. Declared extern so other methods of execution can use it |
1754 | * too. |
1755 | */ |
1756 | Datum |
1757 | ExecInterpExprStillValid(ExprState *state, ExprContext *econtext, bool *isNull) |
1758 | { |
1759 | /* |
1760 | * First time through, check whether attribute matches Var. Might not be |
1761 | * ok anymore, due to schema changes. |
1762 | */ |
1763 | CheckExprStillValid(state, econtext); |
1764 | |
1765 | /* skip the check during further executions */ |
1766 | state->evalfunc = (ExprStateEvalFunc) state->evalfunc_private; |
1767 | |
1768 | /* and actually execute */ |
1769 | return state->evalfunc(state, econtext, isNull); |
1770 | } |
1771 | |
1772 | /* |
1773 | * Check that an expression is still valid in the face of potential schema |
1774 | * changes since the plan has been created. |
1775 | */ |
1776 | void |
1777 | CheckExprStillValid(ExprState *state, ExprContext *econtext) |
1778 | { |
1779 | int i = 0; |
1780 | TupleTableSlot *innerslot; |
1781 | TupleTableSlot *outerslot; |
1782 | TupleTableSlot *scanslot; |
1783 | |
1784 | innerslot = econtext->ecxt_innertuple; |
1785 | outerslot = econtext->ecxt_outertuple; |
1786 | scanslot = econtext->ecxt_scantuple; |
1787 | |
1788 | for (i = 0; i < state->steps_len; i++) |
1789 | { |
1790 | ExprEvalStep *op = &state->steps[i]; |
1791 | |
1792 | switch (ExecEvalStepOp(state, op)) |
1793 | { |
1794 | case EEOP_INNER_VAR: |
1795 | { |
1796 | int attnum = op->d.var.attnum; |
1797 | |
1798 | CheckVarSlotCompatibility(innerslot, attnum + 1, op->d.var.vartype); |
1799 | break; |
1800 | } |
1801 | |
1802 | case EEOP_OUTER_VAR: |
1803 | { |
1804 | int attnum = op->d.var.attnum; |
1805 | |
1806 | CheckVarSlotCompatibility(outerslot, attnum + 1, op->d.var.vartype); |
1807 | break; |
1808 | } |
1809 | |
1810 | case EEOP_SCAN_VAR: |
1811 | { |
1812 | int attnum = op->d.var.attnum; |
1813 | |
1814 | CheckVarSlotCompatibility(scanslot, attnum + 1, op->d.var.vartype); |
1815 | break; |
1816 | } |
1817 | default: |
1818 | break; |
1819 | } |
1820 | } |
1821 | } |
1822 | |
1823 | /* |
1824 | * Check whether a user attribute in a slot can be referenced by a Var |
1825 | * expression. This should succeed unless there have been schema changes |
1826 | * since the expression tree has been created. |
1827 | */ |
1828 | static void |
1829 | CheckVarSlotCompatibility(TupleTableSlot *slot, int attnum, Oid vartype) |
1830 | { |
1831 | /* |
1832 | * What we have to check for here is the possibility of an attribute |
1833 | * having been dropped or changed in type since the plan tree was created. |
1834 | * Ideally the plan will get invalidated and not re-used, but just in |
1835 | * case, we keep these defenses. Fortunately it's sufficient to check |
1836 | * once on the first time through. |
1837 | * |
1838 | * Note: ideally we'd check typmod as well as typid, but that seems |
1839 | * impractical at the moment: in many cases the tupdesc will have been |
1840 | * generated by ExecTypeFromTL(), and that can't guarantee to generate an |
1841 | * accurate typmod in all cases, because some expression node types don't |
1842 | * carry typmod. Fortunately, for precisely that reason, there should be |
1843 | * no places with a critical dependency on the typmod of a value. |
1844 | * |
1845 | * System attributes don't require checking since their types never |
1846 | * change. |
1847 | */ |
1848 | if (attnum > 0) |
1849 | { |
1850 | TupleDesc slot_tupdesc = slot->tts_tupleDescriptor; |
1851 | Form_pg_attribute attr; |
1852 | |
1853 | if (attnum > slot_tupdesc->natts) /* should never happen */ |
1854 | elog(ERROR, "attribute number %d exceeds number of columns %d" , |
1855 | attnum, slot_tupdesc->natts); |
1856 | |
1857 | attr = TupleDescAttr(slot_tupdesc, attnum - 1); |
1858 | |
1859 | if (attr->attisdropped) |
1860 | ereport(ERROR, |
1861 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
1862 | errmsg("attribute %d of type %s has been dropped" , |
1863 | attnum, format_type_be(slot_tupdesc->tdtypeid)))); |
1864 | |
1865 | if (vartype != attr->atttypid) |
1866 | ereport(ERROR, |
1867 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
1868 | errmsg("attribute %d of type %s has wrong type" , |
1869 | attnum, format_type_be(slot_tupdesc->tdtypeid)), |
1870 | errdetail("Table has type %s, but query expects %s." , |
1871 | format_type_be(attr->atttypid), |
1872 | format_type_be(vartype)))); |
1873 | } |
1874 | } |
1875 | |
1876 | /* |
1877 | * Verify that the slot is compatible with a EEOP_*_FETCHSOME operation. |
1878 | */ |
1879 | static void |
1880 | CheckOpSlotCompatibility(ExprEvalStep *op, TupleTableSlot *slot) |
1881 | { |
1882 | #ifdef USE_ASSERT_CHECKING |
1883 | /* there's nothing to check */ |
1884 | if (!op->d.fetch.fixed) |
1885 | return; |
1886 | |
1887 | /* |
1888 | * Should probably fixed at some point, but for now it's easier to allow |
1889 | * buffer and heap tuples to be used interchangeably. |
1890 | */ |
1891 | if (slot->tts_ops == &TTSOpsBufferHeapTuple && |
1892 | op->d.fetch.kind == &TTSOpsHeapTuple) |
1893 | return; |
1894 | if (slot->tts_ops == &TTSOpsHeapTuple && |
1895 | op->d.fetch.kind == &TTSOpsBufferHeapTuple) |
1896 | return; |
1897 | |
1898 | /* |
1899 | * At the moment we consider it OK if a virtual slot is used instead of a |
1900 | * specific type of slot, as a virtual slot never needs to be deformed. |
1901 | */ |
1902 | if (slot->tts_ops == &TTSOpsVirtual) |
1903 | return; |
1904 | |
1905 | Assert(op->d.fetch.kind == slot->tts_ops); |
1906 | #endif |
1907 | } |
1908 | |
1909 | /* |
1910 | * get_cached_rowtype: utility function to lookup a rowtype tupdesc |
1911 | * |
1912 | * type_id, typmod: identity of the rowtype |
1913 | * cache_field: where to cache the TupleDesc pointer in expression state node |
1914 | * (field must be initialized to NULL) |
1915 | * econtext: expression context we are executing in |
1916 | * |
1917 | * NOTE: because the shutdown callback will be called during plan rescan, |
1918 | * must be prepared to re-do this during any node execution; cannot call |
1919 | * just once during expression initialization. |
1920 | */ |
1921 | static TupleDesc |
1922 | get_cached_rowtype(Oid type_id, int32 typmod, |
1923 | TupleDesc *cache_field, ExprContext *econtext) |
1924 | { |
1925 | TupleDesc tupDesc = *cache_field; |
1926 | |
1927 | /* Do lookup if no cached value or if requested type changed */ |
1928 | if (tupDesc == NULL || |
1929 | type_id != tupDesc->tdtypeid || |
1930 | typmod != tupDesc->tdtypmod) |
1931 | { |
1932 | tupDesc = lookup_rowtype_tupdesc(type_id, typmod); |
1933 | |
1934 | if (*cache_field) |
1935 | { |
1936 | /* Release old tupdesc; but callback is already registered */ |
1937 | ReleaseTupleDesc(*cache_field); |
1938 | } |
1939 | else |
1940 | { |
1941 | /* Need to register shutdown callback to release tupdesc */ |
1942 | RegisterExprContextCallback(econtext, |
1943 | ShutdownTupleDescRef, |
1944 | PointerGetDatum(cache_field)); |
1945 | } |
1946 | *cache_field = tupDesc; |
1947 | } |
1948 | return tupDesc; |
1949 | } |
1950 | |
1951 | /* |
1952 | * Callback function to release a tupdesc refcount at econtext shutdown |
1953 | */ |
1954 | static void |
1955 | ShutdownTupleDescRef(Datum arg) |
1956 | { |
1957 | TupleDesc *cache_field = (TupleDesc *) DatumGetPointer(arg); |
1958 | |
1959 | if (*cache_field) |
1960 | ReleaseTupleDesc(*cache_field); |
1961 | *cache_field = NULL; |
1962 | } |
1963 | |
1964 | /* |
1965 | * Fast-path functions, for very simple expressions |
1966 | */ |
1967 | |
1968 | /* Simple reference to inner Var */ |
1969 | static Datum |
1970 | ExecJustInnerVar(ExprState *state, ExprContext *econtext, bool *isnull) |
1971 | { |
1972 | ExprEvalStep *op = &state->steps[1]; |
1973 | int attnum = op->d.var.attnum + 1; |
1974 | TupleTableSlot *slot = econtext->ecxt_innertuple; |
1975 | |
1976 | CheckOpSlotCompatibility(&state->steps[0], slot); |
1977 | |
1978 | /* |
1979 | * Since we use slot_getattr(), we don't need to implement the FETCHSOME |
1980 | * step explicitly, and we also needn't Assert that the attnum is in range |
1981 | * --- slot_getattr() will take care of any problems. |
1982 | */ |
1983 | return slot_getattr(slot, attnum, isnull); |
1984 | } |
1985 | |
1986 | /* Simple reference to outer Var */ |
1987 | static Datum |
1988 | ExecJustOuterVar(ExprState *state, ExprContext *econtext, bool *isnull) |
1989 | { |
1990 | ExprEvalStep *op = &state->steps[1]; |
1991 | int attnum = op->d.var.attnum + 1; |
1992 | TupleTableSlot *slot = econtext->ecxt_outertuple; |
1993 | |
1994 | CheckOpSlotCompatibility(&state->steps[0], slot); |
1995 | |
1996 | /* See comments in ExecJustInnerVar */ |
1997 | return slot_getattr(slot, attnum, isnull); |
1998 | } |
1999 | |
2000 | /* Simple reference to scan Var */ |
2001 | static Datum |
2002 | ExecJustScanVar(ExprState *state, ExprContext *econtext, bool *isnull) |
2003 | { |
2004 | ExprEvalStep *op = &state->steps[1]; |
2005 | int attnum = op->d.var.attnum + 1; |
2006 | TupleTableSlot *slot = econtext->ecxt_scantuple; |
2007 | |
2008 | CheckOpSlotCompatibility(&state->steps[0], slot); |
2009 | |
2010 | /* See comments in ExecJustInnerVar */ |
2011 | return slot_getattr(slot, attnum, isnull); |
2012 | } |
2013 | |
2014 | /* Simple Const expression */ |
2015 | static Datum |
2016 | ExecJustConst(ExprState *state, ExprContext *econtext, bool *isnull) |
2017 | { |
2018 | ExprEvalStep *op = &state->steps[0]; |
2019 | |
2020 | *isnull = op->d.constval.isnull; |
2021 | return op->d.constval.value; |
2022 | } |
2023 | |
2024 | /* Evaluate inner Var and assign to appropriate column of result tuple */ |
2025 | static Datum |
2026 | ExecJustAssignInnerVar(ExprState *state, ExprContext *econtext, bool *isnull) |
2027 | { |
2028 | ExprEvalStep *op = &state->steps[1]; |
2029 | int attnum = op->d.assign_var.attnum + 1; |
2030 | int resultnum = op->d.assign_var.resultnum; |
2031 | TupleTableSlot *inslot = econtext->ecxt_innertuple; |
2032 | TupleTableSlot *outslot = state->resultslot; |
2033 | |
2034 | CheckOpSlotCompatibility(&state->steps[0], inslot); |
2035 | |
2036 | /* |
2037 | * We do not need CheckVarSlotCompatibility here; that was taken care of |
2038 | * at compilation time. |
2039 | * |
2040 | * Since we use slot_getattr(), we don't need to implement the FETCHSOME |
2041 | * step explicitly, and we also needn't Assert that the attnum is in range |
2042 | * --- slot_getattr() will take care of any problems. |
2043 | */ |
2044 | outslot->tts_values[resultnum] = |
2045 | slot_getattr(inslot, attnum, &outslot->tts_isnull[resultnum]); |
2046 | return 0; |
2047 | } |
2048 | |
2049 | /* Evaluate outer Var and assign to appropriate column of result tuple */ |
2050 | static Datum |
2051 | ExecJustAssignOuterVar(ExprState *state, ExprContext *econtext, bool *isnull) |
2052 | { |
2053 | ExprEvalStep *op = &state->steps[1]; |
2054 | int attnum = op->d.assign_var.attnum + 1; |
2055 | int resultnum = op->d.assign_var.resultnum; |
2056 | TupleTableSlot *inslot = econtext->ecxt_outertuple; |
2057 | TupleTableSlot *outslot = state->resultslot; |
2058 | |
2059 | CheckOpSlotCompatibility(&state->steps[0], inslot); |
2060 | |
2061 | /* See comments in ExecJustAssignInnerVar */ |
2062 | outslot->tts_values[resultnum] = |
2063 | slot_getattr(inslot, attnum, &outslot->tts_isnull[resultnum]); |
2064 | return 0; |
2065 | } |
2066 | |
2067 | /* Evaluate scan Var and assign to appropriate column of result tuple */ |
2068 | static Datum |
2069 | ExecJustAssignScanVar(ExprState *state, ExprContext *econtext, bool *isnull) |
2070 | { |
2071 | ExprEvalStep *op = &state->steps[1]; |
2072 | int attnum = op->d.assign_var.attnum + 1; |
2073 | int resultnum = op->d.assign_var.resultnum; |
2074 | TupleTableSlot *inslot = econtext->ecxt_scantuple; |
2075 | TupleTableSlot *outslot = state->resultslot; |
2076 | |
2077 | CheckOpSlotCompatibility(&state->steps[0], inslot); |
2078 | |
2079 | /* See comments in ExecJustAssignInnerVar */ |
2080 | outslot->tts_values[resultnum] = |
2081 | slot_getattr(inslot, attnum, &outslot->tts_isnull[resultnum]); |
2082 | return 0; |
2083 | } |
2084 | |
2085 | /* Evaluate CASE_TESTVAL and apply a strict function to it */ |
2086 | static Datum |
2087 | ExecJustApplyFuncToCase(ExprState *state, ExprContext *econtext, bool *isnull) |
2088 | { |
2089 | ExprEvalStep *op = &state->steps[0]; |
2090 | FunctionCallInfo fcinfo; |
2091 | NullableDatum *args; |
2092 | int argno; |
2093 | Datum d; |
2094 | |
2095 | /* |
2096 | * XXX with some redesign of the CaseTestExpr mechanism, maybe we could |
2097 | * get rid of this data shuffling? |
2098 | */ |
2099 | *op->resvalue = *op->d.casetest.value; |
2100 | *op->resnull = *op->d.casetest.isnull; |
2101 | |
2102 | op++; |
2103 | |
2104 | fcinfo = op->d.func.fcinfo_data; |
2105 | args = fcinfo->args; |
2106 | |
2107 | /* strict function, so check for NULL args */ |
2108 | for (argno = 0; argno < op->d.func.nargs; argno++) |
2109 | { |
2110 | if (args[argno].isnull) |
2111 | { |
2112 | *isnull = true; |
2113 | return (Datum) 0; |
2114 | } |
2115 | } |
2116 | fcinfo->isnull = false; |
2117 | d = op->d.func.fn_addr(fcinfo); |
2118 | *isnull = fcinfo->isnull; |
2119 | return d; |
2120 | } |
2121 | |
2122 | #if defined(EEO_USE_COMPUTED_GOTO) |
2123 | /* |
2124 | * Comparator used when building address->opcode lookup table for |
2125 | * ExecEvalStepOp() in the threaded dispatch case. |
2126 | */ |
2127 | static int |
2128 | dispatch_compare_ptr(const void *a, const void *b) |
2129 | { |
2130 | const ExprEvalOpLookup *la = (const ExprEvalOpLookup *) a; |
2131 | const ExprEvalOpLookup *lb = (const ExprEvalOpLookup *) b; |
2132 | |
2133 | if (la->opcode < lb->opcode) |
2134 | return -1; |
2135 | else if (la->opcode > lb->opcode) |
2136 | return 1; |
2137 | return 0; |
2138 | } |
2139 | #endif |
2140 | |
2141 | /* |
2142 | * Do one-time initialization of interpretation machinery. |
2143 | */ |
2144 | static void |
2145 | ExecInitInterpreter(void) |
2146 | { |
2147 | #if defined(EEO_USE_COMPUTED_GOTO) |
2148 | /* Set up externally-visible pointer to dispatch table */ |
2149 | if (dispatch_table == NULL) |
2150 | { |
2151 | int i; |
2152 | |
2153 | dispatch_table = (const void **) |
2154 | DatumGetPointer(ExecInterpExpr(NULL, NULL, NULL)); |
2155 | |
2156 | /* build reverse lookup table */ |
2157 | for (i = 0; i < EEOP_LAST; i++) |
2158 | { |
2159 | reverse_dispatch_table[i].opcode = dispatch_table[i]; |
2160 | reverse_dispatch_table[i].op = (ExprEvalOp) i; |
2161 | } |
2162 | |
2163 | /* make it bsearch()able */ |
2164 | qsort(reverse_dispatch_table, |
2165 | EEOP_LAST /* nmembers */ , |
2166 | sizeof(ExprEvalOpLookup), |
2167 | dispatch_compare_ptr); |
2168 | } |
2169 | #endif |
2170 | } |
2171 | |
2172 | /* |
2173 | * Function to return the opcode of an expression step. |
2174 | * |
2175 | * When direct-threading is in use, ExprState->opcode isn't easily |
2176 | * decipherable. This function returns the appropriate enum member. |
2177 | */ |
2178 | ExprEvalOp |
2179 | ExecEvalStepOp(ExprState *state, ExprEvalStep *op) |
2180 | { |
2181 | #if defined(EEO_USE_COMPUTED_GOTO) |
2182 | if (state->flags & EEO_FLAG_DIRECT_THREADED) |
2183 | { |
2184 | ExprEvalOpLookup key; |
2185 | ExprEvalOpLookup *res; |
2186 | |
2187 | key.opcode = (void *) op->opcode; |
2188 | res = bsearch(&key, |
2189 | reverse_dispatch_table, |
2190 | EEOP_LAST /* nmembers */ , |
2191 | sizeof(ExprEvalOpLookup), |
2192 | dispatch_compare_ptr); |
2193 | Assert(res); /* unknown ops shouldn't get looked up */ |
2194 | return res->op; |
2195 | } |
2196 | #endif |
2197 | return (ExprEvalOp) op->opcode; |
2198 | } |
2199 | |
2200 | |
2201 | /* |
2202 | * Out-of-line helper functions for complex instructions. |
2203 | */ |
2204 | |
2205 | /* |
2206 | * Evaluate EEOP_FUNCEXPR_FUSAGE |
2207 | */ |
2208 | void |
2209 | ExecEvalFuncExprFusage(ExprState *state, ExprEvalStep *op, |
2210 | ExprContext *econtext) |
2211 | { |
2212 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
2213 | PgStat_FunctionCallUsage fcusage; |
2214 | Datum d; |
2215 | |
2216 | pgstat_init_function_usage(fcinfo, &fcusage); |
2217 | |
2218 | fcinfo->isnull = false; |
2219 | d = op->d.func.fn_addr(fcinfo); |
2220 | *op->resvalue = d; |
2221 | *op->resnull = fcinfo->isnull; |
2222 | |
2223 | pgstat_end_function_usage(&fcusage, true); |
2224 | } |
2225 | |
2226 | /* |
2227 | * Evaluate EEOP_FUNCEXPR_STRICT_FUSAGE |
2228 | */ |
2229 | void |
2230 | ExecEvalFuncExprStrictFusage(ExprState *state, ExprEvalStep *op, |
2231 | ExprContext *econtext) |
2232 | { |
2233 | |
2234 | FunctionCallInfo fcinfo = op->d.func.fcinfo_data; |
2235 | PgStat_FunctionCallUsage fcusage; |
2236 | NullableDatum *args = fcinfo->args; |
2237 | int argno; |
2238 | Datum d; |
2239 | |
2240 | /* strict function, so check for NULL args */ |
2241 | for (argno = 0; argno < op->d.func.nargs; argno++) |
2242 | { |
2243 | if (args[argno].isnull) |
2244 | { |
2245 | *op->resnull = true; |
2246 | return; |
2247 | } |
2248 | } |
2249 | |
2250 | pgstat_init_function_usage(fcinfo, &fcusage); |
2251 | |
2252 | fcinfo->isnull = false; |
2253 | d = op->d.func.fn_addr(fcinfo); |
2254 | *op->resvalue = d; |
2255 | *op->resnull = fcinfo->isnull; |
2256 | |
2257 | pgstat_end_function_usage(&fcusage, true); |
2258 | } |
2259 | |
2260 | /* |
2261 | * Evaluate a PARAM_EXEC parameter. |
2262 | * |
2263 | * PARAM_EXEC params (internal executor parameters) are stored in the |
2264 | * ecxt_param_exec_vals array, and can be accessed by array index. |
2265 | */ |
2266 | void |
2267 | ExecEvalParamExec(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
2268 | { |
2269 | ParamExecData *prm; |
2270 | |
2271 | prm = &(econtext->ecxt_param_exec_vals[op->d.param.paramid]); |
2272 | if (unlikely(prm->execPlan != NULL)) |
2273 | { |
2274 | /* Parameter not evaluated yet, so go do it */ |
2275 | ExecSetParamPlan(prm->execPlan, econtext); |
2276 | /* ExecSetParamPlan should have processed this param... */ |
2277 | Assert(prm->execPlan == NULL); |
2278 | } |
2279 | *op->resvalue = prm->value; |
2280 | *op->resnull = prm->isnull; |
2281 | } |
2282 | |
2283 | /* |
2284 | * Evaluate a PARAM_EXTERN parameter. |
2285 | * |
2286 | * PARAM_EXTERN parameters must be sought in ecxt_param_list_info. |
2287 | */ |
2288 | void |
2289 | ExecEvalParamExtern(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
2290 | { |
2291 | ParamListInfo paramInfo = econtext->ecxt_param_list_info; |
2292 | int paramId = op->d.param.paramid; |
2293 | |
2294 | if (likely(paramInfo && |
2295 | paramId > 0 && paramId <= paramInfo->numParams)) |
2296 | { |
2297 | ParamExternData *prm; |
2298 | ParamExternData prmdata; |
2299 | |
2300 | /* give hook a chance in case parameter is dynamic */ |
2301 | if (paramInfo->paramFetch != NULL) |
2302 | prm = paramInfo->paramFetch(paramInfo, paramId, false, &prmdata); |
2303 | else |
2304 | prm = ¶mInfo->params[paramId - 1]; |
2305 | |
2306 | if (likely(OidIsValid(prm->ptype))) |
2307 | { |
2308 | /* safety check in case hook did something unexpected */ |
2309 | if (unlikely(prm->ptype != op->d.param.paramtype)) |
2310 | ereport(ERROR, |
2311 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
2312 | errmsg("type of parameter %d (%s) does not match that when preparing the plan (%s)" , |
2313 | paramId, |
2314 | format_type_be(prm->ptype), |
2315 | format_type_be(op->d.param.paramtype)))); |
2316 | *op->resvalue = prm->value; |
2317 | *op->resnull = prm->isnull; |
2318 | return; |
2319 | } |
2320 | } |
2321 | |
2322 | ereport(ERROR, |
2323 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
2324 | errmsg("no value found for parameter %d" , paramId))); |
2325 | } |
2326 | |
2327 | /* |
2328 | * Evaluate a SQLValueFunction expression. |
2329 | */ |
2330 | void |
2331 | ExecEvalSQLValueFunction(ExprState *state, ExprEvalStep *op) |
2332 | { |
2333 | LOCAL_FCINFO(fcinfo, 0); |
2334 | SQLValueFunction *svf = op->d.sqlvaluefunction.svf; |
2335 | |
2336 | *op->resnull = false; |
2337 | |
2338 | /* |
2339 | * Note: current_schema() can return NULL. current_user() etc currently |
2340 | * cannot, but might as well code those cases the same way for safety. |
2341 | */ |
2342 | switch (svf->op) |
2343 | { |
2344 | case SVFOP_CURRENT_DATE: |
2345 | *op->resvalue = DateADTGetDatum(GetSQLCurrentDate()); |
2346 | break; |
2347 | case SVFOP_CURRENT_TIME: |
2348 | case SVFOP_CURRENT_TIME_N: |
2349 | *op->resvalue = TimeTzADTPGetDatum(GetSQLCurrentTime(svf->typmod)); |
2350 | break; |
2351 | case SVFOP_CURRENT_TIMESTAMP: |
2352 | case SVFOP_CURRENT_TIMESTAMP_N: |
2353 | *op->resvalue = TimestampTzGetDatum(GetSQLCurrentTimestamp(svf->typmod)); |
2354 | break; |
2355 | case SVFOP_LOCALTIME: |
2356 | case SVFOP_LOCALTIME_N: |
2357 | *op->resvalue = TimeADTGetDatum(GetSQLLocalTime(svf->typmod)); |
2358 | break; |
2359 | case SVFOP_LOCALTIMESTAMP: |
2360 | case SVFOP_LOCALTIMESTAMP_N: |
2361 | *op->resvalue = TimestampGetDatum(GetSQLLocalTimestamp(svf->typmod)); |
2362 | break; |
2363 | case SVFOP_CURRENT_ROLE: |
2364 | case SVFOP_CURRENT_USER: |
2365 | case SVFOP_USER: |
2366 | InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL); |
2367 | *op->resvalue = current_user(fcinfo); |
2368 | *op->resnull = fcinfo->isnull; |
2369 | break; |
2370 | case SVFOP_SESSION_USER: |
2371 | InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL); |
2372 | *op->resvalue = session_user(fcinfo); |
2373 | *op->resnull = fcinfo->isnull; |
2374 | break; |
2375 | case SVFOP_CURRENT_CATALOG: |
2376 | InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL); |
2377 | *op->resvalue = current_database(fcinfo); |
2378 | *op->resnull = fcinfo->isnull; |
2379 | break; |
2380 | case SVFOP_CURRENT_SCHEMA: |
2381 | InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL); |
2382 | *op->resvalue = current_schema(fcinfo); |
2383 | *op->resnull = fcinfo->isnull; |
2384 | break; |
2385 | } |
2386 | } |
2387 | |
2388 | /* |
2389 | * Raise error if a CURRENT OF expression is evaluated. |
2390 | * |
2391 | * The planner should convert CURRENT OF into a TidScan qualification, or some |
2392 | * other special handling in a ForeignScan node. So we have to be able to do |
2393 | * ExecInitExpr on a CurrentOfExpr, but we shouldn't ever actually execute it. |
2394 | * If we get here, we suppose we must be dealing with CURRENT OF on a foreign |
2395 | * table whose FDW doesn't handle it, and complain accordingly. |
2396 | */ |
2397 | void |
2398 | ExecEvalCurrentOfExpr(ExprState *state, ExprEvalStep *op) |
2399 | { |
2400 | ereport(ERROR, |
2401 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
2402 | errmsg("WHERE CURRENT OF is not supported for this table type" ))); |
2403 | } |
2404 | |
2405 | /* |
2406 | * Evaluate NextValueExpr. |
2407 | */ |
2408 | void |
2409 | ExecEvalNextValueExpr(ExprState *state, ExprEvalStep *op) |
2410 | { |
2411 | int64 newval = nextval_internal(op->d.nextvalueexpr.seqid, false); |
2412 | |
2413 | switch (op->d.nextvalueexpr.seqtypid) |
2414 | { |
2415 | case INT2OID: |
2416 | *op->resvalue = Int16GetDatum((int16) newval); |
2417 | break; |
2418 | case INT4OID: |
2419 | *op->resvalue = Int32GetDatum((int32) newval); |
2420 | break; |
2421 | case INT8OID: |
2422 | *op->resvalue = Int64GetDatum((int64) newval); |
2423 | break; |
2424 | default: |
2425 | elog(ERROR, "unsupported sequence type %u" , |
2426 | op->d.nextvalueexpr.seqtypid); |
2427 | } |
2428 | *op->resnull = false; |
2429 | } |
2430 | |
2431 | /* |
2432 | * Evaluate NullTest / IS NULL for rows. |
2433 | */ |
2434 | void |
2435 | ExecEvalRowNull(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
2436 | { |
2437 | ExecEvalRowNullInt(state, op, econtext, true); |
2438 | } |
2439 | |
2440 | /* |
2441 | * Evaluate NullTest / IS NOT NULL for rows. |
2442 | */ |
2443 | void |
2444 | ExecEvalRowNotNull(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
2445 | { |
2446 | ExecEvalRowNullInt(state, op, econtext, false); |
2447 | } |
2448 | |
2449 | /* Common code for IS [NOT] NULL on a row value */ |
2450 | static void |
2451 | ExecEvalRowNullInt(ExprState *state, ExprEvalStep *op, |
2452 | ExprContext *econtext, bool checkisnull) |
2453 | { |
2454 | Datum value = *op->resvalue; |
2455 | bool isnull = *op->resnull; |
2456 | HeapTupleHeader tuple; |
2457 | Oid tupType; |
2458 | int32 tupTypmod; |
2459 | TupleDesc tupDesc; |
2460 | HeapTupleData tmptup; |
2461 | int att; |
2462 | |
2463 | *op->resnull = false; |
2464 | |
2465 | /* NULL row variables are treated just as NULL scalar columns */ |
2466 | if (isnull) |
2467 | { |
2468 | *op->resvalue = BoolGetDatum(checkisnull); |
2469 | return; |
2470 | } |
2471 | |
2472 | /* |
2473 | * The SQL standard defines IS [NOT] NULL for a non-null rowtype argument |
2474 | * as: |
2475 | * |
2476 | * "R IS NULL" is true if every field is the null value. |
2477 | * |
2478 | * "R IS NOT NULL" is true if no field is the null value. |
2479 | * |
2480 | * This definition is (apparently intentionally) not recursive; so our |
2481 | * tests on the fields are primitive attisnull tests, not recursive checks |
2482 | * to see if they are all-nulls or no-nulls rowtypes. |
2483 | * |
2484 | * The standard does not consider the possibility of zero-field rows, but |
2485 | * here we consider them to vacuously satisfy both predicates. |
2486 | */ |
2487 | |
2488 | tuple = DatumGetHeapTupleHeader(value); |
2489 | |
2490 | tupType = HeapTupleHeaderGetTypeId(tuple); |
2491 | tupTypmod = HeapTupleHeaderGetTypMod(tuple); |
2492 | |
2493 | /* Lookup tupdesc if first time through or if type changes */ |
2494 | tupDesc = get_cached_rowtype(tupType, tupTypmod, |
2495 | &op->d.nulltest_row.argdesc, |
2496 | econtext); |
2497 | |
2498 | /* |
2499 | * heap_attisnull needs a HeapTuple not a bare HeapTupleHeader. |
2500 | */ |
2501 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple); |
2502 | tmptup.t_data = tuple; |
2503 | |
2504 | for (att = 1; att <= tupDesc->natts; att++) |
2505 | { |
2506 | /* ignore dropped columns */ |
2507 | if (TupleDescAttr(tupDesc, att - 1)->attisdropped) |
2508 | continue; |
2509 | if (heap_attisnull(&tmptup, att, tupDesc)) |
2510 | { |
2511 | /* null field disproves IS NOT NULL */ |
2512 | if (!checkisnull) |
2513 | { |
2514 | *op->resvalue = BoolGetDatum(false); |
2515 | return; |
2516 | } |
2517 | } |
2518 | else |
2519 | { |
2520 | /* non-null field disproves IS NULL */ |
2521 | if (checkisnull) |
2522 | { |
2523 | *op->resvalue = BoolGetDatum(false); |
2524 | return; |
2525 | } |
2526 | } |
2527 | } |
2528 | |
2529 | *op->resvalue = BoolGetDatum(true); |
2530 | } |
2531 | |
2532 | /* |
2533 | * Evaluate an ARRAY[] expression. |
2534 | * |
2535 | * The individual array elements (or subarrays) have already been evaluated |
2536 | * into op->d.arrayexpr.elemvalues[]/elemnulls[]. |
2537 | */ |
2538 | void |
2539 | ExecEvalArrayExpr(ExprState *state, ExprEvalStep *op) |
2540 | { |
2541 | ArrayType *result; |
2542 | Oid element_type = op->d.arrayexpr.elemtype; |
2543 | int nelems = op->d.arrayexpr.nelems; |
2544 | int ndims = 0; |
2545 | int dims[MAXDIM]; |
2546 | int lbs[MAXDIM]; |
2547 | |
2548 | /* Set non-null as default */ |
2549 | *op->resnull = false; |
2550 | |
2551 | if (!op->d.arrayexpr.multidims) |
2552 | { |
2553 | /* Elements are presumably of scalar type */ |
2554 | Datum *dvalues = op->d.arrayexpr.elemvalues; |
2555 | bool *dnulls = op->d.arrayexpr.elemnulls; |
2556 | |
2557 | /* setup for 1-D array of the given length */ |
2558 | ndims = 1; |
2559 | dims[0] = nelems; |
2560 | lbs[0] = 1; |
2561 | |
2562 | result = construct_md_array(dvalues, dnulls, ndims, dims, lbs, |
2563 | element_type, |
2564 | op->d.arrayexpr.elemlength, |
2565 | op->d.arrayexpr.elembyval, |
2566 | op->d.arrayexpr.elemalign); |
2567 | } |
2568 | else |
2569 | { |
2570 | /* Must be nested array expressions */ |
2571 | int nbytes = 0; |
2572 | int nitems = 0; |
2573 | int outer_nelems = 0; |
2574 | int elem_ndims = 0; |
2575 | int *elem_dims = NULL; |
2576 | int *elem_lbs = NULL; |
2577 | bool firstone = true; |
2578 | bool havenulls = false; |
2579 | bool haveempty = false; |
2580 | char **subdata; |
2581 | bits8 **subbitmaps; |
2582 | int *subbytes; |
2583 | int *subnitems; |
2584 | int32 dataoffset; |
2585 | char *dat; |
2586 | int iitem; |
2587 | int elemoff; |
2588 | int i; |
2589 | |
2590 | subdata = (char **) palloc(nelems * sizeof(char *)); |
2591 | subbitmaps = (bits8 **) palloc(nelems * sizeof(bits8 *)); |
2592 | subbytes = (int *) palloc(nelems * sizeof(int)); |
2593 | subnitems = (int *) palloc(nelems * sizeof(int)); |
2594 | |
2595 | /* loop through and get data area from each element */ |
2596 | for (elemoff = 0; elemoff < nelems; elemoff++) |
2597 | { |
2598 | Datum arraydatum; |
2599 | bool eisnull; |
2600 | ArrayType *array; |
2601 | int this_ndims; |
2602 | |
2603 | arraydatum = op->d.arrayexpr.elemvalues[elemoff]; |
2604 | eisnull = op->d.arrayexpr.elemnulls[elemoff]; |
2605 | |
2606 | /* temporarily ignore null subarrays */ |
2607 | if (eisnull) |
2608 | { |
2609 | haveempty = true; |
2610 | continue; |
2611 | } |
2612 | |
2613 | array = DatumGetArrayTypeP(arraydatum); |
2614 | |
2615 | /* run-time double-check on element type */ |
2616 | if (element_type != ARR_ELEMTYPE(array)) |
2617 | ereport(ERROR, |
2618 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
2619 | errmsg("cannot merge incompatible arrays" ), |
2620 | errdetail("Array with element type %s cannot be " |
2621 | "included in ARRAY construct with element type %s." , |
2622 | format_type_be(ARR_ELEMTYPE(array)), |
2623 | format_type_be(element_type)))); |
2624 | |
2625 | this_ndims = ARR_NDIM(array); |
2626 | /* temporarily ignore zero-dimensional subarrays */ |
2627 | if (this_ndims <= 0) |
2628 | { |
2629 | haveempty = true; |
2630 | continue; |
2631 | } |
2632 | |
2633 | if (firstone) |
2634 | { |
2635 | /* Get sub-array details from first member */ |
2636 | elem_ndims = this_ndims; |
2637 | ndims = elem_ndims + 1; |
2638 | if (ndims <= 0 || ndims > MAXDIM) |
2639 | ereport(ERROR, |
2640 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
2641 | errmsg("number of array dimensions (%d) exceeds " \ |
2642 | "the maximum allowed (%d)" , ndims, MAXDIM))); |
2643 | |
2644 | elem_dims = (int *) palloc(elem_ndims * sizeof(int)); |
2645 | memcpy(elem_dims, ARR_DIMS(array), elem_ndims * sizeof(int)); |
2646 | elem_lbs = (int *) palloc(elem_ndims * sizeof(int)); |
2647 | memcpy(elem_lbs, ARR_LBOUND(array), elem_ndims * sizeof(int)); |
2648 | |
2649 | firstone = false; |
2650 | } |
2651 | else |
2652 | { |
2653 | /* Check other sub-arrays are compatible */ |
2654 | if (elem_ndims != this_ndims || |
2655 | memcmp(elem_dims, ARR_DIMS(array), |
2656 | elem_ndims * sizeof(int)) != 0 || |
2657 | memcmp(elem_lbs, ARR_LBOUND(array), |
2658 | elem_ndims * sizeof(int)) != 0) |
2659 | ereport(ERROR, |
2660 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
2661 | errmsg("multidimensional arrays must have array " |
2662 | "expressions with matching dimensions" ))); |
2663 | } |
2664 | |
2665 | subdata[outer_nelems] = ARR_DATA_PTR(array); |
2666 | subbitmaps[outer_nelems] = ARR_NULLBITMAP(array); |
2667 | subbytes[outer_nelems] = ARR_SIZE(array) - ARR_DATA_OFFSET(array); |
2668 | nbytes += subbytes[outer_nelems]; |
2669 | subnitems[outer_nelems] = ArrayGetNItems(this_ndims, |
2670 | ARR_DIMS(array)); |
2671 | nitems += subnitems[outer_nelems]; |
2672 | havenulls |= ARR_HASNULL(array); |
2673 | outer_nelems++; |
2674 | } |
2675 | |
2676 | /* |
2677 | * If all items were null or empty arrays, return an empty array; |
2678 | * otherwise, if some were and some weren't, raise error. (Note: we |
2679 | * must special-case this somehow to avoid trying to generate a 1-D |
2680 | * array formed from empty arrays. It's not ideal...) |
2681 | */ |
2682 | if (haveempty) |
2683 | { |
2684 | if (ndims == 0) /* didn't find any nonempty array */ |
2685 | { |
2686 | *op->resvalue = PointerGetDatum(construct_empty_array(element_type)); |
2687 | return; |
2688 | } |
2689 | ereport(ERROR, |
2690 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
2691 | errmsg("multidimensional arrays must have array " |
2692 | "expressions with matching dimensions" ))); |
2693 | } |
2694 | |
2695 | /* setup for multi-D array */ |
2696 | dims[0] = outer_nelems; |
2697 | lbs[0] = 1; |
2698 | for (i = 1; i < ndims; i++) |
2699 | { |
2700 | dims[i] = elem_dims[i - 1]; |
2701 | lbs[i] = elem_lbs[i - 1]; |
2702 | } |
2703 | |
2704 | if (havenulls) |
2705 | { |
2706 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems); |
2707 | nbytes += dataoffset; |
2708 | } |
2709 | else |
2710 | { |
2711 | dataoffset = 0; /* marker for no null bitmap */ |
2712 | nbytes += ARR_OVERHEAD_NONULLS(ndims); |
2713 | } |
2714 | |
2715 | result = (ArrayType *) palloc(nbytes); |
2716 | SET_VARSIZE(result, nbytes); |
2717 | result->ndim = ndims; |
2718 | result->dataoffset = dataoffset; |
2719 | result->elemtype = element_type; |
2720 | memcpy(ARR_DIMS(result), dims, ndims * sizeof(int)); |
2721 | memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int)); |
2722 | |
2723 | dat = ARR_DATA_PTR(result); |
2724 | iitem = 0; |
2725 | for (i = 0; i < outer_nelems; i++) |
2726 | { |
2727 | memcpy(dat, subdata[i], subbytes[i]); |
2728 | dat += subbytes[i]; |
2729 | if (havenulls) |
2730 | array_bitmap_copy(ARR_NULLBITMAP(result), iitem, |
2731 | subbitmaps[i], 0, |
2732 | subnitems[i]); |
2733 | iitem += subnitems[i]; |
2734 | } |
2735 | } |
2736 | |
2737 | *op->resvalue = PointerGetDatum(result); |
2738 | } |
2739 | |
2740 | /* |
2741 | * Evaluate an ArrayCoerceExpr expression. |
2742 | * |
2743 | * Source array is in step's result variable. |
2744 | */ |
2745 | void |
2746 | ExecEvalArrayCoerce(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
2747 | { |
2748 | Datum arraydatum; |
2749 | |
2750 | /* NULL array -> NULL result */ |
2751 | if (*op->resnull) |
2752 | return; |
2753 | |
2754 | arraydatum = *op->resvalue; |
2755 | |
2756 | /* |
2757 | * If it's binary-compatible, modify the element type in the array header, |
2758 | * but otherwise leave the array as we received it. |
2759 | */ |
2760 | if (op->d.arraycoerce.elemexprstate == NULL) |
2761 | { |
2762 | /* Detoast input array if necessary, and copy in any case */ |
2763 | ArrayType *array = DatumGetArrayTypePCopy(arraydatum); |
2764 | |
2765 | ARR_ELEMTYPE(array) = op->d.arraycoerce.resultelemtype; |
2766 | *op->resvalue = PointerGetDatum(array); |
2767 | return; |
2768 | } |
2769 | |
2770 | /* |
2771 | * Use array_map to apply the sub-expression to each array element. |
2772 | */ |
2773 | *op->resvalue = array_map(arraydatum, |
2774 | op->d.arraycoerce.elemexprstate, |
2775 | econtext, |
2776 | op->d.arraycoerce.resultelemtype, |
2777 | op->d.arraycoerce.amstate); |
2778 | } |
2779 | |
2780 | /* |
2781 | * Evaluate a ROW() expression. |
2782 | * |
2783 | * The individual columns have already been evaluated into |
2784 | * op->d.row.elemvalues[]/elemnulls[]. |
2785 | */ |
2786 | void |
2787 | ExecEvalRow(ExprState *state, ExprEvalStep *op) |
2788 | { |
2789 | HeapTuple tuple; |
2790 | |
2791 | /* build tuple from evaluated field values */ |
2792 | tuple = heap_form_tuple(op->d.row.tupdesc, |
2793 | op->d.row.elemvalues, |
2794 | op->d.row.elemnulls); |
2795 | |
2796 | *op->resvalue = HeapTupleGetDatum(tuple); |
2797 | *op->resnull = false; |
2798 | } |
2799 | |
2800 | /* |
2801 | * Evaluate GREATEST() or LEAST() expression (note this is *not* MIN()/MAX()). |
2802 | * |
2803 | * All of the to-be-compared expressions have already been evaluated into |
2804 | * op->d.minmax.values[]/nulls[]. |
2805 | */ |
2806 | void |
2807 | ExecEvalMinMax(ExprState *state, ExprEvalStep *op) |
2808 | { |
2809 | Datum *values = op->d.minmax.values; |
2810 | bool *nulls = op->d.minmax.nulls; |
2811 | FunctionCallInfo fcinfo = op->d.minmax.fcinfo_data; |
2812 | MinMaxOp operator = op->d.minmax.op; |
2813 | int off; |
2814 | |
2815 | /* set at initialization */ |
2816 | Assert(fcinfo->args[0].isnull == false); |
2817 | Assert(fcinfo->args[1].isnull == false); |
2818 | |
2819 | /* default to null result */ |
2820 | *op->resnull = true; |
2821 | |
2822 | for (off = 0; off < op->d.minmax.nelems; off++) |
2823 | { |
2824 | /* ignore NULL inputs */ |
2825 | if (nulls[off]) |
2826 | continue; |
2827 | |
2828 | if (*op->resnull) |
2829 | { |
2830 | /* first nonnull input, adopt value */ |
2831 | *op->resvalue = values[off]; |
2832 | *op->resnull = false; |
2833 | } |
2834 | else |
2835 | { |
2836 | int cmpresult; |
2837 | |
2838 | /* apply comparison function */ |
2839 | fcinfo->args[0].value = *op->resvalue; |
2840 | fcinfo->args[1].value = values[off]; |
2841 | |
2842 | fcinfo->isnull = false; |
2843 | cmpresult = DatumGetInt32(FunctionCallInvoke(fcinfo)); |
2844 | if (fcinfo->isnull) /* probably should not happen */ |
2845 | continue; |
2846 | |
2847 | if (cmpresult > 0 && operator == IS_LEAST) |
2848 | *op->resvalue = values[off]; |
2849 | else if (cmpresult < 0 && operator == IS_GREATEST) |
2850 | *op->resvalue = values[off]; |
2851 | } |
2852 | } |
2853 | } |
2854 | |
2855 | /* |
2856 | * Evaluate a FieldSelect node. |
2857 | * |
2858 | * Source record is in step's result variable. |
2859 | */ |
2860 | void |
2861 | ExecEvalFieldSelect(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
2862 | { |
2863 | AttrNumber fieldnum = op->d.fieldselect.fieldnum; |
2864 | Datum tupDatum; |
2865 | HeapTupleHeader tuple; |
2866 | Oid tupType; |
2867 | int32 tupTypmod; |
2868 | TupleDesc tupDesc; |
2869 | Form_pg_attribute attr; |
2870 | HeapTupleData tmptup; |
2871 | |
2872 | /* NULL record -> NULL result */ |
2873 | if (*op->resnull) |
2874 | return; |
2875 | |
2876 | tupDatum = *op->resvalue; |
2877 | |
2878 | /* We can special-case expanded records for speed */ |
2879 | if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(tupDatum))) |
2880 | { |
2881 | ExpandedRecordHeader *erh = (ExpandedRecordHeader *) DatumGetEOHP(tupDatum); |
2882 | |
2883 | Assert(erh->er_magic == ER_MAGIC); |
2884 | |
2885 | /* Extract record's TupleDesc */ |
2886 | tupDesc = expanded_record_get_tupdesc(erh); |
2887 | |
2888 | /* |
2889 | * Find field's attr record. Note we don't support system columns |
2890 | * here: a datum tuple doesn't have valid values for most of the |
2891 | * interesting system columns anyway. |
2892 | */ |
2893 | if (fieldnum <= 0) /* should never happen */ |
2894 | elog(ERROR, "unsupported reference to system column %d in FieldSelect" , |
2895 | fieldnum); |
2896 | if (fieldnum > tupDesc->natts) /* should never happen */ |
2897 | elog(ERROR, "attribute number %d exceeds number of columns %d" , |
2898 | fieldnum, tupDesc->natts); |
2899 | attr = TupleDescAttr(tupDesc, fieldnum - 1); |
2900 | |
2901 | /* Check for dropped column, and force a NULL result if so */ |
2902 | if (attr->attisdropped) |
2903 | { |
2904 | *op->resnull = true; |
2905 | return; |
2906 | } |
2907 | |
2908 | /* Check for type mismatch --- possible after ALTER COLUMN TYPE? */ |
2909 | /* As in CheckVarSlotCompatibility, we should but can't check typmod */ |
2910 | if (op->d.fieldselect.resulttype != attr->atttypid) |
2911 | ereport(ERROR, |
2912 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
2913 | errmsg("attribute %d has wrong type" , fieldnum), |
2914 | errdetail("Table has type %s, but query expects %s." , |
2915 | format_type_be(attr->atttypid), |
2916 | format_type_be(op->d.fieldselect.resulttype)))); |
2917 | |
2918 | /* extract the field */ |
2919 | *op->resvalue = expanded_record_get_field(erh, fieldnum, |
2920 | op->resnull); |
2921 | } |
2922 | else |
2923 | { |
2924 | /* Get the composite datum and extract its type fields */ |
2925 | tuple = DatumGetHeapTupleHeader(tupDatum); |
2926 | |
2927 | tupType = HeapTupleHeaderGetTypeId(tuple); |
2928 | tupTypmod = HeapTupleHeaderGetTypMod(tuple); |
2929 | |
2930 | /* Lookup tupdesc if first time through or if type changes */ |
2931 | tupDesc = get_cached_rowtype(tupType, tupTypmod, |
2932 | &op->d.fieldselect.argdesc, |
2933 | econtext); |
2934 | |
2935 | /* |
2936 | * Find field's attr record. Note we don't support system columns |
2937 | * here: a datum tuple doesn't have valid values for most of the |
2938 | * interesting system columns anyway. |
2939 | */ |
2940 | if (fieldnum <= 0) /* should never happen */ |
2941 | elog(ERROR, "unsupported reference to system column %d in FieldSelect" , |
2942 | fieldnum); |
2943 | if (fieldnum > tupDesc->natts) /* should never happen */ |
2944 | elog(ERROR, "attribute number %d exceeds number of columns %d" , |
2945 | fieldnum, tupDesc->natts); |
2946 | attr = TupleDescAttr(tupDesc, fieldnum - 1); |
2947 | |
2948 | /* Check for dropped column, and force a NULL result if so */ |
2949 | if (attr->attisdropped) |
2950 | { |
2951 | *op->resnull = true; |
2952 | return; |
2953 | } |
2954 | |
2955 | /* Check for type mismatch --- possible after ALTER COLUMN TYPE? */ |
2956 | /* As in CheckVarSlotCompatibility, we should but can't check typmod */ |
2957 | if (op->d.fieldselect.resulttype != attr->atttypid) |
2958 | ereport(ERROR, |
2959 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
2960 | errmsg("attribute %d has wrong type" , fieldnum), |
2961 | errdetail("Table has type %s, but query expects %s." , |
2962 | format_type_be(attr->atttypid), |
2963 | format_type_be(op->d.fieldselect.resulttype)))); |
2964 | |
2965 | /* heap_getattr needs a HeapTuple not a bare HeapTupleHeader */ |
2966 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple); |
2967 | tmptup.t_data = tuple; |
2968 | |
2969 | /* extract the field */ |
2970 | *op->resvalue = heap_getattr(&tmptup, |
2971 | fieldnum, |
2972 | tupDesc, |
2973 | op->resnull); |
2974 | } |
2975 | } |
2976 | |
2977 | /* |
2978 | * Deform source tuple, filling in the step's values/nulls arrays, before |
2979 | * evaluating individual new values as part of a FieldStore expression. |
2980 | * Subsequent steps will overwrite individual elements of the values/nulls |
2981 | * arrays with the new field values, and then FIELDSTORE_FORM will build the |
2982 | * new tuple value. |
2983 | * |
2984 | * Source record is in step's result variable. |
2985 | */ |
2986 | void |
2987 | ExecEvalFieldStoreDeForm(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
2988 | { |
2989 | TupleDesc tupDesc; |
2990 | |
2991 | /* Lookup tupdesc if first time through or after rescan */ |
2992 | tupDesc = get_cached_rowtype(op->d.fieldstore.fstore->resulttype, -1, |
2993 | op->d.fieldstore.argdesc, econtext); |
2994 | |
2995 | /* Check that current tupdesc doesn't have more fields than we allocated */ |
2996 | if (unlikely(tupDesc->natts > op->d.fieldstore.ncolumns)) |
2997 | elog(ERROR, "too many columns in composite type %u" , |
2998 | op->d.fieldstore.fstore->resulttype); |
2999 | |
3000 | if (*op->resnull) |
3001 | { |
3002 | /* Convert null input tuple into an all-nulls row */ |
3003 | memset(op->d.fieldstore.nulls, true, |
3004 | op->d.fieldstore.ncolumns * sizeof(bool)); |
3005 | } |
3006 | else |
3007 | { |
3008 | /* |
3009 | * heap_deform_tuple needs a HeapTuple not a bare HeapTupleHeader. We |
3010 | * set all the fields in the struct just in case. |
3011 | */ |
3012 | Datum tupDatum = *op->resvalue; |
3013 | HeapTupleHeader tuphdr; |
3014 | HeapTupleData tmptup; |
3015 | |
3016 | tuphdr = DatumGetHeapTupleHeader(tupDatum); |
3017 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuphdr); |
3018 | ItemPointerSetInvalid(&(tmptup.t_self)); |
3019 | tmptup.t_tableOid = InvalidOid; |
3020 | tmptup.t_data = tuphdr; |
3021 | |
3022 | heap_deform_tuple(&tmptup, tupDesc, |
3023 | op->d.fieldstore.values, |
3024 | op->d.fieldstore.nulls); |
3025 | } |
3026 | } |
3027 | |
3028 | /* |
3029 | * Compute the new composite datum after each individual field value of a |
3030 | * FieldStore expression has been evaluated. |
3031 | */ |
3032 | void |
3033 | ExecEvalFieldStoreForm(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
3034 | { |
3035 | HeapTuple tuple; |
3036 | |
3037 | /* argdesc should already be valid from the DeForm step */ |
3038 | tuple = heap_form_tuple(*op->d.fieldstore.argdesc, |
3039 | op->d.fieldstore.values, |
3040 | op->d.fieldstore.nulls); |
3041 | |
3042 | *op->resvalue = HeapTupleGetDatum(tuple); |
3043 | *op->resnull = false; |
3044 | } |
3045 | |
3046 | /* |
3047 | * Process a subscript in a SubscriptingRef expression. |
3048 | * |
3049 | * If subscript is NULL, throw error in assignment case, or in fetch case |
3050 | * set result to NULL and return false (instructing caller to skip the rest |
3051 | * of the SubscriptingRef sequence). |
3052 | * |
3053 | * Subscript expression result is in subscriptvalue/subscriptnull. |
3054 | * On success, integer subscript value has been saved in upperindex[] or |
3055 | * lowerindex[] for use later. |
3056 | */ |
3057 | bool |
3058 | ExecEvalSubscriptingRef(ExprState *state, ExprEvalStep *op) |
3059 | { |
3060 | SubscriptingRefState *sbsrefstate = op->d.sbsref_subscript.state; |
3061 | int *indexes; |
3062 | int off; |
3063 | |
3064 | /* If any index expr yields NULL, result is NULL or error */ |
3065 | if (sbsrefstate->subscriptnull) |
3066 | { |
3067 | if (sbsrefstate->isassignment) |
3068 | ereport(ERROR, |
3069 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
3070 | errmsg("array subscript in assignment must not be null" ))); |
3071 | *op->resnull = true; |
3072 | return false; |
3073 | } |
3074 | |
3075 | /* Convert datum to int, save in appropriate place */ |
3076 | if (op->d.sbsref_subscript.isupper) |
3077 | indexes = sbsrefstate->upperindex; |
3078 | else |
3079 | indexes = sbsrefstate->lowerindex; |
3080 | off = op->d.sbsref_subscript.off; |
3081 | |
3082 | indexes[off] = DatumGetInt32(sbsrefstate->subscriptvalue); |
3083 | |
3084 | return true; |
3085 | } |
3086 | |
3087 | /* |
3088 | * Evaluate SubscriptingRef fetch. |
3089 | * |
3090 | * Source container is in step's result variable. |
3091 | */ |
3092 | void |
3093 | ExecEvalSubscriptingRefFetch(ExprState *state, ExprEvalStep *op) |
3094 | { |
3095 | SubscriptingRefState *sbsrefstate = op->d.sbsref.state; |
3096 | |
3097 | /* Should not get here if source container (or any subscript) is null */ |
3098 | Assert(!(*op->resnull)); |
3099 | |
3100 | if (sbsrefstate->numlower == 0) |
3101 | { |
3102 | /* Scalar case */ |
3103 | *op->resvalue = array_get_element(*op->resvalue, |
3104 | sbsrefstate->numupper, |
3105 | sbsrefstate->upperindex, |
3106 | sbsrefstate->refattrlength, |
3107 | sbsrefstate->refelemlength, |
3108 | sbsrefstate->refelembyval, |
3109 | sbsrefstate->refelemalign, |
3110 | op->resnull); |
3111 | } |
3112 | else |
3113 | { |
3114 | /* Slice case */ |
3115 | *op->resvalue = array_get_slice(*op->resvalue, |
3116 | sbsrefstate->numupper, |
3117 | sbsrefstate->upperindex, |
3118 | sbsrefstate->lowerindex, |
3119 | sbsrefstate->upperprovided, |
3120 | sbsrefstate->lowerprovided, |
3121 | sbsrefstate->refattrlength, |
3122 | sbsrefstate->refelemlength, |
3123 | sbsrefstate->refelembyval, |
3124 | sbsrefstate->refelemalign); |
3125 | } |
3126 | } |
3127 | |
3128 | /* |
3129 | * Compute old container element/slice value for a SubscriptingRef assignment |
3130 | * expression. Will only be generated if the new-value subexpression |
3131 | * contains SubscriptingRef or FieldStore. The value is stored into the |
3132 | * SubscriptingRefState's prevvalue/prevnull fields. |
3133 | */ |
3134 | void |
3135 | ExecEvalSubscriptingRefOld(ExprState *state, ExprEvalStep *op) |
3136 | { |
3137 | SubscriptingRefState *sbsrefstate = op->d.sbsref.state; |
3138 | |
3139 | if (*op->resnull) |
3140 | { |
3141 | /* whole array is null, so any element or slice is too */ |
3142 | sbsrefstate->prevvalue = (Datum) 0; |
3143 | sbsrefstate->prevnull = true; |
3144 | } |
3145 | else if (sbsrefstate->numlower == 0) |
3146 | { |
3147 | /* Scalar case */ |
3148 | sbsrefstate->prevvalue = array_get_element(*op->resvalue, |
3149 | sbsrefstate->numupper, |
3150 | sbsrefstate->upperindex, |
3151 | sbsrefstate->refattrlength, |
3152 | sbsrefstate->refelemlength, |
3153 | sbsrefstate->refelembyval, |
3154 | sbsrefstate->refelemalign, |
3155 | &sbsrefstate->prevnull); |
3156 | } |
3157 | else |
3158 | { |
3159 | /* Slice case */ |
3160 | /* this is currently unreachable */ |
3161 | sbsrefstate->prevvalue = array_get_slice(*op->resvalue, |
3162 | sbsrefstate->numupper, |
3163 | sbsrefstate->upperindex, |
3164 | sbsrefstate->lowerindex, |
3165 | sbsrefstate->upperprovided, |
3166 | sbsrefstate->lowerprovided, |
3167 | sbsrefstate->refattrlength, |
3168 | sbsrefstate->refelemlength, |
3169 | sbsrefstate->refelembyval, |
3170 | sbsrefstate->refelemalign); |
3171 | sbsrefstate->prevnull = false; |
3172 | } |
3173 | } |
3174 | |
3175 | /* |
3176 | * Evaluate SubscriptingRef assignment. |
3177 | * |
3178 | * Input container (possibly null) is in result area, replacement value is in |
3179 | * SubscriptingRefState's replacevalue/replacenull. |
3180 | */ |
3181 | void |
3182 | ExecEvalSubscriptingRefAssign(ExprState *state, ExprEvalStep *op) |
3183 | { |
3184 | SubscriptingRefState *sbsrefstate = op->d.sbsref_subscript.state; |
3185 | |
3186 | /* |
3187 | * For an assignment to a fixed-length container type, both the original |
3188 | * container and the value to be assigned into it must be non-NULL, else |
3189 | * we punt and return the original container. |
3190 | */ |
3191 | if (sbsrefstate->refattrlength > 0) |
3192 | { |
3193 | if (*op->resnull || sbsrefstate->replacenull) |
3194 | return; |
3195 | } |
3196 | |
3197 | /* |
3198 | * For assignment to varlena arrays, we handle a NULL original array by |
3199 | * substituting an empty (zero-dimensional) array; insertion of the new |
3200 | * element will result in a singleton array value. It does not matter |
3201 | * whether the new element is NULL. |
3202 | */ |
3203 | if (*op->resnull) |
3204 | { |
3205 | *op->resvalue = PointerGetDatum(construct_empty_array(sbsrefstate->refelemtype)); |
3206 | *op->resnull = false; |
3207 | } |
3208 | |
3209 | if (sbsrefstate->numlower == 0) |
3210 | { |
3211 | /* Scalar case */ |
3212 | *op->resvalue = array_set_element(*op->resvalue, |
3213 | sbsrefstate->numupper, |
3214 | sbsrefstate->upperindex, |
3215 | sbsrefstate->replacevalue, |
3216 | sbsrefstate->replacenull, |
3217 | sbsrefstate->refattrlength, |
3218 | sbsrefstate->refelemlength, |
3219 | sbsrefstate->refelembyval, |
3220 | sbsrefstate->refelemalign); |
3221 | } |
3222 | else |
3223 | { |
3224 | /* Slice case */ |
3225 | *op->resvalue = array_set_slice(*op->resvalue, |
3226 | sbsrefstate->numupper, |
3227 | sbsrefstate->upperindex, |
3228 | sbsrefstate->lowerindex, |
3229 | sbsrefstate->upperprovided, |
3230 | sbsrefstate->lowerprovided, |
3231 | sbsrefstate->replacevalue, |
3232 | sbsrefstate->replacenull, |
3233 | sbsrefstate->refattrlength, |
3234 | sbsrefstate->refelemlength, |
3235 | sbsrefstate->refelembyval, |
3236 | sbsrefstate->refelemalign); |
3237 | } |
3238 | } |
3239 | |
3240 | /* |
3241 | * Evaluate a rowtype coercion operation. |
3242 | * This may require rearranging field positions. |
3243 | * |
3244 | * Source record is in step's result variable. |
3245 | */ |
3246 | void |
3247 | ExecEvalConvertRowtype(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
3248 | { |
3249 | ConvertRowtypeExpr *convert = op->d.convert_rowtype.convert; |
3250 | HeapTuple result; |
3251 | Datum tupDatum; |
3252 | HeapTupleHeader tuple; |
3253 | HeapTupleData tmptup; |
3254 | TupleDesc indesc, |
3255 | outdesc; |
3256 | |
3257 | /* NULL in -> NULL out */ |
3258 | if (*op->resnull) |
3259 | return; |
3260 | |
3261 | tupDatum = *op->resvalue; |
3262 | tuple = DatumGetHeapTupleHeader(tupDatum); |
3263 | |
3264 | /* Lookup tupdescs if first time through or after rescan */ |
3265 | if (op->d.convert_rowtype.indesc == NULL) |
3266 | { |
3267 | get_cached_rowtype(exprType((Node *) convert->arg), -1, |
3268 | &op->d.convert_rowtype.indesc, |
3269 | econtext); |
3270 | op->d.convert_rowtype.initialized = false; |
3271 | } |
3272 | if (op->d.convert_rowtype.outdesc == NULL) |
3273 | { |
3274 | get_cached_rowtype(convert->resulttype, -1, |
3275 | &op->d.convert_rowtype.outdesc, |
3276 | econtext); |
3277 | op->d.convert_rowtype.initialized = false; |
3278 | } |
3279 | |
3280 | indesc = op->d.convert_rowtype.indesc; |
3281 | outdesc = op->d.convert_rowtype.outdesc; |
3282 | |
3283 | /* |
3284 | * We used to be able to assert that incoming tuples are marked with |
3285 | * exactly the rowtype of indesc. However, now that ExecEvalWholeRowVar |
3286 | * might change the tuples' marking to plain RECORD due to inserting |
3287 | * aliases, we can only make this weak test: |
3288 | */ |
3289 | Assert(HeapTupleHeaderGetTypeId(tuple) == indesc->tdtypeid || |
3290 | HeapTupleHeaderGetTypeId(tuple) == RECORDOID); |
3291 | |
3292 | /* if first time through, initialize conversion map */ |
3293 | if (!op->d.convert_rowtype.initialized) |
3294 | { |
3295 | MemoryContext old_cxt; |
3296 | |
3297 | /* allocate map in long-lived memory context */ |
3298 | old_cxt = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
3299 | |
3300 | /* prepare map from old to new attribute numbers */ |
3301 | op->d.convert_rowtype.map = |
3302 | convert_tuples_by_name(indesc, outdesc, |
3303 | gettext_noop("could not convert row type" )); |
3304 | op->d.convert_rowtype.initialized = true; |
3305 | |
3306 | MemoryContextSwitchTo(old_cxt); |
3307 | } |
3308 | |
3309 | /* Following steps need a HeapTuple not a bare HeapTupleHeader */ |
3310 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple); |
3311 | tmptup.t_data = tuple; |
3312 | |
3313 | if (op->d.convert_rowtype.map != NULL) |
3314 | { |
3315 | /* Full conversion with attribute rearrangement needed */ |
3316 | result = execute_attr_map_tuple(&tmptup, op->d.convert_rowtype.map); |
3317 | /* Result already has appropriate composite-datum header fields */ |
3318 | *op->resvalue = HeapTupleGetDatum(result); |
3319 | } |
3320 | else |
3321 | { |
3322 | /* |
3323 | * The tuple is physically compatible as-is, but we need to insert the |
3324 | * destination rowtype OID in its composite-datum header field, so we |
3325 | * have to copy it anyway. heap_copy_tuple_as_datum() is convenient |
3326 | * for this since it will both make the physical copy and insert the |
3327 | * correct composite header fields. Note that we aren't expecting to |
3328 | * have to flatten any toasted fields: the input was a composite |
3329 | * datum, so it shouldn't contain any. So heap_copy_tuple_as_datum() |
3330 | * is overkill here, but its check for external fields is cheap. |
3331 | */ |
3332 | *op->resvalue = heap_copy_tuple_as_datum(&tmptup, outdesc); |
3333 | } |
3334 | } |
3335 | |
3336 | /* |
3337 | * Evaluate "scalar op ANY/ALL (array)". |
3338 | * |
3339 | * Source array is in our result area, scalar arg is already evaluated into |
3340 | * fcinfo->args[0]. |
3341 | * |
3342 | * The operator always yields boolean, and we combine the results across all |
3343 | * array elements using OR and AND (for ANY and ALL respectively). Of course |
3344 | * we short-circuit as soon as the result is known. |
3345 | */ |
3346 | void |
3347 | ExecEvalScalarArrayOp(ExprState *state, ExprEvalStep *op) |
3348 | { |
3349 | FunctionCallInfo fcinfo = op->d.scalararrayop.fcinfo_data; |
3350 | bool useOr = op->d.scalararrayop.useOr; |
3351 | bool strictfunc = op->d.scalararrayop.finfo->fn_strict; |
3352 | ArrayType *arr; |
3353 | int nitems; |
3354 | Datum result; |
3355 | bool resultnull; |
3356 | int i; |
3357 | int16 typlen; |
3358 | bool typbyval; |
3359 | char typalign; |
3360 | char *s; |
3361 | bits8 *bitmap; |
3362 | int bitmask; |
3363 | |
3364 | /* |
3365 | * If the array is NULL then we return NULL --- it's not very meaningful |
3366 | * to do anything else, even if the operator isn't strict. |
3367 | */ |
3368 | if (*op->resnull) |
3369 | return; |
3370 | |
3371 | /* Else okay to fetch and detoast the array */ |
3372 | arr = DatumGetArrayTypeP(*op->resvalue); |
3373 | |
3374 | /* |
3375 | * If the array is empty, we return either FALSE or TRUE per the useOr |
3376 | * flag. This is correct even if the scalar is NULL; since we would |
3377 | * evaluate the operator zero times, it matters not whether it would want |
3378 | * to return NULL. |
3379 | */ |
3380 | nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr)); |
3381 | if (nitems <= 0) |
3382 | { |
3383 | *op->resvalue = BoolGetDatum(!useOr); |
3384 | *op->resnull = false; |
3385 | return; |
3386 | } |
3387 | |
3388 | /* |
3389 | * If the scalar is NULL, and the function is strict, return NULL; no |
3390 | * point in iterating the loop. |
3391 | */ |
3392 | if (fcinfo->args[0].isnull && strictfunc) |
3393 | { |
3394 | *op->resnull = true; |
3395 | return; |
3396 | } |
3397 | |
3398 | /* |
3399 | * We arrange to look up info about the element type only once per series |
3400 | * of calls, assuming the element type doesn't change underneath us. |
3401 | */ |
3402 | if (op->d.scalararrayop.element_type != ARR_ELEMTYPE(arr)) |
3403 | { |
3404 | get_typlenbyvalalign(ARR_ELEMTYPE(arr), |
3405 | &op->d.scalararrayop.typlen, |
3406 | &op->d.scalararrayop.typbyval, |
3407 | &op->d.scalararrayop.typalign); |
3408 | op->d.scalararrayop.element_type = ARR_ELEMTYPE(arr); |
3409 | } |
3410 | |
3411 | typlen = op->d.scalararrayop.typlen; |
3412 | typbyval = op->d.scalararrayop.typbyval; |
3413 | typalign = op->d.scalararrayop.typalign; |
3414 | |
3415 | /* Initialize result appropriately depending on useOr */ |
3416 | result = BoolGetDatum(!useOr); |
3417 | resultnull = false; |
3418 | |
3419 | /* Loop over the array elements */ |
3420 | s = (char *) ARR_DATA_PTR(arr); |
3421 | bitmap = ARR_NULLBITMAP(arr); |
3422 | bitmask = 1; |
3423 | |
3424 | for (i = 0; i < nitems; i++) |
3425 | { |
3426 | Datum elt; |
3427 | Datum thisresult; |
3428 | |
3429 | /* Get array element, checking for NULL */ |
3430 | if (bitmap && (*bitmap & bitmask) == 0) |
3431 | { |
3432 | fcinfo->args[1].value = (Datum) 0; |
3433 | fcinfo->args[1].isnull = true; |
3434 | } |
3435 | else |
3436 | { |
3437 | elt = fetch_att(s, typbyval, typlen); |
3438 | s = att_addlength_pointer(s, typlen, s); |
3439 | s = (char *) att_align_nominal(s, typalign); |
3440 | fcinfo->args[1].value = elt; |
3441 | fcinfo->args[1].isnull = false; |
3442 | } |
3443 | |
3444 | /* Call comparison function */ |
3445 | if (fcinfo->args[1].isnull && strictfunc) |
3446 | { |
3447 | fcinfo->isnull = true; |
3448 | thisresult = (Datum) 0; |
3449 | } |
3450 | else |
3451 | { |
3452 | fcinfo->isnull = false; |
3453 | thisresult = op->d.scalararrayop.fn_addr(fcinfo); |
3454 | } |
3455 | |
3456 | /* Combine results per OR or AND semantics */ |
3457 | if (fcinfo->isnull) |
3458 | resultnull = true; |
3459 | else if (useOr) |
3460 | { |
3461 | if (DatumGetBool(thisresult)) |
3462 | { |
3463 | result = BoolGetDatum(true); |
3464 | resultnull = false; |
3465 | break; /* needn't look at any more elements */ |
3466 | } |
3467 | } |
3468 | else |
3469 | { |
3470 | if (!DatumGetBool(thisresult)) |
3471 | { |
3472 | result = BoolGetDatum(false); |
3473 | resultnull = false; |
3474 | break; /* needn't look at any more elements */ |
3475 | } |
3476 | } |
3477 | |
3478 | /* advance bitmap pointer if any */ |
3479 | if (bitmap) |
3480 | { |
3481 | bitmask <<= 1; |
3482 | if (bitmask == 0x100) |
3483 | { |
3484 | bitmap++; |
3485 | bitmask = 1; |
3486 | } |
3487 | } |
3488 | } |
3489 | |
3490 | *op->resvalue = result; |
3491 | *op->resnull = resultnull; |
3492 | } |
3493 | |
3494 | /* |
3495 | * Evaluate a NOT NULL domain constraint. |
3496 | */ |
3497 | void |
3498 | ExecEvalConstraintNotNull(ExprState *state, ExprEvalStep *op) |
3499 | { |
3500 | if (*op->resnull) |
3501 | ereport(ERROR, |
3502 | (errcode(ERRCODE_NOT_NULL_VIOLATION), |
3503 | errmsg("domain %s does not allow null values" , |
3504 | format_type_be(op->d.domaincheck.resulttype)), |
3505 | errdatatype(op->d.domaincheck.resulttype))); |
3506 | } |
3507 | |
3508 | /* |
3509 | * Evaluate a CHECK domain constraint. |
3510 | */ |
3511 | void |
3512 | ExecEvalConstraintCheck(ExprState *state, ExprEvalStep *op) |
3513 | { |
3514 | if (!*op->d.domaincheck.checknull && |
3515 | !DatumGetBool(*op->d.domaincheck.checkvalue)) |
3516 | ereport(ERROR, |
3517 | (errcode(ERRCODE_CHECK_VIOLATION), |
3518 | errmsg("value for domain %s violates check constraint \"%s\"" , |
3519 | format_type_be(op->d.domaincheck.resulttype), |
3520 | op->d.domaincheck.constraintname), |
3521 | errdomainconstraint(op->d.domaincheck.resulttype, |
3522 | op->d.domaincheck.constraintname))); |
3523 | } |
3524 | |
3525 | /* |
3526 | * Evaluate the various forms of XmlExpr. |
3527 | * |
3528 | * Arguments have been evaluated into named_argvalue/named_argnull |
3529 | * and/or argvalue/argnull arrays. |
3530 | */ |
3531 | void |
3532 | ExecEvalXmlExpr(ExprState *state, ExprEvalStep *op) |
3533 | { |
3534 | XmlExpr *xexpr = op->d.xmlexpr.xexpr; |
3535 | Datum value; |
3536 | int i; |
3537 | |
3538 | *op->resnull = true; /* until we get a result */ |
3539 | *op->resvalue = (Datum) 0; |
3540 | |
3541 | switch (xexpr->op) |
3542 | { |
3543 | case IS_XMLCONCAT: |
3544 | { |
3545 | Datum *argvalue = op->d.xmlexpr.argvalue; |
3546 | bool *argnull = op->d.xmlexpr.argnull; |
3547 | List *values = NIL; |
3548 | |
3549 | for (i = 0; i < list_length(xexpr->args); i++) |
3550 | { |
3551 | if (!argnull[i]) |
3552 | values = lappend(values, DatumGetPointer(argvalue[i])); |
3553 | } |
3554 | |
3555 | if (values != NIL) |
3556 | { |
3557 | *op->resvalue = PointerGetDatum(xmlconcat(values)); |
3558 | *op->resnull = false; |
3559 | } |
3560 | } |
3561 | break; |
3562 | |
3563 | case IS_XMLFOREST: |
3564 | { |
3565 | Datum *argvalue = op->d.xmlexpr.named_argvalue; |
3566 | bool *argnull = op->d.xmlexpr.named_argnull; |
3567 | StringInfoData buf; |
3568 | ListCell *lc; |
3569 | ListCell *lc2; |
3570 | |
3571 | initStringInfo(&buf); |
3572 | |
3573 | i = 0; |
3574 | forboth(lc, xexpr->named_args, lc2, xexpr->arg_names) |
3575 | { |
3576 | Expr *e = (Expr *) lfirst(lc); |
3577 | char *argname = strVal(lfirst(lc2)); |
3578 | |
3579 | if (!argnull[i]) |
3580 | { |
3581 | value = argvalue[i]; |
3582 | appendStringInfo(&buf, "<%s>%s</%s>" , |
3583 | argname, |
3584 | map_sql_value_to_xml_value(value, |
3585 | exprType((Node *) e), true), |
3586 | argname); |
3587 | *op->resnull = false; |
3588 | } |
3589 | i++; |
3590 | } |
3591 | |
3592 | if (!*op->resnull) |
3593 | { |
3594 | text *result; |
3595 | |
3596 | result = cstring_to_text_with_len(buf.data, buf.len); |
3597 | *op->resvalue = PointerGetDatum(result); |
3598 | } |
3599 | |
3600 | pfree(buf.data); |
3601 | } |
3602 | break; |
3603 | |
3604 | case IS_XMLELEMENT: |
3605 | *op->resvalue = PointerGetDatum(xmlelement(xexpr, |
3606 | op->d.xmlexpr.named_argvalue, |
3607 | op->d.xmlexpr.named_argnull, |
3608 | op->d.xmlexpr.argvalue, |
3609 | op->d.xmlexpr.argnull)); |
3610 | *op->resnull = false; |
3611 | break; |
3612 | |
3613 | case IS_XMLPARSE: |
3614 | { |
3615 | Datum *argvalue = op->d.xmlexpr.argvalue; |
3616 | bool *argnull = op->d.xmlexpr.argnull; |
3617 | text *data; |
3618 | bool preserve_whitespace; |
3619 | |
3620 | /* arguments are known to be text, bool */ |
3621 | Assert(list_length(xexpr->args) == 2); |
3622 | |
3623 | if (argnull[0]) |
3624 | return; |
3625 | value = argvalue[0]; |
3626 | data = DatumGetTextPP(value); |
3627 | |
3628 | if (argnull[1]) /* probably can't happen */ |
3629 | return; |
3630 | value = argvalue[1]; |
3631 | preserve_whitespace = DatumGetBool(value); |
3632 | |
3633 | *op->resvalue = PointerGetDatum(xmlparse(data, |
3634 | xexpr->xmloption, |
3635 | preserve_whitespace)); |
3636 | *op->resnull = false; |
3637 | } |
3638 | break; |
3639 | |
3640 | case IS_XMLPI: |
3641 | { |
3642 | text *arg; |
3643 | bool isnull; |
3644 | |
3645 | /* optional argument is known to be text */ |
3646 | Assert(list_length(xexpr->args) <= 1); |
3647 | |
3648 | if (xexpr->args) |
3649 | { |
3650 | isnull = op->d.xmlexpr.argnull[0]; |
3651 | if (isnull) |
3652 | arg = NULL; |
3653 | else |
3654 | arg = DatumGetTextPP(op->d.xmlexpr.argvalue[0]); |
3655 | } |
3656 | else |
3657 | { |
3658 | arg = NULL; |
3659 | isnull = false; |
3660 | } |
3661 | |
3662 | *op->resvalue = PointerGetDatum(xmlpi(xexpr->name, |
3663 | arg, |
3664 | isnull, |
3665 | op->resnull)); |
3666 | } |
3667 | break; |
3668 | |
3669 | case IS_XMLROOT: |
3670 | { |
3671 | Datum *argvalue = op->d.xmlexpr.argvalue; |
3672 | bool *argnull = op->d.xmlexpr.argnull; |
3673 | xmltype *data; |
3674 | text *version; |
3675 | int standalone; |
3676 | |
3677 | /* arguments are known to be xml, text, int */ |
3678 | Assert(list_length(xexpr->args) == 3); |
3679 | |
3680 | if (argnull[0]) |
3681 | return; |
3682 | data = DatumGetXmlP(argvalue[0]); |
3683 | |
3684 | if (argnull[1]) |
3685 | version = NULL; |
3686 | else |
3687 | version = DatumGetTextPP(argvalue[1]); |
3688 | |
3689 | Assert(!argnull[2]); /* always present */ |
3690 | standalone = DatumGetInt32(argvalue[2]); |
3691 | |
3692 | *op->resvalue = PointerGetDatum(xmlroot(data, |
3693 | version, |
3694 | standalone)); |
3695 | *op->resnull = false; |
3696 | } |
3697 | break; |
3698 | |
3699 | case IS_XMLSERIALIZE: |
3700 | { |
3701 | Datum *argvalue = op->d.xmlexpr.argvalue; |
3702 | bool *argnull = op->d.xmlexpr.argnull; |
3703 | |
3704 | /* argument type is known to be xml */ |
3705 | Assert(list_length(xexpr->args) == 1); |
3706 | |
3707 | if (argnull[0]) |
3708 | return; |
3709 | value = argvalue[0]; |
3710 | |
3711 | *op->resvalue = PointerGetDatum( |
3712 | xmltotext_with_xmloption(DatumGetXmlP(value), |
3713 | xexpr->xmloption)); |
3714 | *op->resnull = false; |
3715 | } |
3716 | break; |
3717 | |
3718 | case IS_DOCUMENT: |
3719 | { |
3720 | Datum *argvalue = op->d.xmlexpr.argvalue; |
3721 | bool *argnull = op->d.xmlexpr.argnull; |
3722 | |
3723 | /* optional argument is known to be xml */ |
3724 | Assert(list_length(xexpr->args) == 1); |
3725 | |
3726 | if (argnull[0]) |
3727 | return; |
3728 | value = argvalue[0]; |
3729 | |
3730 | *op->resvalue = |
3731 | BoolGetDatum(xml_is_document(DatumGetXmlP(value))); |
3732 | *op->resnull = false; |
3733 | } |
3734 | break; |
3735 | |
3736 | default: |
3737 | elog(ERROR, "unrecognized XML operation" ); |
3738 | break; |
3739 | } |
3740 | } |
3741 | |
3742 | /* |
3743 | * ExecEvalGroupingFunc |
3744 | * |
3745 | * Computes a bitmask with a bit for each (unevaluated) argument expression |
3746 | * (rightmost arg is least significant bit). |
3747 | * |
3748 | * A bit is set if the corresponding expression is NOT part of the set of |
3749 | * grouping expressions in the current grouping set. |
3750 | */ |
3751 | void |
3752 | ExecEvalGroupingFunc(ExprState *state, ExprEvalStep *op) |
3753 | { |
3754 | int result = 0; |
3755 | Bitmapset *grouped_cols = op->d.grouping_func.parent->grouped_cols; |
3756 | ListCell *lc; |
3757 | |
3758 | foreach(lc, op->d.grouping_func.clauses) |
3759 | { |
3760 | int attnum = lfirst_int(lc); |
3761 | |
3762 | result <<= 1; |
3763 | |
3764 | if (!bms_is_member(attnum, grouped_cols)) |
3765 | result |= 1; |
3766 | } |
3767 | |
3768 | *op->resvalue = Int32GetDatum(result); |
3769 | *op->resnull = false; |
3770 | } |
3771 | |
3772 | /* |
3773 | * Hand off evaluation of a subplan to nodeSubplan.c |
3774 | */ |
3775 | void |
3776 | ExecEvalSubPlan(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
3777 | { |
3778 | SubPlanState *sstate = op->d.subplan.sstate; |
3779 | |
3780 | /* could potentially be nested, so make sure there's enough stack */ |
3781 | check_stack_depth(); |
3782 | |
3783 | *op->resvalue = ExecSubPlan(sstate, econtext, op->resnull); |
3784 | } |
3785 | |
3786 | /* |
3787 | * Hand off evaluation of an alternative subplan to nodeSubplan.c |
3788 | */ |
3789 | void |
3790 | ExecEvalAlternativeSubPlan(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
3791 | { |
3792 | AlternativeSubPlanState *asstate = op->d.alternative_subplan.asstate; |
3793 | |
3794 | /* could potentially be nested, so make sure there's enough stack */ |
3795 | check_stack_depth(); |
3796 | |
3797 | *op->resvalue = ExecAlternativeSubPlan(asstate, econtext, op->resnull); |
3798 | } |
3799 | |
3800 | /* |
3801 | * Evaluate a wholerow Var expression. |
3802 | * |
3803 | * Returns a Datum whose value is the value of a whole-row range variable |
3804 | * with respect to given expression context. |
3805 | */ |
3806 | void |
3807 | ExecEvalWholeRowVar(ExprState *state, ExprEvalStep *op, ExprContext *econtext) |
3808 | { |
3809 | Var *variable = op->d.wholerow.var; |
3810 | TupleTableSlot *slot; |
3811 | TupleDesc output_tupdesc; |
3812 | MemoryContext oldcontext; |
3813 | HeapTupleHeader dtuple; |
3814 | HeapTuple tuple; |
3815 | |
3816 | /* This was checked by ExecInitExpr */ |
3817 | Assert(variable->varattno == InvalidAttrNumber); |
3818 | |
3819 | /* Get the input slot we want */ |
3820 | switch (variable->varno) |
3821 | { |
3822 | case INNER_VAR: |
3823 | /* get the tuple from the inner node */ |
3824 | slot = econtext->ecxt_innertuple; |
3825 | break; |
3826 | |
3827 | case OUTER_VAR: |
3828 | /* get the tuple from the outer node */ |
3829 | slot = econtext->ecxt_outertuple; |
3830 | break; |
3831 | |
3832 | /* INDEX_VAR is handled by default case */ |
3833 | |
3834 | default: |
3835 | /* get the tuple from the relation being scanned */ |
3836 | slot = econtext->ecxt_scantuple; |
3837 | break; |
3838 | } |
3839 | |
3840 | /* Apply the junkfilter if any */ |
3841 | if (op->d.wholerow.junkFilter != NULL) |
3842 | slot = ExecFilterJunk(op->d.wholerow.junkFilter, slot); |
3843 | |
3844 | /* |
3845 | * If first time through, obtain tuple descriptor and check compatibility. |
3846 | * |
3847 | * XXX: It'd be great if this could be moved to the expression |
3848 | * initialization phase, but due to using slots that's currently not |
3849 | * feasible. |
3850 | */ |
3851 | if (op->d.wholerow.first) |
3852 | { |
3853 | /* optimistically assume we don't need slow path */ |
3854 | op->d.wholerow.slow = false; |
3855 | |
3856 | /* |
3857 | * If the Var identifies a named composite type, we must check that |
3858 | * the actual tuple type is compatible with it. |
3859 | */ |
3860 | if (variable->vartype != RECORDOID) |
3861 | { |
3862 | TupleDesc var_tupdesc; |
3863 | TupleDesc slot_tupdesc; |
3864 | int i; |
3865 | |
3866 | /* |
3867 | * We really only care about numbers of attributes and data types. |
3868 | * Also, we can ignore type mismatch on columns that are dropped |
3869 | * in the destination type, so long as (1) the physical storage |
3870 | * matches or (2) the actual column value is NULL. Case (1) is |
3871 | * helpful in some cases involving out-of-date cached plans, while |
3872 | * case (2) is expected behavior in situations such as an INSERT |
3873 | * into a table with dropped columns (the planner typically |
3874 | * generates an INT4 NULL regardless of the dropped column type). |
3875 | * If we find a dropped column and cannot verify that case (1) |
3876 | * holds, we have to use the slow path to check (2) for each row. |
3877 | * |
3878 | * If vartype is a domain over composite, just look through that |
3879 | * to the base composite type. |
3880 | */ |
3881 | var_tupdesc = lookup_rowtype_tupdesc_domain(variable->vartype, |
3882 | -1, false); |
3883 | |
3884 | slot_tupdesc = slot->tts_tupleDescriptor; |
3885 | |
3886 | if (var_tupdesc->natts != slot_tupdesc->natts) |
3887 | ereport(ERROR, |
3888 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
3889 | errmsg("table row type and query-specified row type do not match" ), |
3890 | errdetail_plural("Table row contains %d attribute, but query expects %d." , |
3891 | "Table row contains %d attributes, but query expects %d." , |
3892 | slot_tupdesc->natts, |
3893 | slot_tupdesc->natts, |
3894 | var_tupdesc->natts))); |
3895 | |
3896 | for (i = 0; i < var_tupdesc->natts; i++) |
3897 | { |
3898 | Form_pg_attribute vattr = TupleDescAttr(var_tupdesc, i); |
3899 | Form_pg_attribute sattr = TupleDescAttr(slot_tupdesc, i); |
3900 | |
3901 | if (vattr->atttypid == sattr->atttypid) |
3902 | continue; /* no worries */ |
3903 | if (!vattr->attisdropped) |
3904 | ereport(ERROR, |
3905 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
3906 | errmsg("table row type and query-specified row type do not match" ), |
3907 | errdetail("Table has type %s at ordinal position %d, but query expects %s." , |
3908 | format_type_be(sattr->atttypid), |
3909 | i + 1, |
3910 | format_type_be(vattr->atttypid)))); |
3911 | |
3912 | if (vattr->attlen != sattr->attlen || |
3913 | vattr->attalign != sattr->attalign) |
3914 | op->d.wholerow.slow = true; /* need to check for nulls */ |
3915 | } |
3916 | |
3917 | /* |
3918 | * Use the variable's declared rowtype as the descriptor for the |
3919 | * output values, modulo possibly assigning new column names |
3920 | * below. In particular, we *must* absorb any attisdropped |
3921 | * markings. |
3922 | */ |
3923 | oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
3924 | output_tupdesc = CreateTupleDescCopy(var_tupdesc); |
3925 | MemoryContextSwitchTo(oldcontext); |
3926 | |
3927 | ReleaseTupleDesc(var_tupdesc); |
3928 | } |
3929 | else |
3930 | { |
3931 | /* |
3932 | * In the RECORD case, we use the input slot's rowtype as the |
3933 | * descriptor for the output values, modulo possibly assigning new |
3934 | * column names below. |
3935 | */ |
3936 | oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
3937 | output_tupdesc = CreateTupleDescCopy(slot->tts_tupleDescriptor); |
3938 | MemoryContextSwitchTo(oldcontext); |
3939 | } |
3940 | |
3941 | /* |
3942 | * Construct a tuple descriptor for the composite values we'll |
3943 | * produce, and make sure its record type is "blessed". The main |
3944 | * reason to do this is to be sure that operations such as |
3945 | * row_to_json() will see the desired column names when they look up |
3946 | * the descriptor from the type information embedded in the composite |
3947 | * values. |
3948 | * |
3949 | * We already got the correct physical datatype info above, but now we |
3950 | * should try to find the source RTE and adopt its column aliases, in |
3951 | * case they are different from the original rowtype's names. For |
3952 | * example, in "SELECT foo(t) FROM tab t(x,y)", the first two columns |
3953 | * in the composite output should be named "x" and "y" regardless of |
3954 | * tab's column names. |
3955 | * |
3956 | * If we can't locate the RTE, assume the column names we've got are |
3957 | * OK. (As of this writing, the only cases where we can't locate the |
3958 | * RTE are in execution of trigger WHEN clauses, and then the Var will |
3959 | * have the trigger's relation's rowtype, so its names are fine.) |
3960 | * Also, if the creator of the RTE didn't bother to fill in an eref |
3961 | * field, assume our column names are OK. (This happens in COPY, and |
3962 | * perhaps other places.) |
3963 | */ |
3964 | if (econtext->ecxt_estate && |
3965 | variable->varno <= econtext->ecxt_estate->es_range_table_size) |
3966 | { |
3967 | RangeTblEntry *rte = exec_rt_fetch(variable->varno, |
3968 | econtext->ecxt_estate); |
3969 | |
3970 | if (rte->eref) |
3971 | ExecTypeSetColNames(output_tupdesc, rte->eref->colnames); |
3972 | } |
3973 | |
3974 | /* Bless the tupdesc if needed, and save it in the execution state */ |
3975 | op->d.wholerow.tupdesc = BlessTupleDesc(output_tupdesc); |
3976 | |
3977 | op->d.wholerow.first = false; |
3978 | } |
3979 | |
3980 | /* |
3981 | * Make sure all columns of the slot are accessible in the slot's |
3982 | * Datum/isnull arrays. |
3983 | */ |
3984 | slot_getallattrs(slot); |
3985 | |
3986 | if (op->d.wholerow.slow) |
3987 | { |
3988 | /* Check to see if any dropped attributes are non-null */ |
3989 | TupleDesc tupleDesc = slot->tts_tupleDescriptor; |
3990 | TupleDesc var_tupdesc = op->d.wholerow.tupdesc; |
3991 | int i; |
3992 | |
3993 | Assert(var_tupdesc->natts == tupleDesc->natts); |
3994 | |
3995 | for (i = 0; i < var_tupdesc->natts; i++) |
3996 | { |
3997 | Form_pg_attribute vattr = TupleDescAttr(var_tupdesc, i); |
3998 | Form_pg_attribute sattr = TupleDescAttr(tupleDesc, i); |
3999 | |
4000 | if (!vattr->attisdropped) |
4001 | continue; /* already checked non-dropped cols */ |
4002 | if (slot->tts_isnull[i]) |
4003 | continue; /* null is always okay */ |
4004 | if (vattr->attlen != sattr->attlen || |
4005 | vattr->attalign != sattr->attalign) |
4006 | ereport(ERROR, |
4007 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
4008 | errmsg("table row type and query-specified row type do not match" ), |
4009 | errdetail("Physical storage mismatch on dropped attribute at ordinal position %d." , |
4010 | i + 1))); |
4011 | } |
4012 | } |
4013 | |
4014 | /* |
4015 | * Build a composite datum, making sure any toasted fields get detoasted. |
4016 | * |
4017 | * (Note: it is critical that we not change the slot's state here.) |
4018 | */ |
4019 | tuple = toast_build_flattened_tuple(slot->tts_tupleDescriptor, |
4020 | slot->tts_values, |
4021 | slot->tts_isnull); |
4022 | dtuple = tuple->t_data; |
4023 | |
4024 | /* |
4025 | * Label the datum with the composite type info we identified before. |
4026 | * |
4027 | * (Note: we could skip doing this by passing op->d.wholerow.tupdesc to |
4028 | * the tuple build step; but that seems a tad risky so let's not.) |
4029 | */ |
4030 | HeapTupleHeaderSetTypeId(dtuple, op->d.wholerow.tupdesc->tdtypeid); |
4031 | HeapTupleHeaderSetTypMod(dtuple, op->d.wholerow.tupdesc->tdtypmod); |
4032 | |
4033 | *op->resvalue = PointerGetDatum(dtuple); |
4034 | *op->resnull = false; |
4035 | } |
4036 | |
4037 | void |
4038 | ExecEvalSysVar(ExprState *state, ExprEvalStep *op, ExprContext *econtext, |
4039 | TupleTableSlot *slot) |
4040 | { |
4041 | Datum d; |
4042 | |
4043 | /* slot_getsysattr has sufficient defenses against bad attnums */ |
4044 | d = slot_getsysattr(slot, |
4045 | op->d.var.attnum, |
4046 | op->resnull); |
4047 | *op->resvalue = d; |
4048 | /* this ought to be unreachable, but it's cheap enough to check */ |
4049 | if (unlikely(*op->resnull)) |
4050 | elog(ERROR, "failed to fetch attribute from slot" ); |
4051 | } |
4052 | |
4053 | /* |
4054 | * Transition value has not been initialized. This is the first non-NULL input |
4055 | * value for a group. We use it as the initial value for transValue. |
4056 | */ |
4057 | void |
4058 | ExecAggInitGroup(AggState *aggstate, AggStatePerTrans pertrans, AggStatePerGroup pergroup) |
4059 | { |
4060 | FunctionCallInfo fcinfo = pertrans->transfn_fcinfo; |
4061 | MemoryContext oldContext; |
4062 | |
4063 | /* |
4064 | * We must copy the datum into aggcontext if it is pass-by-ref. We do not |
4065 | * need to pfree the old transValue, since it's NULL. (We already checked |
4066 | * that the agg's input type is binary-compatible with its transtype, so |
4067 | * straight copy here is OK.) |
4068 | */ |
4069 | oldContext = MemoryContextSwitchTo( |
4070 | aggstate->curaggcontext->ecxt_per_tuple_memory); |
4071 | pergroup->transValue = datumCopy(fcinfo->args[1].value, |
4072 | pertrans->transtypeByVal, |
4073 | pertrans->transtypeLen); |
4074 | pergroup->transValueIsNull = false; |
4075 | pergroup->noTransValue = false; |
4076 | MemoryContextSwitchTo(oldContext); |
4077 | } |
4078 | |
4079 | /* |
4080 | * Ensure that the current transition value is a child of the aggcontext, |
4081 | * rather than the per-tuple context. |
4082 | * |
4083 | * NB: This can change the current memory context. |
4084 | */ |
4085 | Datum |
4086 | ExecAggTransReparent(AggState *aggstate, AggStatePerTrans pertrans, |
4087 | Datum newValue, bool newValueIsNull, |
4088 | Datum oldValue, bool oldValueIsNull) |
4089 | { |
4090 | if (!newValueIsNull) |
4091 | { |
4092 | MemoryContextSwitchTo(aggstate->curaggcontext->ecxt_per_tuple_memory); |
4093 | if (DatumIsReadWriteExpandedObject(newValue, |
4094 | false, |
4095 | pertrans->transtypeLen) && |
4096 | MemoryContextGetParent(DatumGetEOHP(newValue)->eoh_context) == CurrentMemoryContext) |
4097 | /* do nothing */ ; |
4098 | else |
4099 | newValue = datumCopy(newValue, |
4100 | pertrans->transtypeByVal, |
4101 | pertrans->transtypeLen); |
4102 | } |
4103 | if (!oldValueIsNull) |
4104 | { |
4105 | if (DatumIsReadWriteExpandedObject(oldValue, |
4106 | false, |
4107 | pertrans->transtypeLen)) |
4108 | DeleteExpandedObject(oldValue); |
4109 | else |
4110 | pfree(DatumGetPointer(oldValue)); |
4111 | } |
4112 | |
4113 | return newValue; |
4114 | } |
4115 | |
4116 | /* |
4117 | * Invoke ordered transition function, with a datum argument. |
4118 | */ |
4119 | void |
4120 | ExecEvalAggOrderedTransDatum(ExprState *state, ExprEvalStep *op, |
4121 | ExprContext *econtext) |
4122 | { |
4123 | AggStatePerTrans pertrans = op->d.agg_trans.pertrans; |
4124 | int setno = op->d.agg_trans.setno; |
4125 | |
4126 | tuplesort_putdatum(pertrans->sortstates[setno], |
4127 | *op->resvalue, *op->resnull); |
4128 | } |
4129 | |
4130 | /* |
4131 | * Invoke ordered transition function, with a tuple argument. |
4132 | */ |
4133 | void |
4134 | ExecEvalAggOrderedTransTuple(ExprState *state, ExprEvalStep *op, |
4135 | ExprContext *econtext) |
4136 | { |
4137 | AggStatePerTrans pertrans = op->d.agg_trans.pertrans; |
4138 | int setno = op->d.agg_trans.setno; |
4139 | |
4140 | ExecClearTuple(pertrans->sortslot); |
4141 | pertrans->sortslot->tts_nvalid = pertrans->numInputs; |
4142 | ExecStoreVirtualTuple(pertrans->sortslot); |
4143 | tuplesort_puttupleslot(pertrans->sortstates[setno], pertrans->sortslot); |
4144 | } |
4145 | |