| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * execTuples.c |
| 4 | * Routines dealing with TupleTableSlots. These are used for resource |
| 5 | * management associated with tuples (eg, releasing buffer pins for |
| 6 | * tuples in disk buffers, or freeing the memory occupied by transient |
| 7 | * tuples). Slots also provide access abstraction that lets us implement |
| 8 | * "virtual" tuples to reduce data-copying overhead. |
| 9 | * |
| 10 | * Routines dealing with the type information for tuples. Currently, |
| 11 | * the type information for a tuple is an array of FormData_pg_attribute. |
| 12 | * This information is needed by routines manipulating tuples |
| 13 | * (getattribute, formtuple, etc.). |
| 14 | * |
| 15 | * |
| 16 | * EXAMPLE OF HOW TABLE ROUTINES WORK |
| 17 | * Suppose we have a query such as SELECT emp.name FROM emp and we have |
| 18 | * a single SeqScan node in the query plan. |
| 19 | * |
| 20 | * At ExecutorStart() |
| 21 | * ---------------- |
| 22 | |
| 23 | * - ExecInitSeqScan() calls ExecInitScanTupleSlot() to construct a |
| 24 | * TupleTableSlots for the tuples returned by the access method, and |
| 25 | * ExecInitResultTypeTL() to define the node's return |
| 26 | * type. ExecAssignScanProjectionInfo() will, if necessary, create |
| 27 | * another TupleTableSlot for the tuples resulting from performing |
| 28 | * target list projections. |
| 29 | * |
| 30 | * During ExecutorRun() |
| 31 | * ---------------- |
| 32 | * - SeqNext() calls ExecStoreBufferHeapTuple() to place the tuple |
| 33 | * returned by the access method into the scan tuple slot. |
| 34 | * |
| 35 | * - ExecSeqScan() (via ExecScan), if necessary, calls ExecProject(), |
| 36 | * putting the result of the projection in the result tuple slot. If |
| 37 | * not necessary, it directly returns the slot returned by SeqNext(). |
| 38 | * |
| 39 | * - ExecutePlan() calls the output function. |
| 40 | * |
| 41 | * The important thing to watch in the executor code is how pointers |
| 42 | * to the slots containing tuples are passed instead of the tuples |
| 43 | * themselves. This facilitates the communication of related information |
| 44 | * (such as whether or not a tuple should be pfreed, what buffer contains |
| 45 | * this tuple, the tuple's tuple descriptor, etc). It also allows us |
| 46 | * to avoid physically constructing projection tuples in many cases. |
| 47 | * |
| 48 | * |
| 49 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 50 | * Portions Copyright (c) 1994, Regents of the University of California |
| 51 | * |
| 52 | * |
| 53 | * IDENTIFICATION |
| 54 | * src/backend/executor/execTuples.c |
| 55 | * |
| 56 | *------------------------------------------------------------------------- |
| 57 | */ |
| 58 | #include "postgres.h" |
| 59 | |
| 60 | #include "access/htup_details.h" |
| 61 | #include "access/tupdesc_details.h" |
| 62 | #include "access/tuptoaster.h" |
| 63 | #include "funcapi.h" |
| 64 | #include "catalog/pg_type.h" |
| 65 | #include "nodes/nodeFuncs.h" |
| 66 | #include "storage/bufmgr.h" |
| 67 | #include "utils/builtins.h" |
| 68 | #include "utils/lsyscache.h" |
| 69 | #include "utils/typcache.h" |
| 70 | |
| 71 | |
| 72 | static TupleDesc ExecTypeFromTLInternal(List *targetList, |
| 73 | bool skipjunk); |
| 74 | static pg_attribute_always_inline void slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp, |
| 75 | int natts); |
| 76 | static inline void tts_buffer_heap_store_tuple(TupleTableSlot *slot, |
| 77 | HeapTuple tuple, |
| 78 | Buffer buffer, |
| 79 | bool transfer_pin); |
| 80 | static void tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree); |
| 81 | |
| 82 | |
| 83 | const TupleTableSlotOps TTSOpsVirtual; |
| 84 | const TupleTableSlotOps TTSOpsHeapTuple; |
| 85 | const TupleTableSlotOps TTSOpsMinimalTuple; |
| 86 | const TupleTableSlotOps TTSOpsBufferHeapTuple; |
| 87 | |
| 88 | |
| 89 | /* |
| 90 | * TupleTableSlotOps implementations. |
| 91 | */ |
| 92 | |
| 93 | /* |
| 94 | * TupleTableSlotOps implementation for VirtualTupleTableSlot. |
| 95 | */ |
| 96 | static void |
| 97 | tts_virtual_init(TupleTableSlot *slot) |
| 98 | { |
| 99 | } |
| 100 | |
| 101 | static void |
| 102 | tts_virtual_release(TupleTableSlot *slot) |
| 103 | { |
| 104 | } |
| 105 | |
| 106 | static void |
| 107 | tts_virtual_clear(TupleTableSlot *slot) |
| 108 | { |
| 109 | if (unlikely(TTS_SHOULDFREE(slot))) |
| 110 | { |
| 111 | VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot; |
| 112 | |
| 113 | pfree(vslot->data); |
| 114 | vslot->data = NULL; |
| 115 | |
| 116 | slot->tts_flags &= ~TTS_FLAG_SHOULDFREE; |
| 117 | } |
| 118 | |
| 119 | slot->tts_nvalid = 0; |
| 120 | slot->tts_flags |= TTS_FLAG_EMPTY; |
| 121 | ItemPointerSetInvalid(&slot->tts_tid); |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * Attribute values are readily available in tts_values and tts_isnull array |
| 126 | * in a VirtualTupleTableSlot. So there should be no need to call either of the |
| 127 | * following two functions. |
| 128 | */ |
| 129 | static void |
| 130 | tts_virtual_getsomeattrs(TupleTableSlot *slot, int natts) |
| 131 | { |
| 132 | elog(ERROR, "getsomeattrs is not required to be called on a virtual tuple table slot" ); |
| 133 | } |
| 134 | |
| 135 | static Datum |
| 136 | tts_virtual_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull) |
| 137 | { |
| 138 | elog(ERROR, "virtual tuple table slot does not have system attributes" ); |
| 139 | |
| 140 | return 0; /* silence compiler warnings */ |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * To materialize a virtual slot all the datums that aren't passed by value |
| 145 | * have to be copied into the slot's memory context. To do so, compute the |
| 146 | * required size, and allocate enough memory to store all attributes. That's |
| 147 | * good for cache hit ratio, but more importantly requires only memory |
| 148 | * allocation/deallocation. |
| 149 | */ |
| 150 | static void |
| 151 | tts_virtual_materialize(TupleTableSlot *slot) |
| 152 | { |
| 153 | VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot; |
| 154 | TupleDesc desc = slot->tts_tupleDescriptor; |
| 155 | Size sz = 0; |
| 156 | char *data; |
| 157 | |
| 158 | /* already materialized */ |
| 159 | if (TTS_SHOULDFREE(slot)) |
| 160 | return; |
| 161 | |
| 162 | /* compute size of memory required */ |
| 163 | for (int natt = 0; natt < desc->natts; natt++) |
| 164 | { |
| 165 | Form_pg_attribute att = TupleDescAttr(desc, natt); |
| 166 | Datum val; |
| 167 | |
| 168 | if (att->attbyval || slot->tts_isnull[natt]) |
| 169 | continue; |
| 170 | |
| 171 | val = slot->tts_values[natt]; |
| 172 | |
| 173 | if (att->attlen == -1 && |
| 174 | VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val))) |
| 175 | { |
| 176 | /* |
| 177 | * We want to flatten the expanded value so that the materialized |
| 178 | * slot doesn't depend on it. |
| 179 | */ |
| 180 | sz = att_align_nominal(sz, att->attalign); |
| 181 | sz += EOH_get_flat_size(DatumGetEOHP(val)); |
| 182 | } |
| 183 | else |
| 184 | { |
| 185 | sz = att_align_nominal(sz, att->attalign); |
| 186 | sz = att_addlength_datum(sz, att->attlen, val); |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | /* all data is byval */ |
| 191 | if (sz == 0) |
| 192 | return; |
| 193 | |
| 194 | /* allocate memory */ |
| 195 | vslot->data = data = MemoryContextAlloc(slot->tts_mcxt, sz); |
| 196 | slot->tts_flags |= TTS_FLAG_SHOULDFREE; |
| 197 | |
| 198 | /* and copy all attributes into the pre-allocated space */ |
| 199 | for (int natt = 0; natt < desc->natts; natt++) |
| 200 | { |
| 201 | Form_pg_attribute att = TupleDescAttr(desc, natt); |
| 202 | Datum val; |
| 203 | |
| 204 | if (att->attbyval || slot->tts_isnull[natt]) |
| 205 | continue; |
| 206 | |
| 207 | val = slot->tts_values[natt]; |
| 208 | |
| 209 | if (att->attlen == -1 && |
| 210 | VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val))) |
| 211 | { |
| 212 | Size data_length; |
| 213 | |
| 214 | /* |
| 215 | * We want to flatten the expanded value so that the materialized |
| 216 | * slot doesn't depend on it. |
| 217 | */ |
| 218 | ExpandedObjectHeader *eoh = DatumGetEOHP(val); |
| 219 | |
| 220 | data = (char *) att_align_nominal(data, |
| 221 | att->attalign); |
| 222 | data_length = EOH_get_flat_size(eoh); |
| 223 | EOH_flatten_into(eoh, data, data_length); |
| 224 | |
| 225 | slot->tts_values[natt] = PointerGetDatum(data); |
| 226 | data += data_length; |
| 227 | } |
| 228 | else |
| 229 | { |
| 230 | Size data_length = 0; |
| 231 | |
| 232 | data = (char *) att_align_nominal(data, att->attalign); |
| 233 | data_length = att_addlength_datum(data_length, att->attlen, val); |
| 234 | |
| 235 | memcpy(data, DatumGetPointer(val), data_length); |
| 236 | |
| 237 | slot->tts_values[natt] = PointerGetDatum(data); |
| 238 | data += data_length; |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | static void |
| 244 | tts_virtual_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot) |
| 245 | { |
| 246 | TupleDesc srcdesc = srcslot->tts_tupleDescriptor; |
| 247 | |
| 248 | Assert(srcdesc->natts <= dstslot->tts_tupleDescriptor->natts); |
| 249 | |
| 250 | tts_virtual_clear(dstslot); |
| 251 | |
| 252 | slot_getallattrs(srcslot); |
| 253 | |
| 254 | for (int natt = 0; natt < srcdesc->natts; natt++) |
| 255 | { |
| 256 | dstslot->tts_values[natt] = srcslot->tts_values[natt]; |
| 257 | dstslot->tts_isnull[natt] = srcslot->tts_isnull[natt]; |
| 258 | } |
| 259 | |
| 260 | dstslot->tts_nvalid = srcdesc->natts; |
| 261 | dstslot->tts_flags &= ~TTS_FLAG_EMPTY; |
| 262 | |
| 263 | /* make sure storage doesn't depend on external memory */ |
| 264 | tts_virtual_materialize(dstslot); |
| 265 | } |
| 266 | |
| 267 | static HeapTuple |
| 268 | tts_virtual_copy_heap_tuple(TupleTableSlot *slot) |
| 269 | { |
| 270 | Assert(!TTS_EMPTY(slot)); |
| 271 | |
| 272 | return heap_form_tuple(slot->tts_tupleDescriptor, |
| 273 | slot->tts_values, |
| 274 | slot->tts_isnull); |
| 275 | |
| 276 | } |
| 277 | |
| 278 | static MinimalTuple |
| 279 | tts_virtual_copy_minimal_tuple(TupleTableSlot *slot) |
| 280 | { |
| 281 | Assert(!TTS_EMPTY(slot)); |
| 282 | |
| 283 | return heap_form_minimal_tuple(slot->tts_tupleDescriptor, |
| 284 | slot->tts_values, |
| 285 | slot->tts_isnull); |
| 286 | } |
| 287 | |
| 288 | |
| 289 | /* |
| 290 | * TupleTableSlotOps implementation for HeapTupleTableSlot. |
| 291 | */ |
| 292 | |
| 293 | static void |
| 294 | tts_heap_init(TupleTableSlot *slot) |
| 295 | { |
| 296 | } |
| 297 | |
| 298 | static void |
| 299 | tts_heap_release(TupleTableSlot *slot) |
| 300 | { |
| 301 | } |
| 302 | |
| 303 | static void |
| 304 | tts_heap_clear(TupleTableSlot *slot) |
| 305 | { |
| 306 | HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot; |
| 307 | |
| 308 | /* Free the memory for the heap tuple if it's allowed. */ |
| 309 | if (TTS_SHOULDFREE(slot)) |
| 310 | { |
| 311 | heap_freetuple(hslot->tuple); |
| 312 | slot->tts_flags &= ~TTS_FLAG_SHOULDFREE; |
| 313 | } |
| 314 | |
| 315 | slot->tts_nvalid = 0; |
| 316 | slot->tts_flags |= TTS_FLAG_EMPTY; |
| 317 | ItemPointerSetInvalid(&slot->tts_tid); |
| 318 | hslot->off = 0; |
| 319 | hslot->tuple = NULL; |
| 320 | } |
| 321 | |
| 322 | static void |
| 323 | tts_heap_getsomeattrs(TupleTableSlot *slot, int natts) |
| 324 | { |
| 325 | HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot; |
| 326 | |
| 327 | Assert(!TTS_EMPTY(slot)); |
| 328 | |
| 329 | slot_deform_heap_tuple(slot, hslot->tuple, &hslot->off, natts); |
| 330 | } |
| 331 | |
| 332 | static Datum |
| 333 | tts_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull) |
| 334 | { |
| 335 | HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot; |
| 336 | |
| 337 | return heap_getsysattr(hslot->tuple, attnum, |
| 338 | slot->tts_tupleDescriptor, isnull); |
| 339 | } |
| 340 | |
| 341 | static void |
| 342 | tts_heap_materialize(TupleTableSlot *slot) |
| 343 | { |
| 344 | HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot; |
| 345 | MemoryContext oldContext; |
| 346 | |
| 347 | Assert(!TTS_EMPTY(slot)); |
| 348 | |
| 349 | /* This slot has it's tuple already materialized. Nothing to do. */ |
| 350 | if (TTS_SHOULDFREE(slot)) |
| 351 | return; |
| 352 | |
| 353 | slot->tts_flags |= TTS_FLAG_SHOULDFREE; |
| 354 | |
| 355 | oldContext = MemoryContextSwitchTo(slot->tts_mcxt); |
| 356 | |
| 357 | if (!hslot->tuple) |
| 358 | hslot->tuple = heap_form_tuple(slot->tts_tupleDescriptor, |
| 359 | slot->tts_values, |
| 360 | slot->tts_isnull); |
| 361 | else |
| 362 | { |
| 363 | /* |
| 364 | * The tuple contained in this slot is not allocated in the memory |
| 365 | * context of the given slot (else it would have TTS_SHOULDFREE set). |
| 366 | * Copy the tuple into the given slot's memory context. |
| 367 | */ |
| 368 | hslot->tuple = heap_copytuple(hslot->tuple); |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * Have to deform from scratch, otherwise tts_values[] entries could point |
| 373 | * into the non-materialized tuple (which might be gone when accessed). |
| 374 | */ |
| 375 | slot->tts_nvalid = 0; |
| 376 | hslot->off = 0; |
| 377 | |
| 378 | MemoryContextSwitchTo(oldContext); |
| 379 | } |
| 380 | |
| 381 | static void |
| 382 | tts_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot) |
| 383 | { |
| 384 | HeapTuple tuple; |
| 385 | MemoryContext oldcontext; |
| 386 | |
| 387 | oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt); |
| 388 | tuple = ExecCopySlotHeapTuple(srcslot); |
| 389 | MemoryContextSwitchTo(oldcontext); |
| 390 | |
| 391 | ExecStoreHeapTuple(tuple, dstslot, true); |
| 392 | } |
| 393 | |
| 394 | static HeapTuple |
| 395 | tts_heap_get_heap_tuple(TupleTableSlot *slot) |
| 396 | { |
| 397 | HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot; |
| 398 | |
| 399 | Assert(!TTS_EMPTY(slot)); |
| 400 | if (!hslot->tuple) |
| 401 | tts_heap_materialize(slot); |
| 402 | |
| 403 | return hslot->tuple; |
| 404 | } |
| 405 | |
| 406 | static HeapTuple |
| 407 | tts_heap_copy_heap_tuple(TupleTableSlot *slot) |
| 408 | { |
| 409 | HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot; |
| 410 | |
| 411 | Assert(!TTS_EMPTY(slot)); |
| 412 | if (!hslot->tuple) |
| 413 | tts_heap_materialize(slot); |
| 414 | |
| 415 | return heap_copytuple(hslot->tuple); |
| 416 | } |
| 417 | |
| 418 | static MinimalTuple |
| 419 | tts_heap_copy_minimal_tuple(TupleTableSlot *slot) |
| 420 | { |
| 421 | HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot; |
| 422 | |
| 423 | if (!hslot->tuple) |
| 424 | tts_heap_materialize(slot); |
| 425 | |
| 426 | return minimal_tuple_from_heap_tuple(hslot->tuple); |
| 427 | } |
| 428 | |
| 429 | static void |
| 430 | tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree) |
| 431 | { |
| 432 | HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot; |
| 433 | |
| 434 | tts_heap_clear(slot); |
| 435 | |
| 436 | slot->tts_nvalid = 0; |
| 437 | hslot->tuple = tuple; |
| 438 | hslot->off = 0; |
| 439 | slot->tts_flags &= ~TTS_FLAG_EMPTY; |
| 440 | slot->tts_tid = tuple->t_self; |
| 441 | |
| 442 | if (shouldFree) |
| 443 | slot->tts_flags |= TTS_FLAG_SHOULDFREE; |
| 444 | } |
| 445 | |
| 446 | |
| 447 | /* |
| 448 | * TupleTableSlotOps implementation for MinimalTupleTableSlot. |
| 449 | */ |
| 450 | |
| 451 | static void |
| 452 | tts_minimal_init(TupleTableSlot *slot) |
| 453 | { |
| 454 | MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot; |
| 455 | |
| 456 | /* |
| 457 | * Initialize the heap tuple pointer to access attributes of the minimal |
| 458 | * tuple contained in the slot as if its a heap tuple. |
| 459 | */ |
| 460 | mslot->tuple = &mslot->minhdr; |
| 461 | } |
| 462 | |
| 463 | static void |
| 464 | tts_minimal_release(TupleTableSlot *slot) |
| 465 | { |
| 466 | } |
| 467 | |
| 468 | static void |
| 469 | tts_minimal_clear(TupleTableSlot *slot) |
| 470 | { |
| 471 | MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot; |
| 472 | |
| 473 | if (TTS_SHOULDFREE(slot)) |
| 474 | { |
| 475 | heap_free_minimal_tuple(mslot->mintuple); |
| 476 | slot->tts_flags &= ~TTS_FLAG_SHOULDFREE; |
| 477 | } |
| 478 | |
| 479 | slot->tts_nvalid = 0; |
| 480 | slot->tts_flags |= TTS_FLAG_EMPTY; |
| 481 | ItemPointerSetInvalid(&slot->tts_tid); |
| 482 | mslot->off = 0; |
| 483 | mslot->mintuple = NULL; |
| 484 | } |
| 485 | |
| 486 | static void |
| 487 | tts_minimal_getsomeattrs(TupleTableSlot *slot, int natts) |
| 488 | { |
| 489 | MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot; |
| 490 | |
| 491 | Assert(!TTS_EMPTY(slot)); |
| 492 | |
| 493 | slot_deform_heap_tuple(slot, mslot->tuple, &mslot->off, natts); |
| 494 | } |
| 495 | |
| 496 | static Datum |
| 497 | tts_minimal_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull) |
| 498 | { |
| 499 | elog(ERROR, "minimal tuple table slot does not have system attributes" ); |
| 500 | |
| 501 | return 0; /* silence compiler warnings */ |
| 502 | } |
| 503 | |
| 504 | static void |
| 505 | tts_minimal_materialize(TupleTableSlot *slot) |
| 506 | { |
| 507 | MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot; |
| 508 | MemoryContext oldContext; |
| 509 | |
| 510 | Assert(!TTS_EMPTY(slot)); |
| 511 | |
| 512 | /* This slot has it's tuple already materialized. Nothing to do. */ |
| 513 | if (TTS_SHOULDFREE(slot)) |
| 514 | return; |
| 515 | |
| 516 | slot->tts_flags |= TTS_FLAG_SHOULDFREE; |
| 517 | oldContext = MemoryContextSwitchTo(slot->tts_mcxt); |
| 518 | |
| 519 | if (!mslot->mintuple) |
| 520 | { |
| 521 | mslot->mintuple = heap_form_minimal_tuple(slot->tts_tupleDescriptor, |
| 522 | slot->tts_values, |
| 523 | slot->tts_isnull); |
| 524 | } |
| 525 | else |
| 526 | { |
| 527 | /* |
| 528 | * The minimal tuple contained in this slot is not allocated in the |
| 529 | * memory context of the given slot (else it would have TTS_SHOULDFREE |
| 530 | * set). Copy the minimal tuple into the given slot's memory context. |
| 531 | */ |
| 532 | mslot->mintuple = heap_copy_minimal_tuple(mslot->mintuple); |
| 533 | } |
| 534 | |
| 535 | Assert(mslot->tuple == &mslot->minhdr); |
| 536 | |
| 537 | mslot->minhdr.t_len = mslot->mintuple->t_len + MINIMAL_TUPLE_OFFSET; |
| 538 | mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mslot->mintuple - MINIMAL_TUPLE_OFFSET); |
| 539 | |
| 540 | MemoryContextSwitchTo(oldContext); |
| 541 | |
| 542 | /* |
| 543 | * Have to deform from scratch, otherwise tts_values[] entries could point |
| 544 | * into the non-materialized tuple (which might be gone when accessed). |
| 545 | */ |
| 546 | slot->tts_nvalid = 0; |
| 547 | mslot->off = 0; |
| 548 | } |
| 549 | |
| 550 | static void |
| 551 | tts_minimal_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot) |
| 552 | { |
| 553 | MemoryContext oldcontext; |
| 554 | MinimalTuple mintuple; |
| 555 | |
| 556 | oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt); |
| 557 | mintuple = ExecCopySlotMinimalTuple(srcslot); |
| 558 | MemoryContextSwitchTo(oldcontext); |
| 559 | |
| 560 | ExecStoreMinimalTuple(mintuple, dstslot, true); |
| 561 | } |
| 562 | |
| 563 | static MinimalTuple |
| 564 | tts_minimal_get_minimal_tuple(TupleTableSlot *slot) |
| 565 | { |
| 566 | MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot; |
| 567 | |
| 568 | if (!mslot->mintuple) |
| 569 | tts_minimal_materialize(slot); |
| 570 | |
| 571 | return mslot->mintuple; |
| 572 | } |
| 573 | |
| 574 | static HeapTuple |
| 575 | tts_minimal_copy_heap_tuple(TupleTableSlot *slot) |
| 576 | { |
| 577 | MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot; |
| 578 | |
| 579 | if (!mslot->mintuple) |
| 580 | tts_minimal_materialize(slot); |
| 581 | |
| 582 | return heap_tuple_from_minimal_tuple(mslot->mintuple); |
| 583 | } |
| 584 | |
| 585 | static MinimalTuple |
| 586 | tts_minimal_copy_minimal_tuple(TupleTableSlot *slot) |
| 587 | { |
| 588 | MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot; |
| 589 | |
| 590 | if (!mslot->mintuple) |
| 591 | tts_minimal_materialize(slot); |
| 592 | |
| 593 | return heap_copy_minimal_tuple(mslot->mintuple); |
| 594 | } |
| 595 | |
| 596 | static void |
| 597 | tts_minimal_store_tuple(TupleTableSlot *slot, MinimalTuple mtup, bool shouldFree) |
| 598 | { |
| 599 | MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot; |
| 600 | |
| 601 | tts_minimal_clear(slot); |
| 602 | |
| 603 | Assert(!TTS_SHOULDFREE(slot)); |
| 604 | Assert(TTS_EMPTY(slot)); |
| 605 | |
| 606 | slot->tts_flags &= ~TTS_FLAG_EMPTY; |
| 607 | slot->tts_nvalid = 0; |
| 608 | mslot->off = 0; |
| 609 | |
| 610 | mslot->mintuple = mtup; |
| 611 | Assert(mslot->tuple == &mslot->minhdr); |
| 612 | mslot->minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET; |
| 613 | mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET); |
| 614 | /* no need to set t_self or t_tableOid since we won't allow access */ |
| 615 | |
| 616 | if (shouldFree) |
| 617 | slot->tts_flags |= TTS_FLAG_SHOULDFREE; |
| 618 | else |
| 619 | Assert(!TTS_SHOULDFREE(slot)); |
| 620 | } |
| 621 | |
| 622 | |
| 623 | /* |
| 624 | * TupleTableSlotOps implementation for BufferHeapTupleTableSlot. |
| 625 | */ |
| 626 | |
| 627 | static void |
| 628 | tts_buffer_heap_init(TupleTableSlot *slot) |
| 629 | { |
| 630 | } |
| 631 | |
| 632 | static void |
| 633 | tts_buffer_heap_release(TupleTableSlot *slot) |
| 634 | { |
| 635 | } |
| 636 | |
| 637 | static void |
| 638 | tts_buffer_heap_clear(TupleTableSlot *slot) |
| 639 | { |
| 640 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 641 | |
| 642 | /* |
| 643 | * Free the memory for heap tuple if allowed. A tuple coming from buffer |
| 644 | * can never be freed. But we may have materialized a tuple from buffer. |
| 645 | * Such a tuple can be freed. |
| 646 | */ |
| 647 | if (TTS_SHOULDFREE(slot)) |
| 648 | { |
| 649 | /* We should have unpinned the buffer while materializing the tuple. */ |
| 650 | Assert(!BufferIsValid(bslot->buffer)); |
| 651 | |
| 652 | heap_freetuple(bslot->base.tuple); |
| 653 | slot->tts_flags &= ~TTS_FLAG_SHOULDFREE; |
| 654 | |
| 655 | Assert(!BufferIsValid(bslot->buffer)); |
| 656 | } |
| 657 | |
| 658 | if (BufferIsValid(bslot->buffer)) |
| 659 | ReleaseBuffer(bslot->buffer); |
| 660 | |
| 661 | slot->tts_nvalid = 0; |
| 662 | slot->tts_flags |= TTS_FLAG_EMPTY; |
| 663 | ItemPointerSetInvalid(&slot->tts_tid); |
| 664 | bslot->base.tuple = NULL; |
| 665 | bslot->base.off = 0; |
| 666 | bslot->buffer = InvalidBuffer; |
| 667 | } |
| 668 | |
| 669 | static void |
| 670 | tts_buffer_heap_getsomeattrs(TupleTableSlot *slot, int natts) |
| 671 | { |
| 672 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 673 | |
| 674 | Assert(!TTS_EMPTY(slot)); |
| 675 | |
| 676 | slot_deform_heap_tuple(slot, bslot->base.tuple, &bslot->base.off, natts); |
| 677 | } |
| 678 | |
| 679 | static Datum |
| 680 | tts_buffer_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull) |
| 681 | { |
| 682 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 683 | |
| 684 | return heap_getsysattr(bslot->base.tuple, attnum, |
| 685 | slot->tts_tupleDescriptor, isnull); |
| 686 | } |
| 687 | |
| 688 | static void |
| 689 | tts_buffer_heap_materialize(TupleTableSlot *slot) |
| 690 | { |
| 691 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 692 | MemoryContext oldContext; |
| 693 | |
| 694 | Assert(!TTS_EMPTY(slot)); |
| 695 | |
| 696 | /* If already materialized nothing to do. */ |
| 697 | if (TTS_SHOULDFREE(slot)) |
| 698 | return; |
| 699 | |
| 700 | slot->tts_flags |= TTS_FLAG_SHOULDFREE; |
| 701 | |
| 702 | oldContext = MemoryContextSwitchTo(slot->tts_mcxt); |
| 703 | |
| 704 | if (!bslot->base.tuple) |
| 705 | { |
| 706 | /* |
| 707 | * Normally BufferHeapTupleTableSlot should have a tuple + buffer |
| 708 | * associated with it, unless it's materialized (which would've |
| 709 | * returned above). But when it's useful to allow storing virtual |
| 710 | * tuples in a buffer slot, which then also needs to be |
| 711 | * materializable. |
| 712 | */ |
| 713 | bslot->base.tuple = heap_form_tuple(slot->tts_tupleDescriptor, |
| 714 | slot->tts_values, |
| 715 | slot->tts_isnull); |
| 716 | |
| 717 | } |
| 718 | else |
| 719 | { |
| 720 | bslot->base.tuple = heap_copytuple(bslot->base.tuple); |
| 721 | |
| 722 | /* |
| 723 | * A heap tuple stored in a BufferHeapTupleTableSlot should have a |
| 724 | * buffer associated with it, unless it's materialized or virtual. |
| 725 | */ |
| 726 | Assert(BufferIsValid(bslot->buffer)); |
| 727 | if (likely(BufferIsValid(bslot->buffer))) |
| 728 | ReleaseBuffer(bslot->buffer); |
| 729 | bslot->buffer = InvalidBuffer; |
| 730 | } |
| 731 | MemoryContextSwitchTo(oldContext); |
| 732 | |
| 733 | /* |
| 734 | * Have to deform from scratch, otherwise tts_values[] entries could point |
| 735 | * into the non-materialized tuple (which might be gone when accessed). |
| 736 | */ |
| 737 | bslot->base.off = 0; |
| 738 | slot->tts_nvalid = 0; |
| 739 | } |
| 740 | |
| 741 | static void |
| 742 | tts_buffer_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot) |
| 743 | { |
| 744 | BufferHeapTupleTableSlot *bsrcslot = (BufferHeapTupleTableSlot *) srcslot; |
| 745 | BufferHeapTupleTableSlot *bdstslot = (BufferHeapTupleTableSlot *) dstslot; |
| 746 | |
| 747 | /* |
| 748 | * If the source slot is of a different kind, or is a buffer slot that has |
| 749 | * been materialized / is virtual, make a new copy of the tuple. Otherwise |
| 750 | * make a new reference to the in-buffer tuple. |
| 751 | */ |
| 752 | if (dstslot->tts_ops != srcslot->tts_ops || |
| 753 | TTS_SHOULDFREE(srcslot) || |
| 754 | !bsrcslot->base.tuple) |
| 755 | { |
| 756 | MemoryContext oldContext; |
| 757 | |
| 758 | ExecClearTuple(dstslot); |
| 759 | dstslot->tts_flags |= TTS_FLAG_SHOULDFREE; |
| 760 | dstslot->tts_flags &= ~TTS_FLAG_EMPTY; |
| 761 | oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt); |
| 762 | bdstslot->base.tuple = ExecCopySlotHeapTuple(srcslot); |
| 763 | MemoryContextSwitchTo(oldContext); |
| 764 | } |
| 765 | else |
| 766 | { |
| 767 | Assert(BufferIsValid(bsrcslot->buffer)); |
| 768 | |
| 769 | tts_buffer_heap_store_tuple(dstslot, bsrcslot->base.tuple, |
| 770 | bsrcslot->buffer, false); |
| 771 | |
| 772 | /* |
| 773 | * The HeapTupleData portion of the source tuple might be shorter |
| 774 | * lived than the destination slot. Therefore copy the HeapTuple into |
| 775 | * our slot's tupdata, which is guaranteed to live long enough (but |
| 776 | * will still point into the buffer). |
| 777 | */ |
| 778 | memcpy(&bdstslot->base.tupdata, bdstslot->base.tuple, sizeof(HeapTupleData)); |
| 779 | bdstslot->base.tuple = &bdstslot->base.tupdata; |
| 780 | } |
| 781 | } |
| 782 | |
| 783 | static HeapTuple |
| 784 | tts_buffer_heap_get_heap_tuple(TupleTableSlot *slot) |
| 785 | { |
| 786 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 787 | |
| 788 | Assert(!TTS_EMPTY(slot)); |
| 789 | |
| 790 | if (!bslot->base.tuple) |
| 791 | tts_buffer_heap_materialize(slot); |
| 792 | |
| 793 | return bslot->base.tuple; |
| 794 | } |
| 795 | |
| 796 | static HeapTuple |
| 797 | tts_buffer_heap_copy_heap_tuple(TupleTableSlot *slot) |
| 798 | { |
| 799 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 800 | |
| 801 | Assert(!TTS_EMPTY(slot)); |
| 802 | |
| 803 | if (!bslot->base.tuple) |
| 804 | tts_buffer_heap_materialize(slot); |
| 805 | |
| 806 | return heap_copytuple(bslot->base.tuple); |
| 807 | } |
| 808 | |
| 809 | static MinimalTuple |
| 810 | tts_buffer_heap_copy_minimal_tuple(TupleTableSlot *slot) |
| 811 | { |
| 812 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 813 | |
| 814 | Assert(!TTS_EMPTY(slot)); |
| 815 | |
| 816 | if (!bslot->base.tuple) |
| 817 | tts_buffer_heap_materialize(slot); |
| 818 | |
| 819 | return minimal_tuple_from_heap_tuple(bslot->base.tuple); |
| 820 | } |
| 821 | |
| 822 | static inline void |
| 823 | tts_buffer_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, |
| 824 | Buffer buffer, bool transfer_pin) |
| 825 | { |
| 826 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 827 | |
| 828 | if (TTS_SHOULDFREE(slot)) |
| 829 | { |
| 830 | /* materialized slot shouldn't have a buffer to release */ |
| 831 | Assert(!BufferIsValid(bslot->buffer)); |
| 832 | |
| 833 | heap_freetuple(bslot->base.tuple); |
| 834 | slot->tts_flags &= ~TTS_FLAG_SHOULDFREE; |
| 835 | } |
| 836 | |
| 837 | slot->tts_flags &= ~TTS_FLAG_EMPTY; |
| 838 | slot->tts_nvalid = 0; |
| 839 | bslot->base.tuple = tuple; |
| 840 | bslot->base.off = 0; |
| 841 | slot->tts_tid = tuple->t_self; |
| 842 | |
| 843 | /* |
| 844 | * If tuple is on a disk page, keep the page pinned as long as we hold a |
| 845 | * pointer into it. We assume the caller already has such a pin. If |
| 846 | * transfer_pin is true, we'll transfer that pin to this slot, if not |
| 847 | * we'll pin it again ourselves. |
| 848 | * |
| 849 | * This is coded to optimize the case where the slot previously held a |
| 850 | * tuple on the same disk page: in that case releasing and re-acquiring |
| 851 | * the pin is a waste of cycles. This is a common situation during |
| 852 | * seqscans, so it's worth troubling over. |
| 853 | */ |
| 854 | if (bslot->buffer != buffer) |
| 855 | { |
| 856 | if (BufferIsValid(bslot->buffer)) |
| 857 | ReleaseBuffer(bslot->buffer); |
| 858 | |
| 859 | bslot->buffer = buffer; |
| 860 | |
| 861 | if (!transfer_pin && BufferIsValid(buffer)) |
| 862 | IncrBufferRefCount(buffer); |
| 863 | } |
| 864 | else if (transfer_pin && BufferIsValid(buffer)) |
| 865 | { |
| 866 | /* |
| 867 | * In transfer_pin mode the caller won't know about the same-page |
| 868 | * optimization, so we gotta release its pin. |
| 869 | */ |
| 870 | ReleaseBuffer(buffer); |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * slot_deform_heap_tuple |
| 876 | * Given a TupleTableSlot, extract data from the slot's physical tuple |
| 877 | * into its Datum/isnull arrays. Data is extracted up through the |
| 878 | * natts'th column (caller must ensure this is a legal column number). |
| 879 | * |
| 880 | * This is essentially an incremental version of heap_deform_tuple: |
| 881 | * on each call we extract attributes up to the one needed, without |
| 882 | * re-computing information about previously extracted attributes. |
| 883 | * slot->tts_nvalid is the number of attributes already extracted. |
| 884 | * |
| 885 | * This is marked as always inline, so the different offp for different types |
| 886 | * of slots gets optimized away. |
| 887 | */ |
| 888 | static pg_attribute_always_inline void |
| 889 | slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp, |
| 890 | int natts) |
| 891 | { |
| 892 | TupleDesc tupleDesc = slot->tts_tupleDescriptor; |
| 893 | Datum *values = slot->tts_values; |
| 894 | bool *isnull = slot->tts_isnull; |
| 895 | HeapTupleHeader tup = tuple->t_data; |
| 896 | bool hasnulls = HeapTupleHasNulls(tuple); |
| 897 | int attnum; |
| 898 | char *tp; /* ptr to tuple data */ |
| 899 | uint32 off; /* offset in tuple data */ |
| 900 | bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */ |
| 901 | bool slow; /* can we use/set attcacheoff? */ |
| 902 | |
| 903 | /* We can only fetch as many attributes as the tuple has. */ |
| 904 | natts = Min(HeapTupleHeaderGetNatts(tuple->t_data), natts); |
| 905 | |
| 906 | /* |
| 907 | * Check whether the first call for this tuple, and initialize or restore |
| 908 | * loop state. |
| 909 | */ |
| 910 | attnum = slot->tts_nvalid; |
| 911 | if (attnum == 0) |
| 912 | { |
| 913 | /* Start from the first attribute */ |
| 914 | off = 0; |
| 915 | slow = false; |
| 916 | } |
| 917 | else |
| 918 | { |
| 919 | /* Restore state from previous execution */ |
| 920 | off = *offp; |
| 921 | slow = TTS_SLOW(slot); |
| 922 | } |
| 923 | |
| 924 | tp = (char *) tup + tup->t_hoff; |
| 925 | |
| 926 | for (; attnum < natts; attnum++) |
| 927 | { |
| 928 | Form_pg_attribute thisatt = TupleDescAttr(tupleDesc, attnum); |
| 929 | |
| 930 | if (hasnulls && att_isnull(attnum, bp)) |
| 931 | { |
| 932 | values[attnum] = (Datum) 0; |
| 933 | isnull[attnum] = true; |
| 934 | slow = true; /* can't use attcacheoff anymore */ |
| 935 | continue; |
| 936 | } |
| 937 | |
| 938 | isnull[attnum] = false; |
| 939 | |
| 940 | if (!slow && thisatt->attcacheoff >= 0) |
| 941 | off = thisatt->attcacheoff; |
| 942 | else if (thisatt->attlen == -1) |
| 943 | { |
| 944 | /* |
| 945 | * We can only cache the offset for a varlena attribute if the |
| 946 | * offset is already suitably aligned, so that there would be no |
| 947 | * pad bytes in any case: then the offset will be valid for either |
| 948 | * an aligned or unaligned value. |
| 949 | */ |
| 950 | if (!slow && |
| 951 | off == att_align_nominal(off, thisatt->attalign)) |
| 952 | thisatt->attcacheoff = off; |
| 953 | else |
| 954 | { |
| 955 | off = att_align_pointer(off, thisatt->attalign, -1, |
| 956 | tp + off); |
| 957 | slow = true; |
| 958 | } |
| 959 | } |
| 960 | else |
| 961 | { |
| 962 | /* not varlena, so safe to use att_align_nominal */ |
| 963 | off = att_align_nominal(off, thisatt->attalign); |
| 964 | |
| 965 | if (!slow) |
| 966 | thisatt->attcacheoff = off; |
| 967 | } |
| 968 | |
| 969 | values[attnum] = fetchatt(thisatt, tp + off); |
| 970 | |
| 971 | off = att_addlength_pointer(off, thisatt->attlen, tp + off); |
| 972 | |
| 973 | if (thisatt->attlen <= 0) |
| 974 | slow = true; /* can't use attcacheoff anymore */ |
| 975 | } |
| 976 | |
| 977 | /* |
| 978 | * Save state for next execution |
| 979 | */ |
| 980 | slot->tts_nvalid = attnum; |
| 981 | *offp = off; |
| 982 | if (slow) |
| 983 | slot->tts_flags |= TTS_FLAG_SLOW; |
| 984 | else |
| 985 | slot->tts_flags &= ~TTS_FLAG_SLOW; |
| 986 | } |
| 987 | |
| 988 | |
| 989 | const TupleTableSlotOps TTSOpsVirtual = { |
| 990 | .base_slot_size = sizeof(VirtualTupleTableSlot), |
| 991 | .init = tts_virtual_init, |
| 992 | .release = tts_virtual_release, |
| 993 | .clear = tts_virtual_clear, |
| 994 | .getsomeattrs = tts_virtual_getsomeattrs, |
| 995 | .getsysattr = tts_virtual_getsysattr, |
| 996 | .materialize = tts_virtual_materialize, |
| 997 | .copyslot = tts_virtual_copyslot, |
| 998 | |
| 999 | /* |
| 1000 | * A virtual tuple table slot can not "own" a heap tuple or a minimal |
| 1001 | * tuple. |
| 1002 | */ |
| 1003 | .get_heap_tuple = NULL, |
| 1004 | .get_minimal_tuple = NULL, |
| 1005 | .copy_heap_tuple = tts_virtual_copy_heap_tuple, |
| 1006 | .copy_minimal_tuple = tts_virtual_copy_minimal_tuple |
| 1007 | }; |
| 1008 | |
| 1009 | const TupleTableSlotOps TTSOpsHeapTuple = { |
| 1010 | .base_slot_size = sizeof(HeapTupleTableSlot), |
| 1011 | .init = tts_heap_init, |
| 1012 | .release = tts_heap_release, |
| 1013 | .clear = tts_heap_clear, |
| 1014 | .getsomeattrs = tts_heap_getsomeattrs, |
| 1015 | .getsysattr = tts_heap_getsysattr, |
| 1016 | .materialize = tts_heap_materialize, |
| 1017 | .copyslot = tts_heap_copyslot, |
| 1018 | .get_heap_tuple = tts_heap_get_heap_tuple, |
| 1019 | |
| 1020 | /* A heap tuple table slot can not "own" a minimal tuple. */ |
| 1021 | .get_minimal_tuple = NULL, |
| 1022 | .copy_heap_tuple = tts_heap_copy_heap_tuple, |
| 1023 | .copy_minimal_tuple = tts_heap_copy_minimal_tuple |
| 1024 | }; |
| 1025 | |
| 1026 | const TupleTableSlotOps TTSOpsMinimalTuple = { |
| 1027 | .base_slot_size = sizeof(MinimalTupleTableSlot), |
| 1028 | .init = tts_minimal_init, |
| 1029 | .release = tts_minimal_release, |
| 1030 | .clear = tts_minimal_clear, |
| 1031 | .getsomeattrs = tts_minimal_getsomeattrs, |
| 1032 | .getsysattr = tts_minimal_getsysattr, |
| 1033 | .materialize = tts_minimal_materialize, |
| 1034 | .copyslot = tts_minimal_copyslot, |
| 1035 | |
| 1036 | /* A minimal tuple table slot can not "own" a heap tuple. */ |
| 1037 | .get_heap_tuple = NULL, |
| 1038 | .get_minimal_tuple = tts_minimal_get_minimal_tuple, |
| 1039 | .copy_heap_tuple = tts_minimal_copy_heap_tuple, |
| 1040 | .copy_minimal_tuple = tts_minimal_copy_minimal_tuple |
| 1041 | }; |
| 1042 | |
| 1043 | const TupleTableSlotOps TTSOpsBufferHeapTuple = { |
| 1044 | .base_slot_size = sizeof(BufferHeapTupleTableSlot), |
| 1045 | .init = tts_buffer_heap_init, |
| 1046 | .release = tts_buffer_heap_release, |
| 1047 | .clear = tts_buffer_heap_clear, |
| 1048 | .getsomeattrs = tts_buffer_heap_getsomeattrs, |
| 1049 | .getsysattr = tts_buffer_heap_getsysattr, |
| 1050 | .materialize = tts_buffer_heap_materialize, |
| 1051 | .copyslot = tts_buffer_heap_copyslot, |
| 1052 | .get_heap_tuple = tts_buffer_heap_get_heap_tuple, |
| 1053 | |
| 1054 | /* A buffer heap tuple table slot can not "own" a minimal tuple. */ |
| 1055 | .get_minimal_tuple = NULL, |
| 1056 | .copy_heap_tuple = tts_buffer_heap_copy_heap_tuple, |
| 1057 | .copy_minimal_tuple = tts_buffer_heap_copy_minimal_tuple |
| 1058 | }; |
| 1059 | |
| 1060 | |
| 1061 | /* ---------------------------------------------------------------- |
| 1062 | * tuple table create/delete functions |
| 1063 | * ---------------------------------------------------------------- |
| 1064 | */ |
| 1065 | |
| 1066 | /* -------------------------------- |
| 1067 | * MakeTupleTableSlot |
| 1068 | * |
| 1069 | * Basic routine to make an empty TupleTableSlot of given |
| 1070 | * TupleTableSlotType. If tupleDesc is specified the slot's descriptor is |
| 1071 | * fixed for its lifetime, gaining some efficiency. If that's |
| 1072 | * undesirable, pass NULL. |
| 1073 | * -------------------------------- |
| 1074 | */ |
| 1075 | TupleTableSlot * |
| 1076 | MakeTupleTableSlot(TupleDesc tupleDesc, |
| 1077 | const TupleTableSlotOps *tts_ops) |
| 1078 | { |
| 1079 | Size basesz, |
| 1080 | allocsz; |
| 1081 | TupleTableSlot *slot; |
| 1082 | |
| 1083 | basesz = tts_ops->base_slot_size; |
| 1084 | |
| 1085 | /* |
| 1086 | * When a fixed descriptor is specified, we can reduce overhead by |
| 1087 | * allocating the entire slot in one go. |
| 1088 | */ |
| 1089 | if (tupleDesc) |
| 1090 | allocsz = MAXALIGN(basesz) + |
| 1091 | MAXALIGN(tupleDesc->natts * sizeof(Datum)) + |
| 1092 | MAXALIGN(tupleDesc->natts * sizeof(bool)); |
| 1093 | else |
| 1094 | allocsz = basesz; |
| 1095 | |
| 1096 | slot = palloc0(allocsz); |
| 1097 | /* const for optimization purposes, OK to modify at allocation time */ |
| 1098 | *((const TupleTableSlotOps **) &slot->tts_ops) = tts_ops; |
| 1099 | slot->type = T_TupleTableSlot; |
| 1100 | slot->tts_flags |= TTS_FLAG_EMPTY; |
| 1101 | if (tupleDesc != NULL) |
| 1102 | slot->tts_flags |= TTS_FLAG_FIXED; |
| 1103 | slot->tts_tupleDescriptor = tupleDesc; |
| 1104 | slot->tts_mcxt = CurrentMemoryContext; |
| 1105 | slot->tts_nvalid = 0; |
| 1106 | |
| 1107 | if (tupleDesc != NULL) |
| 1108 | { |
| 1109 | slot->tts_values = (Datum *) |
| 1110 | (((char *) slot) |
| 1111 | + MAXALIGN(basesz)); |
| 1112 | slot->tts_isnull = (bool *) |
| 1113 | (((char *) slot) |
| 1114 | + MAXALIGN(basesz) |
| 1115 | + MAXALIGN(tupleDesc->natts * sizeof(Datum))); |
| 1116 | |
| 1117 | PinTupleDesc(tupleDesc); |
| 1118 | } |
| 1119 | |
| 1120 | /* |
| 1121 | * And allow slot type specific initialization. |
| 1122 | */ |
| 1123 | slot->tts_ops->init(slot); |
| 1124 | |
| 1125 | return slot; |
| 1126 | } |
| 1127 | |
| 1128 | /* -------------------------------- |
| 1129 | * ExecAllocTableSlot |
| 1130 | * |
| 1131 | * Create a tuple table slot within a tuple table (which is just a List). |
| 1132 | * -------------------------------- |
| 1133 | */ |
| 1134 | TupleTableSlot * |
| 1135 | ExecAllocTableSlot(List **tupleTable, TupleDesc desc, |
| 1136 | const TupleTableSlotOps *tts_ops) |
| 1137 | { |
| 1138 | TupleTableSlot *slot = MakeTupleTableSlot(desc, tts_ops); |
| 1139 | |
| 1140 | *tupleTable = lappend(*tupleTable, slot); |
| 1141 | |
| 1142 | return slot; |
| 1143 | } |
| 1144 | |
| 1145 | /* -------------------------------- |
| 1146 | * ExecResetTupleTable |
| 1147 | * |
| 1148 | * This releases any resources (buffer pins, tupdesc refcounts) |
| 1149 | * held by the tuple table, and optionally releases the memory |
| 1150 | * occupied by the tuple table data structure. |
| 1151 | * It is expected that this routine be called by EndPlan(). |
| 1152 | * -------------------------------- |
| 1153 | */ |
| 1154 | void |
| 1155 | ExecResetTupleTable(List *tupleTable, /* tuple table */ |
| 1156 | bool shouldFree) /* true if we should free memory */ |
| 1157 | { |
| 1158 | ListCell *lc; |
| 1159 | |
| 1160 | foreach(lc, tupleTable) |
| 1161 | { |
| 1162 | TupleTableSlot *slot = lfirst_node(TupleTableSlot, lc); |
| 1163 | |
| 1164 | /* Always release resources and reset the slot to empty */ |
| 1165 | ExecClearTuple(slot); |
| 1166 | slot->tts_ops->release(slot); |
| 1167 | if (slot->tts_tupleDescriptor) |
| 1168 | { |
| 1169 | ReleaseTupleDesc(slot->tts_tupleDescriptor); |
| 1170 | slot->tts_tupleDescriptor = NULL; |
| 1171 | } |
| 1172 | |
| 1173 | /* If shouldFree, release memory occupied by the slot itself */ |
| 1174 | if (shouldFree) |
| 1175 | { |
| 1176 | if (!TTS_FIXED(slot)) |
| 1177 | { |
| 1178 | if (slot->tts_values) |
| 1179 | pfree(slot->tts_values); |
| 1180 | if (slot->tts_isnull) |
| 1181 | pfree(slot->tts_isnull); |
| 1182 | } |
| 1183 | pfree(slot); |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | /* If shouldFree, release the list structure */ |
| 1188 | if (shouldFree) |
| 1189 | list_free(tupleTable); |
| 1190 | } |
| 1191 | |
| 1192 | /* -------------------------------- |
| 1193 | * MakeSingleTupleTableSlot |
| 1194 | * |
| 1195 | * This is a convenience routine for operations that need a standalone |
| 1196 | * TupleTableSlot not gotten from the main executor tuple table. It makes |
| 1197 | * a single slot of given TupleTableSlotType and initializes it to use the |
| 1198 | * given tuple descriptor. |
| 1199 | * -------------------------------- |
| 1200 | */ |
| 1201 | TupleTableSlot * |
| 1202 | MakeSingleTupleTableSlot(TupleDesc tupdesc, |
| 1203 | const TupleTableSlotOps *tts_ops) |
| 1204 | { |
| 1205 | TupleTableSlot *slot = MakeTupleTableSlot(tupdesc, tts_ops); |
| 1206 | |
| 1207 | return slot; |
| 1208 | } |
| 1209 | |
| 1210 | /* -------------------------------- |
| 1211 | * ExecDropSingleTupleTableSlot |
| 1212 | * |
| 1213 | * Release a TupleTableSlot made with MakeSingleTupleTableSlot. |
| 1214 | * DON'T use this on a slot that's part of a tuple table list! |
| 1215 | * -------------------------------- |
| 1216 | */ |
| 1217 | void |
| 1218 | ExecDropSingleTupleTableSlot(TupleTableSlot *slot) |
| 1219 | { |
| 1220 | /* This should match ExecResetTupleTable's processing of one slot */ |
| 1221 | Assert(IsA(slot, TupleTableSlot)); |
| 1222 | ExecClearTuple(slot); |
| 1223 | slot->tts_ops->release(slot); |
| 1224 | if (slot->tts_tupleDescriptor) |
| 1225 | ReleaseTupleDesc(slot->tts_tupleDescriptor); |
| 1226 | if (!TTS_FIXED(slot)) |
| 1227 | { |
| 1228 | if (slot->tts_values) |
| 1229 | pfree(slot->tts_values); |
| 1230 | if (slot->tts_isnull) |
| 1231 | pfree(slot->tts_isnull); |
| 1232 | } |
| 1233 | pfree(slot); |
| 1234 | } |
| 1235 | |
| 1236 | |
| 1237 | /* ---------------------------------------------------------------- |
| 1238 | * tuple table slot accessor functions |
| 1239 | * ---------------------------------------------------------------- |
| 1240 | */ |
| 1241 | |
| 1242 | /* -------------------------------- |
| 1243 | * ExecSetSlotDescriptor |
| 1244 | * |
| 1245 | * This function is used to set the tuple descriptor associated |
| 1246 | * with the slot's tuple. The passed descriptor must have lifespan |
| 1247 | * at least equal to the slot's. If it is a reference-counted descriptor |
| 1248 | * then the reference count is incremented for as long as the slot holds |
| 1249 | * a reference. |
| 1250 | * -------------------------------- |
| 1251 | */ |
| 1252 | void |
| 1253 | ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */ |
| 1254 | TupleDesc tupdesc) /* new tuple descriptor */ |
| 1255 | { |
| 1256 | Assert(!TTS_FIXED(slot)); |
| 1257 | |
| 1258 | /* For safety, make sure slot is empty before changing it */ |
| 1259 | ExecClearTuple(slot); |
| 1260 | |
| 1261 | /* |
| 1262 | * Release any old descriptor. Also release old Datum/isnull arrays if |
| 1263 | * present (we don't bother to check if they could be re-used). |
| 1264 | */ |
| 1265 | if (slot->tts_tupleDescriptor) |
| 1266 | ReleaseTupleDesc(slot->tts_tupleDescriptor); |
| 1267 | |
| 1268 | if (slot->tts_values) |
| 1269 | pfree(slot->tts_values); |
| 1270 | if (slot->tts_isnull) |
| 1271 | pfree(slot->tts_isnull); |
| 1272 | |
| 1273 | /* |
| 1274 | * Install the new descriptor; if it's refcounted, bump its refcount. |
| 1275 | */ |
| 1276 | slot->tts_tupleDescriptor = tupdesc; |
| 1277 | PinTupleDesc(tupdesc); |
| 1278 | |
| 1279 | /* |
| 1280 | * Allocate Datum/isnull arrays of the appropriate size. These must have |
| 1281 | * the same lifetime as the slot, so allocate in the slot's own context. |
| 1282 | */ |
| 1283 | slot->tts_values = (Datum *) |
| 1284 | MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum)); |
| 1285 | slot->tts_isnull = (bool *) |
| 1286 | MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool)); |
| 1287 | } |
| 1288 | |
| 1289 | /* -------------------------------- |
| 1290 | * ExecStoreHeapTuple |
| 1291 | * |
| 1292 | * This function is used to store an on-the-fly physical tuple into a specified |
| 1293 | * slot in the tuple table. |
| 1294 | * |
| 1295 | * tuple: tuple to store |
| 1296 | * slot: TTSOpsHeapTuple type slot to store it in |
| 1297 | * shouldFree: true if ExecClearTuple should pfree() the tuple |
| 1298 | * when done with it |
| 1299 | * |
| 1300 | * shouldFree is normally set 'true' for tuples constructed on-the-fly. But it |
| 1301 | * can be 'false' when the referenced tuple is held in a tuple table slot |
| 1302 | * belonging to a lower-level executor Proc node. In this case the lower-level |
| 1303 | * slot retains ownership and responsibility for eventually releasing the |
| 1304 | * tuple. When this method is used, we must be certain that the upper-level |
| 1305 | * Proc node will lose interest in the tuple sooner than the lower-level one |
| 1306 | * does! If you're not certain, copy the lower-level tuple with heap_copytuple |
| 1307 | * and let the upper-level table slot assume ownership of the copy! |
| 1308 | * |
| 1309 | * Return value is just the passed-in slot pointer. |
| 1310 | * |
| 1311 | * If the target slot is not guaranteed to be TTSOpsHeapTuple type slot, use |
| 1312 | * the, more expensive, ExecForceStoreHeapTuple(). |
| 1313 | * -------------------------------- |
| 1314 | */ |
| 1315 | TupleTableSlot * |
| 1316 | ExecStoreHeapTuple(HeapTuple tuple, |
| 1317 | TupleTableSlot *slot, |
| 1318 | bool shouldFree) |
| 1319 | { |
| 1320 | /* |
| 1321 | * sanity checks |
| 1322 | */ |
| 1323 | Assert(tuple != NULL); |
| 1324 | Assert(slot != NULL); |
| 1325 | Assert(slot->tts_tupleDescriptor != NULL); |
| 1326 | |
| 1327 | if (unlikely(!TTS_IS_HEAPTUPLE(slot))) |
| 1328 | elog(ERROR, "trying to store a heap tuple into wrong type of slot" ); |
| 1329 | tts_heap_store_tuple(slot, tuple, shouldFree); |
| 1330 | |
| 1331 | slot->tts_tableOid = tuple->t_tableOid; |
| 1332 | |
| 1333 | return slot; |
| 1334 | } |
| 1335 | |
| 1336 | /* -------------------------------- |
| 1337 | * ExecStoreBufferHeapTuple |
| 1338 | * |
| 1339 | * This function is used to store an on-disk physical tuple from a buffer |
| 1340 | * into a specified slot in the tuple table. |
| 1341 | * |
| 1342 | * tuple: tuple to store |
| 1343 | * slot: TTSOpsBufferHeapTuple type slot to store it in |
| 1344 | * buffer: disk buffer if tuple is in a disk page, else InvalidBuffer |
| 1345 | * |
| 1346 | * The tuple table code acquires a pin on the buffer which is held until the |
| 1347 | * slot is cleared, so that the tuple won't go away on us. |
| 1348 | * |
| 1349 | * Return value is just the passed-in slot pointer. |
| 1350 | * |
| 1351 | * If the target slot is not guaranteed to be TTSOpsBufferHeapTuple type slot, |
| 1352 | * use the, more expensive, ExecForceStoreHeapTuple(). |
| 1353 | * -------------------------------- |
| 1354 | */ |
| 1355 | TupleTableSlot * |
| 1356 | ExecStoreBufferHeapTuple(HeapTuple tuple, |
| 1357 | TupleTableSlot *slot, |
| 1358 | Buffer buffer) |
| 1359 | { |
| 1360 | /* |
| 1361 | * sanity checks |
| 1362 | */ |
| 1363 | Assert(tuple != NULL); |
| 1364 | Assert(slot != NULL); |
| 1365 | Assert(slot->tts_tupleDescriptor != NULL); |
| 1366 | Assert(BufferIsValid(buffer)); |
| 1367 | |
| 1368 | if (unlikely(!TTS_IS_BUFFERTUPLE(slot))) |
| 1369 | elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot" ); |
| 1370 | tts_buffer_heap_store_tuple(slot, tuple, buffer, false); |
| 1371 | |
| 1372 | slot->tts_tableOid = tuple->t_tableOid; |
| 1373 | |
| 1374 | return slot; |
| 1375 | } |
| 1376 | |
| 1377 | /* |
| 1378 | * Like ExecStoreBufferHeapTuple, but transfer an existing pin from the caller |
| 1379 | * to the slot, i.e. the caller doesn't need to, and may not, release the pin. |
| 1380 | */ |
| 1381 | TupleTableSlot * |
| 1382 | ExecStorePinnedBufferHeapTuple(HeapTuple tuple, |
| 1383 | TupleTableSlot *slot, |
| 1384 | Buffer buffer) |
| 1385 | { |
| 1386 | /* |
| 1387 | * sanity checks |
| 1388 | */ |
| 1389 | Assert(tuple != NULL); |
| 1390 | Assert(slot != NULL); |
| 1391 | Assert(slot->tts_tupleDescriptor != NULL); |
| 1392 | Assert(BufferIsValid(buffer)); |
| 1393 | |
| 1394 | if (unlikely(!TTS_IS_BUFFERTUPLE(slot))) |
| 1395 | elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot" ); |
| 1396 | tts_buffer_heap_store_tuple(slot, tuple, buffer, true); |
| 1397 | |
| 1398 | slot->tts_tableOid = tuple->t_tableOid; |
| 1399 | |
| 1400 | return slot; |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * Store a minimal tuple into TTSOpsMinimalTuple type slot. |
| 1405 | * |
| 1406 | * If the target slot is not guaranteed to be TTSOpsMinimalTuple type slot, |
| 1407 | * use the, more expensive, ExecForceStoreMinimalTuple(). |
| 1408 | */ |
| 1409 | TupleTableSlot * |
| 1410 | ExecStoreMinimalTuple(MinimalTuple mtup, |
| 1411 | TupleTableSlot *slot, |
| 1412 | bool shouldFree) |
| 1413 | { |
| 1414 | /* |
| 1415 | * sanity checks |
| 1416 | */ |
| 1417 | Assert(mtup != NULL); |
| 1418 | Assert(slot != NULL); |
| 1419 | Assert(slot->tts_tupleDescriptor != NULL); |
| 1420 | |
| 1421 | if (unlikely(!TTS_IS_MINIMALTUPLE(slot))) |
| 1422 | elog(ERROR, "trying to store a minimal tuple into wrong type of slot" ); |
| 1423 | tts_minimal_store_tuple(slot, mtup, shouldFree); |
| 1424 | |
| 1425 | return slot; |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * Store a HeapTuple into any kind of slot, performing conversion if |
| 1430 | * necessary. |
| 1431 | */ |
| 1432 | void |
| 1433 | ExecForceStoreHeapTuple(HeapTuple tuple, |
| 1434 | TupleTableSlot *slot, |
| 1435 | bool shouldFree) |
| 1436 | { |
| 1437 | if (TTS_IS_HEAPTUPLE(slot)) |
| 1438 | { |
| 1439 | ExecStoreHeapTuple(tuple, slot, shouldFree); |
| 1440 | } |
| 1441 | else if (TTS_IS_BUFFERTUPLE(slot)) |
| 1442 | { |
| 1443 | MemoryContext oldContext; |
| 1444 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 1445 | |
| 1446 | ExecClearTuple(slot); |
| 1447 | slot->tts_flags |= TTS_FLAG_SHOULDFREE; |
| 1448 | slot->tts_flags &= ~TTS_FLAG_EMPTY; |
| 1449 | oldContext = MemoryContextSwitchTo(slot->tts_mcxt); |
| 1450 | bslot->base.tuple = heap_copytuple(tuple); |
| 1451 | MemoryContextSwitchTo(oldContext); |
| 1452 | |
| 1453 | if (shouldFree) |
| 1454 | pfree(tuple); |
| 1455 | } |
| 1456 | else |
| 1457 | { |
| 1458 | ExecClearTuple(slot); |
| 1459 | heap_deform_tuple(tuple, slot->tts_tupleDescriptor, |
| 1460 | slot->tts_values, slot->tts_isnull); |
| 1461 | ExecStoreVirtualTuple(slot); |
| 1462 | |
| 1463 | if (shouldFree) |
| 1464 | { |
| 1465 | ExecMaterializeSlot(slot); |
| 1466 | pfree(tuple); |
| 1467 | } |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | /* |
| 1472 | * Store a MinimalTuple into any kind of slot, performing conversion if |
| 1473 | * necessary. |
| 1474 | */ |
| 1475 | void |
| 1476 | ExecForceStoreMinimalTuple(MinimalTuple mtup, |
| 1477 | TupleTableSlot *slot, |
| 1478 | bool shouldFree) |
| 1479 | { |
| 1480 | if (TTS_IS_MINIMALTUPLE(slot)) |
| 1481 | { |
| 1482 | tts_minimal_store_tuple(slot, mtup, shouldFree); |
| 1483 | } |
| 1484 | else |
| 1485 | { |
| 1486 | HeapTupleData htup; |
| 1487 | |
| 1488 | ExecClearTuple(slot); |
| 1489 | |
| 1490 | htup.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET; |
| 1491 | htup.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET); |
| 1492 | heap_deform_tuple(&htup, slot->tts_tupleDescriptor, |
| 1493 | slot->tts_values, slot->tts_isnull); |
| 1494 | ExecStoreVirtualTuple(slot); |
| 1495 | |
| 1496 | if (shouldFree) |
| 1497 | { |
| 1498 | ExecMaterializeSlot(slot); |
| 1499 | pfree(mtup); |
| 1500 | } |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | /* -------------------------------- |
| 1505 | * ExecStoreVirtualTuple |
| 1506 | * Mark a slot as containing a virtual tuple. |
| 1507 | * |
| 1508 | * The protocol for loading a slot with virtual tuple data is: |
| 1509 | * * Call ExecClearTuple to mark the slot empty. |
| 1510 | * * Store data into the Datum/isnull arrays. |
| 1511 | * * Call ExecStoreVirtualTuple to mark the slot valid. |
| 1512 | * This is a bit unclean but it avoids one round of data copying. |
| 1513 | * -------------------------------- |
| 1514 | */ |
| 1515 | TupleTableSlot * |
| 1516 | ExecStoreVirtualTuple(TupleTableSlot *slot) |
| 1517 | { |
| 1518 | /* |
| 1519 | * sanity checks |
| 1520 | */ |
| 1521 | Assert(slot != NULL); |
| 1522 | Assert(slot->tts_tupleDescriptor != NULL); |
| 1523 | Assert(TTS_EMPTY(slot)); |
| 1524 | |
| 1525 | slot->tts_flags &= ~TTS_FLAG_EMPTY; |
| 1526 | slot->tts_nvalid = slot->tts_tupleDescriptor->natts; |
| 1527 | |
| 1528 | return slot; |
| 1529 | } |
| 1530 | |
| 1531 | /* -------------------------------- |
| 1532 | * ExecStoreAllNullTuple |
| 1533 | * Set up the slot to contain a null in every column. |
| 1534 | * |
| 1535 | * At first glance this might sound just like ExecClearTuple, but it's |
| 1536 | * entirely different: the slot ends up full, not empty. |
| 1537 | * -------------------------------- |
| 1538 | */ |
| 1539 | TupleTableSlot * |
| 1540 | ExecStoreAllNullTuple(TupleTableSlot *slot) |
| 1541 | { |
| 1542 | /* |
| 1543 | * sanity checks |
| 1544 | */ |
| 1545 | Assert(slot != NULL); |
| 1546 | Assert(slot->tts_tupleDescriptor != NULL); |
| 1547 | |
| 1548 | /* Clear any old contents */ |
| 1549 | ExecClearTuple(slot); |
| 1550 | |
| 1551 | /* |
| 1552 | * Fill all the columns of the virtual tuple with nulls |
| 1553 | */ |
| 1554 | MemSet(slot->tts_values, 0, |
| 1555 | slot->tts_tupleDescriptor->natts * sizeof(Datum)); |
| 1556 | memset(slot->tts_isnull, true, |
| 1557 | slot->tts_tupleDescriptor->natts * sizeof(bool)); |
| 1558 | |
| 1559 | return ExecStoreVirtualTuple(slot); |
| 1560 | } |
| 1561 | |
| 1562 | /* |
| 1563 | * Store a HeapTuple in datum form, into a slot. That always requires |
| 1564 | * deforming it and storing it in virtual form. |
| 1565 | * |
| 1566 | * Until the slot is materialized, the contents of the slot depend on the |
| 1567 | * datum. |
| 1568 | */ |
| 1569 | void |
| 1570 | ExecStoreHeapTupleDatum(Datum data, TupleTableSlot *slot) |
| 1571 | { |
| 1572 | HeapTupleData tuple = {0}; |
| 1573 | HeapTupleHeader td; |
| 1574 | |
| 1575 | td = DatumGetHeapTupleHeader(data); |
| 1576 | |
| 1577 | tuple.t_len = HeapTupleHeaderGetDatumLength(td); |
| 1578 | tuple.t_self = td->t_ctid; |
| 1579 | tuple.t_data = td; |
| 1580 | |
| 1581 | ExecClearTuple(slot); |
| 1582 | |
| 1583 | heap_deform_tuple(&tuple, slot->tts_tupleDescriptor, |
| 1584 | slot->tts_values, slot->tts_isnull); |
| 1585 | ExecStoreVirtualTuple(slot); |
| 1586 | } |
| 1587 | |
| 1588 | /* |
| 1589 | * ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content |
| 1590 | * |
| 1591 | * The returned HeapTuple represents the slot's content as closely as |
| 1592 | * possible. |
| 1593 | * |
| 1594 | * If materialize is true, the contents of the slots will be made independent |
| 1595 | * from the underlying storage (i.e. all buffer pins are released, memory is |
| 1596 | * allocated in the slot's context). |
| 1597 | * |
| 1598 | * If shouldFree is not-NULL it'll be set to true if the returned tuple has |
| 1599 | * been allocated in the calling memory context, and must be freed by the |
| 1600 | * caller (via explicit pfree() or a memory context reset). |
| 1601 | * |
| 1602 | * NB: If materialize is true, modifications of the returned tuple are |
| 1603 | * allowed. But it depends on the type of the slot whether such modifications |
| 1604 | * will also affect the slot's contents. While that is not the nicest |
| 1605 | * behaviour, all such modifications are in the process of being removed. |
| 1606 | */ |
| 1607 | HeapTuple |
| 1608 | ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree) |
| 1609 | { |
| 1610 | /* |
| 1611 | * sanity checks |
| 1612 | */ |
| 1613 | Assert(slot != NULL); |
| 1614 | Assert(!TTS_EMPTY(slot)); |
| 1615 | |
| 1616 | /* Materialize the tuple so that the slot "owns" it, if requested. */ |
| 1617 | if (materialize) |
| 1618 | slot->tts_ops->materialize(slot); |
| 1619 | |
| 1620 | if (slot->tts_ops->get_heap_tuple == NULL) |
| 1621 | { |
| 1622 | if (shouldFree) |
| 1623 | *shouldFree = true; |
| 1624 | return slot->tts_ops->copy_heap_tuple(slot); |
| 1625 | } |
| 1626 | else |
| 1627 | { |
| 1628 | if (shouldFree) |
| 1629 | *shouldFree = false; |
| 1630 | return slot->tts_ops->get_heap_tuple(slot); |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | /* -------------------------------- |
| 1635 | * ExecFetchSlotMinimalTuple |
| 1636 | * Fetch the slot's minimal physical tuple. |
| 1637 | * |
| 1638 | * If the given tuple table slot can hold a minimal tuple, indicated by a |
| 1639 | * non-NULL get_minimal_tuple callback, the function returns the minimal |
| 1640 | * tuple returned by that callback. It assumes that the minimal tuple |
| 1641 | * returned by the callback is "owned" by the slot i.e. the slot is |
| 1642 | * responsible for freeing the memory consumed by the tuple. Hence it sets |
| 1643 | * *shouldFree to false, indicating that the caller should not free the |
| 1644 | * memory consumed by the minimal tuple. In this case the returned minimal |
| 1645 | * tuple should be considered as read-only. |
| 1646 | * |
| 1647 | * If that callback is not supported, it calls copy_minimal_tuple callback |
| 1648 | * which is expected to return a copy of minimal tuple representing the |
| 1649 | * contents of the slot. In this case *shouldFree is set to true, |
| 1650 | * indicating the caller that it should free the memory consumed by the |
| 1651 | * minimal tuple. In this case the returned minimal tuple may be written |
| 1652 | * up. |
| 1653 | * -------------------------------- |
| 1654 | */ |
| 1655 | MinimalTuple |
| 1656 | ExecFetchSlotMinimalTuple(TupleTableSlot *slot, |
| 1657 | bool *shouldFree) |
| 1658 | { |
| 1659 | /* |
| 1660 | * sanity checks |
| 1661 | */ |
| 1662 | Assert(slot != NULL); |
| 1663 | Assert(!TTS_EMPTY(slot)); |
| 1664 | |
| 1665 | if (slot->tts_ops->get_minimal_tuple) |
| 1666 | { |
| 1667 | if (shouldFree) |
| 1668 | *shouldFree = false; |
| 1669 | return slot->tts_ops->get_minimal_tuple(slot); |
| 1670 | } |
| 1671 | else |
| 1672 | { |
| 1673 | if (shouldFree) |
| 1674 | *shouldFree = true; |
| 1675 | return slot->tts_ops->copy_minimal_tuple(slot); |
| 1676 | } |
| 1677 | } |
| 1678 | |
| 1679 | /* -------------------------------- |
| 1680 | * ExecFetchSlotHeapTupleDatum |
| 1681 | * Fetch the slot's tuple as a composite-type Datum. |
| 1682 | * |
| 1683 | * The result is always freshly palloc'd in the caller's memory context. |
| 1684 | * -------------------------------- |
| 1685 | */ |
| 1686 | Datum |
| 1687 | ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot) |
| 1688 | { |
| 1689 | HeapTuple tup; |
| 1690 | TupleDesc tupdesc; |
| 1691 | bool shouldFree; |
| 1692 | Datum ret; |
| 1693 | |
| 1694 | /* Fetch slot's contents in regular-physical-tuple form */ |
| 1695 | tup = ExecFetchSlotHeapTuple(slot, false, &shouldFree); |
| 1696 | tupdesc = slot->tts_tupleDescriptor; |
| 1697 | |
| 1698 | /* Convert to Datum form */ |
| 1699 | ret = heap_copy_tuple_as_datum(tup, tupdesc); |
| 1700 | |
| 1701 | if (shouldFree) |
| 1702 | pfree(tup); |
| 1703 | |
| 1704 | return ret; |
| 1705 | } |
| 1706 | |
| 1707 | /* ---------------------------------------------------------------- |
| 1708 | * convenience initialization routines |
| 1709 | * ---------------------------------------------------------------- |
| 1710 | */ |
| 1711 | |
| 1712 | /* ---------------- |
| 1713 | * ExecInitResultTypeTL |
| 1714 | * |
| 1715 | * Initialize result type, using the plan node's targetlist. |
| 1716 | * ---------------- |
| 1717 | */ |
| 1718 | void |
| 1719 | ExecInitResultTypeTL(PlanState *planstate) |
| 1720 | { |
| 1721 | TupleDesc tupDesc = ExecTypeFromTL(planstate->plan->targetlist); |
| 1722 | |
| 1723 | planstate->ps_ResultTupleDesc = tupDesc; |
| 1724 | } |
| 1725 | |
| 1726 | /* -------------------------------- |
| 1727 | * ExecInit{Result,Scan,Extra}TupleSlot[TL] |
| 1728 | * |
| 1729 | * These are convenience routines to initialize the specified slot |
| 1730 | * in nodes inheriting the appropriate state. ExecInitExtraTupleSlot |
| 1731 | * is used for initializing special-purpose slots. |
| 1732 | * -------------------------------- |
| 1733 | */ |
| 1734 | |
| 1735 | /* ---------------- |
| 1736 | * ExecInitResultTupleSlotTL |
| 1737 | * |
| 1738 | * Initialize result tuple slot, using the tuple descriptor previously |
| 1739 | * computed with ExecInitResultTypeTL(). |
| 1740 | * ---------------- |
| 1741 | */ |
| 1742 | void |
| 1743 | ExecInitResultSlot(PlanState *planstate, const TupleTableSlotOps *tts_ops) |
| 1744 | { |
| 1745 | TupleTableSlot *slot; |
| 1746 | |
| 1747 | slot = ExecAllocTableSlot(&planstate->state->es_tupleTable, |
| 1748 | planstate->ps_ResultTupleDesc, tts_ops); |
| 1749 | planstate->ps_ResultTupleSlot = slot; |
| 1750 | |
| 1751 | planstate->resultopsfixed = planstate->ps_ResultTupleDesc != NULL; |
| 1752 | planstate->resultops = tts_ops; |
| 1753 | planstate->resultopsset = true; |
| 1754 | } |
| 1755 | |
| 1756 | /* ---------------- |
| 1757 | * ExecInitResultTupleSlotTL |
| 1758 | * |
| 1759 | * Initialize result tuple slot, using the plan node's targetlist. |
| 1760 | * ---------------- |
| 1761 | */ |
| 1762 | void |
| 1763 | ExecInitResultTupleSlotTL(PlanState *planstate, |
| 1764 | const TupleTableSlotOps *tts_ops) |
| 1765 | { |
| 1766 | ExecInitResultTypeTL(planstate); |
| 1767 | ExecInitResultSlot(planstate, tts_ops); |
| 1768 | } |
| 1769 | |
| 1770 | /* ---------------- |
| 1771 | * ExecInitScanTupleSlot |
| 1772 | * ---------------- |
| 1773 | */ |
| 1774 | void |
| 1775 | ExecInitScanTupleSlot(EState *estate, ScanState *scanstate, |
| 1776 | TupleDesc tupledesc, const TupleTableSlotOps *tts_ops) |
| 1777 | { |
| 1778 | scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable, |
| 1779 | tupledesc, tts_ops); |
| 1780 | scanstate->ps.scandesc = tupledesc; |
| 1781 | scanstate->ps.scanopsfixed = tupledesc != NULL; |
| 1782 | scanstate->ps.scanops = tts_ops; |
| 1783 | scanstate->ps.scanopsset = true; |
| 1784 | } |
| 1785 | |
| 1786 | /* ---------------- |
| 1787 | * ExecInitExtraTupleSlot |
| 1788 | * |
| 1789 | * Return a newly created slot. If tupledesc is non-NULL the slot will have |
| 1790 | * that as its fixed tupledesc. Otherwise the caller needs to use |
| 1791 | * ExecSetSlotDescriptor() to set the descriptor before use. |
| 1792 | * ---------------- |
| 1793 | */ |
| 1794 | TupleTableSlot * |
| 1795 | (EState *estate, |
| 1796 | TupleDesc tupledesc, |
| 1797 | const TupleTableSlotOps *tts_ops) |
| 1798 | { |
| 1799 | return ExecAllocTableSlot(&estate->es_tupleTable, tupledesc, tts_ops); |
| 1800 | } |
| 1801 | |
| 1802 | /* ---------------- |
| 1803 | * ExecInitNullTupleSlot |
| 1804 | * |
| 1805 | * Build a slot containing an all-nulls tuple of the given type. |
| 1806 | * This is used as a substitute for an input tuple when performing an |
| 1807 | * outer join. |
| 1808 | * ---------------- |
| 1809 | */ |
| 1810 | TupleTableSlot * |
| 1811 | ExecInitNullTupleSlot(EState *estate, TupleDesc tupType, |
| 1812 | const TupleTableSlotOps *tts_ops) |
| 1813 | { |
| 1814 | TupleTableSlot *slot = ExecInitExtraTupleSlot(estate, tupType, tts_ops); |
| 1815 | |
| 1816 | return ExecStoreAllNullTuple(slot); |
| 1817 | } |
| 1818 | |
| 1819 | /* --------------------------------------------------------------- |
| 1820 | * Routines for setting/accessing attributes in a slot. |
| 1821 | * --------------------------------------------------------------- |
| 1822 | */ |
| 1823 | |
| 1824 | /* |
| 1825 | * Fill in missing values for a TupleTableSlot. |
| 1826 | * |
| 1827 | * This is only exposed because it's needed for JIT compiled tuple |
| 1828 | * deforming. That exception aside, there should be no callers outside of this |
| 1829 | * file. |
| 1830 | */ |
| 1831 | void |
| 1832 | slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum) |
| 1833 | { |
| 1834 | AttrMissing *attrmiss = NULL; |
| 1835 | |
| 1836 | if (slot->tts_tupleDescriptor->constr) |
| 1837 | attrmiss = slot->tts_tupleDescriptor->constr->missing; |
| 1838 | |
| 1839 | if (!attrmiss) |
| 1840 | { |
| 1841 | /* no missing values array at all, so just fill everything in as NULL */ |
| 1842 | memset(slot->tts_values + startAttNum, 0, |
| 1843 | (lastAttNum - startAttNum) * sizeof(Datum)); |
| 1844 | memset(slot->tts_isnull + startAttNum, 1, |
| 1845 | (lastAttNum - startAttNum) * sizeof(bool)); |
| 1846 | } |
| 1847 | else |
| 1848 | { |
| 1849 | int missattnum; |
| 1850 | |
| 1851 | /* if there is a missing values array we must process them one by one */ |
| 1852 | for (missattnum = startAttNum; |
| 1853 | missattnum < lastAttNum; |
| 1854 | missattnum++) |
| 1855 | { |
| 1856 | slot->tts_values[missattnum] = attrmiss[missattnum].am_value; |
| 1857 | slot->tts_isnull[missattnum] = !attrmiss[missattnum].am_present; |
| 1858 | } |
| 1859 | |
| 1860 | } |
| 1861 | } |
| 1862 | |
| 1863 | /* |
| 1864 | * slot_getsomeattrs_int - workhorse for slot_getsomeattrs() |
| 1865 | */ |
| 1866 | void |
| 1867 | slot_getsomeattrs_int(TupleTableSlot *slot, int attnum) |
| 1868 | { |
| 1869 | /* Check for caller errors */ |
| 1870 | Assert(slot->tts_nvalid < attnum); /* checked in slot_getsomeattrs */ |
| 1871 | Assert(attnum > 0); |
| 1872 | |
| 1873 | if (unlikely(attnum > slot->tts_tupleDescriptor->natts)) |
| 1874 | elog(ERROR, "invalid attribute number %d" , attnum); |
| 1875 | |
| 1876 | /* Fetch as many attributes as possible from the underlying tuple. */ |
| 1877 | slot->tts_ops->getsomeattrs(slot, attnum); |
| 1878 | |
| 1879 | /* |
| 1880 | * If the underlying tuple doesn't have enough attributes, tuple |
| 1881 | * descriptor must have the missing attributes. |
| 1882 | */ |
| 1883 | if (unlikely(slot->tts_nvalid < attnum)) |
| 1884 | { |
| 1885 | slot_getmissingattrs(slot, slot->tts_nvalid, attnum); |
| 1886 | slot->tts_nvalid = attnum; |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | /* ---------------------------------------------------------------- |
| 1891 | * ExecTypeFromTL |
| 1892 | * |
| 1893 | * Generate a tuple descriptor for the result tuple of a targetlist. |
| 1894 | * (A parse/plan tlist must be passed, not an ExprState tlist.) |
| 1895 | * Note that resjunk columns, if any, are included in the result. |
| 1896 | * |
| 1897 | * Currently there are about 4 different places where we create |
| 1898 | * TupleDescriptors. They should all be merged, or perhaps |
| 1899 | * be rewritten to call BuildDesc(). |
| 1900 | * ---------------------------------------------------------------- |
| 1901 | */ |
| 1902 | TupleDesc |
| 1903 | ExecTypeFromTL(List *targetList) |
| 1904 | { |
| 1905 | return ExecTypeFromTLInternal(targetList, false); |
| 1906 | } |
| 1907 | |
| 1908 | /* ---------------------------------------------------------------- |
| 1909 | * ExecCleanTypeFromTL |
| 1910 | * |
| 1911 | * Same as above, but resjunk columns are omitted from the result. |
| 1912 | * ---------------------------------------------------------------- |
| 1913 | */ |
| 1914 | TupleDesc |
| 1915 | ExecCleanTypeFromTL(List *targetList) |
| 1916 | { |
| 1917 | return ExecTypeFromTLInternal(targetList, true); |
| 1918 | } |
| 1919 | |
| 1920 | static TupleDesc |
| 1921 | ExecTypeFromTLInternal(List *targetList, bool skipjunk) |
| 1922 | { |
| 1923 | TupleDesc typeInfo; |
| 1924 | ListCell *l; |
| 1925 | int len; |
| 1926 | int cur_resno = 1; |
| 1927 | |
| 1928 | if (skipjunk) |
| 1929 | len = ExecCleanTargetListLength(targetList); |
| 1930 | else |
| 1931 | len = ExecTargetListLength(targetList); |
| 1932 | typeInfo = CreateTemplateTupleDesc(len); |
| 1933 | |
| 1934 | foreach(l, targetList) |
| 1935 | { |
| 1936 | TargetEntry *tle = lfirst(l); |
| 1937 | |
| 1938 | if (skipjunk && tle->resjunk) |
| 1939 | continue; |
| 1940 | TupleDescInitEntry(typeInfo, |
| 1941 | cur_resno, |
| 1942 | tle->resname, |
| 1943 | exprType((Node *) tle->expr), |
| 1944 | exprTypmod((Node *) tle->expr), |
| 1945 | 0); |
| 1946 | TupleDescInitEntryCollation(typeInfo, |
| 1947 | cur_resno, |
| 1948 | exprCollation((Node *) tle->expr)); |
| 1949 | cur_resno++; |
| 1950 | } |
| 1951 | |
| 1952 | return typeInfo; |
| 1953 | } |
| 1954 | |
| 1955 | /* |
| 1956 | * ExecTypeFromExprList - build a tuple descriptor from a list of Exprs |
| 1957 | * |
| 1958 | * This is roughly like ExecTypeFromTL, but we work from bare expressions |
| 1959 | * not TargetEntrys. No names are attached to the tupledesc's columns. |
| 1960 | */ |
| 1961 | TupleDesc |
| 1962 | ExecTypeFromExprList(List *exprList) |
| 1963 | { |
| 1964 | TupleDesc typeInfo; |
| 1965 | ListCell *lc; |
| 1966 | int cur_resno = 1; |
| 1967 | |
| 1968 | typeInfo = CreateTemplateTupleDesc(list_length(exprList)); |
| 1969 | |
| 1970 | foreach(lc, exprList) |
| 1971 | { |
| 1972 | Node *e = lfirst(lc); |
| 1973 | |
| 1974 | TupleDescInitEntry(typeInfo, |
| 1975 | cur_resno, |
| 1976 | NULL, |
| 1977 | exprType(e), |
| 1978 | exprTypmod(e), |
| 1979 | 0); |
| 1980 | TupleDescInitEntryCollation(typeInfo, |
| 1981 | cur_resno, |
| 1982 | exprCollation(e)); |
| 1983 | cur_resno++; |
| 1984 | } |
| 1985 | |
| 1986 | return typeInfo; |
| 1987 | } |
| 1988 | |
| 1989 | /* |
| 1990 | * ExecTypeSetColNames - set column names in a TupleDesc |
| 1991 | * |
| 1992 | * Column names must be provided as an alias list (list of String nodes). |
| 1993 | * |
| 1994 | * For some callers, the supplied tupdesc has a named rowtype (not RECORD) |
| 1995 | * and it is moderately likely that the alias list matches the column names |
| 1996 | * already present in the tupdesc. If we do change any column names then |
| 1997 | * we must reset the tupdesc's type to anonymous RECORD; but we avoid doing |
| 1998 | * so if no names change. |
| 1999 | */ |
| 2000 | void |
| 2001 | ExecTypeSetColNames(TupleDesc typeInfo, List *namesList) |
| 2002 | { |
| 2003 | bool modified = false; |
| 2004 | int colno = 0; |
| 2005 | ListCell *lc; |
| 2006 | |
| 2007 | foreach(lc, namesList) |
| 2008 | { |
| 2009 | char *cname = strVal(lfirst(lc)); |
| 2010 | Form_pg_attribute attr; |
| 2011 | |
| 2012 | /* Guard against too-long names list */ |
| 2013 | if (colno >= typeInfo->natts) |
| 2014 | break; |
| 2015 | attr = TupleDescAttr(typeInfo, colno); |
| 2016 | colno++; |
| 2017 | |
| 2018 | /* Ignore empty aliases (these must be for dropped columns) */ |
| 2019 | if (cname[0] == '\0') |
| 2020 | continue; |
| 2021 | |
| 2022 | /* Change tupdesc only if alias is actually different */ |
| 2023 | if (strcmp(cname, NameStr(attr->attname)) != 0) |
| 2024 | { |
| 2025 | namestrcpy(&(attr->attname), cname); |
| 2026 | modified = true; |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | /* If we modified the tupdesc, it's now a new record type */ |
| 2031 | if (modified) |
| 2032 | { |
| 2033 | typeInfo->tdtypeid = RECORDOID; |
| 2034 | typeInfo->tdtypmod = -1; |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | /* |
| 2039 | * BlessTupleDesc - make a completed tuple descriptor useful for SRFs |
| 2040 | * |
| 2041 | * Rowtype Datums returned by a function must contain valid type information. |
| 2042 | * This happens "for free" if the tupdesc came from a relcache entry, but |
| 2043 | * not if we have manufactured a tupdesc for a transient RECORD datatype. |
| 2044 | * In that case we have to notify typcache.c of the existence of the type. |
| 2045 | */ |
| 2046 | TupleDesc |
| 2047 | BlessTupleDesc(TupleDesc tupdesc) |
| 2048 | { |
| 2049 | if (tupdesc->tdtypeid == RECORDOID && |
| 2050 | tupdesc->tdtypmod < 0) |
| 2051 | assign_record_type_typmod(tupdesc); |
| 2052 | |
| 2053 | return tupdesc; /* just for notational convenience */ |
| 2054 | } |
| 2055 | |
| 2056 | /* |
| 2057 | * TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the |
| 2058 | * supplied TupleDesc. AttInMetadata can be used in conjunction with C strings |
| 2059 | * to produce a properly formed tuple. |
| 2060 | */ |
| 2061 | AttInMetadata * |
| 2062 | TupleDescGetAttInMetadata(TupleDesc tupdesc) |
| 2063 | { |
| 2064 | int natts = tupdesc->natts; |
| 2065 | int i; |
| 2066 | Oid atttypeid; |
| 2067 | Oid attinfuncid; |
| 2068 | FmgrInfo *attinfuncinfo; |
| 2069 | Oid *attioparams; |
| 2070 | int32 *atttypmods; |
| 2071 | AttInMetadata *attinmeta; |
| 2072 | |
| 2073 | attinmeta = (AttInMetadata *) palloc(sizeof(AttInMetadata)); |
| 2074 | |
| 2075 | /* "Bless" the tupledesc so that we can make rowtype datums with it */ |
| 2076 | attinmeta->tupdesc = BlessTupleDesc(tupdesc); |
| 2077 | |
| 2078 | /* |
| 2079 | * Gather info needed later to call the "in" function for each attribute |
| 2080 | */ |
| 2081 | attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo)); |
| 2082 | attioparams = (Oid *) palloc0(natts * sizeof(Oid)); |
| 2083 | atttypmods = (int32 *) palloc0(natts * sizeof(int32)); |
| 2084 | |
| 2085 | for (i = 0; i < natts; i++) |
| 2086 | { |
| 2087 | Form_pg_attribute att = TupleDescAttr(tupdesc, i); |
| 2088 | |
| 2089 | /* Ignore dropped attributes */ |
| 2090 | if (!att->attisdropped) |
| 2091 | { |
| 2092 | atttypeid = att->atttypid; |
| 2093 | getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]); |
| 2094 | fmgr_info(attinfuncid, &attinfuncinfo[i]); |
| 2095 | atttypmods[i] = att->atttypmod; |
| 2096 | } |
| 2097 | } |
| 2098 | attinmeta->attinfuncs = attinfuncinfo; |
| 2099 | attinmeta->attioparams = attioparams; |
| 2100 | attinmeta->atttypmods = atttypmods; |
| 2101 | |
| 2102 | return attinmeta; |
| 2103 | } |
| 2104 | |
| 2105 | /* |
| 2106 | * BuildTupleFromCStrings - build a HeapTuple given user data in C string form. |
| 2107 | * values is an array of C strings, one for each attribute of the return tuple. |
| 2108 | * A NULL string pointer indicates we want to create a NULL field. |
| 2109 | */ |
| 2110 | HeapTuple |
| 2111 | BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values) |
| 2112 | { |
| 2113 | TupleDesc tupdesc = attinmeta->tupdesc; |
| 2114 | int natts = tupdesc->natts; |
| 2115 | Datum *dvalues; |
| 2116 | bool *nulls; |
| 2117 | int i; |
| 2118 | HeapTuple tuple; |
| 2119 | |
| 2120 | dvalues = (Datum *) palloc(natts * sizeof(Datum)); |
| 2121 | nulls = (bool *) palloc(natts * sizeof(bool)); |
| 2122 | |
| 2123 | /* |
| 2124 | * Call the "in" function for each non-dropped attribute, even for nulls, |
| 2125 | * to support domains. |
| 2126 | */ |
| 2127 | for (i = 0; i < natts; i++) |
| 2128 | { |
| 2129 | if (!TupleDescAttr(tupdesc, i)->attisdropped) |
| 2130 | { |
| 2131 | /* Non-dropped attributes */ |
| 2132 | dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i], |
| 2133 | values[i], |
| 2134 | attinmeta->attioparams[i], |
| 2135 | attinmeta->atttypmods[i]); |
| 2136 | if (values[i] != NULL) |
| 2137 | nulls[i] = false; |
| 2138 | else |
| 2139 | nulls[i] = true; |
| 2140 | } |
| 2141 | else |
| 2142 | { |
| 2143 | /* Handle dropped attributes by setting to NULL */ |
| 2144 | dvalues[i] = (Datum) 0; |
| 2145 | nulls[i] = true; |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | /* |
| 2150 | * Form a tuple |
| 2151 | */ |
| 2152 | tuple = heap_form_tuple(tupdesc, dvalues, nulls); |
| 2153 | |
| 2154 | /* |
| 2155 | * Release locally palloc'd space. XXX would probably be good to pfree |
| 2156 | * values of pass-by-reference datums, as well. |
| 2157 | */ |
| 2158 | pfree(dvalues); |
| 2159 | pfree(nulls); |
| 2160 | |
| 2161 | return tuple; |
| 2162 | } |
| 2163 | |
| 2164 | /* |
| 2165 | * HeapTupleHeaderGetDatum - convert a HeapTupleHeader pointer to a Datum. |
| 2166 | * |
| 2167 | * This must *not* get applied to an on-disk tuple; the tuple should be |
| 2168 | * freshly made by heap_form_tuple or some wrapper routine for it (such as |
| 2169 | * BuildTupleFromCStrings). Be sure also that the tupledesc used to build |
| 2170 | * the tuple has a properly "blessed" rowtype. |
| 2171 | * |
| 2172 | * Formerly this was a macro equivalent to PointerGetDatum, relying on the |
| 2173 | * fact that heap_form_tuple fills in the appropriate tuple header fields |
| 2174 | * for a composite Datum. However, we now require that composite Datums not |
| 2175 | * contain any external TOAST pointers. We do not want heap_form_tuple itself |
| 2176 | * to enforce that; more specifically, the rule applies only to actual Datums |
| 2177 | * and not to HeapTuple structures. Therefore, HeapTupleHeaderGetDatum is |
| 2178 | * now a function that detects whether there are externally-toasted fields |
| 2179 | * and constructs a new tuple with inlined fields if so. We still need |
| 2180 | * heap_form_tuple to insert the Datum header fields, because otherwise this |
| 2181 | * code would have no way to obtain a tupledesc for the tuple. |
| 2182 | * |
| 2183 | * Note that if we do build a new tuple, it's palloc'd in the current |
| 2184 | * memory context. Beware of code that changes context between the initial |
| 2185 | * heap_form_tuple/etc call and calling HeapTuple(Header)GetDatum. |
| 2186 | * |
| 2187 | * For performance-critical callers, it could be worthwhile to take extra |
| 2188 | * steps to ensure that there aren't TOAST pointers in the output of |
| 2189 | * heap_form_tuple to begin with. It's likely however that the costs of the |
| 2190 | * typcache lookup and tuple disassembly/reassembly are swamped by TOAST |
| 2191 | * dereference costs, so that the benefits of such extra effort would be |
| 2192 | * minimal. |
| 2193 | * |
| 2194 | * XXX it would likely be better to create wrapper functions that produce |
| 2195 | * a composite Datum from the field values in one step. However, there's |
| 2196 | * enough code using the existing APIs that we couldn't get rid of this |
| 2197 | * hack anytime soon. |
| 2198 | */ |
| 2199 | Datum |
| 2200 | (HeapTupleHeader tuple) |
| 2201 | { |
| 2202 | Datum result; |
| 2203 | TupleDesc tupDesc; |
| 2204 | |
| 2205 | /* No work if there are no external TOAST pointers in the tuple */ |
| 2206 | if (!HeapTupleHeaderHasExternal(tuple)) |
| 2207 | return PointerGetDatum(tuple); |
| 2208 | |
| 2209 | /* Use the type data saved by heap_form_tuple to look up the rowtype */ |
| 2210 | tupDesc = lookup_rowtype_tupdesc(HeapTupleHeaderGetTypeId(tuple), |
| 2211 | HeapTupleHeaderGetTypMod(tuple)); |
| 2212 | |
| 2213 | /* And do the flattening */ |
| 2214 | result = toast_flatten_tuple_to_datum(tuple, |
| 2215 | HeapTupleHeaderGetDatumLength(tuple), |
| 2216 | tupDesc); |
| 2217 | |
| 2218 | ReleaseTupleDesc(tupDesc); |
| 2219 | |
| 2220 | return result; |
| 2221 | } |
| 2222 | |
| 2223 | |
| 2224 | /* |
| 2225 | * Functions for sending tuples to the frontend (or other specified destination) |
| 2226 | * as though it is a SELECT result. These are used by utility commands that |
| 2227 | * need to project directly to the destination and don't need or want full |
| 2228 | * table function capability. Currently used by EXPLAIN and SHOW ALL. |
| 2229 | */ |
| 2230 | TupOutputState * |
| 2231 | begin_tup_output_tupdesc(DestReceiver *dest, |
| 2232 | TupleDesc tupdesc, |
| 2233 | const TupleTableSlotOps *tts_ops) |
| 2234 | { |
| 2235 | TupOutputState *tstate; |
| 2236 | |
| 2237 | tstate = (TupOutputState *) palloc(sizeof(TupOutputState)); |
| 2238 | |
| 2239 | tstate->slot = MakeSingleTupleTableSlot(tupdesc, tts_ops); |
| 2240 | tstate->dest = dest; |
| 2241 | |
| 2242 | tstate->dest->rStartup(tstate->dest, (int) CMD_SELECT, tupdesc); |
| 2243 | |
| 2244 | return tstate; |
| 2245 | } |
| 2246 | |
| 2247 | /* |
| 2248 | * write a single tuple |
| 2249 | */ |
| 2250 | void |
| 2251 | do_tup_output(TupOutputState *tstate, Datum *values, bool *isnull) |
| 2252 | { |
| 2253 | TupleTableSlot *slot = tstate->slot; |
| 2254 | int natts = slot->tts_tupleDescriptor->natts; |
| 2255 | |
| 2256 | /* make sure the slot is clear */ |
| 2257 | ExecClearTuple(slot); |
| 2258 | |
| 2259 | /* insert data */ |
| 2260 | memcpy(slot->tts_values, values, natts * sizeof(Datum)); |
| 2261 | memcpy(slot->tts_isnull, isnull, natts * sizeof(bool)); |
| 2262 | |
| 2263 | /* mark slot as containing a virtual tuple */ |
| 2264 | ExecStoreVirtualTuple(slot); |
| 2265 | |
| 2266 | /* send the tuple to the receiver */ |
| 2267 | (void) tstate->dest->receiveSlot(slot, tstate->dest); |
| 2268 | |
| 2269 | /* clean up */ |
| 2270 | ExecClearTuple(slot); |
| 2271 | } |
| 2272 | |
| 2273 | /* |
| 2274 | * write a chunk of text, breaking at newline characters |
| 2275 | * |
| 2276 | * Should only be used with a single-TEXT-attribute tupdesc. |
| 2277 | */ |
| 2278 | void |
| 2279 | do_text_output_multiline(TupOutputState *tstate, const char *txt) |
| 2280 | { |
| 2281 | Datum values[1]; |
| 2282 | bool isnull[1] = {false}; |
| 2283 | |
| 2284 | while (*txt) |
| 2285 | { |
| 2286 | const char *eol; |
| 2287 | int len; |
| 2288 | |
| 2289 | eol = strchr(txt, '\n'); |
| 2290 | if (eol) |
| 2291 | { |
| 2292 | len = eol - txt; |
| 2293 | eol++; |
| 2294 | } |
| 2295 | else |
| 2296 | { |
| 2297 | len = strlen(txt); |
| 2298 | eol = txt + len; |
| 2299 | } |
| 2300 | |
| 2301 | values[0] = PointerGetDatum(cstring_to_text_with_len(txt, len)); |
| 2302 | do_tup_output(tstate, values, isnull); |
| 2303 | pfree(DatumGetPointer(values[0])); |
| 2304 | txt = eol; |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | void |
| 2309 | end_tup_output(TupOutputState *tstate) |
| 2310 | { |
| 2311 | tstate->dest->rShutdown(tstate->dest); |
| 2312 | /* note that destroying the dest is not ours to do */ |
| 2313 | ExecDropSingleTupleTableSlot(tstate->slot); |
| 2314 | pfree(tstate); |
| 2315 | } |
| 2316 | |