1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * nodeAgg.c |
4 | * Routines to handle aggregate nodes. |
5 | * |
6 | * ExecAgg normally evaluates each aggregate in the following steps: |
7 | * |
8 | * transvalue = initcond |
9 | * foreach input_tuple do |
10 | * transvalue = transfunc(transvalue, input_value(s)) |
11 | * result = finalfunc(transvalue, direct_argument(s)) |
12 | * |
13 | * If a finalfunc is not supplied then the result is just the ending |
14 | * value of transvalue. |
15 | * |
16 | * Other behaviors can be selected by the "aggsplit" mode, which exists |
17 | * to support partial aggregation. It is possible to: |
18 | * * Skip running the finalfunc, so that the output is always the |
19 | * final transvalue state. |
20 | * * Substitute the combinefunc for the transfunc, so that transvalue |
21 | * states (propagated up from a child partial-aggregation step) are merged |
22 | * rather than processing raw input rows. (The statements below about |
23 | * the transfunc apply equally to the combinefunc, when it's selected.) |
24 | * * Apply the serializefunc to the output values (this only makes sense |
25 | * when skipping the finalfunc, since the serializefunc works on the |
26 | * transvalue data type). |
27 | * * Apply the deserializefunc to the input values (this only makes sense |
28 | * when using the combinefunc, for similar reasons). |
29 | * It is the planner's responsibility to connect up Agg nodes using these |
30 | * alternate behaviors in a way that makes sense, with partial aggregation |
31 | * results being fed to nodes that expect them. |
32 | * |
33 | * If a normal aggregate call specifies DISTINCT or ORDER BY, we sort the |
34 | * input tuples and eliminate duplicates (if required) before performing |
35 | * the above-depicted process. (However, we don't do that for ordered-set |
36 | * aggregates; their "ORDER BY" inputs are ordinary aggregate arguments |
37 | * so far as this module is concerned.) Note that partial aggregation |
38 | * is not supported in these cases, since we couldn't ensure global |
39 | * ordering or distinctness of the inputs. |
40 | * |
41 | * If transfunc is marked "strict" in pg_proc and initcond is NULL, |
42 | * then the first non-NULL input_value is assigned directly to transvalue, |
43 | * and transfunc isn't applied until the second non-NULL input_value. |
44 | * The agg's first input type and transtype must be the same in this case! |
45 | * |
46 | * If transfunc is marked "strict" then NULL input_values are skipped, |
47 | * keeping the previous transvalue. If transfunc is not strict then it |
48 | * is called for every input tuple and must deal with NULL initcond |
49 | * or NULL input_values for itself. |
50 | * |
51 | * If finalfunc is marked "strict" then it is not called when the |
52 | * ending transvalue is NULL, instead a NULL result is created |
53 | * automatically (this is just the usual handling of strict functions, |
54 | * of course). A non-strict finalfunc can make its own choice of |
55 | * what to return for a NULL ending transvalue. |
56 | * |
57 | * Ordered-set aggregates are treated specially in one other way: we |
58 | * evaluate any "direct" arguments and pass them to the finalfunc along |
59 | * with the transition value. |
60 | * |
61 | * A finalfunc can have additional arguments beyond the transvalue and |
62 | * any "direct" arguments, corresponding to the input arguments of the |
63 | * aggregate. These are always just passed as NULL. Such arguments may be |
64 | * needed to allow resolution of a polymorphic aggregate's result type. |
65 | * |
66 | * We compute aggregate input expressions and run the transition functions |
67 | * in a temporary econtext (aggstate->tmpcontext). This is reset at least |
68 | * once per input tuple, so when the transvalue datatype is |
69 | * pass-by-reference, we have to be careful to copy it into a longer-lived |
70 | * memory context, and free the prior value to avoid memory leakage. We |
71 | * store transvalues in another set of econtexts, aggstate->aggcontexts |
72 | * (one per grouping set, see below), which are also used for the hashtable |
73 | * structures in AGG_HASHED mode. These econtexts are rescanned, not just |
74 | * reset, at group boundaries so that aggregate transition functions can |
75 | * register shutdown callbacks via AggRegisterCallback. |
76 | * |
77 | * The node's regular econtext (aggstate->ss.ps.ps_ExprContext) is used to |
78 | * run finalize functions and compute the output tuple; this context can be |
79 | * reset once per output tuple. |
80 | * |
81 | * The executor's AggState node is passed as the fmgr "context" value in |
82 | * all transfunc and finalfunc calls. It is not recommended that the |
83 | * transition functions look at the AggState node directly, but they can |
84 | * use AggCheckCallContext() to verify that they are being called by |
85 | * nodeAgg.c (and not as ordinary SQL functions). The main reason a |
86 | * transition function might want to know this is so that it can avoid |
87 | * palloc'ing a fixed-size pass-by-ref transition value on every call: |
88 | * it can instead just scribble on and return its left input. Ordinarily |
89 | * it is completely forbidden for functions to modify pass-by-ref inputs, |
90 | * but in the aggregate case we know the left input is either the initial |
91 | * transition value or a previous function result, and in either case its |
92 | * value need not be preserved. See int8inc() for an example. Notice that |
93 | * the EEOP_AGG_PLAIN_TRANS step is coded to avoid a data copy step when |
94 | * the previous transition value pointer is returned. It is also possible |
95 | * to avoid repeated data copying when the transition value is an expanded |
96 | * object: to do that, the transition function must take care to return |
97 | * an expanded object that is in a child context of the memory context |
98 | * returned by AggCheckCallContext(). Also, some transition functions want |
99 | * to store working state in addition to the nominal transition value; they |
100 | * can use the memory context returned by AggCheckCallContext() to do that. |
101 | * |
102 | * Note: AggCheckCallContext() is available as of PostgreSQL 9.0. The |
103 | * AggState is available as context in earlier releases (back to 8.1), |
104 | * but direct examination of the node is needed to use it before 9.0. |
105 | * |
106 | * As of 9.4, aggregate transition functions can also use AggGetAggref() |
107 | * to get hold of the Aggref expression node for their aggregate call. |
108 | * This is mainly intended for ordered-set aggregates, which are not |
109 | * supported as window functions. (A regular aggregate function would |
110 | * need some fallback logic to use this, since there's no Aggref node |
111 | * for a window function.) |
112 | * |
113 | * Grouping sets: |
114 | * |
115 | * A list of grouping sets which is structurally equivalent to a ROLLUP |
116 | * clause (e.g. (a,b,c), (a,b), (a)) can be processed in a single pass over |
117 | * ordered data. We do this by keeping a separate set of transition values |
118 | * for each grouping set being concurrently processed; for each input tuple |
119 | * we update them all, and on group boundaries we reset those states |
120 | * (starting at the front of the list) whose grouping values have changed |
121 | * (the list of grouping sets is ordered from most specific to least |
122 | * specific). |
123 | * |
124 | * Where more complex grouping sets are used, we break them down into |
125 | * "phases", where each phase has a different sort order (except phase 0 |
126 | * which is reserved for hashing). During each phase but the last, the |
127 | * input tuples are additionally stored in a tuplesort which is keyed to the |
128 | * next phase's sort order; during each phase but the first, the input |
129 | * tuples are drawn from the previously sorted data. (The sorting of the |
130 | * data for the first phase is handled by the planner, as it might be |
131 | * satisfied by underlying nodes.) |
132 | * |
133 | * Hashing can be mixed with sorted grouping. To do this, we have an |
134 | * AGG_MIXED strategy that populates the hashtables during the first sorted |
135 | * phase, and switches to reading them out after completing all sort phases. |
136 | * We can also support AGG_HASHED with multiple hash tables and no sorting |
137 | * at all. |
138 | * |
139 | * From the perspective of aggregate transition and final functions, the |
140 | * only issue regarding grouping sets is this: a single call site (flinfo) |
141 | * of an aggregate function may be used for updating several different |
142 | * transition values in turn. So the function must not cache in the flinfo |
143 | * anything which logically belongs as part of the transition value (most |
144 | * importantly, the memory context in which the transition value exists). |
145 | * The support API functions (AggCheckCallContext, AggRegisterCallback) are |
146 | * sensitive to the grouping set for which the aggregate function is |
147 | * currently being called. |
148 | * |
149 | * Plan structure: |
150 | * |
151 | * What we get from the planner is actually one "real" Agg node which is |
152 | * part of the plan tree proper, but which optionally has an additional list |
153 | * of Agg nodes hung off the side via the "chain" field. This is because an |
154 | * Agg node happens to be a convenient representation of all the data we |
155 | * need for grouping sets. |
156 | * |
157 | * For many purposes, we treat the "real" node as if it were just the first |
158 | * node in the chain. The chain must be ordered such that hashed entries |
159 | * come before sorted/plain entries; the real node is marked AGG_MIXED if |
160 | * there are both types present (in which case the real node describes one |
161 | * of the hashed groupings, other AGG_HASHED nodes may optionally follow in |
162 | * the chain, followed in turn by AGG_SORTED or (one) AGG_PLAIN node). If |
163 | * the real node is marked AGG_HASHED or AGG_SORTED, then all the chained |
164 | * nodes must be of the same type; if it is AGG_PLAIN, there can be no |
165 | * chained nodes. |
166 | * |
167 | * We collect all hashed nodes into a single "phase", numbered 0, and create |
168 | * a sorted phase (numbered 1..n) for each AGG_SORTED or AGG_PLAIN node. |
169 | * Phase 0 is allocated even if there are no hashes, but remains unused in |
170 | * that case. |
171 | * |
172 | * AGG_HASHED nodes actually refer to only a single grouping set each, |
173 | * because for each hashed grouping we need a separate grpColIdx and |
174 | * numGroups estimate. AGG_SORTED nodes represent a "rollup", a list of |
175 | * grouping sets that share a sort order. Each AGG_SORTED node other than |
176 | * the first one has an associated Sort node which describes the sort order |
177 | * to be used; the first sorted node takes its input from the outer subtree, |
178 | * which the planner has already arranged to provide ordered data. |
179 | * |
180 | * Memory and ExprContext usage: |
181 | * |
182 | * Because we're accumulating aggregate values across input rows, we need to |
183 | * use more memory contexts than just simple input/output tuple contexts. |
184 | * In fact, for a rollup, we need a separate context for each grouping set |
185 | * so that we can reset the inner (finer-grained) aggregates on their group |
186 | * boundaries while continuing to accumulate values for outer |
187 | * (coarser-grained) groupings. On top of this, we might be simultaneously |
188 | * populating hashtables; however, we only need one context for all the |
189 | * hashtables. |
190 | * |
191 | * So we create an array, aggcontexts, with an ExprContext for each grouping |
192 | * set in the largest rollup that we're going to process, and use the |
193 | * per-tuple memory context of those ExprContexts to store the aggregate |
194 | * transition values. hashcontext is the single context created to support |
195 | * all hash tables. |
196 | * |
197 | * Transition / Combine function invocation: |
198 | * |
199 | * For performance reasons transition functions, including combine |
200 | * functions, aren't invoked one-by-one from nodeAgg.c after computing |
201 | * arguments using the expression evaluation engine. Instead |
202 | * ExecBuildAggTrans() builds one large expression that does both argument |
203 | * evaluation and transition function invocation. That avoids performance |
204 | * issues due to repeated uses of expression evaluation, complications due |
205 | * to filter expressions having to be evaluated early, and allows to JIT |
206 | * the entire expression into one native function. |
207 | * |
208 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
209 | * Portions Copyright (c) 1994, Regents of the University of California |
210 | * |
211 | * IDENTIFICATION |
212 | * src/backend/executor/nodeAgg.c |
213 | * |
214 | *------------------------------------------------------------------------- |
215 | */ |
216 | |
217 | #include "postgres.h" |
218 | |
219 | #include "access/htup_details.h" |
220 | #include "catalog/objectaccess.h" |
221 | #include "catalog/pg_aggregate.h" |
222 | #include "catalog/pg_proc.h" |
223 | #include "catalog/pg_type.h" |
224 | #include "executor/executor.h" |
225 | #include "executor/nodeAgg.h" |
226 | #include "miscadmin.h" |
227 | #include "nodes/makefuncs.h" |
228 | #include "nodes/nodeFuncs.h" |
229 | #include "optimizer/optimizer.h" |
230 | #include "parser/parse_agg.h" |
231 | #include "parser/parse_coerce.h" |
232 | #include "utils/acl.h" |
233 | #include "utils/builtins.h" |
234 | #include "utils/lsyscache.h" |
235 | #include "utils/memutils.h" |
236 | #include "utils/syscache.h" |
237 | #include "utils/tuplesort.h" |
238 | #include "utils/datum.h" |
239 | |
240 | |
241 | static void select_current_set(AggState *aggstate, int setno, bool is_hash); |
242 | static void initialize_phase(AggState *aggstate, int newphase); |
243 | static TupleTableSlot *fetch_input_tuple(AggState *aggstate); |
244 | static void initialize_aggregates(AggState *aggstate, |
245 | AggStatePerGroup *pergroups, |
246 | int numReset); |
247 | static void advance_transition_function(AggState *aggstate, |
248 | AggStatePerTrans pertrans, |
249 | AggStatePerGroup pergroupstate); |
250 | static void advance_aggregates(AggState *aggstate); |
251 | static void process_ordered_aggregate_single(AggState *aggstate, |
252 | AggStatePerTrans pertrans, |
253 | AggStatePerGroup pergroupstate); |
254 | static void process_ordered_aggregate_multi(AggState *aggstate, |
255 | AggStatePerTrans pertrans, |
256 | AggStatePerGroup pergroupstate); |
257 | static void finalize_aggregate(AggState *aggstate, |
258 | AggStatePerAgg peragg, |
259 | AggStatePerGroup pergroupstate, |
260 | Datum *resultVal, bool *resultIsNull); |
261 | static void finalize_partialaggregate(AggState *aggstate, |
262 | AggStatePerAgg peragg, |
263 | AggStatePerGroup pergroupstate, |
264 | Datum *resultVal, bool *resultIsNull); |
265 | static void prepare_projection_slot(AggState *aggstate, |
266 | TupleTableSlot *slot, |
267 | int currentSet); |
268 | static void finalize_aggregates(AggState *aggstate, |
269 | AggStatePerAgg peragg, |
270 | AggStatePerGroup pergroup); |
271 | static TupleTableSlot *project_aggregates(AggState *aggstate); |
272 | static Bitmapset *find_unaggregated_cols(AggState *aggstate); |
273 | static bool find_unaggregated_cols_walker(Node *node, Bitmapset **colnos); |
274 | static void build_hash_table(AggState *aggstate); |
275 | static TupleHashEntryData *lookup_hash_entry(AggState *aggstate); |
276 | static void lookup_hash_entries(AggState *aggstate); |
277 | static TupleTableSlot *agg_retrieve_direct(AggState *aggstate); |
278 | static void agg_fill_hash_table(AggState *aggstate); |
279 | static TupleTableSlot *agg_retrieve_hash_table(AggState *aggstate); |
280 | static Datum GetAggInitVal(Datum textInitVal, Oid transtype); |
281 | static void build_pertrans_for_aggref(AggStatePerTrans pertrans, |
282 | AggState *aggstate, EState *estate, |
283 | Aggref *aggref, Oid aggtransfn, Oid aggtranstype, |
284 | Oid aggserialfn, Oid aggdeserialfn, |
285 | Datum initValue, bool initValueIsNull, |
286 | Oid *inputTypes, int numArguments); |
287 | static int find_compatible_peragg(Aggref *newagg, AggState *aggstate, |
288 | int lastaggno, List **same_input_transnos); |
289 | static int find_compatible_pertrans(AggState *aggstate, Aggref *newagg, |
290 | bool shareable, |
291 | Oid aggtransfn, Oid aggtranstype, |
292 | Oid aggserialfn, Oid aggdeserialfn, |
293 | Datum initValue, bool initValueIsNull, |
294 | List *transnos); |
295 | |
296 | |
297 | /* |
298 | * Select the current grouping set; affects current_set and |
299 | * curaggcontext. |
300 | */ |
301 | static void |
302 | select_current_set(AggState *aggstate, int setno, bool is_hash) |
303 | { |
304 | /* when changing this, also adapt ExecInterpExpr() and friends */ |
305 | if (is_hash) |
306 | aggstate->curaggcontext = aggstate->hashcontext; |
307 | else |
308 | aggstate->curaggcontext = aggstate->aggcontexts[setno]; |
309 | |
310 | aggstate->current_set = setno; |
311 | } |
312 | |
313 | /* |
314 | * Switch to phase "newphase", which must either be 0 or 1 (to reset) or |
315 | * current_phase + 1. Juggle the tuplesorts accordingly. |
316 | * |
317 | * Phase 0 is for hashing, which we currently handle last in the AGG_MIXED |
318 | * case, so when entering phase 0, all we need to do is drop open sorts. |
319 | */ |
320 | static void |
321 | initialize_phase(AggState *aggstate, int newphase) |
322 | { |
323 | Assert(newphase <= 1 || newphase == aggstate->current_phase + 1); |
324 | |
325 | /* |
326 | * Whatever the previous state, we're now done with whatever input |
327 | * tuplesort was in use. |
328 | */ |
329 | if (aggstate->sort_in) |
330 | { |
331 | tuplesort_end(aggstate->sort_in); |
332 | aggstate->sort_in = NULL; |
333 | } |
334 | |
335 | if (newphase <= 1) |
336 | { |
337 | /* |
338 | * Discard any existing output tuplesort. |
339 | */ |
340 | if (aggstate->sort_out) |
341 | { |
342 | tuplesort_end(aggstate->sort_out); |
343 | aggstate->sort_out = NULL; |
344 | } |
345 | } |
346 | else |
347 | { |
348 | /* |
349 | * The old output tuplesort becomes the new input one, and this is the |
350 | * right time to actually sort it. |
351 | */ |
352 | aggstate->sort_in = aggstate->sort_out; |
353 | aggstate->sort_out = NULL; |
354 | Assert(aggstate->sort_in); |
355 | tuplesort_performsort(aggstate->sort_in); |
356 | } |
357 | |
358 | /* |
359 | * If this isn't the last phase, we need to sort appropriately for the |
360 | * next phase in sequence. |
361 | */ |
362 | if (newphase > 0 && newphase < aggstate->numphases - 1) |
363 | { |
364 | Sort *sortnode = aggstate->phases[newphase + 1].sortnode; |
365 | PlanState *outerNode = outerPlanState(aggstate); |
366 | TupleDesc tupDesc = ExecGetResultType(outerNode); |
367 | |
368 | aggstate->sort_out = tuplesort_begin_heap(tupDesc, |
369 | sortnode->numCols, |
370 | sortnode->sortColIdx, |
371 | sortnode->sortOperators, |
372 | sortnode->collations, |
373 | sortnode->nullsFirst, |
374 | work_mem, |
375 | NULL, false); |
376 | } |
377 | |
378 | aggstate->current_phase = newphase; |
379 | aggstate->phase = &aggstate->phases[newphase]; |
380 | } |
381 | |
382 | /* |
383 | * Fetch a tuple from either the outer plan (for phase 1) or from the sorter |
384 | * populated by the previous phase. Copy it to the sorter for the next phase |
385 | * if any. |
386 | * |
387 | * Callers cannot rely on memory for tuple in returned slot remaining valid |
388 | * past any subsequently fetched tuple. |
389 | */ |
390 | static TupleTableSlot * |
391 | fetch_input_tuple(AggState *aggstate) |
392 | { |
393 | TupleTableSlot *slot; |
394 | |
395 | if (aggstate->sort_in) |
396 | { |
397 | /* make sure we check for interrupts in either path through here */ |
398 | CHECK_FOR_INTERRUPTS(); |
399 | if (!tuplesort_gettupleslot(aggstate->sort_in, true, false, |
400 | aggstate->sort_slot, NULL)) |
401 | return NULL; |
402 | slot = aggstate->sort_slot; |
403 | } |
404 | else |
405 | slot = ExecProcNode(outerPlanState(aggstate)); |
406 | |
407 | if (!TupIsNull(slot) && aggstate->sort_out) |
408 | tuplesort_puttupleslot(aggstate->sort_out, slot); |
409 | |
410 | return slot; |
411 | } |
412 | |
413 | /* |
414 | * (Re)Initialize an individual aggregate. |
415 | * |
416 | * This function handles only one grouping set, already set in |
417 | * aggstate->current_set. |
418 | * |
419 | * When called, CurrentMemoryContext should be the per-query context. |
420 | */ |
421 | static void |
422 | initialize_aggregate(AggState *aggstate, AggStatePerTrans pertrans, |
423 | AggStatePerGroup pergroupstate) |
424 | { |
425 | /* |
426 | * Start a fresh sort operation for each DISTINCT/ORDER BY aggregate. |
427 | */ |
428 | if (pertrans->numSortCols > 0) |
429 | { |
430 | /* |
431 | * In case of rescan, maybe there could be an uncompleted sort |
432 | * operation? Clean it up if so. |
433 | */ |
434 | if (pertrans->sortstates[aggstate->current_set]) |
435 | tuplesort_end(pertrans->sortstates[aggstate->current_set]); |
436 | |
437 | |
438 | /* |
439 | * We use a plain Datum sorter when there's a single input column; |
440 | * otherwise sort the full tuple. (See comments for |
441 | * process_ordered_aggregate_single.) |
442 | */ |
443 | if (pertrans->numInputs == 1) |
444 | { |
445 | Form_pg_attribute attr = TupleDescAttr(pertrans->sortdesc, 0); |
446 | |
447 | pertrans->sortstates[aggstate->current_set] = |
448 | tuplesort_begin_datum(attr->atttypid, |
449 | pertrans->sortOperators[0], |
450 | pertrans->sortCollations[0], |
451 | pertrans->sortNullsFirst[0], |
452 | work_mem, NULL, false); |
453 | } |
454 | else |
455 | pertrans->sortstates[aggstate->current_set] = |
456 | tuplesort_begin_heap(pertrans->sortdesc, |
457 | pertrans->numSortCols, |
458 | pertrans->sortColIdx, |
459 | pertrans->sortOperators, |
460 | pertrans->sortCollations, |
461 | pertrans->sortNullsFirst, |
462 | work_mem, NULL, false); |
463 | } |
464 | |
465 | /* |
466 | * (Re)set transValue to the initial value. |
467 | * |
468 | * Note that when the initial value is pass-by-ref, we must copy it (into |
469 | * the aggcontext) since we will pfree the transValue later. |
470 | */ |
471 | if (pertrans->initValueIsNull) |
472 | pergroupstate->transValue = pertrans->initValue; |
473 | else |
474 | { |
475 | MemoryContext oldContext; |
476 | |
477 | oldContext = MemoryContextSwitchTo( |
478 | aggstate->curaggcontext->ecxt_per_tuple_memory); |
479 | pergroupstate->transValue = datumCopy(pertrans->initValue, |
480 | pertrans->transtypeByVal, |
481 | pertrans->transtypeLen); |
482 | MemoryContextSwitchTo(oldContext); |
483 | } |
484 | pergroupstate->transValueIsNull = pertrans->initValueIsNull; |
485 | |
486 | /* |
487 | * If the initial value for the transition state doesn't exist in the |
488 | * pg_aggregate table then we will let the first non-NULL value returned |
489 | * from the outer procNode become the initial value. (This is useful for |
490 | * aggregates like max() and min().) The noTransValue flag signals that we |
491 | * still need to do this. |
492 | */ |
493 | pergroupstate->noTransValue = pertrans->initValueIsNull; |
494 | } |
495 | |
496 | /* |
497 | * Initialize all aggregate transition states for a new group of input values. |
498 | * |
499 | * If there are multiple grouping sets, we initialize only the first numReset |
500 | * of them (the grouping sets are ordered so that the most specific one, which |
501 | * is reset most often, is first). As a convenience, if numReset is 0, we |
502 | * reinitialize all sets. |
503 | * |
504 | * NB: This cannot be used for hash aggregates, as for those the grouping set |
505 | * number has to be specified from further up. |
506 | * |
507 | * When called, CurrentMemoryContext should be the per-query context. |
508 | */ |
509 | static void |
510 | initialize_aggregates(AggState *aggstate, |
511 | AggStatePerGroup *pergroups, |
512 | int numReset) |
513 | { |
514 | int transno; |
515 | int numGroupingSets = Max(aggstate->phase->numsets, 1); |
516 | int setno = 0; |
517 | int numTrans = aggstate->numtrans; |
518 | AggStatePerTrans transstates = aggstate->pertrans; |
519 | |
520 | if (numReset == 0) |
521 | numReset = numGroupingSets; |
522 | |
523 | for (setno = 0; setno < numReset; setno++) |
524 | { |
525 | AggStatePerGroup pergroup = pergroups[setno]; |
526 | |
527 | select_current_set(aggstate, setno, false); |
528 | |
529 | for (transno = 0; transno < numTrans; transno++) |
530 | { |
531 | AggStatePerTrans pertrans = &transstates[transno]; |
532 | AggStatePerGroup pergroupstate = &pergroup[transno]; |
533 | |
534 | initialize_aggregate(aggstate, pertrans, pergroupstate); |
535 | } |
536 | } |
537 | } |
538 | |
539 | /* |
540 | * Given new input value(s), advance the transition function of one aggregate |
541 | * state within one grouping set only (already set in aggstate->current_set) |
542 | * |
543 | * The new values (and null flags) have been preloaded into argument positions |
544 | * 1 and up in pertrans->transfn_fcinfo, so that we needn't copy them again to |
545 | * pass to the transition function. We also expect that the static fields of |
546 | * the fcinfo are already initialized; that was done by ExecInitAgg(). |
547 | * |
548 | * It doesn't matter which memory context this is called in. |
549 | */ |
550 | static void |
551 | advance_transition_function(AggState *aggstate, |
552 | AggStatePerTrans pertrans, |
553 | AggStatePerGroup pergroupstate) |
554 | { |
555 | FunctionCallInfo fcinfo = pertrans->transfn_fcinfo; |
556 | MemoryContext oldContext; |
557 | Datum newVal; |
558 | |
559 | if (pertrans->transfn.fn_strict) |
560 | { |
561 | /* |
562 | * For a strict transfn, nothing happens when there's a NULL input; we |
563 | * just keep the prior transValue. |
564 | */ |
565 | int numTransInputs = pertrans->numTransInputs; |
566 | int i; |
567 | |
568 | for (i = 1; i <= numTransInputs; i++) |
569 | { |
570 | if (fcinfo->args[i].isnull) |
571 | return; |
572 | } |
573 | if (pergroupstate->noTransValue) |
574 | { |
575 | /* |
576 | * transValue has not been initialized. This is the first non-NULL |
577 | * input value. We use it as the initial value for transValue. (We |
578 | * already checked that the agg's input type is binary-compatible |
579 | * with its transtype, so straight copy here is OK.) |
580 | * |
581 | * We must copy the datum into aggcontext if it is pass-by-ref. We |
582 | * do not need to pfree the old transValue, since it's NULL. |
583 | */ |
584 | oldContext = MemoryContextSwitchTo( |
585 | aggstate->curaggcontext->ecxt_per_tuple_memory); |
586 | pergroupstate->transValue = datumCopy(fcinfo->args[1].value, |
587 | pertrans->transtypeByVal, |
588 | pertrans->transtypeLen); |
589 | pergroupstate->transValueIsNull = false; |
590 | pergroupstate->noTransValue = false; |
591 | MemoryContextSwitchTo(oldContext); |
592 | return; |
593 | } |
594 | if (pergroupstate->transValueIsNull) |
595 | { |
596 | /* |
597 | * Don't call a strict function with NULL inputs. Note it is |
598 | * possible to get here despite the above tests, if the transfn is |
599 | * strict *and* returned a NULL on a prior cycle. If that happens |
600 | * we will propagate the NULL all the way to the end. |
601 | */ |
602 | return; |
603 | } |
604 | } |
605 | |
606 | /* We run the transition functions in per-input-tuple memory context */ |
607 | oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory); |
608 | |
609 | /* set up aggstate->curpertrans for AggGetAggref() */ |
610 | aggstate->curpertrans = pertrans; |
611 | |
612 | /* |
613 | * OK to call the transition function |
614 | */ |
615 | fcinfo->args[0].value = pergroupstate->transValue; |
616 | fcinfo->args[0].isnull = pergroupstate->transValueIsNull; |
617 | fcinfo->isnull = false; /* just in case transfn doesn't set it */ |
618 | |
619 | newVal = FunctionCallInvoke(fcinfo); |
620 | |
621 | aggstate->curpertrans = NULL; |
622 | |
623 | /* |
624 | * If pass-by-ref datatype, must copy the new value into aggcontext and |
625 | * free the prior transValue. But if transfn returned a pointer to its |
626 | * first input, we don't need to do anything. Also, if transfn returned a |
627 | * pointer to a R/W expanded object that is already a child of the |
628 | * aggcontext, assume we can adopt that value without copying it. |
629 | */ |
630 | if (!pertrans->transtypeByVal && |
631 | DatumGetPointer(newVal) != DatumGetPointer(pergroupstate->transValue)) |
632 | { |
633 | if (!fcinfo->isnull) |
634 | { |
635 | MemoryContextSwitchTo(aggstate->curaggcontext->ecxt_per_tuple_memory); |
636 | if (DatumIsReadWriteExpandedObject(newVal, |
637 | false, |
638 | pertrans->transtypeLen) && |
639 | MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext) |
640 | /* do nothing */ ; |
641 | else |
642 | newVal = datumCopy(newVal, |
643 | pertrans->transtypeByVal, |
644 | pertrans->transtypeLen); |
645 | } |
646 | if (!pergroupstate->transValueIsNull) |
647 | { |
648 | if (DatumIsReadWriteExpandedObject(pergroupstate->transValue, |
649 | false, |
650 | pertrans->transtypeLen)) |
651 | DeleteExpandedObject(pergroupstate->transValue); |
652 | else |
653 | pfree(DatumGetPointer(pergroupstate->transValue)); |
654 | } |
655 | } |
656 | |
657 | pergroupstate->transValue = newVal; |
658 | pergroupstate->transValueIsNull = fcinfo->isnull; |
659 | |
660 | MemoryContextSwitchTo(oldContext); |
661 | } |
662 | |
663 | /* |
664 | * Advance each aggregate transition state for one input tuple. The input |
665 | * tuple has been stored in tmpcontext->ecxt_outertuple, so that it is |
666 | * accessible to ExecEvalExpr. |
667 | * |
668 | * We have two sets of transition states to handle: one for sorted aggregation |
669 | * and one for hashed; we do them both here, to avoid multiple evaluation of |
670 | * the inputs. |
671 | * |
672 | * When called, CurrentMemoryContext should be the per-query context. |
673 | */ |
674 | static void |
675 | advance_aggregates(AggState *aggstate) |
676 | { |
677 | bool dummynull; |
678 | |
679 | ExecEvalExprSwitchContext(aggstate->phase->evaltrans, |
680 | aggstate->tmpcontext, |
681 | &dummynull); |
682 | } |
683 | |
684 | /* |
685 | * Run the transition function for a DISTINCT or ORDER BY aggregate |
686 | * with only one input. This is called after we have completed |
687 | * entering all the input values into the sort object. We complete the |
688 | * sort, read out the values in sorted order, and run the transition |
689 | * function on each value (applying DISTINCT if appropriate). |
690 | * |
691 | * Note that the strictness of the transition function was checked when |
692 | * entering the values into the sort, so we don't check it again here; |
693 | * we just apply standard SQL DISTINCT logic. |
694 | * |
695 | * The one-input case is handled separately from the multi-input case |
696 | * for performance reasons: for single by-value inputs, such as the |
697 | * common case of count(distinct id), the tuplesort_getdatum code path |
698 | * is around 300% faster. (The speedup for by-reference types is less |
699 | * but still noticeable.) |
700 | * |
701 | * This function handles only one grouping set (already set in |
702 | * aggstate->current_set). |
703 | * |
704 | * When called, CurrentMemoryContext should be the per-query context. |
705 | */ |
706 | static void |
707 | process_ordered_aggregate_single(AggState *aggstate, |
708 | AggStatePerTrans pertrans, |
709 | AggStatePerGroup pergroupstate) |
710 | { |
711 | Datum oldVal = (Datum) 0; |
712 | bool oldIsNull = true; |
713 | bool haveOldVal = false; |
714 | MemoryContext workcontext = aggstate->tmpcontext->ecxt_per_tuple_memory; |
715 | MemoryContext oldContext; |
716 | bool isDistinct = (pertrans->numDistinctCols > 0); |
717 | Datum newAbbrevVal = (Datum) 0; |
718 | Datum oldAbbrevVal = (Datum) 0; |
719 | FunctionCallInfo fcinfo = pertrans->transfn_fcinfo; |
720 | Datum *newVal; |
721 | bool *isNull; |
722 | |
723 | Assert(pertrans->numDistinctCols < 2); |
724 | |
725 | tuplesort_performsort(pertrans->sortstates[aggstate->current_set]); |
726 | |
727 | /* Load the column into argument 1 (arg 0 will be transition value) */ |
728 | newVal = &fcinfo->args[1].value; |
729 | isNull = &fcinfo->args[1].isnull; |
730 | |
731 | /* |
732 | * Note: if input type is pass-by-ref, the datums returned by the sort are |
733 | * freshly palloc'd in the per-query context, so we must be careful to |
734 | * pfree them when they are no longer needed. |
735 | */ |
736 | |
737 | while (tuplesort_getdatum(pertrans->sortstates[aggstate->current_set], |
738 | true, newVal, isNull, &newAbbrevVal)) |
739 | { |
740 | /* |
741 | * Clear and select the working context for evaluation of the equality |
742 | * function and transition function. |
743 | */ |
744 | MemoryContextReset(workcontext); |
745 | oldContext = MemoryContextSwitchTo(workcontext); |
746 | |
747 | /* |
748 | * If DISTINCT mode, and not distinct from prior, skip it. |
749 | */ |
750 | if (isDistinct && |
751 | haveOldVal && |
752 | ((oldIsNull && *isNull) || |
753 | (!oldIsNull && !*isNull && |
754 | oldAbbrevVal == newAbbrevVal && |
755 | DatumGetBool(FunctionCall2Coll(&pertrans->equalfnOne, |
756 | pertrans->aggCollation, |
757 | oldVal, *newVal))))) |
758 | { |
759 | /* equal to prior, so forget this one */ |
760 | if (!pertrans->inputtypeByVal && !*isNull) |
761 | pfree(DatumGetPointer(*newVal)); |
762 | } |
763 | else |
764 | { |
765 | advance_transition_function(aggstate, pertrans, pergroupstate); |
766 | /* forget the old value, if any */ |
767 | if (!oldIsNull && !pertrans->inputtypeByVal) |
768 | pfree(DatumGetPointer(oldVal)); |
769 | /* and remember the new one for subsequent equality checks */ |
770 | oldVal = *newVal; |
771 | oldAbbrevVal = newAbbrevVal; |
772 | oldIsNull = *isNull; |
773 | haveOldVal = true; |
774 | } |
775 | |
776 | MemoryContextSwitchTo(oldContext); |
777 | } |
778 | |
779 | if (!oldIsNull && !pertrans->inputtypeByVal) |
780 | pfree(DatumGetPointer(oldVal)); |
781 | |
782 | tuplesort_end(pertrans->sortstates[aggstate->current_set]); |
783 | pertrans->sortstates[aggstate->current_set] = NULL; |
784 | } |
785 | |
786 | /* |
787 | * Run the transition function for a DISTINCT or ORDER BY aggregate |
788 | * with more than one input. This is called after we have completed |
789 | * entering all the input values into the sort object. We complete the |
790 | * sort, read out the values in sorted order, and run the transition |
791 | * function on each value (applying DISTINCT if appropriate). |
792 | * |
793 | * This function handles only one grouping set (already set in |
794 | * aggstate->current_set). |
795 | * |
796 | * When called, CurrentMemoryContext should be the per-query context. |
797 | */ |
798 | static void |
799 | process_ordered_aggregate_multi(AggState *aggstate, |
800 | AggStatePerTrans pertrans, |
801 | AggStatePerGroup pergroupstate) |
802 | { |
803 | ExprContext *tmpcontext = aggstate->tmpcontext; |
804 | FunctionCallInfo fcinfo = pertrans->transfn_fcinfo; |
805 | TupleTableSlot *slot1 = pertrans->sortslot; |
806 | TupleTableSlot *slot2 = pertrans->uniqslot; |
807 | int numTransInputs = pertrans->numTransInputs; |
808 | int numDistinctCols = pertrans->numDistinctCols; |
809 | Datum newAbbrevVal = (Datum) 0; |
810 | Datum oldAbbrevVal = (Datum) 0; |
811 | bool haveOldValue = false; |
812 | TupleTableSlot *save = aggstate->tmpcontext->ecxt_outertuple; |
813 | int i; |
814 | |
815 | tuplesort_performsort(pertrans->sortstates[aggstate->current_set]); |
816 | |
817 | ExecClearTuple(slot1); |
818 | if (slot2) |
819 | ExecClearTuple(slot2); |
820 | |
821 | while (tuplesort_gettupleslot(pertrans->sortstates[aggstate->current_set], |
822 | true, true, slot1, &newAbbrevVal)) |
823 | { |
824 | CHECK_FOR_INTERRUPTS(); |
825 | |
826 | tmpcontext->ecxt_outertuple = slot1; |
827 | tmpcontext->ecxt_innertuple = slot2; |
828 | |
829 | if (numDistinctCols == 0 || |
830 | !haveOldValue || |
831 | newAbbrevVal != oldAbbrevVal || |
832 | !ExecQual(pertrans->equalfnMulti, tmpcontext)) |
833 | { |
834 | /* |
835 | * Extract the first numTransInputs columns as datums to pass to |
836 | * the transfn. |
837 | */ |
838 | slot_getsomeattrs(slot1, numTransInputs); |
839 | |
840 | /* Load values into fcinfo */ |
841 | /* Start from 1, since the 0th arg will be the transition value */ |
842 | for (i = 0; i < numTransInputs; i++) |
843 | { |
844 | fcinfo->args[i + 1].value = slot1->tts_values[i]; |
845 | fcinfo->args[i + 1].isnull = slot1->tts_isnull[i]; |
846 | } |
847 | |
848 | advance_transition_function(aggstate, pertrans, pergroupstate); |
849 | |
850 | if (numDistinctCols > 0) |
851 | { |
852 | /* swap the slot pointers to retain the current tuple */ |
853 | TupleTableSlot *tmpslot = slot2; |
854 | |
855 | slot2 = slot1; |
856 | slot1 = tmpslot; |
857 | /* avoid ExecQual() calls by reusing abbreviated keys */ |
858 | oldAbbrevVal = newAbbrevVal; |
859 | haveOldValue = true; |
860 | } |
861 | } |
862 | |
863 | /* Reset context each time */ |
864 | ResetExprContext(tmpcontext); |
865 | |
866 | ExecClearTuple(slot1); |
867 | } |
868 | |
869 | if (slot2) |
870 | ExecClearTuple(slot2); |
871 | |
872 | tuplesort_end(pertrans->sortstates[aggstate->current_set]); |
873 | pertrans->sortstates[aggstate->current_set] = NULL; |
874 | |
875 | /* restore previous slot, potentially in use for grouping sets */ |
876 | tmpcontext->ecxt_outertuple = save; |
877 | } |
878 | |
879 | /* |
880 | * Compute the final value of one aggregate. |
881 | * |
882 | * This function handles only one grouping set (already set in |
883 | * aggstate->current_set). |
884 | * |
885 | * The finalfunction will be run, and the result delivered, in the |
886 | * output-tuple context; caller's CurrentMemoryContext does not matter. |
887 | * |
888 | * The finalfn uses the state as set in the transno. This also might be |
889 | * being used by another aggregate function, so it's important that we do |
890 | * nothing destructive here. |
891 | */ |
892 | static void |
893 | finalize_aggregate(AggState *aggstate, |
894 | AggStatePerAgg peragg, |
895 | AggStatePerGroup pergroupstate, |
896 | Datum *resultVal, bool *resultIsNull) |
897 | { |
898 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
899 | bool anynull = false; |
900 | MemoryContext oldContext; |
901 | int i; |
902 | ListCell *lc; |
903 | AggStatePerTrans pertrans = &aggstate->pertrans[peragg->transno]; |
904 | |
905 | oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory); |
906 | |
907 | /* |
908 | * Evaluate any direct arguments. We do this even if there's no finalfn |
909 | * (which is unlikely anyway), so that side-effects happen as expected. |
910 | * The direct arguments go into arg positions 1 and up, leaving position 0 |
911 | * for the transition state value. |
912 | */ |
913 | i = 1; |
914 | foreach(lc, peragg->aggdirectargs) |
915 | { |
916 | ExprState *expr = (ExprState *) lfirst(lc); |
917 | |
918 | fcinfo->args[i].value = ExecEvalExpr(expr, |
919 | aggstate->ss.ps.ps_ExprContext, |
920 | &fcinfo->args[i].isnull); |
921 | anynull |= fcinfo->args[i].isnull; |
922 | i++; |
923 | } |
924 | |
925 | /* |
926 | * Apply the agg's finalfn if one is provided, else return transValue. |
927 | */ |
928 | if (OidIsValid(peragg->finalfn_oid)) |
929 | { |
930 | int numFinalArgs = peragg->numFinalArgs; |
931 | |
932 | /* set up aggstate->curperagg for AggGetAggref() */ |
933 | aggstate->curperagg = peragg; |
934 | |
935 | InitFunctionCallInfoData(*fcinfo, &peragg->finalfn, |
936 | numFinalArgs, |
937 | pertrans->aggCollation, |
938 | (void *) aggstate, NULL); |
939 | |
940 | /* Fill in the transition state value */ |
941 | fcinfo->args[0].value = |
942 | MakeExpandedObjectReadOnly(pergroupstate->transValue, |
943 | pergroupstate->transValueIsNull, |
944 | pertrans->transtypeLen); |
945 | fcinfo->args[0].isnull = pergroupstate->transValueIsNull; |
946 | anynull |= pergroupstate->transValueIsNull; |
947 | |
948 | /* Fill any remaining argument positions with nulls */ |
949 | for (; i < numFinalArgs; i++) |
950 | { |
951 | fcinfo->args[i].value = (Datum) 0; |
952 | fcinfo->args[i].isnull = true; |
953 | anynull = true; |
954 | } |
955 | |
956 | if (fcinfo->flinfo->fn_strict && anynull) |
957 | { |
958 | /* don't call a strict function with NULL inputs */ |
959 | *resultVal = (Datum) 0; |
960 | *resultIsNull = true; |
961 | } |
962 | else |
963 | { |
964 | *resultVal = FunctionCallInvoke(fcinfo); |
965 | *resultIsNull = fcinfo->isnull; |
966 | } |
967 | aggstate->curperagg = NULL; |
968 | } |
969 | else |
970 | { |
971 | /* Don't need MakeExpandedObjectReadOnly; datumCopy will copy it */ |
972 | *resultVal = pergroupstate->transValue; |
973 | *resultIsNull = pergroupstate->transValueIsNull; |
974 | } |
975 | |
976 | /* |
977 | * If result is pass-by-ref, make sure it is in the right context. |
978 | */ |
979 | if (!peragg->resulttypeByVal && !*resultIsNull && |
980 | !MemoryContextContains(CurrentMemoryContext, |
981 | DatumGetPointer(*resultVal))) |
982 | *resultVal = datumCopy(*resultVal, |
983 | peragg->resulttypeByVal, |
984 | peragg->resulttypeLen); |
985 | |
986 | MemoryContextSwitchTo(oldContext); |
987 | } |
988 | |
989 | /* |
990 | * Compute the output value of one partial aggregate. |
991 | * |
992 | * The serialization function will be run, and the result delivered, in the |
993 | * output-tuple context; caller's CurrentMemoryContext does not matter. |
994 | */ |
995 | static void |
996 | finalize_partialaggregate(AggState *aggstate, |
997 | AggStatePerAgg peragg, |
998 | AggStatePerGroup pergroupstate, |
999 | Datum *resultVal, bool *resultIsNull) |
1000 | { |
1001 | AggStatePerTrans pertrans = &aggstate->pertrans[peragg->transno]; |
1002 | MemoryContext oldContext; |
1003 | |
1004 | oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory); |
1005 | |
1006 | /* |
1007 | * serialfn_oid will be set if we must serialize the transvalue before |
1008 | * returning it |
1009 | */ |
1010 | if (OidIsValid(pertrans->serialfn_oid)) |
1011 | { |
1012 | /* Don't call a strict serialization function with NULL input. */ |
1013 | if (pertrans->serialfn.fn_strict && pergroupstate->transValueIsNull) |
1014 | { |
1015 | *resultVal = (Datum) 0; |
1016 | *resultIsNull = true; |
1017 | } |
1018 | else |
1019 | { |
1020 | FunctionCallInfo fcinfo = pertrans->serialfn_fcinfo; |
1021 | |
1022 | fcinfo->args[0].value = |
1023 | MakeExpandedObjectReadOnly(pergroupstate->transValue, |
1024 | pergroupstate->transValueIsNull, |
1025 | pertrans->transtypeLen); |
1026 | fcinfo->args[0].isnull = pergroupstate->transValueIsNull; |
1027 | |
1028 | *resultVal = FunctionCallInvoke(fcinfo); |
1029 | *resultIsNull = fcinfo->isnull; |
1030 | } |
1031 | } |
1032 | else |
1033 | { |
1034 | /* Don't need MakeExpandedObjectReadOnly; datumCopy will copy it */ |
1035 | *resultVal = pergroupstate->transValue; |
1036 | *resultIsNull = pergroupstate->transValueIsNull; |
1037 | } |
1038 | |
1039 | /* If result is pass-by-ref, make sure it is in the right context. */ |
1040 | if (!peragg->resulttypeByVal && !*resultIsNull && |
1041 | !MemoryContextContains(CurrentMemoryContext, |
1042 | DatumGetPointer(*resultVal))) |
1043 | *resultVal = datumCopy(*resultVal, |
1044 | peragg->resulttypeByVal, |
1045 | peragg->resulttypeLen); |
1046 | |
1047 | MemoryContextSwitchTo(oldContext); |
1048 | } |
1049 | |
1050 | /* |
1051 | * Prepare to finalize and project based on the specified representative tuple |
1052 | * slot and grouping set. |
1053 | * |
1054 | * In the specified tuple slot, force to null all attributes that should be |
1055 | * read as null in the context of the current grouping set. Also stash the |
1056 | * current group bitmap where GroupingExpr can get at it. |
1057 | * |
1058 | * This relies on three conditions: |
1059 | * |
1060 | * 1) Nothing is ever going to try and extract the whole tuple from this slot, |
1061 | * only reference it in evaluations, which will only access individual |
1062 | * attributes. |
1063 | * |
1064 | * 2) No system columns are going to need to be nulled. (If a system column is |
1065 | * referenced in a group clause, it is actually projected in the outer plan |
1066 | * tlist.) |
1067 | * |
1068 | * 3) Within a given phase, we never need to recover the value of an attribute |
1069 | * once it has been set to null. |
1070 | * |
1071 | * Poking into the slot this way is a bit ugly, but the consensus is that the |
1072 | * alternative was worse. |
1073 | */ |
1074 | static void |
1075 | prepare_projection_slot(AggState *aggstate, TupleTableSlot *slot, int currentSet) |
1076 | { |
1077 | if (aggstate->phase->grouped_cols) |
1078 | { |
1079 | Bitmapset *grouped_cols = aggstate->phase->grouped_cols[currentSet]; |
1080 | |
1081 | aggstate->grouped_cols = grouped_cols; |
1082 | |
1083 | if (TTS_EMPTY(slot)) |
1084 | { |
1085 | /* |
1086 | * Force all values to be NULL if working on an empty input tuple |
1087 | * (i.e. an empty grouping set for which no input rows were |
1088 | * supplied). |
1089 | */ |
1090 | ExecStoreAllNullTuple(slot); |
1091 | } |
1092 | else if (aggstate->all_grouped_cols) |
1093 | { |
1094 | ListCell *lc; |
1095 | |
1096 | /* all_grouped_cols is arranged in desc order */ |
1097 | slot_getsomeattrs(slot, linitial_int(aggstate->all_grouped_cols)); |
1098 | |
1099 | foreach(lc, aggstate->all_grouped_cols) |
1100 | { |
1101 | int attnum = lfirst_int(lc); |
1102 | |
1103 | if (!bms_is_member(attnum, grouped_cols)) |
1104 | slot->tts_isnull[attnum - 1] = true; |
1105 | } |
1106 | } |
1107 | } |
1108 | } |
1109 | |
1110 | /* |
1111 | * Compute the final value of all aggregates for one group. |
1112 | * |
1113 | * This function handles only one grouping set at a time, which the caller must |
1114 | * have selected. It's also the caller's responsibility to adjust the supplied |
1115 | * pergroup parameter to point to the current set's transvalues. |
1116 | * |
1117 | * Results are stored in the output econtext aggvalues/aggnulls. |
1118 | */ |
1119 | static void |
1120 | finalize_aggregates(AggState *aggstate, |
1121 | AggStatePerAgg peraggs, |
1122 | AggStatePerGroup pergroup) |
1123 | { |
1124 | ExprContext *econtext = aggstate->ss.ps.ps_ExprContext; |
1125 | Datum *aggvalues = econtext->ecxt_aggvalues; |
1126 | bool *aggnulls = econtext->ecxt_aggnulls; |
1127 | int aggno; |
1128 | int transno; |
1129 | |
1130 | /* |
1131 | * If there were any DISTINCT and/or ORDER BY aggregates, sort their |
1132 | * inputs and run the transition functions. |
1133 | */ |
1134 | for (transno = 0; transno < aggstate->numtrans; transno++) |
1135 | { |
1136 | AggStatePerTrans pertrans = &aggstate->pertrans[transno]; |
1137 | AggStatePerGroup pergroupstate; |
1138 | |
1139 | pergroupstate = &pergroup[transno]; |
1140 | |
1141 | if (pertrans->numSortCols > 0) |
1142 | { |
1143 | Assert(aggstate->aggstrategy != AGG_HASHED && |
1144 | aggstate->aggstrategy != AGG_MIXED); |
1145 | |
1146 | if (pertrans->numInputs == 1) |
1147 | process_ordered_aggregate_single(aggstate, |
1148 | pertrans, |
1149 | pergroupstate); |
1150 | else |
1151 | process_ordered_aggregate_multi(aggstate, |
1152 | pertrans, |
1153 | pergroupstate); |
1154 | } |
1155 | } |
1156 | |
1157 | /* |
1158 | * Run the final functions. |
1159 | */ |
1160 | for (aggno = 0; aggno < aggstate->numaggs; aggno++) |
1161 | { |
1162 | AggStatePerAgg peragg = &peraggs[aggno]; |
1163 | int transno = peragg->transno; |
1164 | AggStatePerGroup pergroupstate; |
1165 | |
1166 | pergroupstate = &pergroup[transno]; |
1167 | |
1168 | if (DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit)) |
1169 | finalize_partialaggregate(aggstate, peragg, pergroupstate, |
1170 | &aggvalues[aggno], &aggnulls[aggno]); |
1171 | else |
1172 | finalize_aggregate(aggstate, peragg, pergroupstate, |
1173 | &aggvalues[aggno], &aggnulls[aggno]); |
1174 | } |
1175 | } |
1176 | |
1177 | /* |
1178 | * Project the result of a group (whose aggs have already been calculated by |
1179 | * finalize_aggregates). Returns the result slot, or NULL if no row is |
1180 | * projected (suppressed by qual). |
1181 | */ |
1182 | static TupleTableSlot * |
1183 | project_aggregates(AggState *aggstate) |
1184 | { |
1185 | ExprContext *econtext = aggstate->ss.ps.ps_ExprContext; |
1186 | |
1187 | /* |
1188 | * Check the qual (HAVING clause); if the group does not match, ignore it. |
1189 | */ |
1190 | if (ExecQual(aggstate->ss.ps.qual, econtext)) |
1191 | { |
1192 | /* |
1193 | * Form and return projection tuple using the aggregate results and |
1194 | * the representative input tuple. |
1195 | */ |
1196 | return ExecProject(aggstate->ss.ps.ps_ProjInfo); |
1197 | } |
1198 | else |
1199 | InstrCountFiltered1(aggstate, 1); |
1200 | |
1201 | return NULL; |
1202 | } |
1203 | |
1204 | /* |
1205 | * find_unaggregated_cols |
1206 | * Construct a bitmapset of the column numbers of un-aggregated Vars |
1207 | * appearing in our targetlist and qual (HAVING clause) |
1208 | */ |
1209 | static Bitmapset * |
1210 | find_unaggregated_cols(AggState *aggstate) |
1211 | { |
1212 | Agg *node = (Agg *) aggstate->ss.ps.plan; |
1213 | Bitmapset *colnos; |
1214 | |
1215 | colnos = NULL; |
1216 | (void) find_unaggregated_cols_walker((Node *) node->plan.targetlist, |
1217 | &colnos); |
1218 | (void) find_unaggregated_cols_walker((Node *) node->plan.qual, |
1219 | &colnos); |
1220 | return colnos; |
1221 | } |
1222 | |
1223 | static bool |
1224 | find_unaggregated_cols_walker(Node *node, Bitmapset **colnos) |
1225 | { |
1226 | if (node == NULL) |
1227 | return false; |
1228 | if (IsA(node, Var)) |
1229 | { |
1230 | Var *var = (Var *) node; |
1231 | |
1232 | /* setrefs.c should have set the varno to OUTER_VAR */ |
1233 | Assert(var->varno == OUTER_VAR); |
1234 | Assert(var->varlevelsup == 0); |
1235 | *colnos = bms_add_member(*colnos, var->varattno); |
1236 | return false; |
1237 | } |
1238 | if (IsA(node, Aggref) ||IsA(node, GroupingFunc)) |
1239 | { |
1240 | /* do not descend into aggregate exprs */ |
1241 | return false; |
1242 | } |
1243 | return expression_tree_walker(node, find_unaggregated_cols_walker, |
1244 | (void *) colnos); |
1245 | } |
1246 | |
1247 | /* |
1248 | * (Re-)initialize the hash table(s) to empty. |
1249 | * |
1250 | * To implement hashed aggregation, we need a hashtable that stores a |
1251 | * representative tuple and an array of AggStatePerGroup structs for each |
1252 | * distinct set of GROUP BY column values. We compute the hash key from the |
1253 | * GROUP BY columns. The per-group data is allocated in lookup_hash_entry(), |
1254 | * for each entry. |
1255 | * |
1256 | * We have a separate hashtable and associated perhash data structure for each |
1257 | * grouping set for which we're doing hashing. |
1258 | * |
1259 | * The contents of the hash tables always live in the hashcontext's per-tuple |
1260 | * memory context (there is only one of these for all tables together, since |
1261 | * they are all reset at the same time). |
1262 | */ |
1263 | static void |
1264 | build_hash_table(AggState *aggstate) |
1265 | { |
1266 | MemoryContext tmpmem = aggstate->tmpcontext->ecxt_per_tuple_memory; |
1267 | Size additionalsize; |
1268 | int i; |
1269 | |
1270 | Assert(aggstate->aggstrategy == AGG_HASHED || aggstate->aggstrategy == AGG_MIXED); |
1271 | |
1272 | additionalsize = aggstate->numtrans * sizeof(AggStatePerGroupData); |
1273 | |
1274 | for (i = 0; i < aggstate->num_hashes; ++i) |
1275 | { |
1276 | AggStatePerHash perhash = &aggstate->perhash[i]; |
1277 | |
1278 | Assert(perhash->aggnode->numGroups > 0); |
1279 | |
1280 | if (perhash->hashtable) |
1281 | ResetTupleHashTable(perhash->hashtable); |
1282 | else |
1283 | perhash->hashtable = BuildTupleHashTableExt(&aggstate->ss.ps, |
1284 | perhash->hashslot->tts_tupleDescriptor, |
1285 | perhash->numCols, |
1286 | perhash->hashGrpColIdxHash, |
1287 | perhash->eqfuncoids, |
1288 | perhash->hashfunctions, |
1289 | perhash->aggnode->grpCollations, |
1290 | perhash->aggnode->numGroups, |
1291 | additionalsize, |
1292 | aggstate->ss.ps.state->es_query_cxt, |
1293 | aggstate->hashcontext->ecxt_per_tuple_memory, |
1294 | tmpmem, |
1295 | DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit)); |
1296 | } |
1297 | } |
1298 | |
1299 | /* |
1300 | * Compute columns that actually need to be stored in hashtable entries. The |
1301 | * incoming tuples from the child plan node will contain grouping columns, |
1302 | * other columns referenced in our targetlist and qual, columns used to |
1303 | * compute the aggregate functions, and perhaps just junk columns we don't use |
1304 | * at all. Only columns of the first two types need to be stored in the |
1305 | * hashtable, and getting rid of the others can make the table entries |
1306 | * significantly smaller. The hashtable only contains the relevant columns, |
1307 | * and is packed/unpacked in lookup_hash_entry() / agg_retrieve_hash_table() |
1308 | * into the format of the normal input descriptor. |
1309 | * |
1310 | * Additional columns, in addition to the columns grouped by, come from two |
1311 | * sources: Firstly functionally dependent columns that we don't need to group |
1312 | * by themselves, and secondly ctids for row-marks. |
1313 | * |
1314 | * To eliminate duplicates, we build a bitmapset of the needed columns, and |
1315 | * then build an array of the columns included in the hashtable. We might |
1316 | * still have duplicates if the passed-in grpColIdx has them, which can happen |
1317 | * in edge cases from semijoins/distinct; these can't always be removed, |
1318 | * because it's not certain that the duplicate cols will be using the same |
1319 | * hash function. |
1320 | * |
1321 | * Note that the array is preserved over ExecReScanAgg, so we allocate it in |
1322 | * the per-query context (unlike the hash table itself). |
1323 | */ |
1324 | static void |
1325 | find_hash_columns(AggState *aggstate) |
1326 | { |
1327 | Bitmapset *base_colnos; |
1328 | List *outerTlist = outerPlanState(aggstate)->plan->targetlist; |
1329 | int numHashes = aggstate->num_hashes; |
1330 | EState *estate = aggstate->ss.ps.state; |
1331 | int j; |
1332 | |
1333 | /* Find Vars that will be needed in tlist and qual */ |
1334 | base_colnos = find_unaggregated_cols(aggstate); |
1335 | |
1336 | for (j = 0; j < numHashes; ++j) |
1337 | { |
1338 | AggStatePerHash perhash = &aggstate->perhash[j]; |
1339 | Bitmapset *colnos = bms_copy(base_colnos); |
1340 | AttrNumber *grpColIdx = perhash->aggnode->grpColIdx; |
1341 | List *hashTlist = NIL; |
1342 | TupleDesc hashDesc; |
1343 | int maxCols; |
1344 | int i; |
1345 | |
1346 | perhash->largestGrpColIdx = 0; |
1347 | |
1348 | /* |
1349 | * If we're doing grouping sets, then some Vars might be referenced in |
1350 | * tlist/qual for the benefit of other grouping sets, but not needed |
1351 | * when hashing; i.e. prepare_projection_slot will null them out, so |
1352 | * there'd be no point storing them. Use prepare_projection_slot's |
1353 | * logic to determine which. |
1354 | */ |
1355 | if (aggstate->phases[0].grouped_cols) |
1356 | { |
1357 | Bitmapset *grouped_cols = aggstate->phases[0].grouped_cols[j]; |
1358 | ListCell *lc; |
1359 | |
1360 | foreach(lc, aggstate->all_grouped_cols) |
1361 | { |
1362 | int attnum = lfirst_int(lc); |
1363 | |
1364 | if (!bms_is_member(attnum, grouped_cols)) |
1365 | colnos = bms_del_member(colnos, attnum); |
1366 | } |
1367 | } |
1368 | |
1369 | /* |
1370 | * Compute maximum number of input columns accounting for possible |
1371 | * duplications in the grpColIdx array, which can happen in some edge |
1372 | * cases where HashAggregate was generated as part of a semijoin or a |
1373 | * DISTINCT. |
1374 | */ |
1375 | maxCols = bms_num_members(colnos) + perhash->numCols; |
1376 | |
1377 | perhash->hashGrpColIdxInput = |
1378 | palloc(maxCols * sizeof(AttrNumber)); |
1379 | perhash->hashGrpColIdxHash = |
1380 | palloc(perhash->numCols * sizeof(AttrNumber)); |
1381 | |
1382 | /* Add all the grouping columns to colnos */ |
1383 | for (i = 0; i < perhash->numCols; i++) |
1384 | colnos = bms_add_member(colnos, grpColIdx[i]); |
1385 | |
1386 | /* |
1387 | * First build mapping for columns directly hashed. These are the |
1388 | * first, because they'll be accessed when computing hash values and |
1389 | * comparing tuples for exact matches. We also build simple mapping |
1390 | * for execGrouping, so it knows where to find the to-be-hashed / |
1391 | * compared columns in the input. |
1392 | */ |
1393 | for (i = 0; i < perhash->numCols; i++) |
1394 | { |
1395 | perhash->hashGrpColIdxInput[i] = grpColIdx[i]; |
1396 | perhash->hashGrpColIdxHash[i] = i + 1; |
1397 | perhash->numhashGrpCols++; |
1398 | /* delete already mapped columns */ |
1399 | bms_del_member(colnos, grpColIdx[i]); |
1400 | } |
1401 | |
1402 | /* and add the remaining columns */ |
1403 | while ((i = bms_first_member(colnos)) >= 0) |
1404 | { |
1405 | perhash->hashGrpColIdxInput[perhash->numhashGrpCols] = i; |
1406 | perhash->numhashGrpCols++; |
1407 | } |
1408 | |
1409 | /* and build a tuple descriptor for the hashtable */ |
1410 | for (i = 0; i < perhash->numhashGrpCols; i++) |
1411 | { |
1412 | int varNumber = perhash->hashGrpColIdxInput[i] - 1; |
1413 | |
1414 | hashTlist = lappend(hashTlist, list_nth(outerTlist, varNumber)); |
1415 | perhash->largestGrpColIdx = |
1416 | Max(varNumber + 1, perhash->largestGrpColIdx); |
1417 | } |
1418 | |
1419 | hashDesc = ExecTypeFromTL(hashTlist); |
1420 | |
1421 | execTuplesHashPrepare(perhash->numCols, |
1422 | perhash->aggnode->grpOperators, |
1423 | &perhash->eqfuncoids, |
1424 | &perhash->hashfunctions); |
1425 | perhash->hashslot = |
1426 | ExecAllocTableSlot(&estate->es_tupleTable, hashDesc, |
1427 | &TTSOpsMinimalTuple); |
1428 | |
1429 | list_free(hashTlist); |
1430 | bms_free(colnos); |
1431 | } |
1432 | |
1433 | bms_free(base_colnos); |
1434 | } |
1435 | |
1436 | /* |
1437 | * Estimate per-hash-table-entry overhead for the planner. |
1438 | * |
1439 | * Note that the estimate does not include space for pass-by-reference |
1440 | * transition data values, nor for the representative tuple of each group. |
1441 | * Nor does this account of the target fill-factor and growth policy of the |
1442 | * hash table. |
1443 | */ |
1444 | Size |
1445 | hash_agg_entry_size(int numAggs) |
1446 | { |
1447 | Size entrysize; |
1448 | |
1449 | /* This must match build_hash_table */ |
1450 | entrysize = sizeof(TupleHashEntryData) + |
1451 | numAggs * sizeof(AggStatePerGroupData); |
1452 | entrysize = MAXALIGN(entrysize); |
1453 | |
1454 | return entrysize; |
1455 | } |
1456 | |
1457 | /* |
1458 | * Find or create a hashtable entry for the tuple group containing the current |
1459 | * tuple (already set in tmpcontext's outertuple slot), in the current grouping |
1460 | * set (which the caller must have selected - note that initialize_aggregate |
1461 | * depends on this). |
1462 | * |
1463 | * When called, CurrentMemoryContext should be the per-query context. |
1464 | */ |
1465 | static TupleHashEntryData * |
1466 | lookup_hash_entry(AggState *aggstate) |
1467 | { |
1468 | TupleTableSlot *inputslot = aggstate->tmpcontext->ecxt_outertuple; |
1469 | AggStatePerHash perhash = &aggstate->perhash[aggstate->current_set]; |
1470 | TupleTableSlot *hashslot = perhash->hashslot; |
1471 | TupleHashEntryData *entry; |
1472 | bool isnew; |
1473 | int i; |
1474 | |
1475 | /* transfer just the needed columns into hashslot */ |
1476 | slot_getsomeattrs(inputslot, perhash->largestGrpColIdx); |
1477 | ExecClearTuple(hashslot); |
1478 | |
1479 | for (i = 0; i < perhash->numhashGrpCols; i++) |
1480 | { |
1481 | int varNumber = perhash->hashGrpColIdxInput[i] - 1; |
1482 | |
1483 | hashslot->tts_values[i] = inputslot->tts_values[varNumber]; |
1484 | hashslot->tts_isnull[i] = inputslot->tts_isnull[varNumber]; |
1485 | } |
1486 | ExecStoreVirtualTuple(hashslot); |
1487 | |
1488 | /* find or create the hashtable entry using the filtered tuple */ |
1489 | entry = LookupTupleHashEntry(perhash->hashtable, hashslot, &isnew); |
1490 | |
1491 | if (isnew) |
1492 | { |
1493 | AggStatePerGroup pergroup; |
1494 | int transno; |
1495 | |
1496 | pergroup = (AggStatePerGroup) |
1497 | MemoryContextAlloc(perhash->hashtable->tablecxt, |
1498 | sizeof(AggStatePerGroupData) * aggstate->numtrans); |
1499 | entry->additional = pergroup; |
1500 | |
1501 | /* |
1502 | * Initialize aggregates for new tuple group, lookup_hash_entries() |
1503 | * already has selected the relevant grouping set. |
1504 | */ |
1505 | for (transno = 0; transno < aggstate->numtrans; transno++) |
1506 | { |
1507 | AggStatePerTrans pertrans = &aggstate->pertrans[transno]; |
1508 | AggStatePerGroup pergroupstate = &pergroup[transno]; |
1509 | |
1510 | initialize_aggregate(aggstate, pertrans, pergroupstate); |
1511 | } |
1512 | } |
1513 | |
1514 | return entry; |
1515 | } |
1516 | |
1517 | /* |
1518 | * Look up hash entries for the current tuple in all hashed grouping sets, |
1519 | * returning an array of pergroup pointers suitable for advance_aggregates. |
1520 | * |
1521 | * Be aware that lookup_hash_entry can reset the tmpcontext. |
1522 | */ |
1523 | static void |
1524 | lookup_hash_entries(AggState *aggstate) |
1525 | { |
1526 | int numHashes = aggstate->num_hashes; |
1527 | AggStatePerGroup *pergroup = aggstate->hash_pergroup; |
1528 | int setno; |
1529 | |
1530 | for (setno = 0; setno < numHashes; setno++) |
1531 | { |
1532 | select_current_set(aggstate, setno, true); |
1533 | pergroup[setno] = lookup_hash_entry(aggstate)->additional; |
1534 | } |
1535 | } |
1536 | |
1537 | /* |
1538 | * ExecAgg - |
1539 | * |
1540 | * ExecAgg receives tuples from its outer subplan and aggregates over |
1541 | * the appropriate attribute for each aggregate function use (Aggref |
1542 | * node) appearing in the targetlist or qual of the node. The number |
1543 | * of tuples to aggregate over depends on whether grouped or plain |
1544 | * aggregation is selected. In grouped aggregation, we produce a result |
1545 | * row for each group; in plain aggregation there's a single result row |
1546 | * for the whole query. In either case, the value of each aggregate is |
1547 | * stored in the expression context to be used when ExecProject evaluates |
1548 | * the result tuple. |
1549 | */ |
1550 | static TupleTableSlot * |
1551 | ExecAgg(PlanState *pstate) |
1552 | { |
1553 | AggState *node = castNode(AggState, pstate); |
1554 | TupleTableSlot *result = NULL; |
1555 | |
1556 | CHECK_FOR_INTERRUPTS(); |
1557 | |
1558 | if (!node->agg_done) |
1559 | { |
1560 | /* Dispatch based on strategy */ |
1561 | switch (node->phase->aggstrategy) |
1562 | { |
1563 | case AGG_HASHED: |
1564 | if (!node->table_filled) |
1565 | agg_fill_hash_table(node); |
1566 | /* FALLTHROUGH */ |
1567 | case AGG_MIXED: |
1568 | result = agg_retrieve_hash_table(node); |
1569 | break; |
1570 | case AGG_PLAIN: |
1571 | case AGG_SORTED: |
1572 | result = agg_retrieve_direct(node); |
1573 | break; |
1574 | } |
1575 | |
1576 | if (!TupIsNull(result)) |
1577 | return result; |
1578 | } |
1579 | |
1580 | return NULL; |
1581 | } |
1582 | |
1583 | /* |
1584 | * ExecAgg for non-hashed case |
1585 | */ |
1586 | static TupleTableSlot * |
1587 | agg_retrieve_direct(AggState *aggstate) |
1588 | { |
1589 | Agg *node = aggstate->phase->aggnode; |
1590 | ExprContext *econtext; |
1591 | ExprContext *tmpcontext; |
1592 | AggStatePerAgg peragg; |
1593 | AggStatePerGroup *pergroups; |
1594 | TupleTableSlot *outerslot; |
1595 | TupleTableSlot *firstSlot; |
1596 | TupleTableSlot *result; |
1597 | bool hasGroupingSets = aggstate->phase->numsets > 0; |
1598 | int numGroupingSets = Max(aggstate->phase->numsets, 1); |
1599 | int currentSet; |
1600 | int nextSetSize; |
1601 | int numReset; |
1602 | int i; |
1603 | |
1604 | /* |
1605 | * get state info from node |
1606 | * |
1607 | * econtext is the per-output-tuple expression context |
1608 | * |
1609 | * tmpcontext is the per-input-tuple expression context |
1610 | */ |
1611 | econtext = aggstate->ss.ps.ps_ExprContext; |
1612 | tmpcontext = aggstate->tmpcontext; |
1613 | |
1614 | peragg = aggstate->peragg; |
1615 | pergroups = aggstate->pergroups; |
1616 | firstSlot = aggstate->ss.ss_ScanTupleSlot; |
1617 | |
1618 | /* |
1619 | * We loop retrieving groups until we find one matching |
1620 | * aggstate->ss.ps.qual |
1621 | * |
1622 | * For grouping sets, we have the invariant that aggstate->projected_set |
1623 | * is either -1 (initial call) or the index (starting from 0) in |
1624 | * gset_lengths for the group we just completed (either by projecting a |
1625 | * row or by discarding it in the qual). |
1626 | */ |
1627 | while (!aggstate->agg_done) |
1628 | { |
1629 | /* |
1630 | * Clear the per-output-tuple context for each group, as well as |
1631 | * aggcontext (which contains any pass-by-ref transvalues of the old |
1632 | * group). Some aggregate functions store working state in child |
1633 | * contexts; those now get reset automatically without us needing to |
1634 | * do anything special. |
1635 | * |
1636 | * We use ReScanExprContext not just ResetExprContext because we want |
1637 | * any registered shutdown callbacks to be called. That allows |
1638 | * aggregate functions to ensure they've cleaned up any non-memory |
1639 | * resources. |
1640 | */ |
1641 | ReScanExprContext(econtext); |
1642 | |
1643 | /* |
1644 | * Determine how many grouping sets need to be reset at this boundary. |
1645 | */ |
1646 | if (aggstate->projected_set >= 0 && |
1647 | aggstate->projected_set < numGroupingSets) |
1648 | numReset = aggstate->projected_set + 1; |
1649 | else |
1650 | numReset = numGroupingSets; |
1651 | |
1652 | /* |
1653 | * numReset can change on a phase boundary, but that's OK; we want to |
1654 | * reset the contexts used in _this_ phase, and later, after possibly |
1655 | * changing phase, initialize the right number of aggregates for the |
1656 | * _new_ phase. |
1657 | */ |
1658 | |
1659 | for (i = 0; i < numReset; i++) |
1660 | { |
1661 | ReScanExprContext(aggstate->aggcontexts[i]); |
1662 | } |
1663 | |
1664 | /* |
1665 | * Check if input is complete and there are no more groups to project |
1666 | * in this phase; move to next phase or mark as done. |
1667 | */ |
1668 | if (aggstate->input_done == true && |
1669 | aggstate->projected_set >= (numGroupingSets - 1)) |
1670 | { |
1671 | if (aggstate->current_phase < aggstate->numphases - 1) |
1672 | { |
1673 | initialize_phase(aggstate, aggstate->current_phase + 1); |
1674 | aggstate->input_done = false; |
1675 | aggstate->projected_set = -1; |
1676 | numGroupingSets = Max(aggstate->phase->numsets, 1); |
1677 | node = aggstate->phase->aggnode; |
1678 | numReset = numGroupingSets; |
1679 | } |
1680 | else if (aggstate->aggstrategy == AGG_MIXED) |
1681 | { |
1682 | /* |
1683 | * Mixed mode; we've output all the grouped stuff and have |
1684 | * full hashtables, so switch to outputting those. |
1685 | */ |
1686 | initialize_phase(aggstate, 0); |
1687 | aggstate->table_filled = true; |
1688 | ResetTupleHashIterator(aggstate->perhash[0].hashtable, |
1689 | &aggstate->perhash[0].hashiter); |
1690 | select_current_set(aggstate, 0, true); |
1691 | return agg_retrieve_hash_table(aggstate); |
1692 | } |
1693 | else |
1694 | { |
1695 | aggstate->agg_done = true; |
1696 | break; |
1697 | } |
1698 | } |
1699 | |
1700 | /* |
1701 | * Get the number of columns in the next grouping set after the last |
1702 | * projected one (if any). This is the number of columns to compare to |
1703 | * see if we reached the boundary of that set too. |
1704 | */ |
1705 | if (aggstate->projected_set >= 0 && |
1706 | aggstate->projected_set < (numGroupingSets - 1)) |
1707 | nextSetSize = aggstate->phase->gset_lengths[aggstate->projected_set + 1]; |
1708 | else |
1709 | nextSetSize = 0; |
1710 | |
1711 | /*---------- |
1712 | * If a subgroup for the current grouping set is present, project it. |
1713 | * |
1714 | * We have a new group if: |
1715 | * - we're out of input but haven't projected all grouping sets |
1716 | * (checked above) |
1717 | * OR |
1718 | * - we already projected a row that wasn't from the last grouping |
1719 | * set |
1720 | * AND |
1721 | * - the next grouping set has at least one grouping column (since |
1722 | * empty grouping sets project only once input is exhausted) |
1723 | * AND |
1724 | * - the previous and pending rows differ on the grouping columns |
1725 | * of the next grouping set |
1726 | *---------- |
1727 | */ |
1728 | tmpcontext->ecxt_innertuple = econtext->ecxt_outertuple; |
1729 | if (aggstate->input_done || |
1730 | (node->aggstrategy != AGG_PLAIN && |
1731 | aggstate->projected_set != -1 && |
1732 | aggstate->projected_set < (numGroupingSets - 1) && |
1733 | nextSetSize > 0 && |
1734 | !ExecQualAndReset(aggstate->phase->eqfunctions[nextSetSize - 1], |
1735 | tmpcontext))) |
1736 | { |
1737 | aggstate->projected_set += 1; |
1738 | |
1739 | Assert(aggstate->projected_set < numGroupingSets); |
1740 | Assert(nextSetSize > 0 || aggstate->input_done); |
1741 | } |
1742 | else |
1743 | { |
1744 | /* |
1745 | * We no longer care what group we just projected, the next |
1746 | * projection will always be the first (or only) grouping set |
1747 | * (unless the input proves to be empty). |
1748 | */ |
1749 | aggstate->projected_set = 0; |
1750 | |
1751 | /* |
1752 | * If we don't already have the first tuple of the new group, |
1753 | * fetch it from the outer plan. |
1754 | */ |
1755 | if (aggstate->grp_firstTuple == NULL) |
1756 | { |
1757 | outerslot = fetch_input_tuple(aggstate); |
1758 | if (!TupIsNull(outerslot)) |
1759 | { |
1760 | /* |
1761 | * Make a copy of the first input tuple; we will use this |
1762 | * for comparisons (in group mode) and for projection. |
1763 | */ |
1764 | aggstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot); |
1765 | } |
1766 | else |
1767 | { |
1768 | /* outer plan produced no tuples at all */ |
1769 | if (hasGroupingSets) |
1770 | { |
1771 | /* |
1772 | * If there was no input at all, we need to project |
1773 | * rows only if there are grouping sets of size 0. |
1774 | * Note that this implies that there can't be any |
1775 | * references to ungrouped Vars, which would otherwise |
1776 | * cause issues with the empty output slot. |
1777 | * |
1778 | * XXX: This is no longer true, we currently deal with |
1779 | * this in finalize_aggregates(). |
1780 | */ |
1781 | aggstate->input_done = true; |
1782 | |
1783 | while (aggstate->phase->gset_lengths[aggstate->projected_set] > 0) |
1784 | { |
1785 | aggstate->projected_set += 1; |
1786 | if (aggstate->projected_set >= numGroupingSets) |
1787 | { |
1788 | /* |
1789 | * We can't set agg_done here because we might |
1790 | * have more phases to do, even though the |
1791 | * input is empty. So we need to restart the |
1792 | * whole outer loop. |
1793 | */ |
1794 | break; |
1795 | } |
1796 | } |
1797 | |
1798 | if (aggstate->projected_set >= numGroupingSets) |
1799 | continue; |
1800 | } |
1801 | else |
1802 | { |
1803 | aggstate->agg_done = true; |
1804 | /* If we are grouping, we should produce no tuples too */ |
1805 | if (node->aggstrategy != AGG_PLAIN) |
1806 | return NULL; |
1807 | } |
1808 | } |
1809 | } |
1810 | |
1811 | /* |
1812 | * Initialize working state for a new input tuple group. |
1813 | */ |
1814 | initialize_aggregates(aggstate, pergroups, numReset); |
1815 | |
1816 | if (aggstate->grp_firstTuple != NULL) |
1817 | { |
1818 | /* |
1819 | * Store the copied first input tuple in the tuple table slot |
1820 | * reserved for it. The tuple will be deleted when it is |
1821 | * cleared from the slot. |
1822 | */ |
1823 | ExecForceStoreHeapTuple(aggstate->grp_firstTuple, |
1824 | firstSlot, true); |
1825 | aggstate->grp_firstTuple = NULL; /* don't keep two pointers */ |
1826 | |
1827 | /* set up for first advance_aggregates call */ |
1828 | tmpcontext->ecxt_outertuple = firstSlot; |
1829 | |
1830 | /* |
1831 | * Process each outer-plan tuple, and then fetch the next one, |
1832 | * until we exhaust the outer plan or cross a group boundary. |
1833 | */ |
1834 | for (;;) |
1835 | { |
1836 | /* |
1837 | * During phase 1 only of a mixed agg, we need to update |
1838 | * hashtables as well in advance_aggregates. |
1839 | */ |
1840 | if (aggstate->aggstrategy == AGG_MIXED && |
1841 | aggstate->current_phase == 1) |
1842 | { |
1843 | lookup_hash_entries(aggstate); |
1844 | } |
1845 | |
1846 | /* Advance the aggregates (or combine functions) */ |
1847 | advance_aggregates(aggstate); |
1848 | |
1849 | /* Reset per-input-tuple context after each tuple */ |
1850 | ResetExprContext(tmpcontext); |
1851 | |
1852 | outerslot = fetch_input_tuple(aggstate); |
1853 | if (TupIsNull(outerslot)) |
1854 | { |
1855 | /* no more outer-plan tuples available */ |
1856 | if (hasGroupingSets) |
1857 | { |
1858 | aggstate->input_done = true; |
1859 | break; |
1860 | } |
1861 | else |
1862 | { |
1863 | aggstate->agg_done = true; |
1864 | break; |
1865 | } |
1866 | } |
1867 | /* set up for next advance_aggregates call */ |
1868 | tmpcontext->ecxt_outertuple = outerslot; |
1869 | |
1870 | /* |
1871 | * If we are grouping, check whether we've crossed a group |
1872 | * boundary. |
1873 | */ |
1874 | if (node->aggstrategy != AGG_PLAIN) |
1875 | { |
1876 | tmpcontext->ecxt_innertuple = firstSlot; |
1877 | if (!ExecQual(aggstate->phase->eqfunctions[node->numCols - 1], |
1878 | tmpcontext)) |
1879 | { |
1880 | aggstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot); |
1881 | break; |
1882 | } |
1883 | } |
1884 | } |
1885 | } |
1886 | |
1887 | /* |
1888 | * Use the representative input tuple for any references to |
1889 | * non-aggregated input columns in aggregate direct args, the node |
1890 | * qual, and the tlist. (If we are not grouping, and there are no |
1891 | * input rows at all, we will come here with an empty firstSlot |
1892 | * ... but if not grouping, there can't be any references to |
1893 | * non-aggregated input columns, so no problem.) |
1894 | */ |
1895 | econtext->ecxt_outertuple = firstSlot; |
1896 | } |
1897 | |
1898 | Assert(aggstate->projected_set >= 0); |
1899 | |
1900 | currentSet = aggstate->projected_set; |
1901 | |
1902 | prepare_projection_slot(aggstate, econtext->ecxt_outertuple, currentSet); |
1903 | |
1904 | select_current_set(aggstate, currentSet, false); |
1905 | |
1906 | finalize_aggregates(aggstate, |
1907 | peragg, |
1908 | pergroups[currentSet]); |
1909 | |
1910 | /* |
1911 | * If there's no row to project right now, we must continue rather |
1912 | * than returning a null since there might be more groups. |
1913 | */ |
1914 | result = project_aggregates(aggstate); |
1915 | if (result) |
1916 | return result; |
1917 | } |
1918 | |
1919 | /* No more groups */ |
1920 | return NULL; |
1921 | } |
1922 | |
1923 | /* |
1924 | * ExecAgg for hashed case: read input and build hash table |
1925 | */ |
1926 | static void |
1927 | agg_fill_hash_table(AggState *aggstate) |
1928 | { |
1929 | TupleTableSlot *outerslot; |
1930 | ExprContext *tmpcontext = aggstate->tmpcontext; |
1931 | |
1932 | /* |
1933 | * Process each outer-plan tuple, and then fetch the next one, until we |
1934 | * exhaust the outer plan. |
1935 | */ |
1936 | for (;;) |
1937 | { |
1938 | outerslot = fetch_input_tuple(aggstate); |
1939 | if (TupIsNull(outerslot)) |
1940 | break; |
1941 | |
1942 | /* set up for lookup_hash_entries and advance_aggregates */ |
1943 | tmpcontext->ecxt_outertuple = outerslot; |
1944 | |
1945 | /* Find or build hashtable entries */ |
1946 | lookup_hash_entries(aggstate); |
1947 | |
1948 | /* Advance the aggregates (or combine functions) */ |
1949 | advance_aggregates(aggstate); |
1950 | |
1951 | /* |
1952 | * Reset per-input-tuple context after each tuple, but note that the |
1953 | * hash lookups do this too |
1954 | */ |
1955 | ResetExprContext(aggstate->tmpcontext); |
1956 | } |
1957 | |
1958 | aggstate->table_filled = true; |
1959 | /* Initialize to walk the first hash table */ |
1960 | select_current_set(aggstate, 0, true); |
1961 | ResetTupleHashIterator(aggstate->perhash[0].hashtable, |
1962 | &aggstate->perhash[0].hashiter); |
1963 | } |
1964 | |
1965 | /* |
1966 | * ExecAgg for hashed case: retrieving groups from hash table |
1967 | */ |
1968 | static TupleTableSlot * |
1969 | agg_retrieve_hash_table(AggState *aggstate) |
1970 | { |
1971 | ExprContext *econtext; |
1972 | AggStatePerAgg peragg; |
1973 | AggStatePerGroup pergroup; |
1974 | TupleHashEntryData *entry; |
1975 | TupleTableSlot *firstSlot; |
1976 | TupleTableSlot *result; |
1977 | AggStatePerHash perhash; |
1978 | |
1979 | /* |
1980 | * get state info from node. |
1981 | * |
1982 | * econtext is the per-output-tuple expression context. |
1983 | */ |
1984 | econtext = aggstate->ss.ps.ps_ExprContext; |
1985 | peragg = aggstate->peragg; |
1986 | firstSlot = aggstate->ss.ss_ScanTupleSlot; |
1987 | |
1988 | /* |
1989 | * Note that perhash (and therefore anything accessed through it) can |
1990 | * change inside the loop, as we change between grouping sets. |
1991 | */ |
1992 | perhash = &aggstate->perhash[aggstate->current_set]; |
1993 | |
1994 | /* |
1995 | * We loop retrieving groups until we find one satisfying |
1996 | * aggstate->ss.ps.qual |
1997 | */ |
1998 | while (!aggstate->agg_done) |
1999 | { |
2000 | TupleTableSlot *hashslot = perhash->hashslot; |
2001 | int i; |
2002 | |
2003 | CHECK_FOR_INTERRUPTS(); |
2004 | |
2005 | /* |
2006 | * Find the next entry in the hash table |
2007 | */ |
2008 | entry = ScanTupleHashTable(perhash->hashtable, &perhash->hashiter); |
2009 | if (entry == NULL) |
2010 | { |
2011 | int nextset = aggstate->current_set + 1; |
2012 | |
2013 | if (nextset < aggstate->num_hashes) |
2014 | { |
2015 | /* |
2016 | * Switch to next grouping set, reinitialize, and restart the |
2017 | * loop. |
2018 | */ |
2019 | select_current_set(aggstate, nextset, true); |
2020 | |
2021 | perhash = &aggstate->perhash[aggstate->current_set]; |
2022 | |
2023 | ResetTupleHashIterator(perhash->hashtable, &perhash->hashiter); |
2024 | |
2025 | continue; |
2026 | } |
2027 | else |
2028 | { |
2029 | /* No more hashtables, so done */ |
2030 | aggstate->agg_done = true; |
2031 | return NULL; |
2032 | } |
2033 | } |
2034 | |
2035 | /* |
2036 | * Clear the per-output-tuple context for each group |
2037 | * |
2038 | * We intentionally don't use ReScanExprContext here; if any aggs have |
2039 | * registered shutdown callbacks, they mustn't be called yet, since we |
2040 | * might not be done with that agg. |
2041 | */ |
2042 | ResetExprContext(econtext); |
2043 | |
2044 | /* |
2045 | * Transform representative tuple back into one with the right |
2046 | * columns. |
2047 | */ |
2048 | ExecStoreMinimalTuple(entry->firstTuple, hashslot, false); |
2049 | slot_getallattrs(hashslot); |
2050 | |
2051 | ExecClearTuple(firstSlot); |
2052 | memset(firstSlot->tts_isnull, true, |
2053 | firstSlot->tts_tupleDescriptor->natts * sizeof(bool)); |
2054 | |
2055 | for (i = 0; i < perhash->numhashGrpCols; i++) |
2056 | { |
2057 | int varNumber = perhash->hashGrpColIdxInput[i] - 1; |
2058 | |
2059 | firstSlot->tts_values[varNumber] = hashslot->tts_values[i]; |
2060 | firstSlot->tts_isnull[varNumber] = hashslot->tts_isnull[i]; |
2061 | } |
2062 | ExecStoreVirtualTuple(firstSlot); |
2063 | |
2064 | pergroup = (AggStatePerGroup) entry->additional; |
2065 | |
2066 | /* |
2067 | * Use the representative input tuple for any references to |
2068 | * non-aggregated input columns in the qual and tlist. |
2069 | */ |
2070 | econtext->ecxt_outertuple = firstSlot; |
2071 | |
2072 | prepare_projection_slot(aggstate, |
2073 | econtext->ecxt_outertuple, |
2074 | aggstate->current_set); |
2075 | |
2076 | finalize_aggregates(aggstate, peragg, pergroup); |
2077 | |
2078 | result = project_aggregates(aggstate); |
2079 | if (result) |
2080 | return result; |
2081 | } |
2082 | |
2083 | /* No more groups */ |
2084 | return NULL; |
2085 | } |
2086 | |
2087 | /* ----------------- |
2088 | * ExecInitAgg |
2089 | * |
2090 | * Creates the run-time information for the agg node produced by the |
2091 | * planner and initializes its outer subtree. |
2092 | * |
2093 | * ----------------- |
2094 | */ |
2095 | AggState * |
2096 | ExecInitAgg(Agg *node, EState *estate, int eflags) |
2097 | { |
2098 | AggState *aggstate; |
2099 | AggStatePerAgg peraggs; |
2100 | AggStatePerTrans pertransstates; |
2101 | AggStatePerGroup *pergroups; |
2102 | Plan *outerPlan; |
2103 | ExprContext *econtext; |
2104 | TupleDesc scanDesc; |
2105 | int numaggs, |
2106 | transno, |
2107 | aggno; |
2108 | int phase; |
2109 | int phaseidx; |
2110 | ListCell *l; |
2111 | Bitmapset *all_grouped_cols = NULL; |
2112 | int numGroupingSets = 1; |
2113 | int numPhases; |
2114 | int numHashes; |
2115 | int i = 0; |
2116 | int j = 0; |
2117 | bool use_hashing = (node->aggstrategy == AGG_HASHED || |
2118 | node->aggstrategy == AGG_MIXED); |
2119 | |
2120 | /* check for unsupported flags */ |
2121 | Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); |
2122 | |
2123 | /* |
2124 | * create state structure |
2125 | */ |
2126 | aggstate = makeNode(AggState); |
2127 | aggstate->ss.ps.plan = (Plan *) node; |
2128 | aggstate->ss.ps.state = estate; |
2129 | aggstate->ss.ps.ExecProcNode = ExecAgg; |
2130 | |
2131 | aggstate->aggs = NIL; |
2132 | aggstate->numaggs = 0; |
2133 | aggstate->numtrans = 0; |
2134 | aggstate->aggstrategy = node->aggstrategy; |
2135 | aggstate->aggsplit = node->aggsplit; |
2136 | aggstate->maxsets = 0; |
2137 | aggstate->projected_set = -1; |
2138 | aggstate->current_set = 0; |
2139 | aggstate->peragg = NULL; |
2140 | aggstate->pertrans = NULL; |
2141 | aggstate->curperagg = NULL; |
2142 | aggstate->curpertrans = NULL; |
2143 | aggstate->input_done = false; |
2144 | aggstate->agg_done = false; |
2145 | aggstate->pergroups = NULL; |
2146 | aggstate->grp_firstTuple = NULL; |
2147 | aggstate->sort_in = NULL; |
2148 | aggstate->sort_out = NULL; |
2149 | |
2150 | /* |
2151 | * phases[0] always exists, but is dummy in sorted/plain mode |
2152 | */ |
2153 | numPhases = (use_hashing ? 1 : 2); |
2154 | numHashes = (use_hashing ? 1 : 0); |
2155 | |
2156 | /* |
2157 | * Calculate the maximum number of grouping sets in any phase; this |
2158 | * determines the size of some allocations. Also calculate the number of |
2159 | * phases, since all hashed/mixed nodes contribute to only a single phase. |
2160 | */ |
2161 | if (node->groupingSets) |
2162 | { |
2163 | numGroupingSets = list_length(node->groupingSets); |
2164 | |
2165 | foreach(l, node->chain) |
2166 | { |
2167 | Agg *agg = lfirst(l); |
2168 | |
2169 | numGroupingSets = Max(numGroupingSets, |
2170 | list_length(agg->groupingSets)); |
2171 | |
2172 | /* |
2173 | * additional AGG_HASHED aggs become part of phase 0, but all |
2174 | * others add an extra phase. |
2175 | */ |
2176 | if (agg->aggstrategy != AGG_HASHED) |
2177 | ++numPhases; |
2178 | else |
2179 | ++numHashes; |
2180 | } |
2181 | } |
2182 | |
2183 | aggstate->maxsets = numGroupingSets; |
2184 | aggstate->numphases = numPhases; |
2185 | |
2186 | aggstate->aggcontexts = (ExprContext **) |
2187 | palloc0(sizeof(ExprContext *) * numGroupingSets); |
2188 | |
2189 | /* |
2190 | * Create expression contexts. We need three or more, one for |
2191 | * per-input-tuple processing, one for per-output-tuple processing, one |
2192 | * for all the hashtables, and one for each grouping set. The per-tuple |
2193 | * memory context of the per-grouping-set ExprContexts (aggcontexts) |
2194 | * replaces the standalone memory context formerly used to hold transition |
2195 | * values. We cheat a little by using ExecAssignExprContext() to build |
2196 | * all of them. |
2197 | * |
2198 | * NOTE: the details of what is stored in aggcontexts and what is stored |
2199 | * in the regular per-query memory context are driven by a simple |
2200 | * decision: we want to reset the aggcontext at group boundaries (if not |
2201 | * hashing) and in ExecReScanAgg to recover no-longer-wanted space. |
2202 | */ |
2203 | ExecAssignExprContext(estate, &aggstate->ss.ps); |
2204 | aggstate->tmpcontext = aggstate->ss.ps.ps_ExprContext; |
2205 | |
2206 | for (i = 0; i < numGroupingSets; ++i) |
2207 | { |
2208 | ExecAssignExprContext(estate, &aggstate->ss.ps); |
2209 | aggstate->aggcontexts[i] = aggstate->ss.ps.ps_ExprContext; |
2210 | } |
2211 | |
2212 | if (use_hashing) |
2213 | { |
2214 | ExecAssignExprContext(estate, &aggstate->ss.ps); |
2215 | aggstate->hashcontext = aggstate->ss.ps.ps_ExprContext; |
2216 | } |
2217 | |
2218 | ExecAssignExprContext(estate, &aggstate->ss.ps); |
2219 | |
2220 | /* |
2221 | * Initialize child nodes. |
2222 | * |
2223 | * If we are doing a hashed aggregation then the child plan does not need |
2224 | * to handle REWIND efficiently; see ExecReScanAgg. |
2225 | */ |
2226 | if (node->aggstrategy == AGG_HASHED) |
2227 | eflags &= ~EXEC_FLAG_REWIND; |
2228 | outerPlan = outerPlan(node); |
2229 | outerPlanState(aggstate) = ExecInitNode(outerPlan, estate, eflags); |
2230 | |
2231 | /* |
2232 | * initialize source tuple type. |
2233 | */ |
2234 | aggstate->ss.ps.outerops = |
2235 | ExecGetResultSlotOps(outerPlanState(&aggstate->ss), |
2236 | &aggstate->ss.ps.outeropsfixed); |
2237 | aggstate->ss.ps.outeropsset = true; |
2238 | |
2239 | ExecCreateScanSlotFromOuterPlan(estate, &aggstate->ss, |
2240 | aggstate->ss.ps.outerops); |
2241 | scanDesc = aggstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor; |
2242 | |
2243 | /* |
2244 | * If there are more than two phases (including a potential dummy phase |
2245 | * 0), input will be resorted using tuplesort. Need a slot for that. |
2246 | */ |
2247 | if (numPhases > 2) |
2248 | { |
2249 | aggstate->sort_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
2250 | &TTSOpsMinimalTuple); |
2251 | |
2252 | /* |
2253 | * The output of the tuplesort, and the output from the outer child |
2254 | * might not use the same type of slot. In most cases the child will |
2255 | * be a Sort, and thus return a TTSOpsMinimalTuple type slot - but the |
2256 | * input can also be be presorted due an index, in which case it could |
2257 | * be a different type of slot. |
2258 | * |
2259 | * XXX: For efficiency it would be good to instead/additionally |
2260 | * generate expressions with corresponding settings of outerops* for |
2261 | * the individual phases - deforming is often a bottleneck for |
2262 | * aggregations with lots of rows per group. If there's multiple |
2263 | * sorts, we know that all but the first use TTSOpsMinimalTuple (via |
2264 | * the nodeAgg.c internal tuplesort). |
2265 | */ |
2266 | if (aggstate->ss.ps.outeropsfixed && |
2267 | aggstate->ss.ps.outerops != &TTSOpsMinimalTuple) |
2268 | aggstate->ss.ps.outeropsfixed = false; |
2269 | } |
2270 | |
2271 | /* |
2272 | * Initialize result type, slot and projection. |
2273 | */ |
2274 | ExecInitResultTupleSlotTL(&aggstate->ss.ps, &TTSOpsVirtual); |
2275 | ExecAssignProjectionInfo(&aggstate->ss.ps, NULL); |
2276 | |
2277 | /* |
2278 | * initialize child expressions |
2279 | * |
2280 | * We expect the parser to have checked that no aggs contain other agg |
2281 | * calls in their arguments (and just to be sure, we verify it again while |
2282 | * initializing the plan node). This would make no sense under SQL |
2283 | * semantics, and it's forbidden by the spec. Because it is true, we |
2284 | * don't need to worry about evaluating the aggs in any particular order. |
2285 | * |
2286 | * Note: execExpr.c finds Aggrefs for us, and adds their AggrefExprState |
2287 | * nodes to aggstate->aggs. Aggrefs in the qual are found here; Aggrefs |
2288 | * in the targetlist are found during ExecAssignProjectionInfo, below. |
2289 | */ |
2290 | aggstate->ss.ps.qual = |
2291 | ExecInitQual(node->plan.qual, (PlanState *) aggstate); |
2292 | |
2293 | /* |
2294 | * We should now have found all Aggrefs in the targetlist and quals. |
2295 | */ |
2296 | numaggs = aggstate->numaggs; |
2297 | Assert(numaggs == list_length(aggstate->aggs)); |
2298 | |
2299 | /* |
2300 | * For each phase, prepare grouping set data and fmgr lookup data for |
2301 | * compare functions. Accumulate all_grouped_cols in passing. |
2302 | */ |
2303 | aggstate->phases = palloc0(numPhases * sizeof(AggStatePerPhaseData)); |
2304 | |
2305 | aggstate->num_hashes = numHashes; |
2306 | if (numHashes) |
2307 | { |
2308 | aggstate->perhash = palloc0(sizeof(AggStatePerHashData) * numHashes); |
2309 | aggstate->phases[0].numsets = 0; |
2310 | aggstate->phases[0].gset_lengths = palloc(numHashes * sizeof(int)); |
2311 | aggstate->phases[0].grouped_cols = palloc(numHashes * sizeof(Bitmapset *)); |
2312 | } |
2313 | |
2314 | phase = 0; |
2315 | for (phaseidx = 0; phaseidx <= list_length(node->chain); ++phaseidx) |
2316 | { |
2317 | Agg *aggnode; |
2318 | Sort *sortnode; |
2319 | |
2320 | if (phaseidx > 0) |
2321 | { |
2322 | aggnode = list_nth_node(Agg, node->chain, phaseidx - 1); |
2323 | sortnode = castNode(Sort, aggnode->plan.lefttree); |
2324 | } |
2325 | else |
2326 | { |
2327 | aggnode = node; |
2328 | sortnode = NULL; |
2329 | } |
2330 | |
2331 | Assert(phase <= 1 || sortnode); |
2332 | |
2333 | if (aggnode->aggstrategy == AGG_HASHED |
2334 | || aggnode->aggstrategy == AGG_MIXED) |
2335 | { |
2336 | AggStatePerPhase phasedata = &aggstate->phases[0]; |
2337 | AggStatePerHash perhash; |
2338 | Bitmapset *cols = NULL; |
2339 | |
2340 | Assert(phase == 0); |
2341 | i = phasedata->numsets++; |
2342 | perhash = &aggstate->perhash[i]; |
2343 | |
2344 | /* phase 0 always points to the "real" Agg in the hash case */ |
2345 | phasedata->aggnode = node; |
2346 | phasedata->aggstrategy = node->aggstrategy; |
2347 | |
2348 | /* but the actual Agg node representing this hash is saved here */ |
2349 | perhash->aggnode = aggnode; |
2350 | |
2351 | phasedata->gset_lengths[i] = perhash->numCols = aggnode->numCols; |
2352 | |
2353 | for (j = 0; j < aggnode->numCols; ++j) |
2354 | cols = bms_add_member(cols, aggnode->grpColIdx[j]); |
2355 | |
2356 | phasedata->grouped_cols[i] = cols; |
2357 | |
2358 | all_grouped_cols = bms_add_members(all_grouped_cols, cols); |
2359 | continue; |
2360 | } |
2361 | else |
2362 | { |
2363 | AggStatePerPhase phasedata = &aggstate->phases[++phase]; |
2364 | int num_sets; |
2365 | |
2366 | phasedata->numsets = num_sets = list_length(aggnode->groupingSets); |
2367 | |
2368 | if (num_sets) |
2369 | { |
2370 | phasedata->gset_lengths = palloc(num_sets * sizeof(int)); |
2371 | phasedata->grouped_cols = palloc(num_sets * sizeof(Bitmapset *)); |
2372 | |
2373 | i = 0; |
2374 | foreach(l, aggnode->groupingSets) |
2375 | { |
2376 | int current_length = list_length(lfirst(l)); |
2377 | Bitmapset *cols = NULL; |
2378 | |
2379 | /* planner forces this to be correct */ |
2380 | for (j = 0; j < current_length; ++j) |
2381 | cols = bms_add_member(cols, aggnode->grpColIdx[j]); |
2382 | |
2383 | phasedata->grouped_cols[i] = cols; |
2384 | phasedata->gset_lengths[i] = current_length; |
2385 | |
2386 | ++i; |
2387 | } |
2388 | |
2389 | all_grouped_cols = bms_add_members(all_grouped_cols, |
2390 | phasedata->grouped_cols[0]); |
2391 | } |
2392 | else |
2393 | { |
2394 | Assert(phaseidx == 0); |
2395 | |
2396 | phasedata->gset_lengths = NULL; |
2397 | phasedata->grouped_cols = NULL; |
2398 | } |
2399 | |
2400 | /* |
2401 | * If we are grouping, precompute fmgr lookup data for inner loop. |
2402 | */ |
2403 | if (aggnode->aggstrategy == AGG_SORTED) |
2404 | { |
2405 | int i = 0; |
2406 | |
2407 | Assert(aggnode->numCols > 0); |
2408 | |
2409 | /* |
2410 | * Build a separate function for each subset of columns that |
2411 | * need to be compared. |
2412 | */ |
2413 | phasedata->eqfunctions = |
2414 | (ExprState **) palloc0(aggnode->numCols * sizeof(ExprState *)); |
2415 | |
2416 | /* for each grouping set */ |
2417 | for (i = 0; i < phasedata->numsets; i++) |
2418 | { |
2419 | int length = phasedata->gset_lengths[i]; |
2420 | |
2421 | if (phasedata->eqfunctions[length - 1] != NULL) |
2422 | continue; |
2423 | |
2424 | phasedata->eqfunctions[length - 1] = |
2425 | execTuplesMatchPrepare(scanDesc, |
2426 | length, |
2427 | aggnode->grpColIdx, |
2428 | aggnode->grpOperators, |
2429 | aggnode->grpCollations, |
2430 | (PlanState *) aggstate); |
2431 | } |
2432 | |
2433 | /* and for all grouped columns, unless already computed */ |
2434 | if (phasedata->eqfunctions[aggnode->numCols - 1] == NULL) |
2435 | { |
2436 | phasedata->eqfunctions[aggnode->numCols - 1] = |
2437 | execTuplesMatchPrepare(scanDesc, |
2438 | aggnode->numCols, |
2439 | aggnode->grpColIdx, |
2440 | aggnode->grpOperators, |
2441 | aggnode->grpCollations, |
2442 | (PlanState *) aggstate); |
2443 | } |
2444 | } |
2445 | |
2446 | phasedata->aggnode = aggnode; |
2447 | phasedata->aggstrategy = aggnode->aggstrategy; |
2448 | phasedata->sortnode = sortnode; |
2449 | } |
2450 | } |
2451 | |
2452 | /* |
2453 | * Convert all_grouped_cols to a descending-order list. |
2454 | */ |
2455 | i = -1; |
2456 | while ((i = bms_next_member(all_grouped_cols, i)) >= 0) |
2457 | aggstate->all_grouped_cols = lcons_int(i, aggstate->all_grouped_cols); |
2458 | |
2459 | /* |
2460 | * Set up aggregate-result storage in the output expr context, and also |
2461 | * allocate my private per-agg working storage |
2462 | */ |
2463 | econtext = aggstate->ss.ps.ps_ExprContext; |
2464 | econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numaggs); |
2465 | econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numaggs); |
2466 | |
2467 | peraggs = (AggStatePerAgg) palloc0(sizeof(AggStatePerAggData) * numaggs); |
2468 | pertransstates = (AggStatePerTrans) palloc0(sizeof(AggStatePerTransData) * numaggs); |
2469 | |
2470 | aggstate->peragg = peraggs; |
2471 | aggstate->pertrans = pertransstates; |
2472 | |
2473 | |
2474 | aggstate->all_pergroups = |
2475 | (AggStatePerGroup *) palloc0(sizeof(AggStatePerGroup) |
2476 | * (numGroupingSets + numHashes)); |
2477 | pergroups = aggstate->all_pergroups; |
2478 | |
2479 | if (node->aggstrategy != AGG_HASHED) |
2480 | { |
2481 | for (i = 0; i < numGroupingSets; i++) |
2482 | { |
2483 | pergroups[i] = (AggStatePerGroup) palloc0(sizeof(AggStatePerGroupData) |
2484 | * numaggs); |
2485 | } |
2486 | |
2487 | aggstate->pergroups = pergroups; |
2488 | pergroups += numGroupingSets; |
2489 | } |
2490 | |
2491 | /* |
2492 | * Hashing can only appear in the initial phase. |
2493 | */ |
2494 | if (use_hashing) |
2495 | { |
2496 | /* this is an array of pointers, not structures */ |
2497 | aggstate->hash_pergroup = pergroups; |
2498 | |
2499 | find_hash_columns(aggstate); |
2500 | build_hash_table(aggstate); |
2501 | aggstate->table_filled = false; |
2502 | } |
2503 | |
2504 | /* |
2505 | * Initialize current phase-dependent values to initial phase. The initial |
2506 | * phase is 1 (first sort pass) for all strategies that use sorting (if |
2507 | * hashing is being done too, then phase 0 is processed last); but if only |
2508 | * hashing is being done, then phase 0 is all there is. |
2509 | */ |
2510 | if (node->aggstrategy == AGG_HASHED) |
2511 | { |
2512 | aggstate->current_phase = 0; |
2513 | initialize_phase(aggstate, 0); |
2514 | select_current_set(aggstate, 0, true); |
2515 | } |
2516 | else |
2517 | { |
2518 | aggstate->current_phase = 1; |
2519 | initialize_phase(aggstate, 1); |
2520 | select_current_set(aggstate, 0, false); |
2521 | } |
2522 | |
2523 | /* ----------------- |
2524 | * Perform lookups of aggregate function info, and initialize the |
2525 | * unchanging fields of the per-agg and per-trans data. |
2526 | * |
2527 | * We try to optimize by detecting duplicate aggregate functions so that |
2528 | * their state and final values are re-used, rather than needlessly being |
2529 | * re-calculated independently. We also detect aggregates that are not |
2530 | * the same, but which can share the same transition state. |
2531 | * |
2532 | * Scenarios: |
2533 | * |
2534 | * 1. Identical aggregate function calls appear in the query: |
2535 | * |
2536 | * SELECT SUM(x) FROM ... HAVING SUM(x) > 0 |
2537 | * |
2538 | * Since these aggregates are identical, we only need to calculate |
2539 | * the value once. Both aggregates will share the same 'aggno' value. |
2540 | * |
2541 | * 2. Two different aggregate functions appear in the query, but the |
2542 | * aggregates have the same arguments, transition functions and |
2543 | * initial values (and, presumably, different final functions): |
2544 | * |
2545 | * SELECT AVG(x), STDDEV(x) FROM ... |
2546 | * |
2547 | * In this case we must create a new peragg for the varying aggregate, |
2548 | * and we need to call the final functions separately, but we need |
2549 | * only run the transition function once. (This requires that the |
2550 | * final functions be nondestructive of the transition state, but |
2551 | * that's required anyway for other reasons.) |
2552 | * |
2553 | * For either of these optimizations to be valid, all aggregate properties |
2554 | * used in the transition phase must be the same, including any modifiers |
2555 | * such as ORDER BY, DISTINCT and FILTER, and the arguments mustn't |
2556 | * contain any volatile functions. |
2557 | * ----------------- |
2558 | */ |
2559 | aggno = -1; |
2560 | transno = -1; |
2561 | foreach(l, aggstate->aggs) |
2562 | { |
2563 | AggrefExprState *aggrefstate = (AggrefExprState *) lfirst(l); |
2564 | Aggref *aggref = aggrefstate->aggref; |
2565 | AggStatePerAgg peragg; |
2566 | AggStatePerTrans pertrans; |
2567 | int existing_aggno; |
2568 | int existing_transno; |
2569 | List *same_input_transnos; |
2570 | Oid inputTypes[FUNC_MAX_ARGS]; |
2571 | int numArguments; |
2572 | int numDirectArgs; |
2573 | HeapTuple aggTuple; |
2574 | Form_pg_aggregate aggform; |
2575 | AclResult aclresult; |
2576 | Oid transfn_oid, |
2577 | finalfn_oid; |
2578 | bool shareable; |
2579 | Oid serialfn_oid, |
2580 | deserialfn_oid; |
2581 | Expr *finalfnexpr; |
2582 | Oid aggtranstype; |
2583 | Datum textInitVal; |
2584 | Datum initValue; |
2585 | bool initValueIsNull; |
2586 | |
2587 | /* Planner should have assigned aggregate to correct level */ |
2588 | Assert(aggref->agglevelsup == 0); |
2589 | /* ... and the split mode should match */ |
2590 | Assert(aggref->aggsplit == aggstate->aggsplit); |
2591 | |
2592 | /* 1. Check for already processed aggs which can be re-used */ |
2593 | existing_aggno = find_compatible_peragg(aggref, aggstate, aggno, |
2594 | &same_input_transnos); |
2595 | if (existing_aggno != -1) |
2596 | { |
2597 | /* |
2598 | * Existing compatible agg found. so just point the Aggref to the |
2599 | * same per-agg struct. |
2600 | */ |
2601 | aggrefstate->aggno = existing_aggno; |
2602 | continue; |
2603 | } |
2604 | |
2605 | /* Mark Aggref state node with assigned index in the result array */ |
2606 | peragg = &peraggs[++aggno]; |
2607 | peragg->aggref = aggref; |
2608 | aggrefstate->aggno = aggno; |
2609 | |
2610 | /* Fetch the pg_aggregate row */ |
2611 | aggTuple = SearchSysCache1(AGGFNOID, |
2612 | ObjectIdGetDatum(aggref->aggfnoid)); |
2613 | if (!HeapTupleIsValid(aggTuple)) |
2614 | elog(ERROR, "cache lookup failed for aggregate %u" , |
2615 | aggref->aggfnoid); |
2616 | aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple); |
2617 | |
2618 | /* Check permission to call aggregate function */ |
2619 | aclresult = pg_proc_aclcheck(aggref->aggfnoid, GetUserId(), |
2620 | ACL_EXECUTE); |
2621 | if (aclresult != ACLCHECK_OK) |
2622 | aclcheck_error(aclresult, OBJECT_AGGREGATE, |
2623 | get_func_name(aggref->aggfnoid)); |
2624 | InvokeFunctionExecuteHook(aggref->aggfnoid); |
2625 | |
2626 | /* planner recorded transition state type in the Aggref itself */ |
2627 | aggtranstype = aggref->aggtranstype; |
2628 | Assert(OidIsValid(aggtranstype)); |
2629 | |
2630 | /* |
2631 | * If this aggregation is performing state combines, then instead of |
2632 | * using the transition function, we'll use the combine function |
2633 | */ |
2634 | if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit)) |
2635 | { |
2636 | transfn_oid = aggform->aggcombinefn; |
2637 | |
2638 | /* If not set then the planner messed up */ |
2639 | if (!OidIsValid(transfn_oid)) |
2640 | elog(ERROR, "combinefn not set for aggregate function" ); |
2641 | } |
2642 | else |
2643 | transfn_oid = aggform->aggtransfn; |
2644 | |
2645 | /* Final function only required if we're finalizing the aggregates */ |
2646 | if (DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit)) |
2647 | peragg->finalfn_oid = finalfn_oid = InvalidOid; |
2648 | else |
2649 | peragg->finalfn_oid = finalfn_oid = aggform->aggfinalfn; |
2650 | |
2651 | /* |
2652 | * If finalfn is marked read-write, we can't share transition states; |
2653 | * but it is okay to share states for AGGMODIFY_SHAREABLE aggs. Also, |
2654 | * if we're not executing the finalfn here, we can share regardless. |
2655 | */ |
2656 | shareable = (aggform->aggfinalmodify != AGGMODIFY_READ_WRITE) || |
2657 | (finalfn_oid == InvalidOid); |
2658 | peragg->shareable = shareable; |
2659 | |
2660 | serialfn_oid = InvalidOid; |
2661 | deserialfn_oid = InvalidOid; |
2662 | |
2663 | /* |
2664 | * Check if serialization/deserialization is required. We only do it |
2665 | * for aggregates that have transtype INTERNAL. |
2666 | */ |
2667 | if (aggtranstype == INTERNALOID) |
2668 | { |
2669 | /* |
2670 | * The planner should only have generated a serialize agg node if |
2671 | * every aggregate with an INTERNAL state has a serialization |
2672 | * function. Verify that. |
2673 | */ |
2674 | if (DO_AGGSPLIT_SERIALIZE(aggstate->aggsplit)) |
2675 | { |
2676 | /* serialization only valid when not running finalfn */ |
2677 | Assert(DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit)); |
2678 | |
2679 | if (!OidIsValid(aggform->aggserialfn)) |
2680 | elog(ERROR, "serialfunc not provided for serialization aggregation" ); |
2681 | serialfn_oid = aggform->aggserialfn; |
2682 | } |
2683 | |
2684 | /* Likewise for deserialization functions */ |
2685 | if (DO_AGGSPLIT_DESERIALIZE(aggstate->aggsplit)) |
2686 | { |
2687 | /* deserialization only valid when combining states */ |
2688 | Assert(DO_AGGSPLIT_COMBINE(aggstate->aggsplit)); |
2689 | |
2690 | if (!OidIsValid(aggform->aggdeserialfn)) |
2691 | elog(ERROR, "deserialfunc not provided for deserialization aggregation" ); |
2692 | deserialfn_oid = aggform->aggdeserialfn; |
2693 | } |
2694 | } |
2695 | |
2696 | /* Check that aggregate owner has permission to call component fns */ |
2697 | { |
2698 | HeapTuple procTuple; |
2699 | Oid aggOwner; |
2700 | |
2701 | procTuple = SearchSysCache1(PROCOID, |
2702 | ObjectIdGetDatum(aggref->aggfnoid)); |
2703 | if (!HeapTupleIsValid(procTuple)) |
2704 | elog(ERROR, "cache lookup failed for function %u" , |
2705 | aggref->aggfnoid); |
2706 | aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner; |
2707 | ReleaseSysCache(procTuple); |
2708 | |
2709 | aclresult = pg_proc_aclcheck(transfn_oid, aggOwner, |
2710 | ACL_EXECUTE); |
2711 | if (aclresult != ACLCHECK_OK) |
2712 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
2713 | get_func_name(transfn_oid)); |
2714 | InvokeFunctionExecuteHook(transfn_oid); |
2715 | if (OidIsValid(finalfn_oid)) |
2716 | { |
2717 | aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner, |
2718 | ACL_EXECUTE); |
2719 | if (aclresult != ACLCHECK_OK) |
2720 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
2721 | get_func_name(finalfn_oid)); |
2722 | InvokeFunctionExecuteHook(finalfn_oid); |
2723 | } |
2724 | if (OidIsValid(serialfn_oid)) |
2725 | { |
2726 | aclresult = pg_proc_aclcheck(serialfn_oid, aggOwner, |
2727 | ACL_EXECUTE); |
2728 | if (aclresult != ACLCHECK_OK) |
2729 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
2730 | get_func_name(serialfn_oid)); |
2731 | InvokeFunctionExecuteHook(serialfn_oid); |
2732 | } |
2733 | if (OidIsValid(deserialfn_oid)) |
2734 | { |
2735 | aclresult = pg_proc_aclcheck(deserialfn_oid, aggOwner, |
2736 | ACL_EXECUTE); |
2737 | if (aclresult != ACLCHECK_OK) |
2738 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
2739 | get_func_name(deserialfn_oid)); |
2740 | InvokeFunctionExecuteHook(deserialfn_oid); |
2741 | } |
2742 | } |
2743 | |
2744 | /* |
2745 | * Get actual datatypes of the (nominal) aggregate inputs. These |
2746 | * could be different from the agg's declared input types, when the |
2747 | * agg accepts ANY or a polymorphic type. |
2748 | */ |
2749 | numArguments = get_aggregate_argtypes(aggref, inputTypes); |
2750 | |
2751 | /* Count the "direct" arguments, if any */ |
2752 | numDirectArgs = list_length(aggref->aggdirectargs); |
2753 | |
2754 | /* Detect how many arguments to pass to the finalfn */ |
2755 | if (aggform->aggfinalextra) |
2756 | peragg->numFinalArgs = numArguments + 1; |
2757 | else |
2758 | peragg->numFinalArgs = numDirectArgs + 1; |
2759 | |
2760 | /* Initialize any direct-argument expressions */ |
2761 | peragg->aggdirectargs = ExecInitExprList(aggref->aggdirectargs, |
2762 | (PlanState *) aggstate); |
2763 | |
2764 | /* |
2765 | * build expression trees using actual argument & result types for the |
2766 | * finalfn, if it exists and is required. |
2767 | */ |
2768 | if (OidIsValid(finalfn_oid)) |
2769 | { |
2770 | build_aggregate_finalfn_expr(inputTypes, |
2771 | peragg->numFinalArgs, |
2772 | aggtranstype, |
2773 | aggref->aggtype, |
2774 | aggref->inputcollid, |
2775 | finalfn_oid, |
2776 | &finalfnexpr); |
2777 | fmgr_info(finalfn_oid, &peragg->finalfn); |
2778 | fmgr_info_set_expr((Node *) finalfnexpr, &peragg->finalfn); |
2779 | } |
2780 | |
2781 | /* get info about the output value's datatype */ |
2782 | get_typlenbyval(aggref->aggtype, |
2783 | &peragg->resulttypeLen, |
2784 | &peragg->resulttypeByVal); |
2785 | |
2786 | /* |
2787 | * initval is potentially null, so don't try to access it as a struct |
2788 | * field. Must do it the hard way with SysCacheGetAttr. |
2789 | */ |
2790 | textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple, |
2791 | Anum_pg_aggregate_agginitval, |
2792 | &initValueIsNull); |
2793 | if (initValueIsNull) |
2794 | initValue = (Datum) 0; |
2795 | else |
2796 | initValue = GetAggInitVal(textInitVal, aggtranstype); |
2797 | |
2798 | /* |
2799 | * 2. Build working state for invoking the transition function, or |
2800 | * look up previously initialized working state, if we can share it. |
2801 | * |
2802 | * find_compatible_peragg() already collected a list of shareable |
2803 | * per-Trans's with the same inputs. Check if any of them have the |
2804 | * same transition function and initial value. |
2805 | */ |
2806 | existing_transno = find_compatible_pertrans(aggstate, aggref, |
2807 | shareable, |
2808 | transfn_oid, aggtranstype, |
2809 | serialfn_oid, deserialfn_oid, |
2810 | initValue, initValueIsNull, |
2811 | same_input_transnos); |
2812 | if (existing_transno != -1) |
2813 | { |
2814 | /* |
2815 | * Existing compatible trans found, so just point the 'peragg' to |
2816 | * the same per-trans struct, and mark the trans state as shared. |
2817 | */ |
2818 | pertrans = &pertransstates[existing_transno]; |
2819 | pertrans->aggshared = true; |
2820 | peragg->transno = existing_transno; |
2821 | } |
2822 | else |
2823 | { |
2824 | pertrans = &pertransstates[++transno]; |
2825 | build_pertrans_for_aggref(pertrans, aggstate, estate, |
2826 | aggref, transfn_oid, aggtranstype, |
2827 | serialfn_oid, deserialfn_oid, |
2828 | initValue, initValueIsNull, |
2829 | inputTypes, numArguments); |
2830 | peragg->transno = transno; |
2831 | } |
2832 | ReleaseSysCache(aggTuple); |
2833 | } |
2834 | |
2835 | /* |
2836 | * Update aggstate->numaggs to be the number of unique aggregates found. |
2837 | * Also set numstates to the number of unique transition states found. |
2838 | */ |
2839 | aggstate->numaggs = aggno + 1; |
2840 | aggstate->numtrans = transno + 1; |
2841 | |
2842 | /* |
2843 | * Last, check whether any more aggregates got added onto the node while |
2844 | * we processed the expressions for the aggregate arguments (including not |
2845 | * only the regular arguments and FILTER expressions handled immediately |
2846 | * above, but any direct arguments we might've handled earlier). If so, |
2847 | * we have nested aggregate functions, which is semantically nonsensical, |
2848 | * so complain. (This should have been caught by the parser, so we don't |
2849 | * need to work hard on a helpful error message; but we defend against it |
2850 | * here anyway, just to be sure.) |
2851 | */ |
2852 | if (numaggs != list_length(aggstate->aggs)) |
2853 | ereport(ERROR, |
2854 | (errcode(ERRCODE_GROUPING_ERROR), |
2855 | errmsg("aggregate function calls cannot be nested" ))); |
2856 | |
2857 | /* |
2858 | * Build expressions doing all the transition work at once. We build a |
2859 | * different one for each phase, as the number of transition function |
2860 | * invocation can differ between phases. Note this'll work both for |
2861 | * transition and combination functions (although there'll only be one |
2862 | * phase in the latter case). |
2863 | */ |
2864 | for (phaseidx = 0; phaseidx < aggstate->numphases; phaseidx++) |
2865 | { |
2866 | AggStatePerPhase phase = &aggstate->phases[phaseidx]; |
2867 | bool dohash = false; |
2868 | bool dosort = false; |
2869 | |
2870 | /* phase 0 doesn't necessarily exist */ |
2871 | if (!phase->aggnode) |
2872 | continue; |
2873 | |
2874 | if (aggstate->aggstrategy == AGG_MIXED && phaseidx == 1) |
2875 | { |
2876 | /* |
2877 | * Phase one, and only phase one, in a mixed agg performs both |
2878 | * sorting and aggregation. |
2879 | */ |
2880 | dohash = true; |
2881 | dosort = true; |
2882 | } |
2883 | else if (aggstate->aggstrategy == AGG_MIXED && phaseidx == 0) |
2884 | { |
2885 | /* |
2886 | * No need to compute a transition function for an AGG_MIXED phase |
2887 | * 0 - the contents of the hashtables will have been computed |
2888 | * during phase 1. |
2889 | */ |
2890 | continue; |
2891 | } |
2892 | else if (phase->aggstrategy == AGG_PLAIN || |
2893 | phase->aggstrategy == AGG_SORTED) |
2894 | { |
2895 | dohash = false; |
2896 | dosort = true; |
2897 | } |
2898 | else if (phase->aggstrategy == AGG_HASHED) |
2899 | { |
2900 | dohash = true; |
2901 | dosort = false; |
2902 | } |
2903 | else |
2904 | Assert(false); |
2905 | |
2906 | phase->evaltrans = ExecBuildAggTrans(aggstate, phase, dosort, dohash); |
2907 | |
2908 | } |
2909 | |
2910 | return aggstate; |
2911 | } |
2912 | |
2913 | /* |
2914 | * Build the state needed to calculate a state value for an aggregate. |
2915 | * |
2916 | * This initializes all the fields in 'pertrans'. 'aggref' is the aggregate |
2917 | * to initialize the state for. 'aggtransfn', 'aggtranstype', and the rest |
2918 | * of the arguments could be calculated from 'aggref', but the caller has |
2919 | * calculated them already, so might as well pass them. |
2920 | */ |
2921 | static void |
2922 | build_pertrans_for_aggref(AggStatePerTrans pertrans, |
2923 | AggState *aggstate, EState *estate, |
2924 | Aggref *aggref, |
2925 | Oid aggtransfn, Oid aggtranstype, |
2926 | Oid aggserialfn, Oid aggdeserialfn, |
2927 | Datum initValue, bool initValueIsNull, |
2928 | Oid *inputTypes, int numArguments) |
2929 | { |
2930 | int numGroupingSets = Max(aggstate->maxsets, 1); |
2931 | Expr *serialfnexpr = NULL; |
2932 | Expr *deserialfnexpr = NULL; |
2933 | ListCell *lc; |
2934 | int numInputs; |
2935 | int numDirectArgs; |
2936 | List *sortlist; |
2937 | int numSortCols; |
2938 | int numDistinctCols; |
2939 | int i; |
2940 | |
2941 | /* Begin filling in the pertrans data */ |
2942 | pertrans->aggref = aggref; |
2943 | pertrans->aggshared = false; |
2944 | pertrans->aggCollation = aggref->inputcollid; |
2945 | pertrans->transfn_oid = aggtransfn; |
2946 | pertrans->serialfn_oid = aggserialfn; |
2947 | pertrans->deserialfn_oid = aggdeserialfn; |
2948 | pertrans->initValue = initValue; |
2949 | pertrans->initValueIsNull = initValueIsNull; |
2950 | |
2951 | /* Count the "direct" arguments, if any */ |
2952 | numDirectArgs = list_length(aggref->aggdirectargs); |
2953 | |
2954 | /* Count the number of aggregated input columns */ |
2955 | pertrans->numInputs = numInputs = list_length(aggref->args); |
2956 | |
2957 | pertrans->aggtranstype = aggtranstype; |
2958 | |
2959 | /* |
2960 | * When combining states, we have no use at all for the aggregate |
2961 | * function's transfn. Instead we use the combinefn. In this case, the |
2962 | * transfn and transfn_oid fields of pertrans refer to the combine |
2963 | * function rather than the transition function. |
2964 | */ |
2965 | if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit)) |
2966 | { |
2967 | Expr *combinefnexpr; |
2968 | size_t numTransArgs; |
2969 | |
2970 | /* |
2971 | * When combining there's only one input, the to-be-combined added |
2972 | * transition value from below (this node's transition value is |
2973 | * counted separately). |
2974 | */ |
2975 | pertrans->numTransInputs = 1; |
2976 | |
2977 | /* account for the current transition state */ |
2978 | numTransArgs = pertrans->numTransInputs + 1; |
2979 | |
2980 | build_aggregate_combinefn_expr(aggtranstype, |
2981 | aggref->inputcollid, |
2982 | aggtransfn, |
2983 | &combinefnexpr); |
2984 | fmgr_info(aggtransfn, &pertrans->transfn); |
2985 | fmgr_info_set_expr((Node *) combinefnexpr, &pertrans->transfn); |
2986 | |
2987 | pertrans->transfn_fcinfo = |
2988 | (FunctionCallInfo) palloc(SizeForFunctionCallInfo(2)); |
2989 | InitFunctionCallInfoData(*pertrans->transfn_fcinfo, |
2990 | &pertrans->transfn, |
2991 | numTransArgs, |
2992 | pertrans->aggCollation, |
2993 | (void *) aggstate, NULL); |
2994 | |
2995 | /* |
2996 | * Ensure that a combine function to combine INTERNAL states is not |
2997 | * strict. This should have been checked during CREATE AGGREGATE, but |
2998 | * the strict property could have been changed since then. |
2999 | */ |
3000 | if (pertrans->transfn.fn_strict && aggtranstype == INTERNALOID) |
3001 | ereport(ERROR, |
3002 | (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), |
3003 | errmsg("combine function with transition type %s must not be declared STRICT" , |
3004 | format_type_be(aggtranstype)))); |
3005 | } |
3006 | else |
3007 | { |
3008 | Expr *transfnexpr; |
3009 | size_t numTransArgs; |
3010 | |
3011 | /* Detect how many arguments to pass to the transfn */ |
3012 | if (AGGKIND_IS_ORDERED_SET(aggref->aggkind)) |
3013 | pertrans->numTransInputs = numInputs; |
3014 | else |
3015 | pertrans->numTransInputs = numArguments; |
3016 | |
3017 | /* account for the current transition state */ |
3018 | numTransArgs = pertrans->numTransInputs + 1; |
3019 | |
3020 | /* |
3021 | * Set up infrastructure for calling the transfn. Note that invtrans |
3022 | * is not needed here. |
3023 | */ |
3024 | build_aggregate_transfn_expr(inputTypes, |
3025 | numArguments, |
3026 | numDirectArgs, |
3027 | aggref->aggvariadic, |
3028 | aggtranstype, |
3029 | aggref->inputcollid, |
3030 | aggtransfn, |
3031 | InvalidOid, |
3032 | &transfnexpr, |
3033 | NULL); |
3034 | fmgr_info(aggtransfn, &pertrans->transfn); |
3035 | fmgr_info_set_expr((Node *) transfnexpr, &pertrans->transfn); |
3036 | |
3037 | pertrans->transfn_fcinfo = |
3038 | (FunctionCallInfo) palloc(SizeForFunctionCallInfo(numTransArgs)); |
3039 | InitFunctionCallInfoData(*pertrans->transfn_fcinfo, |
3040 | &pertrans->transfn, |
3041 | numTransArgs, |
3042 | pertrans->aggCollation, |
3043 | (void *) aggstate, NULL); |
3044 | |
3045 | /* |
3046 | * If the transfn is strict and the initval is NULL, make sure input |
3047 | * type and transtype are the same (or at least binary-compatible), so |
3048 | * that it's OK to use the first aggregated input value as the initial |
3049 | * transValue. This should have been checked at agg definition time, |
3050 | * but we must check again in case the transfn's strictness property |
3051 | * has been changed. |
3052 | */ |
3053 | if (pertrans->transfn.fn_strict && pertrans->initValueIsNull) |
3054 | { |
3055 | if (numArguments <= numDirectArgs || |
3056 | !IsBinaryCoercible(inputTypes[numDirectArgs], |
3057 | aggtranstype)) |
3058 | ereport(ERROR, |
3059 | (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), |
3060 | errmsg("aggregate %u needs to have compatible input type and transition type" , |
3061 | aggref->aggfnoid))); |
3062 | } |
3063 | } |
3064 | |
3065 | /* get info about the state value's datatype */ |
3066 | get_typlenbyval(aggtranstype, |
3067 | &pertrans->transtypeLen, |
3068 | &pertrans->transtypeByVal); |
3069 | |
3070 | if (OidIsValid(aggserialfn)) |
3071 | { |
3072 | build_aggregate_serialfn_expr(aggserialfn, |
3073 | &serialfnexpr); |
3074 | fmgr_info(aggserialfn, &pertrans->serialfn); |
3075 | fmgr_info_set_expr((Node *) serialfnexpr, &pertrans->serialfn); |
3076 | |
3077 | pertrans->serialfn_fcinfo = |
3078 | (FunctionCallInfo) palloc(SizeForFunctionCallInfo(1)); |
3079 | InitFunctionCallInfoData(*pertrans->serialfn_fcinfo, |
3080 | &pertrans->serialfn, |
3081 | 1, |
3082 | InvalidOid, |
3083 | (void *) aggstate, NULL); |
3084 | } |
3085 | |
3086 | if (OidIsValid(aggdeserialfn)) |
3087 | { |
3088 | build_aggregate_deserialfn_expr(aggdeserialfn, |
3089 | &deserialfnexpr); |
3090 | fmgr_info(aggdeserialfn, &pertrans->deserialfn); |
3091 | fmgr_info_set_expr((Node *) deserialfnexpr, &pertrans->deserialfn); |
3092 | |
3093 | pertrans->deserialfn_fcinfo = |
3094 | (FunctionCallInfo) palloc(SizeForFunctionCallInfo(2)); |
3095 | InitFunctionCallInfoData(*pertrans->deserialfn_fcinfo, |
3096 | &pertrans->deserialfn, |
3097 | 2, |
3098 | InvalidOid, |
3099 | (void *) aggstate, NULL); |
3100 | |
3101 | } |
3102 | |
3103 | /* |
3104 | * If we're doing either DISTINCT or ORDER BY for a plain agg, then we |
3105 | * have a list of SortGroupClause nodes; fish out the data in them and |
3106 | * stick them into arrays. We ignore ORDER BY for an ordered-set agg, |
3107 | * however; the agg's transfn and finalfn are responsible for that. |
3108 | * |
3109 | * Note that by construction, if there is a DISTINCT clause then the ORDER |
3110 | * BY clause is a prefix of it (see transformDistinctClause). |
3111 | */ |
3112 | if (AGGKIND_IS_ORDERED_SET(aggref->aggkind)) |
3113 | { |
3114 | sortlist = NIL; |
3115 | numSortCols = numDistinctCols = 0; |
3116 | } |
3117 | else if (aggref->aggdistinct) |
3118 | { |
3119 | sortlist = aggref->aggdistinct; |
3120 | numSortCols = numDistinctCols = list_length(sortlist); |
3121 | Assert(numSortCols >= list_length(aggref->aggorder)); |
3122 | } |
3123 | else |
3124 | { |
3125 | sortlist = aggref->aggorder; |
3126 | numSortCols = list_length(sortlist); |
3127 | numDistinctCols = 0; |
3128 | } |
3129 | |
3130 | pertrans->numSortCols = numSortCols; |
3131 | pertrans->numDistinctCols = numDistinctCols; |
3132 | |
3133 | /* |
3134 | * If we have either sorting or filtering to do, create a tupledesc and |
3135 | * slot corresponding to the aggregated inputs (including sort |
3136 | * expressions) of the agg. |
3137 | */ |
3138 | if (numSortCols > 0 || aggref->aggfilter) |
3139 | { |
3140 | pertrans->sortdesc = ExecTypeFromTL(aggref->args); |
3141 | pertrans->sortslot = |
3142 | ExecInitExtraTupleSlot(estate, pertrans->sortdesc, |
3143 | &TTSOpsMinimalTuple); |
3144 | } |
3145 | |
3146 | if (numSortCols > 0) |
3147 | { |
3148 | /* |
3149 | * We don't implement DISTINCT or ORDER BY aggs in the HASHED case |
3150 | * (yet) |
3151 | */ |
3152 | Assert(aggstate->aggstrategy != AGG_HASHED && aggstate->aggstrategy != AGG_MIXED); |
3153 | |
3154 | /* If we have only one input, we need its len/byval info. */ |
3155 | if (numInputs == 1) |
3156 | { |
3157 | get_typlenbyval(inputTypes[numDirectArgs], |
3158 | &pertrans->inputtypeLen, |
3159 | &pertrans->inputtypeByVal); |
3160 | } |
3161 | else if (numDistinctCols > 0) |
3162 | { |
3163 | /* we will need an extra slot to store prior values */ |
3164 | pertrans->uniqslot = |
3165 | ExecInitExtraTupleSlot(estate, pertrans->sortdesc, |
3166 | &TTSOpsMinimalTuple); |
3167 | } |
3168 | |
3169 | /* Extract the sort information for use later */ |
3170 | pertrans->sortColIdx = |
3171 | (AttrNumber *) palloc(numSortCols * sizeof(AttrNumber)); |
3172 | pertrans->sortOperators = |
3173 | (Oid *) palloc(numSortCols * sizeof(Oid)); |
3174 | pertrans->sortCollations = |
3175 | (Oid *) palloc(numSortCols * sizeof(Oid)); |
3176 | pertrans->sortNullsFirst = |
3177 | (bool *) palloc(numSortCols * sizeof(bool)); |
3178 | |
3179 | i = 0; |
3180 | foreach(lc, sortlist) |
3181 | { |
3182 | SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc); |
3183 | TargetEntry *tle = get_sortgroupclause_tle(sortcl, aggref->args); |
3184 | |
3185 | /* the parser should have made sure of this */ |
3186 | Assert(OidIsValid(sortcl->sortop)); |
3187 | |
3188 | pertrans->sortColIdx[i] = tle->resno; |
3189 | pertrans->sortOperators[i] = sortcl->sortop; |
3190 | pertrans->sortCollations[i] = exprCollation((Node *) tle->expr); |
3191 | pertrans->sortNullsFirst[i] = sortcl->nulls_first; |
3192 | i++; |
3193 | } |
3194 | Assert(i == numSortCols); |
3195 | } |
3196 | |
3197 | if (aggref->aggdistinct) |
3198 | { |
3199 | Oid *ops; |
3200 | |
3201 | Assert(numArguments > 0); |
3202 | Assert(list_length(aggref->aggdistinct) == numDistinctCols); |
3203 | |
3204 | ops = palloc(numDistinctCols * sizeof(Oid)); |
3205 | |
3206 | i = 0; |
3207 | foreach(lc, aggref->aggdistinct) |
3208 | ops[i++] = ((SortGroupClause *) lfirst(lc))->eqop; |
3209 | |
3210 | /* lookup / build the necessary comparators */ |
3211 | if (numDistinctCols == 1) |
3212 | fmgr_info(get_opcode(ops[0]), &pertrans->equalfnOne); |
3213 | else |
3214 | pertrans->equalfnMulti = |
3215 | execTuplesMatchPrepare(pertrans->sortdesc, |
3216 | numDistinctCols, |
3217 | pertrans->sortColIdx, |
3218 | ops, |
3219 | pertrans->sortCollations, |
3220 | &aggstate->ss.ps); |
3221 | pfree(ops); |
3222 | } |
3223 | |
3224 | pertrans->sortstates = (Tuplesortstate **) |
3225 | palloc0(sizeof(Tuplesortstate *) * numGroupingSets); |
3226 | } |
3227 | |
3228 | |
3229 | static Datum |
3230 | GetAggInitVal(Datum textInitVal, Oid transtype) |
3231 | { |
3232 | Oid typinput, |
3233 | typioparam; |
3234 | char *strInitVal; |
3235 | Datum initVal; |
3236 | |
3237 | getTypeInputInfo(transtype, &typinput, &typioparam); |
3238 | strInitVal = TextDatumGetCString(textInitVal); |
3239 | initVal = OidInputFunctionCall(typinput, strInitVal, |
3240 | typioparam, -1); |
3241 | pfree(strInitVal); |
3242 | return initVal; |
3243 | } |
3244 | |
3245 | /* |
3246 | * find_compatible_peragg - search for a previously initialized per-Agg struct |
3247 | * |
3248 | * Searches the previously looked at aggregates to find one which is compatible |
3249 | * with this one, with the same input parameters. If no compatible aggregate |
3250 | * can be found, returns -1. |
3251 | * |
3252 | * As a side-effect, this also collects a list of existing, shareable per-Trans |
3253 | * structs with matching inputs. If no identical Aggref is found, the list is |
3254 | * passed later to find_compatible_pertrans, to see if we can at least reuse |
3255 | * the state value of another aggregate. |
3256 | */ |
3257 | static int |
3258 | find_compatible_peragg(Aggref *newagg, AggState *aggstate, |
3259 | int lastaggno, List **same_input_transnos) |
3260 | { |
3261 | int aggno; |
3262 | AggStatePerAgg peraggs; |
3263 | |
3264 | *same_input_transnos = NIL; |
3265 | |
3266 | /* we mustn't reuse the aggref if it contains volatile function calls */ |
3267 | if (contain_volatile_functions((Node *) newagg)) |
3268 | return -1; |
3269 | |
3270 | peraggs = aggstate->peragg; |
3271 | |
3272 | /* |
3273 | * Search through the list of already seen aggregates. If we find an |
3274 | * existing identical aggregate call, then we can re-use that one. While |
3275 | * searching, we'll also collect a list of Aggrefs with the same input |
3276 | * parameters. If no matching Aggref is found, the caller can potentially |
3277 | * still re-use the transition state of one of them. (At this stage we |
3278 | * just compare the parsetrees; whether different aggregates share the |
3279 | * same transition function will be checked later.) |
3280 | */ |
3281 | for (aggno = 0; aggno <= lastaggno; aggno++) |
3282 | { |
3283 | AggStatePerAgg peragg; |
3284 | Aggref *existingRef; |
3285 | |
3286 | peragg = &peraggs[aggno]; |
3287 | existingRef = peragg->aggref; |
3288 | |
3289 | /* all of the following must be the same or it's no match */ |
3290 | if (newagg->inputcollid != existingRef->inputcollid || |
3291 | newagg->aggtranstype != existingRef->aggtranstype || |
3292 | newagg->aggstar != existingRef->aggstar || |
3293 | newagg->aggvariadic != existingRef->aggvariadic || |
3294 | newagg->aggkind != existingRef->aggkind || |
3295 | !equal(newagg->args, existingRef->args) || |
3296 | !equal(newagg->aggorder, existingRef->aggorder) || |
3297 | !equal(newagg->aggdistinct, existingRef->aggdistinct) || |
3298 | !equal(newagg->aggfilter, existingRef->aggfilter)) |
3299 | continue; |
3300 | |
3301 | /* if it's the same aggregate function then report exact match */ |
3302 | if (newagg->aggfnoid == existingRef->aggfnoid && |
3303 | newagg->aggtype == existingRef->aggtype && |
3304 | newagg->aggcollid == existingRef->aggcollid && |
3305 | equal(newagg->aggdirectargs, existingRef->aggdirectargs)) |
3306 | { |
3307 | list_free(*same_input_transnos); |
3308 | *same_input_transnos = NIL; |
3309 | return aggno; |
3310 | } |
3311 | |
3312 | /* |
3313 | * Not identical, but it had the same inputs. If the final function |
3314 | * permits sharing, return its transno to the caller, in case we can |
3315 | * re-use its per-trans state. (If there's already sharing going on, |
3316 | * we might report a transno more than once. find_compatible_pertrans |
3317 | * is cheap enough that it's not worth spending cycles to avoid that.) |
3318 | */ |
3319 | if (peragg->shareable) |
3320 | *same_input_transnos = lappend_int(*same_input_transnos, |
3321 | peragg->transno); |
3322 | } |
3323 | |
3324 | return -1; |
3325 | } |
3326 | |
3327 | /* |
3328 | * find_compatible_pertrans - search for a previously initialized per-Trans |
3329 | * struct |
3330 | * |
3331 | * Searches the list of transnos for a per-Trans struct with the same |
3332 | * transition function and initial condition. (The inputs have already been |
3333 | * verified to match.) |
3334 | */ |
3335 | static int |
3336 | find_compatible_pertrans(AggState *aggstate, Aggref *newagg, bool shareable, |
3337 | Oid aggtransfn, Oid aggtranstype, |
3338 | Oid aggserialfn, Oid aggdeserialfn, |
3339 | Datum initValue, bool initValueIsNull, |
3340 | List *transnos) |
3341 | { |
3342 | ListCell *lc; |
3343 | |
3344 | /* If this aggregate can't share transition states, give up */ |
3345 | if (!shareable) |
3346 | return -1; |
3347 | |
3348 | foreach(lc, transnos) |
3349 | { |
3350 | int transno = lfirst_int(lc); |
3351 | AggStatePerTrans pertrans = &aggstate->pertrans[transno]; |
3352 | |
3353 | /* |
3354 | * if the transfns or transition state types are not the same then the |
3355 | * state can't be shared. |
3356 | */ |
3357 | if (aggtransfn != pertrans->transfn_oid || |
3358 | aggtranstype != pertrans->aggtranstype) |
3359 | continue; |
3360 | |
3361 | /* |
3362 | * The serialization and deserialization functions must match, if |
3363 | * present, as we're unable to share the trans state for aggregates |
3364 | * which will serialize or deserialize into different formats. |
3365 | * Remember that these will be InvalidOid if they're not required for |
3366 | * this agg node. |
3367 | */ |
3368 | if (aggserialfn != pertrans->serialfn_oid || |
3369 | aggdeserialfn != pertrans->deserialfn_oid) |
3370 | continue; |
3371 | |
3372 | /* |
3373 | * Check that the initial condition matches, too. |
3374 | */ |
3375 | if (initValueIsNull && pertrans->initValueIsNull) |
3376 | return transno; |
3377 | |
3378 | if (!initValueIsNull && !pertrans->initValueIsNull && |
3379 | datumIsEqual(initValue, pertrans->initValue, |
3380 | pertrans->transtypeByVal, pertrans->transtypeLen)) |
3381 | return transno; |
3382 | } |
3383 | return -1; |
3384 | } |
3385 | |
3386 | void |
3387 | ExecEndAgg(AggState *node) |
3388 | { |
3389 | PlanState *outerPlan; |
3390 | int transno; |
3391 | int numGroupingSets = Max(node->maxsets, 1); |
3392 | int setno; |
3393 | |
3394 | /* Make sure we have closed any open tuplesorts */ |
3395 | |
3396 | if (node->sort_in) |
3397 | tuplesort_end(node->sort_in); |
3398 | if (node->sort_out) |
3399 | tuplesort_end(node->sort_out); |
3400 | |
3401 | for (transno = 0; transno < node->numtrans; transno++) |
3402 | { |
3403 | AggStatePerTrans pertrans = &node->pertrans[transno]; |
3404 | |
3405 | for (setno = 0; setno < numGroupingSets; setno++) |
3406 | { |
3407 | if (pertrans->sortstates[setno]) |
3408 | tuplesort_end(pertrans->sortstates[setno]); |
3409 | } |
3410 | } |
3411 | |
3412 | /* And ensure any agg shutdown callbacks have been called */ |
3413 | for (setno = 0; setno < numGroupingSets; setno++) |
3414 | ReScanExprContext(node->aggcontexts[setno]); |
3415 | if (node->hashcontext) |
3416 | ReScanExprContext(node->hashcontext); |
3417 | |
3418 | /* |
3419 | * We don't actually free any ExprContexts here (see comment in |
3420 | * ExecFreeExprContext), just unlinking the output one from the plan node |
3421 | * suffices. |
3422 | */ |
3423 | ExecFreeExprContext(&node->ss.ps); |
3424 | |
3425 | /* clean up tuple table */ |
3426 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
3427 | |
3428 | outerPlan = outerPlanState(node); |
3429 | ExecEndNode(outerPlan); |
3430 | } |
3431 | |
3432 | void |
3433 | ExecReScanAgg(AggState *node) |
3434 | { |
3435 | ExprContext *econtext = node->ss.ps.ps_ExprContext; |
3436 | PlanState *outerPlan = outerPlanState(node); |
3437 | Agg *aggnode = (Agg *) node->ss.ps.plan; |
3438 | int transno; |
3439 | int numGroupingSets = Max(node->maxsets, 1); |
3440 | int setno; |
3441 | |
3442 | node->agg_done = false; |
3443 | |
3444 | if (node->aggstrategy == AGG_HASHED) |
3445 | { |
3446 | /* |
3447 | * In the hashed case, if we haven't yet built the hash table then we |
3448 | * can just return; nothing done yet, so nothing to undo. If subnode's |
3449 | * chgParam is not NULL then it will be re-scanned by ExecProcNode, |
3450 | * else no reason to re-scan it at all. |
3451 | */ |
3452 | if (!node->table_filled) |
3453 | return; |
3454 | |
3455 | /* |
3456 | * If we do have the hash table, and the subplan does not have any |
3457 | * parameter changes, and none of our own parameter changes affect |
3458 | * input expressions of the aggregated functions, then we can just |
3459 | * rescan the existing hash table; no need to build it again. |
3460 | */ |
3461 | if (outerPlan->chgParam == NULL && |
3462 | !bms_overlap(node->ss.ps.chgParam, aggnode->aggParams)) |
3463 | { |
3464 | ResetTupleHashIterator(node->perhash[0].hashtable, |
3465 | &node->perhash[0].hashiter); |
3466 | select_current_set(node, 0, true); |
3467 | return; |
3468 | } |
3469 | } |
3470 | |
3471 | /* Make sure we have closed any open tuplesorts */ |
3472 | for (transno = 0; transno < node->numtrans; transno++) |
3473 | { |
3474 | for (setno = 0; setno < numGroupingSets; setno++) |
3475 | { |
3476 | AggStatePerTrans pertrans = &node->pertrans[transno]; |
3477 | |
3478 | if (pertrans->sortstates[setno]) |
3479 | { |
3480 | tuplesort_end(pertrans->sortstates[setno]); |
3481 | pertrans->sortstates[setno] = NULL; |
3482 | } |
3483 | } |
3484 | } |
3485 | |
3486 | /* |
3487 | * We don't need to ReScanExprContext the output tuple context here; |
3488 | * ExecReScan already did it. But we do need to reset our per-grouping-set |
3489 | * contexts, which may have transvalues stored in them. (We use rescan |
3490 | * rather than just reset because transfns may have registered callbacks |
3491 | * that need to be run now.) For the AGG_HASHED case, see below. |
3492 | */ |
3493 | |
3494 | for (setno = 0; setno < numGroupingSets; setno++) |
3495 | { |
3496 | ReScanExprContext(node->aggcontexts[setno]); |
3497 | } |
3498 | |
3499 | /* Release first tuple of group, if we have made a copy */ |
3500 | if (node->grp_firstTuple != NULL) |
3501 | { |
3502 | heap_freetuple(node->grp_firstTuple); |
3503 | node->grp_firstTuple = NULL; |
3504 | } |
3505 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
3506 | |
3507 | /* Forget current agg values */ |
3508 | MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numaggs); |
3509 | MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numaggs); |
3510 | |
3511 | /* |
3512 | * With AGG_HASHED/MIXED, the hash table is allocated in a sub-context of |
3513 | * the hashcontext. This used to be an issue, but now, resetting a context |
3514 | * automatically deletes sub-contexts too. |
3515 | */ |
3516 | if (node->aggstrategy == AGG_HASHED || node->aggstrategy == AGG_MIXED) |
3517 | { |
3518 | ReScanExprContext(node->hashcontext); |
3519 | /* Rebuild an empty hash table */ |
3520 | build_hash_table(node); |
3521 | node->table_filled = false; |
3522 | /* iterator will be reset when the table is filled */ |
3523 | } |
3524 | |
3525 | if (node->aggstrategy != AGG_HASHED) |
3526 | { |
3527 | /* |
3528 | * Reset the per-group state (in particular, mark transvalues null) |
3529 | */ |
3530 | for (setno = 0; setno < numGroupingSets; setno++) |
3531 | { |
3532 | MemSet(node->pergroups[setno], 0, |
3533 | sizeof(AggStatePerGroupData) * node->numaggs); |
3534 | } |
3535 | |
3536 | /* reset to phase 1 */ |
3537 | initialize_phase(node, 1); |
3538 | |
3539 | node->input_done = false; |
3540 | node->projected_set = -1; |
3541 | } |
3542 | |
3543 | if (outerPlan->chgParam == NULL) |
3544 | ExecReScan(outerPlan); |
3545 | } |
3546 | |
3547 | |
3548 | /*********************************************************************** |
3549 | * API exposed to aggregate functions |
3550 | ***********************************************************************/ |
3551 | |
3552 | |
3553 | /* |
3554 | * AggCheckCallContext - test if a SQL function is being called as an aggregate |
3555 | * |
3556 | * The transition and/or final functions of an aggregate may want to verify |
3557 | * that they are being called as aggregates, rather than as plain SQL |
3558 | * functions. They should use this function to do so. The return value |
3559 | * is nonzero if being called as an aggregate, or zero if not. (Specific |
3560 | * nonzero values are AGG_CONTEXT_AGGREGATE or AGG_CONTEXT_WINDOW, but more |
3561 | * values could conceivably appear in future.) |
3562 | * |
3563 | * If aggcontext isn't NULL, the function also stores at *aggcontext the |
3564 | * identity of the memory context that aggregate transition values are being |
3565 | * stored in. Note that the same aggregate call site (flinfo) may be called |
3566 | * interleaved on different transition values in different contexts, so it's |
3567 | * not kosher to cache aggcontext under fn_extra. It is, however, kosher to |
3568 | * cache it in the transvalue itself (for internal-type transvalues). |
3569 | */ |
3570 | int |
3571 | AggCheckCallContext(FunctionCallInfo fcinfo, MemoryContext *aggcontext) |
3572 | { |
3573 | if (fcinfo->context && IsA(fcinfo->context, AggState)) |
3574 | { |
3575 | if (aggcontext) |
3576 | { |
3577 | AggState *aggstate = ((AggState *) fcinfo->context); |
3578 | ExprContext *cxt = aggstate->curaggcontext; |
3579 | |
3580 | *aggcontext = cxt->ecxt_per_tuple_memory; |
3581 | } |
3582 | return AGG_CONTEXT_AGGREGATE; |
3583 | } |
3584 | if (fcinfo->context && IsA(fcinfo->context, WindowAggState)) |
3585 | { |
3586 | if (aggcontext) |
3587 | *aggcontext = ((WindowAggState *) fcinfo->context)->curaggcontext; |
3588 | return AGG_CONTEXT_WINDOW; |
3589 | } |
3590 | |
3591 | /* this is just to prevent "uninitialized variable" warnings */ |
3592 | if (aggcontext) |
3593 | *aggcontext = NULL; |
3594 | return 0; |
3595 | } |
3596 | |
3597 | /* |
3598 | * AggGetAggref - allow an aggregate support function to get its Aggref |
3599 | * |
3600 | * If the function is being called as an aggregate support function, |
3601 | * return the Aggref node for the aggregate call. Otherwise, return NULL. |
3602 | * |
3603 | * Aggregates sharing the same inputs and transition functions can get |
3604 | * merged into a single transition calculation. If the transition function |
3605 | * calls AggGetAggref, it will get some one of the Aggrefs for which it is |
3606 | * executing. It must therefore not pay attention to the Aggref fields that |
3607 | * relate to the final function, as those are indeterminate. But if a final |
3608 | * function calls AggGetAggref, it will get a precise result. |
3609 | * |
3610 | * Note that if an aggregate is being used as a window function, this will |
3611 | * return NULL. We could provide a similar function to return the relevant |
3612 | * WindowFunc node in such cases, but it's not needed yet. |
3613 | */ |
3614 | Aggref * |
3615 | AggGetAggref(FunctionCallInfo fcinfo) |
3616 | { |
3617 | if (fcinfo->context && IsA(fcinfo->context, AggState)) |
3618 | { |
3619 | AggState *aggstate = (AggState *) fcinfo->context; |
3620 | AggStatePerAgg curperagg; |
3621 | AggStatePerTrans curpertrans; |
3622 | |
3623 | /* check curperagg (valid when in a final function) */ |
3624 | curperagg = aggstate->curperagg; |
3625 | |
3626 | if (curperagg) |
3627 | return curperagg->aggref; |
3628 | |
3629 | /* check curpertrans (valid when in a transition function) */ |
3630 | curpertrans = aggstate->curpertrans; |
3631 | |
3632 | if (curpertrans) |
3633 | return curpertrans->aggref; |
3634 | } |
3635 | return NULL; |
3636 | } |
3637 | |
3638 | /* |
3639 | * AggGetTempMemoryContext - fetch short-term memory context for aggregates |
3640 | * |
3641 | * This is useful in agg final functions; the context returned is one that |
3642 | * the final function can safely reset as desired. This isn't useful for |
3643 | * transition functions, since the context returned MAY (we don't promise) |
3644 | * be the same as the context those are called in. |
3645 | * |
3646 | * As above, this is currently not useful for aggs called as window functions. |
3647 | */ |
3648 | MemoryContext |
3649 | AggGetTempMemoryContext(FunctionCallInfo fcinfo) |
3650 | { |
3651 | if (fcinfo->context && IsA(fcinfo->context, AggState)) |
3652 | { |
3653 | AggState *aggstate = (AggState *) fcinfo->context; |
3654 | |
3655 | return aggstate->tmpcontext->ecxt_per_tuple_memory; |
3656 | } |
3657 | return NULL; |
3658 | } |
3659 | |
3660 | /* |
3661 | * AggStateIsShared - find out whether transition state is shared |
3662 | * |
3663 | * If the function is being called as an aggregate support function, |
3664 | * return true if the aggregate's transition state is shared across |
3665 | * multiple aggregates, false if it is not. |
3666 | * |
3667 | * Returns true if not called as an aggregate support function. |
3668 | * This is intended as a conservative answer, ie "no you'd better not |
3669 | * scribble on your input". In particular, will return true if the |
3670 | * aggregate is being used as a window function, which is a scenario |
3671 | * in which changing the transition state is a bad idea. We might |
3672 | * want to refine the behavior for the window case in future. |
3673 | */ |
3674 | bool |
3675 | AggStateIsShared(FunctionCallInfo fcinfo) |
3676 | { |
3677 | if (fcinfo->context && IsA(fcinfo->context, AggState)) |
3678 | { |
3679 | AggState *aggstate = (AggState *) fcinfo->context; |
3680 | AggStatePerAgg curperagg; |
3681 | AggStatePerTrans curpertrans; |
3682 | |
3683 | /* check curperagg (valid when in a final function) */ |
3684 | curperagg = aggstate->curperagg; |
3685 | |
3686 | if (curperagg) |
3687 | return aggstate->pertrans[curperagg->transno].aggshared; |
3688 | |
3689 | /* check curpertrans (valid when in a transition function) */ |
3690 | curpertrans = aggstate->curpertrans; |
3691 | |
3692 | if (curpertrans) |
3693 | return curpertrans->aggshared; |
3694 | } |
3695 | return true; |
3696 | } |
3697 | |
3698 | /* |
3699 | * AggRegisterCallback - register a cleanup callback for an aggregate |
3700 | * |
3701 | * This is useful for aggs to register shutdown callbacks, which will ensure |
3702 | * that non-memory resources are freed. The callback will occur just before |
3703 | * the associated aggcontext (as returned by AggCheckCallContext) is reset, |
3704 | * either between groups or as a result of rescanning the query. The callback |
3705 | * will NOT be called on error paths. The typical use-case is for freeing of |
3706 | * tuplestores or tuplesorts maintained in aggcontext, or pins held by slots |
3707 | * created by the agg functions. (The callback will not be called until after |
3708 | * the result of the finalfn is no longer needed, so it's safe for the finalfn |
3709 | * to return data that will be freed by the callback.) |
3710 | * |
3711 | * As above, this is currently not useful for aggs called as window functions. |
3712 | */ |
3713 | void |
3714 | AggRegisterCallback(FunctionCallInfo fcinfo, |
3715 | ExprContextCallbackFunction func, |
3716 | Datum arg) |
3717 | { |
3718 | if (fcinfo->context && IsA(fcinfo->context, AggState)) |
3719 | { |
3720 | AggState *aggstate = (AggState *) fcinfo->context; |
3721 | ExprContext *cxt = aggstate->curaggcontext; |
3722 | |
3723 | RegisterExprContextCallback(cxt, func, arg); |
3724 | |
3725 | return; |
3726 | } |
3727 | elog(ERROR, "aggregate function cannot register a callback in this context" ); |
3728 | } |
3729 | |
3730 | |
3731 | /* |
3732 | * aggregate_dummy - dummy execution routine for aggregate functions |
3733 | * |
3734 | * This function is listed as the implementation (prosrc field) of pg_proc |
3735 | * entries for aggregate functions. Its only purpose is to throw an error |
3736 | * if someone mistakenly executes such a function in the normal way. |
3737 | * |
3738 | * Perhaps someday we could assign real meaning to the prosrc field of |
3739 | * an aggregate? |
3740 | */ |
3741 | Datum |
3742 | aggregate_dummy(PG_FUNCTION_ARGS) |
3743 | { |
3744 | elog(ERROR, "aggregate function %u called as normal function" , |
3745 | fcinfo->flinfo->fn_oid); |
3746 | return (Datum) 0; /* keep compiler quiet */ |
3747 | } |
3748 | |