| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeGather.c |
| 4 | * Support routines for scanning a plan via multiple workers. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * A Gather executor launches parallel workers to run multiple copies of a |
| 10 | * plan. It can also run the plan itself, if the workers are not available |
| 11 | * or have not started up yet. It then merges all of the results it produces |
| 12 | * and the results from the workers into a single output stream. Therefore, |
| 13 | * it will normally be used with a plan where running multiple copies of the |
| 14 | * same plan does not produce duplicate output, such as parallel-aware |
| 15 | * SeqScan. |
| 16 | * |
| 17 | * Alternatively, a Gather node can be configured to use just one worker |
| 18 | * and the single-copy flag can be set. In this case, the Gather node will |
| 19 | * run the plan in one worker and will not execute the plan itself. In |
| 20 | * this case, it simply returns whatever tuples were returned by the worker. |
| 21 | * If a worker cannot be obtained, then it will run the plan itself and |
| 22 | * return the results. Therefore, a plan used with a single-copy Gather |
| 23 | * node need not be parallel-aware. |
| 24 | * |
| 25 | * IDENTIFICATION |
| 26 | * src/backend/executor/nodeGather.c |
| 27 | * |
| 28 | *------------------------------------------------------------------------- |
| 29 | */ |
| 30 | |
| 31 | #include "postgres.h" |
| 32 | |
| 33 | #include "access/relscan.h" |
| 34 | #include "access/xact.h" |
| 35 | #include "executor/execdebug.h" |
| 36 | #include "executor/execParallel.h" |
| 37 | #include "executor/nodeGather.h" |
| 38 | #include "executor/nodeSubplan.h" |
| 39 | #include "executor/tqueue.h" |
| 40 | #include "miscadmin.h" |
| 41 | #include "optimizer/optimizer.h" |
| 42 | #include "pgstat.h" |
| 43 | #include "utils/memutils.h" |
| 44 | #include "utils/rel.h" |
| 45 | |
| 46 | |
| 47 | static TupleTableSlot *ExecGather(PlanState *pstate); |
| 48 | static TupleTableSlot *gather_getnext(GatherState *gatherstate); |
| 49 | static HeapTuple gather_readnext(GatherState *gatherstate); |
| 50 | static void ExecShutdownGatherWorkers(GatherState *node); |
| 51 | |
| 52 | |
| 53 | /* ---------------------------------------------------------------- |
| 54 | * ExecInitGather |
| 55 | * ---------------------------------------------------------------- |
| 56 | */ |
| 57 | GatherState * |
| 58 | ExecInitGather(Gather *node, EState *estate, int eflags) |
| 59 | { |
| 60 | GatherState *gatherstate; |
| 61 | Plan *outerNode; |
| 62 | TupleDesc tupDesc; |
| 63 | |
| 64 | /* Gather node doesn't have innerPlan node. */ |
| 65 | Assert(innerPlan(node) == NULL); |
| 66 | |
| 67 | /* |
| 68 | * create state structure |
| 69 | */ |
| 70 | gatherstate = makeNode(GatherState); |
| 71 | gatherstate->ps.plan = (Plan *) node; |
| 72 | gatherstate->ps.state = estate; |
| 73 | gatherstate->ps.ExecProcNode = ExecGather; |
| 74 | |
| 75 | gatherstate->initialized = false; |
| 76 | gatherstate->need_to_scan_locally = |
| 77 | !node->single_copy && parallel_leader_participation; |
| 78 | gatherstate->tuples_needed = -1; |
| 79 | |
| 80 | /* |
| 81 | * Miscellaneous initialization |
| 82 | * |
| 83 | * create expression context for node |
| 84 | */ |
| 85 | ExecAssignExprContext(estate, &gatherstate->ps); |
| 86 | |
| 87 | /* |
| 88 | * now initialize outer plan |
| 89 | */ |
| 90 | outerNode = outerPlan(node); |
| 91 | outerPlanState(gatherstate) = ExecInitNode(outerNode, estate, eflags); |
| 92 | tupDesc = ExecGetResultType(outerPlanState(gatherstate)); |
| 93 | |
| 94 | /* |
| 95 | * Leader may access ExecProcNode result directly (if |
| 96 | * need_to_scan_locally), or from workers via tuple queue. So we can't |
| 97 | * trivially rely on the slot type being fixed for expressions evaluated |
| 98 | * within this node. |
| 99 | */ |
| 100 | gatherstate->ps.outeropsset = true; |
| 101 | gatherstate->ps.outeropsfixed = false; |
| 102 | |
| 103 | /* |
| 104 | * Initialize result type and projection. |
| 105 | */ |
| 106 | ExecInitResultTypeTL(&gatherstate->ps); |
| 107 | ExecConditionalAssignProjectionInfo(&gatherstate->ps, tupDesc, OUTER_VAR); |
| 108 | |
| 109 | /* |
| 110 | * Without projections result slot type is not trivially known, see |
| 111 | * comment above. |
| 112 | */ |
| 113 | if (gatherstate->ps.ps_ProjInfo == NULL) |
| 114 | { |
| 115 | gatherstate->ps.resultopsset = true; |
| 116 | gatherstate->ps.resultopsfixed = false; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * Initialize funnel slot to same tuple descriptor as outer plan. |
| 121 | */ |
| 122 | gatherstate->funnel_slot = ExecInitExtraTupleSlot(estate, tupDesc, |
| 123 | &TTSOpsHeapTuple); |
| 124 | |
| 125 | /* |
| 126 | * Gather doesn't support checking a qual (it's always more efficient to |
| 127 | * do it in the child node). |
| 128 | */ |
| 129 | Assert(!node->plan.qual); |
| 130 | |
| 131 | return gatherstate; |
| 132 | } |
| 133 | |
| 134 | /* ---------------------------------------------------------------- |
| 135 | * ExecGather(node) |
| 136 | * |
| 137 | * Scans the relation via multiple workers and returns |
| 138 | * the next qualifying tuple. |
| 139 | * ---------------------------------------------------------------- |
| 140 | */ |
| 141 | static TupleTableSlot * |
| 142 | ExecGather(PlanState *pstate) |
| 143 | { |
| 144 | GatherState *node = castNode(GatherState, pstate); |
| 145 | TupleTableSlot *slot; |
| 146 | ExprContext *econtext; |
| 147 | |
| 148 | CHECK_FOR_INTERRUPTS(); |
| 149 | |
| 150 | /* |
| 151 | * Initialize the parallel context and workers on first execution. We do |
| 152 | * this on first execution rather than during node initialization, as it |
| 153 | * needs to allocate a large dynamic segment, so it is better to do it |
| 154 | * only if it is really needed. |
| 155 | */ |
| 156 | if (!node->initialized) |
| 157 | { |
| 158 | EState *estate = node->ps.state; |
| 159 | Gather *gather = (Gather *) node->ps.plan; |
| 160 | |
| 161 | /* |
| 162 | * Sometimes we might have to run without parallelism; but if parallel |
| 163 | * mode is active then we can try to fire up some workers. |
| 164 | */ |
| 165 | if (gather->num_workers > 0 && estate->es_use_parallel_mode) |
| 166 | { |
| 167 | ParallelContext *pcxt; |
| 168 | |
| 169 | /* Initialize, or re-initialize, shared state needed by workers. */ |
| 170 | if (!node->pei) |
| 171 | node->pei = ExecInitParallelPlan(node->ps.lefttree, |
| 172 | estate, |
| 173 | gather->initParam, |
| 174 | gather->num_workers, |
| 175 | node->tuples_needed); |
| 176 | else |
| 177 | ExecParallelReinitialize(node->ps.lefttree, |
| 178 | node->pei, |
| 179 | gather->initParam); |
| 180 | |
| 181 | /* |
| 182 | * Register backend workers. We might not get as many as we |
| 183 | * requested, or indeed any at all. |
| 184 | */ |
| 185 | pcxt = node->pei->pcxt; |
| 186 | LaunchParallelWorkers(pcxt); |
| 187 | /* We save # workers launched for the benefit of EXPLAIN */ |
| 188 | node->nworkers_launched = pcxt->nworkers_launched; |
| 189 | |
| 190 | /* Set up tuple queue readers to read the results. */ |
| 191 | if (pcxt->nworkers_launched > 0) |
| 192 | { |
| 193 | ExecParallelCreateReaders(node->pei); |
| 194 | /* Make a working array showing the active readers */ |
| 195 | node->nreaders = pcxt->nworkers_launched; |
| 196 | node->reader = (TupleQueueReader **) |
| 197 | palloc(node->nreaders * sizeof(TupleQueueReader *)); |
| 198 | memcpy(node->reader, node->pei->reader, |
| 199 | node->nreaders * sizeof(TupleQueueReader *)); |
| 200 | } |
| 201 | else |
| 202 | { |
| 203 | /* No workers? Then never mind. */ |
| 204 | node->nreaders = 0; |
| 205 | node->reader = NULL; |
| 206 | } |
| 207 | node->nextreader = 0; |
| 208 | } |
| 209 | |
| 210 | /* Run plan locally if no workers or enabled and not single-copy. */ |
| 211 | node->need_to_scan_locally = (node->nreaders == 0) |
| 212 | || (!gather->single_copy && parallel_leader_participation); |
| 213 | node->initialized = true; |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * Reset per-tuple memory context to free any expression evaluation |
| 218 | * storage allocated in the previous tuple cycle. |
| 219 | */ |
| 220 | econtext = node->ps.ps_ExprContext; |
| 221 | ResetExprContext(econtext); |
| 222 | |
| 223 | /* |
| 224 | * Get next tuple, either from one of our workers, or by running the plan |
| 225 | * ourselves. |
| 226 | */ |
| 227 | slot = gather_getnext(node); |
| 228 | if (TupIsNull(slot)) |
| 229 | return NULL; |
| 230 | |
| 231 | /* If no projection is required, we're done. */ |
| 232 | if (node->ps.ps_ProjInfo == NULL) |
| 233 | return slot; |
| 234 | |
| 235 | /* |
| 236 | * Form the result tuple using ExecProject(), and return it. |
| 237 | */ |
| 238 | econtext->ecxt_outertuple = slot; |
| 239 | return ExecProject(node->ps.ps_ProjInfo); |
| 240 | } |
| 241 | |
| 242 | /* ---------------------------------------------------------------- |
| 243 | * ExecEndGather |
| 244 | * |
| 245 | * frees any storage allocated through C routines. |
| 246 | * ---------------------------------------------------------------- |
| 247 | */ |
| 248 | void |
| 249 | ExecEndGather(GatherState *node) |
| 250 | { |
| 251 | ExecEndNode(outerPlanState(node)); /* let children clean up first */ |
| 252 | ExecShutdownGather(node); |
| 253 | ExecFreeExprContext(&node->ps); |
| 254 | if (node->ps.ps_ResultTupleSlot) |
| 255 | ExecClearTuple(node->ps.ps_ResultTupleSlot); |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Read the next tuple. We might fetch a tuple from one of the tuple queues |
| 260 | * using gather_readnext, or if no tuple queue contains a tuple and the |
| 261 | * single_copy flag is not set, we might generate one locally instead. |
| 262 | */ |
| 263 | static TupleTableSlot * |
| 264 | gather_getnext(GatherState *gatherstate) |
| 265 | { |
| 266 | PlanState *outerPlan = outerPlanState(gatherstate); |
| 267 | TupleTableSlot *outerTupleSlot; |
| 268 | TupleTableSlot *fslot = gatherstate->funnel_slot; |
| 269 | HeapTuple tup; |
| 270 | |
| 271 | while (gatherstate->nreaders > 0 || gatherstate->need_to_scan_locally) |
| 272 | { |
| 273 | CHECK_FOR_INTERRUPTS(); |
| 274 | |
| 275 | if (gatherstate->nreaders > 0) |
| 276 | { |
| 277 | tup = gather_readnext(gatherstate); |
| 278 | |
| 279 | if (HeapTupleIsValid(tup)) |
| 280 | { |
| 281 | ExecStoreHeapTuple(tup, /* tuple to store */ |
| 282 | fslot, /* slot to store the tuple */ |
| 283 | true); /* pfree tuple when done with it */ |
| 284 | return fslot; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | if (gatherstate->need_to_scan_locally) |
| 289 | { |
| 290 | EState *estate = gatherstate->ps.state; |
| 291 | |
| 292 | /* Install our DSA area while executing the plan. */ |
| 293 | estate->es_query_dsa = |
| 294 | gatherstate->pei ? gatherstate->pei->area : NULL; |
| 295 | outerTupleSlot = ExecProcNode(outerPlan); |
| 296 | estate->es_query_dsa = NULL; |
| 297 | |
| 298 | if (!TupIsNull(outerTupleSlot)) |
| 299 | return outerTupleSlot; |
| 300 | |
| 301 | gatherstate->need_to_scan_locally = false; |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | return ExecClearTuple(fslot); |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * Attempt to read a tuple from one of our parallel workers. |
| 310 | */ |
| 311 | static HeapTuple |
| 312 | gather_readnext(GatherState *gatherstate) |
| 313 | { |
| 314 | int nvisited = 0; |
| 315 | |
| 316 | for (;;) |
| 317 | { |
| 318 | TupleQueueReader *reader; |
| 319 | HeapTuple tup; |
| 320 | bool readerdone; |
| 321 | |
| 322 | /* Check for async events, particularly messages from workers. */ |
| 323 | CHECK_FOR_INTERRUPTS(); |
| 324 | |
| 325 | /* |
| 326 | * Attempt to read a tuple, but don't block if none is available. |
| 327 | * |
| 328 | * Note that TupleQueueReaderNext will just return NULL for a worker |
| 329 | * which fails to initialize. We'll treat that worker as having |
| 330 | * produced no tuples; WaitForParallelWorkersToFinish will error out |
| 331 | * when we get there. |
| 332 | */ |
| 333 | Assert(gatherstate->nextreader < gatherstate->nreaders); |
| 334 | reader = gatherstate->reader[gatherstate->nextreader]; |
| 335 | tup = TupleQueueReaderNext(reader, true, &readerdone); |
| 336 | |
| 337 | /* |
| 338 | * If this reader is done, remove it from our working array of active |
| 339 | * readers. If all readers are done, we're outta here. |
| 340 | */ |
| 341 | if (readerdone) |
| 342 | { |
| 343 | Assert(!tup); |
| 344 | --gatherstate->nreaders; |
| 345 | if (gatherstate->nreaders == 0) |
| 346 | { |
| 347 | ExecShutdownGatherWorkers(gatherstate); |
| 348 | return NULL; |
| 349 | } |
| 350 | memmove(&gatherstate->reader[gatherstate->nextreader], |
| 351 | &gatherstate->reader[gatherstate->nextreader + 1], |
| 352 | sizeof(TupleQueueReader *) |
| 353 | * (gatherstate->nreaders - gatherstate->nextreader)); |
| 354 | if (gatherstate->nextreader >= gatherstate->nreaders) |
| 355 | gatherstate->nextreader = 0; |
| 356 | continue; |
| 357 | } |
| 358 | |
| 359 | /* If we got a tuple, return it. */ |
| 360 | if (tup) |
| 361 | return tup; |
| 362 | |
| 363 | /* |
| 364 | * Advance nextreader pointer in round-robin fashion. Note that we |
| 365 | * only reach this code if we weren't able to get a tuple from the |
| 366 | * current worker. We used to advance the nextreader pointer after |
| 367 | * every tuple, but it turns out to be much more efficient to keep |
| 368 | * reading from the same queue until that would require blocking. |
| 369 | */ |
| 370 | gatherstate->nextreader++; |
| 371 | if (gatherstate->nextreader >= gatherstate->nreaders) |
| 372 | gatherstate->nextreader = 0; |
| 373 | |
| 374 | /* Have we visited every (surviving) TupleQueueReader? */ |
| 375 | nvisited++; |
| 376 | if (nvisited >= gatherstate->nreaders) |
| 377 | { |
| 378 | /* |
| 379 | * If (still) running plan locally, return NULL so caller can |
| 380 | * generate another tuple from the local copy of the plan. |
| 381 | */ |
| 382 | if (gatherstate->need_to_scan_locally) |
| 383 | return NULL; |
| 384 | |
| 385 | /* Nothing to do except wait for developments. */ |
| 386 | (void) WaitLatch(MyLatch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0, |
| 387 | WAIT_EVENT_EXECUTE_GATHER); |
| 388 | ResetLatch(MyLatch); |
| 389 | nvisited = 0; |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | /* ---------------------------------------------------------------- |
| 395 | * ExecShutdownGatherWorkers |
| 396 | * |
| 397 | * Stop all the parallel workers. |
| 398 | * ---------------------------------------------------------------- |
| 399 | */ |
| 400 | static void |
| 401 | ExecShutdownGatherWorkers(GatherState *node) |
| 402 | { |
| 403 | if (node->pei != NULL) |
| 404 | ExecParallelFinish(node->pei); |
| 405 | |
| 406 | /* Flush local copy of reader array */ |
| 407 | if (node->reader) |
| 408 | pfree(node->reader); |
| 409 | node->reader = NULL; |
| 410 | } |
| 411 | |
| 412 | /* ---------------------------------------------------------------- |
| 413 | * ExecShutdownGather |
| 414 | * |
| 415 | * Destroy the setup for parallel workers including parallel context. |
| 416 | * ---------------------------------------------------------------- |
| 417 | */ |
| 418 | void |
| 419 | ExecShutdownGather(GatherState *node) |
| 420 | { |
| 421 | ExecShutdownGatherWorkers(node); |
| 422 | |
| 423 | /* Now destroy the parallel context. */ |
| 424 | if (node->pei != NULL) |
| 425 | { |
| 426 | ExecParallelCleanup(node->pei); |
| 427 | node->pei = NULL; |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | /* ---------------------------------------------------------------- |
| 432 | * Join Support |
| 433 | * ---------------------------------------------------------------- |
| 434 | */ |
| 435 | |
| 436 | /* ---------------------------------------------------------------- |
| 437 | * ExecReScanGather |
| 438 | * |
| 439 | * Prepare to re-scan the result of a Gather. |
| 440 | * ---------------------------------------------------------------- |
| 441 | */ |
| 442 | void |
| 443 | ExecReScanGather(GatherState *node) |
| 444 | { |
| 445 | Gather *gather = (Gather *) node->ps.plan; |
| 446 | PlanState *outerPlan = outerPlanState(node); |
| 447 | |
| 448 | /* Make sure any existing workers are gracefully shut down */ |
| 449 | ExecShutdownGatherWorkers(node); |
| 450 | |
| 451 | /* Mark node so that shared state will be rebuilt at next call */ |
| 452 | node->initialized = false; |
| 453 | |
| 454 | /* |
| 455 | * Set child node's chgParam to tell it that the next scan might deliver a |
| 456 | * different set of rows within the leader process. (The overall rowset |
| 457 | * shouldn't change, but the leader process's subset might; hence nodes |
| 458 | * between here and the parallel table scan node mustn't optimize on the |
| 459 | * assumption of an unchanging rowset.) |
| 460 | */ |
| 461 | if (gather->rescan_param >= 0) |
| 462 | outerPlan->chgParam = bms_add_member(outerPlan->chgParam, |
| 463 | gather->rescan_param); |
| 464 | |
| 465 | /* |
| 466 | * If chgParam of subnode is not null then plan will be re-scanned by |
| 467 | * first ExecProcNode. Note: because this does nothing if we have a |
| 468 | * rescan_param, it's currently guaranteed that parallel-aware child nodes |
| 469 | * will not see a ReScan call until after they get a ReInitializeDSM call. |
| 470 | * That ordering might not be something to rely on, though. A good rule |
| 471 | * of thumb is that ReInitializeDSM should reset only shared state, ReScan |
| 472 | * should reset only local state, and anything that depends on both of |
| 473 | * those steps being finished must wait until the first ExecProcNode call. |
| 474 | */ |
| 475 | if (outerPlan->chgParam == NULL) |
| 476 | ExecReScan(outerPlan); |
| 477 | } |
| 478 | |