| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeIndexonlyscan.c |
| 4 | * Routines to support index-only scans |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/executor/nodeIndexonlyscan.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | /* |
| 16 | * INTERFACE ROUTINES |
| 17 | * ExecIndexOnlyScan scans an index |
| 18 | * IndexOnlyNext retrieve next tuple |
| 19 | * ExecInitIndexOnlyScan creates and initializes state info. |
| 20 | * ExecReScanIndexOnlyScan rescans the indexed relation. |
| 21 | * ExecEndIndexOnlyScan releases all storage. |
| 22 | * ExecIndexOnlyMarkPos marks scan position. |
| 23 | * ExecIndexOnlyRestrPos restores scan position. |
| 24 | * ExecIndexOnlyScanEstimate estimates DSM space needed for |
| 25 | * parallel index-only scan |
| 26 | * ExecIndexOnlyScanInitializeDSM initialize DSM for parallel |
| 27 | * index-only scan |
| 28 | * ExecIndexOnlyScanReInitializeDSM reinitialize DSM for fresh scan |
| 29 | * ExecIndexOnlyScanInitializeWorker attach to DSM info in parallel worker |
| 30 | */ |
| 31 | #include "postgres.h" |
| 32 | |
| 33 | #include "access/genam.h" |
| 34 | #include "access/relscan.h" |
| 35 | #include "access/tableam.h" |
| 36 | #include "access/tupdesc.h" |
| 37 | #include "access/visibilitymap.h" |
| 38 | #include "executor/execdebug.h" |
| 39 | #include "executor/nodeIndexonlyscan.h" |
| 40 | #include "executor/nodeIndexscan.h" |
| 41 | #include "miscadmin.h" |
| 42 | #include "storage/bufmgr.h" |
| 43 | #include "storage/predicate.h" |
| 44 | #include "utils/memutils.h" |
| 45 | #include "utils/rel.h" |
| 46 | |
| 47 | |
| 48 | static TupleTableSlot *IndexOnlyNext(IndexOnlyScanState *node); |
| 49 | static void StoreIndexTuple(TupleTableSlot *slot, IndexTuple itup, |
| 50 | TupleDesc itupdesc); |
| 51 | |
| 52 | |
| 53 | /* ---------------------------------------------------------------- |
| 54 | * IndexOnlyNext |
| 55 | * |
| 56 | * Retrieve a tuple from the IndexOnlyScan node's index. |
| 57 | * ---------------------------------------------------------------- |
| 58 | */ |
| 59 | static TupleTableSlot * |
| 60 | IndexOnlyNext(IndexOnlyScanState *node) |
| 61 | { |
| 62 | EState *estate; |
| 63 | ExprContext *econtext; |
| 64 | ScanDirection direction; |
| 65 | IndexScanDesc scandesc; |
| 66 | TupleTableSlot *slot; |
| 67 | ItemPointer tid; |
| 68 | |
| 69 | /* |
| 70 | * extract necessary information from index scan node |
| 71 | */ |
| 72 | estate = node->ss.ps.state; |
| 73 | direction = estate->es_direction; |
| 74 | /* flip direction if this is an overall backward scan */ |
| 75 | if (ScanDirectionIsBackward(((IndexOnlyScan *) node->ss.ps.plan)->indexorderdir)) |
| 76 | { |
| 77 | if (ScanDirectionIsForward(direction)) |
| 78 | direction = BackwardScanDirection; |
| 79 | else if (ScanDirectionIsBackward(direction)) |
| 80 | direction = ForwardScanDirection; |
| 81 | } |
| 82 | scandesc = node->ioss_ScanDesc; |
| 83 | econtext = node->ss.ps.ps_ExprContext; |
| 84 | slot = node->ss.ss_ScanTupleSlot; |
| 85 | |
| 86 | if (scandesc == NULL) |
| 87 | { |
| 88 | /* |
| 89 | * We reach here if the index only scan is not parallel, or if we're |
| 90 | * serially executing an index only scan that was planned to be |
| 91 | * parallel. |
| 92 | */ |
| 93 | scandesc = index_beginscan(node->ss.ss_currentRelation, |
| 94 | node->ioss_RelationDesc, |
| 95 | estate->es_snapshot, |
| 96 | node->ioss_NumScanKeys, |
| 97 | node->ioss_NumOrderByKeys); |
| 98 | |
| 99 | node->ioss_ScanDesc = scandesc; |
| 100 | |
| 101 | |
| 102 | /* Set it up for index-only scan */ |
| 103 | node->ioss_ScanDesc->xs_want_itup = true; |
| 104 | node->ioss_VMBuffer = InvalidBuffer; |
| 105 | |
| 106 | /* |
| 107 | * If no run-time keys to calculate or they are ready, go ahead and |
| 108 | * pass the scankeys to the index AM. |
| 109 | */ |
| 110 | if (node->ioss_NumRuntimeKeys == 0 || node->ioss_RuntimeKeysReady) |
| 111 | index_rescan(scandesc, |
| 112 | node->ioss_ScanKeys, |
| 113 | node->ioss_NumScanKeys, |
| 114 | node->ioss_OrderByKeys, |
| 115 | node->ioss_NumOrderByKeys); |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * OK, now that we have what we need, fetch the next tuple. |
| 120 | */ |
| 121 | while ((tid = index_getnext_tid(scandesc, direction)) != NULL) |
| 122 | { |
| 123 | bool tuple_from_heap = false; |
| 124 | |
| 125 | CHECK_FOR_INTERRUPTS(); |
| 126 | |
| 127 | /* |
| 128 | * We can skip the heap fetch if the TID references a heap page on |
| 129 | * which all tuples are known visible to everybody. In any case, |
| 130 | * we'll use the index tuple not the heap tuple as the data source. |
| 131 | * |
| 132 | * Note on Memory Ordering Effects: visibilitymap_get_status does not |
| 133 | * lock the visibility map buffer, and therefore the result we read |
| 134 | * here could be slightly stale. However, it can't be stale enough to |
| 135 | * matter. |
| 136 | * |
| 137 | * We need to detect clearing a VM bit due to an insert right away, |
| 138 | * because the tuple is present in the index page but not visible. The |
| 139 | * reading of the TID by this scan (using a shared lock on the index |
| 140 | * buffer) is serialized with the insert of the TID into the index |
| 141 | * (using an exclusive lock on the index buffer). Because the VM bit |
| 142 | * is cleared before updating the index, and locking/unlocking of the |
| 143 | * index page acts as a full memory barrier, we are sure to see the |
| 144 | * cleared bit if we see a recently-inserted TID. |
| 145 | * |
| 146 | * Deletes do not update the index page (only VACUUM will clear out |
| 147 | * the TID), so the clearing of the VM bit by a delete is not |
| 148 | * serialized with this test below, and we may see a value that is |
| 149 | * significantly stale. However, we don't care about the delete right |
| 150 | * away, because the tuple is still visible until the deleting |
| 151 | * transaction commits or the statement ends (if it's our |
| 152 | * transaction). In either case, the lock on the VM buffer will have |
| 153 | * been released (acting as a write barrier) after clearing the bit. |
| 154 | * And for us to have a snapshot that includes the deleting |
| 155 | * transaction (making the tuple invisible), we must have acquired |
| 156 | * ProcArrayLock after that time, acting as a read barrier. |
| 157 | * |
| 158 | * It's worth going through this complexity to avoid needing to lock |
| 159 | * the VM buffer, which could cause significant contention. |
| 160 | */ |
| 161 | if (!VM_ALL_VISIBLE(scandesc->heapRelation, |
| 162 | ItemPointerGetBlockNumber(tid), |
| 163 | &node->ioss_VMBuffer)) |
| 164 | { |
| 165 | /* |
| 166 | * Rats, we have to visit the heap to check visibility. |
| 167 | */ |
| 168 | InstrCountTuples2(node, 1); |
| 169 | if (!index_fetch_heap(scandesc, node->ioss_TableSlot)) |
| 170 | continue; /* no visible tuple, try next index entry */ |
| 171 | |
| 172 | ExecClearTuple(node->ioss_TableSlot); |
| 173 | |
| 174 | /* |
| 175 | * Only MVCC snapshots are supported here, so there should be no |
| 176 | * need to keep following the HOT chain once a visible entry has |
| 177 | * been found. If we did want to allow that, we'd need to keep |
| 178 | * more state to remember not to call index_getnext_tid next time. |
| 179 | */ |
| 180 | if (scandesc->xs_heap_continue) |
| 181 | elog(ERROR, "non-MVCC snapshots are not supported in index-only scans" ); |
| 182 | |
| 183 | /* |
| 184 | * Note: at this point we are holding a pin on the heap page, as |
| 185 | * recorded in scandesc->xs_cbuf. We could release that pin now, |
| 186 | * but it's not clear whether it's a win to do so. The next index |
| 187 | * entry might require a visit to the same heap page. |
| 188 | */ |
| 189 | |
| 190 | tuple_from_heap = true; |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * Fill the scan tuple slot with data from the index. This might be |
| 195 | * provided in either HeapTuple or IndexTuple format. Conceivably an |
| 196 | * index AM might fill both fields, in which case we prefer the heap |
| 197 | * format, since it's probably a bit cheaper to fill a slot from. |
| 198 | */ |
| 199 | if (scandesc->xs_hitup) |
| 200 | { |
| 201 | /* |
| 202 | * We don't take the trouble to verify that the provided tuple has |
| 203 | * exactly the slot's format, but it seems worth doing a quick |
| 204 | * check on the number of fields. |
| 205 | */ |
| 206 | Assert(slot->tts_tupleDescriptor->natts == |
| 207 | scandesc->xs_hitupdesc->natts); |
| 208 | ExecForceStoreHeapTuple(scandesc->xs_hitup, slot, false); |
| 209 | } |
| 210 | else if (scandesc->xs_itup) |
| 211 | StoreIndexTuple(slot, scandesc->xs_itup, scandesc->xs_itupdesc); |
| 212 | else |
| 213 | elog(ERROR, "no data returned for index-only scan" ); |
| 214 | |
| 215 | /* |
| 216 | * If the index was lossy, we have to recheck the index quals. |
| 217 | * (Currently, this can never happen, but we should support the case |
| 218 | * for possible future use, eg with GiST indexes.) |
| 219 | */ |
| 220 | if (scandesc->xs_recheck) |
| 221 | { |
| 222 | econtext->ecxt_scantuple = slot; |
| 223 | if (!ExecQualAndReset(node->indexqual, econtext)) |
| 224 | { |
| 225 | /* Fails recheck, so drop it and loop back for another */ |
| 226 | InstrCountFiltered2(node, 1); |
| 227 | continue; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * We don't currently support rechecking ORDER BY distances. (In |
| 233 | * principle, if the index can support retrieval of the originally |
| 234 | * indexed value, it should be able to produce an exact distance |
| 235 | * calculation too. So it's not clear that adding code here for |
| 236 | * recheck/re-sort would be worth the trouble. But we should at least |
| 237 | * throw an error if someone tries it.) |
| 238 | */ |
| 239 | if (scandesc->numberOfOrderBys > 0 && scandesc->xs_recheckorderby) |
| 240 | ereport(ERROR, |
| 241 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 242 | errmsg("lossy distance functions are not supported in index-only scans" ))); |
| 243 | |
| 244 | /* |
| 245 | * If we didn't access the heap, then we'll need to take a predicate |
| 246 | * lock explicitly, as if we had. For now we do that at page level. |
| 247 | */ |
| 248 | if (!tuple_from_heap) |
| 249 | PredicateLockPage(scandesc->heapRelation, |
| 250 | ItemPointerGetBlockNumber(tid), |
| 251 | estate->es_snapshot); |
| 252 | |
| 253 | return slot; |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * if we get here it means the index scan failed so we are at the end of |
| 258 | * the scan.. |
| 259 | */ |
| 260 | return ExecClearTuple(slot); |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * StoreIndexTuple |
| 265 | * Fill the slot with data from the index tuple. |
| 266 | * |
| 267 | * At some point this might be generally-useful functionality, but |
| 268 | * right now we don't need it elsewhere. |
| 269 | */ |
| 270 | static void |
| 271 | StoreIndexTuple(TupleTableSlot *slot, IndexTuple itup, TupleDesc itupdesc) |
| 272 | { |
| 273 | /* |
| 274 | * Note: we must use the tupdesc supplied by the AM in index_deform_tuple, |
| 275 | * not the slot's tupdesc, in case the latter has different datatypes |
| 276 | * (this happens for btree name_ops in particular). They'd better have |
| 277 | * the same number of columns though, as well as being datatype-compatible |
| 278 | * which is something we can't so easily check. |
| 279 | */ |
| 280 | Assert(slot->tts_tupleDescriptor->natts == itupdesc->natts); |
| 281 | |
| 282 | ExecClearTuple(slot); |
| 283 | index_deform_tuple(itup, itupdesc, slot->tts_values, slot->tts_isnull); |
| 284 | ExecStoreVirtualTuple(slot); |
| 285 | } |
| 286 | |
| 287 | /* |
| 288 | * IndexOnlyRecheck -- access method routine to recheck a tuple in EvalPlanQual |
| 289 | * |
| 290 | * This can't really happen, since an index can't supply CTID which would |
| 291 | * be necessary data for any potential EvalPlanQual target relation. If it |
| 292 | * did happen, the EPQ code would pass us the wrong data, namely a heap |
| 293 | * tuple not an index tuple. So throw an error. |
| 294 | */ |
| 295 | static bool |
| 296 | IndexOnlyRecheck(IndexOnlyScanState *node, TupleTableSlot *slot) |
| 297 | { |
| 298 | elog(ERROR, "EvalPlanQual recheck is not supported in index-only scans" ); |
| 299 | return false; /* keep compiler quiet */ |
| 300 | } |
| 301 | |
| 302 | /* ---------------------------------------------------------------- |
| 303 | * ExecIndexOnlyScan(node) |
| 304 | * ---------------------------------------------------------------- |
| 305 | */ |
| 306 | static TupleTableSlot * |
| 307 | ExecIndexOnlyScan(PlanState *pstate) |
| 308 | { |
| 309 | IndexOnlyScanState *node = castNode(IndexOnlyScanState, pstate); |
| 310 | |
| 311 | /* |
| 312 | * If we have runtime keys and they've not already been set up, do it now. |
| 313 | */ |
| 314 | if (node->ioss_NumRuntimeKeys != 0 && !node->ioss_RuntimeKeysReady) |
| 315 | ExecReScan((PlanState *) node); |
| 316 | |
| 317 | return ExecScan(&node->ss, |
| 318 | (ExecScanAccessMtd) IndexOnlyNext, |
| 319 | (ExecScanRecheckMtd) IndexOnlyRecheck); |
| 320 | } |
| 321 | |
| 322 | /* ---------------------------------------------------------------- |
| 323 | * ExecReScanIndexOnlyScan(node) |
| 324 | * |
| 325 | * Recalculates the values of any scan keys whose value depends on |
| 326 | * information known at runtime, then rescans the indexed relation. |
| 327 | * |
| 328 | * Updating the scan key was formerly done separately in |
| 329 | * ExecUpdateIndexScanKeys. Integrating it into ReScan makes |
| 330 | * rescans of indices and relations/general streams more uniform. |
| 331 | * ---------------------------------------------------------------- |
| 332 | */ |
| 333 | void |
| 334 | ExecReScanIndexOnlyScan(IndexOnlyScanState *node) |
| 335 | { |
| 336 | /* |
| 337 | * If we are doing runtime key calculations (ie, any of the index key |
| 338 | * values weren't simple Consts), compute the new key values. But first, |
| 339 | * reset the context so we don't leak memory as each outer tuple is |
| 340 | * scanned. Note this assumes that we will recalculate *all* runtime keys |
| 341 | * on each call. |
| 342 | */ |
| 343 | if (node->ioss_NumRuntimeKeys != 0) |
| 344 | { |
| 345 | ExprContext *econtext = node->ioss_RuntimeContext; |
| 346 | |
| 347 | ResetExprContext(econtext); |
| 348 | ExecIndexEvalRuntimeKeys(econtext, |
| 349 | node->ioss_RuntimeKeys, |
| 350 | node->ioss_NumRuntimeKeys); |
| 351 | } |
| 352 | node->ioss_RuntimeKeysReady = true; |
| 353 | |
| 354 | /* reset index scan */ |
| 355 | if (node->ioss_ScanDesc) |
| 356 | index_rescan(node->ioss_ScanDesc, |
| 357 | node->ioss_ScanKeys, node->ioss_NumScanKeys, |
| 358 | node->ioss_OrderByKeys, node->ioss_NumOrderByKeys); |
| 359 | |
| 360 | ExecScanReScan(&node->ss); |
| 361 | } |
| 362 | |
| 363 | |
| 364 | /* ---------------------------------------------------------------- |
| 365 | * ExecEndIndexOnlyScan |
| 366 | * ---------------------------------------------------------------- |
| 367 | */ |
| 368 | void |
| 369 | ExecEndIndexOnlyScan(IndexOnlyScanState *node) |
| 370 | { |
| 371 | Relation indexRelationDesc; |
| 372 | IndexScanDesc indexScanDesc; |
| 373 | |
| 374 | /* |
| 375 | * extract information from the node |
| 376 | */ |
| 377 | indexRelationDesc = node->ioss_RelationDesc; |
| 378 | indexScanDesc = node->ioss_ScanDesc; |
| 379 | |
| 380 | /* Release VM buffer pin, if any. */ |
| 381 | if (node->ioss_VMBuffer != InvalidBuffer) |
| 382 | { |
| 383 | ReleaseBuffer(node->ioss_VMBuffer); |
| 384 | node->ioss_VMBuffer = InvalidBuffer; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Free the exprcontext(s) ... now dead code, see ExecFreeExprContext |
| 389 | */ |
| 390 | #ifdef NOT_USED |
| 391 | ExecFreeExprContext(&node->ss.ps); |
| 392 | if (node->ioss_RuntimeContext) |
| 393 | FreeExprContext(node->ioss_RuntimeContext, true); |
| 394 | #endif |
| 395 | |
| 396 | /* |
| 397 | * clear out tuple table slots |
| 398 | */ |
| 399 | if (node->ss.ps.ps_ResultTupleSlot) |
| 400 | ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); |
| 401 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
| 402 | |
| 403 | /* |
| 404 | * close the index relation (no-op if we didn't open it) |
| 405 | */ |
| 406 | if (indexScanDesc) |
| 407 | index_endscan(indexScanDesc); |
| 408 | if (indexRelationDesc) |
| 409 | index_close(indexRelationDesc, NoLock); |
| 410 | } |
| 411 | |
| 412 | /* ---------------------------------------------------------------- |
| 413 | * ExecIndexOnlyMarkPos |
| 414 | * |
| 415 | * Note: we assume that no caller attempts to set a mark before having read |
| 416 | * at least one tuple. Otherwise, ioss_ScanDesc might still be NULL. |
| 417 | * ---------------------------------------------------------------- |
| 418 | */ |
| 419 | void |
| 420 | ExecIndexOnlyMarkPos(IndexOnlyScanState *node) |
| 421 | { |
| 422 | EState *estate = node->ss.ps.state; |
| 423 | EPQState *epqstate = estate->es_epq_active; |
| 424 | |
| 425 | if (epqstate != NULL) |
| 426 | { |
| 427 | /* |
| 428 | * We are inside an EvalPlanQual recheck. If a test tuple exists for |
| 429 | * this relation, then we shouldn't access the index at all. We would |
| 430 | * instead need to save, and later restore, the state of the |
| 431 | * relsubs_done flag, so that re-fetching the test tuple is possible. |
| 432 | * However, given the assumption that no caller sets a mark at the |
| 433 | * start of the scan, we can only get here with relsubs_done[i] |
| 434 | * already set, and so no state need be saved. |
| 435 | */ |
| 436 | Index scanrelid = ((Scan *) node->ss.ps.plan)->scanrelid; |
| 437 | |
| 438 | Assert(scanrelid > 0); |
| 439 | if (epqstate->relsubs_slot[scanrelid - 1] != NULL || |
| 440 | epqstate->relsubs_rowmark[scanrelid - 1] != NULL) |
| 441 | { |
| 442 | /* Verify the claim above */ |
| 443 | if (!epqstate->relsubs_done[scanrelid - 1]) |
| 444 | elog(ERROR, "unexpected ExecIndexOnlyMarkPos call in EPQ recheck" ); |
| 445 | return; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | index_markpos(node->ioss_ScanDesc); |
| 450 | } |
| 451 | |
| 452 | /* ---------------------------------------------------------------- |
| 453 | * ExecIndexOnlyRestrPos |
| 454 | * ---------------------------------------------------------------- |
| 455 | */ |
| 456 | void |
| 457 | ExecIndexOnlyRestrPos(IndexOnlyScanState *node) |
| 458 | { |
| 459 | EState *estate = node->ss.ps.state; |
| 460 | EPQState *epqstate = estate->es_epq_active; |
| 461 | |
| 462 | if (estate->es_epq_active != NULL) |
| 463 | { |
| 464 | /* See comments in ExecIndexMarkPos */ |
| 465 | Index scanrelid = ((Scan *) node->ss.ps.plan)->scanrelid; |
| 466 | |
| 467 | Assert(scanrelid > 0); |
| 468 | if (epqstate->relsubs_slot[scanrelid - 1] != NULL || |
| 469 | epqstate->relsubs_rowmark[scanrelid - 1] != NULL) |
| 470 | { |
| 471 | /* Verify the claim above */ |
| 472 | if (!epqstate->relsubs_done[scanrelid - 1]) |
| 473 | elog(ERROR, "unexpected ExecIndexOnlyRestrPos call in EPQ recheck" ); |
| 474 | return; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | index_restrpos(node->ioss_ScanDesc); |
| 479 | } |
| 480 | |
| 481 | /* ---------------------------------------------------------------- |
| 482 | * ExecInitIndexOnlyScan |
| 483 | * |
| 484 | * Initializes the index scan's state information, creates |
| 485 | * scan keys, and opens the base and index relations. |
| 486 | * |
| 487 | * Note: index scans have 2 sets of state information because |
| 488 | * we have to keep track of the base relation and the |
| 489 | * index relation. |
| 490 | * ---------------------------------------------------------------- |
| 491 | */ |
| 492 | IndexOnlyScanState * |
| 493 | ExecInitIndexOnlyScan(IndexOnlyScan *node, EState *estate, int eflags) |
| 494 | { |
| 495 | IndexOnlyScanState *indexstate; |
| 496 | Relation currentRelation; |
| 497 | LOCKMODE lockmode; |
| 498 | TupleDesc tupDesc; |
| 499 | |
| 500 | /* |
| 501 | * create state structure |
| 502 | */ |
| 503 | indexstate = makeNode(IndexOnlyScanState); |
| 504 | indexstate->ss.ps.plan = (Plan *) node; |
| 505 | indexstate->ss.ps.state = estate; |
| 506 | indexstate->ss.ps.ExecProcNode = ExecIndexOnlyScan; |
| 507 | |
| 508 | /* |
| 509 | * Miscellaneous initialization |
| 510 | * |
| 511 | * create expression context for node |
| 512 | */ |
| 513 | ExecAssignExprContext(estate, &indexstate->ss.ps); |
| 514 | |
| 515 | /* |
| 516 | * open the scan relation |
| 517 | */ |
| 518 | currentRelation = ExecOpenScanRelation(estate, node->scan.scanrelid, eflags); |
| 519 | |
| 520 | indexstate->ss.ss_currentRelation = currentRelation; |
| 521 | indexstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */ |
| 522 | |
| 523 | /* |
| 524 | * Build the scan tuple type using the indextlist generated by the |
| 525 | * planner. We use this, rather than the index's physical tuple |
| 526 | * descriptor, because the latter contains storage column types not the |
| 527 | * types of the original datums. (It's the AM's responsibility to return |
| 528 | * suitable data anyway.) |
| 529 | */ |
| 530 | tupDesc = ExecTypeFromTL(node->indextlist); |
| 531 | ExecInitScanTupleSlot(estate, &indexstate->ss, tupDesc, |
| 532 | &TTSOpsVirtual); |
| 533 | |
| 534 | /* |
| 535 | * We need another slot, in a format that's suitable for the table AM, for |
| 536 | * when we need to fetch a tuple from the table for rechecking visibility. |
| 537 | */ |
| 538 | indexstate->ioss_TableSlot = |
| 539 | ExecAllocTableSlot(&estate->es_tupleTable, |
| 540 | RelationGetDescr(currentRelation), |
| 541 | table_slot_callbacks(currentRelation)); |
| 542 | |
| 543 | /* |
| 544 | * Initialize result type and projection info. The node's targetlist will |
| 545 | * contain Vars with varno = INDEX_VAR, referencing the scan tuple. |
| 546 | */ |
| 547 | ExecInitResultTypeTL(&indexstate->ss.ps); |
| 548 | ExecAssignScanProjectionInfoWithVarno(&indexstate->ss, INDEX_VAR); |
| 549 | |
| 550 | /* |
| 551 | * initialize child expressions |
| 552 | * |
| 553 | * Note: we don't initialize all of the indexorderby expression, only the |
| 554 | * sub-parts corresponding to runtime keys (see below). |
| 555 | */ |
| 556 | indexstate->ss.ps.qual = |
| 557 | ExecInitQual(node->scan.plan.qual, (PlanState *) indexstate); |
| 558 | indexstate->indexqual = |
| 559 | ExecInitQual(node->indexqual, (PlanState *) indexstate); |
| 560 | |
| 561 | /* |
| 562 | * If we are just doing EXPLAIN (ie, aren't going to run the plan), stop |
| 563 | * here. This allows an index-advisor plugin to EXPLAIN a plan containing |
| 564 | * references to nonexistent indexes. |
| 565 | */ |
| 566 | if (eflags & EXEC_FLAG_EXPLAIN_ONLY) |
| 567 | return indexstate; |
| 568 | |
| 569 | /* Open the index relation. */ |
| 570 | lockmode = exec_rt_fetch(node->scan.scanrelid, estate)->rellockmode; |
| 571 | indexstate->ioss_RelationDesc = index_open(node->indexid, lockmode); |
| 572 | |
| 573 | /* |
| 574 | * Initialize index-specific scan state |
| 575 | */ |
| 576 | indexstate->ioss_RuntimeKeysReady = false; |
| 577 | indexstate->ioss_RuntimeKeys = NULL; |
| 578 | indexstate->ioss_NumRuntimeKeys = 0; |
| 579 | |
| 580 | /* |
| 581 | * build the index scan keys from the index qualification |
| 582 | */ |
| 583 | ExecIndexBuildScanKeys((PlanState *) indexstate, |
| 584 | indexstate->ioss_RelationDesc, |
| 585 | node->indexqual, |
| 586 | false, |
| 587 | &indexstate->ioss_ScanKeys, |
| 588 | &indexstate->ioss_NumScanKeys, |
| 589 | &indexstate->ioss_RuntimeKeys, |
| 590 | &indexstate->ioss_NumRuntimeKeys, |
| 591 | NULL, /* no ArrayKeys */ |
| 592 | NULL); |
| 593 | |
| 594 | /* |
| 595 | * any ORDER BY exprs have to be turned into scankeys in the same way |
| 596 | */ |
| 597 | ExecIndexBuildScanKeys((PlanState *) indexstate, |
| 598 | indexstate->ioss_RelationDesc, |
| 599 | node->indexorderby, |
| 600 | true, |
| 601 | &indexstate->ioss_OrderByKeys, |
| 602 | &indexstate->ioss_NumOrderByKeys, |
| 603 | &indexstate->ioss_RuntimeKeys, |
| 604 | &indexstate->ioss_NumRuntimeKeys, |
| 605 | NULL, /* no ArrayKeys */ |
| 606 | NULL); |
| 607 | |
| 608 | /* |
| 609 | * If we have runtime keys, we need an ExprContext to evaluate them. The |
| 610 | * node's standard context won't do because we want to reset that context |
| 611 | * for every tuple. So, build another context just like the other one... |
| 612 | * -tgl 7/11/00 |
| 613 | */ |
| 614 | if (indexstate->ioss_NumRuntimeKeys != 0) |
| 615 | { |
| 616 | ExprContext *stdecontext = indexstate->ss.ps.ps_ExprContext; |
| 617 | |
| 618 | ExecAssignExprContext(estate, &indexstate->ss.ps); |
| 619 | indexstate->ioss_RuntimeContext = indexstate->ss.ps.ps_ExprContext; |
| 620 | indexstate->ss.ps.ps_ExprContext = stdecontext; |
| 621 | } |
| 622 | else |
| 623 | { |
| 624 | indexstate->ioss_RuntimeContext = NULL; |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * all done. |
| 629 | */ |
| 630 | return indexstate; |
| 631 | } |
| 632 | |
| 633 | /* ---------------------------------------------------------------- |
| 634 | * Parallel Index-only Scan Support |
| 635 | * ---------------------------------------------------------------- |
| 636 | */ |
| 637 | |
| 638 | /* ---------------------------------------------------------------- |
| 639 | * ExecIndexOnlyScanEstimate |
| 640 | * |
| 641 | * Compute the amount of space we'll need in the parallel |
| 642 | * query DSM, and inform pcxt->estimator about our needs. |
| 643 | * ---------------------------------------------------------------- |
| 644 | */ |
| 645 | void |
| 646 | ExecIndexOnlyScanEstimate(IndexOnlyScanState *node, |
| 647 | ParallelContext *pcxt) |
| 648 | { |
| 649 | EState *estate = node->ss.ps.state; |
| 650 | |
| 651 | node->ioss_PscanLen = index_parallelscan_estimate(node->ioss_RelationDesc, |
| 652 | estate->es_snapshot); |
| 653 | shm_toc_estimate_chunk(&pcxt->estimator, node->ioss_PscanLen); |
| 654 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 655 | } |
| 656 | |
| 657 | /* ---------------------------------------------------------------- |
| 658 | * ExecIndexOnlyScanInitializeDSM |
| 659 | * |
| 660 | * Set up a parallel index-only scan descriptor. |
| 661 | * ---------------------------------------------------------------- |
| 662 | */ |
| 663 | void |
| 664 | ExecIndexOnlyScanInitializeDSM(IndexOnlyScanState *node, |
| 665 | ParallelContext *pcxt) |
| 666 | { |
| 667 | EState *estate = node->ss.ps.state; |
| 668 | ParallelIndexScanDesc piscan; |
| 669 | |
| 670 | piscan = shm_toc_allocate(pcxt->toc, node->ioss_PscanLen); |
| 671 | index_parallelscan_initialize(node->ss.ss_currentRelation, |
| 672 | node->ioss_RelationDesc, |
| 673 | estate->es_snapshot, |
| 674 | piscan); |
| 675 | shm_toc_insert(pcxt->toc, node->ss.ps.plan->plan_node_id, piscan); |
| 676 | node->ioss_ScanDesc = |
| 677 | index_beginscan_parallel(node->ss.ss_currentRelation, |
| 678 | node->ioss_RelationDesc, |
| 679 | node->ioss_NumScanKeys, |
| 680 | node->ioss_NumOrderByKeys, |
| 681 | piscan); |
| 682 | node->ioss_ScanDesc->xs_want_itup = true; |
| 683 | node->ioss_VMBuffer = InvalidBuffer; |
| 684 | |
| 685 | /* |
| 686 | * If no run-time keys to calculate or they are ready, go ahead and pass |
| 687 | * the scankeys to the index AM. |
| 688 | */ |
| 689 | if (node->ioss_NumRuntimeKeys == 0 || node->ioss_RuntimeKeysReady) |
| 690 | index_rescan(node->ioss_ScanDesc, |
| 691 | node->ioss_ScanKeys, node->ioss_NumScanKeys, |
| 692 | node->ioss_OrderByKeys, node->ioss_NumOrderByKeys); |
| 693 | } |
| 694 | |
| 695 | /* ---------------------------------------------------------------- |
| 696 | * ExecIndexOnlyScanReInitializeDSM |
| 697 | * |
| 698 | * Reset shared state before beginning a fresh scan. |
| 699 | * ---------------------------------------------------------------- |
| 700 | */ |
| 701 | void |
| 702 | ExecIndexOnlyScanReInitializeDSM(IndexOnlyScanState *node, |
| 703 | ParallelContext *pcxt) |
| 704 | { |
| 705 | index_parallelrescan(node->ioss_ScanDesc); |
| 706 | } |
| 707 | |
| 708 | /* ---------------------------------------------------------------- |
| 709 | * ExecIndexOnlyScanInitializeWorker |
| 710 | * |
| 711 | * Copy relevant information from TOC into planstate. |
| 712 | * ---------------------------------------------------------------- |
| 713 | */ |
| 714 | void |
| 715 | ExecIndexOnlyScanInitializeWorker(IndexOnlyScanState *node, |
| 716 | ParallelWorkerContext *pwcxt) |
| 717 | { |
| 718 | ParallelIndexScanDesc piscan; |
| 719 | |
| 720 | piscan = shm_toc_lookup(pwcxt->toc, node->ss.ps.plan->plan_node_id, false); |
| 721 | node->ioss_ScanDesc = |
| 722 | index_beginscan_parallel(node->ss.ss_currentRelation, |
| 723 | node->ioss_RelationDesc, |
| 724 | node->ioss_NumScanKeys, |
| 725 | node->ioss_NumOrderByKeys, |
| 726 | piscan); |
| 727 | node->ioss_ScanDesc->xs_want_itup = true; |
| 728 | |
| 729 | /* |
| 730 | * If no run-time keys to calculate or they are ready, go ahead and pass |
| 731 | * the scankeys to the index AM. |
| 732 | */ |
| 733 | if (node->ioss_NumRuntimeKeys == 0 || node->ioss_RuntimeKeysReady) |
| 734 | index_rescan(node->ioss_ScanDesc, |
| 735 | node->ioss_ScanKeys, node->ioss_NumScanKeys, |
| 736 | node->ioss_OrderByKeys, node->ioss_NumOrderByKeys); |
| 737 | } |
| 738 | |