1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * nodeIndexonlyscan.c |
4 | * Routines to support index-only scans |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/executor/nodeIndexonlyscan.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | /* |
16 | * INTERFACE ROUTINES |
17 | * ExecIndexOnlyScan scans an index |
18 | * IndexOnlyNext retrieve next tuple |
19 | * ExecInitIndexOnlyScan creates and initializes state info. |
20 | * ExecReScanIndexOnlyScan rescans the indexed relation. |
21 | * ExecEndIndexOnlyScan releases all storage. |
22 | * ExecIndexOnlyMarkPos marks scan position. |
23 | * ExecIndexOnlyRestrPos restores scan position. |
24 | * ExecIndexOnlyScanEstimate estimates DSM space needed for |
25 | * parallel index-only scan |
26 | * ExecIndexOnlyScanInitializeDSM initialize DSM for parallel |
27 | * index-only scan |
28 | * ExecIndexOnlyScanReInitializeDSM reinitialize DSM for fresh scan |
29 | * ExecIndexOnlyScanInitializeWorker attach to DSM info in parallel worker |
30 | */ |
31 | #include "postgres.h" |
32 | |
33 | #include "access/genam.h" |
34 | #include "access/relscan.h" |
35 | #include "access/tableam.h" |
36 | #include "access/tupdesc.h" |
37 | #include "access/visibilitymap.h" |
38 | #include "executor/execdebug.h" |
39 | #include "executor/nodeIndexonlyscan.h" |
40 | #include "executor/nodeIndexscan.h" |
41 | #include "miscadmin.h" |
42 | #include "storage/bufmgr.h" |
43 | #include "storage/predicate.h" |
44 | #include "utils/memutils.h" |
45 | #include "utils/rel.h" |
46 | |
47 | |
48 | static TupleTableSlot *IndexOnlyNext(IndexOnlyScanState *node); |
49 | static void StoreIndexTuple(TupleTableSlot *slot, IndexTuple itup, |
50 | TupleDesc itupdesc); |
51 | |
52 | |
53 | /* ---------------------------------------------------------------- |
54 | * IndexOnlyNext |
55 | * |
56 | * Retrieve a tuple from the IndexOnlyScan node's index. |
57 | * ---------------------------------------------------------------- |
58 | */ |
59 | static TupleTableSlot * |
60 | IndexOnlyNext(IndexOnlyScanState *node) |
61 | { |
62 | EState *estate; |
63 | ExprContext *econtext; |
64 | ScanDirection direction; |
65 | IndexScanDesc scandesc; |
66 | TupleTableSlot *slot; |
67 | ItemPointer tid; |
68 | |
69 | /* |
70 | * extract necessary information from index scan node |
71 | */ |
72 | estate = node->ss.ps.state; |
73 | direction = estate->es_direction; |
74 | /* flip direction if this is an overall backward scan */ |
75 | if (ScanDirectionIsBackward(((IndexOnlyScan *) node->ss.ps.plan)->indexorderdir)) |
76 | { |
77 | if (ScanDirectionIsForward(direction)) |
78 | direction = BackwardScanDirection; |
79 | else if (ScanDirectionIsBackward(direction)) |
80 | direction = ForwardScanDirection; |
81 | } |
82 | scandesc = node->ioss_ScanDesc; |
83 | econtext = node->ss.ps.ps_ExprContext; |
84 | slot = node->ss.ss_ScanTupleSlot; |
85 | |
86 | if (scandesc == NULL) |
87 | { |
88 | /* |
89 | * We reach here if the index only scan is not parallel, or if we're |
90 | * serially executing an index only scan that was planned to be |
91 | * parallel. |
92 | */ |
93 | scandesc = index_beginscan(node->ss.ss_currentRelation, |
94 | node->ioss_RelationDesc, |
95 | estate->es_snapshot, |
96 | node->ioss_NumScanKeys, |
97 | node->ioss_NumOrderByKeys); |
98 | |
99 | node->ioss_ScanDesc = scandesc; |
100 | |
101 | |
102 | /* Set it up for index-only scan */ |
103 | node->ioss_ScanDesc->xs_want_itup = true; |
104 | node->ioss_VMBuffer = InvalidBuffer; |
105 | |
106 | /* |
107 | * If no run-time keys to calculate or they are ready, go ahead and |
108 | * pass the scankeys to the index AM. |
109 | */ |
110 | if (node->ioss_NumRuntimeKeys == 0 || node->ioss_RuntimeKeysReady) |
111 | index_rescan(scandesc, |
112 | node->ioss_ScanKeys, |
113 | node->ioss_NumScanKeys, |
114 | node->ioss_OrderByKeys, |
115 | node->ioss_NumOrderByKeys); |
116 | } |
117 | |
118 | /* |
119 | * OK, now that we have what we need, fetch the next tuple. |
120 | */ |
121 | while ((tid = index_getnext_tid(scandesc, direction)) != NULL) |
122 | { |
123 | bool tuple_from_heap = false; |
124 | |
125 | CHECK_FOR_INTERRUPTS(); |
126 | |
127 | /* |
128 | * We can skip the heap fetch if the TID references a heap page on |
129 | * which all tuples are known visible to everybody. In any case, |
130 | * we'll use the index tuple not the heap tuple as the data source. |
131 | * |
132 | * Note on Memory Ordering Effects: visibilitymap_get_status does not |
133 | * lock the visibility map buffer, and therefore the result we read |
134 | * here could be slightly stale. However, it can't be stale enough to |
135 | * matter. |
136 | * |
137 | * We need to detect clearing a VM bit due to an insert right away, |
138 | * because the tuple is present in the index page but not visible. The |
139 | * reading of the TID by this scan (using a shared lock on the index |
140 | * buffer) is serialized with the insert of the TID into the index |
141 | * (using an exclusive lock on the index buffer). Because the VM bit |
142 | * is cleared before updating the index, and locking/unlocking of the |
143 | * index page acts as a full memory barrier, we are sure to see the |
144 | * cleared bit if we see a recently-inserted TID. |
145 | * |
146 | * Deletes do not update the index page (only VACUUM will clear out |
147 | * the TID), so the clearing of the VM bit by a delete is not |
148 | * serialized with this test below, and we may see a value that is |
149 | * significantly stale. However, we don't care about the delete right |
150 | * away, because the tuple is still visible until the deleting |
151 | * transaction commits or the statement ends (if it's our |
152 | * transaction). In either case, the lock on the VM buffer will have |
153 | * been released (acting as a write barrier) after clearing the bit. |
154 | * And for us to have a snapshot that includes the deleting |
155 | * transaction (making the tuple invisible), we must have acquired |
156 | * ProcArrayLock after that time, acting as a read barrier. |
157 | * |
158 | * It's worth going through this complexity to avoid needing to lock |
159 | * the VM buffer, which could cause significant contention. |
160 | */ |
161 | if (!VM_ALL_VISIBLE(scandesc->heapRelation, |
162 | ItemPointerGetBlockNumber(tid), |
163 | &node->ioss_VMBuffer)) |
164 | { |
165 | /* |
166 | * Rats, we have to visit the heap to check visibility. |
167 | */ |
168 | InstrCountTuples2(node, 1); |
169 | if (!index_fetch_heap(scandesc, node->ioss_TableSlot)) |
170 | continue; /* no visible tuple, try next index entry */ |
171 | |
172 | ExecClearTuple(node->ioss_TableSlot); |
173 | |
174 | /* |
175 | * Only MVCC snapshots are supported here, so there should be no |
176 | * need to keep following the HOT chain once a visible entry has |
177 | * been found. If we did want to allow that, we'd need to keep |
178 | * more state to remember not to call index_getnext_tid next time. |
179 | */ |
180 | if (scandesc->xs_heap_continue) |
181 | elog(ERROR, "non-MVCC snapshots are not supported in index-only scans" ); |
182 | |
183 | /* |
184 | * Note: at this point we are holding a pin on the heap page, as |
185 | * recorded in scandesc->xs_cbuf. We could release that pin now, |
186 | * but it's not clear whether it's a win to do so. The next index |
187 | * entry might require a visit to the same heap page. |
188 | */ |
189 | |
190 | tuple_from_heap = true; |
191 | } |
192 | |
193 | /* |
194 | * Fill the scan tuple slot with data from the index. This might be |
195 | * provided in either HeapTuple or IndexTuple format. Conceivably an |
196 | * index AM might fill both fields, in which case we prefer the heap |
197 | * format, since it's probably a bit cheaper to fill a slot from. |
198 | */ |
199 | if (scandesc->xs_hitup) |
200 | { |
201 | /* |
202 | * We don't take the trouble to verify that the provided tuple has |
203 | * exactly the slot's format, but it seems worth doing a quick |
204 | * check on the number of fields. |
205 | */ |
206 | Assert(slot->tts_tupleDescriptor->natts == |
207 | scandesc->xs_hitupdesc->natts); |
208 | ExecForceStoreHeapTuple(scandesc->xs_hitup, slot, false); |
209 | } |
210 | else if (scandesc->xs_itup) |
211 | StoreIndexTuple(slot, scandesc->xs_itup, scandesc->xs_itupdesc); |
212 | else |
213 | elog(ERROR, "no data returned for index-only scan" ); |
214 | |
215 | /* |
216 | * If the index was lossy, we have to recheck the index quals. |
217 | * (Currently, this can never happen, but we should support the case |
218 | * for possible future use, eg with GiST indexes.) |
219 | */ |
220 | if (scandesc->xs_recheck) |
221 | { |
222 | econtext->ecxt_scantuple = slot; |
223 | if (!ExecQualAndReset(node->indexqual, econtext)) |
224 | { |
225 | /* Fails recheck, so drop it and loop back for another */ |
226 | InstrCountFiltered2(node, 1); |
227 | continue; |
228 | } |
229 | } |
230 | |
231 | /* |
232 | * We don't currently support rechecking ORDER BY distances. (In |
233 | * principle, if the index can support retrieval of the originally |
234 | * indexed value, it should be able to produce an exact distance |
235 | * calculation too. So it's not clear that adding code here for |
236 | * recheck/re-sort would be worth the trouble. But we should at least |
237 | * throw an error if someone tries it.) |
238 | */ |
239 | if (scandesc->numberOfOrderBys > 0 && scandesc->xs_recheckorderby) |
240 | ereport(ERROR, |
241 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
242 | errmsg("lossy distance functions are not supported in index-only scans" ))); |
243 | |
244 | /* |
245 | * If we didn't access the heap, then we'll need to take a predicate |
246 | * lock explicitly, as if we had. For now we do that at page level. |
247 | */ |
248 | if (!tuple_from_heap) |
249 | PredicateLockPage(scandesc->heapRelation, |
250 | ItemPointerGetBlockNumber(tid), |
251 | estate->es_snapshot); |
252 | |
253 | return slot; |
254 | } |
255 | |
256 | /* |
257 | * if we get here it means the index scan failed so we are at the end of |
258 | * the scan.. |
259 | */ |
260 | return ExecClearTuple(slot); |
261 | } |
262 | |
263 | /* |
264 | * StoreIndexTuple |
265 | * Fill the slot with data from the index tuple. |
266 | * |
267 | * At some point this might be generally-useful functionality, but |
268 | * right now we don't need it elsewhere. |
269 | */ |
270 | static void |
271 | StoreIndexTuple(TupleTableSlot *slot, IndexTuple itup, TupleDesc itupdesc) |
272 | { |
273 | /* |
274 | * Note: we must use the tupdesc supplied by the AM in index_deform_tuple, |
275 | * not the slot's tupdesc, in case the latter has different datatypes |
276 | * (this happens for btree name_ops in particular). They'd better have |
277 | * the same number of columns though, as well as being datatype-compatible |
278 | * which is something we can't so easily check. |
279 | */ |
280 | Assert(slot->tts_tupleDescriptor->natts == itupdesc->natts); |
281 | |
282 | ExecClearTuple(slot); |
283 | index_deform_tuple(itup, itupdesc, slot->tts_values, slot->tts_isnull); |
284 | ExecStoreVirtualTuple(slot); |
285 | } |
286 | |
287 | /* |
288 | * IndexOnlyRecheck -- access method routine to recheck a tuple in EvalPlanQual |
289 | * |
290 | * This can't really happen, since an index can't supply CTID which would |
291 | * be necessary data for any potential EvalPlanQual target relation. If it |
292 | * did happen, the EPQ code would pass us the wrong data, namely a heap |
293 | * tuple not an index tuple. So throw an error. |
294 | */ |
295 | static bool |
296 | IndexOnlyRecheck(IndexOnlyScanState *node, TupleTableSlot *slot) |
297 | { |
298 | elog(ERROR, "EvalPlanQual recheck is not supported in index-only scans" ); |
299 | return false; /* keep compiler quiet */ |
300 | } |
301 | |
302 | /* ---------------------------------------------------------------- |
303 | * ExecIndexOnlyScan(node) |
304 | * ---------------------------------------------------------------- |
305 | */ |
306 | static TupleTableSlot * |
307 | ExecIndexOnlyScan(PlanState *pstate) |
308 | { |
309 | IndexOnlyScanState *node = castNode(IndexOnlyScanState, pstate); |
310 | |
311 | /* |
312 | * If we have runtime keys and they've not already been set up, do it now. |
313 | */ |
314 | if (node->ioss_NumRuntimeKeys != 0 && !node->ioss_RuntimeKeysReady) |
315 | ExecReScan((PlanState *) node); |
316 | |
317 | return ExecScan(&node->ss, |
318 | (ExecScanAccessMtd) IndexOnlyNext, |
319 | (ExecScanRecheckMtd) IndexOnlyRecheck); |
320 | } |
321 | |
322 | /* ---------------------------------------------------------------- |
323 | * ExecReScanIndexOnlyScan(node) |
324 | * |
325 | * Recalculates the values of any scan keys whose value depends on |
326 | * information known at runtime, then rescans the indexed relation. |
327 | * |
328 | * Updating the scan key was formerly done separately in |
329 | * ExecUpdateIndexScanKeys. Integrating it into ReScan makes |
330 | * rescans of indices and relations/general streams more uniform. |
331 | * ---------------------------------------------------------------- |
332 | */ |
333 | void |
334 | ExecReScanIndexOnlyScan(IndexOnlyScanState *node) |
335 | { |
336 | /* |
337 | * If we are doing runtime key calculations (ie, any of the index key |
338 | * values weren't simple Consts), compute the new key values. But first, |
339 | * reset the context so we don't leak memory as each outer tuple is |
340 | * scanned. Note this assumes that we will recalculate *all* runtime keys |
341 | * on each call. |
342 | */ |
343 | if (node->ioss_NumRuntimeKeys != 0) |
344 | { |
345 | ExprContext *econtext = node->ioss_RuntimeContext; |
346 | |
347 | ResetExprContext(econtext); |
348 | ExecIndexEvalRuntimeKeys(econtext, |
349 | node->ioss_RuntimeKeys, |
350 | node->ioss_NumRuntimeKeys); |
351 | } |
352 | node->ioss_RuntimeKeysReady = true; |
353 | |
354 | /* reset index scan */ |
355 | if (node->ioss_ScanDesc) |
356 | index_rescan(node->ioss_ScanDesc, |
357 | node->ioss_ScanKeys, node->ioss_NumScanKeys, |
358 | node->ioss_OrderByKeys, node->ioss_NumOrderByKeys); |
359 | |
360 | ExecScanReScan(&node->ss); |
361 | } |
362 | |
363 | |
364 | /* ---------------------------------------------------------------- |
365 | * ExecEndIndexOnlyScan |
366 | * ---------------------------------------------------------------- |
367 | */ |
368 | void |
369 | ExecEndIndexOnlyScan(IndexOnlyScanState *node) |
370 | { |
371 | Relation indexRelationDesc; |
372 | IndexScanDesc indexScanDesc; |
373 | |
374 | /* |
375 | * extract information from the node |
376 | */ |
377 | indexRelationDesc = node->ioss_RelationDesc; |
378 | indexScanDesc = node->ioss_ScanDesc; |
379 | |
380 | /* Release VM buffer pin, if any. */ |
381 | if (node->ioss_VMBuffer != InvalidBuffer) |
382 | { |
383 | ReleaseBuffer(node->ioss_VMBuffer); |
384 | node->ioss_VMBuffer = InvalidBuffer; |
385 | } |
386 | |
387 | /* |
388 | * Free the exprcontext(s) ... now dead code, see ExecFreeExprContext |
389 | */ |
390 | #ifdef NOT_USED |
391 | ExecFreeExprContext(&node->ss.ps); |
392 | if (node->ioss_RuntimeContext) |
393 | FreeExprContext(node->ioss_RuntimeContext, true); |
394 | #endif |
395 | |
396 | /* |
397 | * clear out tuple table slots |
398 | */ |
399 | if (node->ss.ps.ps_ResultTupleSlot) |
400 | ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); |
401 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
402 | |
403 | /* |
404 | * close the index relation (no-op if we didn't open it) |
405 | */ |
406 | if (indexScanDesc) |
407 | index_endscan(indexScanDesc); |
408 | if (indexRelationDesc) |
409 | index_close(indexRelationDesc, NoLock); |
410 | } |
411 | |
412 | /* ---------------------------------------------------------------- |
413 | * ExecIndexOnlyMarkPos |
414 | * |
415 | * Note: we assume that no caller attempts to set a mark before having read |
416 | * at least one tuple. Otherwise, ioss_ScanDesc might still be NULL. |
417 | * ---------------------------------------------------------------- |
418 | */ |
419 | void |
420 | ExecIndexOnlyMarkPos(IndexOnlyScanState *node) |
421 | { |
422 | EState *estate = node->ss.ps.state; |
423 | EPQState *epqstate = estate->es_epq_active; |
424 | |
425 | if (epqstate != NULL) |
426 | { |
427 | /* |
428 | * We are inside an EvalPlanQual recheck. If a test tuple exists for |
429 | * this relation, then we shouldn't access the index at all. We would |
430 | * instead need to save, and later restore, the state of the |
431 | * relsubs_done flag, so that re-fetching the test tuple is possible. |
432 | * However, given the assumption that no caller sets a mark at the |
433 | * start of the scan, we can only get here with relsubs_done[i] |
434 | * already set, and so no state need be saved. |
435 | */ |
436 | Index scanrelid = ((Scan *) node->ss.ps.plan)->scanrelid; |
437 | |
438 | Assert(scanrelid > 0); |
439 | if (epqstate->relsubs_slot[scanrelid - 1] != NULL || |
440 | epqstate->relsubs_rowmark[scanrelid - 1] != NULL) |
441 | { |
442 | /* Verify the claim above */ |
443 | if (!epqstate->relsubs_done[scanrelid - 1]) |
444 | elog(ERROR, "unexpected ExecIndexOnlyMarkPos call in EPQ recheck" ); |
445 | return; |
446 | } |
447 | } |
448 | |
449 | index_markpos(node->ioss_ScanDesc); |
450 | } |
451 | |
452 | /* ---------------------------------------------------------------- |
453 | * ExecIndexOnlyRestrPos |
454 | * ---------------------------------------------------------------- |
455 | */ |
456 | void |
457 | ExecIndexOnlyRestrPos(IndexOnlyScanState *node) |
458 | { |
459 | EState *estate = node->ss.ps.state; |
460 | EPQState *epqstate = estate->es_epq_active; |
461 | |
462 | if (estate->es_epq_active != NULL) |
463 | { |
464 | /* See comments in ExecIndexMarkPos */ |
465 | Index scanrelid = ((Scan *) node->ss.ps.plan)->scanrelid; |
466 | |
467 | Assert(scanrelid > 0); |
468 | if (epqstate->relsubs_slot[scanrelid - 1] != NULL || |
469 | epqstate->relsubs_rowmark[scanrelid - 1] != NULL) |
470 | { |
471 | /* Verify the claim above */ |
472 | if (!epqstate->relsubs_done[scanrelid - 1]) |
473 | elog(ERROR, "unexpected ExecIndexOnlyRestrPos call in EPQ recheck" ); |
474 | return; |
475 | } |
476 | } |
477 | |
478 | index_restrpos(node->ioss_ScanDesc); |
479 | } |
480 | |
481 | /* ---------------------------------------------------------------- |
482 | * ExecInitIndexOnlyScan |
483 | * |
484 | * Initializes the index scan's state information, creates |
485 | * scan keys, and opens the base and index relations. |
486 | * |
487 | * Note: index scans have 2 sets of state information because |
488 | * we have to keep track of the base relation and the |
489 | * index relation. |
490 | * ---------------------------------------------------------------- |
491 | */ |
492 | IndexOnlyScanState * |
493 | ExecInitIndexOnlyScan(IndexOnlyScan *node, EState *estate, int eflags) |
494 | { |
495 | IndexOnlyScanState *indexstate; |
496 | Relation currentRelation; |
497 | LOCKMODE lockmode; |
498 | TupleDesc tupDesc; |
499 | |
500 | /* |
501 | * create state structure |
502 | */ |
503 | indexstate = makeNode(IndexOnlyScanState); |
504 | indexstate->ss.ps.plan = (Plan *) node; |
505 | indexstate->ss.ps.state = estate; |
506 | indexstate->ss.ps.ExecProcNode = ExecIndexOnlyScan; |
507 | |
508 | /* |
509 | * Miscellaneous initialization |
510 | * |
511 | * create expression context for node |
512 | */ |
513 | ExecAssignExprContext(estate, &indexstate->ss.ps); |
514 | |
515 | /* |
516 | * open the scan relation |
517 | */ |
518 | currentRelation = ExecOpenScanRelation(estate, node->scan.scanrelid, eflags); |
519 | |
520 | indexstate->ss.ss_currentRelation = currentRelation; |
521 | indexstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */ |
522 | |
523 | /* |
524 | * Build the scan tuple type using the indextlist generated by the |
525 | * planner. We use this, rather than the index's physical tuple |
526 | * descriptor, because the latter contains storage column types not the |
527 | * types of the original datums. (It's the AM's responsibility to return |
528 | * suitable data anyway.) |
529 | */ |
530 | tupDesc = ExecTypeFromTL(node->indextlist); |
531 | ExecInitScanTupleSlot(estate, &indexstate->ss, tupDesc, |
532 | &TTSOpsVirtual); |
533 | |
534 | /* |
535 | * We need another slot, in a format that's suitable for the table AM, for |
536 | * when we need to fetch a tuple from the table for rechecking visibility. |
537 | */ |
538 | indexstate->ioss_TableSlot = |
539 | ExecAllocTableSlot(&estate->es_tupleTable, |
540 | RelationGetDescr(currentRelation), |
541 | table_slot_callbacks(currentRelation)); |
542 | |
543 | /* |
544 | * Initialize result type and projection info. The node's targetlist will |
545 | * contain Vars with varno = INDEX_VAR, referencing the scan tuple. |
546 | */ |
547 | ExecInitResultTypeTL(&indexstate->ss.ps); |
548 | ExecAssignScanProjectionInfoWithVarno(&indexstate->ss, INDEX_VAR); |
549 | |
550 | /* |
551 | * initialize child expressions |
552 | * |
553 | * Note: we don't initialize all of the indexorderby expression, only the |
554 | * sub-parts corresponding to runtime keys (see below). |
555 | */ |
556 | indexstate->ss.ps.qual = |
557 | ExecInitQual(node->scan.plan.qual, (PlanState *) indexstate); |
558 | indexstate->indexqual = |
559 | ExecInitQual(node->indexqual, (PlanState *) indexstate); |
560 | |
561 | /* |
562 | * If we are just doing EXPLAIN (ie, aren't going to run the plan), stop |
563 | * here. This allows an index-advisor plugin to EXPLAIN a plan containing |
564 | * references to nonexistent indexes. |
565 | */ |
566 | if (eflags & EXEC_FLAG_EXPLAIN_ONLY) |
567 | return indexstate; |
568 | |
569 | /* Open the index relation. */ |
570 | lockmode = exec_rt_fetch(node->scan.scanrelid, estate)->rellockmode; |
571 | indexstate->ioss_RelationDesc = index_open(node->indexid, lockmode); |
572 | |
573 | /* |
574 | * Initialize index-specific scan state |
575 | */ |
576 | indexstate->ioss_RuntimeKeysReady = false; |
577 | indexstate->ioss_RuntimeKeys = NULL; |
578 | indexstate->ioss_NumRuntimeKeys = 0; |
579 | |
580 | /* |
581 | * build the index scan keys from the index qualification |
582 | */ |
583 | ExecIndexBuildScanKeys((PlanState *) indexstate, |
584 | indexstate->ioss_RelationDesc, |
585 | node->indexqual, |
586 | false, |
587 | &indexstate->ioss_ScanKeys, |
588 | &indexstate->ioss_NumScanKeys, |
589 | &indexstate->ioss_RuntimeKeys, |
590 | &indexstate->ioss_NumRuntimeKeys, |
591 | NULL, /* no ArrayKeys */ |
592 | NULL); |
593 | |
594 | /* |
595 | * any ORDER BY exprs have to be turned into scankeys in the same way |
596 | */ |
597 | ExecIndexBuildScanKeys((PlanState *) indexstate, |
598 | indexstate->ioss_RelationDesc, |
599 | node->indexorderby, |
600 | true, |
601 | &indexstate->ioss_OrderByKeys, |
602 | &indexstate->ioss_NumOrderByKeys, |
603 | &indexstate->ioss_RuntimeKeys, |
604 | &indexstate->ioss_NumRuntimeKeys, |
605 | NULL, /* no ArrayKeys */ |
606 | NULL); |
607 | |
608 | /* |
609 | * If we have runtime keys, we need an ExprContext to evaluate them. The |
610 | * node's standard context won't do because we want to reset that context |
611 | * for every tuple. So, build another context just like the other one... |
612 | * -tgl 7/11/00 |
613 | */ |
614 | if (indexstate->ioss_NumRuntimeKeys != 0) |
615 | { |
616 | ExprContext *stdecontext = indexstate->ss.ps.ps_ExprContext; |
617 | |
618 | ExecAssignExprContext(estate, &indexstate->ss.ps); |
619 | indexstate->ioss_RuntimeContext = indexstate->ss.ps.ps_ExprContext; |
620 | indexstate->ss.ps.ps_ExprContext = stdecontext; |
621 | } |
622 | else |
623 | { |
624 | indexstate->ioss_RuntimeContext = NULL; |
625 | } |
626 | |
627 | /* |
628 | * all done. |
629 | */ |
630 | return indexstate; |
631 | } |
632 | |
633 | /* ---------------------------------------------------------------- |
634 | * Parallel Index-only Scan Support |
635 | * ---------------------------------------------------------------- |
636 | */ |
637 | |
638 | /* ---------------------------------------------------------------- |
639 | * ExecIndexOnlyScanEstimate |
640 | * |
641 | * Compute the amount of space we'll need in the parallel |
642 | * query DSM, and inform pcxt->estimator about our needs. |
643 | * ---------------------------------------------------------------- |
644 | */ |
645 | void |
646 | ExecIndexOnlyScanEstimate(IndexOnlyScanState *node, |
647 | ParallelContext *pcxt) |
648 | { |
649 | EState *estate = node->ss.ps.state; |
650 | |
651 | node->ioss_PscanLen = index_parallelscan_estimate(node->ioss_RelationDesc, |
652 | estate->es_snapshot); |
653 | shm_toc_estimate_chunk(&pcxt->estimator, node->ioss_PscanLen); |
654 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
655 | } |
656 | |
657 | /* ---------------------------------------------------------------- |
658 | * ExecIndexOnlyScanInitializeDSM |
659 | * |
660 | * Set up a parallel index-only scan descriptor. |
661 | * ---------------------------------------------------------------- |
662 | */ |
663 | void |
664 | ExecIndexOnlyScanInitializeDSM(IndexOnlyScanState *node, |
665 | ParallelContext *pcxt) |
666 | { |
667 | EState *estate = node->ss.ps.state; |
668 | ParallelIndexScanDesc piscan; |
669 | |
670 | piscan = shm_toc_allocate(pcxt->toc, node->ioss_PscanLen); |
671 | index_parallelscan_initialize(node->ss.ss_currentRelation, |
672 | node->ioss_RelationDesc, |
673 | estate->es_snapshot, |
674 | piscan); |
675 | shm_toc_insert(pcxt->toc, node->ss.ps.plan->plan_node_id, piscan); |
676 | node->ioss_ScanDesc = |
677 | index_beginscan_parallel(node->ss.ss_currentRelation, |
678 | node->ioss_RelationDesc, |
679 | node->ioss_NumScanKeys, |
680 | node->ioss_NumOrderByKeys, |
681 | piscan); |
682 | node->ioss_ScanDesc->xs_want_itup = true; |
683 | node->ioss_VMBuffer = InvalidBuffer; |
684 | |
685 | /* |
686 | * If no run-time keys to calculate or they are ready, go ahead and pass |
687 | * the scankeys to the index AM. |
688 | */ |
689 | if (node->ioss_NumRuntimeKeys == 0 || node->ioss_RuntimeKeysReady) |
690 | index_rescan(node->ioss_ScanDesc, |
691 | node->ioss_ScanKeys, node->ioss_NumScanKeys, |
692 | node->ioss_OrderByKeys, node->ioss_NumOrderByKeys); |
693 | } |
694 | |
695 | /* ---------------------------------------------------------------- |
696 | * ExecIndexOnlyScanReInitializeDSM |
697 | * |
698 | * Reset shared state before beginning a fresh scan. |
699 | * ---------------------------------------------------------------- |
700 | */ |
701 | void |
702 | ExecIndexOnlyScanReInitializeDSM(IndexOnlyScanState *node, |
703 | ParallelContext *pcxt) |
704 | { |
705 | index_parallelrescan(node->ioss_ScanDesc); |
706 | } |
707 | |
708 | /* ---------------------------------------------------------------- |
709 | * ExecIndexOnlyScanInitializeWorker |
710 | * |
711 | * Copy relevant information from TOC into planstate. |
712 | * ---------------------------------------------------------------- |
713 | */ |
714 | void |
715 | ExecIndexOnlyScanInitializeWorker(IndexOnlyScanState *node, |
716 | ParallelWorkerContext *pwcxt) |
717 | { |
718 | ParallelIndexScanDesc piscan; |
719 | |
720 | piscan = shm_toc_lookup(pwcxt->toc, node->ss.ps.plan->plan_node_id, false); |
721 | node->ioss_ScanDesc = |
722 | index_beginscan_parallel(node->ss.ss_currentRelation, |
723 | node->ioss_RelationDesc, |
724 | node->ioss_NumScanKeys, |
725 | node->ioss_NumOrderByKeys, |
726 | piscan); |
727 | node->ioss_ScanDesc->xs_want_itup = true; |
728 | |
729 | /* |
730 | * If no run-time keys to calculate or they are ready, go ahead and pass |
731 | * the scankeys to the index AM. |
732 | */ |
733 | if (node->ioss_NumRuntimeKeys == 0 || node->ioss_RuntimeKeysReady) |
734 | index_rescan(node->ioss_ScanDesc, |
735 | node->ioss_ScanKeys, node->ioss_NumScanKeys, |
736 | node->ioss_OrderByKeys, node->ioss_NumOrderByKeys); |
737 | } |
738 | |