| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeSetOp.c |
| 4 | * Routines to handle INTERSECT and EXCEPT selection |
| 5 | * |
| 6 | * The input of a SetOp node consists of tuples from two relations, |
| 7 | * which have been combined into one dataset, with a junk attribute added |
| 8 | * that shows which relation each tuple came from. In SETOP_SORTED mode, |
| 9 | * the input has furthermore been sorted according to all the grouping |
| 10 | * columns (ie, all the non-junk attributes). The SetOp node scans each |
| 11 | * group of identical tuples to determine how many came from each input |
| 12 | * relation. Then it is a simple matter to emit the output demanded by the |
| 13 | * SQL spec for INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL. |
| 14 | * |
| 15 | * In SETOP_HASHED mode, the input is delivered in no particular order, |
| 16 | * except that we know all the tuples from one input relation will come before |
| 17 | * all the tuples of the other. The planner guarantees that the first input |
| 18 | * relation is the left-hand one for EXCEPT, and tries to make the smaller |
| 19 | * input relation come first for INTERSECT. We build a hash table in memory |
| 20 | * with one entry for each group of identical tuples, and count the number of |
| 21 | * tuples in the group from each relation. After seeing all the input, we |
| 22 | * scan the hashtable and generate the correct output using those counts. |
| 23 | * We can avoid making hashtable entries for any tuples appearing only in the |
| 24 | * second input relation, since they cannot result in any output. |
| 25 | * |
| 26 | * This node type is not used for UNION or UNION ALL, since those can be |
| 27 | * implemented more cheaply (there's no need for the junk attribute to |
| 28 | * identify the source relation). |
| 29 | * |
| 30 | * Note that SetOp does no qual checking nor projection. The delivered |
| 31 | * output tuples are just copies of the first-to-arrive tuple in each |
| 32 | * input group. |
| 33 | * |
| 34 | * |
| 35 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 36 | * Portions Copyright (c) 1994, Regents of the University of California |
| 37 | * |
| 38 | * |
| 39 | * IDENTIFICATION |
| 40 | * src/backend/executor/nodeSetOp.c |
| 41 | * |
| 42 | *------------------------------------------------------------------------- |
| 43 | */ |
| 44 | |
| 45 | #include "postgres.h" |
| 46 | |
| 47 | #include "access/htup_details.h" |
| 48 | #include "executor/executor.h" |
| 49 | #include "executor/nodeSetOp.h" |
| 50 | #include "miscadmin.h" |
| 51 | #include "utils/memutils.h" |
| 52 | |
| 53 | |
| 54 | /* |
| 55 | * SetOpStatePerGroupData - per-group working state |
| 56 | * |
| 57 | * These values are working state that is initialized at the start of |
| 58 | * an input tuple group and updated for each input tuple. |
| 59 | * |
| 60 | * In SETOP_SORTED mode, we need only one of these structs, and it's kept in |
| 61 | * the plan state node. In SETOP_HASHED mode, the hash table contains one |
| 62 | * of these for each tuple group. |
| 63 | */ |
| 64 | typedef struct SetOpStatePerGroupData |
| 65 | { |
| 66 | long numLeft; /* number of left-input dups in group */ |
| 67 | long numRight; /* number of right-input dups in group */ |
| 68 | } SetOpStatePerGroupData; |
| 69 | |
| 70 | |
| 71 | static TupleTableSlot *setop_retrieve_direct(SetOpState *setopstate); |
| 72 | static void setop_fill_hash_table(SetOpState *setopstate); |
| 73 | static TupleTableSlot *setop_retrieve_hash_table(SetOpState *setopstate); |
| 74 | |
| 75 | |
| 76 | /* |
| 77 | * Initialize state for a new group of input values. |
| 78 | */ |
| 79 | static inline void |
| 80 | initialize_counts(SetOpStatePerGroup pergroup) |
| 81 | { |
| 82 | pergroup->numLeft = pergroup->numRight = 0; |
| 83 | } |
| 84 | |
| 85 | /* |
| 86 | * Advance the appropriate counter for one input tuple. |
| 87 | */ |
| 88 | static inline void |
| 89 | advance_counts(SetOpStatePerGroup pergroup, int flag) |
| 90 | { |
| 91 | if (flag) |
| 92 | pergroup->numRight++; |
| 93 | else |
| 94 | pergroup->numLeft++; |
| 95 | } |
| 96 | |
| 97 | /* |
| 98 | * Fetch the "flag" column from an input tuple. |
| 99 | * This is an integer column with value 0 for left side, 1 for right side. |
| 100 | */ |
| 101 | static int |
| 102 | fetch_tuple_flag(SetOpState *setopstate, TupleTableSlot *inputslot) |
| 103 | { |
| 104 | SetOp *node = (SetOp *) setopstate->ps.plan; |
| 105 | int flag; |
| 106 | bool isNull; |
| 107 | |
| 108 | flag = DatumGetInt32(slot_getattr(inputslot, |
| 109 | node->flagColIdx, |
| 110 | &isNull)); |
| 111 | Assert(!isNull); |
| 112 | Assert(flag == 0 || flag == 1); |
| 113 | return flag; |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * Initialize the hash table to empty. |
| 118 | */ |
| 119 | static void |
| 120 | build_hash_table(SetOpState *setopstate) |
| 121 | { |
| 122 | SetOp *node = (SetOp *) setopstate->ps.plan; |
| 123 | ExprContext *econtext = setopstate->ps.ps_ExprContext; |
| 124 | TupleDesc desc = ExecGetResultType(outerPlanState(setopstate)); |
| 125 | |
| 126 | Assert(node->strategy == SETOP_HASHED); |
| 127 | Assert(node->numGroups > 0); |
| 128 | |
| 129 | setopstate->hashtable = BuildTupleHashTableExt(&setopstate->ps, |
| 130 | desc, |
| 131 | node->numCols, |
| 132 | node->dupColIdx, |
| 133 | setopstate->eqfuncoids, |
| 134 | setopstate->hashfunctions, |
| 135 | node->dupCollations, |
| 136 | node->numGroups, |
| 137 | 0, |
| 138 | setopstate->ps.state->es_query_cxt, |
| 139 | setopstate->tableContext, |
| 140 | econtext->ecxt_per_tuple_memory, |
| 141 | false); |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * We've completed processing a tuple group. Decide how many copies (if any) |
| 146 | * of its representative row to emit, and store the count into numOutput. |
| 147 | * This logic is straight from the SQL92 specification. |
| 148 | */ |
| 149 | static void |
| 150 | set_output_count(SetOpState *setopstate, SetOpStatePerGroup pergroup) |
| 151 | { |
| 152 | SetOp *plannode = (SetOp *) setopstate->ps.plan; |
| 153 | |
| 154 | switch (plannode->cmd) |
| 155 | { |
| 156 | case SETOPCMD_INTERSECT: |
| 157 | if (pergroup->numLeft > 0 && pergroup->numRight > 0) |
| 158 | setopstate->numOutput = 1; |
| 159 | else |
| 160 | setopstate->numOutput = 0; |
| 161 | break; |
| 162 | case SETOPCMD_INTERSECT_ALL: |
| 163 | setopstate->numOutput = |
| 164 | (pergroup->numLeft < pergroup->numRight) ? |
| 165 | pergroup->numLeft : pergroup->numRight; |
| 166 | break; |
| 167 | case SETOPCMD_EXCEPT: |
| 168 | if (pergroup->numLeft > 0 && pergroup->numRight == 0) |
| 169 | setopstate->numOutput = 1; |
| 170 | else |
| 171 | setopstate->numOutput = 0; |
| 172 | break; |
| 173 | case SETOPCMD_EXCEPT_ALL: |
| 174 | setopstate->numOutput = |
| 175 | (pergroup->numLeft < pergroup->numRight) ? |
| 176 | 0 : (pergroup->numLeft - pergroup->numRight); |
| 177 | break; |
| 178 | default: |
| 179 | elog(ERROR, "unrecognized set op: %d" , (int) plannode->cmd); |
| 180 | break; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | |
| 185 | /* ---------------------------------------------------------------- |
| 186 | * ExecSetOp |
| 187 | * ---------------------------------------------------------------- |
| 188 | */ |
| 189 | static TupleTableSlot * /* return: a tuple or NULL */ |
| 190 | ExecSetOp(PlanState *pstate) |
| 191 | { |
| 192 | SetOpState *node = castNode(SetOpState, pstate); |
| 193 | SetOp *plannode = (SetOp *) node->ps.plan; |
| 194 | TupleTableSlot *resultTupleSlot = node->ps.ps_ResultTupleSlot; |
| 195 | |
| 196 | CHECK_FOR_INTERRUPTS(); |
| 197 | |
| 198 | /* |
| 199 | * If the previously-returned tuple needs to be returned more than once, |
| 200 | * keep returning it. |
| 201 | */ |
| 202 | if (node->numOutput > 0) |
| 203 | { |
| 204 | node->numOutput--; |
| 205 | return resultTupleSlot; |
| 206 | } |
| 207 | |
| 208 | /* Otherwise, we're done if we are out of groups */ |
| 209 | if (node->setop_done) |
| 210 | return NULL; |
| 211 | |
| 212 | /* Fetch the next tuple group according to the correct strategy */ |
| 213 | if (plannode->strategy == SETOP_HASHED) |
| 214 | { |
| 215 | if (!node->table_filled) |
| 216 | setop_fill_hash_table(node); |
| 217 | return setop_retrieve_hash_table(node); |
| 218 | } |
| 219 | else |
| 220 | return setop_retrieve_direct(node); |
| 221 | } |
| 222 | |
| 223 | /* |
| 224 | * ExecSetOp for non-hashed case |
| 225 | */ |
| 226 | static TupleTableSlot * |
| 227 | setop_retrieve_direct(SetOpState *setopstate) |
| 228 | { |
| 229 | PlanState *outerPlan; |
| 230 | SetOpStatePerGroup pergroup; |
| 231 | TupleTableSlot *outerslot; |
| 232 | TupleTableSlot *resultTupleSlot; |
| 233 | ExprContext *econtext = setopstate->ps.ps_ExprContext; |
| 234 | |
| 235 | /* |
| 236 | * get state info from node |
| 237 | */ |
| 238 | outerPlan = outerPlanState(setopstate); |
| 239 | pergroup = (SetOpStatePerGroup) setopstate->pergroup; |
| 240 | resultTupleSlot = setopstate->ps.ps_ResultTupleSlot; |
| 241 | |
| 242 | /* |
| 243 | * We loop retrieving groups until we find one we should return |
| 244 | */ |
| 245 | while (!setopstate->setop_done) |
| 246 | { |
| 247 | /* |
| 248 | * If we don't already have the first tuple of the new group, fetch it |
| 249 | * from the outer plan. |
| 250 | */ |
| 251 | if (setopstate->grp_firstTuple == NULL) |
| 252 | { |
| 253 | outerslot = ExecProcNode(outerPlan); |
| 254 | if (!TupIsNull(outerslot)) |
| 255 | { |
| 256 | /* Make a copy of the first input tuple */ |
| 257 | setopstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot); |
| 258 | } |
| 259 | else |
| 260 | { |
| 261 | /* outer plan produced no tuples at all */ |
| 262 | setopstate->setop_done = true; |
| 263 | return NULL; |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * Store the copied first input tuple in the tuple table slot reserved |
| 269 | * for it. The tuple will be deleted when it is cleared from the |
| 270 | * slot. |
| 271 | */ |
| 272 | ExecStoreHeapTuple(setopstate->grp_firstTuple, |
| 273 | resultTupleSlot, |
| 274 | true); |
| 275 | setopstate->grp_firstTuple = NULL; /* don't keep two pointers */ |
| 276 | |
| 277 | /* Initialize working state for a new input tuple group */ |
| 278 | initialize_counts(pergroup); |
| 279 | |
| 280 | /* Count the first input tuple */ |
| 281 | advance_counts(pergroup, |
| 282 | fetch_tuple_flag(setopstate, resultTupleSlot)); |
| 283 | |
| 284 | /* |
| 285 | * Scan the outer plan until we exhaust it or cross a group boundary. |
| 286 | */ |
| 287 | for (;;) |
| 288 | { |
| 289 | outerslot = ExecProcNode(outerPlan); |
| 290 | if (TupIsNull(outerslot)) |
| 291 | { |
| 292 | /* no more outer-plan tuples available */ |
| 293 | setopstate->setop_done = true; |
| 294 | break; |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * Check whether we've crossed a group boundary. |
| 299 | */ |
| 300 | econtext->ecxt_outertuple = resultTupleSlot; |
| 301 | econtext->ecxt_innertuple = outerslot; |
| 302 | |
| 303 | if (!ExecQualAndReset(setopstate->eqfunction, econtext)) |
| 304 | { |
| 305 | /* |
| 306 | * Save the first input tuple of the next group. |
| 307 | */ |
| 308 | setopstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot); |
| 309 | break; |
| 310 | } |
| 311 | |
| 312 | /* Still in same group, so count this tuple */ |
| 313 | advance_counts(pergroup, |
| 314 | fetch_tuple_flag(setopstate, outerslot)); |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * Done scanning input tuple group. See if we should emit any copies |
| 319 | * of result tuple, and if so return the first copy. |
| 320 | */ |
| 321 | set_output_count(setopstate, pergroup); |
| 322 | |
| 323 | if (setopstate->numOutput > 0) |
| 324 | { |
| 325 | setopstate->numOutput--; |
| 326 | return resultTupleSlot; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | /* No more groups */ |
| 331 | ExecClearTuple(resultTupleSlot); |
| 332 | return NULL; |
| 333 | } |
| 334 | |
| 335 | /* |
| 336 | * ExecSetOp for hashed case: phase 1, read input and build hash table |
| 337 | */ |
| 338 | static void |
| 339 | setop_fill_hash_table(SetOpState *setopstate) |
| 340 | { |
| 341 | SetOp *node = (SetOp *) setopstate->ps.plan; |
| 342 | PlanState *outerPlan; |
| 343 | int firstFlag; |
| 344 | bool in_first_rel PG_USED_FOR_ASSERTS_ONLY; |
| 345 | ExprContext *econtext = setopstate->ps.ps_ExprContext; |
| 346 | |
| 347 | /* |
| 348 | * get state info from node |
| 349 | */ |
| 350 | outerPlan = outerPlanState(setopstate); |
| 351 | firstFlag = node->firstFlag; |
| 352 | /* verify planner didn't mess up */ |
| 353 | Assert(firstFlag == 0 || |
| 354 | (firstFlag == 1 && |
| 355 | (node->cmd == SETOPCMD_INTERSECT || |
| 356 | node->cmd == SETOPCMD_INTERSECT_ALL))); |
| 357 | |
| 358 | /* |
| 359 | * Process each outer-plan tuple, and then fetch the next one, until we |
| 360 | * exhaust the outer plan. |
| 361 | */ |
| 362 | in_first_rel = true; |
| 363 | for (;;) |
| 364 | { |
| 365 | TupleTableSlot *outerslot; |
| 366 | int flag; |
| 367 | TupleHashEntryData *entry; |
| 368 | bool isnew; |
| 369 | |
| 370 | outerslot = ExecProcNode(outerPlan); |
| 371 | if (TupIsNull(outerslot)) |
| 372 | break; |
| 373 | |
| 374 | /* Identify whether it's left or right input */ |
| 375 | flag = fetch_tuple_flag(setopstate, outerslot); |
| 376 | |
| 377 | if (flag == firstFlag) |
| 378 | { |
| 379 | /* (still) in first input relation */ |
| 380 | Assert(in_first_rel); |
| 381 | |
| 382 | /* Find or build hashtable entry for this tuple's group */ |
| 383 | entry = LookupTupleHashEntry(setopstate->hashtable, outerslot, |
| 384 | &isnew); |
| 385 | |
| 386 | /* If new tuple group, initialize counts */ |
| 387 | if (isnew) |
| 388 | { |
| 389 | entry->additional = (SetOpStatePerGroup) |
| 390 | MemoryContextAlloc(setopstate->hashtable->tablecxt, |
| 391 | sizeof(SetOpStatePerGroupData)); |
| 392 | initialize_counts((SetOpStatePerGroup) entry->additional); |
| 393 | } |
| 394 | |
| 395 | /* Advance the counts */ |
| 396 | advance_counts((SetOpStatePerGroup) entry->additional, flag); |
| 397 | } |
| 398 | else |
| 399 | { |
| 400 | /* reached second relation */ |
| 401 | in_first_rel = false; |
| 402 | |
| 403 | /* For tuples not seen previously, do not make hashtable entry */ |
| 404 | entry = LookupTupleHashEntry(setopstate->hashtable, outerslot, |
| 405 | NULL); |
| 406 | |
| 407 | /* Advance the counts if entry is already present */ |
| 408 | if (entry) |
| 409 | advance_counts((SetOpStatePerGroup) entry->additional, flag); |
| 410 | } |
| 411 | |
| 412 | /* Must reset expression context after each hashtable lookup */ |
| 413 | ResetExprContext(econtext); |
| 414 | } |
| 415 | |
| 416 | setopstate->table_filled = true; |
| 417 | /* Initialize to walk the hash table */ |
| 418 | ResetTupleHashIterator(setopstate->hashtable, &setopstate->hashiter); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * ExecSetOp for hashed case: phase 2, retrieving groups from hash table |
| 423 | */ |
| 424 | static TupleTableSlot * |
| 425 | setop_retrieve_hash_table(SetOpState *setopstate) |
| 426 | { |
| 427 | TupleHashEntryData *entry; |
| 428 | TupleTableSlot *resultTupleSlot; |
| 429 | |
| 430 | /* |
| 431 | * get state info from node |
| 432 | */ |
| 433 | resultTupleSlot = setopstate->ps.ps_ResultTupleSlot; |
| 434 | |
| 435 | /* |
| 436 | * We loop retrieving groups until we find one we should return |
| 437 | */ |
| 438 | while (!setopstate->setop_done) |
| 439 | { |
| 440 | CHECK_FOR_INTERRUPTS(); |
| 441 | |
| 442 | /* |
| 443 | * Find the next entry in the hash table |
| 444 | */ |
| 445 | entry = ScanTupleHashTable(setopstate->hashtable, &setopstate->hashiter); |
| 446 | if (entry == NULL) |
| 447 | { |
| 448 | /* No more entries in hashtable, so done */ |
| 449 | setopstate->setop_done = true; |
| 450 | return NULL; |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * See if we should emit any copies of this tuple, and if so return |
| 455 | * the first copy. |
| 456 | */ |
| 457 | set_output_count(setopstate, (SetOpStatePerGroup) entry->additional); |
| 458 | |
| 459 | if (setopstate->numOutput > 0) |
| 460 | { |
| 461 | setopstate->numOutput--; |
| 462 | return ExecStoreMinimalTuple(entry->firstTuple, |
| 463 | resultTupleSlot, |
| 464 | false); |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | /* No more groups */ |
| 469 | ExecClearTuple(resultTupleSlot); |
| 470 | return NULL; |
| 471 | } |
| 472 | |
| 473 | /* ---------------------------------------------------------------- |
| 474 | * ExecInitSetOp |
| 475 | * |
| 476 | * This initializes the setop node state structures and |
| 477 | * the node's subplan. |
| 478 | * ---------------------------------------------------------------- |
| 479 | */ |
| 480 | SetOpState * |
| 481 | ExecInitSetOp(SetOp *node, EState *estate, int eflags) |
| 482 | { |
| 483 | SetOpState *setopstate; |
| 484 | TupleDesc outerDesc; |
| 485 | |
| 486 | /* check for unsupported flags */ |
| 487 | Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); |
| 488 | |
| 489 | /* |
| 490 | * create state structure |
| 491 | */ |
| 492 | setopstate = makeNode(SetOpState); |
| 493 | setopstate->ps.plan = (Plan *) node; |
| 494 | setopstate->ps.state = estate; |
| 495 | setopstate->ps.ExecProcNode = ExecSetOp; |
| 496 | |
| 497 | setopstate->eqfuncoids = NULL; |
| 498 | setopstate->hashfunctions = NULL; |
| 499 | setopstate->setop_done = false; |
| 500 | setopstate->numOutput = 0; |
| 501 | setopstate->pergroup = NULL; |
| 502 | setopstate->grp_firstTuple = NULL; |
| 503 | setopstate->hashtable = NULL; |
| 504 | setopstate->tableContext = NULL; |
| 505 | |
| 506 | /* |
| 507 | * create expression context |
| 508 | */ |
| 509 | ExecAssignExprContext(estate, &setopstate->ps); |
| 510 | |
| 511 | /* |
| 512 | * If hashing, we also need a longer-lived context to store the hash |
| 513 | * table. The table can't just be kept in the per-query context because |
| 514 | * we want to be able to throw it away in ExecReScanSetOp. |
| 515 | */ |
| 516 | if (node->strategy == SETOP_HASHED) |
| 517 | setopstate->tableContext = |
| 518 | AllocSetContextCreate(CurrentMemoryContext, |
| 519 | "SetOp hash table" , |
| 520 | ALLOCSET_DEFAULT_SIZES); |
| 521 | |
| 522 | /* |
| 523 | * initialize child nodes |
| 524 | * |
| 525 | * If we are hashing then the child plan does not need to handle REWIND |
| 526 | * efficiently; see ExecReScanSetOp. |
| 527 | */ |
| 528 | if (node->strategy == SETOP_HASHED) |
| 529 | eflags &= ~EXEC_FLAG_REWIND; |
| 530 | outerPlanState(setopstate) = ExecInitNode(outerPlan(node), estate, eflags); |
| 531 | outerDesc = ExecGetResultType(outerPlanState(setopstate)); |
| 532 | |
| 533 | /* |
| 534 | * Initialize result slot and type. Setop nodes do no projections, so |
| 535 | * initialize projection info for this node appropriately. |
| 536 | */ |
| 537 | ExecInitResultTupleSlotTL(&setopstate->ps, |
| 538 | node->strategy == SETOP_HASHED ? |
| 539 | &TTSOpsMinimalTuple : &TTSOpsHeapTuple); |
| 540 | setopstate->ps.ps_ProjInfo = NULL; |
| 541 | |
| 542 | /* |
| 543 | * Precompute fmgr lookup data for inner loop. We need both equality and |
| 544 | * hashing functions to do it by hashing, but only equality if not |
| 545 | * hashing. |
| 546 | */ |
| 547 | if (node->strategy == SETOP_HASHED) |
| 548 | execTuplesHashPrepare(node->numCols, |
| 549 | node->dupOperators, |
| 550 | &setopstate->eqfuncoids, |
| 551 | &setopstate->hashfunctions); |
| 552 | else |
| 553 | setopstate->eqfunction = |
| 554 | execTuplesMatchPrepare(outerDesc, |
| 555 | node->numCols, |
| 556 | node->dupColIdx, |
| 557 | node->dupOperators, |
| 558 | node->dupCollations, |
| 559 | &setopstate->ps); |
| 560 | |
| 561 | if (node->strategy == SETOP_HASHED) |
| 562 | { |
| 563 | build_hash_table(setopstate); |
| 564 | setopstate->table_filled = false; |
| 565 | } |
| 566 | else |
| 567 | { |
| 568 | setopstate->pergroup = |
| 569 | (SetOpStatePerGroup) palloc0(sizeof(SetOpStatePerGroupData)); |
| 570 | } |
| 571 | |
| 572 | return setopstate; |
| 573 | } |
| 574 | |
| 575 | /* ---------------------------------------------------------------- |
| 576 | * ExecEndSetOp |
| 577 | * |
| 578 | * This shuts down the subplan and frees resources allocated |
| 579 | * to this node. |
| 580 | * ---------------------------------------------------------------- |
| 581 | */ |
| 582 | void |
| 583 | ExecEndSetOp(SetOpState *node) |
| 584 | { |
| 585 | /* clean up tuple table */ |
| 586 | ExecClearTuple(node->ps.ps_ResultTupleSlot); |
| 587 | |
| 588 | /* free subsidiary stuff including hashtable */ |
| 589 | if (node->tableContext) |
| 590 | MemoryContextDelete(node->tableContext); |
| 591 | ExecFreeExprContext(&node->ps); |
| 592 | |
| 593 | ExecEndNode(outerPlanState(node)); |
| 594 | } |
| 595 | |
| 596 | |
| 597 | void |
| 598 | ExecReScanSetOp(SetOpState *node) |
| 599 | { |
| 600 | ExecClearTuple(node->ps.ps_ResultTupleSlot); |
| 601 | node->setop_done = false; |
| 602 | node->numOutput = 0; |
| 603 | |
| 604 | if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED) |
| 605 | { |
| 606 | /* |
| 607 | * In the hashed case, if we haven't yet built the hash table then we |
| 608 | * can just return; nothing done yet, so nothing to undo. If subnode's |
| 609 | * chgParam is not NULL then it will be re-scanned by ExecProcNode, |
| 610 | * else no reason to re-scan it at all. |
| 611 | */ |
| 612 | if (!node->table_filled) |
| 613 | return; |
| 614 | |
| 615 | /* |
| 616 | * If we do have the hash table and the subplan does not have any |
| 617 | * parameter changes, then we can just rescan the existing hash table; |
| 618 | * no need to build it again. |
| 619 | */ |
| 620 | if (node->ps.lefttree->chgParam == NULL) |
| 621 | { |
| 622 | ResetTupleHashIterator(node->hashtable, &node->hashiter); |
| 623 | return; |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | /* Release first tuple of group, if we have made a copy */ |
| 628 | if (node->grp_firstTuple != NULL) |
| 629 | { |
| 630 | heap_freetuple(node->grp_firstTuple); |
| 631 | node->grp_firstTuple = NULL; |
| 632 | } |
| 633 | |
| 634 | /* Release any hashtable storage */ |
| 635 | if (node->tableContext) |
| 636 | MemoryContextResetAndDeleteChildren(node->tableContext); |
| 637 | |
| 638 | /* And rebuild empty hashtable if needed */ |
| 639 | if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED) |
| 640 | { |
| 641 | ResetTupleHashTable(node->hashtable); |
| 642 | node->table_filled = false; |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * if chgParam of subnode is not null then plan will be re-scanned by |
| 647 | * first ExecProcNode. |
| 648 | */ |
| 649 | if (node->ps.lefttree->chgParam == NULL) |
| 650 | ExecReScan(node->ps.lefttree); |
| 651 | } |
| 652 | |