| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeSubplan.c |
| 4 | * routines to support sub-selects appearing in expressions |
| 5 | * |
| 6 | * This module is concerned with executing SubPlan expression nodes, which |
| 7 | * should not be confused with sub-SELECTs appearing in FROM. SubPlans are |
| 8 | * divided into "initplans", which are those that need only one evaluation per |
| 9 | * query (among other restrictions, this requires that they don't use any |
| 10 | * direct correlation variables from the parent plan level), and "regular" |
| 11 | * subplans, which are re-evaluated every time their result is required. |
| 12 | * |
| 13 | * |
| 14 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 15 | * Portions Copyright (c) 1994, Regents of the University of California |
| 16 | * |
| 17 | * IDENTIFICATION |
| 18 | * src/backend/executor/nodeSubplan.c |
| 19 | * |
| 20 | *------------------------------------------------------------------------- |
| 21 | */ |
| 22 | /* |
| 23 | * INTERFACE ROUTINES |
| 24 | * ExecSubPlan - process a subselect |
| 25 | * ExecInitSubPlan - initialize a subselect |
| 26 | */ |
| 27 | #include "postgres.h" |
| 28 | |
| 29 | #include <limits.h> |
| 30 | #include <math.h> |
| 31 | |
| 32 | #include "access/htup_details.h" |
| 33 | #include "executor/executor.h" |
| 34 | #include "executor/nodeSubplan.h" |
| 35 | #include "nodes/makefuncs.h" |
| 36 | #include "nodes/nodeFuncs.h" |
| 37 | #include "miscadmin.h" |
| 38 | #include "utils/array.h" |
| 39 | #include "utils/lsyscache.h" |
| 40 | #include "utils/memutils.h" |
| 41 | |
| 42 | |
| 43 | static Datum ExecHashSubPlan(SubPlanState *node, |
| 44 | ExprContext *econtext, |
| 45 | bool *isNull); |
| 46 | static Datum ExecScanSubPlan(SubPlanState *node, |
| 47 | ExprContext *econtext, |
| 48 | bool *isNull); |
| 49 | static void buildSubPlanHash(SubPlanState *node, ExprContext *econtext); |
| 50 | static bool findPartialMatch(TupleHashTable hashtable, TupleTableSlot *slot, |
| 51 | FmgrInfo *eqfunctions); |
| 52 | static bool slotAllNulls(TupleTableSlot *slot); |
| 53 | static bool slotNoNulls(TupleTableSlot *slot); |
| 54 | |
| 55 | |
| 56 | /* ---------------------------------------------------------------- |
| 57 | * ExecSubPlan |
| 58 | * |
| 59 | * This is the main entry point for execution of a regular SubPlan. |
| 60 | * ---------------------------------------------------------------- |
| 61 | */ |
| 62 | Datum |
| 63 | ExecSubPlan(SubPlanState *node, |
| 64 | ExprContext *econtext, |
| 65 | bool *isNull) |
| 66 | { |
| 67 | SubPlan *subplan = node->subplan; |
| 68 | EState *estate = node->planstate->state; |
| 69 | ScanDirection dir = estate->es_direction; |
| 70 | Datum retval; |
| 71 | |
| 72 | CHECK_FOR_INTERRUPTS(); |
| 73 | |
| 74 | /* Set non-null as default */ |
| 75 | *isNull = false; |
| 76 | |
| 77 | /* Sanity checks */ |
| 78 | if (subplan->subLinkType == CTE_SUBLINK) |
| 79 | elog(ERROR, "CTE subplans should not be executed via ExecSubPlan" ); |
| 80 | if (subplan->setParam != NIL && subplan->subLinkType != MULTIEXPR_SUBLINK) |
| 81 | elog(ERROR, "cannot set parent params from subquery" ); |
| 82 | |
| 83 | /* Force forward-scan mode for evaluation */ |
| 84 | estate->es_direction = ForwardScanDirection; |
| 85 | |
| 86 | /* Select appropriate evaluation strategy */ |
| 87 | if (subplan->useHashTable) |
| 88 | retval = ExecHashSubPlan(node, econtext, isNull); |
| 89 | else |
| 90 | retval = ExecScanSubPlan(node, econtext, isNull); |
| 91 | |
| 92 | /* restore scan direction */ |
| 93 | estate->es_direction = dir; |
| 94 | |
| 95 | return retval; |
| 96 | } |
| 97 | |
| 98 | /* |
| 99 | * ExecHashSubPlan: store subselect result in an in-memory hash table |
| 100 | */ |
| 101 | static Datum |
| 102 | ExecHashSubPlan(SubPlanState *node, |
| 103 | ExprContext *econtext, |
| 104 | bool *isNull) |
| 105 | { |
| 106 | SubPlan *subplan = node->subplan; |
| 107 | PlanState *planstate = node->planstate; |
| 108 | TupleTableSlot *slot; |
| 109 | |
| 110 | /* Shouldn't have any direct correlation Vars */ |
| 111 | if (subplan->parParam != NIL || node->args != NIL) |
| 112 | elog(ERROR, "hashed subplan with direct correlation not supported" ); |
| 113 | |
| 114 | /* |
| 115 | * If first time through or we need to rescan the subplan, build the hash |
| 116 | * table. |
| 117 | */ |
| 118 | if (node->hashtable == NULL || planstate->chgParam != NULL) |
| 119 | buildSubPlanHash(node, econtext); |
| 120 | |
| 121 | /* |
| 122 | * The result for an empty subplan is always FALSE; no need to evaluate |
| 123 | * lefthand side. |
| 124 | */ |
| 125 | *isNull = false; |
| 126 | if (!node->havehashrows && !node->havenullrows) |
| 127 | return BoolGetDatum(false); |
| 128 | |
| 129 | /* |
| 130 | * Evaluate lefthand expressions and form a projection tuple. First we |
| 131 | * have to set the econtext to use (hack alert!). |
| 132 | */ |
| 133 | node->projLeft->pi_exprContext = econtext; |
| 134 | slot = ExecProject(node->projLeft); |
| 135 | |
| 136 | /* |
| 137 | * Note: because we are typically called in a per-tuple context, we have |
| 138 | * to explicitly clear the projected tuple before returning. Otherwise, |
| 139 | * we'll have a double-free situation: the per-tuple context will probably |
| 140 | * be reset before we're called again, and then the tuple slot will think |
| 141 | * it still needs to free the tuple. |
| 142 | */ |
| 143 | |
| 144 | /* |
| 145 | * If the LHS is all non-null, probe for an exact match in the main hash |
| 146 | * table. If we find one, the result is TRUE. Otherwise, scan the |
| 147 | * partly-null table to see if there are any rows that aren't provably |
| 148 | * unequal to the LHS; if so, the result is UNKNOWN. (We skip that part |
| 149 | * if we don't care about UNKNOWN.) Otherwise, the result is FALSE. |
| 150 | * |
| 151 | * Note: the reason we can avoid a full scan of the main hash table is |
| 152 | * that the combining operators are assumed never to yield NULL when both |
| 153 | * inputs are non-null. If they were to do so, we might need to produce |
| 154 | * UNKNOWN instead of FALSE because of an UNKNOWN result in comparing the |
| 155 | * LHS to some main-table entry --- which is a comparison we will not even |
| 156 | * make, unless there's a chance match of hash keys. |
| 157 | */ |
| 158 | if (slotNoNulls(slot)) |
| 159 | { |
| 160 | if (node->havehashrows && |
| 161 | FindTupleHashEntry(node->hashtable, |
| 162 | slot, |
| 163 | node->cur_eq_comp, |
| 164 | node->lhs_hash_funcs) != NULL) |
| 165 | { |
| 166 | ExecClearTuple(slot); |
| 167 | return BoolGetDatum(true); |
| 168 | } |
| 169 | if (node->havenullrows && |
| 170 | findPartialMatch(node->hashnulls, slot, node->cur_eq_funcs)) |
| 171 | { |
| 172 | ExecClearTuple(slot); |
| 173 | *isNull = true; |
| 174 | return BoolGetDatum(false); |
| 175 | } |
| 176 | ExecClearTuple(slot); |
| 177 | return BoolGetDatum(false); |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * When the LHS is partly or wholly NULL, we can never return TRUE. If we |
| 182 | * don't care about UNKNOWN, just return FALSE. Otherwise, if the LHS is |
| 183 | * wholly NULL, immediately return UNKNOWN. (Since the combining |
| 184 | * operators are strict, the result could only be FALSE if the sub-select |
| 185 | * were empty, but we already handled that case.) Otherwise, we must scan |
| 186 | * both the main and partly-null tables to see if there are any rows that |
| 187 | * aren't provably unequal to the LHS; if so, the result is UNKNOWN. |
| 188 | * Otherwise, the result is FALSE. |
| 189 | */ |
| 190 | if (node->hashnulls == NULL) |
| 191 | { |
| 192 | ExecClearTuple(slot); |
| 193 | return BoolGetDatum(false); |
| 194 | } |
| 195 | if (slotAllNulls(slot)) |
| 196 | { |
| 197 | ExecClearTuple(slot); |
| 198 | *isNull = true; |
| 199 | return BoolGetDatum(false); |
| 200 | } |
| 201 | /* Scan partly-null table first, since more likely to get a match */ |
| 202 | if (node->havenullrows && |
| 203 | findPartialMatch(node->hashnulls, slot, node->cur_eq_funcs)) |
| 204 | { |
| 205 | ExecClearTuple(slot); |
| 206 | *isNull = true; |
| 207 | return BoolGetDatum(false); |
| 208 | } |
| 209 | if (node->havehashrows && |
| 210 | findPartialMatch(node->hashtable, slot, node->cur_eq_funcs)) |
| 211 | { |
| 212 | ExecClearTuple(slot); |
| 213 | *isNull = true; |
| 214 | return BoolGetDatum(false); |
| 215 | } |
| 216 | ExecClearTuple(slot); |
| 217 | return BoolGetDatum(false); |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * ExecScanSubPlan: default case where we have to rescan subplan each time |
| 222 | */ |
| 223 | static Datum |
| 224 | ExecScanSubPlan(SubPlanState *node, |
| 225 | ExprContext *econtext, |
| 226 | bool *isNull) |
| 227 | { |
| 228 | SubPlan *subplan = node->subplan; |
| 229 | PlanState *planstate = node->planstate; |
| 230 | SubLinkType subLinkType = subplan->subLinkType; |
| 231 | MemoryContext oldcontext; |
| 232 | TupleTableSlot *slot; |
| 233 | Datum result; |
| 234 | bool found = false; /* true if got at least one subplan tuple */ |
| 235 | ListCell *pvar; |
| 236 | ListCell *l; |
| 237 | ArrayBuildStateAny *astate = NULL; |
| 238 | |
| 239 | /* |
| 240 | * MULTIEXPR subplans, when "executed", just return NULL; but first we |
| 241 | * mark the subplan's output parameters as needing recalculation. (This |
| 242 | * is a bit of a hack: it relies on the subplan appearing later in its |
| 243 | * targetlist than any of the referencing Params, so that all the Params |
| 244 | * have been evaluated before we re-mark them for the next evaluation |
| 245 | * cycle. But in general resjunk tlist items appear after non-resjunk |
| 246 | * ones, so this should be safe.) Unlike ExecReScanSetParamPlan, we do |
| 247 | * *not* set bits in the parent plan node's chgParam, because we don't |
| 248 | * want to cause a rescan of the parent. |
| 249 | */ |
| 250 | if (subLinkType == MULTIEXPR_SUBLINK) |
| 251 | { |
| 252 | EState *estate = node->parent->state; |
| 253 | |
| 254 | foreach(l, subplan->setParam) |
| 255 | { |
| 256 | int paramid = lfirst_int(l); |
| 257 | ParamExecData *prm = &(estate->es_param_exec_vals[paramid]); |
| 258 | |
| 259 | prm->execPlan = node; |
| 260 | } |
| 261 | *isNull = true; |
| 262 | return (Datum) 0; |
| 263 | } |
| 264 | |
| 265 | /* Initialize ArrayBuildStateAny in caller's context, if needed */ |
| 266 | if (subLinkType == ARRAY_SUBLINK) |
| 267 | astate = initArrayResultAny(subplan->firstColType, |
| 268 | CurrentMemoryContext, true); |
| 269 | |
| 270 | /* |
| 271 | * We are probably in a short-lived expression-evaluation context. Switch |
| 272 | * to the per-query context for manipulating the child plan's chgParam, |
| 273 | * calling ExecProcNode on it, etc. |
| 274 | */ |
| 275 | oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
| 276 | |
| 277 | /* |
| 278 | * Set Params of this plan from parent plan correlation values. (Any |
| 279 | * calculation we have to do is done in the parent econtext, since the |
| 280 | * Param values don't need to have per-query lifetime.) |
| 281 | */ |
| 282 | Assert(list_length(subplan->parParam) == list_length(node->args)); |
| 283 | |
| 284 | forboth(l, subplan->parParam, pvar, node->args) |
| 285 | { |
| 286 | int paramid = lfirst_int(l); |
| 287 | ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); |
| 288 | |
| 289 | prm->value = ExecEvalExprSwitchContext((ExprState *) lfirst(pvar), |
| 290 | econtext, |
| 291 | &(prm->isnull)); |
| 292 | planstate->chgParam = bms_add_member(planstate->chgParam, paramid); |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * Now that we've set up its parameters, we can reset the subplan. |
| 297 | */ |
| 298 | ExecReScan(planstate); |
| 299 | |
| 300 | /* |
| 301 | * For all sublink types except EXPR_SUBLINK and ARRAY_SUBLINK, the result |
| 302 | * is boolean as are the results of the combining operators. We combine |
| 303 | * results across tuples (if the subplan produces more than one) using OR |
| 304 | * semantics for ANY_SUBLINK or AND semantics for ALL_SUBLINK. |
| 305 | * (ROWCOMPARE_SUBLINK doesn't allow multiple tuples from the subplan.) |
| 306 | * NULL results from the combining operators are handled according to the |
| 307 | * usual SQL semantics for OR and AND. The result for no input tuples is |
| 308 | * FALSE for ANY_SUBLINK, TRUE for ALL_SUBLINK, NULL for |
| 309 | * ROWCOMPARE_SUBLINK. |
| 310 | * |
| 311 | * For EXPR_SUBLINK we require the subplan to produce no more than one |
| 312 | * tuple, else an error is raised. If zero tuples are produced, we return |
| 313 | * NULL. Assuming we get a tuple, we just use its first column (there can |
| 314 | * be only one non-junk column in this case). |
| 315 | * |
| 316 | * For ARRAY_SUBLINK we allow the subplan to produce any number of tuples, |
| 317 | * and form an array of the first column's values. Note in particular |
| 318 | * that we produce a zero-element array if no tuples are produced (this is |
| 319 | * a change from pre-8.3 behavior of returning NULL). |
| 320 | */ |
| 321 | result = BoolGetDatum(subLinkType == ALL_SUBLINK); |
| 322 | *isNull = false; |
| 323 | |
| 324 | for (slot = ExecProcNode(planstate); |
| 325 | !TupIsNull(slot); |
| 326 | slot = ExecProcNode(planstate)) |
| 327 | { |
| 328 | TupleDesc tdesc = slot->tts_tupleDescriptor; |
| 329 | Datum rowresult; |
| 330 | bool rownull; |
| 331 | int col; |
| 332 | ListCell *plst; |
| 333 | |
| 334 | if (subLinkType == EXISTS_SUBLINK) |
| 335 | { |
| 336 | found = true; |
| 337 | result = BoolGetDatum(true); |
| 338 | break; |
| 339 | } |
| 340 | |
| 341 | if (subLinkType == EXPR_SUBLINK) |
| 342 | { |
| 343 | /* cannot allow multiple input tuples for EXPR sublink */ |
| 344 | if (found) |
| 345 | ereport(ERROR, |
| 346 | (errcode(ERRCODE_CARDINALITY_VIOLATION), |
| 347 | errmsg("more than one row returned by a subquery used as an expression" ))); |
| 348 | found = true; |
| 349 | |
| 350 | /* |
| 351 | * We need to copy the subplan's tuple in case the result is of |
| 352 | * pass-by-ref type --- our return value will point into this |
| 353 | * copied tuple! Can't use the subplan's instance of the tuple |
| 354 | * since it won't still be valid after next ExecProcNode() call. |
| 355 | * node->curTuple keeps track of the copied tuple for eventual |
| 356 | * freeing. |
| 357 | */ |
| 358 | if (node->curTuple) |
| 359 | heap_freetuple(node->curTuple); |
| 360 | node->curTuple = ExecCopySlotHeapTuple(slot); |
| 361 | |
| 362 | result = heap_getattr(node->curTuple, 1, tdesc, isNull); |
| 363 | /* keep scanning subplan to make sure there's only one tuple */ |
| 364 | continue; |
| 365 | } |
| 366 | |
| 367 | if (subLinkType == ARRAY_SUBLINK) |
| 368 | { |
| 369 | Datum dvalue; |
| 370 | bool disnull; |
| 371 | |
| 372 | found = true; |
| 373 | /* stash away current value */ |
| 374 | Assert(subplan->firstColType == TupleDescAttr(tdesc, 0)->atttypid); |
| 375 | dvalue = slot_getattr(slot, 1, &disnull); |
| 376 | astate = accumArrayResultAny(astate, dvalue, disnull, |
| 377 | subplan->firstColType, oldcontext); |
| 378 | /* keep scanning subplan to collect all values */ |
| 379 | continue; |
| 380 | } |
| 381 | |
| 382 | /* cannot allow multiple input tuples for ROWCOMPARE sublink either */ |
| 383 | if (subLinkType == ROWCOMPARE_SUBLINK && found) |
| 384 | ereport(ERROR, |
| 385 | (errcode(ERRCODE_CARDINALITY_VIOLATION), |
| 386 | errmsg("more than one row returned by a subquery used as an expression" ))); |
| 387 | |
| 388 | found = true; |
| 389 | |
| 390 | /* |
| 391 | * For ALL, ANY, and ROWCOMPARE sublinks, load up the Params |
| 392 | * representing the columns of the sub-select, and then evaluate the |
| 393 | * combining expression. |
| 394 | */ |
| 395 | col = 1; |
| 396 | foreach(plst, subplan->paramIds) |
| 397 | { |
| 398 | int paramid = lfirst_int(plst); |
| 399 | ParamExecData *prmdata; |
| 400 | |
| 401 | prmdata = &(econtext->ecxt_param_exec_vals[paramid]); |
| 402 | Assert(prmdata->execPlan == NULL); |
| 403 | prmdata->value = slot_getattr(slot, col, &(prmdata->isnull)); |
| 404 | col++; |
| 405 | } |
| 406 | |
| 407 | rowresult = ExecEvalExprSwitchContext(node->testexpr, econtext, |
| 408 | &rownull); |
| 409 | |
| 410 | if (subLinkType == ANY_SUBLINK) |
| 411 | { |
| 412 | /* combine across rows per OR semantics */ |
| 413 | if (rownull) |
| 414 | *isNull = true; |
| 415 | else if (DatumGetBool(rowresult)) |
| 416 | { |
| 417 | result = BoolGetDatum(true); |
| 418 | *isNull = false; |
| 419 | break; /* needn't look at any more rows */ |
| 420 | } |
| 421 | } |
| 422 | else if (subLinkType == ALL_SUBLINK) |
| 423 | { |
| 424 | /* combine across rows per AND semantics */ |
| 425 | if (rownull) |
| 426 | *isNull = true; |
| 427 | else if (!DatumGetBool(rowresult)) |
| 428 | { |
| 429 | result = BoolGetDatum(false); |
| 430 | *isNull = false; |
| 431 | break; /* needn't look at any more rows */ |
| 432 | } |
| 433 | } |
| 434 | else |
| 435 | { |
| 436 | /* must be ROWCOMPARE_SUBLINK */ |
| 437 | result = rowresult; |
| 438 | *isNull = rownull; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | MemoryContextSwitchTo(oldcontext); |
| 443 | |
| 444 | if (subLinkType == ARRAY_SUBLINK) |
| 445 | { |
| 446 | /* We return the result in the caller's context */ |
| 447 | result = makeArrayResultAny(astate, oldcontext, true); |
| 448 | } |
| 449 | else if (!found) |
| 450 | { |
| 451 | /* |
| 452 | * deal with empty subplan result. result/isNull were previously |
| 453 | * initialized correctly for all sublink types except EXPR and |
| 454 | * ROWCOMPARE; for those, return NULL. |
| 455 | */ |
| 456 | if (subLinkType == EXPR_SUBLINK || |
| 457 | subLinkType == ROWCOMPARE_SUBLINK) |
| 458 | { |
| 459 | result = (Datum) 0; |
| 460 | *isNull = true; |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | return result; |
| 465 | } |
| 466 | |
| 467 | /* |
| 468 | * buildSubPlanHash: load hash table by scanning subplan output. |
| 469 | */ |
| 470 | static void |
| 471 | buildSubPlanHash(SubPlanState *node, ExprContext *econtext) |
| 472 | { |
| 473 | SubPlan *subplan = node->subplan; |
| 474 | PlanState *planstate = node->planstate; |
| 475 | int ncols = list_length(subplan->paramIds); |
| 476 | ExprContext *innerecontext = node->innerecontext; |
| 477 | MemoryContext oldcontext; |
| 478 | long nbuckets; |
| 479 | TupleTableSlot *slot; |
| 480 | |
| 481 | Assert(subplan->subLinkType == ANY_SUBLINK); |
| 482 | |
| 483 | /* |
| 484 | * If we already had any hash tables, reset 'em; otherwise create empty |
| 485 | * hash table(s). |
| 486 | * |
| 487 | * If we need to distinguish accurately between FALSE and UNKNOWN (i.e., |
| 488 | * NULL) results of the IN operation, then we have to store subplan output |
| 489 | * rows that are partly or wholly NULL. We store such rows in a separate |
| 490 | * hash table that we expect will be much smaller than the main table. (We |
| 491 | * can use hashing to eliminate partly-null rows that are not distinct. We |
| 492 | * keep them separate to minimize the cost of the inevitable full-table |
| 493 | * searches; see findPartialMatch.) |
| 494 | * |
| 495 | * If it's not necessary to distinguish FALSE and UNKNOWN, then we don't |
| 496 | * need to store subplan output rows that contain NULL. |
| 497 | */ |
| 498 | MemoryContextReset(node->hashtablecxt); |
| 499 | node->hashtable = NULL; |
| 500 | node->hashnulls = NULL; |
| 501 | node->havehashrows = false; |
| 502 | node->havenullrows = false; |
| 503 | |
| 504 | nbuckets = (long) Min(planstate->plan->plan_rows, (double) LONG_MAX); |
| 505 | if (nbuckets < 1) |
| 506 | nbuckets = 1; |
| 507 | |
| 508 | if (node->hashtable) |
| 509 | ResetTupleHashTable(node->hashtable); |
| 510 | else |
| 511 | node->hashtable = BuildTupleHashTableExt(node->parent, |
| 512 | node->descRight, |
| 513 | ncols, |
| 514 | node->keyColIdx, |
| 515 | node->tab_eq_funcoids, |
| 516 | node->tab_hash_funcs, |
| 517 | node->tab_collations, |
| 518 | nbuckets, |
| 519 | 0, |
| 520 | node->planstate->state->es_query_cxt, |
| 521 | node->hashtablecxt, |
| 522 | node->hashtempcxt, |
| 523 | false); |
| 524 | |
| 525 | if (!subplan->unknownEqFalse) |
| 526 | { |
| 527 | if (ncols == 1) |
| 528 | nbuckets = 1; /* there can only be one entry */ |
| 529 | else |
| 530 | { |
| 531 | nbuckets /= 16; |
| 532 | if (nbuckets < 1) |
| 533 | nbuckets = 1; |
| 534 | } |
| 535 | |
| 536 | if (node->hashnulls) |
| 537 | ResetTupleHashTable(node->hashtable); |
| 538 | else |
| 539 | node->hashnulls = BuildTupleHashTableExt(node->parent, |
| 540 | node->descRight, |
| 541 | ncols, |
| 542 | node->keyColIdx, |
| 543 | node->tab_eq_funcoids, |
| 544 | node->tab_hash_funcs, |
| 545 | node->tab_collations, |
| 546 | nbuckets, |
| 547 | 0, |
| 548 | node->planstate->state->es_query_cxt, |
| 549 | node->hashtablecxt, |
| 550 | node->hashtempcxt, |
| 551 | false); |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * We are probably in a short-lived expression-evaluation context. Switch |
| 556 | * to the per-query context for manipulating the child plan. |
| 557 | */ |
| 558 | oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
| 559 | |
| 560 | /* |
| 561 | * Reset subplan to start. |
| 562 | */ |
| 563 | ExecReScan(planstate); |
| 564 | |
| 565 | /* |
| 566 | * Scan the subplan and load the hash table(s). Note that when there are |
| 567 | * duplicate rows coming out of the sub-select, only one copy is stored. |
| 568 | */ |
| 569 | for (slot = ExecProcNode(planstate); |
| 570 | !TupIsNull(slot); |
| 571 | slot = ExecProcNode(planstate)) |
| 572 | { |
| 573 | int col = 1; |
| 574 | ListCell *plst; |
| 575 | bool isnew; |
| 576 | |
| 577 | /* |
| 578 | * Load up the Params representing the raw sub-select outputs, then |
| 579 | * form the projection tuple to store in the hashtable. |
| 580 | */ |
| 581 | foreach(plst, subplan->paramIds) |
| 582 | { |
| 583 | int paramid = lfirst_int(plst); |
| 584 | ParamExecData *prmdata; |
| 585 | |
| 586 | prmdata = &(innerecontext->ecxt_param_exec_vals[paramid]); |
| 587 | Assert(prmdata->execPlan == NULL); |
| 588 | prmdata->value = slot_getattr(slot, col, |
| 589 | &(prmdata->isnull)); |
| 590 | col++; |
| 591 | } |
| 592 | slot = ExecProject(node->projRight); |
| 593 | |
| 594 | /* |
| 595 | * If result contains any nulls, store separately or not at all. |
| 596 | */ |
| 597 | if (slotNoNulls(slot)) |
| 598 | { |
| 599 | (void) LookupTupleHashEntry(node->hashtable, slot, &isnew); |
| 600 | node->havehashrows = true; |
| 601 | } |
| 602 | else if (node->hashnulls) |
| 603 | { |
| 604 | (void) LookupTupleHashEntry(node->hashnulls, slot, &isnew); |
| 605 | node->havenullrows = true; |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | * Reset innerecontext after each inner tuple to free any memory used |
| 610 | * during ExecProject. |
| 611 | */ |
| 612 | ResetExprContext(innerecontext); |
| 613 | } |
| 614 | |
| 615 | /* |
| 616 | * Since the projected tuples are in the sub-query's context and not the |
| 617 | * main context, we'd better clear the tuple slot before there's any |
| 618 | * chance of a reset of the sub-query's context. Else we will have the |
| 619 | * potential for a double free attempt. (XXX possibly no longer needed, |
| 620 | * but can't hurt.) |
| 621 | */ |
| 622 | ExecClearTuple(node->projRight->pi_state.resultslot); |
| 623 | |
| 624 | MemoryContextSwitchTo(oldcontext); |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * execTuplesUnequal |
| 629 | * Return true if two tuples are definitely unequal in the indicated |
| 630 | * fields. |
| 631 | * |
| 632 | * Nulls are neither equal nor unequal to anything else. A true result |
| 633 | * is obtained only if there are non-null fields that compare not-equal. |
| 634 | * |
| 635 | * slot1, slot2: the tuples to compare (must have same columns!) |
| 636 | * numCols: the number of attributes to be examined |
| 637 | * matchColIdx: array of attribute column numbers |
| 638 | * eqFunctions: array of fmgr lookup info for the equality functions to use |
| 639 | * evalContext: short-term memory context for executing the functions |
| 640 | */ |
| 641 | static bool |
| 642 | execTuplesUnequal(TupleTableSlot *slot1, |
| 643 | TupleTableSlot *slot2, |
| 644 | int numCols, |
| 645 | AttrNumber *matchColIdx, |
| 646 | FmgrInfo *eqfunctions, |
| 647 | const Oid *collations, |
| 648 | MemoryContext evalContext) |
| 649 | { |
| 650 | MemoryContext oldContext; |
| 651 | bool result; |
| 652 | int i; |
| 653 | |
| 654 | /* Reset and switch into the temp context. */ |
| 655 | MemoryContextReset(evalContext); |
| 656 | oldContext = MemoryContextSwitchTo(evalContext); |
| 657 | |
| 658 | /* |
| 659 | * We cannot report a match without checking all the fields, but we can |
| 660 | * report a non-match as soon as we find unequal fields. So, start |
| 661 | * comparing at the last field (least significant sort key). That's the |
| 662 | * most likely to be different if we are dealing with sorted input. |
| 663 | */ |
| 664 | result = false; |
| 665 | |
| 666 | for (i = numCols; --i >= 0;) |
| 667 | { |
| 668 | AttrNumber att = matchColIdx[i]; |
| 669 | Datum attr1, |
| 670 | attr2; |
| 671 | bool isNull1, |
| 672 | isNull2; |
| 673 | |
| 674 | attr1 = slot_getattr(slot1, att, &isNull1); |
| 675 | |
| 676 | if (isNull1) |
| 677 | continue; /* can't prove anything here */ |
| 678 | |
| 679 | attr2 = slot_getattr(slot2, att, &isNull2); |
| 680 | |
| 681 | if (isNull2) |
| 682 | continue; /* can't prove anything here */ |
| 683 | |
| 684 | /* Apply the type-specific equality function */ |
| 685 | if (!DatumGetBool(FunctionCall2Coll(&eqfunctions[i], |
| 686 | collations[i], |
| 687 | attr1, attr2))) |
| 688 | { |
| 689 | result = true; /* they are unequal */ |
| 690 | break; |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | MemoryContextSwitchTo(oldContext); |
| 695 | |
| 696 | return result; |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * findPartialMatch: does the hashtable contain an entry that is not |
| 701 | * provably distinct from the tuple? |
| 702 | * |
| 703 | * We have to scan the whole hashtable; we can't usefully use hashkeys |
| 704 | * to guide probing, since we might get partial matches on tuples with |
| 705 | * hashkeys quite unrelated to what we'd get from the given tuple. |
| 706 | * |
| 707 | * Caller must provide the equality functions to use, since in cross-type |
| 708 | * cases these are different from the hashtable's internal functions. |
| 709 | */ |
| 710 | static bool |
| 711 | findPartialMatch(TupleHashTable hashtable, TupleTableSlot *slot, |
| 712 | FmgrInfo *eqfunctions) |
| 713 | { |
| 714 | int numCols = hashtable->numCols; |
| 715 | AttrNumber *keyColIdx = hashtable->keyColIdx; |
| 716 | TupleHashIterator hashiter; |
| 717 | TupleHashEntry entry; |
| 718 | |
| 719 | InitTupleHashIterator(hashtable, &hashiter); |
| 720 | while ((entry = ScanTupleHashTable(hashtable, &hashiter)) != NULL) |
| 721 | { |
| 722 | CHECK_FOR_INTERRUPTS(); |
| 723 | |
| 724 | ExecStoreMinimalTuple(entry->firstTuple, hashtable->tableslot, false); |
| 725 | if (!execTuplesUnequal(slot, hashtable->tableslot, |
| 726 | numCols, keyColIdx, |
| 727 | eqfunctions, |
| 728 | hashtable->tab_collations, |
| 729 | hashtable->tempcxt)) |
| 730 | { |
| 731 | TermTupleHashIterator(&hashiter); |
| 732 | return true; |
| 733 | } |
| 734 | } |
| 735 | /* No TermTupleHashIterator call needed here */ |
| 736 | return false; |
| 737 | } |
| 738 | |
| 739 | /* |
| 740 | * slotAllNulls: is the slot completely NULL? |
| 741 | * |
| 742 | * This does not test for dropped columns, which is OK because we only |
| 743 | * use it on projected tuples. |
| 744 | */ |
| 745 | static bool |
| 746 | slotAllNulls(TupleTableSlot *slot) |
| 747 | { |
| 748 | int ncols = slot->tts_tupleDescriptor->natts; |
| 749 | int i; |
| 750 | |
| 751 | for (i = 1; i <= ncols; i++) |
| 752 | { |
| 753 | if (!slot_attisnull(slot, i)) |
| 754 | return false; |
| 755 | } |
| 756 | return true; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * slotNoNulls: is the slot entirely not NULL? |
| 761 | * |
| 762 | * This does not test for dropped columns, which is OK because we only |
| 763 | * use it on projected tuples. |
| 764 | */ |
| 765 | static bool |
| 766 | slotNoNulls(TupleTableSlot *slot) |
| 767 | { |
| 768 | int ncols = slot->tts_tupleDescriptor->natts; |
| 769 | int i; |
| 770 | |
| 771 | for (i = 1; i <= ncols; i++) |
| 772 | { |
| 773 | if (slot_attisnull(slot, i)) |
| 774 | return false; |
| 775 | } |
| 776 | return true; |
| 777 | } |
| 778 | |
| 779 | /* ---------------------------------------------------------------- |
| 780 | * ExecInitSubPlan |
| 781 | * |
| 782 | * Create a SubPlanState for a SubPlan; this is the SubPlan-specific part |
| 783 | * of ExecInitExpr(). We split it out so that it can be used for InitPlans |
| 784 | * as well as regular SubPlans. Note that we don't link the SubPlan into |
| 785 | * the parent's subPlan list, because that shouldn't happen for InitPlans. |
| 786 | * Instead, ExecInitExpr() does that one part. |
| 787 | * ---------------------------------------------------------------- |
| 788 | */ |
| 789 | SubPlanState * |
| 790 | ExecInitSubPlan(SubPlan *subplan, PlanState *parent) |
| 791 | { |
| 792 | SubPlanState *sstate = makeNode(SubPlanState); |
| 793 | EState *estate = parent->state; |
| 794 | |
| 795 | sstate->subplan = subplan; |
| 796 | |
| 797 | /* Link the SubPlanState to already-initialized subplan */ |
| 798 | sstate->planstate = (PlanState *) list_nth(estate->es_subplanstates, |
| 799 | subplan->plan_id - 1); |
| 800 | |
| 801 | /* ... and to its parent's state */ |
| 802 | sstate->parent = parent; |
| 803 | |
| 804 | /* Initialize subexpressions */ |
| 805 | sstate->testexpr = ExecInitExpr((Expr *) subplan->testexpr, parent); |
| 806 | sstate->args = ExecInitExprList(subplan->args, parent); |
| 807 | |
| 808 | /* |
| 809 | * initialize my state |
| 810 | */ |
| 811 | sstate->curTuple = NULL; |
| 812 | sstate->curArray = PointerGetDatum(NULL); |
| 813 | sstate->projLeft = NULL; |
| 814 | sstate->projRight = NULL; |
| 815 | sstate->hashtable = NULL; |
| 816 | sstate->hashnulls = NULL; |
| 817 | sstate->hashtablecxt = NULL; |
| 818 | sstate->hashtempcxt = NULL; |
| 819 | sstate->innerecontext = NULL; |
| 820 | sstate->keyColIdx = NULL; |
| 821 | sstate->tab_eq_funcoids = NULL; |
| 822 | sstate->tab_hash_funcs = NULL; |
| 823 | sstate->tab_eq_funcs = NULL; |
| 824 | sstate->tab_collations = NULL; |
| 825 | sstate->lhs_hash_funcs = NULL; |
| 826 | sstate->cur_eq_funcs = NULL; |
| 827 | |
| 828 | /* |
| 829 | * If this is an initplan or MULTIEXPR subplan, it has output parameters |
| 830 | * that the parent plan will use, so mark those parameters as needing |
| 831 | * evaluation. We don't actually run the subplan until we first need one |
| 832 | * of its outputs. |
| 833 | * |
| 834 | * A CTE subplan's output parameter is never to be evaluated in the normal |
| 835 | * way, so skip this in that case. |
| 836 | * |
| 837 | * Note that we don't set parent->chgParam here: the parent plan hasn't |
| 838 | * been run yet, so no need to force it to re-run. |
| 839 | */ |
| 840 | if (subplan->setParam != NIL && subplan->subLinkType != CTE_SUBLINK) |
| 841 | { |
| 842 | ListCell *lst; |
| 843 | |
| 844 | foreach(lst, subplan->setParam) |
| 845 | { |
| 846 | int paramid = lfirst_int(lst); |
| 847 | ParamExecData *prm = &(estate->es_param_exec_vals[paramid]); |
| 848 | |
| 849 | prm->execPlan = sstate; |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | * If we are going to hash the subquery output, initialize relevant stuff. |
| 855 | * (We don't create the hashtable until needed, though.) |
| 856 | */ |
| 857 | if (subplan->useHashTable) |
| 858 | { |
| 859 | int ncols, |
| 860 | i; |
| 861 | TupleDesc tupDescLeft; |
| 862 | TupleDesc tupDescRight; |
| 863 | Oid *cross_eq_funcoids; |
| 864 | TupleTableSlot *slot; |
| 865 | List *oplist, |
| 866 | *lefttlist, |
| 867 | *righttlist; |
| 868 | ListCell *l; |
| 869 | |
| 870 | /* We need a memory context to hold the hash table(s) */ |
| 871 | sstate->hashtablecxt = |
| 872 | AllocSetContextCreate(CurrentMemoryContext, |
| 873 | "Subplan HashTable Context" , |
| 874 | ALLOCSET_DEFAULT_SIZES); |
| 875 | /* and a small one for the hash tables to use as temp storage */ |
| 876 | sstate->hashtempcxt = |
| 877 | AllocSetContextCreate(CurrentMemoryContext, |
| 878 | "Subplan HashTable Temp Context" , |
| 879 | ALLOCSET_SMALL_SIZES); |
| 880 | /* and a short-lived exprcontext for function evaluation */ |
| 881 | sstate->innerecontext = CreateExprContext(estate); |
| 882 | /* Silly little array of column numbers 1..n */ |
| 883 | ncols = list_length(subplan->paramIds); |
| 884 | sstate->keyColIdx = (AttrNumber *) palloc(ncols * sizeof(AttrNumber)); |
| 885 | for (i = 0; i < ncols; i++) |
| 886 | sstate->keyColIdx[i] = i + 1; |
| 887 | |
| 888 | /* |
| 889 | * We use ExecProject to evaluate the lefthand and righthand |
| 890 | * expression lists and form tuples. (You might think that we could |
| 891 | * use the sub-select's output tuples directly, but that is not the |
| 892 | * case if we had to insert any run-time coercions of the sub-select's |
| 893 | * output datatypes; anyway this avoids storing any resjunk columns |
| 894 | * that might be in the sub-select's output.) Run through the |
| 895 | * combining expressions to build tlists for the lefthand and |
| 896 | * righthand sides. |
| 897 | * |
| 898 | * We also extract the combining operators themselves to initialize |
| 899 | * the equality and hashing functions for the hash tables. |
| 900 | */ |
| 901 | if (IsA(subplan->testexpr, OpExpr)) |
| 902 | { |
| 903 | /* single combining operator */ |
| 904 | oplist = list_make1(subplan->testexpr); |
| 905 | } |
| 906 | else if (is_andclause(subplan->testexpr)) |
| 907 | { |
| 908 | /* multiple combining operators */ |
| 909 | oplist = castNode(BoolExpr, subplan->testexpr)->args; |
| 910 | } |
| 911 | else |
| 912 | { |
| 913 | /* shouldn't see anything else in a hashable subplan */ |
| 914 | elog(ERROR, "unrecognized testexpr type: %d" , |
| 915 | (int) nodeTag(subplan->testexpr)); |
| 916 | oplist = NIL; /* keep compiler quiet */ |
| 917 | } |
| 918 | Assert(list_length(oplist) == ncols); |
| 919 | |
| 920 | lefttlist = righttlist = NIL; |
| 921 | sstate->tab_eq_funcoids = (Oid *) palloc(ncols * sizeof(Oid)); |
| 922 | sstate->tab_hash_funcs = (FmgrInfo *) palloc(ncols * sizeof(FmgrInfo)); |
| 923 | sstate->tab_eq_funcs = (FmgrInfo *) palloc(ncols * sizeof(FmgrInfo)); |
| 924 | sstate->tab_collations = (Oid *) palloc(ncols * sizeof(Oid)); |
| 925 | sstate->lhs_hash_funcs = (FmgrInfo *) palloc(ncols * sizeof(FmgrInfo)); |
| 926 | sstate->cur_eq_funcs = (FmgrInfo *) palloc(ncols * sizeof(FmgrInfo)); |
| 927 | /* we'll need the cross-type equality fns below, but not in sstate */ |
| 928 | cross_eq_funcoids = (Oid *) palloc(ncols * sizeof(Oid)); |
| 929 | |
| 930 | i = 1; |
| 931 | foreach(l, oplist) |
| 932 | { |
| 933 | OpExpr *opexpr = lfirst_node(OpExpr, l); |
| 934 | Expr *expr; |
| 935 | TargetEntry *tle; |
| 936 | Oid rhs_eq_oper; |
| 937 | Oid left_hashfn; |
| 938 | Oid right_hashfn; |
| 939 | |
| 940 | Assert(list_length(opexpr->args) == 2); |
| 941 | |
| 942 | /* Process lefthand argument */ |
| 943 | expr = (Expr *) linitial(opexpr->args); |
| 944 | tle = makeTargetEntry(expr, |
| 945 | i, |
| 946 | NULL, |
| 947 | false); |
| 948 | lefttlist = lappend(lefttlist, tle); |
| 949 | |
| 950 | /* Process righthand argument */ |
| 951 | expr = (Expr *) lsecond(opexpr->args); |
| 952 | tle = makeTargetEntry(expr, |
| 953 | i, |
| 954 | NULL, |
| 955 | false); |
| 956 | righttlist = lappend(righttlist, tle); |
| 957 | |
| 958 | /* Lookup the equality function (potentially cross-type) */ |
| 959 | cross_eq_funcoids[i - 1] = opexpr->opfuncid; |
| 960 | fmgr_info(opexpr->opfuncid, &sstate->cur_eq_funcs[i - 1]); |
| 961 | fmgr_info_set_expr((Node *) opexpr, &sstate->cur_eq_funcs[i - 1]); |
| 962 | |
| 963 | /* Look up the equality function for the RHS type */ |
| 964 | if (!get_compatible_hash_operators(opexpr->opno, |
| 965 | NULL, &rhs_eq_oper)) |
| 966 | elog(ERROR, "could not find compatible hash operator for operator %u" , |
| 967 | opexpr->opno); |
| 968 | sstate->tab_eq_funcoids[i - 1] = get_opcode(rhs_eq_oper); |
| 969 | fmgr_info(sstate->tab_eq_funcoids[i - 1], |
| 970 | &sstate->tab_eq_funcs[i - 1]); |
| 971 | |
| 972 | /* Lookup the associated hash functions */ |
| 973 | if (!get_op_hash_functions(opexpr->opno, |
| 974 | &left_hashfn, &right_hashfn)) |
| 975 | elog(ERROR, "could not find hash function for hash operator %u" , |
| 976 | opexpr->opno); |
| 977 | fmgr_info(left_hashfn, &sstate->lhs_hash_funcs[i - 1]); |
| 978 | fmgr_info(right_hashfn, &sstate->tab_hash_funcs[i - 1]); |
| 979 | |
| 980 | /* Set collation */ |
| 981 | sstate->tab_collations[i - 1] = opexpr->inputcollid; |
| 982 | |
| 983 | i++; |
| 984 | } |
| 985 | |
| 986 | /* |
| 987 | * Construct tupdescs, slots and projection nodes for left and right |
| 988 | * sides. The lefthand expressions will be evaluated in the parent |
| 989 | * plan node's exprcontext, which we don't have access to here. |
| 990 | * Fortunately we can just pass NULL for now and fill it in later |
| 991 | * (hack alert!). The righthand expressions will be evaluated in our |
| 992 | * own innerecontext. |
| 993 | */ |
| 994 | tupDescLeft = ExecTypeFromTL(lefttlist); |
| 995 | slot = ExecInitExtraTupleSlot(estate, tupDescLeft, &TTSOpsVirtual); |
| 996 | sstate->projLeft = ExecBuildProjectionInfo(lefttlist, |
| 997 | NULL, |
| 998 | slot, |
| 999 | parent, |
| 1000 | NULL); |
| 1001 | |
| 1002 | sstate->descRight = tupDescRight = ExecTypeFromTL(righttlist); |
| 1003 | slot = ExecInitExtraTupleSlot(estate, tupDescRight, &TTSOpsVirtual); |
| 1004 | sstate->projRight = ExecBuildProjectionInfo(righttlist, |
| 1005 | sstate->innerecontext, |
| 1006 | slot, |
| 1007 | sstate->planstate, |
| 1008 | NULL); |
| 1009 | |
| 1010 | /* |
| 1011 | * Create comparator for lookups of rows in the table (potentially |
| 1012 | * cross-type comparisons). |
| 1013 | */ |
| 1014 | sstate->cur_eq_comp = ExecBuildGroupingEqual(tupDescLeft, tupDescRight, |
| 1015 | &TTSOpsVirtual, &TTSOpsMinimalTuple, |
| 1016 | ncols, |
| 1017 | sstate->keyColIdx, |
| 1018 | cross_eq_funcoids, |
| 1019 | sstate->tab_collations, |
| 1020 | parent); |
| 1021 | } |
| 1022 | |
| 1023 | return sstate; |
| 1024 | } |
| 1025 | |
| 1026 | /* ---------------------------------------------------------------- |
| 1027 | * ExecSetParamPlan |
| 1028 | * |
| 1029 | * Executes a subplan and sets its output parameters. |
| 1030 | * |
| 1031 | * This is called from ExecEvalParamExec() when the value of a PARAM_EXEC |
| 1032 | * parameter is requested and the param's execPlan field is set (indicating |
| 1033 | * that the param has not yet been evaluated). This allows lazy evaluation |
| 1034 | * of initplans: we don't run the subplan until/unless we need its output. |
| 1035 | * Note that this routine MUST clear the execPlan fields of the plan's |
| 1036 | * output parameters after evaluating them! |
| 1037 | * |
| 1038 | * The results of this function are stored in the EState associated with the |
| 1039 | * ExprContext (particularly, its ecxt_param_exec_vals); any pass-by-ref |
| 1040 | * result Datums are allocated in the EState's per-query memory. The passed |
| 1041 | * econtext can be any ExprContext belonging to that EState; which one is |
| 1042 | * important only to the extent that the ExprContext's per-tuple memory |
| 1043 | * context is used to evaluate any parameters passed down to the subplan. |
| 1044 | * (Thus in principle, the shorter-lived the ExprContext the better, since |
| 1045 | * that data isn't needed after we return. In practice, because initplan |
| 1046 | * parameters are never more complex than Vars, Aggrefs, etc, evaluating them |
| 1047 | * currently never leaks any memory anyway.) |
| 1048 | * ---------------------------------------------------------------- |
| 1049 | */ |
| 1050 | void |
| 1051 | ExecSetParamPlan(SubPlanState *node, ExprContext *econtext) |
| 1052 | { |
| 1053 | SubPlan *subplan = node->subplan; |
| 1054 | PlanState *planstate = node->planstate; |
| 1055 | SubLinkType subLinkType = subplan->subLinkType; |
| 1056 | EState *estate = planstate->state; |
| 1057 | ScanDirection dir = estate->es_direction; |
| 1058 | MemoryContext oldcontext; |
| 1059 | TupleTableSlot *slot; |
| 1060 | ListCell *pvar; |
| 1061 | ListCell *l; |
| 1062 | bool found = false; |
| 1063 | ArrayBuildStateAny *astate = NULL; |
| 1064 | |
| 1065 | if (subLinkType == ANY_SUBLINK || |
| 1066 | subLinkType == ALL_SUBLINK) |
| 1067 | elog(ERROR, "ANY/ALL subselect unsupported as initplan" ); |
| 1068 | if (subLinkType == CTE_SUBLINK) |
| 1069 | elog(ERROR, "CTE subplans should not be executed via ExecSetParamPlan" ); |
| 1070 | |
| 1071 | /* |
| 1072 | * Enforce forward scan direction regardless of caller. It's hard but not |
| 1073 | * impossible to get here in backward scan, so make it work anyway. |
| 1074 | */ |
| 1075 | estate->es_direction = ForwardScanDirection; |
| 1076 | |
| 1077 | /* Initialize ArrayBuildStateAny in caller's context, if needed */ |
| 1078 | if (subLinkType == ARRAY_SUBLINK) |
| 1079 | astate = initArrayResultAny(subplan->firstColType, |
| 1080 | CurrentMemoryContext, true); |
| 1081 | |
| 1082 | /* |
| 1083 | * Must switch to per-query memory context. |
| 1084 | */ |
| 1085 | oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); |
| 1086 | |
| 1087 | /* |
| 1088 | * Set Params of this plan from parent plan correlation values. (Any |
| 1089 | * calculation we have to do is done in the parent econtext, since the |
| 1090 | * Param values don't need to have per-query lifetime.) Currently, we |
| 1091 | * expect only MULTIEXPR_SUBLINK plans to have any correlation values. |
| 1092 | */ |
| 1093 | Assert(subplan->parParam == NIL || subLinkType == MULTIEXPR_SUBLINK); |
| 1094 | Assert(list_length(subplan->parParam) == list_length(node->args)); |
| 1095 | |
| 1096 | forboth(l, subplan->parParam, pvar, node->args) |
| 1097 | { |
| 1098 | int paramid = lfirst_int(l); |
| 1099 | ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); |
| 1100 | |
| 1101 | prm->value = ExecEvalExprSwitchContext((ExprState *) lfirst(pvar), |
| 1102 | econtext, |
| 1103 | &(prm->isnull)); |
| 1104 | planstate->chgParam = bms_add_member(planstate->chgParam, paramid); |
| 1105 | } |
| 1106 | |
| 1107 | /* |
| 1108 | * Run the plan. (If it needs to be rescanned, the first ExecProcNode |
| 1109 | * call will take care of that.) |
| 1110 | */ |
| 1111 | for (slot = ExecProcNode(planstate); |
| 1112 | !TupIsNull(slot); |
| 1113 | slot = ExecProcNode(planstate)) |
| 1114 | { |
| 1115 | TupleDesc tdesc = slot->tts_tupleDescriptor; |
| 1116 | int i = 1; |
| 1117 | |
| 1118 | if (subLinkType == EXISTS_SUBLINK) |
| 1119 | { |
| 1120 | /* There can be only one setParam... */ |
| 1121 | int paramid = linitial_int(subplan->setParam); |
| 1122 | ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); |
| 1123 | |
| 1124 | prm->execPlan = NULL; |
| 1125 | prm->value = BoolGetDatum(true); |
| 1126 | prm->isnull = false; |
| 1127 | found = true; |
| 1128 | break; |
| 1129 | } |
| 1130 | |
| 1131 | if (subLinkType == ARRAY_SUBLINK) |
| 1132 | { |
| 1133 | Datum dvalue; |
| 1134 | bool disnull; |
| 1135 | |
| 1136 | found = true; |
| 1137 | /* stash away current value */ |
| 1138 | Assert(subplan->firstColType == TupleDescAttr(tdesc, 0)->atttypid); |
| 1139 | dvalue = slot_getattr(slot, 1, &disnull); |
| 1140 | astate = accumArrayResultAny(astate, dvalue, disnull, |
| 1141 | subplan->firstColType, oldcontext); |
| 1142 | /* keep scanning subplan to collect all values */ |
| 1143 | continue; |
| 1144 | } |
| 1145 | |
| 1146 | if (found && |
| 1147 | (subLinkType == EXPR_SUBLINK || |
| 1148 | subLinkType == MULTIEXPR_SUBLINK || |
| 1149 | subLinkType == ROWCOMPARE_SUBLINK)) |
| 1150 | ereport(ERROR, |
| 1151 | (errcode(ERRCODE_CARDINALITY_VIOLATION), |
| 1152 | errmsg("more than one row returned by a subquery used as an expression" ))); |
| 1153 | |
| 1154 | found = true; |
| 1155 | |
| 1156 | /* |
| 1157 | * We need to copy the subplan's tuple into our own context, in case |
| 1158 | * any of the params are pass-by-ref type --- the pointers stored in |
| 1159 | * the param structs will point at this copied tuple! node->curTuple |
| 1160 | * keeps track of the copied tuple for eventual freeing. |
| 1161 | */ |
| 1162 | if (node->curTuple) |
| 1163 | heap_freetuple(node->curTuple); |
| 1164 | node->curTuple = ExecCopySlotHeapTuple(slot); |
| 1165 | |
| 1166 | /* |
| 1167 | * Now set all the setParam params from the columns of the tuple |
| 1168 | */ |
| 1169 | foreach(l, subplan->setParam) |
| 1170 | { |
| 1171 | int paramid = lfirst_int(l); |
| 1172 | ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); |
| 1173 | |
| 1174 | prm->execPlan = NULL; |
| 1175 | prm->value = heap_getattr(node->curTuple, i, tdesc, |
| 1176 | &(prm->isnull)); |
| 1177 | i++; |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | if (subLinkType == ARRAY_SUBLINK) |
| 1182 | { |
| 1183 | /* There can be only one setParam... */ |
| 1184 | int paramid = linitial_int(subplan->setParam); |
| 1185 | ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); |
| 1186 | |
| 1187 | /* |
| 1188 | * We build the result array in query context so it won't disappear; |
| 1189 | * to avoid leaking memory across repeated calls, we have to remember |
| 1190 | * the latest value, much as for curTuple above. |
| 1191 | */ |
| 1192 | if (node->curArray != PointerGetDatum(NULL)) |
| 1193 | pfree(DatumGetPointer(node->curArray)); |
| 1194 | node->curArray = makeArrayResultAny(astate, |
| 1195 | econtext->ecxt_per_query_memory, |
| 1196 | true); |
| 1197 | prm->execPlan = NULL; |
| 1198 | prm->value = node->curArray; |
| 1199 | prm->isnull = false; |
| 1200 | } |
| 1201 | else if (!found) |
| 1202 | { |
| 1203 | if (subLinkType == EXISTS_SUBLINK) |
| 1204 | { |
| 1205 | /* There can be only one setParam... */ |
| 1206 | int paramid = linitial_int(subplan->setParam); |
| 1207 | ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); |
| 1208 | |
| 1209 | prm->execPlan = NULL; |
| 1210 | prm->value = BoolGetDatum(false); |
| 1211 | prm->isnull = false; |
| 1212 | } |
| 1213 | else |
| 1214 | { |
| 1215 | /* For other sublink types, set all the output params to NULL */ |
| 1216 | foreach(l, subplan->setParam) |
| 1217 | { |
| 1218 | int paramid = lfirst_int(l); |
| 1219 | ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); |
| 1220 | |
| 1221 | prm->execPlan = NULL; |
| 1222 | prm->value = (Datum) 0; |
| 1223 | prm->isnull = true; |
| 1224 | } |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | MemoryContextSwitchTo(oldcontext); |
| 1229 | |
| 1230 | /* restore scan direction */ |
| 1231 | estate->es_direction = dir; |
| 1232 | } |
| 1233 | |
| 1234 | /* |
| 1235 | * ExecSetParamPlanMulti |
| 1236 | * |
| 1237 | * Apply ExecSetParamPlan to evaluate any not-yet-evaluated initplan output |
| 1238 | * parameters whose ParamIDs are listed in "params". Any listed params that |
| 1239 | * are not initplan outputs are ignored. |
| 1240 | * |
| 1241 | * As with ExecSetParamPlan, any ExprContext belonging to the current EState |
| 1242 | * can be used, but in principle a shorter-lived ExprContext is better than a |
| 1243 | * longer-lived one. |
| 1244 | */ |
| 1245 | void |
| 1246 | ExecSetParamPlanMulti(const Bitmapset *params, ExprContext *econtext) |
| 1247 | { |
| 1248 | int paramid; |
| 1249 | |
| 1250 | paramid = -1; |
| 1251 | while ((paramid = bms_next_member(params, paramid)) >= 0) |
| 1252 | { |
| 1253 | ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); |
| 1254 | |
| 1255 | if (prm->execPlan != NULL) |
| 1256 | { |
| 1257 | /* Parameter not evaluated yet, so go do it */ |
| 1258 | ExecSetParamPlan(prm->execPlan, econtext); |
| 1259 | /* ExecSetParamPlan should have processed this param... */ |
| 1260 | Assert(prm->execPlan == NULL); |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | /* |
| 1266 | * Mark an initplan as needing recalculation |
| 1267 | */ |
| 1268 | void |
| 1269 | ExecReScanSetParamPlan(SubPlanState *node, PlanState *parent) |
| 1270 | { |
| 1271 | PlanState *planstate = node->planstate; |
| 1272 | SubPlan *subplan = node->subplan; |
| 1273 | EState *estate = parent->state; |
| 1274 | ListCell *l; |
| 1275 | |
| 1276 | /* sanity checks */ |
| 1277 | if (subplan->parParam != NIL) |
| 1278 | elog(ERROR, "direct correlated subquery unsupported as initplan" ); |
| 1279 | if (subplan->setParam == NIL) |
| 1280 | elog(ERROR, "setParam list of initplan is empty" ); |
| 1281 | if (bms_is_empty(planstate->plan->extParam)) |
| 1282 | elog(ERROR, "extParam set of initplan is empty" ); |
| 1283 | |
| 1284 | /* |
| 1285 | * Don't actually re-scan: it'll happen inside ExecSetParamPlan if needed. |
| 1286 | */ |
| 1287 | |
| 1288 | /* |
| 1289 | * Mark this subplan's output parameters as needing recalculation. |
| 1290 | * |
| 1291 | * CTE subplans are never executed via parameter recalculation; instead |
| 1292 | * they get run when called by nodeCtescan.c. So don't mark the output |
| 1293 | * parameter of a CTE subplan as dirty, but do set the chgParam bit for it |
| 1294 | * so that dependent plan nodes will get told to rescan. |
| 1295 | */ |
| 1296 | foreach(l, subplan->setParam) |
| 1297 | { |
| 1298 | int paramid = lfirst_int(l); |
| 1299 | ParamExecData *prm = &(estate->es_param_exec_vals[paramid]); |
| 1300 | |
| 1301 | if (subplan->subLinkType != CTE_SUBLINK) |
| 1302 | prm->execPlan = node; |
| 1303 | |
| 1304 | parent->chgParam = bms_add_member(parent->chgParam, paramid); |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | |
| 1309 | /* |
| 1310 | * ExecInitAlternativeSubPlan |
| 1311 | * |
| 1312 | * Initialize for execution of one of a set of alternative subplans. |
| 1313 | */ |
| 1314 | AlternativeSubPlanState * |
| 1315 | ExecInitAlternativeSubPlan(AlternativeSubPlan *asplan, PlanState *parent) |
| 1316 | { |
| 1317 | AlternativeSubPlanState *asstate = makeNode(AlternativeSubPlanState); |
| 1318 | double num_calls; |
| 1319 | SubPlan *subplan1; |
| 1320 | SubPlan *subplan2; |
| 1321 | Cost cost1; |
| 1322 | Cost cost2; |
| 1323 | ListCell *lc; |
| 1324 | |
| 1325 | asstate->subplan = asplan; |
| 1326 | |
| 1327 | /* |
| 1328 | * Initialize subplans. (Can we get away with only initializing the one |
| 1329 | * we're going to use?) |
| 1330 | */ |
| 1331 | foreach(lc, asplan->subplans) |
| 1332 | { |
| 1333 | SubPlan *sp = lfirst_node(SubPlan, lc); |
| 1334 | SubPlanState *sps = ExecInitSubPlan(sp, parent); |
| 1335 | |
| 1336 | asstate->subplans = lappend(asstate->subplans, sps); |
| 1337 | parent->subPlan = lappend(parent->subPlan, sps); |
| 1338 | } |
| 1339 | |
| 1340 | /* |
| 1341 | * Select the one to be used. For this, we need an estimate of the number |
| 1342 | * of executions of the subplan. We use the number of output rows |
| 1343 | * expected from the parent plan node. This is a good estimate if we are |
| 1344 | * in the parent's targetlist, and an underestimate (but probably not by |
| 1345 | * more than a factor of 2) if we are in the qual. |
| 1346 | */ |
| 1347 | num_calls = parent->plan->plan_rows; |
| 1348 | |
| 1349 | /* |
| 1350 | * The planner saved enough info so that we don't have to work very hard |
| 1351 | * to estimate the total cost, given the number-of-calls estimate. |
| 1352 | */ |
| 1353 | Assert(list_length(asplan->subplans) == 2); |
| 1354 | subplan1 = (SubPlan *) linitial(asplan->subplans); |
| 1355 | subplan2 = (SubPlan *) lsecond(asplan->subplans); |
| 1356 | |
| 1357 | cost1 = subplan1->startup_cost + num_calls * subplan1->per_call_cost; |
| 1358 | cost2 = subplan2->startup_cost + num_calls * subplan2->per_call_cost; |
| 1359 | |
| 1360 | if (cost1 < cost2) |
| 1361 | asstate->active = 0; |
| 1362 | else |
| 1363 | asstate->active = 1; |
| 1364 | |
| 1365 | return asstate; |
| 1366 | } |
| 1367 | |
| 1368 | /* |
| 1369 | * ExecAlternativeSubPlan |
| 1370 | * |
| 1371 | * Execute one of a set of alternative subplans. |
| 1372 | * |
| 1373 | * Note: in future we might consider changing to different subplans on the |
| 1374 | * fly, in case the original rowcount estimate turns out to be way off. |
| 1375 | */ |
| 1376 | Datum |
| 1377 | ExecAlternativeSubPlan(AlternativeSubPlanState *node, |
| 1378 | ExprContext *econtext, |
| 1379 | bool *isNull) |
| 1380 | { |
| 1381 | /* Just pass control to the active subplan */ |
| 1382 | SubPlanState *activesp = list_nth_node(SubPlanState, |
| 1383 | node->subplans, node->active); |
| 1384 | |
| 1385 | return ExecSubPlan(activesp, econtext, isNull); |
| 1386 | } |
| 1387 | |