| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeWindowAgg.c |
| 4 | * routines to handle WindowAgg nodes. |
| 5 | * |
| 6 | * A WindowAgg node evaluates "window functions" across suitable partitions |
| 7 | * of the input tuple set. Any one WindowAgg works for just a single window |
| 8 | * specification, though it can evaluate multiple window functions sharing |
| 9 | * identical window specifications. The input tuples are required to be |
| 10 | * delivered in sorted order, with the PARTITION BY columns (if any) as |
| 11 | * major sort keys and the ORDER BY columns (if any) as minor sort keys. |
| 12 | * (The planner generates a stack of WindowAggs with intervening Sort nodes |
| 13 | * as needed, if a query involves more than one window specification.) |
| 14 | * |
| 15 | * Since window functions can require access to any or all of the rows in |
| 16 | * the current partition, we accumulate rows of the partition into a |
| 17 | * tuplestore. The window functions are called using the WindowObject API |
| 18 | * so that they can access those rows as needed. |
| 19 | * |
| 20 | * We also support using plain aggregate functions as window functions. |
| 21 | * For these, the regular Agg-node environment is emulated for each partition. |
| 22 | * As required by the SQL spec, the output represents the value of the |
| 23 | * aggregate function over all rows in the current row's window frame. |
| 24 | * |
| 25 | * |
| 26 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 27 | * Portions Copyright (c) 1994, Regents of the University of California |
| 28 | * |
| 29 | * IDENTIFICATION |
| 30 | * src/backend/executor/nodeWindowAgg.c |
| 31 | * |
| 32 | *------------------------------------------------------------------------- |
| 33 | */ |
| 34 | #include "postgres.h" |
| 35 | |
| 36 | #include "access/htup_details.h" |
| 37 | #include "catalog/objectaccess.h" |
| 38 | #include "catalog/pg_aggregate.h" |
| 39 | #include "catalog/pg_proc.h" |
| 40 | #include "executor/executor.h" |
| 41 | #include "executor/nodeWindowAgg.h" |
| 42 | #include "miscadmin.h" |
| 43 | #include "nodes/nodeFuncs.h" |
| 44 | #include "optimizer/optimizer.h" |
| 45 | #include "parser/parse_agg.h" |
| 46 | #include "parser/parse_coerce.h" |
| 47 | #include "utils/acl.h" |
| 48 | #include "utils/builtins.h" |
| 49 | #include "utils/datum.h" |
| 50 | #include "utils/lsyscache.h" |
| 51 | #include "utils/memutils.h" |
| 52 | #include "utils/regproc.h" |
| 53 | #include "utils/syscache.h" |
| 54 | #include "windowapi.h" |
| 55 | |
| 56 | /* |
| 57 | * All the window function APIs are called with this object, which is passed |
| 58 | * to window functions as fcinfo->context. |
| 59 | */ |
| 60 | typedef struct WindowObjectData |
| 61 | { |
| 62 | NodeTag type; |
| 63 | WindowAggState *winstate; /* parent WindowAggState */ |
| 64 | List *argstates; /* ExprState trees for fn's arguments */ |
| 65 | void *localmem; /* WinGetPartitionLocalMemory's chunk */ |
| 66 | int markptr; /* tuplestore mark pointer for this fn */ |
| 67 | int readptr; /* tuplestore read pointer for this fn */ |
| 68 | int64 markpos; /* row that markptr is positioned on */ |
| 69 | int64 seekpos; /* row that readptr is positioned on */ |
| 70 | } WindowObjectData; |
| 71 | |
| 72 | /* |
| 73 | * We have one WindowStatePerFunc struct for each window function and |
| 74 | * window aggregate handled by this node. |
| 75 | */ |
| 76 | typedef struct WindowStatePerFuncData |
| 77 | { |
| 78 | /* Links to WindowFunc expr and state nodes this working state is for */ |
| 79 | WindowFuncExprState *wfuncstate; |
| 80 | WindowFunc *wfunc; |
| 81 | |
| 82 | int numArguments; /* number of arguments */ |
| 83 | |
| 84 | FmgrInfo flinfo; /* fmgr lookup data for window function */ |
| 85 | |
| 86 | Oid winCollation; /* collation derived for window function */ |
| 87 | |
| 88 | /* |
| 89 | * We need the len and byval info for the result of each function in order |
| 90 | * to know how to copy/delete values. |
| 91 | */ |
| 92 | int16 resulttypeLen; |
| 93 | bool resulttypeByVal; |
| 94 | |
| 95 | bool plain_agg; /* is it just a plain aggregate function? */ |
| 96 | int aggno; /* if so, index of its PerAggData */ |
| 97 | |
| 98 | WindowObject winobj; /* object used in window function API */ |
| 99 | } WindowStatePerFuncData; |
| 100 | |
| 101 | /* |
| 102 | * For plain aggregate window functions, we also have one of these. |
| 103 | */ |
| 104 | typedef struct WindowStatePerAggData |
| 105 | { |
| 106 | /* Oids of transition functions */ |
| 107 | Oid transfn_oid; |
| 108 | Oid invtransfn_oid; /* may be InvalidOid */ |
| 109 | Oid finalfn_oid; /* may be InvalidOid */ |
| 110 | |
| 111 | /* |
| 112 | * fmgr lookup data for transition functions --- only valid when |
| 113 | * corresponding oid is not InvalidOid. Note in particular that fn_strict |
| 114 | * flags are kept here. |
| 115 | */ |
| 116 | FmgrInfo transfn; |
| 117 | FmgrInfo invtransfn; |
| 118 | FmgrInfo finalfn; |
| 119 | |
| 120 | int numFinalArgs; /* number of arguments to pass to finalfn */ |
| 121 | |
| 122 | /* |
| 123 | * initial value from pg_aggregate entry |
| 124 | */ |
| 125 | Datum initValue; |
| 126 | bool initValueIsNull; |
| 127 | |
| 128 | /* |
| 129 | * cached value for current frame boundaries |
| 130 | */ |
| 131 | Datum resultValue; |
| 132 | bool resultValueIsNull; |
| 133 | |
| 134 | /* |
| 135 | * We need the len and byval info for the agg's input, result, and |
| 136 | * transition data types in order to know how to copy/delete values. |
| 137 | */ |
| 138 | int16 inputtypeLen, |
| 139 | resulttypeLen, |
| 140 | transtypeLen; |
| 141 | bool inputtypeByVal, |
| 142 | resulttypeByVal, |
| 143 | transtypeByVal; |
| 144 | |
| 145 | int wfuncno; /* index of associated PerFuncData */ |
| 146 | |
| 147 | /* Context holding transition value and possibly other subsidiary data */ |
| 148 | MemoryContext aggcontext; /* may be private, or winstate->aggcontext */ |
| 149 | |
| 150 | /* Current transition value */ |
| 151 | Datum transValue; /* current transition value */ |
| 152 | bool transValueIsNull; |
| 153 | |
| 154 | int64 transValueCount; /* number of currently-aggregated rows */ |
| 155 | |
| 156 | /* Data local to eval_windowaggregates() */ |
| 157 | bool restart; /* need to restart this agg in this cycle? */ |
| 158 | } WindowStatePerAggData; |
| 159 | |
| 160 | static void initialize_windowaggregate(WindowAggState *winstate, |
| 161 | WindowStatePerFunc perfuncstate, |
| 162 | WindowStatePerAgg peraggstate); |
| 163 | static void advance_windowaggregate(WindowAggState *winstate, |
| 164 | WindowStatePerFunc perfuncstate, |
| 165 | WindowStatePerAgg peraggstate); |
| 166 | static bool advance_windowaggregate_base(WindowAggState *winstate, |
| 167 | WindowStatePerFunc perfuncstate, |
| 168 | WindowStatePerAgg peraggstate); |
| 169 | static void finalize_windowaggregate(WindowAggState *winstate, |
| 170 | WindowStatePerFunc perfuncstate, |
| 171 | WindowStatePerAgg peraggstate, |
| 172 | Datum *result, bool *isnull); |
| 173 | |
| 174 | static void eval_windowaggregates(WindowAggState *winstate); |
| 175 | static void eval_windowfunction(WindowAggState *winstate, |
| 176 | WindowStatePerFunc perfuncstate, |
| 177 | Datum *result, bool *isnull); |
| 178 | |
| 179 | static void begin_partition(WindowAggState *winstate); |
| 180 | static void spool_tuples(WindowAggState *winstate, int64 pos); |
| 181 | static void release_partition(WindowAggState *winstate); |
| 182 | |
| 183 | static int row_is_in_frame(WindowAggState *winstate, int64 pos, |
| 184 | TupleTableSlot *slot); |
| 185 | static void update_frameheadpos(WindowAggState *winstate); |
| 186 | static void update_frametailpos(WindowAggState *winstate); |
| 187 | static void update_grouptailpos(WindowAggState *winstate); |
| 188 | |
| 189 | static WindowStatePerAggData *initialize_peragg(WindowAggState *winstate, |
| 190 | WindowFunc *wfunc, |
| 191 | WindowStatePerAgg peraggstate); |
| 192 | static Datum GetAggInitVal(Datum textInitVal, Oid transtype); |
| 193 | |
| 194 | static bool are_peers(WindowAggState *winstate, TupleTableSlot *slot1, |
| 195 | TupleTableSlot *slot2); |
| 196 | static bool window_gettupleslot(WindowObject winobj, int64 pos, |
| 197 | TupleTableSlot *slot); |
| 198 | |
| 199 | |
| 200 | /* |
| 201 | * initialize_windowaggregate |
| 202 | * parallel to initialize_aggregates in nodeAgg.c |
| 203 | */ |
| 204 | static void |
| 205 | initialize_windowaggregate(WindowAggState *winstate, |
| 206 | WindowStatePerFunc perfuncstate, |
| 207 | WindowStatePerAgg peraggstate) |
| 208 | { |
| 209 | MemoryContext oldContext; |
| 210 | |
| 211 | /* |
| 212 | * If we're using a private aggcontext, we may reset it here. But if the |
| 213 | * context is shared, we don't know which other aggregates may still need |
| 214 | * it, so we must leave it to the caller to reset at an appropriate time. |
| 215 | */ |
| 216 | if (peraggstate->aggcontext != winstate->aggcontext) |
| 217 | MemoryContextResetAndDeleteChildren(peraggstate->aggcontext); |
| 218 | |
| 219 | if (peraggstate->initValueIsNull) |
| 220 | peraggstate->transValue = peraggstate->initValue; |
| 221 | else |
| 222 | { |
| 223 | oldContext = MemoryContextSwitchTo(peraggstate->aggcontext); |
| 224 | peraggstate->transValue = datumCopy(peraggstate->initValue, |
| 225 | peraggstate->transtypeByVal, |
| 226 | peraggstate->transtypeLen); |
| 227 | MemoryContextSwitchTo(oldContext); |
| 228 | } |
| 229 | peraggstate->transValueIsNull = peraggstate->initValueIsNull; |
| 230 | peraggstate->transValueCount = 0; |
| 231 | peraggstate->resultValue = (Datum) 0; |
| 232 | peraggstate->resultValueIsNull = true; |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | * advance_windowaggregate |
| 237 | * parallel to advance_aggregates in nodeAgg.c |
| 238 | */ |
| 239 | static void |
| 240 | advance_windowaggregate(WindowAggState *winstate, |
| 241 | WindowStatePerFunc perfuncstate, |
| 242 | WindowStatePerAgg peraggstate) |
| 243 | { |
| 244 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
| 245 | WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate; |
| 246 | int numArguments = perfuncstate->numArguments; |
| 247 | Datum newVal; |
| 248 | ListCell *arg; |
| 249 | int i; |
| 250 | MemoryContext oldContext; |
| 251 | ExprContext *econtext = winstate->tmpcontext; |
| 252 | ExprState *filter = wfuncstate->aggfilter; |
| 253 | |
| 254 | oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); |
| 255 | |
| 256 | /* Skip anything FILTERed out */ |
| 257 | if (filter) |
| 258 | { |
| 259 | bool isnull; |
| 260 | Datum res = ExecEvalExpr(filter, econtext, &isnull); |
| 261 | |
| 262 | if (isnull || !DatumGetBool(res)) |
| 263 | { |
| 264 | MemoryContextSwitchTo(oldContext); |
| 265 | return; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | /* We start from 1, since the 0th arg will be the transition value */ |
| 270 | i = 1; |
| 271 | foreach(arg, wfuncstate->args) |
| 272 | { |
| 273 | ExprState *argstate = (ExprState *) lfirst(arg); |
| 274 | |
| 275 | fcinfo->args[i].value = ExecEvalExpr(argstate, econtext, |
| 276 | &fcinfo->args[i].isnull); |
| 277 | i++; |
| 278 | } |
| 279 | |
| 280 | if (peraggstate->transfn.fn_strict) |
| 281 | { |
| 282 | /* |
| 283 | * For a strict transfn, nothing happens when there's a NULL input; we |
| 284 | * just keep the prior transValue. Note transValueCount doesn't |
| 285 | * change either. |
| 286 | */ |
| 287 | for (i = 1; i <= numArguments; i++) |
| 288 | { |
| 289 | if (fcinfo->args[i].isnull) |
| 290 | { |
| 291 | MemoryContextSwitchTo(oldContext); |
| 292 | return; |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * For strict transition functions with initial value NULL we use the |
| 298 | * first non-NULL input as the initial state. (We already checked |
| 299 | * that the agg's input type is binary-compatible with its transtype, |
| 300 | * so straight copy here is OK.) |
| 301 | * |
| 302 | * We must copy the datum into aggcontext if it is pass-by-ref. We do |
| 303 | * not need to pfree the old transValue, since it's NULL. |
| 304 | */ |
| 305 | if (peraggstate->transValueCount == 0 && peraggstate->transValueIsNull) |
| 306 | { |
| 307 | MemoryContextSwitchTo(peraggstate->aggcontext); |
| 308 | peraggstate->transValue = datumCopy(fcinfo->args[1].value, |
| 309 | peraggstate->transtypeByVal, |
| 310 | peraggstate->transtypeLen); |
| 311 | peraggstate->transValueIsNull = false; |
| 312 | peraggstate->transValueCount = 1; |
| 313 | MemoryContextSwitchTo(oldContext); |
| 314 | return; |
| 315 | } |
| 316 | |
| 317 | if (peraggstate->transValueIsNull) |
| 318 | { |
| 319 | /* |
| 320 | * Don't call a strict function with NULL inputs. Note it is |
| 321 | * possible to get here despite the above tests, if the transfn is |
| 322 | * strict *and* returned a NULL on a prior cycle. If that happens |
| 323 | * we will propagate the NULL all the way to the end. That can |
| 324 | * only happen if there's no inverse transition function, though, |
| 325 | * since we disallow transitions back to NULL when there is one. |
| 326 | */ |
| 327 | MemoryContextSwitchTo(oldContext); |
| 328 | Assert(!OidIsValid(peraggstate->invtransfn_oid)); |
| 329 | return; |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * OK to call the transition function. Set winstate->curaggcontext while |
| 335 | * calling it, for possible use by AggCheckCallContext. |
| 336 | */ |
| 337 | InitFunctionCallInfoData(*fcinfo, &(peraggstate->transfn), |
| 338 | numArguments + 1, |
| 339 | perfuncstate->winCollation, |
| 340 | (void *) winstate, NULL); |
| 341 | fcinfo->args[0].value = peraggstate->transValue; |
| 342 | fcinfo->args[0].isnull = peraggstate->transValueIsNull; |
| 343 | winstate->curaggcontext = peraggstate->aggcontext; |
| 344 | newVal = FunctionCallInvoke(fcinfo); |
| 345 | winstate->curaggcontext = NULL; |
| 346 | |
| 347 | /* |
| 348 | * Moving-aggregate transition functions must not return null, see |
| 349 | * advance_windowaggregate_base(). |
| 350 | */ |
| 351 | if (fcinfo->isnull && OidIsValid(peraggstate->invtransfn_oid)) |
| 352 | ereport(ERROR, |
| 353 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 354 | errmsg("moving-aggregate transition function must not return null" ))); |
| 355 | |
| 356 | /* |
| 357 | * We must track the number of rows included in transValue, since to |
| 358 | * remove the last input, advance_windowaggregate_base() mustn't call the |
| 359 | * inverse transition function, but simply reset transValue back to its |
| 360 | * initial value. |
| 361 | */ |
| 362 | peraggstate->transValueCount++; |
| 363 | |
| 364 | /* |
| 365 | * If pass-by-ref datatype, must copy the new value into aggcontext and |
| 366 | * free the prior transValue. But if transfn returned a pointer to its |
| 367 | * first input, we don't need to do anything. Also, if transfn returned a |
| 368 | * pointer to a R/W expanded object that is already a child of the |
| 369 | * aggcontext, assume we can adopt that value without copying it. |
| 370 | */ |
| 371 | if (!peraggstate->transtypeByVal && |
| 372 | DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue)) |
| 373 | { |
| 374 | if (!fcinfo->isnull) |
| 375 | { |
| 376 | MemoryContextSwitchTo(peraggstate->aggcontext); |
| 377 | if (DatumIsReadWriteExpandedObject(newVal, |
| 378 | false, |
| 379 | peraggstate->transtypeLen) && |
| 380 | MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext) |
| 381 | /* do nothing */ ; |
| 382 | else |
| 383 | newVal = datumCopy(newVal, |
| 384 | peraggstate->transtypeByVal, |
| 385 | peraggstate->transtypeLen); |
| 386 | } |
| 387 | if (!peraggstate->transValueIsNull) |
| 388 | { |
| 389 | if (DatumIsReadWriteExpandedObject(peraggstate->transValue, |
| 390 | false, |
| 391 | peraggstate->transtypeLen)) |
| 392 | DeleteExpandedObject(peraggstate->transValue); |
| 393 | else |
| 394 | pfree(DatumGetPointer(peraggstate->transValue)); |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | MemoryContextSwitchTo(oldContext); |
| 399 | peraggstate->transValue = newVal; |
| 400 | peraggstate->transValueIsNull = fcinfo->isnull; |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * advance_windowaggregate_base |
| 405 | * Remove the oldest tuple from an aggregation. |
| 406 | * |
| 407 | * This is very much like advance_windowaggregate, except that we will call |
| 408 | * the inverse transition function (which caller must have checked is |
| 409 | * available). |
| 410 | * |
| 411 | * Returns true if we successfully removed the current row from this |
| 412 | * aggregate, false if not (in the latter case, caller is responsible |
| 413 | * for cleaning up by restarting the aggregation). |
| 414 | */ |
| 415 | static bool |
| 416 | advance_windowaggregate_base(WindowAggState *winstate, |
| 417 | WindowStatePerFunc perfuncstate, |
| 418 | WindowStatePerAgg peraggstate) |
| 419 | { |
| 420 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
| 421 | WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate; |
| 422 | int numArguments = perfuncstate->numArguments; |
| 423 | Datum newVal; |
| 424 | ListCell *arg; |
| 425 | int i; |
| 426 | MemoryContext oldContext; |
| 427 | ExprContext *econtext = winstate->tmpcontext; |
| 428 | ExprState *filter = wfuncstate->aggfilter; |
| 429 | |
| 430 | oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); |
| 431 | |
| 432 | /* Skip anything FILTERed out */ |
| 433 | if (filter) |
| 434 | { |
| 435 | bool isnull; |
| 436 | Datum res = ExecEvalExpr(filter, econtext, &isnull); |
| 437 | |
| 438 | if (isnull || !DatumGetBool(res)) |
| 439 | { |
| 440 | MemoryContextSwitchTo(oldContext); |
| 441 | return true; |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | /* We start from 1, since the 0th arg will be the transition value */ |
| 446 | i = 1; |
| 447 | foreach(arg, wfuncstate->args) |
| 448 | { |
| 449 | ExprState *argstate = (ExprState *) lfirst(arg); |
| 450 | |
| 451 | fcinfo->args[i].value = ExecEvalExpr(argstate, econtext, |
| 452 | &fcinfo->args[i].isnull); |
| 453 | i++; |
| 454 | } |
| 455 | |
| 456 | if (peraggstate->invtransfn.fn_strict) |
| 457 | { |
| 458 | /* |
| 459 | * For a strict (inv)transfn, nothing happens when there's a NULL |
| 460 | * input; we just keep the prior transValue. Note transValueCount |
| 461 | * doesn't change either. |
| 462 | */ |
| 463 | for (i = 1; i <= numArguments; i++) |
| 464 | { |
| 465 | if (fcinfo->args[i].isnull) |
| 466 | { |
| 467 | MemoryContextSwitchTo(oldContext); |
| 468 | return true; |
| 469 | } |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | /* There should still be an added but not yet removed value */ |
| 474 | Assert(peraggstate->transValueCount > 0); |
| 475 | |
| 476 | /* |
| 477 | * In moving-aggregate mode, the state must never be NULL, except possibly |
| 478 | * before any rows have been aggregated (which is surely not the case at |
| 479 | * this point). This restriction allows us to interpret a NULL result |
| 480 | * from the inverse function as meaning "sorry, can't do an inverse |
| 481 | * transition in this case". We already checked this in |
| 482 | * advance_windowaggregate, but just for safety, check again. |
| 483 | */ |
| 484 | if (peraggstate->transValueIsNull) |
| 485 | elog(ERROR, "aggregate transition value is NULL before inverse transition" ); |
| 486 | |
| 487 | /* |
| 488 | * We mustn't use the inverse transition function to remove the last |
| 489 | * input. Doing so would yield a non-NULL state, whereas we should be in |
| 490 | * the initial state afterwards which may very well be NULL. So instead, |
| 491 | * we simply re-initialize the aggregate in this case. |
| 492 | */ |
| 493 | if (peraggstate->transValueCount == 1) |
| 494 | { |
| 495 | MemoryContextSwitchTo(oldContext); |
| 496 | initialize_windowaggregate(winstate, |
| 497 | &winstate->perfunc[peraggstate->wfuncno], |
| 498 | peraggstate); |
| 499 | return true; |
| 500 | } |
| 501 | |
| 502 | /* |
| 503 | * OK to call the inverse transition function. Set |
| 504 | * winstate->curaggcontext while calling it, for possible use by |
| 505 | * AggCheckCallContext. |
| 506 | */ |
| 507 | InitFunctionCallInfoData(*fcinfo, &(peraggstate->invtransfn), |
| 508 | numArguments + 1, |
| 509 | perfuncstate->winCollation, |
| 510 | (void *) winstate, NULL); |
| 511 | fcinfo->args[0].value = peraggstate->transValue; |
| 512 | fcinfo->args[0].isnull = peraggstate->transValueIsNull; |
| 513 | winstate->curaggcontext = peraggstate->aggcontext; |
| 514 | newVal = FunctionCallInvoke(fcinfo); |
| 515 | winstate->curaggcontext = NULL; |
| 516 | |
| 517 | /* |
| 518 | * If the function returns NULL, report failure, forcing a restart. |
| 519 | */ |
| 520 | if (fcinfo->isnull) |
| 521 | { |
| 522 | MemoryContextSwitchTo(oldContext); |
| 523 | return false; |
| 524 | } |
| 525 | |
| 526 | /* Update number of rows included in transValue */ |
| 527 | peraggstate->transValueCount--; |
| 528 | |
| 529 | /* |
| 530 | * If pass-by-ref datatype, must copy the new value into aggcontext and |
| 531 | * free the prior transValue. But if invtransfn returned a pointer to its |
| 532 | * first input, we don't need to do anything. Also, if invtransfn |
| 533 | * returned a pointer to a R/W expanded object that is already a child of |
| 534 | * the aggcontext, assume we can adopt that value without copying it. |
| 535 | * |
| 536 | * Note: the checks for null values here will never fire, but it seems |
| 537 | * best to have this stanza look just like advance_windowaggregate. |
| 538 | */ |
| 539 | if (!peraggstate->transtypeByVal && |
| 540 | DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue)) |
| 541 | { |
| 542 | if (!fcinfo->isnull) |
| 543 | { |
| 544 | MemoryContextSwitchTo(peraggstate->aggcontext); |
| 545 | if (DatumIsReadWriteExpandedObject(newVal, |
| 546 | false, |
| 547 | peraggstate->transtypeLen) && |
| 548 | MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext) |
| 549 | /* do nothing */ ; |
| 550 | else |
| 551 | newVal = datumCopy(newVal, |
| 552 | peraggstate->transtypeByVal, |
| 553 | peraggstate->transtypeLen); |
| 554 | } |
| 555 | if (!peraggstate->transValueIsNull) |
| 556 | { |
| 557 | if (DatumIsReadWriteExpandedObject(peraggstate->transValue, |
| 558 | false, |
| 559 | peraggstate->transtypeLen)) |
| 560 | DeleteExpandedObject(peraggstate->transValue); |
| 561 | else |
| 562 | pfree(DatumGetPointer(peraggstate->transValue)); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | MemoryContextSwitchTo(oldContext); |
| 567 | peraggstate->transValue = newVal; |
| 568 | peraggstate->transValueIsNull = fcinfo->isnull; |
| 569 | |
| 570 | return true; |
| 571 | } |
| 572 | |
| 573 | /* |
| 574 | * finalize_windowaggregate |
| 575 | * parallel to finalize_aggregate in nodeAgg.c |
| 576 | */ |
| 577 | static void |
| 578 | finalize_windowaggregate(WindowAggState *winstate, |
| 579 | WindowStatePerFunc perfuncstate, |
| 580 | WindowStatePerAgg peraggstate, |
| 581 | Datum *result, bool *isnull) |
| 582 | { |
| 583 | MemoryContext oldContext; |
| 584 | |
| 585 | oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory); |
| 586 | |
| 587 | /* |
| 588 | * Apply the agg's finalfn if one is provided, else return transValue. |
| 589 | */ |
| 590 | if (OidIsValid(peraggstate->finalfn_oid)) |
| 591 | { |
| 592 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
| 593 | int numFinalArgs = peraggstate->numFinalArgs; |
| 594 | bool anynull; |
| 595 | int i; |
| 596 | |
| 597 | InitFunctionCallInfoData(fcinfodata.fcinfo, &(peraggstate->finalfn), |
| 598 | numFinalArgs, |
| 599 | perfuncstate->winCollation, |
| 600 | (void *) winstate, NULL); |
| 601 | fcinfo->args[0].value = |
| 602 | MakeExpandedObjectReadOnly(peraggstate->transValue, |
| 603 | peraggstate->transValueIsNull, |
| 604 | peraggstate->transtypeLen); |
| 605 | fcinfo->args[0].isnull = peraggstate->transValueIsNull; |
| 606 | anynull = peraggstate->transValueIsNull; |
| 607 | |
| 608 | /* Fill any remaining argument positions with nulls */ |
| 609 | for (i = 1; i < numFinalArgs; i++) |
| 610 | { |
| 611 | fcinfo->args[i].value = (Datum) 0; |
| 612 | fcinfo->args[i].isnull = true; |
| 613 | anynull = true; |
| 614 | } |
| 615 | |
| 616 | if (fcinfo->flinfo->fn_strict && anynull) |
| 617 | { |
| 618 | /* don't call a strict function with NULL inputs */ |
| 619 | *result = (Datum) 0; |
| 620 | *isnull = true; |
| 621 | } |
| 622 | else |
| 623 | { |
| 624 | winstate->curaggcontext = peraggstate->aggcontext; |
| 625 | *result = FunctionCallInvoke(fcinfo); |
| 626 | winstate->curaggcontext = NULL; |
| 627 | *isnull = fcinfo->isnull; |
| 628 | } |
| 629 | } |
| 630 | else |
| 631 | { |
| 632 | /* Don't need MakeExpandedObjectReadOnly; datumCopy will copy it */ |
| 633 | *result = peraggstate->transValue; |
| 634 | *isnull = peraggstate->transValueIsNull; |
| 635 | } |
| 636 | |
| 637 | /* |
| 638 | * If result is pass-by-ref, make sure it is in the right context. |
| 639 | */ |
| 640 | if (!peraggstate->resulttypeByVal && !*isnull && |
| 641 | !MemoryContextContains(CurrentMemoryContext, |
| 642 | DatumGetPointer(*result))) |
| 643 | *result = datumCopy(*result, |
| 644 | peraggstate->resulttypeByVal, |
| 645 | peraggstate->resulttypeLen); |
| 646 | MemoryContextSwitchTo(oldContext); |
| 647 | } |
| 648 | |
| 649 | /* |
| 650 | * eval_windowaggregates |
| 651 | * evaluate plain aggregates being used as window functions |
| 652 | * |
| 653 | * This differs from nodeAgg.c in two ways. First, if the window's frame |
| 654 | * start position moves, we use the inverse transition function (if it exists) |
| 655 | * to remove rows from the transition value. And second, we expect to be |
| 656 | * able to call aggregate final functions repeatedly after aggregating more |
| 657 | * data onto the same transition value. This is not a behavior required by |
| 658 | * nodeAgg.c. |
| 659 | */ |
| 660 | static void |
| 661 | eval_windowaggregates(WindowAggState *winstate) |
| 662 | { |
| 663 | WindowStatePerAgg peraggstate; |
| 664 | int wfuncno, |
| 665 | numaggs, |
| 666 | numaggs_restart, |
| 667 | i; |
| 668 | int64 aggregatedupto_nonrestarted; |
| 669 | MemoryContext oldContext; |
| 670 | ExprContext *econtext; |
| 671 | WindowObject agg_winobj; |
| 672 | TupleTableSlot *agg_row_slot; |
| 673 | TupleTableSlot *temp_slot; |
| 674 | |
| 675 | numaggs = winstate->numaggs; |
| 676 | if (numaggs == 0) |
| 677 | return; /* nothing to do */ |
| 678 | |
| 679 | /* final output execution is in ps_ExprContext */ |
| 680 | econtext = winstate->ss.ps.ps_ExprContext; |
| 681 | agg_winobj = winstate->agg_winobj; |
| 682 | agg_row_slot = winstate->agg_row_slot; |
| 683 | temp_slot = winstate->temp_slot_1; |
| 684 | |
| 685 | /* |
| 686 | * If the window's frame start clause is UNBOUNDED_PRECEDING and no |
| 687 | * exclusion clause is specified, then the window frame consists of a |
| 688 | * contiguous group of rows extending forward from the start of the |
| 689 | * partition, and rows only enter the frame, never exit it, as the current |
| 690 | * row advances forward. This makes it possible to use an incremental |
| 691 | * strategy for evaluating aggregates: we run the transition function for |
| 692 | * each row added to the frame, and run the final function whenever we |
| 693 | * need the current aggregate value. This is considerably more efficient |
| 694 | * than the naive approach of re-running the entire aggregate calculation |
| 695 | * for each current row. It does assume that the final function doesn't |
| 696 | * damage the running transition value, but we have the same assumption in |
| 697 | * nodeAgg.c too (when it rescans an existing hash table). |
| 698 | * |
| 699 | * If the frame start does sometimes move, we can still optimize as above |
| 700 | * whenever successive rows share the same frame head, but if the frame |
| 701 | * head moves beyond the previous head we try to remove those rows using |
| 702 | * the aggregate's inverse transition function. This function restores |
| 703 | * the aggregate's current state to what it would be if the removed row |
| 704 | * had never been aggregated in the first place. Inverse transition |
| 705 | * functions may optionally return NULL, indicating that the function was |
| 706 | * unable to remove the tuple from aggregation. If this happens, or if |
| 707 | * the aggregate doesn't have an inverse transition function at all, we |
| 708 | * must perform the aggregation all over again for all tuples within the |
| 709 | * new frame boundaries. |
| 710 | * |
| 711 | * If there's any exclusion clause, then we may have to aggregate over a |
| 712 | * non-contiguous set of rows, so we punt and recalculate for every row. |
| 713 | * (For some frame end choices, it might be that the frame is always |
| 714 | * contiguous anyway, but that's an optimization to investigate later.) |
| 715 | * |
| 716 | * In many common cases, multiple rows share the same frame and hence the |
| 717 | * same aggregate value. (In particular, if there's no ORDER BY in a RANGE |
| 718 | * window, then all rows are peers and so they all have window frame equal |
| 719 | * to the whole partition.) We optimize such cases by calculating the |
| 720 | * aggregate value once when we reach the first row of a peer group, and |
| 721 | * then returning the saved value for all subsequent rows. |
| 722 | * |
| 723 | * 'aggregatedupto' keeps track of the first row that has not yet been |
| 724 | * accumulated into the aggregate transition values. Whenever we start a |
| 725 | * new peer group, we accumulate forward to the end of the peer group. |
| 726 | */ |
| 727 | |
| 728 | /* |
| 729 | * First, update the frame head position. |
| 730 | * |
| 731 | * The frame head should never move backwards, and the code below wouldn't |
| 732 | * cope if it did, so for safety we complain if it does. |
| 733 | */ |
| 734 | update_frameheadpos(winstate); |
| 735 | if (winstate->frameheadpos < winstate->aggregatedbase) |
| 736 | elog(ERROR, "window frame head moved backward" ); |
| 737 | |
| 738 | /* |
| 739 | * If the frame didn't change compared to the previous row, we can re-use |
| 740 | * the result values that were previously saved at the bottom of this |
| 741 | * function. Since we don't know the current frame's end yet, this is not |
| 742 | * possible to check for fully. But if the frame end mode is UNBOUNDED |
| 743 | * FOLLOWING or CURRENT ROW, no exclusion clause is specified, and the |
| 744 | * current row lies within the previous row's frame, then the two frames' |
| 745 | * ends must coincide. Note that on the first row aggregatedbase == |
| 746 | * aggregatedupto, meaning this test must fail, so we don't need to check |
| 747 | * the "there was no previous row" case explicitly here. |
| 748 | */ |
| 749 | if (winstate->aggregatedbase == winstate->frameheadpos && |
| 750 | (winstate->frameOptions & (FRAMEOPTION_END_UNBOUNDED_FOLLOWING | |
| 751 | FRAMEOPTION_END_CURRENT_ROW)) && |
| 752 | !(winstate->frameOptions & FRAMEOPTION_EXCLUSION) && |
| 753 | winstate->aggregatedbase <= winstate->currentpos && |
| 754 | winstate->aggregatedupto > winstate->currentpos) |
| 755 | { |
| 756 | for (i = 0; i < numaggs; i++) |
| 757 | { |
| 758 | peraggstate = &winstate->peragg[i]; |
| 759 | wfuncno = peraggstate->wfuncno; |
| 760 | econtext->ecxt_aggvalues[wfuncno] = peraggstate->resultValue; |
| 761 | econtext->ecxt_aggnulls[wfuncno] = peraggstate->resultValueIsNull; |
| 762 | } |
| 763 | return; |
| 764 | } |
| 765 | |
| 766 | /*---------- |
| 767 | * Initialize restart flags. |
| 768 | * |
| 769 | * We restart the aggregation: |
| 770 | * - if we're processing the first row in the partition, or |
| 771 | * - if the frame's head moved and we cannot use an inverse |
| 772 | * transition function, or |
| 773 | * - we have an EXCLUSION clause, or |
| 774 | * - if the new frame doesn't overlap the old one |
| 775 | * |
| 776 | * Note that we don't strictly need to restart in the last case, but if |
| 777 | * we're going to remove all rows from the aggregation anyway, a restart |
| 778 | * surely is faster. |
| 779 | *---------- |
| 780 | */ |
| 781 | numaggs_restart = 0; |
| 782 | for (i = 0; i < numaggs; i++) |
| 783 | { |
| 784 | peraggstate = &winstate->peragg[i]; |
| 785 | if (winstate->currentpos == 0 || |
| 786 | (winstate->aggregatedbase != winstate->frameheadpos && |
| 787 | !OidIsValid(peraggstate->invtransfn_oid)) || |
| 788 | (winstate->frameOptions & FRAMEOPTION_EXCLUSION) || |
| 789 | winstate->aggregatedupto <= winstate->frameheadpos) |
| 790 | { |
| 791 | peraggstate->restart = true; |
| 792 | numaggs_restart++; |
| 793 | } |
| 794 | else |
| 795 | peraggstate->restart = false; |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | * If we have any possibly-moving aggregates, attempt to advance |
| 800 | * aggregatedbase to match the frame's head by removing input rows that |
| 801 | * fell off the top of the frame from the aggregations. This can fail, |
| 802 | * i.e. advance_windowaggregate_base() can return false, in which case |
| 803 | * we'll restart that aggregate below. |
| 804 | */ |
| 805 | while (numaggs_restart < numaggs && |
| 806 | winstate->aggregatedbase < winstate->frameheadpos) |
| 807 | { |
| 808 | /* |
| 809 | * Fetch the next tuple of those being removed. This should never fail |
| 810 | * as we should have been here before. |
| 811 | */ |
| 812 | if (!window_gettupleslot(agg_winobj, winstate->aggregatedbase, |
| 813 | temp_slot)) |
| 814 | elog(ERROR, "could not re-fetch previously fetched frame row" ); |
| 815 | |
| 816 | /* Set tuple context for evaluation of aggregate arguments */ |
| 817 | winstate->tmpcontext->ecxt_outertuple = temp_slot; |
| 818 | |
| 819 | /* |
| 820 | * Perform the inverse transition for each aggregate function in the |
| 821 | * window, unless it has already been marked as needing a restart. |
| 822 | */ |
| 823 | for (i = 0; i < numaggs; i++) |
| 824 | { |
| 825 | bool ok; |
| 826 | |
| 827 | peraggstate = &winstate->peragg[i]; |
| 828 | if (peraggstate->restart) |
| 829 | continue; |
| 830 | |
| 831 | wfuncno = peraggstate->wfuncno; |
| 832 | ok = advance_windowaggregate_base(winstate, |
| 833 | &winstate->perfunc[wfuncno], |
| 834 | peraggstate); |
| 835 | if (!ok) |
| 836 | { |
| 837 | /* Inverse transition function has failed, must restart */ |
| 838 | peraggstate->restart = true; |
| 839 | numaggs_restart++; |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | /* Reset per-input-tuple context after each tuple */ |
| 844 | ResetExprContext(winstate->tmpcontext); |
| 845 | |
| 846 | /* And advance the aggregated-row state */ |
| 847 | winstate->aggregatedbase++; |
| 848 | ExecClearTuple(temp_slot); |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * If we successfully advanced the base rows of all the aggregates, |
| 853 | * aggregatedbase now equals frameheadpos; but if we failed for any, we |
| 854 | * must forcibly update aggregatedbase. |
| 855 | */ |
| 856 | winstate->aggregatedbase = winstate->frameheadpos; |
| 857 | |
| 858 | /* |
| 859 | * If we created a mark pointer for aggregates, keep it pushed up to frame |
| 860 | * head, so that tuplestore can discard unnecessary rows. |
| 861 | */ |
| 862 | if (agg_winobj->markptr >= 0) |
| 863 | WinSetMarkPosition(agg_winobj, winstate->frameheadpos); |
| 864 | |
| 865 | /* |
| 866 | * Now restart the aggregates that require it. |
| 867 | * |
| 868 | * We assume that aggregates using the shared context always restart if |
| 869 | * *any* aggregate restarts, and we may thus clean up the shared |
| 870 | * aggcontext if that is the case. Private aggcontexts are reset by |
| 871 | * initialize_windowaggregate() if their owning aggregate restarts. If we |
| 872 | * aren't restarting an aggregate, we need to free any previously saved |
| 873 | * result for it, else we'll leak memory. |
| 874 | */ |
| 875 | if (numaggs_restart > 0) |
| 876 | MemoryContextResetAndDeleteChildren(winstate->aggcontext); |
| 877 | for (i = 0; i < numaggs; i++) |
| 878 | { |
| 879 | peraggstate = &winstate->peragg[i]; |
| 880 | |
| 881 | /* Aggregates using the shared ctx must restart if *any* agg does */ |
| 882 | Assert(peraggstate->aggcontext != winstate->aggcontext || |
| 883 | numaggs_restart == 0 || |
| 884 | peraggstate->restart); |
| 885 | |
| 886 | if (peraggstate->restart) |
| 887 | { |
| 888 | wfuncno = peraggstate->wfuncno; |
| 889 | initialize_windowaggregate(winstate, |
| 890 | &winstate->perfunc[wfuncno], |
| 891 | peraggstate); |
| 892 | } |
| 893 | else if (!peraggstate->resultValueIsNull) |
| 894 | { |
| 895 | if (!peraggstate->resulttypeByVal) |
| 896 | pfree(DatumGetPointer(peraggstate->resultValue)); |
| 897 | peraggstate->resultValue = (Datum) 0; |
| 898 | peraggstate->resultValueIsNull = true; |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | /* |
| 903 | * Non-restarted aggregates now contain the rows between aggregatedbase |
| 904 | * (i.e., frameheadpos) and aggregatedupto, while restarted aggregates |
| 905 | * contain no rows. If there are any restarted aggregates, we must thus |
| 906 | * begin aggregating anew at frameheadpos, otherwise we may simply |
| 907 | * continue at aggregatedupto. We must remember the old value of |
| 908 | * aggregatedupto to know how long to skip advancing non-restarted |
| 909 | * aggregates. If we modify aggregatedupto, we must also clear |
| 910 | * agg_row_slot, per the loop invariant below. |
| 911 | */ |
| 912 | aggregatedupto_nonrestarted = winstate->aggregatedupto; |
| 913 | if (numaggs_restart > 0 && |
| 914 | winstate->aggregatedupto != winstate->frameheadpos) |
| 915 | { |
| 916 | winstate->aggregatedupto = winstate->frameheadpos; |
| 917 | ExecClearTuple(agg_row_slot); |
| 918 | } |
| 919 | |
| 920 | /* |
| 921 | * Advance until we reach a row not in frame (or end of partition). |
| 922 | * |
| 923 | * Note the loop invariant: agg_row_slot is either empty or holds the row |
| 924 | * at position aggregatedupto. We advance aggregatedupto after processing |
| 925 | * a row. |
| 926 | */ |
| 927 | for (;;) |
| 928 | { |
| 929 | int ret; |
| 930 | |
| 931 | /* Fetch next row if we didn't already */ |
| 932 | if (TupIsNull(agg_row_slot)) |
| 933 | { |
| 934 | if (!window_gettupleslot(agg_winobj, winstate->aggregatedupto, |
| 935 | agg_row_slot)) |
| 936 | break; /* must be end of partition */ |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * Exit loop if no more rows can be in frame. Skip aggregation if |
| 941 | * current row is not in frame but there might be more in the frame. |
| 942 | */ |
| 943 | ret = row_is_in_frame(winstate, winstate->aggregatedupto, agg_row_slot); |
| 944 | if (ret < 0) |
| 945 | break; |
| 946 | if (ret == 0) |
| 947 | goto next_tuple; |
| 948 | |
| 949 | /* Set tuple context for evaluation of aggregate arguments */ |
| 950 | winstate->tmpcontext->ecxt_outertuple = agg_row_slot; |
| 951 | |
| 952 | /* Accumulate row into the aggregates */ |
| 953 | for (i = 0; i < numaggs; i++) |
| 954 | { |
| 955 | peraggstate = &winstate->peragg[i]; |
| 956 | |
| 957 | /* Non-restarted aggs skip until aggregatedupto_nonrestarted */ |
| 958 | if (!peraggstate->restart && |
| 959 | winstate->aggregatedupto < aggregatedupto_nonrestarted) |
| 960 | continue; |
| 961 | |
| 962 | wfuncno = peraggstate->wfuncno; |
| 963 | advance_windowaggregate(winstate, |
| 964 | &winstate->perfunc[wfuncno], |
| 965 | peraggstate); |
| 966 | } |
| 967 | |
| 968 | next_tuple: |
| 969 | /* Reset per-input-tuple context after each tuple */ |
| 970 | ResetExprContext(winstate->tmpcontext); |
| 971 | |
| 972 | /* And advance the aggregated-row state */ |
| 973 | winstate->aggregatedupto++; |
| 974 | ExecClearTuple(agg_row_slot); |
| 975 | } |
| 976 | |
| 977 | /* The frame's end is not supposed to move backwards, ever */ |
| 978 | Assert(aggregatedupto_nonrestarted <= winstate->aggregatedupto); |
| 979 | |
| 980 | /* |
| 981 | * finalize aggregates and fill result/isnull fields. |
| 982 | */ |
| 983 | for (i = 0; i < numaggs; i++) |
| 984 | { |
| 985 | Datum *result; |
| 986 | bool *isnull; |
| 987 | |
| 988 | peraggstate = &winstate->peragg[i]; |
| 989 | wfuncno = peraggstate->wfuncno; |
| 990 | result = &econtext->ecxt_aggvalues[wfuncno]; |
| 991 | isnull = &econtext->ecxt_aggnulls[wfuncno]; |
| 992 | finalize_windowaggregate(winstate, |
| 993 | &winstate->perfunc[wfuncno], |
| 994 | peraggstate, |
| 995 | result, isnull); |
| 996 | |
| 997 | /* |
| 998 | * save the result in case next row shares the same frame. |
| 999 | * |
| 1000 | * XXX in some framing modes, eg ROWS/END_CURRENT_ROW, we can know in |
| 1001 | * advance that the next row can't possibly share the same frame. Is |
| 1002 | * it worth detecting that and skipping this code? |
| 1003 | */ |
| 1004 | if (!peraggstate->resulttypeByVal && !*isnull) |
| 1005 | { |
| 1006 | oldContext = MemoryContextSwitchTo(peraggstate->aggcontext); |
| 1007 | peraggstate->resultValue = |
| 1008 | datumCopy(*result, |
| 1009 | peraggstate->resulttypeByVal, |
| 1010 | peraggstate->resulttypeLen); |
| 1011 | MemoryContextSwitchTo(oldContext); |
| 1012 | } |
| 1013 | else |
| 1014 | { |
| 1015 | peraggstate->resultValue = *result; |
| 1016 | } |
| 1017 | peraggstate->resultValueIsNull = *isnull; |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | /* |
| 1022 | * eval_windowfunction |
| 1023 | * |
| 1024 | * Arguments of window functions are not evaluated here, because a window |
| 1025 | * function can need random access to arbitrary rows in the partition. |
| 1026 | * The window function uses the special WinGetFuncArgInPartition and |
| 1027 | * WinGetFuncArgInFrame functions to evaluate the arguments for the rows |
| 1028 | * it wants. |
| 1029 | */ |
| 1030 | static void |
| 1031 | eval_windowfunction(WindowAggState *winstate, WindowStatePerFunc perfuncstate, |
| 1032 | Datum *result, bool *isnull) |
| 1033 | { |
| 1034 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
| 1035 | MemoryContext oldContext; |
| 1036 | |
| 1037 | oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory); |
| 1038 | |
| 1039 | /* |
| 1040 | * We don't pass any normal arguments to a window function, but we do pass |
| 1041 | * it the number of arguments, in order to permit window function |
| 1042 | * implementations to support varying numbers of arguments. The real info |
| 1043 | * goes through the WindowObject, which is passed via fcinfo->context. |
| 1044 | */ |
| 1045 | InitFunctionCallInfoData(*fcinfo, &(perfuncstate->flinfo), |
| 1046 | perfuncstate->numArguments, |
| 1047 | perfuncstate->winCollation, |
| 1048 | (void *) perfuncstate->winobj, NULL); |
| 1049 | /* Just in case, make all the regular argument slots be null */ |
| 1050 | for (int argno = 0; argno < perfuncstate->numArguments; argno++) |
| 1051 | fcinfo->args[argno].isnull = true; |
| 1052 | /* Window functions don't have a current aggregate context, either */ |
| 1053 | winstate->curaggcontext = NULL; |
| 1054 | |
| 1055 | *result = FunctionCallInvoke(fcinfo); |
| 1056 | *isnull = fcinfo->isnull; |
| 1057 | |
| 1058 | /* |
| 1059 | * Make sure pass-by-ref data is allocated in the appropriate context. (We |
| 1060 | * need this in case the function returns a pointer into some short-lived |
| 1061 | * tuple, as is entirely possible.) |
| 1062 | */ |
| 1063 | if (!perfuncstate->resulttypeByVal && !fcinfo->isnull && |
| 1064 | !MemoryContextContains(CurrentMemoryContext, |
| 1065 | DatumGetPointer(*result))) |
| 1066 | *result = datumCopy(*result, |
| 1067 | perfuncstate->resulttypeByVal, |
| 1068 | perfuncstate->resulttypeLen); |
| 1069 | |
| 1070 | MemoryContextSwitchTo(oldContext); |
| 1071 | } |
| 1072 | |
| 1073 | /* |
| 1074 | * begin_partition |
| 1075 | * Start buffering rows of the next partition. |
| 1076 | */ |
| 1077 | static void |
| 1078 | begin_partition(WindowAggState *winstate) |
| 1079 | { |
| 1080 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
| 1081 | PlanState *outerPlan = outerPlanState(winstate); |
| 1082 | int frameOptions = winstate->frameOptions; |
| 1083 | int numfuncs = winstate->numfuncs; |
| 1084 | int i; |
| 1085 | |
| 1086 | winstate->partition_spooled = false; |
| 1087 | winstate->framehead_valid = false; |
| 1088 | winstate->frametail_valid = false; |
| 1089 | winstate->grouptail_valid = false; |
| 1090 | winstate->spooled_rows = 0; |
| 1091 | winstate->currentpos = 0; |
| 1092 | winstate->frameheadpos = 0; |
| 1093 | winstate->frametailpos = 0; |
| 1094 | winstate->currentgroup = 0; |
| 1095 | winstate->frameheadgroup = 0; |
| 1096 | winstate->frametailgroup = 0; |
| 1097 | winstate->groupheadpos = 0; |
| 1098 | winstate->grouptailpos = -1; /* see update_grouptailpos */ |
| 1099 | ExecClearTuple(winstate->agg_row_slot); |
| 1100 | if (winstate->framehead_slot) |
| 1101 | ExecClearTuple(winstate->framehead_slot); |
| 1102 | if (winstate->frametail_slot) |
| 1103 | ExecClearTuple(winstate->frametail_slot); |
| 1104 | |
| 1105 | /* |
| 1106 | * If this is the very first partition, we need to fetch the first input |
| 1107 | * row to store in first_part_slot. |
| 1108 | */ |
| 1109 | if (TupIsNull(winstate->first_part_slot)) |
| 1110 | { |
| 1111 | TupleTableSlot *outerslot = ExecProcNode(outerPlan); |
| 1112 | |
| 1113 | if (!TupIsNull(outerslot)) |
| 1114 | ExecCopySlot(winstate->first_part_slot, outerslot); |
| 1115 | else |
| 1116 | { |
| 1117 | /* outer plan is empty, so we have nothing to do */ |
| 1118 | winstate->partition_spooled = true; |
| 1119 | winstate->more_partitions = false; |
| 1120 | return; |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | /* Create new tuplestore for this partition */ |
| 1125 | winstate->buffer = tuplestore_begin_heap(false, false, work_mem); |
| 1126 | |
| 1127 | /* |
| 1128 | * Set up read pointers for the tuplestore. The current pointer doesn't |
| 1129 | * need BACKWARD capability, but the per-window-function read pointers do, |
| 1130 | * and the aggregate pointer does if we might need to restart aggregation. |
| 1131 | */ |
| 1132 | winstate->current_ptr = 0; /* read pointer 0 is pre-allocated */ |
| 1133 | |
| 1134 | /* reset default REWIND capability bit for current ptr */ |
| 1135 | tuplestore_set_eflags(winstate->buffer, 0); |
| 1136 | |
| 1137 | /* create read pointers for aggregates, if needed */ |
| 1138 | if (winstate->numaggs > 0) |
| 1139 | { |
| 1140 | WindowObject agg_winobj = winstate->agg_winobj; |
| 1141 | int readptr_flags = 0; |
| 1142 | |
| 1143 | /* |
| 1144 | * If the frame head is potentially movable, or we have an EXCLUSION |
| 1145 | * clause, we might need to restart aggregation ... |
| 1146 | */ |
| 1147 | if (!(frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) || |
| 1148 | (frameOptions & FRAMEOPTION_EXCLUSION)) |
| 1149 | { |
| 1150 | /* ... so create a mark pointer to track the frame head */ |
| 1151 | agg_winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer, 0); |
| 1152 | /* and the read pointer will need BACKWARD capability */ |
| 1153 | readptr_flags |= EXEC_FLAG_BACKWARD; |
| 1154 | } |
| 1155 | |
| 1156 | agg_winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer, |
| 1157 | readptr_flags); |
| 1158 | agg_winobj->markpos = -1; |
| 1159 | agg_winobj->seekpos = -1; |
| 1160 | |
| 1161 | /* Also reset the row counters for aggregates */ |
| 1162 | winstate->aggregatedbase = 0; |
| 1163 | winstate->aggregatedupto = 0; |
| 1164 | } |
| 1165 | |
| 1166 | /* create mark and read pointers for each real window function */ |
| 1167 | for (i = 0; i < numfuncs; i++) |
| 1168 | { |
| 1169 | WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]); |
| 1170 | |
| 1171 | if (!perfuncstate->plain_agg) |
| 1172 | { |
| 1173 | WindowObject winobj = perfuncstate->winobj; |
| 1174 | |
| 1175 | winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer, |
| 1176 | 0); |
| 1177 | winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer, |
| 1178 | EXEC_FLAG_BACKWARD); |
| 1179 | winobj->markpos = -1; |
| 1180 | winobj->seekpos = -1; |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | /* |
| 1185 | * If we are in RANGE or GROUPS mode, then determining frame boundaries |
| 1186 | * requires physical access to the frame endpoint rows, except in certain |
| 1187 | * degenerate cases. We create read pointers to point to those rows, to |
| 1188 | * simplify access and ensure that the tuplestore doesn't discard the |
| 1189 | * endpoint rows prematurely. (Must create pointers in exactly the same |
| 1190 | * cases that update_frameheadpos and update_frametailpos need them.) |
| 1191 | */ |
| 1192 | winstate->framehead_ptr = winstate->frametail_ptr = -1; /* if not used */ |
| 1193 | |
| 1194 | if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
| 1195 | { |
| 1196 | if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) && |
| 1197 | node->ordNumCols != 0) || |
| 1198 | (frameOptions & FRAMEOPTION_START_OFFSET)) |
| 1199 | winstate->framehead_ptr = |
| 1200 | tuplestore_alloc_read_pointer(winstate->buffer, 0); |
| 1201 | if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) && |
| 1202 | node->ordNumCols != 0) || |
| 1203 | (frameOptions & FRAMEOPTION_END_OFFSET)) |
| 1204 | winstate->frametail_ptr = |
| 1205 | tuplestore_alloc_read_pointer(winstate->buffer, 0); |
| 1206 | } |
| 1207 | |
| 1208 | /* |
| 1209 | * If we have an exclusion clause that requires knowing the boundaries of |
| 1210 | * the current row's peer group, we create a read pointer to track the |
| 1211 | * tail position of the peer group (i.e., first row of the next peer |
| 1212 | * group). The head position does not require its own pointer because we |
| 1213 | * maintain that as a side effect of advancing the current row. |
| 1214 | */ |
| 1215 | winstate->grouptail_ptr = -1; |
| 1216 | |
| 1217 | if ((frameOptions & (FRAMEOPTION_EXCLUDE_GROUP | |
| 1218 | FRAMEOPTION_EXCLUDE_TIES)) && |
| 1219 | node->ordNumCols != 0) |
| 1220 | { |
| 1221 | winstate->grouptail_ptr = |
| 1222 | tuplestore_alloc_read_pointer(winstate->buffer, 0); |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * Store the first tuple into the tuplestore (it's always available now; |
| 1227 | * we either read it above, or saved it at the end of previous partition) |
| 1228 | */ |
| 1229 | tuplestore_puttupleslot(winstate->buffer, winstate->first_part_slot); |
| 1230 | winstate->spooled_rows++; |
| 1231 | } |
| 1232 | |
| 1233 | /* |
| 1234 | * Read tuples from the outer node, up to and including position 'pos', and |
| 1235 | * store them into the tuplestore. If pos is -1, reads the whole partition. |
| 1236 | */ |
| 1237 | static void |
| 1238 | spool_tuples(WindowAggState *winstate, int64 pos) |
| 1239 | { |
| 1240 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
| 1241 | PlanState *outerPlan; |
| 1242 | TupleTableSlot *outerslot; |
| 1243 | MemoryContext oldcontext; |
| 1244 | |
| 1245 | if (!winstate->buffer) |
| 1246 | return; /* just a safety check */ |
| 1247 | if (winstate->partition_spooled) |
| 1248 | return; /* whole partition done already */ |
| 1249 | |
| 1250 | /* |
| 1251 | * If the tuplestore has spilled to disk, alternate reading and writing |
| 1252 | * becomes quite expensive due to frequent buffer flushes. It's cheaper |
| 1253 | * to force the entire partition to get spooled in one go. |
| 1254 | * |
| 1255 | * XXX this is a horrid kluge --- it'd be better to fix the performance |
| 1256 | * problem inside tuplestore. FIXME |
| 1257 | */ |
| 1258 | if (!tuplestore_in_memory(winstate->buffer)) |
| 1259 | pos = -1; |
| 1260 | |
| 1261 | outerPlan = outerPlanState(winstate); |
| 1262 | |
| 1263 | /* Must be in query context to call outerplan */ |
| 1264 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
| 1265 | |
| 1266 | while (winstate->spooled_rows <= pos || pos == -1) |
| 1267 | { |
| 1268 | outerslot = ExecProcNode(outerPlan); |
| 1269 | if (TupIsNull(outerslot)) |
| 1270 | { |
| 1271 | /* reached the end of the last partition */ |
| 1272 | winstate->partition_spooled = true; |
| 1273 | winstate->more_partitions = false; |
| 1274 | break; |
| 1275 | } |
| 1276 | |
| 1277 | if (node->partNumCols > 0) |
| 1278 | { |
| 1279 | ExprContext *econtext = winstate->tmpcontext; |
| 1280 | |
| 1281 | econtext->ecxt_innertuple = winstate->first_part_slot; |
| 1282 | econtext->ecxt_outertuple = outerslot; |
| 1283 | |
| 1284 | /* Check if this tuple still belongs to the current partition */ |
| 1285 | if (!ExecQualAndReset(winstate->partEqfunction, econtext)) |
| 1286 | { |
| 1287 | /* |
| 1288 | * end of partition; copy the tuple for the next cycle. |
| 1289 | */ |
| 1290 | ExecCopySlot(winstate->first_part_slot, outerslot); |
| 1291 | winstate->partition_spooled = true; |
| 1292 | winstate->more_partitions = true; |
| 1293 | break; |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | /* Still in partition, so save it into the tuplestore */ |
| 1298 | tuplestore_puttupleslot(winstate->buffer, outerslot); |
| 1299 | winstate->spooled_rows++; |
| 1300 | } |
| 1301 | |
| 1302 | MemoryContextSwitchTo(oldcontext); |
| 1303 | } |
| 1304 | |
| 1305 | /* |
| 1306 | * release_partition |
| 1307 | * clear information kept within a partition, including |
| 1308 | * tuplestore and aggregate results. |
| 1309 | */ |
| 1310 | static void |
| 1311 | release_partition(WindowAggState *winstate) |
| 1312 | { |
| 1313 | int i; |
| 1314 | |
| 1315 | for (i = 0; i < winstate->numfuncs; i++) |
| 1316 | { |
| 1317 | WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]); |
| 1318 | |
| 1319 | /* Release any partition-local state of this window function */ |
| 1320 | if (perfuncstate->winobj) |
| 1321 | perfuncstate->winobj->localmem = NULL; |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * Release all partition-local memory (in particular, any partition-local |
| 1326 | * state that we might have trashed our pointers to in the above loop, and |
| 1327 | * any aggregate temp data). We don't rely on retail pfree because some |
| 1328 | * aggregates might have allocated data we don't have direct pointers to. |
| 1329 | */ |
| 1330 | MemoryContextResetAndDeleteChildren(winstate->partcontext); |
| 1331 | MemoryContextResetAndDeleteChildren(winstate->aggcontext); |
| 1332 | for (i = 0; i < winstate->numaggs; i++) |
| 1333 | { |
| 1334 | if (winstate->peragg[i].aggcontext != winstate->aggcontext) |
| 1335 | MemoryContextResetAndDeleteChildren(winstate->peragg[i].aggcontext); |
| 1336 | } |
| 1337 | |
| 1338 | if (winstate->buffer) |
| 1339 | tuplestore_end(winstate->buffer); |
| 1340 | winstate->buffer = NULL; |
| 1341 | winstate->partition_spooled = false; |
| 1342 | } |
| 1343 | |
| 1344 | /* |
| 1345 | * row_is_in_frame |
| 1346 | * Determine whether a row is in the current row's window frame according |
| 1347 | * to our window framing rule |
| 1348 | * |
| 1349 | * The caller must have already determined that the row is in the partition |
| 1350 | * and fetched it into a slot. This function just encapsulates the framing |
| 1351 | * rules. |
| 1352 | * |
| 1353 | * Returns: |
| 1354 | * -1, if the row is out of frame and no succeeding rows can be in frame |
| 1355 | * 0, if the row is out of frame but succeeding rows might be in frame |
| 1356 | * 1, if the row is in frame |
| 1357 | * |
| 1358 | * May clobber winstate->temp_slot_2. |
| 1359 | */ |
| 1360 | static int |
| 1361 | row_is_in_frame(WindowAggState *winstate, int64 pos, TupleTableSlot *slot) |
| 1362 | { |
| 1363 | int frameOptions = winstate->frameOptions; |
| 1364 | |
| 1365 | Assert(pos >= 0); /* else caller error */ |
| 1366 | |
| 1367 | /* |
| 1368 | * First, check frame starting conditions. We might as well delegate this |
| 1369 | * to update_frameheadpos always; it doesn't add any notable cost. |
| 1370 | */ |
| 1371 | update_frameheadpos(winstate); |
| 1372 | if (pos < winstate->frameheadpos) |
| 1373 | return 0; |
| 1374 | |
| 1375 | /* |
| 1376 | * Okay so far, now check frame ending conditions. Here, we avoid calling |
| 1377 | * update_frametailpos in simple cases, so as not to spool tuples further |
| 1378 | * ahead than necessary. |
| 1379 | */ |
| 1380 | if (frameOptions & FRAMEOPTION_END_CURRENT_ROW) |
| 1381 | { |
| 1382 | if (frameOptions & FRAMEOPTION_ROWS) |
| 1383 | { |
| 1384 | /* rows after current row are out of frame */ |
| 1385 | if (pos > winstate->currentpos) |
| 1386 | return -1; |
| 1387 | } |
| 1388 | else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
| 1389 | { |
| 1390 | /* following row that is not peer is out of frame */ |
| 1391 | if (pos > winstate->currentpos && |
| 1392 | !are_peers(winstate, slot, winstate->ss.ss_ScanTupleSlot)) |
| 1393 | return -1; |
| 1394 | } |
| 1395 | else |
| 1396 | Assert(false); |
| 1397 | } |
| 1398 | else if (frameOptions & FRAMEOPTION_END_OFFSET) |
| 1399 | { |
| 1400 | if (frameOptions & FRAMEOPTION_ROWS) |
| 1401 | { |
| 1402 | int64 offset = DatumGetInt64(winstate->endOffsetValue); |
| 1403 | |
| 1404 | /* rows after current row + offset are out of frame */ |
| 1405 | if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
| 1406 | offset = -offset; |
| 1407 | |
| 1408 | if (pos > winstate->currentpos + offset) |
| 1409 | return -1; |
| 1410 | } |
| 1411 | else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
| 1412 | { |
| 1413 | /* hard cases, so delegate to update_frametailpos */ |
| 1414 | update_frametailpos(winstate); |
| 1415 | if (pos >= winstate->frametailpos) |
| 1416 | return -1; |
| 1417 | } |
| 1418 | else |
| 1419 | Assert(false); |
| 1420 | } |
| 1421 | |
| 1422 | /* Check exclusion clause */ |
| 1423 | if (frameOptions & FRAMEOPTION_EXCLUDE_CURRENT_ROW) |
| 1424 | { |
| 1425 | if (pos == winstate->currentpos) |
| 1426 | return 0; |
| 1427 | } |
| 1428 | else if ((frameOptions & FRAMEOPTION_EXCLUDE_GROUP) || |
| 1429 | ((frameOptions & FRAMEOPTION_EXCLUDE_TIES) && |
| 1430 | pos != winstate->currentpos)) |
| 1431 | { |
| 1432 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
| 1433 | |
| 1434 | /* If no ORDER BY, all rows are peers with each other */ |
| 1435 | if (node->ordNumCols == 0) |
| 1436 | return 0; |
| 1437 | /* Otherwise, check the group boundaries */ |
| 1438 | if (pos >= winstate->groupheadpos) |
| 1439 | { |
| 1440 | update_grouptailpos(winstate); |
| 1441 | if (pos < winstate->grouptailpos) |
| 1442 | return 0; |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | /* If we get here, it's in frame */ |
| 1447 | return 1; |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * update_frameheadpos |
| 1452 | * make frameheadpos valid for the current row |
| 1453 | * |
| 1454 | * Note that frameheadpos is computed without regard for any window exclusion |
| 1455 | * clause; the current row and/or its peers are considered part of the frame |
| 1456 | * for this purpose even if they must be excluded later. |
| 1457 | * |
| 1458 | * May clobber winstate->temp_slot_2. |
| 1459 | */ |
| 1460 | static void |
| 1461 | update_frameheadpos(WindowAggState *winstate) |
| 1462 | { |
| 1463 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
| 1464 | int frameOptions = winstate->frameOptions; |
| 1465 | MemoryContext oldcontext; |
| 1466 | |
| 1467 | if (winstate->framehead_valid) |
| 1468 | return; /* already known for current row */ |
| 1469 | |
| 1470 | /* We may be called in a short-lived context */ |
| 1471 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
| 1472 | |
| 1473 | if (frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) |
| 1474 | { |
| 1475 | /* In UNBOUNDED PRECEDING mode, frame head is always row 0 */ |
| 1476 | winstate->frameheadpos = 0; |
| 1477 | winstate->framehead_valid = true; |
| 1478 | } |
| 1479 | else if (frameOptions & FRAMEOPTION_START_CURRENT_ROW) |
| 1480 | { |
| 1481 | if (frameOptions & FRAMEOPTION_ROWS) |
| 1482 | { |
| 1483 | /* In ROWS mode, frame head is the same as current */ |
| 1484 | winstate->frameheadpos = winstate->currentpos; |
| 1485 | winstate->framehead_valid = true; |
| 1486 | } |
| 1487 | else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
| 1488 | { |
| 1489 | /* If no ORDER BY, all rows are peers with each other */ |
| 1490 | if (node->ordNumCols == 0) |
| 1491 | { |
| 1492 | winstate->frameheadpos = 0; |
| 1493 | winstate->framehead_valid = true; |
| 1494 | MemoryContextSwitchTo(oldcontext); |
| 1495 | return; |
| 1496 | } |
| 1497 | |
| 1498 | /* |
| 1499 | * In RANGE or GROUPS START_CURRENT_ROW mode, frame head is the |
| 1500 | * first row that is a peer of current row. We keep a copy of the |
| 1501 | * last-known frame head row in framehead_slot, and advance as |
| 1502 | * necessary. Note that if we reach end of partition, we will |
| 1503 | * leave frameheadpos = end+1 and framehead_slot empty. |
| 1504 | */ |
| 1505 | tuplestore_select_read_pointer(winstate->buffer, |
| 1506 | winstate->framehead_ptr); |
| 1507 | if (winstate->frameheadpos == 0 && |
| 1508 | TupIsNull(winstate->framehead_slot)) |
| 1509 | { |
| 1510 | /* fetch first row into framehead_slot, if we didn't already */ |
| 1511 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1512 | winstate->framehead_slot)) |
| 1513 | elog(ERROR, "unexpected end of tuplestore" ); |
| 1514 | } |
| 1515 | |
| 1516 | while (!TupIsNull(winstate->framehead_slot)) |
| 1517 | { |
| 1518 | if (are_peers(winstate, winstate->framehead_slot, |
| 1519 | winstate->ss.ss_ScanTupleSlot)) |
| 1520 | break; /* this row is the correct frame head */ |
| 1521 | /* Note we advance frameheadpos even if the fetch fails */ |
| 1522 | winstate->frameheadpos++; |
| 1523 | spool_tuples(winstate, winstate->frameheadpos); |
| 1524 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1525 | winstate->framehead_slot)) |
| 1526 | break; /* end of partition */ |
| 1527 | } |
| 1528 | winstate->framehead_valid = true; |
| 1529 | } |
| 1530 | else |
| 1531 | Assert(false); |
| 1532 | } |
| 1533 | else if (frameOptions & FRAMEOPTION_START_OFFSET) |
| 1534 | { |
| 1535 | if (frameOptions & FRAMEOPTION_ROWS) |
| 1536 | { |
| 1537 | /* In ROWS mode, bound is physically n before/after current */ |
| 1538 | int64 offset = DatumGetInt64(winstate->startOffsetValue); |
| 1539 | |
| 1540 | if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING) |
| 1541 | offset = -offset; |
| 1542 | |
| 1543 | winstate->frameheadpos = winstate->currentpos + offset; |
| 1544 | /* frame head can't go before first row */ |
| 1545 | if (winstate->frameheadpos < 0) |
| 1546 | winstate->frameheadpos = 0; |
| 1547 | else if (winstate->frameheadpos > winstate->currentpos + 1) |
| 1548 | { |
| 1549 | /* make sure frameheadpos is not past end of partition */ |
| 1550 | spool_tuples(winstate, winstate->frameheadpos - 1); |
| 1551 | if (winstate->frameheadpos > winstate->spooled_rows) |
| 1552 | winstate->frameheadpos = winstate->spooled_rows; |
| 1553 | } |
| 1554 | winstate->framehead_valid = true; |
| 1555 | } |
| 1556 | else if (frameOptions & FRAMEOPTION_RANGE) |
| 1557 | { |
| 1558 | /* |
| 1559 | * In RANGE START_OFFSET mode, frame head is the first row that |
| 1560 | * satisfies the in_range constraint relative to the current row. |
| 1561 | * We keep a copy of the last-known frame head row in |
| 1562 | * framehead_slot, and advance as necessary. Note that if we |
| 1563 | * reach end of partition, we will leave frameheadpos = end+1 and |
| 1564 | * framehead_slot empty. |
| 1565 | */ |
| 1566 | int sortCol = node->ordColIdx[0]; |
| 1567 | bool sub, |
| 1568 | less; |
| 1569 | |
| 1570 | /* We must have an ordering column */ |
| 1571 | Assert(node->ordNumCols == 1); |
| 1572 | |
| 1573 | /* Precompute flags for in_range checks */ |
| 1574 | if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING) |
| 1575 | sub = true; /* subtract startOffset from current row */ |
| 1576 | else |
| 1577 | sub = false; /* add it */ |
| 1578 | less = false; /* normally, we want frame head >= sum */ |
| 1579 | /* If sort order is descending, flip both flags */ |
| 1580 | if (!winstate->inRangeAsc) |
| 1581 | { |
| 1582 | sub = !sub; |
| 1583 | less = true; |
| 1584 | } |
| 1585 | |
| 1586 | tuplestore_select_read_pointer(winstate->buffer, |
| 1587 | winstate->framehead_ptr); |
| 1588 | if (winstate->frameheadpos == 0 && |
| 1589 | TupIsNull(winstate->framehead_slot)) |
| 1590 | { |
| 1591 | /* fetch first row into framehead_slot, if we didn't already */ |
| 1592 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1593 | winstate->framehead_slot)) |
| 1594 | elog(ERROR, "unexpected end of tuplestore" ); |
| 1595 | } |
| 1596 | |
| 1597 | while (!TupIsNull(winstate->framehead_slot)) |
| 1598 | { |
| 1599 | Datum headval, |
| 1600 | currval; |
| 1601 | bool headisnull, |
| 1602 | currisnull; |
| 1603 | |
| 1604 | headval = slot_getattr(winstate->framehead_slot, sortCol, |
| 1605 | &headisnull); |
| 1606 | currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol, |
| 1607 | &currisnull); |
| 1608 | if (headisnull || currisnull) |
| 1609 | { |
| 1610 | /* order of the rows depends only on nulls_first */ |
| 1611 | if (winstate->inRangeNullsFirst) |
| 1612 | { |
| 1613 | /* advance head if head is null and curr is not */ |
| 1614 | if (!headisnull || currisnull) |
| 1615 | break; |
| 1616 | } |
| 1617 | else |
| 1618 | { |
| 1619 | /* advance head if head is not null and curr is null */ |
| 1620 | if (headisnull || !currisnull) |
| 1621 | break; |
| 1622 | } |
| 1623 | } |
| 1624 | else |
| 1625 | { |
| 1626 | if (DatumGetBool(FunctionCall5Coll(&winstate->startInRangeFunc, |
| 1627 | winstate->inRangeColl, |
| 1628 | headval, |
| 1629 | currval, |
| 1630 | winstate->startOffsetValue, |
| 1631 | BoolGetDatum(sub), |
| 1632 | BoolGetDatum(less)))) |
| 1633 | break; /* this row is the correct frame head */ |
| 1634 | } |
| 1635 | /* Note we advance frameheadpos even if the fetch fails */ |
| 1636 | winstate->frameheadpos++; |
| 1637 | spool_tuples(winstate, winstate->frameheadpos); |
| 1638 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1639 | winstate->framehead_slot)) |
| 1640 | break; /* end of partition */ |
| 1641 | } |
| 1642 | winstate->framehead_valid = true; |
| 1643 | } |
| 1644 | else if (frameOptions & FRAMEOPTION_GROUPS) |
| 1645 | { |
| 1646 | /* |
| 1647 | * In GROUPS START_OFFSET mode, frame head is the first row of the |
| 1648 | * first peer group whose number satisfies the offset constraint. |
| 1649 | * We keep a copy of the last-known frame head row in |
| 1650 | * framehead_slot, and advance as necessary. Note that if we |
| 1651 | * reach end of partition, we will leave frameheadpos = end+1 and |
| 1652 | * framehead_slot empty. |
| 1653 | */ |
| 1654 | int64 offset = DatumGetInt64(winstate->startOffsetValue); |
| 1655 | int64 minheadgroup; |
| 1656 | |
| 1657 | if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING) |
| 1658 | minheadgroup = winstate->currentgroup - offset; |
| 1659 | else |
| 1660 | minheadgroup = winstate->currentgroup + offset; |
| 1661 | |
| 1662 | tuplestore_select_read_pointer(winstate->buffer, |
| 1663 | winstate->framehead_ptr); |
| 1664 | if (winstate->frameheadpos == 0 && |
| 1665 | TupIsNull(winstate->framehead_slot)) |
| 1666 | { |
| 1667 | /* fetch first row into framehead_slot, if we didn't already */ |
| 1668 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1669 | winstate->framehead_slot)) |
| 1670 | elog(ERROR, "unexpected end of tuplestore" ); |
| 1671 | } |
| 1672 | |
| 1673 | while (!TupIsNull(winstate->framehead_slot)) |
| 1674 | { |
| 1675 | if (winstate->frameheadgroup >= minheadgroup) |
| 1676 | break; /* this row is the correct frame head */ |
| 1677 | ExecCopySlot(winstate->temp_slot_2, winstate->framehead_slot); |
| 1678 | /* Note we advance frameheadpos even if the fetch fails */ |
| 1679 | winstate->frameheadpos++; |
| 1680 | spool_tuples(winstate, winstate->frameheadpos); |
| 1681 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1682 | winstate->framehead_slot)) |
| 1683 | break; /* end of partition */ |
| 1684 | if (!are_peers(winstate, winstate->temp_slot_2, |
| 1685 | winstate->framehead_slot)) |
| 1686 | winstate->frameheadgroup++; |
| 1687 | } |
| 1688 | ExecClearTuple(winstate->temp_slot_2); |
| 1689 | winstate->framehead_valid = true; |
| 1690 | } |
| 1691 | else |
| 1692 | Assert(false); |
| 1693 | } |
| 1694 | else |
| 1695 | Assert(false); |
| 1696 | |
| 1697 | MemoryContextSwitchTo(oldcontext); |
| 1698 | } |
| 1699 | |
| 1700 | /* |
| 1701 | * update_frametailpos |
| 1702 | * make frametailpos valid for the current row |
| 1703 | * |
| 1704 | * Note that frametailpos is computed without regard for any window exclusion |
| 1705 | * clause; the current row and/or its peers are considered part of the frame |
| 1706 | * for this purpose even if they must be excluded later. |
| 1707 | * |
| 1708 | * May clobber winstate->temp_slot_2. |
| 1709 | */ |
| 1710 | static void |
| 1711 | update_frametailpos(WindowAggState *winstate) |
| 1712 | { |
| 1713 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
| 1714 | int frameOptions = winstate->frameOptions; |
| 1715 | MemoryContext oldcontext; |
| 1716 | |
| 1717 | if (winstate->frametail_valid) |
| 1718 | return; /* already known for current row */ |
| 1719 | |
| 1720 | /* We may be called in a short-lived context */ |
| 1721 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
| 1722 | |
| 1723 | if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING) |
| 1724 | { |
| 1725 | /* In UNBOUNDED FOLLOWING mode, all partition rows are in frame */ |
| 1726 | spool_tuples(winstate, -1); |
| 1727 | winstate->frametailpos = winstate->spooled_rows; |
| 1728 | winstate->frametail_valid = true; |
| 1729 | } |
| 1730 | else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW) |
| 1731 | { |
| 1732 | if (frameOptions & FRAMEOPTION_ROWS) |
| 1733 | { |
| 1734 | /* In ROWS mode, exactly the rows up to current are in frame */ |
| 1735 | winstate->frametailpos = winstate->currentpos + 1; |
| 1736 | winstate->frametail_valid = true; |
| 1737 | } |
| 1738 | else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
| 1739 | { |
| 1740 | /* If no ORDER BY, all rows are peers with each other */ |
| 1741 | if (node->ordNumCols == 0) |
| 1742 | { |
| 1743 | spool_tuples(winstate, -1); |
| 1744 | winstate->frametailpos = winstate->spooled_rows; |
| 1745 | winstate->frametail_valid = true; |
| 1746 | MemoryContextSwitchTo(oldcontext); |
| 1747 | return; |
| 1748 | } |
| 1749 | |
| 1750 | /* |
| 1751 | * In RANGE or GROUPS END_CURRENT_ROW mode, frame end is the last |
| 1752 | * row that is a peer of current row, frame tail is the row after |
| 1753 | * that (if any). We keep a copy of the last-known frame tail row |
| 1754 | * in frametail_slot, and advance as necessary. Note that if we |
| 1755 | * reach end of partition, we will leave frametailpos = end+1 and |
| 1756 | * frametail_slot empty. |
| 1757 | */ |
| 1758 | tuplestore_select_read_pointer(winstate->buffer, |
| 1759 | winstate->frametail_ptr); |
| 1760 | if (winstate->frametailpos == 0 && |
| 1761 | TupIsNull(winstate->frametail_slot)) |
| 1762 | { |
| 1763 | /* fetch first row into frametail_slot, if we didn't already */ |
| 1764 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1765 | winstate->frametail_slot)) |
| 1766 | elog(ERROR, "unexpected end of tuplestore" ); |
| 1767 | } |
| 1768 | |
| 1769 | while (!TupIsNull(winstate->frametail_slot)) |
| 1770 | { |
| 1771 | if (winstate->frametailpos > winstate->currentpos && |
| 1772 | !are_peers(winstate, winstate->frametail_slot, |
| 1773 | winstate->ss.ss_ScanTupleSlot)) |
| 1774 | break; /* this row is the frame tail */ |
| 1775 | /* Note we advance frametailpos even if the fetch fails */ |
| 1776 | winstate->frametailpos++; |
| 1777 | spool_tuples(winstate, winstate->frametailpos); |
| 1778 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1779 | winstate->frametail_slot)) |
| 1780 | break; /* end of partition */ |
| 1781 | } |
| 1782 | winstate->frametail_valid = true; |
| 1783 | } |
| 1784 | else |
| 1785 | Assert(false); |
| 1786 | } |
| 1787 | else if (frameOptions & FRAMEOPTION_END_OFFSET) |
| 1788 | { |
| 1789 | if (frameOptions & FRAMEOPTION_ROWS) |
| 1790 | { |
| 1791 | /* In ROWS mode, bound is physically n before/after current */ |
| 1792 | int64 offset = DatumGetInt64(winstate->endOffsetValue); |
| 1793 | |
| 1794 | if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
| 1795 | offset = -offset; |
| 1796 | |
| 1797 | winstate->frametailpos = winstate->currentpos + offset + 1; |
| 1798 | /* smallest allowable value of frametailpos is 0 */ |
| 1799 | if (winstate->frametailpos < 0) |
| 1800 | winstate->frametailpos = 0; |
| 1801 | else if (winstate->frametailpos > winstate->currentpos + 1) |
| 1802 | { |
| 1803 | /* make sure frametailpos is not past end of partition */ |
| 1804 | spool_tuples(winstate, winstate->frametailpos - 1); |
| 1805 | if (winstate->frametailpos > winstate->spooled_rows) |
| 1806 | winstate->frametailpos = winstate->spooled_rows; |
| 1807 | } |
| 1808 | winstate->frametail_valid = true; |
| 1809 | } |
| 1810 | else if (frameOptions & FRAMEOPTION_RANGE) |
| 1811 | { |
| 1812 | /* |
| 1813 | * In RANGE END_OFFSET mode, frame end is the last row that |
| 1814 | * satisfies the in_range constraint relative to the current row, |
| 1815 | * frame tail is the row after that (if any). We keep a copy of |
| 1816 | * the last-known frame tail row in frametail_slot, and advance as |
| 1817 | * necessary. Note that if we reach end of partition, we will |
| 1818 | * leave frametailpos = end+1 and frametail_slot empty. |
| 1819 | */ |
| 1820 | int sortCol = node->ordColIdx[0]; |
| 1821 | bool sub, |
| 1822 | less; |
| 1823 | |
| 1824 | /* We must have an ordering column */ |
| 1825 | Assert(node->ordNumCols == 1); |
| 1826 | |
| 1827 | /* Precompute flags for in_range checks */ |
| 1828 | if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
| 1829 | sub = true; /* subtract endOffset from current row */ |
| 1830 | else |
| 1831 | sub = false; /* add it */ |
| 1832 | less = true; /* normally, we want frame tail <= sum */ |
| 1833 | /* If sort order is descending, flip both flags */ |
| 1834 | if (!winstate->inRangeAsc) |
| 1835 | { |
| 1836 | sub = !sub; |
| 1837 | less = false; |
| 1838 | } |
| 1839 | |
| 1840 | tuplestore_select_read_pointer(winstate->buffer, |
| 1841 | winstate->frametail_ptr); |
| 1842 | if (winstate->frametailpos == 0 && |
| 1843 | TupIsNull(winstate->frametail_slot)) |
| 1844 | { |
| 1845 | /* fetch first row into frametail_slot, if we didn't already */ |
| 1846 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1847 | winstate->frametail_slot)) |
| 1848 | elog(ERROR, "unexpected end of tuplestore" ); |
| 1849 | } |
| 1850 | |
| 1851 | while (!TupIsNull(winstate->frametail_slot)) |
| 1852 | { |
| 1853 | Datum tailval, |
| 1854 | currval; |
| 1855 | bool tailisnull, |
| 1856 | currisnull; |
| 1857 | |
| 1858 | tailval = slot_getattr(winstate->frametail_slot, sortCol, |
| 1859 | &tailisnull); |
| 1860 | currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol, |
| 1861 | &currisnull); |
| 1862 | if (tailisnull || currisnull) |
| 1863 | { |
| 1864 | /* order of the rows depends only on nulls_first */ |
| 1865 | if (winstate->inRangeNullsFirst) |
| 1866 | { |
| 1867 | /* advance tail if tail is null or curr is not */ |
| 1868 | if (!tailisnull) |
| 1869 | break; |
| 1870 | } |
| 1871 | else |
| 1872 | { |
| 1873 | /* advance tail if tail is not null or curr is null */ |
| 1874 | if (!currisnull) |
| 1875 | break; |
| 1876 | } |
| 1877 | } |
| 1878 | else |
| 1879 | { |
| 1880 | if (!DatumGetBool(FunctionCall5Coll(&winstate->endInRangeFunc, |
| 1881 | winstate->inRangeColl, |
| 1882 | tailval, |
| 1883 | currval, |
| 1884 | winstate->endOffsetValue, |
| 1885 | BoolGetDatum(sub), |
| 1886 | BoolGetDatum(less)))) |
| 1887 | break; /* this row is the correct frame tail */ |
| 1888 | } |
| 1889 | /* Note we advance frametailpos even if the fetch fails */ |
| 1890 | winstate->frametailpos++; |
| 1891 | spool_tuples(winstate, winstate->frametailpos); |
| 1892 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1893 | winstate->frametail_slot)) |
| 1894 | break; /* end of partition */ |
| 1895 | } |
| 1896 | winstate->frametail_valid = true; |
| 1897 | } |
| 1898 | else if (frameOptions & FRAMEOPTION_GROUPS) |
| 1899 | { |
| 1900 | /* |
| 1901 | * In GROUPS END_OFFSET mode, frame end is the last row of the |
| 1902 | * last peer group whose number satisfies the offset constraint, |
| 1903 | * and frame tail is the row after that (if any). We keep a copy |
| 1904 | * of the last-known frame tail row in frametail_slot, and advance |
| 1905 | * as necessary. Note that if we reach end of partition, we will |
| 1906 | * leave frametailpos = end+1 and frametail_slot empty. |
| 1907 | */ |
| 1908 | int64 offset = DatumGetInt64(winstate->endOffsetValue); |
| 1909 | int64 maxtailgroup; |
| 1910 | |
| 1911 | if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
| 1912 | maxtailgroup = winstate->currentgroup - offset; |
| 1913 | else |
| 1914 | maxtailgroup = winstate->currentgroup + offset; |
| 1915 | |
| 1916 | tuplestore_select_read_pointer(winstate->buffer, |
| 1917 | winstate->frametail_ptr); |
| 1918 | if (winstate->frametailpos == 0 && |
| 1919 | TupIsNull(winstate->frametail_slot)) |
| 1920 | { |
| 1921 | /* fetch first row into frametail_slot, if we didn't already */ |
| 1922 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1923 | winstate->frametail_slot)) |
| 1924 | elog(ERROR, "unexpected end of tuplestore" ); |
| 1925 | } |
| 1926 | |
| 1927 | while (!TupIsNull(winstate->frametail_slot)) |
| 1928 | { |
| 1929 | if (winstate->frametailgroup > maxtailgroup) |
| 1930 | break; /* this row is the correct frame tail */ |
| 1931 | ExecCopySlot(winstate->temp_slot_2, winstate->frametail_slot); |
| 1932 | /* Note we advance frametailpos even if the fetch fails */ |
| 1933 | winstate->frametailpos++; |
| 1934 | spool_tuples(winstate, winstate->frametailpos); |
| 1935 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1936 | winstate->frametail_slot)) |
| 1937 | break; /* end of partition */ |
| 1938 | if (!are_peers(winstate, winstate->temp_slot_2, |
| 1939 | winstate->frametail_slot)) |
| 1940 | winstate->frametailgroup++; |
| 1941 | } |
| 1942 | ExecClearTuple(winstate->temp_slot_2); |
| 1943 | winstate->frametail_valid = true; |
| 1944 | } |
| 1945 | else |
| 1946 | Assert(false); |
| 1947 | } |
| 1948 | else |
| 1949 | Assert(false); |
| 1950 | |
| 1951 | MemoryContextSwitchTo(oldcontext); |
| 1952 | } |
| 1953 | |
| 1954 | /* |
| 1955 | * update_grouptailpos |
| 1956 | * make grouptailpos valid for the current row |
| 1957 | * |
| 1958 | * May clobber winstate->temp_slot_2. |
| 1959 | */ |
| 1960 | static void |
| 1961 | update_grouptailpos(WindowAggState *winstate) |
| 1962 | { |
| 1963 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
| 1964 | MemoryContext oldcontext; |
| 1965 | |
| 1966 | if (winstate->grouptail_valid) |
| 1967 | return; /* already known for current row */ |
| 1968 | |
| 1969 | /* We may be called in a short-lived context */ |
| 1970 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
| 1971 | |
| 1972 | /* If no ORDER BY, all rows are peers with each other */ |
| 1973 | if (node->ordNumCols == 0) |
| 1974 | { |
| 1975 | spool_tuples(winstate, -1); |
| 1976 | winstate->grouptailpos = winstate->spooled_rows; |
| 1977 | winstate->grouptail_valid = true; |
| 1978 | MemoryContextSwitchTo(oldcontext); |
| 1979 | return; |
| 1980 | } |
| 1981 | |
| 1982 | /* |
| 1983 | * Because grouptail_valid is reset only when current row advances into a |
| 1984 | * new peer group, we always reach here knowing that grouptailpos needs to |
| 1985 | * be advanced by at least one row. Hence, unlike the otherwise similar |
| 1986 | * case for frame tail tracking, we do not need persistent storage of the |
| 1987 | * group tail row. |
| 1988 | */ |
| 1989 | Assert(winstate->grouptailpos <= winstate->currentpos); |
| 1990 | tuplestore_select_read_pointer(winstate->buffer, |
| 1991 | winstate->grouptail_ptr); |
| 1992 | for (;;) |
| 1993 | { |
| 1994 | /* Note we advance grouptailpos even if the fetch fails */ |
| 1995 | winstate->grouptailpos++; |
| 1996 | spool_tuples(winstate, winstate->grouptailpos); |
| 1997 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 1998 | winstate->temp_slot_2)) |
| 1999 | break; /* end of partition */ |
| 2000 | if (winstate->grouptailpos > winstate->currentpos && |
| 2001 | !are_peers(winstate, winstate->temp_slot_2, |
| 2002 | winstate->ss.ss_ScanTupleSlot)) |
| 2003 | break; /* this row is the group tail */ |
| 2004 | } |
| 2005 | ExecClearTuple(winstate->temp_slot_2); |
| 2006 | winstate->grouptail_valid = true; |
| 2007 | |
| 2008 | MemoryContextSwitchTo(oldcontext); |
| 2009 | } |
| 2010 | |
| 2011 | |
| 2012 | /* ----------------- |
| 2013 | * ExecWindowAgg |
| 2014 | * |
| 2015 | * ExecWindowAgg receives tuples from its outer subplan and |
| 2016 | * stores them into a tuplestore, then processes window functions. |
| 2017 | * This node doesn't reduce nor qualify any row so the number of |
| 2018 | * returned rows is exactly the same as its outer subplan's result. |
| 2019 | * ----------------- |
| 2020 | */ |
| 2021 | static TupleTableSlot * |
| 2022 | ExecWindowAgg(PlanState *pstate) |
| 2023 | { |
| 2024 | WindowAggState *winstate = castNode(WindowAggState, pstate); |
| 2025 | ExprContext *econtext; |
| 2026 | int i; |
| 2027 | int numfuncs; |
| 2028 | |
| 2029 | CHECK_FOR_INTERRUPTS(); |
| 2030 | |
| 2031 | if (winstate->all_done) |
| 2032 | return NULL; |
| 2033 | |
| 2034 | /* |
| 2035 | * Compute frame offset values, if any, during first call (or after a |
| 2036 | * rescan). These are assumed to hold constant throughout the scan; if |
| 2037 | * user gives us a volatile expression, we'll only use its initial value. |
| 2038 | */ |
| 2039 | if (winstate->all_first) |
| 2040 | { |
| 2041 | int frameOptions = winstate->frameOptions; |
| 2042 | ExprContext *econtext = winstate->ss.ps.ps_ExprContext; |
| 2043 | Datum value; |
| 2044 | bool isnull; |
| 2045 | int16 len; |
| 2046 | bool byval; |
| 2047 | |
| 2048 | if (frameOptions & FRAMEOPTION_START_OFFSET) |
| 2049 | { |
| 2050 | Assert(winstate->startOffset != NULL); |
| 2051 | value = ExecEvalExprSwitchContext(winstate->startOffset, |
| 2052 | econtext, |
| 2053 | &isnull); |
| 2054 | if (isnull) |
| 2055 | ereport(ERROR, |
| 2056 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 2057 | errmsg("frame starting offset must not be null" ))); |
| 2058 | /* copy value into query-lifespan context */ |
| 2059 | get_typlenbyval(exprType((Node *) winstate->startOffset->expr), |
| 2060 | &len, &byval); |
| 2061 | winstate->startOffsetValue = datumCopy(value, byval, len); |
| 2062 | if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS)) |
| 2063 | { |
| 2064 | /* value is known to be int8 */ |
| 2065 | int64 offset = DatumGetInt64(value); |
| 2066 | |
| 2067 | if (offset < 0) |
| 2068 | ereport(ERROR, |
| 2069 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 2070 | errmsg("frame starting offset must not be negative" ))); |
| 2071 | } |
| 2072 | } |
| 2073 | if (frameOptions & FRAMEOPTION_END_OFFSET) |
| 2074 | { |
| 2075 | Assert(winstate->endOffset != NULL); |
| 2076 | value = ExecEvalExprSwitchContext(winstate->endOffset, |
| 2077 | econtext, |
| 2078 | &isnull); |
| 2079 | if (isnull) |
| 2080 | ereport(ERROR, |
| 2081 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 2082 | errmsg("frame ending offset must not be null" ))); |
| 2083 | /* copy value into query-lifespan context */ |
| 2084 | get_typlenbyval(exprType((Node *) winstate->endOffset->expr), |
| 2085 | &len, &byval); |
| 2086 | winstate->endOffsetValue = datumCopy(value, byval, len); |
| 2087 | if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS)) |
| 2088 | { |
| 2089 | /* value is known to be int8 */ |
| 2090 | int64 offset = DatumGetInt64(value); |
| 2091 | |
| 2092 | if (offset < 0) |
| 2093 | ereport(ERROR, |
| 2094 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 2095 | errmsg("frame ending offset must not be negative" ))); |
| 2096 | } |
| 2097 | } |
| 2098 | winstate->all_first = false; |
| 2099 | } |
| 2100 | |
| 2101 | if (winstate->buffer == NULL) |
| 2102 | { |
| 2103 | /* Initialize for first partition and set current row = 0 */ |
| 2104 | begin_partition(winstate); |
| 2105 | /* If there are no input rows, we'll detect that and exit below */ |
| 2106 | } |
| 2107 | else |
| 2108 | { |
| 2109 | /* Advance current row within partition */ |
| 2110 | winstate->currentpos++; |
| 2111 | /* This might mean that the frame moves, too */ |
| 2112 | winstate->framehead_valid = false; |
| 2113 | winstate->frametail_valid = false; |
| 2114 | /* we don't need to invalidate grouptail here; see below */ |
| 2115 | } |
| 2116 | |
| 2117 | /* |
| 2118 | * Spool all tuples up to and including the current row, if we haven't |
| 2119 | * already |
| 2120 | */ |
| 2121 | spool_tuples(winstate, winstate->currentpos); |
| 2122 | |
| 2123 | /* Move to the next partition if we reached the end of this partition */ |
| 2124 | if (winstate->partition_spooled && |
| 2125 | winstate->currentpos >= winstate->spooled_rows) |
| 2126 | { |
| 2127 | release_partition(winstate); |
| 2128 | |
| 2129 | if (winstate->more_partitions) |
| 2130 | { |
| 2131 | begin_partition(winstate); |
| 2132 | Assert(winstate->spooled_rows > 0); |
| 2133 | } |
| 2134 | else |
| 2135 | { |
| 2136 | winstate->all_done = true; |
| 2137 | return NULL; |
| 2138 | } |
| 2139 | } |
| 2140 | |
| 2141 | /* final output execution is in ps_ExprContext */ |
| 2142 | econtext = winstate->ss.ps.ps_ExprContext; |
| 2143 | |
| 2144 | /* Clear the per-output-tuple context for current row */ |
| 2145 | ResetExprContext(econtext); |
| 2146 | |
| 2147 | /* |
| 2148 | * Read the current row from the tuplestore, and save in ScanTupleSlot. |
| 2149 | * (We can't rely on the outerplan's output slot because we may have to |
| 2150 | * read beyond the current row. Also, we have to actually copy the row |
| 2151 | * out of the tuplestore, since window function evaluation might cause the |
| 2152 | * tuplestore to dump its state to disk.) |
| 2153 | * |
| 2154 | * In GROUPS mode, or when tracking a group-oriented exclusion clause, we |
| 2155 | * must also detect entering a new peer group and update associated state |
| 2156 | * when that happens. We use temp_slot_2 to temporarily hold the previous |
| 2157 | * row for this purpose. |
| 2158 | * |
| 2159 | * Current row must be in the tuplestore, since we spooled it above. |
| 2160 | */ |
| 2161 | tuplestore_select_read_pointer(winstate->buffer, winstate->current_ptr); |
| 2162 | if ((winstate->frameOptions & (FRAMEOPTION_GROUPS | |
| 2163 | FRAMEOPTION_EXCLUDE_GROUP | |
| 2164 | FRAMEOPTION_EXCLUDE_TIES)) && |
| 2165 | winstate->currentpos > 0) |
| 2166 | { |
| 2167 | ExecCopySlot(winstate->temp_slot_2, winstate->ss.ss_ScanTupleSlot); |
| 2168 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 2169 | winstate->ss.ss_ScanTupleSlot)) |
| 2170 | elog(ERROR, "unexpected end of tuplestore" ); |
| 2171 | if (!are_peers(winstate, winstate->temp_slot_2, |
| 2172 | winstate->ss.ss_ScanTupleSlot)) |
| 2173 | { |
| 2174 | winstate->currentgroup++; |
| 2175 | winstate->groupheadpos = winstate->currentpos; |
| 2176 | winstate->grouptail_valid = false; |
| 2177 | } |
| 2178 | ExecClearTuple(winstate->temp_slot_2); |
| 2179 | } |
| 2180 | else |
| 2181 | { |
| 2182 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
| 2183 | winstate->ss.ss_ScanTupleSlot)) |
| 2184 | elog(ERROR, "unexpected end of tuplestore" ); |
| 2185 | } |
| 2186 | |
| 2187 | /* |
| 2188 | * Evaluate true window functions |
| 2189 | */ |
| 2190 | numfuncs = winstate->numfuncs; |
| 2191 | for (i = 0; i < numfuncs; i++) |
| 2192 | { |
| 2193 | WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]); |
| 2194 | |
| 2195 | if (perfuncstate->plain_agg) |
| 2196 | continue; |
| 2197 | eval_windowfunction(winstate, perfuncstate, |
| 2198 | &(econtext->ecxt_aggvalues[perfuncstate->wfuncstate->wfuncno]), |
| 2199 | &(econtext->ecxt_aggnulls[perfuncstate->wfuncstate->wfuncno])); |
| 2200 | } |
| 2201 | |
| 2202 | /* |
| 2203 | * Evaluate aggregates |
| 2204 | */ |
| 2205 | if (winstate->numaggs > 0) |
| 2206 | eval_windowaggregates(winstate); |
| 2207 | |
| 2208 | /* |
| 2209 | * If we have created auxiliary read pointers for the frame or group |
| 2210 | * boundaries, force them to be kept up-to-date, because we don't know |
| 2211 | * whether the window function(s) will do anything that requires that. |
| 2212 | * Failing to advance the pointers would result in being unable to trim |
| 2213 | * data from the tuplestore, which is bad. (If we could know in advance |
| 2214 | * whether the window functions will use frame boundary info, we could |
| 2215 | * skip creating these pointers in the first place ... but unfortunately |
| 2216 | * the window function API doesn't require that.) |
| 2217 | */ |
| 2218 | if (winstate->framehead_ptr >= 0) |
| 2219 | update_frameheadpos(winstate); |
| 2220 | if (winstate->frametail_ptr >= 0) |
| 2221 | update_frametailpos(winstate); |
| 2222 | if (winstate->grouptail_ptr >= 0) |
| 2223 | update_grouptailpos(winstate); |
| 2224 | |
| 2225 | /* |
| 2226 | * Truncate any no-longer-needed rows from the tuplestore. |
| 2227 | */ |
| 2228 | tuplestore_trim(winstate->buffer); |
| 2229 | |
| 2230 | /* |
| 2231 | * Form and return a projection tuple using the windowfunc results and the |
| 2232 | * current row. Setting ecxt_outertuple arranges that any Vars will be |
| 2233 | * evaluated with respect to that row. |
| 2234 | */ |
| 2235 | econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot; |
| 2236 | |
| 2237 | return ExecProject(winstate->ss.ps.ps_ProjInfo); |
| 2238 | } |
| 2239 | |
| 2240 | /* ----------------- |
| 2241 | * ExecInitWindowAgg |
| 2242 | * |
| 2243 | * Creates the run-time information for the WindowAgg node produced by the |
| 2244 | * planner and initializes its outer subtree |
| 2245 | * ----------------- |
| 2246 | */ |
| 2247 | WindowAggState * |
| 2248 | ExecInitWindowAgg(WindowAgg *node, EState *estate, int eflags) |
| 2249 | { |
| 2250 | WindowAggState *winstate; |
| 2251 | Plan *outerPlan; |
| 2252 | ExprContext *econtext; |
| 2253 | ExprContext *tmpcontext; |
| 2254 | WindowStatePerFunc perfunc; |
| 2255 | WindowStatePerAgg peragg; |
| 2256 | int frameOptions = node->frameOptions; |
| 2257 | int numfuncs, |
| 2258 | wfuncno, |
| 2259 | numaggs, |
| 2260 | aggno; |
| 2261 | TupleDesc scanDesc; |
| 2262 | ListCell *l; |
| 2263 | |
| 2264 | /* check for unsupported flags */ |
| 2265 | Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); |
| 2266 | |
| 2267 | /* |
| 2268 | * create state structure |
| 2269 | */ |
| 2270 | winstate = makeNode(WindowAggState); |
| 2271 | winstate->ss.ps.plan = (Plan *) node; |
| 2272 | winstate->ss.ps.state = estate; |
| 2273 | winstate->ss.ps.ExecProcNode = ExecWindowAgg; |
| 2274 | |
| 2275 | /* |
| 2276 | * Create expression contexts. We need two, one for per-input-tuple |
| 2277 | * processing and one for per-output-tuple processing. We cheat a little |
| 2278 | * by using ExecAssignExprContext() to build both. |
| 2279 | */ |
| 2280 | ExecAssignExprContext(estate, &winstate->ss.ps); |
| 2281 | tmpcontext = winstate->ss.ps.ps_ExprContext; |
| 2282 | winstate->tmpcontext = tmpcontext; |
| 2283 | ExecAssignExprContext(estate, &winstate->ss.ps); |
| 2284 | |
| 2285 | /* Create long-lived context for storage of partition-local memory etc */ |
| 2286 | winstate->partcontext = |
| 2287 | AllocSetContextCreate(CurrentMemoryContext, |
| 2288 | "WindowAgg Partition" , |
| 2289 | ALLOCSET_DEFAULT_SIZES); |
| 2290 | |
| 2291 | /* |
| 2292 | * Create mid-lived context for aggregate trans values etc. |
| 2293 | * |
| 2294 | * Note that moving aggregates each use their own private context, not |
| 2295 | * this one. |
| 2296 | */ |
| 2297 | winstate->aggcontext = |
| 2298 | AllocSetContextCreate(CurrentMemoryContext, |
| 2299 | "WindowAgg Aggregates" , |
| 2300 | ALLOCSET_DEFAULT_SIZES); |
| 2301 | |
| 2302 | /* |
| 2303 | * WindowAgg nodes never have quals, since they can only occur at the |
| 2304 | * logical top level of a query (ie, after any WHERE or HAVING filters) |
| 2305 | */ |
| 2306 | Assert(node->plan.qual == NIL); |
| 2307 | winstate->ss.ps.qual = NULL; |
| 2308 | |
| 2309 | /* |
| 2310 | * initialize child nodes |
| 2311 | */ |
| 2312 | outerPlan = outerPlan(node); |
| 2313 | outerPlanState(winstate) = ExecInitNode(outerPlan, estate, eflags); |
| 2314 | |
| 2315 | /* |
| 2316 | * initialize source tuple type (which is also the tuple type that we'll |
| 2317 | * store in the tuplestore and use in all our working slots). |
| 2318 | */ |
| 2319 | ExecCreateScanSlotFromOuterPlan(estate, &winstate->ss, &TTSOpsMinimalTuple); |
| 2320 | scanDesc = winstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor; |
| 2321 | |
| 2322 | /* the outer tuple isn't the child's tuple, but always a minimal tuple */ |
| 2323 | winstate->ss.ps.outeropsset = true; |
| 2324 | winstate->ss.ps.outerops = &TTSOpsMinimalTuple; |
| 2325 | winstate->ss.ps.outeropsfixed = true; |
| 2326 | |
| 2327 | /* |
| 2328 | * tuple table initialization |
| 2329 | */ |
| 2330 | winstate->first_part_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
| 2331 | &TTSOpsMinimalTuple); |
| 2332 | winstate->agg_row_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
| 2333 | &TTSOpsMinimalTuple); |
| 2334 | winstate->temp_slot_1 = ExecInitExtraTupleSlot(estate, scanDesc, |
| 2335 | &TTSOpsMinimalTuple); |
| 2336 | winstate->temp_slot_2 = ExecInitExtraTupleSlot(estate, scanDesc, |
| 2337 | &TTSOpsMinimalTuple); |
| 2338 | |
| 2339 | /* |
| 2340 | * create frame head and tail slots only if needed (must create slots in |
| 2341 | * exactly the same cases that update_frameheadpos and update_frametailpos |
| 2342 | * need them) |
| 2343 | */ |
| 2344 | winstate->framehead_slot = winstate->frametail_slot = NULL; |
| 2345 | |
| 2346 | if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
| 2347 | { |
| 2348 | if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) && |
| 2349 | node->ordNumCols != 0) || |
| 2350 | (frameOptions & FRAMEOPTION_START_OFFSET)) |
| 2351 | winstate->framehead_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
| 2352 | &TTSOpsMinimalTuple); |
| 2353 | if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) && |
| 2354 | node->ordNumCols != 0) || |
| 2355 | (frameOptions & FRAMEOPTION_END_OFFSET)) |
| 2356 | winstate->frametail_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
| 2357 | &TTSOpsMinimalTuple); |
| 2358 | } |
| 2359 | |
| 2360 | /* |
| 2361 | * Initialize result slot, type and projection. |
| 2362 | */ |
| 2363 | ExecInitResultTupleSlotTL(&winstate->ss.ps, &TTSOpsVirtual); |
| 2364 | ExecAssignProjectionInfo(&winstate->ss.ps, NULL); |
| 2365 | |
| 2366 | /* Set up data for comparing tuples */ |
| 2367 | if (node->partNumCols > 0) |
| 2368 | winstate->partEqfunction = |
| 2369 | execTuplesMatchPrepare(scanDesc, |
| 2370 | node->partNumCols, |
| 2371 | node->partColIdx, |
| 2372 | node->partOperators, |
| 2373 | node->partCollations, |
| 2374 | &winstate->ss.ps); |
| 2375 | |
| 2376 | if (node->ordNumCols > 0) |
| 2377 | winstate->ordEqfunction = |
| 2378 | execTuplesMatchPrepare(scanDesc, |
| 2379 | node->ordNumCols, |
| 2380 | node->ordColIdx, |
| 2381 | node->ordOperators, |
| 2382 | node->ordCollations, |
| 2383 | &winstate->ss.ps); |
| 2384 | |
| 2385 | /* |
| 2386 | * WindowAgg nodes use aggvalues and aggnulls as well as Agg nodes. |
| 2387 | */ |
| 2388 | numfuncs = winstate->numfuncs; |
| 2389 | numaggs = winstate->numaggs; |
| 2390 | econtext = winstate->ss.ps.ps_ExprContext; |
| 2391 | econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numfuncs); |
| 2392 | econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numfuncs); |
| 2393 | |
| 2394 | /* |
| 2395 | * allocate per-wfunc/per-agg state information. |
| 2396 | */ |
| 2397 | perfunc = (WindowStatePerFunc) palloc0(sizeof(WindowStatePerFuncData) * numfuncs); |
| 2398 | peragg = (WindowStatePerAgg) palloc0(sizeof(WindowStatePerAggData) * numaggs); |
| 2399 | winstate->perfunc = perfunc; |
| 2400 | winstate->peragg = peragg; |
| 2401 | |
| 2402 | wfuncno = -1; |
| 2403 | aggno = -1; |
| 2404 | foreach(l, winstate->funcs) |
| 2405 | { |
| 2406 | WindowFuncExprState *wfuncstate = (WindowFuncExprState *) lfirst(l); |
| 2407 | WindowFunc *wfunc = wfuncstate->wfunc; |
| 2408 | WindowStatePerFunc perfuncstate; |
| 2409 | AclResult aclresult; |
| 2410 | int i; |
| 2411 | |
| 2412 | if (wfunc->winref != node->winref) /* planner screwed up? */ |
| 2413 | elog(ERROR, "WindowFunc with winref %u assigned to WindowAgg with winref %u" , |
| 2414 | wfunc->winref, node->winref); |
| 2415 | |
| 2416 | /* Look for a previous duplicate window function */ |
| 2417 | for (i = 0; i <= wfuncno; i++) |
| 2418 | { |
| 2419 | if (equal(wfunc, perfunc[i].wfunc) && |
| 2420 | !contain_volatile_functions((Node *) wfunc)) |
| 2421 | break; |
| 2422 | } |
| 2423 | if (i <= wfuncno) |
| 2424 | { |
| 2425 | /* Found a match to an existing entry, so just mark it */ |
| 2426 | wfuncstate->wfuncno = i; |
| 2427 | continue; |
| 2428 | } |
| 2429 | |
| 2430 | /* Nope, so assign a new PerAgg record */ |
| 2431 | perfuncstate = &perfunc[++wfuncno]; |
| 2432 | |
| 2433 | /* Mark WindowFunc state node with assigned index in the result array */ |
| 2434 | wfuncstate->wfuncno = wfuncno; |
| 2435 | |
| 2436 | /* Check permission to call window function */ |
| 2437 | aclresult = pg_proc_aclcheck(wfunc->winfnoid, GetUserId(), |
| 2438 | ACL_EXECUTE); |
| 2439 | if (aclresult != ACLCHECK_OK) |
| 2440 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
| 2441 | get_func_name(wfunc->winfnoid)); |
| 2442 | InvokeFunctionExecuteHook(wfunc->winfnoid); |
| 2443 | |
| 2444 | /* Fill in the perfuncstate data */ |
| 2445 | perfuncstate->wfuncstate = wfuncstate; |
| 2446 | perfuncstate->wfunc = wfunc; |
| 2447 | perfuncstate->numArguments = list_length(wfuncstate->args); |
| 2448 | |
| 2449 | fmgr_info_cxt(wfunc->winfnoid, &perfuncstate->flinfo, |
| 2450 | econtext->ecxt_per_query_memory); |
| 2451 | fmgr_info_set_expr((Node *) wfunc, &perfuncstate->flinfo); |
| 2452 | |
| 2453 | perfuncstate->winCollation = wfunc->inputcollid; |
| 2454 | |
| 2455 | get_typlenbyval(wfunc->wintype, |
| 2456 | &perfuncstate->resulttypeLen, |
| 2457 | &perfuncstate->resulttypeByVal); |
| 2458 | |
| 2459 | /* |
| 2460 | * If it's really just a plain aggregate function, we'll emulate the |
| 2461 | * Agg environment for it. |
| 2462 | */ |
| 2463 | perfuncstate->plain_agg = wfunc->winagg; |
| 2464 | if (wfunc->winagg) |
| 2465 | { |
| 2466 | WindowStatePerAgg peraggstate; |
| 2467 | |
| 2468 | perfuncstate->aggno = ++aggno; |
| 2469 | peraggstate = &winstate->peragg[aggno]; |
| 2470 | initialize_peragg(winstate, wfunc, peraggstate); |
| 2471 | peraggstate->wfuncno = wfuncno; |
| 2472 | } |
| 2473 | else |
| 2474 | { |
| 2475 | WindowObject winobj = makeNode(WindowObjectData); |
| 2476 | |
| 2477 | winobj->winstate = winstate; |
| 2478 | winobj->argstates = wfuncstate->args; |
| 2479 | winobj->localmem = NULL; |
| 2480 | perfuncstate->winobj = winobj; |
| 2481 | } |
| 2482 | } |
| 2483 | |
| 2484 | /* Update numfuncs, numaggs to match number of unique functions found */ |
| 2485 | winstate->numfuncs = wfuncno + 1; |
| 2486 | winstate->numaggs = aggno + 1; |
| 2487 | |
| 2488 | /* Set up WindowObject for aggregates, if needed */ |
| 2489 | if (winstate->numaggs > 0) |
| 2490 | { |
| 2491 | WindowObject agg_winobj = makeNode(WindowObjectData); |
| 2492 | |
| 2493 | agg_winobj->winstate = winstate; |
| 2494 | agg_winobj->argstates = NIL; |
| 2495 | agg_winobj->localmem = NULL; |
| 2496 | /* make sure markptr = -1 to invalidate. It may not get used */ |
| 2497 | agg_winobj->markptr = -1; |
| 2498 | agg_winobj->readptr = -1; |
| 2499 | winstate->agg_winobj = agg_winobj; |
| 2500 | } |
| 2501 | |
| 2502 | /* copy frame options to state node for easy access */ |
| 2503 | winstate->frameOptions = frameOptions; |
| 2504 | |
| 2505 | /* initialize frame bound offset expressions */ |
| 2506 | winstate->startOffset = ExecInitExpr((Expr *) node->startOffset, |
| 2507 | (PlanState *) winstate); |
| 2508 | winstate->endOffset = ExecInitExpr((Expr *) node->endOffset, |
| 2509 | (PlanState *) winstate); |
| 2510 | |
| 2511 | /* Lookup in_range support functions if needed */ |
| 2512 | if (OidIsValid(node->startInRangeFunc)) |
| 2513 | fmgr_info(node->startInRangeFunc, &winstate->startInRangeFunc); |
| 2514 | if (OidIsValid(node->endInRangeFunc)) |
| 2515 | fmgr_info(node->endInRangeFunc, &winstate->endInRangeFunc); |
| 2516 | winstate->inRangeColl = node->inRangeColl; |
| 2517 | winstate->inRangeAsc = node->inRangeAsc; |
| 2518 | winstate->inRangeNullsFirst = node->inRangeNullsFirst; |
| 2519 | |
| 2520 | winstate->all_first = true; |
| 2521 | winstate->partition_spooled = false; |
| 2522 | winstate->more_partitions = false; |
| 2523 | |
| 2524 | return winstate; |
| 2525 | } |
| 2526 | |
| 2527 | /* ----------------- |
| 2528 | * ExecEndWindowAgg |
| 2529 | * ----------------- |
| 2530 | */ |
| 2531 | void |
| 2532 | ExecEndWindowAgg(WindowAggState *node) |
| 2533 | { |
| 2534 | PlanState *outerPlan; |
| 2535 | int i; |
| 2536 | |
| 2537 | release_partition(node); |
| 2538 | |
| 2539 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
| 2540 | ExecClearTuple(node->first_part_slot); |
| 2541 | ExecClearTuple(node->agg_row_slot); |
| 2542 | ExecClearTuple(node->temp_slot_1); |
| 2543 | ExecClearTuple(node->temp_slot_2); |
| 2544 | if (node->framehead_slot) |
| 2545 | ExecClearTuple(node->framehead_slot); |
| 2546 | if (node->frametail_slot) |
| 2547 | ExecClearTuple(node->frametail_slot); |
| 2548 | |
| 2549 | /* |
| 2550 | * Free both the expr contexts. |
| 2551 | */ |
| 2552 | ExecFreeExprContext(&node->ss.ps); |
| 2553 | node->ss.ps.ps_ExprContext = node->tmpcontext; |
| 2554 | ExecFreeExprContext(&node->ss.ps); |
| 2555 | |
| 2556 | for (i = 0; i < node->numaggs; i++) |
| 2557 | { |
| 2558 | if (node->peragg[i].aggcontext != node->aggcontext) |
| 2559 | MemoryContextDelete(node->peragg[i].aggcontext); |
| 2560 | } |
| 2561 | MemoryContextDelete(node->partcontext); |
| 2562 | MemoryContextDelete(node->aggcontext); |
| 2563 | |
| 2564 | pfree(node->perfunc); |
| 2565 | pfree(node->peragg); |
| 2566 | |
| 2567 | outerPlan = outerPlanState(node); |
| 2568 | ExecEndNode(outerPlan); |
| 2569 | } |
| 2570 | |
| 2571 | /* ----------------- |
| 2572 | * ExecReScanWindowAgg |
| 2573 | * ----------------- |
| 2574 | */ |
| 2575 | void |
| 2576 | ExecReScanWindowAgg(WindowAggState *node) |
| 2577 | { |
| 2578 | PlanState *outerPlan = outerPlanState(node); |
| 2579 | ExprContext *econtext = node->ss.ps.ps_ExprContext; |
| 2580 | |
| 2581 | node->all_done = false; |
| 2582 | node->all_first = true; |
| 2583 | |
| 2584 | /* release tuplestore et al */ |
| 2585 | release_partition(node); |
| 2586 | |
| 2587 | /* release all temp tuples, but especially first_part_slot */ |
| 2588 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
| 2589 | ExecClearTuple(node->first_part_slot); |
| 2590 | ExecClearTuple(node->agg_row_slot); |
| 2591 | ExecClearTuple(node->temp_slot_1); |
| 2592 | ExecClearTuple(node->temp_slot_2); |
| 2593 | if (node->framehead_slot) |
| 2594 | ExecClearTuple(node->framehead_slot); |
| 2595 | if (node->frametail_slot) |
| 2596 | ExecClearTuple(node->frametail_slot); |
| 2597 | |
| 2598 | /* Forget current wfunc values */ |
| 2599 | MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numfuncs); |
| 2600 | MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numfuncs); |
| 2601 | |
| 2602 | /* |
| 2603 | * if chgParam of subnode is not null then plan will be re-scanned by |
| 2604 | * first ExecProcNode. |
| 2605 | */ |
| 2606 | if (outerPlan->chgParam == NULL) |
| 2607 | ExecReScan(outerPlan); |
| 2608 | } |
| 2609 | |
| 2610 | /* |
| 2611 | * initialize_peragg |
| 2612 | * |
| 2613 | * Almost same as in nodeAgg.c, except we don't support DISTINCT currently. |
| 2614 | */ |
| 2615 | static WindowStatePerAggData * |
| 2616 | initialize_peragg(WindowAggState *winstate, WindowFunc *wfunc, |
| 2617 | WindowStatePerAgg peraggstate) |
| 2618 | { |
| 2619 | Oid inputTypes[FUNC_MAX_ARGS]; |
| 2620 | int numArguments; |
| 2621 | HeapTuple aggTuple; |
| 2622 | Form_pg_aggregate aggform; |
| 2623 | Oid aggtranstype; |
| 2624 | AttrNumber initvalAttNo; |
| 2625 | AclResult aclresult; |
| 2626 | bool use_ma_code; |
| 2627 | Oid transfn_oid, |
| 2628 | invtransfn_oid, |
| 2629 | finalfn_oid; |
| 2630 | bool ; |
| 2631 | char finalmodify; |
| 2632 | Expr *transfnexpr, |
| 2633 | *invtransfnexpr, |
| 2634 | *finalfnexpr; |
| 2635 | Datum textInitVal; |
| 2636 | int i; |
| 2637 | ListCell *lc; |
| 2638 | |
| 2639 | numArguments = list_length(wfunc->args); |
| 2640 | |
| 2641 | i = 0; |
| 2642 | foreach(lc, wfunc->args) |
| 2643 | { |
| 2644 | inputTypes[i++] = exprType((Node *) lfirst(lc)); |
| 2645 | } |
| 2646 | |
| 2647 | aggTuple = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(wfunc->winfnoid)); |
| 2648 | if (!HeapTupleIsValid(aggTuple)) |
| 2649 | elog(ERROR, "cache lookup failed for aggregate %u" , |
| 2650 | wfunc->winfnoid); |
| 2651 | aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple); |
| 2652 | |
| 2653 | /* |
| 2654 | * Figure out whether we want to use the moving-aggregate implementation, |
| 2655 | * and collect the right set of fields from the pg_attribute entry. |
| 2656 | * |
| 2657 | * It's possible that an aggregate would supply a safe moving-aggregate |
| 2658 | * implementation and an unsafe normal one, in which case our hand is |
| 2659 | * forced. Otherwise, if the frame head can't move, we don't need |
| 2660 | * moving-aggregate code. Even if we'd like to use it, don't do so if the |
| 2661 | * aggregate's arguments (and FILTER clause if any) contain any calls to |
| 2662 | * volatile functions. Otherwise, the difference between restarting and |
| 2663 | * not restarting the aggregation would be user-visible. |
| 2664 | */ |
| 2665 | if (!OidIsValid(aggform->aggminvtransfn)) |
| 2666 | use_ma_code = false; /* sine qua non */ |
| 2667 | else if (aggform->aggmfinalmodify == AGGMODIFY_READ_ONLY && |
| 2668 | aggform->aggfinalmodify != AGGMODIFY_READ_ONLY) |
| 2669 | use_ma_code = true; /* decision forced by safety */ |
| 2670 | else if (winstate->frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) |
| 2671 | use_ma_code = false; /* non-moving frame head */ |
| 2672 | else if (contain_volatile_functions((Node *) wfunc)) |
| 2673 | use_ma_code = false; /* avoid possible behavioral change */ |
| 2674 | else |
| 2675 | use_ma_code = true; /* yes, let's use it */ |
| 2676 | if (use_ma_code) |
| 2677 | { |
| 2678 | peraggstate->transfn_oid = transfn_oid = aggform->aggmtransfn; |
| 2679 | peraggstate->invtransfn_oid = invtransfn_oid = aggform->aggminvtransfn; |
| 2680 | peraggstate->finalfn_oid = finalfn_oid = aggform->aggmfinalfn; |
| 2681 | finalextra = aggform->aggmfinalextra; |
| 2682 | finalmodify = aggform->aggmfinalmodify; |
| 2683 | aggtranstype = aggform->aggmtranstype; |
| 2684 | initvalAttNo = Anum_pg_aggregate_aggminitval; |
| 2685 | } |
| 2686 | else |
| 2687 | { |
| 2688 | peraggstate->transfn_oid = transfn_oid = aggform->aggtransfn; |
| 2689 | peraggstate->invtransfn_oid = invtransfn_oid = InvalidOid; |
| 2690 | peraggstate->finalfn_oid = finalfn_oid = aggform->aggfinalfn; |
| 2691 | finalextra = aggform->aggfinalextra; |
| 2692 | finalmodify = aggform->aggfinalmodify; |
| 2693 | aggtranstype = aggform->aggtranstype; |
| 2694 | initvalAttNo = Anum_pg_aggregate_agginitval; |
| 2695 | } |
| 2696 | |
| 2697 | /* |
| 2698 | * ExecInitWindowAgg already checked permission to call aggregate function |
| 2699 | * ... but we still need to check the component functions |
| 2700 | */ |
| 2701 | |
| 2702 | /* Check that aggregate owner has permission to call component fns */ |
| 2703 | { |
| 2704 | HeapTuple procTuple; |
| 2705 | Oid aggOwner; |
| 2706 | |
| 2707 | procTuple = SearchSysCache1(PROCOID, |
| 2708 | ObjectIdGetDatum(wfunc->winfnoid)); |
| 2709 | if (!HeapTupleIsValid(procTuple)) |
| 2710 | elog(ERROR, "cache lookup failed for function %u" , |
| 2711 | wfunc->winfnoid); |
| 2712 | aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner; |
| 2713 | ReleaseSysCache(procTuple); |
| 2714 | |
| 2715 | aclresult = pg_proc_aclcheck(transfn_oid, aggOwner, |
| 2716 | ACL_EXECUTE); |
| 2717 | if (aclresult != ACLCHECK_OK) |
| 2718 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
| 2719 | get_func_name(transfn_oid)); |
| 2720 | InvokeFunctionExecuteHook(transfn_oid); |
| 2721 | |
| 2722 | if (OidIsValid(invtransfn_oid)) |
| 2723 | { |
| 2724 | aclresult = pg_proc_aclcheck(invtransfn_oid, aggOwner, |
| 2725 | ACL_EXECUTE); |
| 2726 | if (aclresult != ACLCHECK_OK) |
| 2727 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
| 2728 | get_func_name(invtransfn_oid)); |
| 2729 | InvokeFunctionExecuteHook(invtransfn_oid); |
| 2730 | } |
| 2731 | |
| 2732 | if (OidIsValid(finalfn_oid)) |
| 2733 | { |
| 2734 | aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner, |
| 2735 | ACL_EXECUTE); |
| 2736 | if (aclresult != ACLCHECK_OK) |
| 2737 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
| 2738 | get_func_name(finalfn_oid)); |
| 2739 | InvokeFunctionExecuteHook(finalfn_oid); |
| 2740 | } |
| 2741 | } |
| 2742 | |
| 2743 | /* |
| 2744 | * If the selected finalfn isn't read-only, we can't run this aggregate as |
| 2745 | * a window function. This is a user-facing error, so we take a bit more |
| 2746 | * care with the error message than elsewhere in this function. |
| 2747 | */ |
| 2748 | if (finalmodify != AGGMODIFY_READ_ONLY) |
| 2749 | ereport(ERROR, |
| 2750 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2751 | errmsg("aggregate function %s does not support use as a window function" , |
| 2752 | format_procedure(wfunc->winfnoid)))); |
| 2753 | |
| 2754 | /* Detect how many arguments to pass to the finalfn */ |
| 2755 | if (finalextra) |
| 2756 | peraggstate->numFinalArgs = numArguments + 1; |
| 2757 | else |
| 2758 | peraggstate->numFinalArgs = 1; |
| 2759 | |
| 2760 | /* resolve actual type of transition state, if polymorphic */ |
| 2761 | aggtranstype = resolve_aggregate_transtype(wfunc->winfnoid, |
| 2762 | aggtranstype, |
| 2763 | inputTypes, |
| 2764 | numArguments); |
| 2765 | |
| 2766 | /* build expression trees using actual argument & result types */ |
| 2767 | build_aggregate_transfn_expr(inputTypes, |
| 2768 | numArguments, |
| 2769 | 0, /* no ordered-set window functions yet */ |
| 2770 | false, /* no variadic window functions yet */ |
| 2771 | aggtranstype, |
| 2772 | wfunc->inputcollid, |
| 2773 | transfn_oid, |
| 2774 | invtransfn_oid, |
| 2775 | &transfnexpr, |
| 2776 | &invtransfnexpr); |
| 2777 | |
| 2778 | /* set up infrastructure for calling the transfn(s) and finalfn */ |
| 2779 | fmgr_info(transfn_oid, &peraggstate->transfn); |
| 2780 | fmgr_info_set_expr((Node *) transfnexpr, &peraggstate->transfn); |
| 2781 | |
| 2782 | if (OidIsValid(invtransfn_oid)) |
| 2783 | { |
| 2784 | fmgr_info(invtransfn_oid, &peraggstate->invtransfn); |
| 2785 | fmgr_info_set_expr((Node *) invtransfnexpr, &peraggstate->invtransfn); |
| 2786 | } |
| 2787 | |
| 2788 | if (OidIsValid(finalfn_oid)) |
| 2789 | { |
| 2790 | build_aggregate_finalfn_expr(inputTypes, |
| 2791 | peraggstate->numFinalArgs, |
| 2792 | aggtranstype, |
| 2793 | wfunc->wintype, |
| 2794 | wfunc->inputcollid, |
| 2795 | finalfn_oid, |
| 2796 | &finalfnexpr); |
| 2797 | fmgr_info(finalfn_oid, &peraggstate->finalfn); |
| 2798 | fmgr_info_set_expr((Node *) finalfnexpr, &peraggstate->finalfn); |
| 2799 | } |
| 2800 | |
| 2801 | /* get info about relevant datatypes */ |
| 2802 | get_typlenbyval(wfunc->wintype, |
| 2803 | &peraggstate->resulttypeLen, |
| 2804 | &peraggstate->resulttypeByVal); |
| 2805 | get_typlenbyval(aggtranstype, |
| 2806 | &peraggstate->transtypeLen, |
| 2807 | &peraggstate->transtypeByVal); |
| 2808 | |
| 2809 | /* |
| 2810 | * initval is potentially null, so don't try to access it as a struct |
| 2811 | * field. Must do it the hard way with SysCacheGetAttr. |
| 2812 | */ |
| 2813 | textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple, initvalAttNo, |
| 2814 | &peraggstate->initValueIsNull); |
| 2815 | |
| 2816 | if (peraggstate->initValueIsNull) |
| 2817 | peraggstate->initValue = (Datum) 0; |
| 2818 | else |
| 2819 | peraggstate->initValue = GetAggInitVal(textInitVal, |
| 2820 | aggtranstype); |
| 2821 | |
| 2822 | /* |
| 2823 | * If the transfn is strict and the initval is NULL, make sure input type |
| 2824 | * and transtype are the same (or at least binary-compatible), so that |
| 2825 | * it's OK to use the first input value as the initial transValue. This |
| 2826 | * should have been checked at agg definition time, but we must check |
| 2827 | * again in case the transfn's strictness property has been changed. |
| 2828 | */ |
| 2829 | if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull) |
| 2830 | { |
| 2831 | if (numArguments < 1 || |
| 2832 | !IsBinaryCoercible(inputTypes[0], aggtranstype)) |
| 2833 | ereport(ERROR, |
| 2834 | (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), |
| 2835 | errmsg("aggregate %u needs to have compatible input type and transition type" , |
| 2836 | wfunc->winfnoid))); |
| 2837 | } |
| 2838 | |
| 2839 | /* |
| 2840 | * Insist that forward and inverse transition functions have the same |
| 2841 | * strictness setting. Allowing them to differ would require handling |
| 2842 | * more special cases in advance_windowaggregate and |
| 2843 | * advance_windowaggregate_base, for no discernible benefit. This should |
| 2844 | * have been checked at agg definition time, but we must check again in |
| 2845 | * case either function's strictness property has been changed. |
| 2846 | */ |
| 2847 | if (OidIsValid(invtransfn_oid) && |
| 2848 | peraggstate->transfn.fn_strict != peraggstate->invtransfn.fn_strict) |
| 2849 | ereport(ERROR, |
| 2850 | (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), |
| 2851 | errmsg("strictness of aggregate's forward and inverse transition functions must match" ))); |
| 2852 | |
| 2853 | /* |
| 2854 | * Moving aggregates use their own aggcontext. |
| 2855 | * |
| 2856 | * This is necessary because they might restart at different times, so we |
| 2857 | * might never be able to reset the shared context otherwise. We can't |
| 2858 | * make it the aggregates' responsibility to clean up after themselves, |
| 2859 | * because strict aggregates must be restarted whenever we remove their |
| 2860 | * last non-NULL input, which the aggregate won't be aware is happening. |
| 2861 | * Also, just pfree()ing the transValue upon restarting wouldn't help, |
| 2862 | * since we'd miss any indirectly referenced data. We could, in theory, |
| 2863 | * make the memory allocation rules for moving aggregates different than |
| 2864 | * they have historically been for plain aggregates, but that seems grotty |
| 2865 | * and likely to lead to memory leaks. |
| 2866 | */ |
| 2867 | if (OidIsValid(invtransfn_oid)) |
| 2868 | peraggstate->aggcontext = |
| 2869 | AllocSetContextCreate(CurrentMemoryContext, |
| 2870 | "WindowAgg Per Aggregate" , |
| 2871 | ALLOCSET_DEFAULT_SIZES); |
| 2872 | else |
| 2873 | peraggstate->aggcontext = winstate->aggcontext; |
| 2874 | |
| 2875 | ReleaseSysCache(aggTuple); |
| 2876 | |
| 2877 | return peraggstate; |
| 2878 | } |
| 2879 | |
| 2880 | static Datum |
| 2881 | GetAggInitVal(Datum textInitVal, Oid transtype) |
| 2882 | { |
| 2883 | Oid typinput, |
| 2884 | typioparam; |
| 2885 | char *strInitVal; |
| 2886 | Datum initVal; |
| 2887 | |
| 2888 | getTypeInputInfo(transtype, &typinput, &typioparam); |
| 2889 | strInitVal = TextDatumGetCString(textInitVal); |
| 2890 | initVal = OidInputFunctionCall(typinput, strInitVal, |
| 2891 | typioparam, -1); |
| 2892 | pfree(strInitVal); |
| 2893 | return initVal; |
| 2894 | } |
| 2895 | |
| 2896 | /* |
| 2897 | * are_peers |
| 2898 | * compare two rows to see if they are equal according to the ORDER BY clause |
| 2899 | * |
| 2900 | * NB: this does not consider the window frame mode. |
| 2901 | */ |
| 2902 | static bool |
| 2903 | are_peers(WindowAggState *winstate, TupleTableSlot *slot1, |
| 2904 | TupleTableSlot *slot2) |
| 2905 | { |
| 2906 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
| 2907 | ExprContext *econtext = winstate->tmpcontext; |
| 2908 | |
| 2909 | /* If no ORDER BY, all rows are peers with each other */ |
| 2910 | if (node->ordNumCols == 0) |
| 2911 | return true; |
| 2912 | |
| 2913 | econtext->ecxt_outertuple = slot1; |
| 2914 | econtext->ecxt_innertuple = slot2; |
| 2915 | return ExecQualAndReset(winstate->ordEqfunction, econtext); |
| 2916 | } |
| 2917 | |
| 2918 | /* |
| 2919 | * window_gettupleslot |
| 2920 | * Fetch the pos'th tuple of the current partition into the slot, |
| 2921 | * using the winobj's read pointer |
| 2922 | * |
| 2923 | * Returns true if successful, false if no such row |
| 2924 | */ |
| 2925 | static bool |
| 2926 | window_gettupleslot(WindowObject winobj, int64 pos, TupleTableSlot *slot) |
| 2927 | { |
| 2928 | WindowAggState *winstate = winobj->winstate; |
| 2929 | MemoryContext oldcontext; |
| 2930 | |
| 2931 | /* often called repeatedly in a row */ |
| 2932 | CHECK_FOR_INTERRUPTS(); |
| 2933 | |
| 2934 | /* Don't allow passing -1 to spool_tuples here */ |
| 2935 | if (pos < 0) |
| 2936 | return false; |
| 2937 | |
| 2938 | /* If necessary, fetch the tuple into the spool */ |
| 2939 | spool_tuples(winstate, pos); |
| 2940 | |
| 2941 | if (pos >= winstate->spooled_rows) |
| 2942 | return false; |
| 2943 | |
| 2944 | if (pos < winobj->markpos) |
| 2945 | elog(ERROR, "cannot fetch row before WindowObject's mark position" ); |
| 2946 | |
| 2947 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
| 2948 | |
| 2949 | tuplestore_select_read_pointer(winstate->buffer, winobj->readptr); |
| 2950 | |
| 2951 | /* |
| 2952 | * Advance or rewind until we are within one tuple of the one we want. |
| 2953 | */ |
| 2954 | if (winobj->seekpos < pos - 1) |
| 2955 | { |
| 2956 | if (!tuplestore_skiptuples(winstate->buffer, |
| 2957 | pos - 1 - winobj->seekpos, |
| 2958 | true)) |
| 2959 | elog(ERROR, "unexpected end of tuplestore" ); |
| 2960 | winobj->seekpos = pos - 1; |
| 2961 | } |
| 2962 | else if (winobj->seekpos > pos + 1) |
| 2963 | { |
| 2964 | if (!tuplestore_skiptuples(winstate->buffer, |
| 2965 | winobj->seekpos - (pos + 1), |
| 2966 | false)) |
| 2967 | elog(ERROR, "unexpected end of tuplestore" ); |
| 2968 | winobj->seekpos = pos + 1; |
| 2969 | } |
| 2970 | else if (winobj->seekpos == pos) |
| 2971 | { |
| 2972 | /* |
| 2973 | * There's no API to refetch the tuple at the current position. We |
| 2974 | * have to move one tuple forward, and then one backward. (We don't |
| 2975 | * do it the other way because we might try to fetch the row before |
| 2976 | * our mark, which isn't allowed.) XXX this case could stand to be |
| 2977 | * optimized. |
| 2978 | */ |
| 2979 | tuplestore_advance(winstate->buffer, true); |
| 2980 | winobj->seekpos++; |
| 2981 | } |
| 2982 | |
| 2983 | /* |
| 2984 | * Now we should be on the tuple immediately before or after the one we |
| 2985 | * want, so just fetch forwards or backwards as appropriate. |
| 2986 | */ |
| 2987 | if (winobj->seekpos > pos) |
| 2988 | { |
| 2989 | if (!tuplestore_gettupleslot(winstate->buffer, false, true, slot)) |
| 2990 | elog(ERROR, "unexpected end of tuplestore" ); |
| 2991 | winobj->seekpos--; |
| 2992 | } |
| 2993 | else |
| 2994 | { |
| 2995 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, slot)) |
| 2996 | elog(ERROR, "unexpected end of tuplestore" ); |
| 2997 | winobj->seekpos++; |
| 2998 | } |
| 2999 | |
| 3000 | Assert(winobj->seekpos == pos); |
| 3001 | |
| 3002 | MemoryContextSwitchTo(oldcontext); |
| 3003 | |
| 3004 | return true; |
| 3005 | } |
| 3006 | |
| 3007 | |
| 3008 | /*********************************************************************** |
| 3009 | * API exposed to window functions |
| 3010 | ***********************************************************************/ |
| 3011 | |
| 3012 | |
| 3013 | /* |
| 3014 | * WinGetPartitionLocalMemory |
| 3015 | * Get working memory that lives till end of partition processing |
| 3016 | * |
| 3017 | * On first call within a given partition, this allocates and zeroes the |
| 3018 | * requested amount of space. Subsequent calls just return the same chunk. |
| 3019 | * |
| 3020 | * Memory obtained this way is normally used to hold state that should be |
| 3021 | * automatically reset for each new partition. If a window function wants |
| 3022 | * to hold state across the whole query, fcinfo->fn_extra can be used in the |
| 3023 | * usual way for that. |
| 3024 | */ |
| 3025 | void * |
| 3026 | WinGetPartitionLocalMemory(WindowObject winobj, Size sz) |
| 3027 | { |
| 3028 | Assert(WindowObjectIsValid(winobj)); |
| 3029 | if (winobj->localmem == NULL) |
| 3030 | winobj->localmem = |
| 3031 | MemoryContextAllocZero(winobj->winstate->partcontext, sz); |
| 3032 | return winobj->localmem; |
| 3033 | } |
| 3034 | |
| 3035 | /* |
| 3036 | * WinGetCurrentPosition |
| 3037 | * Return the current row's position (counting from 0) within the current |
| 3038 | * partition. |
| 3039 | */ |
| 3040 | int64 |
| 3041 | WinGetCurrentPosition(WindowObject winobj) |
| 3042 | { |
| 3043 | Assert(WindowObjectIsValid(winobj)); |
| 3044 | return winobj->winstate->currentpos; |
| 3045 | } |
| 3046 | |
| 3047 | /* |
| 3048 | * WinGetPartitionRowCount |
| 3049 | * Return total number of rows contained in the current partition. |
| 3050 | * |
| 3051 | * Note: this is a relatively expensive operation because it forces the |
| 3052 | * whole partition to be "spooled" into the tuplestore at once. Once |
| 3053 | * executed, however, additional calls within the same partition are cheap. |
| 3054 | */ |
| 3055 | int64 |
| 3056 | WinGetPartitionRowCount(WindowObject winobj) |
| 3057 | { |
| 3058 | Assert(WindowObjectIsValid(winobj)); |
| 3059 | spool_tuples(winobj->winstate, -1); |
| 3060 | return winobj->winstate->spooled_rows; |
| 3061 | } |
| 3062 | |
| 3063 | /* |
| 3064 | * WinSetMarkPosition |
| 3065 | * Set the "mark" position for the window object, which is the oldest row |
| 3066 | * number (counting from 0) it is allowed to fetch during all subsequent |
| 3067 | * operations within the current partition. |
| 3068 | * |
| 3069 | * Window functions do not have to call this, but are encouraged to move the |
| 3070 | * mark forward when possible to keep the tuplestore size down and prevent |
| 3071 | * having to spill rows to disk. |
| 3072 | */ |
| 3073 | void |
| 3074 | WinSetMarkPosition(WindowObject winobj, int64 markpos) |
| 3075 | { |
| 3076 | WindowAggState *winstate; |
| 3077 | |
| 3078 | Assert(WindowObjectIsValid(winobj)); |
| 3079 | winstate = winobj->winstate; |
| 3080 | |
| 3081 | if (markpos < winobj->markpos) |
| 3082 | elog(ERROR, "cannot move WindowObject's mark position backward" ); |
| 3083 | tuplestore_select_read_pointer(winstate->buffer, winobj->markptr); |
| 3084 | if (markpos > winobj->markpos) |
| 3085 | { |
| 3086 | tuplestore_skiptuples(winstate->buffer, |
| 3087 | markpos - winobj->markpos, |
| 3088 | true); |
| 3089 | winobj->markpos = markpos; |
| 3090 | } |
| 3091 | tuplestore_select_read_pointer(winstate->buffer, winobj->readptr); |
| 3092 | if (markpos > winobj->seekpos) |
| 3093 | { |
| 3094 | tuplestore_skiptuples(winstate->buffer, |
| 3095 | markpos - winobj->seekpos, |
| 3096 | true); |
| 3097 | winobj->seekpos = markpos; |
| 3098 | } |
| 3099 | } |
| 3100 | |
| 3101 | /* |
| 3102 | * WinRowsArePeers |
| 3103 | * Compare two rows (specified by absolute position in partition) to see |
| 3104 | * if they are equal according to the ORDER BY clause. |
| 3105 | * |
| 3106 | * NB: this does not consider the window frame mode. |
| 3107 | */ |
| 3108 | bool |
| 3109 | WinRowsArePeers(WindowObject winobj, int64 pos1, int64 pos2) |
| 3110 | { |
| 3111 | WindowAggState *winstate; |
| 3112 | WindowAgg *node; |
| 3113 | TupleTableSlot *slot1; |
| 3114 | TupleTableSlot *slot2; |
| 3115 | bool res; |
| 3116 | |
| 3117 | Assert(WindowObjectIsValid(winobj)); |
| 3118 | winstate = winobj->winstate; |
| 3119 | node = (WindowAgg *) winstate->ss.ps.plan; |
| 3120 | |
| 3121 | /* If no ORDER BY, all rows are peers; don't bother to fetch them */ |
| 3122 | if (node->ordNumCols == 0) |
| 3123 | return true; |
| 3124 | |
| 3125 | /* |
| 3126 | * Note: OK to use temp_slot_2 here because we aren't calling any |
| 3127 | * frame-related functions (those tend to clobber temp_slot_2). |
| 3128 | */ |
| 3129 | slot1 = winstate->temp_slot_1; |
| 3130 | slot2 = winstate->temp_slot_2; |
| 3131 | |
| 3132 | if (!window_gettupleslot(winobj, pos1, slot1)) |
| 3133 | elog(ERROR, "specified position is out of window: " INT64_FORMAT, |
| 3134 | pos1); |
| 3135 | if (!window_gettupleslot(winobj, pos2, slot2)) |
| 3136 | elog(ERROR, "specified position is out of window: " INT64_FORMAT, |
| 3137 | pos2); |
| 3138 | |
| 3139 | res = are_peers(winstate, slot1, slot2); |
| 3140 | |
| 3141 | ExecClearTuple(slot1); |
| 3142 | ExecClearTuple(slot2); |
| 3143 | |
| 3144 | return res; |
| 3145 | } |
| 3146 | |
| 3147 | /* |
| 3148 | * WinGetFuncArgInPartition |
| 3149 | * Evaluate a window function's argument expression on a specified |
| 3150 | * row of the partition. The row is identified in lseek(2) style, |
| 3151 | * i.e. relative to the current, first, or last row. |
| 3152 | * |
| 3153 | * argno: argument number to evaluate (counted from 0) |
| 3154 | * relpos: signed rowcount offset from the seek position |
| 3155 | * seektype: WINDOW_SEEK_CURRENT, WINDOW_SEEK_HEAD, or WINDOW_SEEK_TAIL |
| 3156 | * set_mark: If the row is found and set_mark is true, the mark is moved to |
| 3157 | * the row as a side-effect. |
| 3158 | * isnull: output argument, receives isnull status of result |
| 3159 | * isout: output argument, set to indicate whether target row position |
| 3160 | * is out of partition (can pass NULL if caller doesn't care about this) |
| 3161 | * |
| 3162 | * Specifying a nonexistent row is not an error, it just causes a null result |
| 3163 | * (plus setting *isout true, if isout isn't NULL). |
| 3164 | */ |
| 3165 | Datum |
| 3166 | WinGetFuncArgInPartition(WindowObject winobj, int argno, |
| 3167 | int relpos, int seektype, bool set_mark, |
| 3168 | bool *isnull, bool *isout) |
| 3169 | { |
| 3170 | WindowAggState *winstate; |
| 3171 | ExprContext *econtext; |
| 3172 | TupleTableSlot *slot; |
| 3173 | bool gottuple; |
| 3174 | int64 abs_pos; |
| 3175 | |
| 3176 | Assert(WindowObjectIsValid(winobj)); |
| 3177 | winstate = winobj->winstate; |
| 3178 | econtext = winstate->ss.ps.ps_ExprContext; |
| 3179 | slot = winstate->temp_slot_1; |
| 3180 | |
| 3181 | switch (seektype) |
| 3182 | { |
| 3183 | case WINDOW_SEEK_CURRENT: |
| 3184 | abs_pos = winstate->currentpos + relpos; |
| 3185 | break; |
| 3186 | case WINDOW_SEEK_HEAD: |
| 3187 | abs_pos = relpos; |
| 3188 | break; |
| 3189 | case WINDOW_SEEK_TAIL: |
| 3190 | spool_tuples(winstate, -1); |
| 3191 | abs_pos = winstate->spooled_rows - 1 + relpos; |
| 3192 | break; |
| 3193 | default: |
| 3194 | elog(ERROR, "unrecognized window seek type: %d" , seektype); |
| 3195 | abs_pos = 0; /* keep compiler quiet */ |
| 3196 | break; |
| 3197 | } |
| 3198 | |
| 3199 | gottuple = window_gettupleslot(winobj, abs_pos, slot); |
| 3200 | |
| 3201 | if (!gottuple) |
| 3202 | { |
| 3203 | if (isout) |
| 3204 | *isout = true; |
| 3205 | *isnull = true; |
| 3206 | return (Datum) 0; |
| 3207 | } |
| 3208 | else |
| 3209 | { |
| 3210 | if (isout) |
| 3211 | *isout = false; |
| 3212 | if (set_mark) |
| 3213 | WinSetMarkPosition(winobj, abs_pos); |
| 3214 | econtext->ecxt_outertuple = slot; |
| 3215 | return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno), |
| 3216 | econtext, isnull); |
| 3217 | } |
| 3218 | } |
| 3219 | |
| 3220 | /* |
| 3221 | * WinGetFuncArgInFrame |
| 3222 | * Evaluate a window function's argument expression on a specified |
| 3223 | * row of the window frame. The row is identified in lseek(2) style, |
| 3224 | * i.e. relative to the first or last row of the frame. (We do not |
| 3225 | * support WINDOW_SEEK_CURRENT here, because it's not very clear what |
| 3226 | * that should mean if the current row isn't part of the frame.) |
| 3227 | * |
| 3228 | * argno: argument number to evaluate (counted from 0) |
| 3229 | * relpos: signed rowcount offset from the seek position |
| 3230 | * seektype: WINDOW_SEEK_HEAD or WINDOW_SEEK_TAIL |
| 3231 | * set_mark: If the row is found/in frame and set_mark is true, the mark is |
| 3232 | * moved to the row as a side-effect. |
| 3233 | * isnull: output argument, receives isnull status of result |
| 3234 | * isout: output argument, set to indicate whether target row position |
| 3235 | * is out of frame (can pass NULL if caller doesn't care about this) |
| 3236 | * |
| 3237 | * Specifying a nonexistent or not-in-frame row is not an error, it just |
| 3238 | * causes a null result (plus setting *isout true, if isout isn't NULL). |
| 3239 | * |
| 3240 | * Note that some exclusion-clause options lead to situations where the |
| 3241 | * rows that are in-frame are not consecutive in the partition. But we |
| 3242 | * count only in-frame rows when measuring relpos. |
| 3243 | * |
| 3244 | * The set_mark flag is interpreted as meaning that the caller will specify |
| 3245 | * a constant (or, perhaps, monotonically increasing) relpos in successive |
| 3246 | * calls, so that *if there is no exclusion clause* there will be no need |
| 3247 | * to fetch a row before the previously fetched row. But we do not expect |
| 3248 | * the caller to know how to account for exclusion clauses. Therefore, |
| 3249 | * if there is an exclusion clause we take responsibility for adjusting the |
| 3250 | * mark request to something that will be safe given the above assumption |
| 3251 | * about relpos. |
| 3252 | */ |
| 3253 | Datum |
| 3254 | WinGetFuncArgInFrame(WindowObject winobj, int argno, |
| 3255 | int relpos, int seektype, bool set_mark, |
| 3256 | bool *isnull, bool *isout) |
| 3257 | { |
| 3258 | WindowAggState *winstate; |
| 3259 | ExprContext *econtext; |
| 3260 | TupleTableSlot *slot; |
| 3261 | int64 abs_pos; |
| 3262 | int64 mark_pos; |
| 3263 | |
| 3264 | Assert(WindowObjectIsValid(winobj)); |
| 3265 | winstate = winobj->winstate; |
| 3266 | econtext = winstate->ss.ps.ps_ExprContext; |
| 3267 | slot = winstate->temp_slot_1; |
| 3268 | |
| 3269 | switch (seektype) |
| 3270 | { |
| 3271 | case WINDOW_SEEK_CURRENT: |
| 3272 | elog(ERROR, "WINDOW_SEEK_CURRENT is not supported for WinGetFuncArgInFrame" ); |
| 3273 | abs_pos = mark_pos = 0; /* keep compiler quiet */ |
| 3274 | break; |
| 3275 | case WINDOW_SEEK_HEAD: |
| 3276 | /* rejecting relpos < 0 is easy and simplifies code below */ |
| 3277 | if (relpos < 0) |
| 3278 | goto out_of_frame; |
| 3279 | update_frameheadpos(winstate); |
| 3280 | abs_pos = winstate->frameheadpos + relpos; |
| 3281 | mark_pos = abs_pos; |
| 3282 | |
| 3283 | /* |
| 3284 | * Account for exclusion option if one is active, but advance only |
| 3285 | * abs_pos not mark_pos. This prevents changes of the current |
| 3286 | * row's peer group from resulting in trying to fetch a row before |
| 3287 | * some previous mark position. |
| 3288 | * |
| 3289 | * Note that in some corner cases such as current row being |
| 3290 | * outside frame, these calculations are theoretically too simple, |
| 3291 | * but it doesn't matter because we'll end up deciding the row is |
| 3292 | * out of frame. We do not attempt to avoid fetching rows past |
| 3293 | * end of frame; that would happen in some cases anyway. |
| 3294 | */ |
| 3295 | switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION) |
| 3296 | { |
| 3297 | case 0: |
| 3298 | /* no adjustment needed */ |
| 3299 | break; |
| 3300 | case FRAMEOPTION_EXCLUDE_CURRENT_ROW: |
| 3301 | if (abs_pos >= winstate->currentpos && |
| 3302 | winstate->currentpos >= winstate->frameheadpos) |
| 3303 | abs_pos++; |
| 3304 | break; |
| 3305 | case FRAMEOPTION_EXCLUDE_GROUP: |
| 3306 | update_grouptailpos(winstate); |
| 3307 | if (abs_pos >= winstate->groupheadpos && |
| 3308 | winstate->grouptailpos > winstate->frameheadpos) |
| 3309 | { |
| 3310 | int64 overlapstart = Max(winstate->groupheadpos, |
| 3311 | winstate->frameheadpos); |
| 3312 | |
| 3313 | abs_pos += winstate->grouptailpos - overlapstart; |
| 3314 | } |
| 3315 | break; |
| 3316 | case FRAMEOPTION_EXCLUDE_TIES: |
| 3317 | update_grouptailpos(winstate); |
| 3318 | if (abs_pos >= winstate->groupheadpos && |
| 3319 | winstate->grouptailpos > winstate->frameheadpos) |
| 3320 | { |
| 3321 | int64 overlapstart = Max(winstate->groupheadpos, |
| 3322 | winstate->frameheadpos); |
| 3323 | |
| 3324 | if (abs_pos == overlapstart) |
| 3325 | abs_pos = winstate->currentpos; |
| 3326 | else |
| 3327 | abs_pos += winstate->grouptailpos - overlapstart - 1; |
| 3328 | } |
| 3329 | break; |
| 3330 | default: |
| 3331 | elog(ERROR, "unrecognized frame option state: 0x%x" , |
| 3332 | winstate->frameOptions); |
| 3333 | break; |
| 3334 | } |
| 3335 | break; |
| 3336 | case WINDOW_SEEK_TAIL: |
| 3337 | /* rejecting relpos > 0 is easy and simplifies code below */ |
| 3338 | if (relpos > 0) |
| 3339 | goto out_of_frame; |
| 3340 | update_frametailpos(winstate); |
| 3341 | abs_pos = winstate->frametailpos - 1 + relpos; |
| 3342 | |
| 3343 | /* |
| 3344 | * Account for exclusion option if one is active. If there is no |
| 3345 | * exclusion, we can safely set the mark at the accessed row. But |
| 3346 | * if there is, we can only mark the frame start, because we can't |
| 3347 | * be sure how far back in the frame the exclusion might cause us |
| 3348 | * to fetch in future. Furthermore, we have to actually check |
| 3349 | * against frameheadpos here, since it's unsafe to try to fetch a |
| 3350 | * row before frame start if the mark might be there already. |
| 3351 | */ |
| 3352 | switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION) |
| 3353 | { |
| 3354 | case 0: |
| 3355 | /* no adjustment needed */ |
| 3356 | mark_pos = abs_pos; |
| 3357 | break; |
| 3358 | case FRAMEOPTION_EXCLUDE_CURRENT_ROW: |
| 3359 | if (abs_pos <= winstate->currentpos && |
| 3360 | winstate->currentpos < winstate->frametailpos) |
| 3361 | abs_pos--; |
| 3362 | update_frameheadpos(winstate); |
| 3363 | if (abs_pos < winstate->frameheadpos) |
| 3364 | goto out_of_frame; |
| 3365 | mark_pos = winstate->frameheadpos; |
| 3366 | break; |
| 3367 | case FRAMEOPTION_EXCLUDE_GROUP: |
| 3368 | update_grouptailpos(winstate); |
| 3369 | if (abs_pos < winstate->grouptailpos && |
| 3370 | winstate->groupheadpos < winstate->frametailpos) |
| 3371 | { |
| 3372 | int64 overlapend = Min(winstate->grouptailpos, |
| 3373 | winstate->frametailpos); |
| 3374 | |
| 3375 | abs_pos -= overlapend - winstate->groupheadpos; |
| 3376 | } |
| 3377 | update_frameheadpos(winstate); |
| 3378 | if (abs_pos < winstate->frameheadpos) |
| 3379 | goto out_of_frame; |
| 3380 | mark_pos = winstate->frameheadpos; |
| 3381 | break; |
| 3382 | case FRAMEOPTION_EXCLUDE_TIES: |
| 3383 | update_grouptailpos(winstate); |
| 3384 | if (abs_pos < winstate->grouptailpos && |
| 3385 | winstate->groupheadpos < winstate->frametailpos) |
| 3386 | { |
| 3387 | int64 overlapend = Min(winstate->grouptailpos, |
| 3388 | winstate->frametailpos); |
| 3389 | |
| 3390 | if (abs_pos == overlapend - 1) |
| 3391 | abs_pos = winstate->currentpos; |
| 3392 | else |
| 3393 | abs_pos -= overlapend - 1 - winstate->groupheadpos; |
| 3394 | } |
| 3395 | update_frameheadpos(winstate); |
| 3396 | if (abs_pos < winstate->frameheadpos) |
| 3397 | goto out_of_frame; |
| 3398 | mark_pos = winstate->frameheadpos; |
| 3399 | break; |
| 3400 | default: |
| 3401 | elog(ERROR, "unrecognized frame option state: 0x%x" , |
| 3402 | winstate->frameOptions); |
| 3403 | mark_pos = 0; /* keep compiler quiet */ |
| 3404 | break; |
| 3405 | } |
| 3406 | break; |
| 3407 | default: |
| 3408 | elog(ERROR, "unrecognized window seek type: %d" , seektype); |
| 3409 | abs_pos = mark_pos = 0; /* keep compiler quiet */ |
| 3410 | break; |
| 3411 | } |
| 3412 | |
| 3413 | if (!window_gettupleslot(winobj, abs_pos, slot)) |
| 3414 | goto out_of_frame; |
| 3415 | |
| 3416 | /* The code above does not detect all out-of-frame cases, so check */ |
| 3417 | if (row_is_in_frame(winstate, abs_pos, slot) <= 0) |
| 3418 | goto out_of_frame; |
| 3419 | |
| 3420 | if (isout) |
| 3421 | *isout = false; |
| 3422 | if (set_mark) |
| 3423 | WinSetMarkPosition(winobj, mark_pos); |
| 3424 | econtext->ecxt_outertuple = slot; |
| 3425 | return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno), |
| 3426 | econtext, isnull); |
| 3427 | |
| 3428 | out_of_frame: |
| 3429 | if (isout) |
| 3430 | *isout = true; |
| 3431 | *isnull = true; |
| 3432 | return (Datum) 0; |
| 3433 | } |
| 3434 | |
| 3435 | /* |
| 3436 | * WinGetFuncArgCurrent |
| 3437 | * Evaluate a window function's argument expression on the current row. |
| 3438 | * |
| 3439 | * argno: argument number to evaluate (counted from 0) |
| 3440 | * isnull: output argument, receives isnull status of result |
| 3441 | * |
| 3442 | * Note: this isn't quite equivalent to WinGetFuncArgInPartition or |
| 3443 | * WinGetFuncArgInFrame targeting the current row, because it will succeed |
| 3444 | * even if the WindowObject's mark has been set beyond the current row. |
| 3445 | * This should generally be used for "ordinary" arguments of a window |
| 3446 | * function, such as the offset argument of lead() or lag(). |
| 3447 | */ |
| 3448 | Datum |
| 3449 | WinGetFuncArgCurrent(WindowObject winobj, int argno, bool *isnull) |
| 3450 | { |
| 3451 | WindowAggState *winstate; |
| 3452 | ExprContext *econtext; |
| 3453 | |
| 3454 | Assert(WindowObjectIsValid(winobj)); |
| 3455 | winstate = winobj->winstate; |
| 3456 | |
| 3457 | econtext = winstate->ss.ps.ps_ExprContext; |
| 3458 | |
| 3459 | econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot; |
| 3460 | return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno), |
| 3461 | econtext, isnull); |
| 3462 | } |
| 3463 | |