1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * nodeWindowAgg.c |
4 | * routines to handle WindowAgg nodes. |
5 | * |
6 | * A WindowAgg node evaluates "window functions" across suitable partitions |
7 | * of the input tuple set. Any one WindowAgg works for just a single window |
8 | * specification, though it can evaluate multiple window functions sharing |
9 | * identical window specifications. The input tuples are required to be |
10 | * delivered in sorted order, with the PARTITION BY columns (if any) as |
11 | * major sort keys and the ORDER BY columns (if any) as minor sort keys. |
12 | * (The planner generates a stack of WindowAggs with intervening Sort nodes |
13 | * as needed, if a query involves more than one window specification.) |
14 | * |
15 | * Since window functions can require access to any or all of the rows in |
16 | * the current partition, we accumulate rows of the partition into a |
17 | * tuplestore. The window functions are called using the WindowObject API |
18 | * so that they can access those rows as needed. |
19 | * |
20 | * We also support using plain aggregate functions as window functions. |
21 | * For these, the regular Agg-node environment is emulated for each partition. |
22 | * As required by the SQL spec, the output represents the value of the |
23 | * aggregate function over all rows in the current row's window frame. |
24 | * |
25 | * |
26 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
27 | * Portions Copyright (c) 1994, Regents of the University of California |
28 | * |
29 | * IDENTIFICATION |
30 | * src/backend/executor/nodeWindowAgg.c |
31 | * |
32 | *------------------------------------------------------------------------- |
33 | */ |
34 | #include "postgres.h" |
35 | |
36 | #include "access/htup_details.h" |
37 | #include "catalog/objectaccess.h" |
38 | #include "catalog/pg_aggregate.h" |
39 | #include "catalog/pg_proc.h" |
40 | #include "executor/executor.h" |
41 | #include "executor/nodeWindowAgg.h" |
42 | #include "miscadmin.h" |
43 | #include "nodes/nodeFuncs.h" |
44 | #include "optimizer/optimizer.h" |
45 | #include "parser/parse_agg.h" |
46 | #include "parser/parse_coerce.h" |
47 | #include "utils/acl.h" |
48 | #include "utils/builtins.h" |
49 | #include "utils/datum.h" |
50 | #include "utils/lsyscache.h" |
51 | #include "utils/memutils.h" |
52 | #include "utils/regproc.h" |
53 | #include "utils/syscache.h" |
54 | #include "windowapi.h" |
55 | |
56 | /* |
57 | * All the window function APIs are called with this object, which is passed |
58 | * to window functions as fcinfo->context. |
59 | */ |
60 | typedef struct WindowObjectData |
61 | { |
62 | NodeTag type; |
63 | WindowAggState *winstate; /* parent WindowAggState */ |
64 | List *argstates; /* ExprState trees for fn's arguments */ |
65 | void *localmem; /* WinGetPartitionLocalMemory's chunk */ |
66 | int markptr; /* tuplestore mark pointer for this fn */ |
67 | int readptr; /* tuplestore read pointer for this fn */ |
68 | int64 markpos; /* row that markptr is positioned on */ |
69 | int64 seekpos; /* row that readptr is positioned on */ |
70 | } WindowObjectData; |
71 | |
72 | /* |
73 | * We have one WindowStatePerFunc struct for each window function and |
74 | * window aggregate handled by this node. |
75 | */ |
76 | typedef struct WindowStatePerFuncData |
77 | { |
78 | /* Links to WindowFunc expr and state nodes this working state is for */ |
79 | WindowFuncExprState *wfuncstate; |
80 | WindowFunc *wfunc; |
81 | |
82 | int numArguments; /* number of arguments */ |
83 | |
84 | FmgrInfo flinfo; /* fmgr lookup data for window function */ |
85 | |
86 | Oid winCollation; /* collation derived for window function */ |
87 | |
88 | /* |
89 | * We need the len and byval info for the result of each function in order |
90 | * to know how to copy/delete values. |
91 | */ |
92 | int16 resulttypeLen; |
93 | bool resulttypeByVal; |
94 | |
95 | bool plain_agg; /* is it just a plain aggregate function? */ |
96 | int aggno; /* if so, index of its PerAggData */ |
97 | |
98 | WindowObject winobj; /* object used in window function API */ |
99 | } WindowStatePerFuncData; |
100 | |
101 | /* |
102 | * For plain aggregate window functions, we also have one of these. |
103 | */ |
104 | typedef struct WindowStatePerAggData |
105 | { |
106 | /* Oids of transition functions */ |
107 | Oid transfn_oid; |
108 | Oid invtransfn_oid; /* may be InvalidOid */ |
109 | Oid finalfn_oid; /* may be InvalidOid */ |
110 | |
111 | /* |
112 | * fmgr lookup data for transition functions --- only valid when |
113 | * corresponding oid is not InvalidOid. Note in particular that fn_strict |
114 | * flags are kept here. |
115 | */ |
116 | FmgrInfo transfn; |
117 | FmgrInfo invtransfn; |
118 | FmgrInfo finalfn; |
119 | |
120 | int numFinalArgs; /* number of arguments to pass to finalfn */ |
121 | |
122 | /* |
123 | * initial value from pg_aggregate entry |
124 | */ |
125 | Datum initValue; |
126 | bool initValueIsNull; |
127 | |
128 | /* |
129 | * cached value for current frame boundaries |
130 | */ |
131 | Datum resultValue; |
132 | bool resultValueIsNull; |
133 | |
134 | /* |
135 | * We need the len and byval info for the agg's input, result, and |
136 | * transition data types in order to know how to copy/delete values. |
137 | */ |
138 | int16 inputtypeLen, |
139 | resulttypeLen, |
140 | transtypeLen; |
141 | bool inputtypeByVal, |
142 | resulttypeByVal, |
143 | transtypeByVal; |
144 | |
145 | int wfuncno; /* index of associated PerFuncData */ |
146 | |
147 | /* Context holding transition value and possibly other subsidiary data */ |
148 | MemoryContext aggcontext; /* may be private, or winstate->aggcontext */ |
149 | |
150 | /* Current transition value */ |
151 | Datum transValue; /* current transition value */ |
152 | bool transValueIsNull; |
153 | |
154 | int64 transValueCount; /* number of currently-aggregated rows */ |
155 | |
156 | /* Data local to eval_windowaggregates() */ |
157 | bool restart; /* need to restart this agg in this cycle? */ |
158 | } WindowStatePerAggData; |
159 | |
160 | static void initialize_windowaggregate(WindowAggState *winstate, |
161 | WindowStatePerFunc perfuncstate, |
162 | WindowStatePerAgg peraggstate); |
163 | static void advance_windowaggregate(WindowAggState *winstate, |
164 | WindowStatePerFunc perfuncstate, |
165 | WindowStatePerAgg peraggstate); |
166 | static bool advance_windowaggregate_base(WindowAggState *winstate, |
167 | WindowStatePerFunc perfuncstate, |
168 | WindowStatePerAgg peraggstate); |
169 | static void finalize_windowaggregate(WindowAggState *winstate, |
170 | WindowStatePerFunc perfuncstate, |
171 | WindowStatePerAgg peraggstate, |
172 | Datum *result, bool *isnull); |
173 | |
174 | static void eval_windowaggregates(WindowAggState *winstate); |
175 | static void eval_windowfunction(WindowAggState *winstate, |
176 | WindowStatePerFunc perfuncstate, |
177 | Datum *result, bool *isnull); |
178 | |
179 | static void begin_partition(WindowAggState *winstate); |
180 | static void spool_tuples(WindowAggState *winstate, int64 pos); |
181 | static void release_partition(WindowAggState *winstate); |
182 | |
183 | static int row_is_in_frame(WindowAggState *winstate, int64 pos, |
184 | TupleTableSlot *slot); |
185 | static void update_frameheadpos(WindowAggState *winstate); |
186 | static void update_frametailpos(WindowAggState *winstate); |
187 | static void update_grouptailpos(WindowAggState *winstate); |
188 | |
189 | static WindowStatePerAggData *initialize_peragg(WindowAggState *winstate, |
190 | WindowFunc *wfunc, |
191 | WindowStatePerAgg peraggstate); |
192 | static Datum GetAggInitVal(Datum textInitVal, Oid transtype); |
193 | |
194 | static bool are_peers(WindowAggState *winstate, TupleTableSlot *slot1, |
195 | TupleTableSlot *slot2); |
196 | static bool window_gettupleslot(WindowObject winobj, int64 pos, |
197 | TupleTableSlot *slot); |
198 | |
199 | |
200 | /* |
201 | * initialize_windowaggregate |
202 | * parallel to initialize_aggregates in nodeAgg.c |
203 | */ |
204 | static void |
205 | initialize_windowaggregate(WindowAggState *winstate, |
206 | WindowStatePerFunc perfuncstate, |
207 | WindowStatePerAgg peraggstate) |
208 | { |
209 | MemoryContext oldContext; |
210 | |
211 | /* |
212 | * If we're using a private aggcontext, we may reset it here. But if the |
213 | * context is shared, we don't know which other aggregates may still need |
214 | * it, so we must leave it to the caller to reset at an appropriate time. |
215 | */ |
216 | if (peraggstate->aggcontext != winstate->aggcontext) |
217 | MemoryContextResetAndDeleteChildren(peraggstate->aggcontext); |
218 | |
219 | if (peraggstate->initValueIsNull) |
220 | peraggstate->transValue = peraggstate->initValue; |
221 | else |
222 | { |
223 | oldContext = MemoryContextSwitchTo(peraggstate->aggcontext); |
224 | peraggstate->transValue = datumCopy(peraggstate->initValue, |
225 | peraggstate->transtypeByVal, |
226 | peraggstate->transtypeLen); |
227 | MemoryContextSwitchTo(oldContext); |
228 | } |
229 | peraggstate->transValueIsNull = peraggstate->initValueIsNull; |
230 | peraggstate->transValueCount = 0; |
231 | peraggstate->resultValue = (Datum) 0; |
232 | peraggstate->resultValueIsNull = true; |
233 | } |
234 | |
235 | /* |
236 | * advance_windowaggregate |
237 | * parallel to advance_aggregates in nodeAgg.c |
238 | */ |
239 | static void |
240 | advance_windowaggregate(WindowAggState *winstate, |
241 | WindowStatePerFunc perfuncstate, |
242 | WindowStatePerAgg peraggstate) |
243 | { |
244 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
245 | WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate; |
246 | int numArguments = perfuncstate->numArguments; |
247 | Datum newVal; |
248 | ListCell *arg; |
249 | int i; |
250 | MemoryContext oldContext; |
251 | ExprContext *econtext = winstate->tmpcontext; |
252 | ExprState *filter = wfuncstate->aggfilter; |
253 | |
254 | oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); |
255 | |
256 | /* Skip anything FILTERed out */ |
257 | if (filter) |
258 | { |
259 | bool isnull; |
260 | Datum res = ExecEvalExpr(filter, econtext, &isnull); |
261 | |
262 | if (isnull || !DatumGetBool(res)) |
263 | { |
264 | MemoryContextSwitchTo(oldContext); |
265 | return; |
266 | } |
267 | } |
268 | |
269 | /* We start from 1, since the 0th arg will be the transition value */ |
270 | i = 1; |
271 | foreach(arg, wfuncstate->args) |
272 | { |
273 | ExprState *argstate = (ExprState *) lfirst(arg); |
274 | |
275 | fcinfo->args[i].value = ExecEvalExpr(argstate, econtext, |
276 | &fcinfo->args[i].isnull); |
277 | i++; |
278 | } |
279 | |
280 | if (peraggstate->transfn.fn_strict) |
281 | { |
282 | /* |
283 | * For a strict transfn, nothing happens when there's a NULL input; we |
284 | * just keep the prior transValue. Note transValueCount doesn't |
285 | * change either. |
286 | */ |
287 | for (i = 1; i <= numArguments; i++) |
288 | { |
289 | if (fcinfo->args[i].isnull) |
290 | { |
291 | MemoryContextSwitchTo(oldContext); |
292 | return; |
293 | } |
294 | } |
295 | |
296 | /* |
297 | * For strict transition functions with initial value NULL we use the |
298 | * first non-NULL input as the initial state. (We already checked |
299 | * that the agg's input type is binary-compatible with its transtype, |
300 | * so straight copy here is OK.) |
301 | * |
302 | * We must copy the datum into aggcontext if it is pass-by-ref. We do |
303 | * not need to pfree the old transValue, since it's NULL. |
304 | */ |
305 | if (peraggstate->transValueCount == 0 && peraggstate->transValueIsNull) |
306 | { |
307 | MemoryContextSwitchTo(peraggstate->aggcontext); |
308 | peraggstate->transValue = datumCopy(fcinfo->args[1].value, |
309 | peraggstate->transtypeByVal, |
310 | peraggstate->transtypeLen); |
311 | peraggstate->transValueIsNull = false; |
312 | peraggstate->transValueCount = 1; |
313 | MemoryContextSwitchTo(oldContext); |
314 | return; |
315 | } |
316 | |
317 | if (peraggstate->transValueIsNull) |
318 | { |
319 | /* |
320 | * Don't call a strict function with NULL inputs. Note it is |
321 | * possible to get here despite the above tests, if the transfn is |
322 | * strict *and* returned a NULL on a prior cycle. If that happens |
323 | * we will propagate the NULL all the way to the end. That can |
324 | * only happen if there's no inverse transition function, though, |
325 | * since we disallow transitions back to NULL when there is one. |
326 | */ |
327 | MemoryContextSwitchTo(oldContext); |
328 | Assert(!OidIsValid(peraggstate->invtransfn_oid)); |
329 | return; |
330 | } |
331 | } |
332 | |
333 | /* |
334 | * OK to call the transition function. Set winstate->curaggcontext while |
335 | * calling it, for possible use by AggCheckCallContext. |
336 | */ |
337 | InitFunctionCallInfoData(*fcinfo, &(peraggstate->transfn), |
338 | numArguments + 1, |
339 | perfuncstate->winCollation, |
340 | (void *) winstate, NULL); |
341 | fcinfo->args[0].value = peraggstate->transValue; |
342 | fcinfo->args[0].isnull = peraggstate->transValueIsNull; |
343 | winstate->curaggcontext = peraggstate->aggcontext; |
344 | newVal = FunctionCallInvoke(fcinfo); |
345 | winstate->curaggcontext = NULL; |
346 | |
347 | /* |
348 | * Moving-aggregate transition functions must not return null, see |
349 | * advance_windowaggregate_base(). |
350 | */ |
351 | if (fcinfo->isnull && OidIsValid(peraggstate->invtransfn_oid)) |
352 | ereport(ERROR, |
353 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
354 | errmsg("moving-aggregate transition function must not return null" ))); |
355 | |
356 | /* |
357 | * We must track the number of rows included in transValue, since to |
358 | * remove the last input, advance_windowaggregate_base() mustn't call the |
359 | * inverse transition function, but simply reset transValue back to its |
360 | * initial value. |
361 | */ |
362 | peraggstate->transValueCount++; |
363 | |
364 | /* |
365 | * If pass-by-ref datatype, must copy the new value into aggcontext and |
366 | * free the prior transValue. But if transfn returned a pointer to its |
367 | * first input, we don't need to do anything. Also, if transfn returned a |
368 | * pointer to a R/W expanded object that is already a child of the |
369 | * aggcontext, assume we can adopt that value without copying it. |
370 | */ |
371 | if (!peraggstate->transtypeByVal && |
372 | DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue)) |
373 | { |
374 | if (!fcinfo->isnull) |
375 | { |
376 | MemoryContextSwitchTo(peraggstate->aggcontext); |
377 | if (DatumIsReadWriteExpandedObject(newVal, |
378 | false, |
379 | peraggstate->transtypeLen) && |
380 | MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext) |
381 | /* do nothing */ ; |
382 | else |
383 | newVal = datumCopy(newVal, |
384 | peraggstate->transtypeByVal, |
385 | peraggstate->transtypeLen); |
386 | } |
387 | if (!peraggstate->transValueIsNull) |
388 | { |
389 | if (DatumIsReadWriteExpandedObject(peraggstate->transValue, |
390 | false, |
391 | peraggstate->transtypeLen)) |
392 | DeleteExpandedObject(peraggstate->transValue); |
393 | else |
394 | pfree(DatumGetPointer(peraggstate->transValue)); |
395 | } |
396 | } |
397 | |
398 | MemoryContextSwitchTo(oldContext); |
399 | peraggstate->transValue = newVal; |
400 | peraggstate->transValueIsNull = fcinfo->isnull; |
401 | } |
402 | |
403 | /* |
404 | * advance_windowaggregate_base |
405 | * Remove the oldest tuple from an aggregation. |
406 | * |
407 | * This is very much like advance_windowaggregate, except that we will call |
408 | * the inverse transition function (which caller must have checked is |
409 | * available). |
410 | * |
411 | * Returns true if we successfully removed the current row from this |
412 | * aggregate, false if not (in the latter case, caller is responsible |
413 | * for cleaning up by restarting the aggregation). |
414 | */ |
415 | static bool |
416 | advance_windowaggregate_base(WindowAggState *winstate, |
417 | WindowStatePerFunc perfuncstate, |
418 | WindowStatePerAgg peraggstate) |
419 | { |
420 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
421 | WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate; |
422 | int numArguments = perfuncstate->numArguments; |
423 | Datum newVal; |
424 | ListCell *arg; |
425 | int i; |
426 | MemoryContext oldContext; |
427 | ExprContext *econtext = winstate->tmpcontext; |
428 | ExprState *filter = wfuncstate->aggfilter; |
429 | |
430 | oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); |
431 | |
432 | /* Skip anything FILTERed out */ |
433 | if (filter) |
434 | { |
435 | bool isnull; |
436 | Datum res = ExecEvalExpr(filter, econtext, &isnull); |
437 | |
438 | if (isnull || !DatumGetBool(res)) |
439 | { |
440 | MemoryContextSwitchTo(oldContext); |
441 | return true; |
442 | } |
443 | } |
444 | |
445 | /* We start from 1, since the 0th arg will be the transition value */ |
446 | i = 1; |
447 | foreach(arg, wfuncstate->args) |
448 | { |
449 | ExprState *argstate = (ExprState *) lfirst(arg); |
450 | |
451 | fcinfo->args[i].value = ExecEvalExpr(argstate, econtext, |
452 | &fcinfo->args[i].isnull); |
453 | i++; |
454 | } |
455 | |
456 | if (peraggstate->invtransfn.fn_strict) |
457 | { |
458 | /* |
459 | * For a strict (inv)transfn, nothing happens when there's a NULL |
460 | * input; we just keep the prior transValue. Note transValueCount |
461 | * doesn't change either. |
462 | */ |
463 | for (i = 1; i <= numArguments; i++) |
464 | { |
465 | if (fcinfo->args[i].isnull) |
466 | { |
467 | MemoryContextSwitchTo(oldContext); |
468 | return true; |
469 | } |
470 | } |
471 | } |
472 | |
473 | /* There should still be an added but not yet removed value */ |
474 | Assert(peraggstate->transValueCount > 0); |
475 | |
476 | /* |
477 | * In moving-aggregate mode, the state must never be NULL, except possibly |
478 | * before any rows have been aggregated (which is surely not the case at |
479 | * this point). This restriction allows us to interpret a NULL result |
480 | * from the inverse function as meaning "sorry, can't do an inverse |
481 | * transition in this case". We already checked this in |
482 | * advance_windowaggregate, but just for safety, check again. |
483 | */ |
484 | if (peraggstate->transValueIsNull) |
485 | elog(ERROR, "aggregate transition value is NULL before inverse transition" ); |
486 | |
487 | /* |
488 | * We mustn't use the inverse transition function to remove the last |
489 | * input. Doing so would yield a non-NULL state, whereas we should be in |
490 | * the initial state afterwards which may very well be NULL. So instead, |
491 | * we simply re-initialize the aggregate in this case. |
492 | */ |
493 | if (peraggstate->transValueCount == 1) |
494 | { |
495 | MemoryContextSwitchTo(oldContext); |
496 | initialize_windowaggregate(winstate, |
497 | &winstate->perfunc[peraggstate->wfuncno], |
498 | peraggstate); |
499 | return true; |
500 | } |
501 | |
502 | /* |
503 | * OK to call the inverse transition function. Set |
504 | * winstate->curaggcontext while calling it, for possible use by |
505 | * AggCheckCallContext. |
506 | */ |
507 | InitFunctionCallInfoData(*fcinfo, &(peraggstate->invtransfn), |
508 | numArguments + 1, |
509 | perfuncstate->winCollation, |
510 | (void *) winstate, NULL); |
511 | fcinfo->args[0].value = peraggstate->transValue; |
512 | fcinfo->args[0].isnull = peraggstate->transValueIsNull; |
513 | winstate->curaggcontext = peraggstate->aggcontext; |
514 | newVal = FunctionCallInvoke(fcinfo); |
515 | winstate->curaggcontext = NULL; |
516 | |
517 | /* |
518 | * If the function returns NULL, report failure, forcing a restart. |
519 | */ |
520 | if (fcinfo->isnull) |
521 | { |
522 | MemoryContextSwitchTo(oldContext); |
523 | return false; |
524 | } |
525 | |
526 | /* Update number of rows included in transValue */ |
527 | peraggstate->transValueCount--; |
528 | |
529 | /* |
530 | * If pass-by-ref datatype, must copy the new value into aggcontext and |
531 | * free the prior transValue. But if invtransfn returned a pointer to its |
532 | * first input, we don't need to do anything. Also, if invtransfn |
533 | * returned a pointer to a R/W expanded object that is already a child of |
534 | * the aggcontext, assume we can adopt that value without copying it. |
535 | * |
536 | * Note: the checks for null values here will never fire, but it seems |
537 | * best to have this stanza look just like advance_windowaggregate. |
538 | */ |
539 | if (!peraggstate->transtypeByVal && |
540 | DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue)) |
541 | { |
542 | if (!fcinfo->isnull) |
543 | { |
544 | MemoryContextSwitchTo(peraggstate->aggcontext); |
545 | if (DatumIsReadWriteExpandedObject(newVal, |
546 | false, |
547 | peraggstate->transtypeLen) && |
548 | MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext) |
549 | /* do nothing */ ; |
550 | else |
551 | newVal = datumCopy(newVal, |
552 | peraggstate->transtypeByVal, |
553 | peraggstate->transtypeLen); |
554 | } |
555 | if (!peraggstate->transValueIsNull) |
556 | { |
557 | if (DatumIsReadWriteExpandedObject(peraggstate->transValue, |
558 | false, |
559 | peraggstate->transtypeLen)) |
560 | DeleteExpandedObject(peraggstate->transValue); |
561 | else |
562 | pfree(DatumGetPointer(peraggstate->transValue)); |
563 | } |
564 | } |
565 | |
566 | MemoryContextSwitchTo(oldContext); |
567 | peraggstate->transValue = newVal; |
568 | peraggstate->transValueIsNull = fcinfo->isnull; |
569 | |
570 | return true; |
571 | } |
572 | |
573 | /* |
574 | * finalize_windowaggregate |
575 | * parallel to finalize_aggregate in nodeAgg.c |
576 | */ |
577 | static void |
578 | finalize_windowaggregate(WindowAggState *winstate, |
579 | WindowStatePerFunc perfuncstate, |
580 | WindowStatePerAgg peraggstate, |
581 | Datum *result, bool *isnull) |
582 | { |
583 | MemoryContext oldContext; |
584 | |
585 | oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory); |
586 | |
587 | /* |
588 | * Apply the agg's finalfn if one is provided, else return transValue. |
589 | */ |
590 | if (OidIsValid(peraggstate->finalfn_oid)) |
591 | { |
592 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
593 | int numFinalArgs = peraggstate->numFinalArgs; |
594 | bool anynull; |
595 | int i; |
596 | |
597 | InitFunctionCallInfoData(fcinfodata.fcinfo, &(peraggstate->finalfn), |
598 | numFinalArgs, |
599 | perfuncstate->winCollation, |
600 | (void *) winstate, NULL); |
601 | fcinfo->args[0].value = |
602 | MakeExpandedObjectReadOnly(peraggstate->transValue, |
603 | peraggstate->transValueIsNull, |
604 | peraggstate->transtypeLen); |
605 | fcinfo->args[0].isnull = peraggstate->transValueIsNull; |
606 | anynull = peraggstate->transValueIsNull; |
607 | |
608 | /* Fill any remaining argument positions with nulls */ |
609 | for (i = 1; i < numFinalArgs; i++) |
610 | { |
611 | fcinfo->args[i].value = (Datum) 0; |
612 | fcinfo->args[i].isnull = true; |
613 | anynull = true; |
614 | } |
615 | |
616 | if (fcinfo->flinfo->fn_strict && anynull) |
617 | { |
618 | /* don't call a strict function with NULL inputs */ |
619 | *result = (Datum) 0; |
620 | *isnull = true; |
621 | } |
622 | else |
623 | { |
624 | winstate->curaggcontext = peraggstate->aggcontext; |
625 | *result = FunctionCallInvoke(fcinfo); |
626 | winstate->curaggcontext = NULL; |
627 | *isnull = fcinfo->isnull; |
628 | } |
629 | } |
630 | else |
631 | { |
632 | /* Don't need MakeExpandedObjectReadOnly; datumCopy will copy it */ |
633 | *result = peraggstate->transValue; |
634 | *isnull = peraggstate->transValueIsNull; |
635 | } |
636 | |
637 | /* |
638 | * If result is pass-by-ref, make sure it is in the right context. |
639 | */ |
640 | if (!peraggstate->resulttypeByVal && !*isnull && |
641 | !MemoryContextContains(CurrentMemoryContext, |
642 | DatumGetPointer(*result))) |
643 | *result = datumCopy(*result, |
644 | peraggstate->resulttypeByVal, |
645 | peraggstate->resulttypeLen); |
646 | MemoryContextSwitchTo(oldContext); |
647 | } |
648 | |
649 | /* |
650 | * eval_windowaggregates |
651 | * evaluate plain aggregates being used as window functions |
652 | * |
653 | * This differs from nodeAgg.c in two ways. First, if the window's frame |
654 | * start position moves, we use the inverse transition function (if it exists) |
655 | * to remove rows from the transition value. And second, we expect to be |
656 | * able to call aggregate final functions repeatedly after aggregating more |
657 | * data onto the same transition value. This is not a behavior required by |
658 | * nodeAgg.c. |
659 | */ |
660 | static void |
661 | eval_windowaggregates(WindowAggState *winstate) |
662 | { |
663 | WindowStatePerAgg peraggstate; |
664 | int wfuncno, |
665 | numaggs, |
666 | numaggs_restart, |
667 | i; |
668 | int64 aggregatedupto_nonrestarted; |
669 | MemoryContext oldContext; |
670 | ExprContext *econtext; |
671 | WindowObject agg_winobj; |
672 | TupleTableSlot *agg_row_slot; |
673 | TupleTableSlot *temp_slot; |
674 | |
675 | numaggs = winstate->numaggs; |
676 | if (numaggs == 0) |
677 | return; /* nothing to do */ |
678 | |
679 | /* final output execution is in ps_ExprContext */ |
680 | econtext = winstate->ss.ps.ps_ExprContext; |
681 | agg_winobj = winstate->agg_winobj; |
682 | agg_row_slot = winstate->agg_row_slot; |
683 | temp_slot = winstate->temp_slot_1; |
684 | |
685 | /* |
686 | * If the window's frame start clause is UNBOUNDED_PRECEDING and no |
687 | * exclusion clause is specified, then the window frame consists of a |
688 | * contiguous group of rows extending forward from the start of the |
689 | * partition, and rows only enter the frame, never exit it, as the current |
690 | * row advances forward. This makes it possible to use an incremental |
691 | * strategy for evaluating aggregates: we run the transition function for |
692 | * each row added to the frame, and run the final function whenever we |
693 | * need the current aggregate value. This is considerably more efficient |
694 | * than the naive approach of re-running the entire aggregate calculation |
695 | * for each current row. It does assume that the final function doesn't |
696 | * damage the running transition value, but we have the same assumption in |
697 | * nodeAgg.c too (when it rescans an existing hash table). |
698 | * |
699 | * If the frame start does sometimes move, we can still optimize as above |
700 | * whenever successive rows share the same frame head, but if the frame |
701 | * head moves beyond the previous head we try to remove those rows using |
702 | * the aggregate's inverse transition function. This function restores |
703 | * the aggregate's current state to what it would be if the removed row |
704 | * had never been aggregated in the first place. Inverse transition |
705 | * functions may optionally return NULL, indicating that the function was |
706 | * unable to remove the tuple from aggregation. If this happens, or if |
707 | * the aggregate doesn't have an inverse transition function at all, we |
708 | * must perform the aggregation all over again for all tuples within the |
709 | * new frame boundaries. |
710 | * |
711 | * If there's any exclusion clause, then we may have to aggregate over a |
712 | * non-contiguous set of rows, so we punt and recalculate for every row. |
713 | * (For some frame end choices, it might be that the frame is always |
714 | * contiguous anyway, but that's an optimization to investigate later.) |
715 | * |
716 | * In many common cases, multiple rows share the same frame and hence the |
717 | * same aggregate value. (In particular, if there's no ORDER BY in a RANGE |
718 | * window, then all rows are peers and so they all have window frame equal |
719 | * to the whole partition.) We optimize such cases by calculating the |
720 | * aggregate value once when we reach the first row of a peer group, and |
721 | * then returning the saved value for all subsequent rows. |
722 | * |
723 | * 'aggregatedupto' keeps track of the first row that has not yet been |
724 | * accumulated into the aggregate transition values. Whenever we start a |
725 | * new peer group, we accumulate forward to the end of the peer group. |
726 | */ |
727 | |
728 | /* |
729 | * First, update the frame head position. |
730 | * |
731 | * The frame head should never move backwards, and the code below wouldn't |
732 | * cope if it did, so for safety we complain if it does. |
733 | */ |
734 | update_frameheadpos(winstate); |
735 | if (winstate->frameheadpos < winstate->aggregatedbase) |
736 | elog(ERROR, "window frame head moved backward" ); |
737 | |
738 | /* |
739 | * If the frame didn't change compared to the previous row, we can re-use |
740 | * the result values that were previously saved at the bottom of this |
741 | * function. Since we don't know the current frame's end yet, this is not |
742 | * possible to check for fully. But if the frame end mode is UNBOUNDED |
743 | * FOLLOWING or CURRENT ROW, no exclusion clause is specified, and the |
744 | * current row lies within the previous row's frame, then the two frames' |
745 | * ends must coincide. Note that on the first row aggregatedbase == |
746 | * aggregatedupto, meaning this test must fail, so we don't need to check |
747 | * the "there was no previous row" case explicitly here. |
748 | */ |
749 | if (winstate->aggregatedbase == winstate->frameheadpos && |
750 | (winstate->frameOptions & (FRAMEOPTION_END_UNBOUNDED_FOLLOWING | |
751 | FRAMEOPTION_END_CURRENT_ROW)) && |
752 | !(winstate->frameOptions & FRAMEOPTION_EXCLUSION) && |
753 | winstate->aggregatedbase <= winstate->currentpos && |
754 | winstate->aggregatedupto > winstate->currentpos) |
755 | { |
756 | for (i = 0; i < numaggs; i++) |
757 | { |
758 | peraggstate = &winstate->peragg[i]; |
759 | wfuncno = peraggstate->wfuncno; |
760 | econtext->ecxt_aggvalues[wfuncno] = peraggstate->resultValue; |
761 | econtext->ecxt_aggnulls[wfuncno] = peraggstate->resultValueIsNull; |
762 | } |
763 | return; |
764 | } |
765 | |
766 | /*---------- |
767 | * Initialize restart flags. |
768 | * |
769 | * We restart the aggregation: |
770 | * - if we're processing the first row in the partition, or |
771 | * - if the frame's head moved and we cannot use an inverse |
772 | * transition function, or |
773 | * - we have an EXCLUSION clause, or |
774 | * - if the new frame doesn't overlap the old one |
775 | * |
776 | * Note that we don't strictly need to restart in the last case, but if |
777 | * we're going to remove all rows from the aggregation anyway, a restart |
778 | * surely is faster. |
779 | *---------- |
780 | */ |
781 | numaggs_restart = 0; |
782 | for (i = 0; i < numaggs; i++) |
783 | { |
784 | peraggstate = &winstate->peragg[i]; |
785 | if (winstate->currentpos == 0 || |
786 | (winstate->aggregatedbase != winstate->frameheadpos && |
787 | !OidIsValid(peraggstate->invtransfn_oid)) || |
788 | (winstate->frameOptions & FRAMEOPTION_EXCLUSION) || |
789 | winstate->aggregatedupto <= winstate->frameheadpos) |
790 | { |
791 | peraggstate->restart = true; |
792 | numaggs_restart++; |
793 | } |
794 | else |
795 | peraggstate->restart = false; |
796 | } |
797 | |
798 | /* |
799 | * If we have any possibly-moving aggregates, attempt to advance |
800 | * aggregatedbase to match the frame's head by removing input rows that |
801 | * fell off the top of the frame from the aggregations. This can fail, |
802 | * i.e. advance_windowaggregate_base() can return false, in which case |
803 | * we'll restart that aggregate below. |
804 | */ |
805 | while (numaggs_restart < numaggs && |
806 | winstate->aggregatedbase < winstate->frameheadpos) |
807 | { |
808 | /* |
809 | * Fetch the next tuple of those being removed. This should never fail |
810 | * as we should have been here before. |
811 | */ |
812 | if (!window_gettupleslot(agg_winobj, winstate->aggregatedbase, |
813 | temp_slot)) |
814 | elog(ERROR, "could not re-fetch previously fetched frame row" ); |
815 | |
816 | /* Set tuple context for evaluation of aggregate arguments */ |
817 | winstate->tmpcontext->ecxt_outertuple = temp_slot; |
818 | |
819 | /* |
820 | * Perform the inverse transition for each aggregate function in the |
821 | * window, unless it has already been marked as needing a restart. |
822 | */ |
823 | for (i = 0; i < numaggs; i++) |
824 | { |
825 | bool ok; |
826 | |
827 | peraggstate = &winstate->peragg[i]; |
828 | if (peraggstate->restart) |
829 | continue; |
830 | |
831 | wfuncno = peraggstate->wfuncno; |
832 | ok = advance_windowaggregate_base(winstate, |
833 | &winstate->perfunc[wfuncno], |
834 | peraggstate); |
835 | if (!ok) |
836 | { |
837 | /* Inverse transition function has failed, must restart */ |
838 | peraggstate->restart = true; |
839 | numaggs_restart++; |
840 | } |
841 | } |
842 | |
843 | /* Reset per-input-tuple context after each tuple */ |
844 | ResetExprContext(winstate->tmpcontext); |
845 | |
846 | /* And advance the aggregated-row state */ |
847 | winstate->aggregatedbase++; |
848 | ExecClearTuple(temp_slot); |
849 | } |
850 | |
851 | /* |
852 | * If we successfully advanced the base rows of all the aggregates, |
853 | * aggregatedbase now equals frameheadpos; but if we failed for any, we |
854 | * must forcibly update aggregatedbase. |
855 | */ |
856 | winstate->aggregatedbase = winstate->frameheadpos; |
857 | |
858 | /* |
859 | * If we created a mark pointer for aggregates, keep it pushed up to frame |
860 | * head, so that tuplestore can discard unnecessary rows. |
861 | */ |
862 | if (agg_winobj->markptr >= 0) |
863 | WinSetMarkPosition(agg_winobj, winstate->frameheadpos); |
864 | |
865 | /* |
866 | * Now restart the aggregates that require it. |
867 | * |
868 | * We assume that aggregates using the shared context always restart if |
869 | * *any* aggregate restarts, and we may thus clean up the shared |
870 | * aggcontext if that is the case. Private aggcontexts are reset by |
871 | * initialize_windowaggregate() if their owning aggregate restarts. If we |
872 | * aren't restarting an aggregate, we need to free any previously saved |
873 | * result for it, else we'll leak memory. |
874 | */ |
875 | if (numaggs_restart > 0) |
876 | MemoryContextResetAndDeleteChildren(winstate->aggcontext); |
877 | for (i = 0; i < numaggs; i++) |
878 | { |
879 | peraggstate = &winstate->peragg[i]; |
880 | |
881 | /* Aggregates using the shared ctx must restart if *any* agg does */ |
882 | Assert(peraggstate->aggcontext != winstate->aggcontext || |
883 | numaggs_restart == 0 || |
884 | peraggstate->restart); |
885 | |
886 | if (peraggstate->restart) |
887 | { |
888 | wfuncno = peraggstate->wfuncno; |
889 | initialize_windowaggregate(winstate, |
890 | &winstate->perfunc[wfuncno], |
891 | peraggstate); |
892 | } |
893 | else if (!peraggstate->resultValueIsNull) |
894 | { |
895 | if (!peraggstate->resulttypeByVal) |
896 | pfree(DatumGetPointer(peraggstate->resultValue)); |
897 | peraggstate->resultValue = (Datum) 0; |
898 | peraggstate->resultValueIsNull = true; |
899 | } |
900 | } |
901 | |
902 | /* |
903 | * Non-restarted aggregates now contain the rows between aggregatedbase |
904 | * (i.e., frameheadpos) and aggregatedupto, while restarted aggregates |
905 | * contain no rows. If there are any restarted aggregates, we must thus |
906 | * begin aggregating anew at frameheadpos, otherwise we may simply |
907 | * continue at aggregatedupto. We must remember the old value of |
908 | * aggregatedupto to know how long to skip advancing non-restarted |
909 | * aggregates. If we modify aggregatedupto, we must also clear |
910 | * agg_row_slot, per the loop invariant below. |
911 | */ |
912 | aggregatedupto_nonrestarted = winstate->aggregatedupto; |
913 | if (numaggs_restart > 0 && |
914 | winstate->aggregatedupto != winstate->frameheadpos) |
915 | { |
916 | winstate->aggregatedupto = winstate->frameheadpos; |
917 | ExecClearTuple(agg_row_slot); |
918 | } |
919 | |
920 | /* |
921 | * Advance until we reach a row not in frame (or end of partition). |
922 | * |
923 | * Note the loop invariant: agg_row_slot is either empty or holds the row |
924 | * at position aggregatedupto. We advance aggregatedupto after processing |
925 | * a row. |
926 | */ |
927 | for (;;) |
928 | { |
929 | int ret; |
930 | |
931 | /* Fetch next row if we didn't already */ |
932 | if (TupIsNull(agg_row_slot)) |
933 | { |
934 | if (!window_gettupleslot(agg_winobj, winstate->aggregatedupto, |
935 | agg_row_slot)) |
936 | break; /* must be end of partition */ |
937 | } |
938 | |
939 | /* |
940 | * Exit loop if no more rows can be in frame. Skip aggregation if |
941 | * current row is not in frame but there might be more in the frame. |
942 | */ |
943 | ret = row_is_in_frame(winstate, winstate->aggregatedupto, agg_row_slot); |
944 | if (ret < 0) |
945 | break; |
946 | if (ret == 0) |
947 | goto next_tuple; |
948 | |
949 | /* Set tuple context for evaluation of aggregate arguments */ |
950 | winstate->tmpcontext->ecxt_outertuple = agg_row_slot; |
951 | |
952 | /* Accumulate row into the aggregates */ |
953 | for (i = 0; i < numaggs; i++) |
954 | { |
955 | peraggstate = &winstate->peragg[i]; |
956 | |
957 | /* Non-restarted aggs skip until aggregatedupto_nonrestarted */ |
958 | if (!peraggstate->restart && |
959 | winstate->aggregatedupto < aggregatedupto_nonrestarted) |
960 | continue; |
961 | |
962 | wfuncno = peraggstate->wfuncno; |
963 | advance_windowaggregate(winstate, |
964 | &winstate->perfunc[wfuncno], |
965 | peraggstate); |
966 | } |
967 | |
968 | next_tuple: |
969 | /* Reset per-input-tuple context after each tuple */ |
970 | ResetExprContext(winstate->tmpcontext); |
971 | |
972 | /* And advance the aggregated-row state */ |
973 | winstate->aggregatedupto++; |
974 | ExecClearTuple(agg_row_slot); |
975 | } |
976 | |
977 | /* The frame's end is not supposed to move backwards, ever */ |
978 | Assert(aggregatedupto_nonrestarted <= winstate->aggregatedupto); |
979 | |
980 | /* |
981 | * finalize aggregates and fill result/isnull fields. |
982 | */ |
983 | for (i = 0; i < numaggs; i++) |
984 | { |
985 | Datum *result; |
986 | bool *isnull; |
987 | |
988 | peraggstate = &winstate->peragg[i]; |
989 | wfuncno = peraggstate->wfuncno; |
990 | result = &econtext->ecxt_aggvalues[wfuncno]; |
991 | isnull = &econtext->ecxt_aggnulls[wfuncno]; |
992 | finalize_windowaggregate(winstate, |
993 | &winstate->perfunc[wfuncno], |
994 | peraggstate, |
995 | result, isnull); |
996 | |
997 | /* |
998 | * save the result in case next row shares the same frame. |
999 | * |
1000 | * XXX in some framing modes, eg ROWS/END_CURRENT_ROW, we can know in |
1001 | * advance that the next row can't possibly share the same frame. Is |
1002 | * it worth detecting that and skipping this code? |
1003 | */ |
1004 | if (!peraggstate->resulttypeByVal && !*isnull) |
1005 | { |
1006 | oldContext = MemoryContextSwitchTo(peraggstate->aggcontext); |
1007 | peraggstate->resultValue = |
1008 | datumCopy(*result, |
1009 | peraggstate->resulttypeByVal, |
1010 | peraggstate->resulttypeLen); |
1011 | MemoryContextSwitchTo(oldContext); |
1012 | } |
1013 | else |
1014 | { |
1015 | peraggstate->resultValue = *result; |
1016 | } |
1017 | peraggstate->resultValueIsNull = *isnull; |
1018 | } |
1019 | } |
1020 | |
1021 | /* |
1022 | * eval_windowfunction |
1023 | * |
1024 | * Arguments of window functions are not evaluated here, because a window |
1025 | * function can need random access to arbitrary rows in the partition. |
1026 | * The window function uses the special WinGetFuncArgInPartition and |
1027 | * WinGetFuncArgInFrame functions to evaluate the arguments for the rows |
1028 | * it wants. |
1029 | */ |
1030 | static void |
1031 | eval_windowfunction(WindowAggState *winstate, WindowStatePerFunc perfuncstate, |
1032 | Datum *result, bool *isnull) |
1033 | { |
1034 | LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS); |
1035 | MemoryContext oldContext; |
1036 | |
1037 | oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory); |
1038 | |
1039 | /* |
1040 | * We don't pass any normal arguments to a window function, but we do pass |
1041 | * it the number of arguments, in order to permit window function |
1042 | * implementations to support varying numbers of arguments. The real info |
1043 | * goes through the WindowObject, which is passed via fcinfo->context. |
1044 | */ |
1045 | InitFunctionCallInfoData(*fcinfo, &(perfuncstate->flinfo), |
1046 | perfuncstate->numArguments, |
1047 | perfuncstate->winCollation, |
1048 | (void *) perfuncstate->winobj, NULL); |
1049 | /* Just in case, make all the regular argument slots be null */ |
1050 | for (int argno = 0; argno < perfuncstate->numArguments; argno++) |
1051 | fcinfo->args[argno].isnull = true; |
1052 | /* Window functions don't have a current aggregate context, either */ |
1053 | winstate->curaggcontext = NULL; |
1054 | |
1055 | *result = FunctionCallInvoke(fcinfo); |
1056 | *isnull = fcinfo->isnull; |
1057 | |
1058 | /* |
1059 | * Make sure pass-by-ref data is allocated in the appropriate context. (We |
1060 | * need this in case the function returns a pointer into some short-lived |
1061 | * tuple, as is entirely possible.) |
1062 | */ |
1063 | if (!perfuncstate->resulttypeByVal && !fcinfo->isnull && |
1064 | !MemoryContextContains(CurrentMemoryContext, |
1065 | DatumGetPointer(*result))) |
1066 | *result = datumCopy(*result, |
1067 | perfuncstate->resulttypeByVal, |
1068 | perfuncstate->resulttypeLen); |
1069 | |
1070 | MemoryContextSwitchTo(oldContext); |
1071 | } |
1072 | |
1073 | /* |
1074 | * begin_partition |
1075 | * Start buffering rows of the next partition. |
1076 | */ |
1077 | static void |
1078 | begin_partition(WindowAggState *winstate) |
1079 | { |
1080 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
1081 | PlanState *outerPlan = outerPlanState(winstate); |
1082 | int frameOptions = winstate->frameOptions; |
1083 | int numfuncs = winstate->numfuncs; |
1084 | int i; |
1085 | |
1086 | winstate->partition_spooled = false; |
1087 | winstate->framehead_valid = false; |
1088 | winstate->frametail_valid = false; |
1089 | winstate->grouptail_valid = false; |
1090 | winstate->spooled_rows = 0; |
1091 | winstate->currentpos = 0; |
1092 | winstate->frameheadpos = 0; |
1093 | winstate->frametailpos = 0; |
1094 | winstate->currentgroup = 0; |
1095 | winstate->frameheadgroup = 0; |
1096 | winstate->frametailgroup = 0; |
1097 | winstate->groupheadpos = 0; |
1098 | winstate->grouptailpos = -1; /* see update_grouptailpos */ |
1099 | ExecClearTuple(winstate->agg_row_slot); |
1100 | if (winstate->framehead_slot) |
1101 | ExecClearTuple(winstate->framehead_slot); |
1102 | if (winstate->frametail_slot) |
1103 | ExecClearTuple(winstate->frametail_slot); |
1104 | |
1105 | /* |
1106 | * If this is the very first partition, we need to fetch the first input |
1107 | * row to store in first_part_slot. |
1108 | */ |
1109 | if (TupIsNull(winstate->first_part_slot)) |
1110 | { |
1111 | TupleTableSlot *outerslot = ExecProcNode(outerPlan); |
1112 | |
1113 | if (!TupIsNull(outerslot)) |
1114 | ExecCopySlot(winstate->first_part_slot, outerslot); |
1115 | else |
1116 | { |
1117 | /* outer plan is empty, so we have nothing to do */ |
1118 | winstate->partition_spooled = true; |
1119 | winstate->more_partitions = false; |
1120 | return; |
1121 | } |
1122 | } |
1123 | |
1124 | /* Create new tuplestore for this partition */ |
1125 | winstate->buffer = tuplestore_begin_heap(false, false, work_mem); |
1126 | |
1127 | /* |
1128 | * Set up read pointers for the tuplestore. The current pointer doesn't |
1129 | * need BACKWARD capability, but the per-window-function read pointers do, |
1130 | * and the aggregate pointer does if we might need to restart aggregation. |
1131 | */ |
1132 | winstate->current_ptr = 0; /* read pointer 0 is pre-allocated */ |
1133 | |
1134 | /* reset default REWIND capability bit for current ptr */ |
1135 | tuplestore_set_eflags(winstate->buffer, 0); |
1136 | |
1137 | /* create read pointers for aggregates, if needed */ |
1138 | if (winstate->numaggs > 0) |
1139 | { |
1140 | WindowObject agg_winobj = winstate->agg_winobj; |
1141 | int readptr_flags = 0; |
1142 | |
1143 | /* |
1144 | * If the frame head is potentially movable, or we have an EXCLUSION |
1145 | * clause, we might need to restart aggregation ... |
1146 | */ |
1147 | if (!(frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) || |
1148 | (frameOptions & FRAMEOPTION_EXCLUSION)) |
1149 | { |
1150 | /* ... so create a mark pointer to track the frame head */ |
1151 | agg_winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer, 0); |
1152 | /* and the read pointer will need BACKWARD capability */ |
1153 | readptr_flags |= EXEC_FLAG_BACKWARD; |
1154 | } |
1155 | |
1156 | agg_winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer, |
1157 | readptr_flags); |
1158 | agg_winobj->markpos = -1; |
1159 | agg_winobj->seekpos = -1; |
1160 | |
1161 | /* Also reset the row counters for aggregates */ |
1162 | winstate->aggregatedbase = 0; |
1163 | winstate->aggregatedupto = 0; |
1164 | } |
1165 | |
1166 | /* create mark and read pointers for each real window function */ |
1167 | for (i = 0; i < numfuncs; i++) |
1168 | { |
1169 | WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]); |
1170 | |
1171 | if (!perfuncstate->plain_agg) |
1172 | { |
1173 | WindowObject winobj = perfuncstate->winobj; |
1174 | |
1175 | winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer, |
1176 | 0); |
1177 | winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer, |
1178 | EXEC_FLAG_BACKWARD); |
1179 | winobj->markpos = -1; |
1180 | winobj->seekpos = -1; |
1181 | } |
1182 | } |
1183 | |
1184 | /* |
1185 | * If we are in RANGE or GROUPS mode, then determining frame boundaries |
1186 | * requires physical access to the frame endpoint rows, except in certain |
1187 | * degenerate cases. We create read pointers to point to those rows, to |
1188 | * simplify access and ensure that the tuplestore doesn't discard the |
1189 | * endpoint rows prematurely. (Must create pointers in exactly the same |
1190 | * cases that update_frameheadpos and update_frametailpos need them.) |
1191 | */ |
1192 | winstate->framehead_ptr = winstate->frametail_ptr = -1; /* if not used */ |
1193 | |
1194 | if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
1195 | { |
1196 | if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) && |
1197 | node->ordNumCols != 0) || |
1198 | (frameOptions & FRAMEOPTION_START_OFFSET)) |
1199 | winstate->framehead_ptr = |
1200 | tuplestore_alloc_read_pointer(winstate->buffer, 0); |
1201 | if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) && |
1202 | node->ordNumCols != 0) || |
1203 | (frameOptions & FRAMEOPTION_END_OFFSET)) |
1204 | winstate->frametail_ptr = |
1205 | tuplestore_alloc_read_pointer(winstate->buffer, 0); |
1206 | } |
1207 | |
1208 | /* |
1209 | * If we have an exclusion clause that requires knowing the boundaries of |
1210 | * the current row's peer group, we create a read pointer to track the |
1211 | * tail position of the peer group (i.e., first row of the next peer |
1212 | * group). The head position does not require its own pointer because we |
1213 | * maintain that as a side effect of advancing the current row. |
1214 | */ |
1215 | winstate->grouptail_ptr = -1; |
1216 | |
1217 | if ((frameOptions & (FRAMEOPTION_EXCLUDE_GROUP | |
1218 | FRAMEOPTION_EXCLUDE_TIES)) && |
1219 | node->ordNumCols != 0) |
1220 | { |
1221 | winstate->grouptail_ptr = |
1222 | tuplestore_alloc_read_pointer(winstate->buffer, 0); |
1223 | } |
1224 | |
1225 | /* |
1226 | * Store the first tuple into the tuplestore (it's always available now; |
1227 | * we either read it above, or saved it at the end of previous partition) |
1228 | */ |
1229 | tuplestore_puttupleslot(winstate->buffer, winstate->first_part_slot); |
1230 | winstate->spooled_rows++; |
1231 | } |
1232 | |
1233 | /* |
1234 | * Read tuples from the outer node, up to and including position 'pos', and |
1235 | * store them into the tuplestore. If pos is -1, reads the whole partition. |
1236 | */ |
1237 | static void |
1238 | spool_tuples(WindowAggState *winstate, int64 pos) |
1239 | { |
1240 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
1241 | PlanState *outerPlan; |
1242 | TupleTableSlot *outerslot; |
1243 | MemoryContext oldcontext; |
1244 | |
1245 | if (!winstate->buffer) |
1246 | return; /* just a safety check */ |
1247 | if (winstate->partition_spooled) |
1248 | return; /* whole partition done already */ |
1249 | |
1250 | /* |
1251 | * If the tuplestore has spilled to disk, alternate reading and writing |
1252 | * becomes quite expensive due to frequent buffer flushes. It's cheaper |
1253 | * to force the entire partition to get spooled in one go. |
1254 | * |
1255 | * XXX this is a horrid kluge --- it'd be better to fix the performance |
1256 | * problem inside tuplestore. FIXME |
1257 | */ |
1258 | if (!tuplestore_in_memory(winstate->buffer)) |
1259 | pos = -1; |
1260 | |
1261 | outerPlan = outerPlanState(winstate); |
1262 | |
1263 | /* Must be in query context to call outerplan */ |
1264 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
1265 | |
1266 | while (winstate->spooled_rows <= pos || pos == -1) |
1267 | { |
1268 | outerslot = ExecProcNode(outerPlan); |
1269 | if (TupIsNull(outerslot)) |
1270 | { |
1271 | /* reached the end of the last partition */ |
1272 | winstate->partition_spooled = true; |
1273 | winstate->more_partitions = false; |
1274 | break; |
1275 | } |
1276 | |
1277 | if (node->partNumCols > 0) |
1278 | { |
1279 | ExprContext *econtext = winstate->tmpcontext; |
1280 | |
1281 | econtext->ecxt_innertuple = winstate->first_part_slot; |
1282 | econtext->ecxt_outertuple = outerslot; |
1283 | |
1284 | /* Check if this tuple still belongs to the current partition */ |
1285 | if (!ExecQualAndReset(winstate->partEqfunction, econtext)) |
1286 | { |
1287 | /* |
1288 | * end of partition; copy the tuple for the next cycle. |
1289 | */ |
1290 | ExecCopySlot(winstate->first_part_slot, outerslot); |
1291 | winstate->partition_spooled = true; |
1292 | winstate->more_partitions = true; |
1293 | break; |
1294 | } |
1295 | } |
1296 | |
1297 | /* Still in partition, so save it into the tuplestore */ |
1298 | tuplestore_puttupleslot(winstate->buffer, outerslot); |
1299 | winstate->spooled_rows++; |
1300 | } |
1301 | |
1302 | MemoryContextSwitchTo(oldcontext); |
1303 | } |
1304 | |
1305 | /* |
1306 | * release_partition |
1307 | * clear information kept within a partition, including |
1308 | * tuplestore and aggregate results. |
1309 | */ |
1310 | static void |
1311 | release_partition(WindowAggState *winstate) |
1312 | { |
1313 | int i; |
1314 | |
1315 | for (i = 0; i < winstate->numfuncs; i++) |
1316 | { |
1317 | WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]); |
1318 | |
1319 | /* Release any partition-local state of this window function */ |
1320 | if (perfuncstate->winobj) |
1321 | perfuncstate->winobj->localmem = NULL; |
1322 | } |
1323 | |
1324 | /* |
1325 | * Release all partition-local memory (in particular, any partition-local |
1326 | * state that we might have trashed our pointers to in the above loop, and |
1327 | * any aggregate temp data). We don't rely on retail pfree because some |
1328 | * aggregates might have allocated data we don't have direct pointers to. |
1329 | */ |
1330 | MemoryContextResetAndDeleteChildren(winstate->partcontext); |
1331 | MemoryContextResetAndDeleteChildren(winstate->aggcontext); |
1332 | for (i = 0; i < winstate->numaggs; i++) |
1333 | { |
1334 | if (winstate->peragg[i].aggcontext != winstate->aggcontext) |
1335 | MemoryContextResetAndDeleteChildren(winstate->peragg[i].aggcontext); |
1336 | } |
1337 | |
1338 | if (winstate->buffer) |
1339 | tuplestore_end(winstate->buffer); |
1340 | winstate->buffer = NULL; |
1341 | winstate->partition_spooled = false; |
1342 | } |
1343 | |
1344 | /* |
1345 | * row_is_in_frame |
1346 | * Determine whether a row is in the current row's window frame according |
1347 | * to our window framing rule |
1348 | * |
1349 | * The caller must have already determined that the row is in the partition |
1350 | * and fetched it into a slot. This function just encapsulates the framing |
1351 | * rules. |
1352 | * |
1353 | * Returns: |
1354 | * -1, if the row is out of frame and no succeeding rows can be in frame |
1355 | * 0, if the row is out of frame but succeeding rows might be in frame |
1356 | * 1, if the row is in frame |
1357 | * |
1358 | * May clobber winstate->temp_slot_2. |
1359 | */ |
1360 | static int |
1361 | row_is_in_frame(WindowAggState *winstate, int64 pos, TupleTableSlot *slot) |
1362 | { |
1363 | int frameOptions = winstate->frameOptions; |
1364 | |
1365 | Assert(pos >= 0); /* else caller error */ |
1366 | |
1367 | /* |
1368 | * First, check frame starting conditions. We might as well delegate this |
1369 | * to update_frameheadpos always; it doesn't add any notable cost. |
1370 | */ |
1371 | update_frameheadpos(winstate); |
1372 | if (pos < winstate->frameheadpos) |
1373 | return 0; |
1374 | |
1375 | /* |
1376 | * Okay so far, now check frame ending conditions. Here, we avoid calling |
1377 | * update_frametailpos in simple cases, so as not to spool tuples further |
1378 | * ahead than necessary. |
1379 | */ |
1380 | if (frameOptions & FRAMEOPTION_END_CURRENT_ROW) |
1381 | { |
1382 | if (frameOptions & FRAMEOPTION_ROWS) |
1383 | { |
1384 | /* rows after current row are out of frame */ |
1385 | if (pos > winstate->currentpos) |
1386 | return -1; |
1387 | } |
1388 | else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
1389 | { |
1390 | /* following row that is not peer is out of frame */ |
1391 | if (pos > winstate->currentpos && |
1392 | !are_peers(winstate, slot, winstate->ss.ss_ScanTupleSlot)) |
1393 | return -1; |
1394 | } |
1395 | else |
1396 | Assert(false); |
1397 | } |
1398 | else if (frameOptions & FRAMEOPTION_END_OFFSET) |
1399 | { |
1400 | if (frameOptions & FRAMEOPTION_ROWS) |
1401 | { |
1402 | int64 offset = DatumGetInt64(winstate->endOffsetValue); |
1403 | |
1404 | /* rows after current row + offset are out of frame */ |
1405 | if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
1406 | offset = -offset; |
1407 | |
1408 | if (pos > winstate->currentpos + offset) |
1409 | return -1; |
1410 | } |
1411 | else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
1412 | { |
1413 | /* hard cases, so delegate to update_frametailpos */ |
1414 | update_frametailpos(winstate); |
1415 | if (pos >= winstate->frametailpos) |
1416 | return -1; |
1417 | } |
1418 | else |
1419 | Assert(false); |
1420 | } |
1421 | |
1422 | /* Check exclusion clause */ |
1423 | if (frameOptions & FRAMEOPTION_EXCLUDE_CURRENT_ROW) |
1424 | { |
1425 | if (pos == winstate->currentpos) |
1426 | return 0; |
1427 | } |
1428 | else if ((frameOptions & FRAMEOPTION_EXCLUDE_GROUP) || |
1429 | ((frameOptions & FRAMEOPTION_EXCLUDE_TIES) && |
1430 | pos != winstate->currentpos)) |
1431 | { |
1432 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
1433 | |
1434 | /* If no ORDER BY, all rows are peers with each other */ |
1435 | if (node->ordNumCols == 0) |
1436 | return 0; |
1437 | /* Otherwise, check the group boundaries */ |
1438 | if (pos >= winstate->groupheadpos) |
1439 | { |
1440 | update_grouptailpos(winstate); |
1441 | if (pos < winstate->grouptailpos) |
1442 | return 0; |
1443 | } |
1444 | } |
1445 | |
1446 | /* If we get here, it's in frame */ |
1447 | return 1; |
1448 | } |
1449 | |
1450 | /* |
1451 | * update_frameheadpos |
1452 | * make frameheadpos valid for the current row |
1453 | * |
1454 | * Note that frameheadpos is computed without regard for any window exclusion |
1455 | * clause; the current row and/or its peers are considered part of the frame |
1456 | * for this purpose even if they must be excluded later. |
1457 | * |
1458 | * May clobber winstate->temp_slot_2. |
1459 | */ |
1460 | static void |
1461 | update_frameheadpos(WindowAggState *winstate) |
1462 | { |
1463 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
1464 | int frameOptions = winstate->frameOptions; |
1465 | MemoryContext oldcontext; |
1466 | |
1467 | if (winstate->framehead_valid) |
1468 | return; /* already known for current row */ |
1469 | |
1470 | /* We may be called in a short-lived context */ |
1471 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
1472 | |
1473 | if (frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) |
1474 | { |
1475 | /* In UNBOUNDED PRECEDING mode, frame head is always row 0 */ |
1476 | winstate->frameheadpos = 0; |
1477 | winstate->framehead_valid = true; |
1478 | } |
1479 | else if (frameOptions & FRAMEOPTION_START_CURRENT_ROW) |
1480 | { |
1481 | if (frameOptions & FRAMEOPTION_ROWS) |
1482 | { |
1483 | /* In ROWS mode, frame head is the same as current */ |
1484 | winstate->frameheadpos = winstate->currentpos; |
1485 | winstate->framehead_valid = true; |
1486 | } |
1487 | else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
1488 | { |
1489 | /* If no ORDER BY, all rows are peers with each other */ |
1490 | if (node->ordNumCols == 0) |
1491 | { |
1492 | winstate->frameheadpos = 0; |
1493 | winstate->framehead_valid = true; |
1494 | MemoryContextSwitchTo(oldcontext); |
1495 | return; |
1496 | } |
1497 | |
1498 | /* |
1499 | * In RANGE or GROUPS START_CURRENT_ROW mode, frame head is the |
1500 | * first row that is a peer of current row. We keep a copy of the |
1501 | * last-known frame head row in framehead_slot, and advance as |
1502 | * necessary. Note that if we reach end of partition, we will |
1503 | * leave frameheadpos = end+1 and framehead_slot empty. |
1504 | */ |
1505 | tuplestore_select_read_pointer(winstate->buffer, |
1506 | winstate->framehead_ptr); |
1507 | if (winstate->frameheadpos == 0 && |
1508 | TupIsNull(winstate->framehead_slot)) |
1509 | { |
1510 | /* fetch first row into framehead_slot, if we didn't already */ |
1511 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1512 | winstate->framehead_slot)) |
1513 | elog(ERROR, "unexpected end of tuplestore" ); |
1514 | } |
1515 | |
1516 | while (!TupIsNull(winstate->framehead_slot)) |
1517 | { |
1518 | if (are_peers(winstate, winstate->framehead_slot, |
1519 | winstate->ss.ss_ScanTupleSlot)) |
1520 | break; /* this row is the correct frame head */ |
1521 | /* Note we advance frameheadpos even if the fetch fails */ |
1522 | winstate->frameheadpos++; |
1523 | spool_tuples(winstate, winstate->frameheadpos); |
1524 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1525 | winstate->framehead_slot)) |
1526 | break; /* end of partition */ |
1527 | } |
1528 | winstate->framehead_valid = true; |
1529 | } |
1530 | else |
1531 | Assert(false); |
1532 | } |
1533 | else if (frameOptions & FRAMEOPTION_START_OFFSET) |
1534 | { |
1535 | if (frameOptions & FRAMEOPTION_ROWS) |
1536 | { |
1537 | /* In ROWS mode, bound is physically n before/after current */ |
1538 | int64 offset = DatumGetInt64(winstate->startOffsetValue); |
1539 | |
1540 | if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING) |
1541 | offset = -offset; |
1542 | |
1543 | winstate->frameheadpos = winstate->currentpos + offset; |
1544 | /* frame head can't go before first row */ |
1545 | if (winstate->frameheadpos < 0) |
1546 | winstate->frameheadpos = 0; |
1547 | else if (winstate->frameheadpos > winstate->currentpos + 1) |
1548 | { |
1549 | /* make sure frameheadpos is not past end of partition */ |
1550 | spool_tuples(winstate, winstate->frameheadpos - 1); |
1551 | if (winstate->frameheadpos > winstate->spooled_rows) |
1552 | winstate->frameheadpos = winstate->spooled_rows; |
1553 | } |
1554 | winstate->framehead_valid = true; |
1555 | } |
1556 | else if (frameOptions & FRAMEOPTION_RANGE) |
1557 | { |
1558 | /* |
1559 | * In RANGE START_OFFSET mode, frame head is the first row that |
1560 | * satisfies the in_range constraint relative to the current row. |
1561 | * We keep a copy of the last-known frame head row in |
1562 | * framehead_slot, and advance as necessary. Note that if we |
1563 | * reach end of partition, we will leave frameheadpos = end+1 and |
1564 | * framehead_slot empty. |
1565 | */ |
1566 | int sortCol = node->ordColIdx[0]; |
1567 | bool sub, |
1568 | less; |
1569 | |
1570 | /* We must have an ordering column */ |
1571 | Assert(node->ordNumCols == 1); |
1572 | |
1573 | /* Precompute flags for in_range checks */ |
1574 | if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING) |
1575 | sub = true; /* subtract startOffset from current row */ |
1576 | else |
1577 | sub = false; /* add it */ |
1578 | less = false; /* normally, we want frame head >= sum */ |
1579 | /* If sort order is descending, flip both flags */ |
1580 | if (!winstate->inRangeAsc) |
1581 | { |
1582 | sub = !sub; |
1583 | less = true; |
1584 | } |
1585 | |
1586 | tuplestore_select_read_pointer(winstate->buffer, |
1587 | winstate->framehead_ptr); |
1588 | if (winstate->frameheadpos == 0 && |
1589 | TupIsNull(winstate->framehead_slot)) |
1590 | { |
1591 | /* fetch first row into framehead_slot, if we didn't already */ |
1592 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1593 | winstate->framehead_slot)) |
1594 | elog(ERROR, "unexpected end of tuplestore" ); |
1595 | } |
1596 | |
1597 | while (!TupIsNull(winstate->framehead_slot)) |
1598 | { |
1599 | Datum headval, |
1600 | currval; |
1601 | bool headisnull, |
1602 | currisnull; |
1603 | |
1604 | headval = slot_getattr(winstate->framehead_slot, sortCol, |
1605 | &headisnull); |
1606 | currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol, |
1607 | &currisnull); |
1608 | if (headisnull || currisnull) |
1609 | { |
1610 | /* order of the rows depends only on nulls_first */ |
1611 | if (winstate->inRangeNullsFirst) |
1612 | { |
1613 | /* advance head if head is null and curr is not */ |
1614 | if (!headisnull || currisnull) |
1615 | break; |
1616 | } |
1617 | else |
1618 | { |
1619 | /* advance head if head is not null and curr is null */ |
1620 | if (headisnull || !currisnull) |
1621 | break; |
1622 | } |
1623 | } |
1624 | else |
1625 | { |
1626 | if (DatumGetBool(FunctionCall5Coll(&winstate->startInRangeFunc, |
1627 | winstate->inRangeColl, |
1628 | headval, |
1629 | currval, |
1630 | winstate->startOffsetValue, |
1631 | BoolGetDatum(sub), |
1632 | BoolGetDatum(less)))) |
1633 | break; /* this row is the correct frame head */ |
1634 | } |
1635 | /* Note we advance frameheadpos even if the fetch fails */ |
1636 | winstate->frameheadpos++; |
1637 | spool_tuples(winstate, winstate->frameheadpos); |
1638 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1639 | winstate->framehead_slot)) |
1640 | break; /* end of partition */ |
1641 | } |
1642 | winstate->framehead_valid = true; |
1643 | } |
1644 | else if (frameOptions & FRAMEOPTION_GROUPS) |
1645 | { |
1646 | /* |
1647 | * In GROUPS START_OFFSET mode, frame head is the first row of the |
1648 | * first peer group whose number satisfies the offset constraint. |
1649 | * We keep a copy of the last-known frame head row in |
1650 | * framehead_slot, and advance as necessary. Note that if we |
1651 | * reach end of partition, we will leave frameheadpos = end+1 and |
1652 | * framehead_slot empty. |
1653 | */ |
1654 | int64 offset = DatumGetInt64(winstate->startOffsetValue); |
1655 | int64 minheadgroup; |
1656 | |
1657 | if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING) |
1658 | minheadgroup = winstate->currentgroup - offset; |
1659 | else |
1660 | minheadgroup = winstate->currentgroup + offset; |
1661 | |
1662 | tuplestore_select_read_pointer(winstate->buffer, |
1663 | winstate->framehead_ptr); |
1664 | if (winstate->frameheadpos == 0 && |
1665 | TupIsNull(winstate->framehead_slot)) |
1666 | { |
1667 | /* fetch first row into framehead_slot, if we didn't already */ |
1668 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1669 | winstate->framehead_slot)) |
1670 | elog(ERROR, "unexpected end of tuplestore" ); |
1671 | } |
1672 | |
1673 | while (!TupIsNull(winstate->framehead_slot)) |
1674 | { |
1675 | if (winstate->frameheadgroup >= minheadgroup) |
1676 | break; /* this row is the correct frame head */ |
1677 | ExecCopySlot(winstate->temp_slot_2, winstate->framehead_slot); |
1678 | /* Note we advance frameheadpos even if the fetch fails */ |
1679 | winstate->frameheadpos++; |
1680 | spool_tuples(winstate, winstate->frameheadpos); |
1681 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1682 | winstate->framehead_slot)) |
1683 | break; /* end of partition */ |
1684 | if (!are_peers(winstate, winstate->temp_slot_2, |
1685 | winstate->framehead_slot)) |
1686 | winstate->frameheadgroup++; |
1687 | } |
1688 | ExecClearTuple(winstate->temp_slot_2); |
1689 | winstate->framehead_valid = true; |
1690 | } |
1691 | else |
1692 | Assert(false); |
1693 | } |
1694 | else |
1695 | Assert(false); |
1696 | |
1697 | MemoryContextSwitchTo(oldcontext); |
1698 | } |
1699 | |
1700 | /* |
1701 | * update_frametailpos |
1702 | * make frametailpos valid for the current row |
1703 | * |
1704 | * Note that frametailpos is computed without regard for any window exclusion |
1705 | * clause; the current row and/or its peers are considered part of the frame |
1706 | * for this purpose even if they must be excluded later. |
1707 | * |
1708 | * May clobber winstate->temp_slot_2. |
1709 | */ |
1710 | static void |
1711 | update_frametailpos(WindowAggState *winstate) |
1712 | { |
1713 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
1714 | int frameOptions = winstate->frameOptions; |
1715 | MemoryContext oldcontext; |
1716 | |
1717 | if (winstate->frametail_valid) |
1718 | return; /* already known for current row */ |
1719 | |
1720 | /* We may be called in a short-lived context */ |
1721 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
1722 | |
1723 | if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING) |
1724 | { |
1725 | /* In UNBOUNDED FOLLOWING mode, all partition rows are in frame */ |
1726 | spool_tuples(winstate, -1); |
1727 | winstate->frametailpos = winstate->spooled_rows; |
1728 | winstate->frametail_valid = true; |
1729 | } |
1730 | else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW) |
1731 | { |
1732 | if (frameOptions & FRAMEOPTION_ROWS) |
1733 | { |
1734 | /* In ROWS mode, exactly the rows up to current are in frame */ |
1735 | winstate->frametailpos = winstate->currentpos + 1; |
1736 | winstate->frametail_valid = true; |
1737 | } |
1738 | else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
1739 | { |
1740 | /* If no ORDER BY, all rows are peers with each other */ |
1741 | if (node->ordNumCols == 0) |
1742 | { |
1743 | spool_tuples(winstate, -1); |
1744 | winstate->frametailpos = winstate->spooled_rows; |
1745 | winstate->frametail_valid = true; |
1746 | MemoryContextSwitchTo(oldcontext); |
1747 | return; |
1748 | } |
1749 | |
1750 | /* |
1751 | * In RANGE or GROUPS END_CURRENT_ROW mode, frame end is the last |
1752 | * row that is a peer of current row, frame tail is the row after |
1753 | * that (if any). We keep a copy of the last-known frame tail row |
1754 | * in frametail_slot, and advance as necessary. Note that if we |
1755 | * reach end of partition, we will leave frametailpos = end+1 and |
1756 | * frametail_slot empty. |
1757 | */ |
1758 | tuplestore_select_read_pointer(winstate->buffer, |
1759 | winstate->frametail_ptr); |
1760 | if (winstate->frametailpos == 0 && |
1761 | TupIsNull(winstate->frametail_slot)) |
1762 | { |
1763 | /* fetch first row into frametail_slot, if we didn't already */ |
1764 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1765 | winstate->frametail_slot)) |
1766 | elog(ERROR, "unexpected end of tuplestore" ); |
1767 | } |
1768 | |
1769 | while (!TupIsNull(winstate->frametail_slot)) |
1770 | { |
1771 | if (winstate->frametailpos > winstate->currentpos && |
1772 | !are_peers(winstate, winstate->frametail_slot, |
1773 | winstate->ss.ss_ScanTupleSlot)) |
1774 | break; /* this row is the frame tail */ |
1775 | /* Note we advance frametailpos even if the fetch fails */ |
1776 | winstate->frametailpos++; |
1777 | spool_tuples(winstate, winstate->frametailpos); |
1778 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1779 | winstate->frametail_slot)) |
1780 | break; /* end of partition */ |
1781 | } |
1782 | winstate->frametail_valid = true; |
1783 | } |
1784 | else |
1785 | Assert(false); |
1786 | } |
1787 | else if (frameOptions & FRAMEOPTION_END_OFFSET) |
1788 | { |
1789 | if (frameOptions & FRAMEOPTION_ROWS) |
1790 | { |
1791 | /* In ROWS mode, bound is physically n before/after current */ |
1792 | int64 offset = DatumGetInt64(winstate->endOffsetValue); |
1793 | |
1794 | if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
1795 | offset = -offset; |
1796 | |
1797 | winstate->frametailpos = winstate->currentpos + offset + 1; |
1798 | /* smallest allowable value of frametailpos is 0 */ |
1799 | if (winstate->frametailpos < 0) |
1800 | winstate->frametailpos = 0; |
1801 | else if (winstate->frametailpos > winstate->currentpos + 1) |
1802 | { |
1803 | /* make sure frametailpos is not past end of partition */ |
1804 | spool_tuples(winstate, winstate->frametailpos - 1); |
1805 | if (winstate->frametailpos > winstate->spooled_rows) |
1806 | winstate->frametailpos = winstate->spooled_rows; |
1807 | } |
1808 | winstate->frametail_valid = true; |
1809 | } |
1810 | else if (frameOptions & FRAMEOPTION_RANGE) |
1811 | { |
1812 | /* |
1813 | * In RANGE END_OFFSET mode, frame end is the last row that |
1814 | * satisfies the in_range constraint relative to the current row, |
1815 | * frame tail is the row after that (if any). We keep a copy of |
1816 | * the last-known frame tail row in frametail_slot, and advance as |
1817 | * necessary. Note that if we reach end of partition, we will |
1818 | * leave frametailpos = end+1 and frametail_slot empty. |
1819 | */ |
1820 | int sortCol = node->ordColIdx[0]; |
1821 | bool sub, |
1822 | less; |
1823 | |
1824 | /* We must have an ordering column */ |
1825 | Assert(node->ordNumCols == 1); |
1826 | |
1827 | /* Precompute flags for in_range checks */ |
1828 | if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
1829 | sub = true; /* subtract endOffset from current row */ |
1830 | else |
1831 | sub = false; /* add it */ |
1832 | less = true; /* normally, we want frame tail <= sum */ |
1833 | /* If sort order is descending, flip both flags */ |
1834 | if (!winstate->inRangeAsc) |
1835 | { |
1836 | sub = !sub; |
1837 | less = false; |
1838 | } |
1839 | |
1840 | tuplestore_select_read_pointer(winstate->buffer, |
1841 | winstate->frametail_ptr); |
1842 | if (winstate->frametailpos == 0 && |
1843 | TupIsNull(winstate->frametail_slot)) |
1844 | { |
1845 | /* fetch first row into frametail_slot, if we didn't already */ |
1846 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1847 | winstate->frametail_slot)) |
1848 | elog(ERROR, "unexpected end of tuplestore" ); |
1849 | } |
1850 | |
1851 | while (!TupIsNull(winstate->frametail_slot)) |
1852 | { |
1853 | Datum tailval, |
1854 | currval; |
1855 | bool tailisnull, |
1856 | currisnull; |
1857 | |
1858 | tailval = slot_getattr(winstate->frametail_slot, sortCol, |
1859 | &tailisnull); |
1860 | currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol, |
1861 | &currisnull); |
1862 | if (tailisnull || currisnull) |
1863 | { |
1864 | /* order of the rows depends only on nulls_first */ |
1865 | if (winstate->inRangeNullsFirst) |
1866 | { |
1867 | /* advance tail if tail is null or curr is not */ |
1868 | if (!tailisnull) |
1869 | break; |
1870 | } |
1871 | else |
1872 | { |
1873 | /* advance tail if tail is not null or curr is null */ |
1874 | if (!currisnull) |
1875 | break; |
1876 | } |
1877 | } |
1878 | else |
1879 | { |
1880 | if (!DatumGetBool(FunctionCall5Coll(&winstate->endInRangeFunc, |
1881 | winstate->inRangeColl, |
1882 | tailval, |
1883 | currval, |
1884 | winstate->endOffsetValue, |
1885 | BoolGetDatum(sub), |
1886 | BoolGetDatum(less)))) |
1887 | break; /* this row is the correct frame tail */ |
1888 | } |
1889 | /* Note we advance frametailpos even if the fetch fails */ |
1890 | winstate->frametailpos++; |
1891 | spool_tuples(winstate, winstate->frametailpos); |
1892 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1893 | winstate->frametail_slot)) |
1894 | break; /* end of partition */ |
1895 | } |
1896 | winstate->frametail_valid = true; |
1897 | } |
1898 | else if (frameOptions & FRAMEOPTION_GROUPS) |
1899 | { |
1900 | /* |
1901 | * In GROUPS END_OFFSET mode, frame end is the last row of the |
1902 | * last peer group whose number satisfies the offset constraint, |
1903 | * and frame tail is the row after that (if any). We keep a copy |
1904 | * of the last-known frame tail row in frametail_slot, and advance |
1905 | * as necessary. Note that if we reach end of partition, we will |
1906 | * leave frametailpos = end+1 and frametail_slot empty. |
1907 | */ |
1908 | int64 offset = DatumGetInt64(winstate->endOffsetValue); |
1909 | int64 maxtailgroup; |
1910 | |
1911 | if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING) |
1912 | maxtailgroup = winstate->currentgroup - offset; |
1913 | else |
1914 | maxtailgroup = winstate->currentgroup + offset; |
1915 | |
1916 | tuplestore_select_read_pointer(winstate->buffer, |
1917 | winstate->frametail_ptr); |
1918 | if (winstate->frametailpos == 0 && |
1919 | TupIsNull(winstate->frametail_slot)) |
1920 | { |
1921 | /* fetch first row into frametail_slot, if we didn't already */ |
1922 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1923 | winstate->frametail_slot)) |
1924 | elog(ERROR, "unexpected end of tuplestore" ); |
1925 | } |
1926 | |
1927 | while (!TupIsNull(winstate->frametail_slot)) |
1928 | { |
1929 | if (winstate->frametailgroup > maxtailgroup) |
1930 | break; /* this row is the correct frame tail */ |
1931 | ExecCopySlot(winstate->temp_slot_2, winstate->frametail_slot); |
1932 | /* Note we advance frametailpos even if the fetch fails */ |
1933 | winstate->frametailpos++; |
1934 | spool_tuples(winstate, winstate->frametailpos); |
1935 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1936 | winstate->frametail_slot)) |
1937 | break; /* end of partition */ |
1938 | if (!are_peers(winstate, winstate->temp_slot_2, |
1939 | winstate->frametail_slot)) |
1940 | winstate->frametailgroup++; |
1941 | } |
1942 | ExecClearTuple(winstate->temp_slot_2); |
1943 | winstate->frametail_valid = true; |
1944 | } |
1945 | else |
1946 | Assert(false); |
1947 | } |
1948 | else |
1949 | Assert(false); |
1950 | |
1951 | MemoryContextSwitchTo(oldcontext); |
1952 | } |
1953 | |
1954 | /* |
1955 | * update_grouptailpos |
1956 | * make grouptailpos valid for the current row |
1957 | * |
1958 | * May clobber winstate->temp_slot_2. |
1959 | */ |
1960 | static void |
1961 | update_grouptailpos(WindowAggState *winstate) |
1962 | { |
1963 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
1964 | MemoryContext oldcontext; |
1965 | |
1966 | if (winstate->grouptail_valid) |
1967 | return; /* already known for current row */ |
1968 | |
1969 | /* We may be called in a short-lived context */ |
1970 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
1971 | |
1972 | /* If no ORDER BY, all rows are peers with each other */ |
1973 | if (node->ordNumCols == 0) |
1974 | { |
1975 | spool_tuples(winstate, -1); |
1976 | winstate->grouptailpos = winstate->spooled_rows; |
1977 | winstate->grouptail_valid = true; |
1978 | MemoryContextSwitchTo(oldcontext); |
1979 | return; |
1980 | } |
1981 | |
1982 | /* |
1983 | * Because grouptail_valid is reset only when current row advances into a |
1984 | * new peer group, we always reach here knowing that grouptailpos needs to |
1985 | * be advanced by at least one row. Hence, unlike the otherwise similar |
1986 | * case for frame tail tracking, we do not need persistent storage of the |
1987 | * group tail row. |
1988 | */ |
1989 | Assert(winstate->grouptailpos <= winstate->currentpos); |
1990 | tuplestore_select_read_pointer(winstate->buffer, |
1991 | winstate->grouptail_ptr); |
1992 | for (;;) |
1993 | { |
1994 | /* Note we advance grouptailpos even if the fetch fails */ |
1995 | winstate->grouptailpos++; |
1996 | spool_tuples(winstate, winstate->grouptailpos); |
1997 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
1998 | winstate->temp_slot_2)) |
1999 | break; /* end of partition */ |
2000 | if (winstate->grouptailpos > winstate->currentpos && |
2001 | !are_peers(winstate, winstate->temp_slot_2, |
2002 | winstate->ss.ss_ScanTupleSlot)) |
2003 | break; /* this row is the group tail */ |
2004 | } |
2005 | ExecClearTuple(winstate->temp_slot_2); |
2006 | winstate->grouptail_valid = true; |
2007 | |
2008 | MemoryContextSwitchTo(oldcontext); |
2009 | } |
2010 | |
2011 | |
2012 | /* ----------------- |
2013 | * ExecWindowAgg |
2014 | * |
2015 | * ExecWindowAgg receives tuples from its outer subplan and |
2016 | * stores them into a tuplestore, then processes window functions. |
2017 | * This node doesn't reduce nor qualify any row so the number of |
2018 | * returned rows is exactly the same as its outer subplan's result. |
2019 | * ----------------- |
2020 | */ |
2021 | static TupleTableSlot * |
2022 | ExecWindowAgg(PlanState *pstate) |
2023 | { |
2024 | WindowAggState *winstate = castNode(WindowAggState, pstate); |
2025 | ExprContext *econtext; |
2026 | int i; |
2027 | int numfuncs; |
2028 | |
2029 | CHECK_FOR_INTERRUPTS(); |
2030 | |
2031 | if (winstate->all_done) |
2032 | return NULL; |
2033 | |
2034 | /* |
2035 | * Compute frame offset values, if any, during first call (or after a |
2036 | * rescan). These are assumed to hold constant throughout the scan; if |
2037 | * user gives us a volatile expression, we'll only use its initial value. |
2038 | */ |
2039 | if (winstate->all_first) |
2040 | { |
2041 | int frameOptions = winstate->frameOptions; |
2042 | ExprContext *econtext = winstate->ss.ps.ps_ExprContext; |
2043 | Datum value; |
2044 | bool isnull; |
2045 | int16 len; |
2046 | bool byval; |
2047 | |
2048 | if (frameOptions & FRAMEOPTION_START_OFFSET) |
2049 | { |
2050 | Assert(winstate->startOffset != NULL); |
2051 | value = ExecEvalExprSwitchContext(winstate->startOffset, |
2052 | econtext, |
2053 | &isnull); |
2054 | if (isnull) |
2055 | ereport(ERROR, |
2056 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
2057 | errmsg("frame starting offset must not be null" ))); |
2058 | /* copy value into query-lifespan context */ |
2059 | get_typlenbyval(exprType((Node *) winstate->startOffset->expr), |
2060 | &len, &byval); |
2061 | winstate->startOffsetValue = datumCopy(value, byval, len); |
2062 | if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS)) |
2063 | { |
2064 | /* value is known to be int8 */ |
2065 | int64 offset = DatumGetInt64(value); |
2066 | |
2067 | if (offset < 0) |
2068 | ereport(ERROR, |
2069 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
2070 | errmsg("frame starting offset must not be negative" ))); |
2071 | } |
2072 | } |
2073 | if (frameOptions & FRAMEOPTION_END_OFFSET) |
2074 | { |
2075 | Assert(winstate->endOffset != NULL); |
2076 | value = ExecEvalExprSwitchContext(winstate->endOffset, |
2077 | econtext, |
2078 | &isnull); |
2079 | if (isnull) |
2080 | ereport(ERROR, |
2081 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
2082 | errmsg("frame ending offset must not be null" ))); |
2083 | /* copy value into query-lifespan context */ |
2084 | get_typlenbyval(exprType((Node *) winstate->endOffset->expr), |
2085 | &len, &byval); |
2086 | winstate->endOffsetValue = datumCopy(value, byval, len); |
2087 | if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS)) |
2088 | { |
2089 | /* value is known to be int8 */ |
2090 | int64 offset = DatumGetInt64(value); |
2091 | |
2092 | if (offset < 0) |
2093 | ereport(ERROR, |
2094 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
2095 | errmsg("frame ending offset must not be negative" ))); |
2096 | } |
2097 | } |
2098 | winstate->all_first = false; |
2099 | } |
2100 | |
2101 | if (winstate->buffer == NULL) |
2102 | { |
2103 | /* Initialize for first partition and set current row = 0 */ |
2104 | begin_partition(winstate); |
2105 | /* If there are no input rows, we'll detect that and exit below */ |
2106 | } |
2107 | else |
2108 | { |
2109 | /* Advance current row within partition */ |
2110 | winstate->currentpos++; |
2111 | /* This might mean that the frame moves, too */ |
2112 | winstate->framehead_valid = false; |
2113 | winstate->frametail_valid = false; |
2114 | /* we don't need to invalidate grouptail here; see below */ |
2115 | } |
2116 | |
2117 | /* |
2118 | * Spool all tuples up to and including the current row, if we haven't |
2119 | * already |
2120 | */ |
2121 | spool_tuples(winstate, winstate->currentpos); |
2122 | |
2123 | /* Move to the next partition if we reached the end of this partition */ |
2124 | if (winstate->partition_spooled && |
2125 | winstate->currentpos >= winstate->spooled_rows) |
2126 | { |
2127 | release_partition(winstate); |
2128 | |
2129 | if (winstate->more_partitions) |
2130 | { |
2131 | begin_partition(winstate); |
2132 | Assert(winstate->spooled_rows > 0); |
2133 | } |
2134 | else |
2135 | { |
2136 | winstate->all_done = true; |
2137 | return NULL; |
2138 | } |
2139 | } |
2140 | |
2141 | /* final output execution is in ps_ExprContext */ |
2142 | econtext = winstate->ss.ps.ps_ExprContext; |
2143 | |
2144 | /* Clear the per-output-tuple context for current row */ |
2145 | ResetExprContext(econtext); |
2146 | |
2147 | /* |
2148 | * Read the current row from the tuplestore, and save in ScanTupleSlot. |
2149 | * (We can't rely on the outerplan's output slot because we may have to |
2150 | * read beyond the current row. Also, we have to actually copy the row |
2151 | * out of the tuplestore, since window function evaluation might cause the |
2152 | * tuplestore to dump its state to disk.) |
2153 | * |
2154 | * In GROUPS mode, or when tracking a group-oriented exclusion clause, we |
2155 | * must also detect entering a new peer group and update associated state |
2156 | * when that happens. We use temp_slot_2 to temporarily hold the previous |
2157 | * row for this purpose. |
2158 | * |
2159 | * Current row must be in the tuplestore, since we spooled it above. |
2160 | */ |
2161 | tuplestore_select_read_pointer(winstate->buffer, winstate->current_ptr); |
2162 | if ((winstate->frameOptions & (FRAMEOPTION_GROUPS | |
2163 | FRAMEOPTION_EXCLUDE_GROUP | |
2164 | FRAMEOPTION_EXCLUDE_TIES)) && |
2165 | winstate->currentpos > 0) |
2166 | { |
2167 | ExecCopySlot(winstate->temp_slot_2, winstate->ss.ss_ScanTupleSlot); |
2168 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
2169 | winstate->ss.ss_ScanTupleSlot)) |
2170 | elog(ERROR, "unexpected end of tuplestore" ); |
2171 | if (!are_peers(winstate, winstate->temp_slot_2, |
2172 | winstate->ss.ss_ScanTupleSlot)) |
2173 | { |
2174 | winstate->currentgroup++; |
2175 | winstate->groupheadpos = winstate->currentpos; |
2176 | winstate->grouptail_valid = false; |
2177 | } |
2178 | ExecClearTuple(winstate->temp_slot_2); |
2179 | } |
2180 | else |
2181 | { |
2182 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, |
2183 | winstate->ss.ss_ScanTupleSlot)) |
2184 | elog(ERROR, "unexpected end of tuplestore" ); |
2185 | } |
2186 | |
2187 | /* |
2188 | * Evaluate true window functions |
2189 | */ |
2190 | numfuncs = winstate->numfuncs; |
2191 | for (i = 0; i < numfuncs; i++) |
2192 | { |
2193 | WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]); |
2194 | |
2195 | if (perfuncstate->plain_agg) |
2196 | continue; |
2197 | eval_windowfunction(winstate, perfuncstate, |
2198 | &(econtext->ecxt_aggvalues[perfuncstate->wfuncstate->wfuncno]), |
2199 | &(econtext->ecxt_aggnulls[perfuncstate->wfuncstate->wfuncno])); |
2200 | } |
2201 | |
2202 | /* |
2203 | * Evaluate aggregates |
2204 | */ |
2205 | if (winstate->numaggs > 0) |
2206 | eval_windowaggregates(winstate); |
2207 | |
2208 | /* |
2209 | * If we have created auxiliary read pointers for the frame or group |
2210 | * boundaries, force them to be kept up-to-date, because we don't know |
2211 | * whether the window function(s) will do anything that requires that. |
2212 | * Failing to advance the pointers would result in being unable to trim |
2213 | * data from the tuplestore, which is bad. (If we could know in advance |
2214 | * whether the window functions will use frame boundary info, we could |
2215 | * skip creating these pointers in the first place ... but unfortunately |
2216 | * the window function API doesn't require that.) |
2217 | */ |
2218 | if (winstate->framehead_ptr >= 0) |
2219 | update_frameheadpos(winstate); |
2220 | if (winstate->frametail_ptr >= 0) |
2221 | update_frametailpos(winstate); |
2222 | if (winstate->grouptail_ptr >= 0) |
2223 | update_grouptailpos(winstate); |
2224 | |
2225 | /* |
2226 | * Truncate any no-longer-needed rows from the tuplestore. |
2227 | */ |
2228 | tuplestore_trim(winstate->buffer); |
2229 | |
2230 | /* |
2231 | * Form and return a projection tuple using the windowfunc results and the |
2232 | * current row. Setting ecxt_outertuple arranges that any Vars will be |
2233 | * evaluated with respect to that row. |
2234 | */ |
2235 | econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot; |
2236 | |
2237 | return ExecProject(winstate->ss.ps.ps_ProjInfo); |
2238 | } |
2239 | |
2240 | /* ----------------- |
2241 | * ExecInitWindowAgg |
2242 | * |
2243 | * Creates the run-time information for the WindowAgg node produced by the |
2244 | * planner and initializes its outer subtree |
2245 | * ----------------- |
2246 | */ |
2247 | WindowAggState * |
2248 | ExecInitWindowAgg(WindowAgg *node, EState *estate, int eflags) |
2249 | { |
2250 | WindowAggState *winstate; |
2251 | Plan *outerPlan; |
2252 | ExprContext *econtext; |
2253 | ExprContext *tmpcontext; |
2254 | WindowStatePerFunc perfunc; |
2255 | WindowStatePerAgg peragg; |
2256 | int frameOptions = node->frameOptions; |
2257 | int numfuncs, |
2258 | wfuncno, |
2259 | numaggs, |
2260 | aggno; |
2261 | TupleDesc scanDesc; |
2262 | ListCell *l; |
2263 | |
2264 | /* check for unsupported flags */ |
2265 | Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); |
2266 | |
2267 | /* |
2268 | * create state structure |
2269 | */ |
2270 | winstate = makeNode(WindowAggState); |
2271 | winstate->ss.ps.plan = (Plan *) node; |
2272 | winstate->ss.ps.state = estate; |
2273 | winstate->ss.ps.ExecProcNode = ExecWindowAgg; |
2274 | |
2275 | /* |
2276 | * Create expression contexts. We need two, one for per-input-tuple |
2277 | * processing and one for per-output-tuple processing. We cheat a little |
2278 | * by using ExecAssignExprContext() to build both. |
2279 | */ |
2280 | ExecAssignExprContext(estate, &winstate->ss.ps); |
2281 | tmpcontext = winstate->ss.ps.ps_ExprContext; |
2282 | winstate->tmpcontext = tmpcontext; |
2283 | ExecAssignExprContext(estate, &winstate->ss.ps); |
2284 | |
2285 | /* Create long-lived context for storage of partition-local memory etc */ |
2286 | winstate->partcontext = |
2287 | AllocSetContextCreate(CurrentMemoryContext, |
2288 | "WindowAgg Partition" , |
2289 | ALLOCSET_DEFAULT_SIZES); |
2290 | |
2291 | /* |
2292 | * Create mid-lived context for aggregate trans values etc. |
2293 | * |
2294 | * Note that moving aggregates each use their own private context, not |
2295 | * this one. |
2296 | */ |
2297 | winstate->aggcontext = |
2298 | AllocSetContextCreate(CurrentMemoryContext, |
2299 | "WindowAgg Aggregates" , |
2300 | ALLOCSET_DEFAULT_SIZES); |
2301 | |
2302 | /* |
2303 | * WindowAgg nodes never have quals, since they can only occur at the |
2304 | * logical top level of a query (ie, after any WHERE or HAVING filters) |
2305 | */ |
2306 | Assert(node->plan.qual == NIL); |
2307 | winstate->ss.ps.qual = NULL; |
2308 | |
2309 | /* |
2310 | * initialize child nodes |
2311 | */ |
2312 | outerPlan = outerPlan(node); |
2313 | outerPlanState(winstate) = ExecInitNode(outerPlan, estate, eflags); |
2314 | |
2315 | /* |
2316 | * initialize source tuple type (which is also the tuple type that we'll |
2317 | * store in the tuplestore and use in all our working slots). |
2318 | */ |
2319 | ExecCreateScanSlotFromOuterPlan(estate, &winstate->ss, &TTSOpsMinimalTuple); |
2320 | scanDesc = winstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor; |
2321 | |
2322 | /* the outer tuple isn't the child's tuple, but always a minimal tuple */ |
2323 | winstate->ss.ps.outeropsset = true; |
2324 | winstate->ss.ps.outerops = &TTSOpsMinimalTuple; |
2325 | winstate->ss.ps.outeropsfixed = true; |
2326 | |
2327 | /* |
2328 | * tuple table initialization |
2329 | */ |
2330 | winstate->first_part_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
2331 | &TTSOpsMinimalTuple); |
2332 | winstate->agg_row_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
2333 | &TTSOpsMinimalTuple); |
2334 | winstate->temp_slot_1 = ExecInitExtraTupleSlot(estate, scanDesc, |
2335 | &TTSOpsMinimalTuple); |
2336 | winstate->temp_slot_2 = ExecInitExtraTupleSlot(estate, scanDesc, |
2337 | &TTSOpsMinimalTuple); |
2338 | |
2339 | /* |
2340 | * create frame head and tail slots only if needed (must create slots in |
2341 | * exactly the same cases that update_frameheadpos and update_frametailpos |
2342 | * need them) |
2343 | */ |
2344 | winstate->framehead_slot = winstate->frametail_slot = NULL; |
2345 | |
2346 | if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS)) |
2347 | { |
2348 | if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) && |
2349 | node->ordNumCols != 0) || |
2350 | (frameOptions & FRAMEOPTION_START_OFFSET)) |
2351 | winstate->framehead_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
2352 | &TTSOpsMinimalTuple); |
2353 | if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) && |
2354 | node->ordNumCols != 0) || |
2355 | (frameOptions & FRAMEOPTION_END_OFFSET)) |
2356 | winstate->frametail_slot = ExecInitExtraTupleSlot(estate, scanDesc, |
2357 | &TTSOpsMinimalTuple); |
2358 | } |
2359 | |
2360 | /* |
2361 | * Initialize result slot, type and projection. |
2362 | */ |
2363 | ExecInitResultTupleSlotTL(&winstate->ss.ps, &TTSOpsVirtual); |
2364 | ExecAssignProjectionInfo(&winstate->ss.ps, NULL); |
2365 | |
2366 | /* Set up data for comparing tuples */ |
2367 | if (node->partNumCols > 0) |
2368 | winstate->partEqfunction = |
2369 | execTuplesMatchPrepare(scanDesc, |
2370 | node->partNumCols, |
2371 | node->partColIdx, |
2372 | node->partOperators, |
2373 | node->partCollations, |
2374 | &winstate->ss.ps); |
2375 | |
2376 | if (node->ordNumCols > 0) |
2377 | winstate->ordEqfunction = |
2378 | execTuplesMatchPrepare(scanDesc, |
2379 | node->ordNumCols, |
2380 | node->ordColIdx, |
2381 | node->ordOperators, |
2382 | node->ordCollations, |
2383 | &winstate->ss.ps); |
2384 | |
2385 | /* |
2386 | * WindowAgg nodes use aggvalues and aggnulls as well as Agg nodes. |
2387 | */ |
2388 | numfuncs = winstate->numfuncs; |
2389 | numaggs = winstate->numaggs; |
2390 | econtext = winstate->ss.ps.ps_ExprContext; |
2391 | econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numfuncs); |
2392 | econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numfuncs); |
2393 | |
2394 | /* |
2395 | * allocate per-wfunc/per-agg state information. |
2396 | */ |
2397 | perfunc = (WindowStatePerFunc) palloc0(sizeof(WindowStatePerFuncData) * numfuncs); |
2398 | peragg = (WindowStatePerAgg) palloc0(sizeof(WindowStatePerAggData) * numaggs); |
2399 | winstate->perfunc = perfunc; |
2400 | winstate->peragg = peragg; |
2401 | |
2402 | wfuncno = -1; |
2403 | aggno = -1; |
2404 | foreach(l, winstate->funcs) |
2405 | { |
2406 | WindowFuncExprState *wfuncstate = (WindowFuncExprState *) lfirst(l); |
2407 | WindowFunc *wfunc = wfuncstate->wfunc; |
2408 | WindowStatePerFunc perfuncstate; |
2409 | AclResult aclresult; |
2410 | int i; |
2411 | |
2412 | if (wfunc->winref != node->winref) /* planner screwed up? */ |
2413 | elog(ERROR, "WindowFunc with winref %u assigned to WindowAgg with winref %u" , |
2414 | wfunc->winref, node->winref); |
2415 | |
2416 | /* Look for a previous duplicate window function */ |
2417 | for (i = 0; i <= wfuncno; i++) |
2418 | { |
2419 | if (equal(wfunc, perfunc[i].wfunc) && |
2420 | !contain_volatile_functions((Node *) wfunc)) |
2421 | break; |
2422 | } |
2423 | if (i <= wfuncno) |
2424 | { |
2425 | /* Found a match to an existing entry, so just mark it */ |
2426 | wfuncstate->wfuncno = i; |
2427 | continue; |
2428 | } |
2429 | |
2430 | /* Nope, so assign a new PerAgg record */ |
2431 | perfuncstate = &perfunc[++wfuncno]; |
2432 | |
2433 | /* Mark WindowFunc state node with assigned index in the result array */ |
2434 | wfuncstate->wfuncno = wfuncno; |
2435 | |
2436 | /* Check permission to call window function */ |
2437 | aclresult = pg_proc_aclcheck(wfunc->winfnoid, GetUserId(), |
2438 | ACL_EXECUTE); |
2439 | if (aclresult != ACLCHECK_OK) |
2440 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
2441 | get_func_name(wfunc->winfnoid)); |
2442 | InvokeFunctionExecuteHook(wfunc->winfnoid); |
2443 | |
2444 | /* Fill in the perfuncstate data */ |
2445 | perfuncstate->wfuncstate = wfuncstate; |
2446 | perfuncstate->wfunc = wfunc; |
2447 | perfuncstate->numArguments = list_length(wfuncstate->args); |
2448 | |
2449 | fmgr_info_cxt(wfunc->winfnoid, &perfuncstate->flinfo, |
2450 | econtext->ecxt_per_query_memory); |
2451 | fmgr_info_set_expr((Node *) wfunc, &perfuncstate->flinfo); |
2452 | |
2453 | perfuncstate->winCollation = wfunc->inputcollid; |
2454 | |
2455 | get_typlenbyval(wfunc->wintype, |
2456 | &perfuncstate->resulttypeLen, |
2457 | &perfuncstate->resulttypeByVal); |
2458 | |
2459 | /* |
2460 | * If it's really just a plain aggregate function, we'll emulate the |
2461 | * Agg environment for it. |
2462 | */ |
2463 | perfuncstate->plain_agg = wfunc->winagg; |
2464 | if (wfunc->winagg) |
2465 | { |
2466 | WindowStatePerAgg peraggstate; |
2467 | |
2468 | perfuncstate->aggno = ++aggno; |
2469 | peraggstate = &winstate->peragg[aggno]; |
2470 | initialize_peragg(winstate, wfunc, peraggstate); |
2471 | peraggstate->wfuncno = wfuncno; |
2472 | } |
2473 | else |
2474 | { |
2475 | WindowObject winobj = makeNode(WindowObjectData); |
2476 | |
2477 | winobj->winstate = winstate; |
2478 | winobj->argstates = wfuncstate->args; |
2479 | winobj->localmem = NULL; |
2480 | perfuncstate->winobj = winobj; |
2481 | } |
2482 | } |
2483 | |
2484 | /* Update numfuncs, numaggs to match number of unique functions found */ |
2485 | winstate->numfuncs = wfuncno + 1; |
2486 | winstate->numaggs = aggno + 1; |
2487 | |
2488 | /* Set up WindowObject for aggregates, if needed */ |
2489 | if (winstate->numaggs > 0) |
2490 | { |
2491 | WindowObject agg_winobj = makeNode(WindowObjectData); |
2492 | |
2493 | agg_winobj->winstate = winstate; |
2494 | agg_winobj->argstates = NIL; |
2495 | agg_winobj->localmem = NULL; |
2496 | /* make sure markptr = -1 to invalidate. It may not get used */ |
2497 | agg_winobj->markptr = -1; |
2498 | agg_winobj->readptr = -1; |
2499 | winstate->agg_winobj = agg_winobj; |
2500 | } |
2501 | |
2502 | /* copy frame options to state node for easy access */ |
2503 | winstate->frameOptions = frameOptions; |
2504 | |
2505 | /* initialize frame bound offset expressions */ |
2506 | winstate->startOffset = ExecInitExpr((Expr *) node->startOffset, |
2507 | (PlanState *) winstate); |
2508 | winstate->endOffset = ExecInitExpr((Expr *) node->endOffset, |
2509 | (PlanState *) winstate); |
2510 | |
2511 | /* Lookup in_range support functions if needed */ |
2512 | if (OidIsValid(node->startInRangeFunc)) |
2513 | fmgr_info(node->startInRangeFunc, &winstate->startInRangeFunc); |
2514 | if (OidIsValid(node->endInRangeFunc)) |
2515 | fmgr_info(node->endInRangeFunc, &winstate->endInRangeFunc); |
2516 | winstate->inRangeColl = node->inRangeColl; |
2517 | winstate->inRangeAsc = node->inRangeAsc; |
2518 | winstate->inRangeNullsFirst = node->inRangeNullsFirst; |
2519 | |
2520 | winstate->all_first = true; |
2521 | winstate->partition_spooled = false; |
2522 | winstate->more_partitions = false; |
2523 | |
2524 | return winstate; |
2525 | } |
2526 | |
2527 | /* ----------------- |
2528 | * ExecEndWindowAgg |
2529 | * ----------------- |
2530 | */ |
2531 | void |
2532 | ExecEndWindowAgg(WindowAggState *node) |
2533 | { |
2534 | PlanState *outerPlan; |
2535 | int i; |
2536 | |
2537 | release_partition(node); |
2538 | |
2539 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
2540 | ExecClearTuple(node->first_part_slot); |
2541 | ExecClearTuple(node->agg_row_slot); |
2542 | ExecClearTuple(node->temp_slot_1); |
2543 | ExecClearTuple(node->temp_slot_2); |
2544 | if (node->framehead_slot) |
2545 | ExecClearTuple(node->framehead_slot); |
2546 | if (node->frametail_slot) |
2547 | ExecClearTuple(node->frametail_slot); |
2548 | |
2549 | /* |
2550 | * Free both the expr contexts. |
2551 | */ |
2552 | ExecFreeExprContext(&node->ss.ps); |
2553 | node->ss.ps.ps_ExprContext = node->tmpcontext; |
2554 | ExecFreeExprContext(&node->ss.ps); |
2555 | |
2556 | for (i = 0; i < node->numaggs; i++) |
2557 | { |
2558 | if (node->peragg[i].aggcontext != node->aggcontext) |
2559 | MemoryContextDelete(node->peragg[i].aggcontext); |
2560 | } |
2561 | MemoryContextDelete(node->partcontext); |
2562 | MemoryContextDelete(node->aggcontext); |
2563 | |
2564 | pfree(node->perfunc); |
2565 | pfree(node->peragg); |
2566 | |
2567 | outerPlan = outerPlanState(node); |
2568 | ExecEndNode(outerPlan); |
2569 | } |
2570 | |
2571 | /* ----------------- |
2572 | * ExecReScanWindowAgg |
2573 | * ----------------- |
2574 | */ |
2575 | void |
2576 | ExecReScanWindowAgg(WindowAggState *node) |
2577 | { |
2578 | PlanState *outerPlan = outerPlanState(node); |
2579 | ExprContext *econtext = node->ss.ps.ps_ExprContext; |
2580 | |
2581 | node->all_done = false; |
2582 | node->all_first = true; |
2583 | |
2584 | /* release tuplestore et al */ |
2585 | release_partition(node); |
2586 | |
2587 | /* release all temp tuples, but especially first_part_slot */ |
2588 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
2589 | ExecClearTuple(node->first_part_slot); |
2590 | ExecClearTuple(node->agg_row_slot); |
2591 | ExecClearTuple(node->temp_slot_1); |
2592 | ExecClearTuple(node->temp_slot_2); |
2593 | if (node->framehead_slot) |
2594 | ExecClearTuple(node->framehead_slot); |
2595 | if (node->frametail_slot) |
2596 | ExecClearTuple(node->frametail_slot); |
2597 | |
2598 | /* Forget current wfunc values */ |
2599 | MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numfuncs); |
2600 | MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numfuncs); |
2601 | |
2602 | /* |
2603 | * if chgParam of subnode is not null then plan will be re-scanned by |
2604 | * first ExecProcNode. |
2605 | */ |
2606 | if (outerPlan->chgParam == NULL) |
2607 | ExecReScan(outerPlan); |
2608 | } |
2609 | |
2610 | /* |
2611 | * initialize_peragg |
2612 | * |
2613 | * Almost same as in nodeAgg.c, except we don't support DISTINCT currently. |
2614 | */ |
2615 | static WindowStatePerAggData * |
2616 | initialize_peragg(WindowAggState *winstate, WindowFunc *wfunc, |
2617 | WindowStatePerAgg peraggstate) |
2618 | { |
2619 | Oid inputTypes[FUNC_MAX_ARGS]; |
2620 | int numArguments; |
2621 | HeapTuple aggTuple; |
2622 | Form_pg_aggregate aggform; |
2623 | Oid aggtranstype; |
2624 | AttrNumber initvalAttNo; |
2625 | AclResult aclresult; |
2626 | bool use_ma_code; |
2627 | Oid transfn_oid, |
2628 | invtransfn_oid, |
2629 | finalfn_oid; |
2630 | bool ; |
2631 | char finalmodify; |
2632 | Expr *transfnexpr, |
2633 | *invtransfnexpr, |
2634 | *finalfnexpr; |
2635 | Datum textInitVal; |
2636 | int i; |
2637 | ListCell *lc; |
2638 | |
2639 | numArguments = list_length(wfunc->args); |
2640 | |
2641 | i = 0; |
2642 | foreach(lc, wfunc->args) |
2643 | { |
2644 | inputTypes[i++] = exprType((Node *) lfirst(lc)); |
2645 | } |
2646 | |
2647 | aggTuple = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(wfunc->winfnoid)); |
2648 | if (!HeapTupleIsValid(aggTuple)) |
2649 | elog(ERROR, "cache lookup failed for aggregate %u" , |
2650 | wfunc->winfnoid); |
2651 | aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple); |
2652 | |
2653 | /* |
2654 | * Figure out whether we want to use the moving-aggregate implementation, |
2655 | * and collect the right set of fields from the pg_attribute entry. |
2656 | * |
2657 | * It's possible that an aggregate would supply a safe moving-aggregate |
2658 | * implementation and an unsafe normal one, in which case our hand is |
2659 | * forced. Otherwise, if the frame head can't move, we don't need |
2660 | * moving-aggregate code. Even if we'd like to use it, don't do so if the |
2661 | * aggregate's arguments (and FILTER clause if any) contain any calls to |
2662 | * volatile functions. Otherwise, the difference between restarting and |
2663 | * not restarting the aggregation would be user-visible. |
2664 | */ |
2665 | if (!OidIsValid(aggform->aggminvtransfn)) |
2666 | use_ma_code = false; /* sine qua non */ |
2667 | else if (aggform->aggmfinalmodify == AGGMODIFY_READ_ONLY && |
2668 | aggform->aggfinalmodify != AGGMODIFY_READ_ONLY) |
2669 | use_ma_code = true; /* decision forced by safety */ |
2670 | else if (winstate->frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) |
2671 | use_ma_code = false; /* non-moving frame head */ |
2672 | else if (contain_volatile_functions((Node *) wfunc)) |
2673 | use_ma_code = false; /* avoid possible behavioral change */ |
2674 | else |
2675 | use_ma_code = true; /* yes, let's use it */ |
2676 | if (use_ma_code) |
2677 | { |
2678 | peraggstate->transfn_oid = transfn_oid = aggform->aggmtransfn; |
2679 | peraggstate->invtransfn_oid = invtransfn_oid = aggform->aggminvtransfn; |
2680 | peraggstate->finalfn_oid = finalfn_oid = aggform->aggmfinalfn; |
2681 | finalextra = aggform->aggmfinalextra; |
2682 | finalmodify = aggform->aggmfinalmodify; |
2683 | aggtranstype = aggform->aggmtranstype; |
2684 | initvalAttNo = Anum_pg_aggregate_aggminitval; |
2685 | } |
2686 | else |
2687 | { |
2688 | peraggstate->transfn_oid = transfn_oid = aggform->aggtransfn; |
2689 | peraggstate->invtransfn_oid = invtransfn_oid = InvalidOid; |
2690 | peraggstate->finalfn_oid = finalfn_oid = aggform->aggfinalfn; |
2691 | finalextra = aggform->aggfinalextra; |
2692 | finalmodify = aggform->aggfinalmodify; |
2693 | aggtranstype = aggform->aggtranstype; |
2694 | initvalAttNo = Anum_pg_aggregate_agginitval; |
2695 | } |
2696 | |
2697 | /* |
2698 | * ExecInitWindowAgg already checked permission to call aggregate function |
2699 | * ... but we still need to check the component functions |
2700 | */ |
2701 | |
2702 | /* Check that aggregate owner has permission to call component fns */ |
2703 | { |
2704 | HeapTuple procTuple; |
2705 | Oid aggOwner; |
2706 | |
2707 | procTuple = SearchSysCache1(PROCOID, |
2708 | ObjectIdGetDatum(wfunc->winfnoid)); |
2709 | if (!HeapTupleIsValid(procTuple)) |
2710 | elog(ERROR, "cache lookup failed for function %u" , |
2711 | wfunc->winfnoid); |
2712 | aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner; |
2713 | ReleaseSysCache(procTuple); |
2714 | |
2715 | aclresult = pg_proc_aclcheck(transfn_oid, aggOwner, |
2716 | ACL_EXECUTE); |
2717 | if (aclresult != ACLCHECK_OK) |
2718 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
2719 | get_func_name(transfn_oid)); |
2720 | InvokeFunctionExecuteHook(transfn_oid); |
2721 | |
2722 | if (OidIsValid(invtransfn_oid)) |
2723 | { |
2724 | aclresult = pg_proc_aclcheck(invtransfn_oid, aggOwner, |
2725 | ACL_EXECUTE); |
2726 | if (aclresult != ACLCHECK_OK) |
2727 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
2728 | get_func_name(invtransfn_oid)); |
2729 | InvokeFunctionExecuteHook(invtransfn_oid); |
2730 | } |
2731 | |
2732 | if (OidIsValid(finalfn_oid)) |
2733 | { |
2734 | aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner, |
2735 | ACL_EXECUTE); |
2736 | if (aclresult != ACLCHECK_OK) |
2737 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
2738 | get_func_name(finalfn_oid)); |
2739 | InvokeFunctionExecuteHook(finalfn_oid); |
2740 | } |
2741 | } |
2742 | |
2743 | /* |
2744 | * If the selected finalfn isn't read-only, we can't run this aggregate as |
2745 | * a window function. This is a user-facing error, so we take a bit more |
2746 | * care with the error message than elsewhere in this function. |
2747 | */ |
2748 | if (finalmodify != AGGMODIFY_READ_ONLY) |
2749 | ereport(ERROR, |
2750 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
2751 | errmsg("aggregate function %s does not support use as a window function" , |
2752 | format_procedure(wfunc->winfnoid)))); |
2753 | |
2754 | /* Detect how many arguments to pass to the finalfn */ |
2755 | if (finalextra) |
2756 | peraggstate->numFinalArgs = numArguments + 1; |
2757 | else |
2758 | peraggstate->numFinalArgs = 1; |
2759 | |
2760 | /* resolve actual type of transition state, if polymorphic */ |
2761 | aggtranstype = resolve_aggregate_transtype(wfunc->winfnoid, |
2762 | aggtranstype, |
2763 | inputTypes, |
2764 | numArguments); |
2765 | |
2766 | /* build expression trees using actual argument & result types */ |
2767 | build_aggregate_transfn_expr(inputTypes, |
2768 | numArguments, |
2769 | 0, /* no ordered-set window functions yet */ |
2770 | false, /* no variadic window functions yet */ |
2771 | aggtranstype, |
2772 | wfunc->inputcollid, |
2773 | transfn_oid, |
2774 | invtransfn_oid, |
2775 | &transfnexpr, |
2776 | &invtransfnexpr); |
2777 | |
2778 | /* set up infrastructure for calling the transfn(s) and finalfn */ |
2779 | fmgr_info(transfn_oid, &peraggstate->transfn); |
2780 | fmgr_info_set_expr((Node *) transfnexpr, &peraggstate->transfn); |
2781 | |
2782 | if (OidIsValid(invtransfn_oid)) |
2783 | { |
2784 | fmgr_info(invtransfn_oid, &peraggstate->invtransfn); |
2785 | fmgr_info_set_expr((Node *) invtransfnexpr, &peraggstate->invtransfn); |
2786 | } |
2787 | |
2788 | if (OidIsValid(finalfn_oid)) |
2789 | { |
2790 | build_aggregate_finalfn_expr(inputTypes, |
2791 | peraggstate->numFinalArgs, |
2792 | aggtranstype, |
2793 | wfunc->wintype, |
2794 | wfunc->inputcollid, |
2795 | finalfn_oid, |
2796 | &finalfnexpr); |
2797 | fmgr_info(finalfn_oid, &peraggstate->finalfn); |
2798 | fmgr_info_set_expr((Node *) finalfnexpr, &peraggstate->finalfn); |
2799 | } |
2800 | |
2801 | /* get info about relevant datatypes */ |
2802 | get_typlenbyval(wfunc->wintype, |
2803 | &peraggstate->resulttypeLen, |
2804 | &peraggstate->resulttypeByVal); |
2805 | get_typlenbyval(aggtranstype, |
2806 | &peraggstate->transtypeLen, |
2807 | &peraggstate->transtypeByVal); |
2808 | |
2809 | /* |
2810 | * initval is potentially null, so don't try to access it as a struct |
2811 | * field. Must do it the hard way with SysCacheGetAttr. |
2812 | */ |
2813 | textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple, initvalAttNo, |
2814 | &peraggstate->initValueIsNull); |
2815 | |
2816 | if (peraggstate->initValueIsNull) |
2817 | peraggstate->initValue = (Datum) 0; |
2818 | else |
2819 | peraggstate->initValue = GetAggInitVal(textInitVal, |
2820 | aggtranstype); |
2821 | |
2822 | /* |
2823 | * If the transfn is strict and the initval is NULL, make sure input type |
2824 | * and transtype are the same (or at least binary-compatible), so that |
2825 | * it's OK to use the first input value as the initial transValue. This |
2826 | * should have been checked at agg definition time, but we must check |
2827 | * again in case the transfn's strictness property has been changed. |
2828 | */ |
2829 | if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull) |
2830 | { |
2831 | if (numArguments < 1 || |
2832 | !IsBinaryCoercible(inputTypes[0], aggtranstype)) |
2833 | ereport(ERROR, |
2834 | (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), |
2835 | errmsg("aggregate %u needs to have compatible input type and transition type" , |
2836 | wfunc->winfnoid))); |
2837 | } |
2838 | |
2839 | /* |
2840 | * Insist that forward and inverse transition functions have the same |
2841 | * strictness setting. Allowing them to differ would require handling |
2842 | * more special cases in advance_windowaggregate and |
2843 | * advance_windowaggregate_base, for no discernible benefit. This should |
2844 | * have been checked at agg definition time, but we must check again in |
2845 | * case either function's strictness property has been changed. |
2846 | */ |
2847 | if (OidIsValid(invtransfn_oid) && |
2848 | peraggstate->transfn.fn_strict != peraggstate->invtransfn.fn_strict) |
2849 | ereport(ERROR, |
2850 | (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), |
2851 | errmsg("strictness of aggregate's forward and inverse transition functions must match" ))); |
2852 | |
2853 | /* |
2854 | * Moving aggregates use their own aggcontext. |
2855 | * |
2856 | * This is necessary because they might restart at different times, so we |
2857 | * might never be able to reset the shared context otherwise. We can't |
2858 | * make it the aggregates' responsibility to clean up after themselves, |
2859 | * because strict aggregates must be restarted whenever we remove their |
2860 | * last non-NULL input, which the aggregate won't be aware is happening. |
2861 | * Also, just pfree()ing the transValue upon restarting wouldn't help, |
2862 | * since we'd miss any indirectly referenced data. We could, in theory, |
2863 | * make the memory allocation rules for moving aggregates different than |
2864 | * they have historically been for plain aggregates, but that seems grotty |
2865 | * and likely to lead to memory leaks. |
2866 | */ |
2867 | if (OidIsValid(invtransfn_oid)) |
2868 | peraggstate->aggcontext = |
2869 | AllocSetContextCreate(CurrentMemoryContext, |
2870 | "WindowAgg Per Aggregate" , |
2871 | ALLOCSET_DEFAULT_SIZES); |
2872 | else |
2873 | peraggstate->aggcontext = winstate->aggcontext; |
2874 | |
2875 | ReleaseSysCache(aggTuple); |
2876 | |
2877 | return peraggstate; |
2878 | } |
2879 | |
2880 | static Datum |
2881 | GetAggInitVal(Datum textInitVal, Oid transtype) |
2882 | { |
2883 | Oid typinput, |
2884 | typioparam; |
2885 | char *strInitVal; |
2886 | Datum initVal; |
2887 | |
2888 | getTypeInputInfo(transtype, &typinput, &typioparam); |
2889 | strInitVal = TextDatumGetCString(textInitVal); |
2890 | initVal = OidInputFunctionCall(typinput, strInitVal, |
2891 | typioparam, -1); |
2892 | pfree(strInitVal); |
2893 | return initVal; |
2894 | } |
2895 | |
2896 | /* |
2897 | * are_peers |
2898 | * compare two rows to see if they are equal according to the ORDER BY clause |
2899 | * |
2900 | * NB: this does not consider the window frame mode. |
2901 | */ |
2902 | static bool |
2903 | are_peers(WindowAggState *winstate, TupleTableSlot *slot1, |
2904 | TupleTableSlot *slot2) |
2905 | { |
2906 | WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan; |
2907 | ExprContext *econtext = winstate->tmpcontext; |
2908 | |
2909 | /* If no ORDER BY, all rows are peers with each other */ |
2910 | if (node->ordNumCols == 0) |
2911 | return true; |
2912 | |
2913 | econtext->ecxt_outertuple = slot1; |
2914 | econtext->ecxt_innertuple = slot2; |
2915 | return ExecQualAndReset(winstate->ordEqfunction, econtext); |
2916 | } |
2917 | |
2918 | /* |
2919 | * window_gettupleslot |
2920 | * Fetch the pos'th tuple of the current partition into the slot, |
2921 | * using the winobj's read pointer |
2922 | * |
2923 | * Returns true if successful, false if no such row |
2924 | */ |
2925 | static bool |
2926 | window_gettupleslot(WindowObject winobj, int64 pos, TupleTableSlot *slot) |
2927 | { |
2928 | WindowAggState *winstate = winobj->winstate; |
2929 | MemoryContext oldcontext; |
2930 | |
2931 | /* often called repeatedly in a row */ |
2932 | CHECK_FOR_INTERRUPTS(); |
2933 | |
2934 | /* Don't allow passing -1 to spool_tuples here */ |
2935 | if (pos < 0) |
2936 | return false; |
2937 | |
2938 | /* If necessary, fetch the tuple into the spool */ |
2939 | spool_tuples(winstate, pos); |
2940 | |
2941 | if (pos >= winstate->spooled_rows) |
2942 | return false; |
2943 | |
2944 | if (pos < winobj->markpos) |
2945 | elog(ERROR, "cannot fetch row before WindowObject's mark position" ); |
2946 | |
2947 | oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory); |
2948 | |
2949 | tuplestore_select_read_pointer(winstate->buffer, winobj->readptr); |
2950 | |
2951 | /* |
2952 | * Advance or rewind until we are within one tuple of the one we want. |
2953 | */ |
2954 | if (winobj->seekpos < pos - 1) |
2955 | { |
2956 | if (!tuplestore_skiptuples(winstate->buffer, |
2957 | pos - 1 - winobj->seekpos, |
2958 | true)) |
2959 | elog(ERROR, "unexpected end of tuplestore" ); |
2960 | winobj->seekpos = pos - 1; |
2961 | } |
2962 | else if (winobj->seekpos > pos + 1) |
2963 | { |
2964 | if (!tuplestore_skiptuples(winstate->buffer, |
2965 | winobj->seekpos - (pos + 1), |
2966 | false)) |
2967 | elog(ERROR, "unexpected end of tuplestore" ); |
2968 | winobj->seekpos = pos + 1; |
2969 | } |
2970 | else if (winobj->seekpos == pos) |
2971 | { |
2972 | /* |
2973 | * There's no API to refetch the tuple at the current position. We |
2974 | * have to move one tuple forward, and then one backward. (We don't |
2975 | * do it the other way because we might try to fetch the row before |
2976 | * our mark, which isn't allowed.) XXX this case could stand to be |
2977 | * optimized. |
2978 | */ |
2979 | tuplestore_advance(winstate->buffer, true); |
2980 | winobj->seekpos++; |
2981 | } |
2982 | |
2983 | /* |
2984 | * Now we should be on the tuple immediately before or after the one we |
2985 | * want, so just fetch forwards or backwards as appropriate. |
2986 | */ |
2987 | if (winobj->seekpos > pos) |
2988 | { |
2989 | if (!tuplestore_gettupleslot(winstate->buffer, false, true, slot)) |
2990 | elog(ERROR, "unexpected end of tuplestore" ); |
2991 | winobj->seekpos--; |
2992 | } |
2993 | else |
2994 | { |
2995 | if (!tuplestore_gettupleslot(winstate->buffer, true, true, slot)) |
2996 | elog(ERROR, "unexpected end of tuplestore" ); |
2997 | winobj->seekpos++; |
2998 | } |
2999 | |
3000 | Assert(winobj->seekpos == pos); |
3001 | |
3002 | MemoryContextSwitchTo(oldcontext); |
3003 | |
3004 | return true; |
3005 | } |
3006 | |
3007 | |
3008 | /*********************************************************************** |
3009 | * API exposed to window functions |
3010 | ***********************************************************************/ |
3011 | |
3012 | |
3013 | /* |
3014 | * WinGetPartitionLocalMemory |
3015 | * Get working memory that lives till end of partition processing |
3016 | * |
3017 | * On first call within a given partition, this allocates and zeroes the |
3018 | * requested amount of space. Subsequent calls just return the same chunk. |
3019 | * |
3020 | * Memory obtained this way is normally used to hold state that should be |
3021 | * automatically reset for each new partition. If a window function wants |
3022 | * to hold state across the whole query, fcinfo->fn_extra can be used in the |
3023 | * usual way for that. |
3024 | */ |
3025 | void * |
3026 | WinGetPartitionLocalMemory(WindowObject winobj, Size sz) |
3027 | { |
3028 | Assert(WindowObjectIsValid(winobj)); |
3029 | if (winobj->localmem == NULL) |
3030 | winobj->localmem = |
3031 | MemoryContextAllocZero(winobj->winstate->partcontext, sz); |
3032 | return winobj->localmem; |
3033 | } |
3034 | |
3035 | /* |
3036 | * WinGetCurrentPosition |
3037 | * Return the current row's position (counting from 0) within the current |
3038 | * partition. |
3039 | */ |
3040 | int64 |
3041 | WinGetCurrentPosition(WindowObject winobj) |
3042 | { |
3043 | Assert(WindowObjectIsValid(winobj)); |
3044 | return winobj->winstate->currentpos; |
3045 | } |
3046 | |
3047 | /* |
3048 | * WinGetPartitionRowCount |
3049 | * Return total number of rows contained in the current partition. |
3050 | * |
3051 | * Note: this is a relatively expensive operation because it forces the |
3052 | * whole partition to be "spooled" into the tuplestore at once. Once |
3053 | * executed, however, additional calls within the same partition are cheap. |
3054 | */ |
3055 | int64 |
3056 | WinGetPartitionRowCount(WindowObject winobj) |
3057 | { |
3058 | Assert(WindowObjectIsValid(winobj)); |
3059 | spool_tuples(winobj->winstate, -1); |
3060 | return winobj->winstate->spooled_rows; |
3061 | } |
3062 | |
3063 | /* |
3064 | * WinSetMarkPosition |
3065 | * Set the "mark" position for the window object, which is the oldest row |
3066 | * number (counting from 0) it is allowed to fetch during all subsequent |
3067 | * operations within the current partition. |
3068 | * |
3069 | * Window functions do not have to call this, but are encouraged to move the |
3070 | * mark forward when possible to keep the tuplestore size down and prevent |
3071 | * having to spill rows to disk. |
3072 | */ |
3073 | void |
3074 | WinSetMarkPosition(WindowObject winobj, int64 markpos) |
3075 | { |
3076 | WindowAggState *winstate; |
3077 | |
3078 | Assert(WindowObjectIsValid(winobj)); |
3079 | winstate = winobj->winstate; |
3080 | |
3081 | if (markpos < winobj->markpos) |
3082 | elog(ERROR, "cannot move WindowObject's mark position backward" ); |
3083 | tuplestore_select_read_pointer(winstate->buffer, winobj->markptr); |
3084 | if (markpos > winobj->markpos) |
3085 | { |
3086 | tuplestore_skiptuples(winstate->buffer, |
3087 | markpos - winobj->markpos, |
3088 | true); |
3089 | winobj->markpos = markpos; |
3090 | } |
3091 | tuplestore_select_read_pointer(winstate->buffer, winobj->readptr); |
3092 | if (markpos > winobj->seekpos) |
3093 | { |
3094 | tuplestore_skiptuples(winstate->buffer, |
3095 | markpos - winobj->seekpos, |
3096 | true); |
3097 | winobj->seekpos = markpos; |
3098 | } |
3099 | } |
3100 | |
3101 | /* |
3102 | * WinRowsArePeers |
3103 | * Compare two rows (specified by absolute position in partition) to see |
3104 | * if they are equal according to the ORDER BY clause. |
3105 | * |
3106 | * NB: this does not consider the window frame mode. |
3107 | */ |
3108 | bool |
3109 | WinRowsArePeers(WindowObject winobj, int64 pos1, int64 pos2) |
3110 | { |
3111 | WindowAggState *winstate; |
3112 | WindowAgg *node; |
3113 | TupleTableSlot *slot1; |
3114 | TupleTableSlot *slot2; |
3115 | bool res; |
3116 | |
3117 | Assert(WindowObjectIsValid(winobj)); |
3118 | winstate = winobj->winstate; |
3119 | node = (WindowAgg *) winstate->ss.ps.plan; |
3120 | |
3121 | /* If no ORDER BY, all rows are peers; don't bother to fetch them */ |
3122 | if (node->ordNumCols == 0) |
3123 | return true; |
3124 | |
3125 | /* |
3126 | * Note: OK to use temp_slot_2 here because we aren't calling any |
3127 | * frame-related functions (those tend to clobber temp_slot_2). |
3128 | */ |
3129 | slot1 = winstate->temp_slot_1; |
3130 | slot2 = winstate->temp_slot_2; |
3131 | |
3132 | if (!window_gettupleslot(winobj, pos1, slot1)) |
3133 | elog(ERROR, "specified position is out of window: " INT64_FORMAT, |
3134 | pos1); |
3135 | if (!window_gettupleslot(winobj, pos2, slot2)) |
3136 | elog(ERROR, "specified position is out of window: " INT64_FORMAT, |
3137 | pos2); |
3138 | |
3139 | res = are_peers(winstate, slot1, slot2); |
3140 | |
3141 | ExecClearTuple(slot1); |
3142 | ExecClearTuple(slot2); |
3143 | |
3144 | return res; |
3145 | } |
3146 | |
3147 | /* |
3148 | * WinGetFuncArgInPartition |
3149 | * Evaluate a window function's argument expression on a specified |
3150 | * row of the partition. The row is identified in lseek(2) style, |
3151 | * i.e. relative to the current, first, or last row. |
3152 | * |
3153 | * argno: argument number to evaluate (counted from 0) |
3154 | * relpos: signed rowcount offset from the seek position |
3155 | * seektype: WINDOW_SEEK_CURRENT, WINDOW_SEEK_HEAD, or WINDOW_SEEK_TAIL |
3156 | * set_mark: If the row is found and set_mark is true, the mark is moved to |
3157 | * the row as a side-effect. |
3158 | * isnull: output argument, receives isnull status of result |
3159 | * isout: output argument, set to indicate whether target row position |
3160 | * is out of partition (can pass NULL if caller doesn't care about this) |
3161 | * |
3162 | * Specifying a nonexistent row is not an error, it just causes a null result |
3163 | * (plus setting *isout true, if isout isn't NULL). |
3164 | */ |
3165 | Datum |
3166 | WinGetFuncArgInPartition(WindowObject winobj, int argno, |
3167 | int relpos, int seektype, bool set_mark, |
3168 | bool *isnull, bool *isout) |
3169 | { |
3170 | WindowAggState *winstate; |
3171 | ExprContext *econtext; |
3172 | TupleTableSlot *slot; |
3173 | bool gottuple; |
3174 | int64 abs_pos; |
3175 | |
3176 | Assert(WindowObjectIsValid(winobj)); |
3177 | winstate = winobj->winstate; |
3178 | econtext = winstate->ss.ps.ps_ExprContext; |
3179 | slot = winstate->temp_slot_1; |
3180 | |
3181 | switch (seektype) |
3182 | { |
3183 | case WINDOW_SEEK_CURRENT: |
3184 | abs_pos = winstate->currentpos + relpos; |
3185 | break; |
3186 | case WINDOW_SEEK_HEAD: |
3187 | abs_pos = relpos; |
3188 | break; |
3189 | case WINDOW_SEEK_TAIL: |
3190 | spool_tuples(winstate, -1); |
3191 | abs_pos = winstate->spooled_rows - 1 + relpos; |
3192 | break; |
3193 | default: |
3194 | elog(ERROR, "unrecognized window seek type: %d" , seektype); |
3195 | abs_pos = 0; /* keep compiler quiet */ |
3196 | break; |
3197 | } |
3198 | |
3199 | gottuple = window_gettupleslot(winobj, abs_pos, slot); |
3200 | |
3201 | if (!gottuple) |
3202 | { |
3203 | if (isout) |
3204 | *isout = true; |
3205 | *isnull = true; |
3206 | return (Datum) 0; |
3207 | } |
3208 | else |
3209 | { |
3210 | if (isout) |
3211 | *isout = false; |
3212 | if (set_mark) |
3213 | WinSetMarkPosition(winobj, abs_pos); |
3214 | econtext->ecxt_outertuple = slot; |
3215 | return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno), |
3216 | econtext, isnull); |
3217 | } |
3218 | } |
3219 | |
3220 | /* |
3221 | * WinGetFuncArgInFrame |
3222 | * Evaluate a window function's argument expression on a specified |
3223 | * row of the window frame. The row is identified in lseek(2) style, |
3224 | * i.e. relative to the first or last row of the frame. (We do not |
3225 | * support WINDOW_SEEK_CURRENT here, because it's not very clear what |
3226 | * that should mean if the current row isn't part of the frame.) |
3227 | * |
3228 | * argno: argument number to evaluate (counted from 0) |
3229 | * relpos: signed rowcount offset from the seek position |
3230 | * seektype: WINDOW_SEEK_HEAD or WINDOW_SEEK_TAIL |
3231 | * set_mark: If the row is found/in frame and set_mark is true, the mark is |
3232 | * moved to the row as a side-effect. |
3233 | * isnull: output argument, receives isnull status of result |
3234 | * isout: output argument, set to indicate whether target row position |
3235 | * is out of frame (can pass NULL if caller doesn't care about this) |
3236 | * |
3237 | * Specifying a nonexistent or not-in-frame row is not an error, it just |
3238 | * causes a null result (plus setting *isout true, if isout isn't NULL). |
3239 | * |
3240 | * Note that some exclusion-clause options lead to situations where the |
3241 | * rows that are in-frame are not consecutive in the partition. But we |
3242 | * count only in-frame rows when measuring relpos. |
3243 | * |
3244 | * The set_mark flag is interpreted as meaning that the caller will specify |
3245 | * a constant (or, perhaps, monotonically increasing) relpos in successive |
3246 | * calls, so that *if there is no exclusion clause* there will be no need |
3247 | * to fetch a row before the previously fetched row. But we do not expect |
3248 | * the caller to know how to account for exclusion clauses. Therefore, |
3249 | * if there is an exclusion clause we take responsibility for adjusting the |
3250 | * mark request to something that will be safe given the above assumption |
3251 | * about relpos. |
3252 | */ |
3253 | Datum |
3254 | WinGetFuncArgInFrame(WindowObject winobj, int argno, |
3255 | int relpos, int seektype, bool set_mark, |
3256 | bool *isnull, bool *isout) |
3257 | { |
3258 | WindowAggState *winstate; |
3259 | ExprContext *econtext; |
3260 | TupleTableSlot *slot; |
3261 | int64 abs_pos; |
3262 | int64 mark_pos; |
3263 | |
3264 | Assert(WindowObjectIsValid(winobj)); |
3265 | winstate = winobj->winstate; |
3266 | econtext = winstate->ss.ps.ps_ExprContext; |
3267 | slot = winstate->temp_slot_1; |
3268 | |
3269 | switch (seektype) |
3270 | { |
3271 | case WINDOW_SEEK_CURRENT: |
3272 | elog(ERROR, "WINDOW_SEEK_CURRENT is not supported for WinGetFuncArgInFrame" ); |
3273 | abs_pos = mark_pos = 0; /* keep compiler quiet */ |
3274 | break; |
3275 | case WINDOW_SEEK_HEAD: |
3276 | /* rejecting relpos < 0 is easy and simplifies code below */ |
3277 | if (relpos < 0) |
3278 | goto out_of_frame; |
3279 | update_frameheadpos(winstate); |
3280 | abs_pos = winstate->frameheadpos + relpos; |
3281 | mark_pos = abs_pos; |
3282 | |
3283 | /* |
3284 | * Account for exclusion option if one is active, but advance only |
3285 | * abs_pos not mark_pos. This prevents changes of the current |
3286 | * row's peer group from resulting in trying to fetch a row before |
3287 | * some previous mark position. |
3288 | * |
3289 | * Note that in some corner cases such as current row being |
3290 | * outside frame, these calculations are theoretically too simple, |
3291 | * but it doesn't matter because we'll end up deciding the row is |
3292 | * out of frame. We do not attempt to avoid fetching rows past |
3293 | * end of frame; that would happen in some cases anyway. |
3294 | */ |
3295 | switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION) |
3296 | { |
3297 | case 0: |
3298 | /* no adjustment needed */ |
3299 | break; |
3300 | case FRAMEOPTION_EXCLUDE_CURRENT_ROW: |
3301 | if (abs_pos >= winstate->currentpos && |
3302 | winstate->currentpos >= winstate->frameheadpos) |
3303 | abs_pos++; |
3304 | break; |
3305 | case FRAMEOPTION_EXCLUDE_GROUP: |
3306 | update_grouptailpos(winstate); |
3307 | if (abs_pos >= winstate->groupheadpos && |
3308 | winstate->grouptailpos > winstate->frameheadpos) |
3309 | { |
3310 | int64 overlapstart = Max(winstate->groupheadpos, |
3311 | winstate->frameheadpos); |
3312 | |
3313 | abs_pos += winstate->grouptailpos - overlapstart; |
3314 | } |
3315 | break; |
3316 | case FRAMEOPTION_EXCLUDE_TIES: |
3317 | update_grouptailpos(winstate); |
3318 | if (abs_pos >= winstate->groupheadpos && |
3319 | winstate->grouptailpos > winstate->frameheadpos) |
3320 | { |
3321 | int64 overlapstart = Max(winstate->groupheadpos, |
3322 | winstate->frameheadpos); |
3323 | |
3324 | if (abs_pos == overlapstart) |
3325 | abs_pos = winstate->currentpos; |
3326 | else |
3327 | abs_pos += winstate->grouptailpos - overlapstart - 1; |
3328 | } |
3329 | break; |
3330 | default: |
3331 | elog(ERROR, "unrecognized frame option state: 0x%x" , |
3332 | winstate->frameOptions); |
3333 | break; |
3334 | } |
3335 | break; |
3336 | case WINDOW_SEEK_TAIL: |
3337 | /* rejecting relpos > 0 is easy and simplifies code below */ |
3338 | if (relpos > 0) |
3339 | goto out_of_frame; |
3340 | update_frametailpos(winstate); |
3341 | abs_pos = winstate->frametailpos - 1 + relpos; |
3342 | |
3343 | /* |
3344 | * Account for exclusion option if one is active. If there is no |
3345 | * exclusion, we can safely set the mark at the accessed row. But |
3346 | * if there is, we can only mark the frame start, because we can't |
3347 | * be sure how far back in the frame the exclusion might cause us |
3348 | * to fetch in future. Furthermore, we have to actually check |
3349 | * against frameheadpos here, since it's unsafe to try to fetch a |
3350 | * row before frame start if the mark might be there already. |
3351 | */ |
3352 | switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION) |
3353 | { |
3354 | case 0: |
3355 | /* no adjustment needed */ |
3356 | mark_pos = abs_pos; |
3357 | break; |
3358 | case FRAMEOPTION_EXCLUDE_CURRENT_ROW: |
3359 | if (abs_pos <= winstate->currentpos && |
3360 | winstate->currentpos < winstate->frametailpos) |
3361 | abs_pos--; |
3362 | update_frameheadpos(winstate); |
3363 | if (abs_pos < winstate->frameheadpos) |
3364 | goto out_of_frame; |
3365 | mark_pos = winstate->frameheadpos; |
3366 | break; |
3367 | case FRAMEOPTION_EXCLUDE_GROUP: |
3368 | update_grouptailpos(winstate); |
3369 | if (abs_pos < winstate->grouptailpos && |
3370 | winstate->groupheadpos < winstate->frametailpos) |
3371 | { |
3372 | int64 overlapend = Min(winstate->grouptailpos, |
3373 | winstate->frametailpos); |
3374 | |
3375 | abs_pos -= overlapend - winstate->groupheadpos; |
3376 | } |
3377 | update_frameheadpos(winstate); |
3378 | if (abs_pos < winstate->frameheadpos) |
3379 | goto out_of_frame; |
3380 | mark_pos = winstate->frameheadpos; |
3381 | break; |
3382 | case FRAMEOPTION_EXCLUDE_TIES: |
3383 | update_grouptailpos(winstate); |
3384 | if (abs_pos < winstate->grouptailpos && |
3385 | winstate->groupheadpos < winstate->frametailpos) |
3386 | { |
3387 | int64 overlapend = Min(winstate->grouptailpos, |
3388 | winstate->frametailpos); |
3389 | |
3390 | if (abs_pos == overlapend - 1) |
3391 | abs_pos = winstate->currentpos; |
3392 | else |
3393 | abs_pos -= overlapend - 1 - winstate->groupheadpos; |
3394 | } |
3395 | update_frameheadpos(winstate); |
3396 | if (abs_pos < winstate->frameheadpos) |
3397 | goto out_of_frame; |
3398 | mark_pos = winstate->frameheadpos; |
3399 | break; |
3400 | default: |
3401 | elog(ERROR, "unrecognized frame option state: 0x%x" , |
3402 | winstate->frameOptions); |
3403 | mark_pos = 0; /* keep compiler quiet */ |
3404 | break; |
3405 | } |
3406 | break; |
3407 | default: |
3408 | elog(ERROR, "unrecognized window seek type: %d" , seektype); |
3409 | abs_pos = mark_pos = 0; /* keep compiler quiet */ |
3410 | break; |
3411 | } |
3412 | |
3413 | if (!window_gettupleslot(winobj, abs_pos, slot)) |
3414 | goto out_of_frame; |
3415 | |
3416 | /* The code above does not detect all out-of-frame cases, so check */ |
3417 | if (row_is_in_frame(winstate, abs_pos, slot) <= 0) |
3418 | goto out_of_frame; |
3419 | |
3420 | if (isout) |
3421 | *isout = false; |
3422 | if (set_mark) |
3423 | WinSetMarkPosition(winobj, mark_pos); |
3424 | econtext->ecxt_outertuple = slot; |
3425 | return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno), |
3426 | econtext, isnull); |
3427 | |
3428 | out_of_frame: |
3429 | if (isout) |
3430 | *isout = true; |
3431 | *isnull = true; |
3432 | return (Datum) 0; |
3433 | } |
3434 | |
3435 | /* |
3436 | * WinGetFuncArgCurrent |
3437 | * Evaluate a window function's argument expression on the current row. |
3438 | * |
3439 | * argno: argument number to evaluate (counted from 0) |
3440 | * isnull: output argument, receives isnull status of result |
3441 | * |
3442 | * Note: this isn't quite equivalent to WinGetFuncArgInPartition or |
3443 | * WinGetFuncArgInFrame targeting the current row, because it will succeed |
3444 | * even if the WindowObject's mark has been set beyond the current row. |
3445 | * This should generally be used for "ordinary" arguments of a window |
3446 | * function, such as the offset argument of lead() or lag(). |
3447 | */ |
3448 | Datum |
3449 | WinGetFuncArgCurrent(WindowObject winobj, int argno, bool *isnull) |
3450 | { |
3451 | WindowAggState *winstate; |
3452 | ExprContext *econtext; |
3453 | |
3454 | Assert(WindowObjectIsValid(winobj)); |
3455 | winstate = winobj->winstate; |
3456 | |
3457 | econtext = winstate->ss.ps.ps_ExprContext; |
3458 | |
3459 | econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot; |
3460 | return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno), |
3461 | econtext, isnull); |
3462 | } |
3463 | |