| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * integerset.c |
| 4 | * Data structure to hold a large set of 64-bit integers efficiently |
| 5 | * |
| 6 | * IntegerSet provides an in-memory data structure to hold a set of |
| 7 | * arbitrary 64-bit integers. Internally, the values are stored in a |
| 8 | * B-tree, with a special packed representation at the leaf level using |
| 9 | * the Simple-8b algorithm, which can pack clusters of nearby values |
| 10 | * very tightly. |
| 11 | * |
| 12 | * Memory consumption depends on the number of values stored, but also |
| 13 | * on how far the values are from each other. In the best case, with |
| 14 | * long runs of consecutive integers, memory consumption can be as low as |
| 15 | * 0.1 bytes per integer. In the worst case, if integers are more than |
| 16 | * 2^32 apart, it uses about 8 bytes per integer. In typical use, the |
| 17 | * consumption per integer is somewhere between those extremes, depending |
| 18 | * on the range of integers stored, and how "clustered" they are. |
| 19 | * |
| 20 | * |
| 21 | * Interface |
| 22 | * --------- |
| 23 | * |
| 24 | * intset_create - Create a new, empty set |
| 25 | * intset_add_member - Add an integer to the set |
| 26 | * intset_is_member - Test if an integer is in the set |
| 27 | * intset_begin_iterate - Begin iterating through all integers in set |
| 28 | * intset_iterate_next - Return next set member, if any |
| 29 | * |
| 30 | * intset_create() creates the set in the current memory context. Subsequent |
| 31 | * operations that add to the data structure will continue to allocate from |
| 32 | * that same context, even if it's not current anymore. |
| 33 | * |
| 34 | * Note that there is no function to free an integer set. If you need to do |
| 35 | * that, create a dedicated memory context to hold it, and destroy the memory |
| 36 | * context instead. |
| 37 | * |
| 38 | * |
| 39 | * Limitations |
| 40 | * ----------- |
| 41 | * |
| 42 | * - Values must be added in order. (Random insertions would require |
| 43 | * splitting nodes, which hasn't been implemented.) |
| 44 | * |
| 45 | * - Values cannot be added while iteration is in progress. |
| 46 | * |
| 47 | * - No support for removing values. |
| 48 | * |
| 49 | * None of these limitations are fundamental to the data structure, so they |
| 50 | * could be lifted if needed, by writing some new code. But the current |
| 51 | * users of this facility don't need them. |
| 52 | * |
| 53 | * |
| 54 | * References |
| 55 | * ---------- |
| 56 | * |
| 57 | * Simple-8b encoding is based on: |
| 58 | * |
| 59 | * Vo Ngoc Anh, Alistair Moffat, Index compression using 64-bit words, |
| 60 | * Software - Practice & Experience, v.40 n.2, p.131-147, February 2010 |
| 61 | * (https://doi.org/10.1002/spe.948) |
| 62 | * |
| 63 | * |
| 64 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 65 | * Portions Copyright (c) 1994, Regents of the University of California |
| 66 | * |
| 67 | * IDENTIFICATION |
| 68 | * src/backend/lib/integerset.c |
| 69 | * |
| 70 | *------------------------------------------------------------------------- |
| 71 | */ |
| 72 | #include "postgres.h" |
| 73 | |
| 74 | #include "access/htup_details.h" |
| 75 | #include "lib/integerset.h" |
| 76 | #include "port/pg_bitutils.h" |
| 77 | #include "utils/memutils.h" |
| 78 | |
| 79 | |
| 80 | /* |
| 81 | * Maximum number of integers that can be encoded in a single Simple-8b |
| 82 | * codeword. (Defined here before anything else, so that we can size arrays |
| 83 | * using this.) |
| 84 | */ |
| 85 | #define SIMPLE8B_MAX_VALUES_PER_CODEWORD 240 |
| 86 | |
| 87 | /* |
| 88 | * Parameters for shape of the in-memory B-tree. |
| 89 | * |
| 90 | * These set the size of each internal and leaf node. They don't necessarily |
| 91 | * need to be the same, because the tree is just an in-memory structure. |
| 92 | * With the default 64, each node is about 1 kb. |
| 93 | * |
| 94 | * If you change these, you must recalculate MAX_TREE_LEVELS, too! |
| 95 | */ |
| 96 | #define MAX_INTERNAL_ITEMS 64 |
| 97 | #define MAX_LEAF_ITEMS 64 |
| 98 | |
| 99 | /* |
| 100 | * Maximum height of the tree. |
| 101 | * |
| 102 | * MAX_TREE_ITEMS is calculated from the "fan-out" of the B-tree. The |
| 103 | * theoretical maximum number of items that we can store in a set is 2^64, |
| 104 | * so MAX_TREE_LEVELS should be set so that: |
| 105 | * |
| 106 | * MAX_LEAF_ITEMS * MAX_INTERNAL_ITEMS ^ (MAX_TREE_LEVELS - 1) >= 2^64. |
| 107 | * |
| 108 | * In practice, we'll need far fewer levels, because you will run out of |
| 109 | * memory long before reaching that number, but let's be conservative. |
| 110 | */ |
| 111 | #define MAX_TREE_LEVELS 11 |
| 112 | |
| 113 | /* |
| 114 | * Node structures, for the in-memory B-tree. |
| 115 | * |
| 116 | * An internal node holds a number of downlink pointers to leaf nodes, or |
| 117 | * to internal nodes on a lower level. For each downlink, the key value |
| 118 | * corresponding to the lower level node is stored in a sorted array. The |
| 119 | * stored key values are low keys. In other words, if the downlink has value |
| 120 | * X, then all items stored on that child are >= X. |
| 121 | * |
| 122 | * Each leaf node holds a number of "items", with a varying number of |
| 123 | * integers packed into each item. Each item consists of two 64-bit words: |
| 124 | * The first word holds the first integer stored in the item, in plain format. |
| 125 | * The second word contains between 0 and 240 more integers, packed using |
| 126 | * Simple-8b encoding. By storing the first integer in plain, unpacked, |
| 127 | * format, we can use binary search to quickly find an item that holds (or |
| 128 | * would hold) a particular integer. And by storing the rest in packed form, |
| 129 | * we still get pretty good memory density, if there are clusters of integers |
| 130 | * with similar values. |
| 131 | * |
| 132 | * Each leaf node also has a pointer to the next leaf node, so that the leaf |
| 133 | * nodes can be easily walked from beginning to end when iterating. |
| 134 | */ |
| 135 | typedef struct intset_node intset_node; |
| 136 | typedef struct intset_leaf_node intset_leaf_node; |
| 137 | typedef struct intset_internal_node intset_internal_node; |
| 138 | |
| 139 | /* Common structure of both leaf and internal nodes. */ |
| 140 | struct intset_node |
| 141 | { |
| 142 | uint16 level; /* tree level of this node */ |
| 143 | uint16 num_items; /* number of items in this node */ |
| 144 | }; |
| 145 | |
| 146 | /* Internal node */ |
| 147 | struct intset_internal_node |
| 148 | { |
| 149 | /* common header, must match intset_node */ |
| 150 | uint16 level; /* >= 1 on internal nodes */ |
| 151 | uint16 num_items; |
| 152 | |
| 153 | /* |
| 154 | * 'values' is an array of key values, and 'downlinks' are pointers to |
| 155 | * lower-level nodes, corresponding to the key values. |
| 156 | */ |
| 157 | uint64 values[MAX_INTERNAL_ITEMS]; |
| 158 | intset_node *downlinks[MAX_INTERNAL_ITEMS]; |
| 159 | }; |
| 160 | |
| 161 | /* Leaf node */ |
| 162 | typedef struct |
| 163 | { |
| 164 | uint64 first; /* first integer in this item */ |
| 165 | uint64 codeword; /* simple8b encoded differences from 'first' */ |
| 166 | } leaf_item; |
| 167 | |
| 168 | #define MAX_VALUES_PER_LEAF_ITEM (1 + SIMPLE8B_MAX_VALUES_PER_CODEWORD) |
| 169 | |
| 170 | struct intset_leaf_node |
| 171 | { |
| 172 | /* common header, must match intset_node */ |
| 173 | uint16 level; /* 0 on leafs */ |
| 174 | uint16 num_items; |
| 175 | |
| 176 | intset_leaf_node *next; /* right sibling, if any */ |
| 177 | |
| 178 | leaf_item items[MAX_LEAF_ITEMS]; |
| 179 | }; |
| 180 | |
| 181 | /* |
| 182 | * We buffer insertions in a simple array, before packing and inserting them |
| 183 | * into the B-tree. MAX_BUFFERED_VALUES sets the size of the buffer. The |
| 184 | * encoder assumes that it is large enough that we can always fill a leaf |
| 185 | * item with buffered new items. In other words, MAX_BUFFERED_VALUES must be |
| 186 | * larger than MAX_VALUES_PER_LEAF_ITEM. For efficiency, make it much larger. |
| 187 | */ |
| 188 | #define MAX_BUFFERED_VALUES (MAX_VALUES_PER_LEAF_ITEM * 2) |
| 189 | |
| 190 | /* |
| 191 | * IntegerSet is the top-level object representing the set. |
| 192 | * |
| 193 | * The integers are stored in an in-memory B-tree structure, plus an array |
| 194 | * for newly-added integers. IntegerSet also tracks information about memory |
| 195 | * usage, as well as the current position when iterating the set with |
| 196 | * intset_begin_iterate / intset_iterate_next. |
| 197 | */ |
| 198 | struct IntegerSet |
| 199 | { |
| 200 | /* |
| 201 | * 'context' is the memory context holding this integer set and all its |
| 202 | * tree nodes. |
| 203 | * |
| 204 | * 'mem_used' tracks the amount of memory used. We don't do anything with |
| 205 | * it in integerset.c itself, but the callers can ask for it with |
| 206 | * intset_memory_usage(). |
| 207 | */ |
| 208 | MemoryContext context; |
| 209 | uint64 mem_used; |
| 210 | |
| 211 | uint64 num_entries; /* total # of values in the set */ |
| 212 | uint64 highest_value; /* highest value stored in this set */ |
| 213 | |
| 214 | /* |
| 215 | * B-tree to hold the packed values. |
| 216 | * |
| 217 | * 'rightmost_nodes' hold pointers to the rightmost node on each level. |
| 218 | * rightmost_parent[0] is rightmost leaf, rightmost_parent[1] is its |
| 219 | * parent, and so forth, all the way up to the root. These are needed when |
| 220 | * adding new values. (Currently, we require that new values are added at |
| 221 | * the end.) |
| 222 | */ |
| 223 | int num_levels; /* height of the tree */ |
| 224 | intset_node *root; /* root node */ |
| 225 | intset_node *rightmost_nodes[MAX_TREE_LEVELS]; |
| 226 | intset_leaf_node *leftmost_leaf; /* leftmost leaf node */ |
| 227 | |
| 228 | /* |
| 229 | * Holding area for new items that haven't been inserted to the tree yet. |
| 230 | */ |
| 231 | uint64 buffered_values[MAX_BUFFERED_VALUES]; |
| 232 | int num_buffered_values; |
| 233 | |
| 234 | /* |
| 235 | * Iterator support. |
| 236 | * |
| 237 | * 'iter_values' is an array of integers ready to be returned to the |
| 238 | * caller; 'iter_num_values' is the length of that array, and |
| 239 | * 'iter_valueno' is the next index. 'iter_node' and 'iter_itemno' point |
| 240 | * to the leaf node, and item within the leaf node, to get the next batch |
| 241 | * of values from. |
| 242 | * |
| 243 | * Normally, 'iter_values' points to 'iter_values_buf', which holds items |
| 244 | * decoded from a leaf item. But after we have scanned the whole B-tree, |
| 245 | * we iterate through all the unbuffered values, too, by pointing |
| 246 | * iter_values to 'buffered_values'. |
| 247 | */ |
| 248 | bool iter_active; /* is iteration in progress? */ |
| 249 | |
| 250 | const uint64 *iter_values; |
| 251 | int iter_num_values; /* number of elements in 'iter_values' */ |
| 252 | int iter_valueno; /* next index into 'iter_values' */ |
| 253 | |
| 254 | intset_leaf_node *iter_node; /* current leaf node */ |
| 255 | int iter_itemno; /* next item in 'iter_node' to decode */ |
| 256 | |
| 257 | uint64 iter_values_buf[MAX_VALUES_PER_LEAF_ITEM]; |
| 258 | }; |
| 259 | |
| 260 | /* |
| 261 | * Prototypes for internal functions. |
| 262 | */ |
| 263 | static void intset_update_upper(IntegerSet *intset, int level, |
| 264 | intset_node *child, uint64 child_key); |
| 265 | static void intset_flush_buffered_values(IntegerSet *intset); |
| 266 | |
| 267 | static int intset_binsrch_uint64(uint64 value, uint64 *arr, int arr_elems, |
| 268 | bool nextkey); |
| 269 | static int intset_binsrch_leaf(uint64 value, leaf_item *arr, int arr_elems, |
| 270 | bool nextkey); |
| 271 | |
| 272 | static uint64 simple8b_encode(const uint64 *ints, int *num_encoded, uint64 base); |
| 273 | static int simple8b_decode(uint64 codeword, uint64 *decoded, uint64 base); |
| 274 | static bool simple8b_contains(uint64 codeword, uint64 key, uint64 base); |
| 275 | |
| 276 | |
| 277 | /* |
| 278 | * Create a new, initially empty, integer set. |
| 279 | * |
| 280 | * The integer set is created in the current memory context. |
| 281 | * We will do all subsequent allocations in the same context, too, regardless |
| 282 | * of which memory context is current when new integers are added to the set. |
| 283 | */ |
| 284 | IntegerSet * |
| 285 | intset_create(void) |
| 286 | { |
| 287 | IntegerSet *intset; |
| 288 | |
| 289 | intset = (IntegerSet *) palloc(sizeof(IntegerSet)); |
| 290 | intset->context = CurrentMemoryContext; |
| 291 | intset->mem_used = GetMemoryChunkSpace(intset); |
| 292 | |
| 293 | intset->num_entries = 0; |
| 294 | intset->highest_value = 0; |
| 295 | |
| 296 | intset->num_levels = 0; |
| 297 | intset->root = NULL; |
| 298 | memset(intset->rightmost_nodes, 0, sizeof(intset->rightmost_nodes)); |
| 299 | intset->leftmost_leaf = NULL; |
| 300 | |
| 301 | intset->num_buffered_values = 0; |
| 302 | |
| 303 | intset->iter_active = false; |
| 304 | intset->iter_node = NULL; |
| 305 | intset->iter_itemno = 0; |
| 306 | intset->iter_valueno = 0; |
| 307 | intset->iter_num_values = 0; |
| 308 | intset->iter_values = NULL; |
| 309 | |
| 310 | return intset; |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Allocate a new node. |
| 315 | */ |
| 316 | static intset_internal_node * |
| 317 | intset_new_internal_node(IntegerSet *intset) |
| 318 | { |
| 319 | intset_internal_node *n; |
| 320 | |
| 321 | n = (intset_internal_node *) MemoryContextAlloc(intset->context, |
| 322 | sizeof(intset_internal_node)); |
| 323 | intset->mem_used += GetMemoryChunkSpace(n); |
| 324 | |
| 325 | n->level = 0; /* caller must set */ |
| 326 | n->num_items = 0; |
| 327 | |
| 328 | return n; |
| 329 | } |
| 330 | |
| 331 | static intset_leaf_node * |
| 332 | intset_new_leaf_node(IntegerSet *intset) |
| 333 | { |
| 334 | intset_leaf_node *n; |
| 335 | |
| 336 | n = (intset_leaf_node *) MemoryContextAlloc(intset->context, |
| 337 | sizeof(intset_leaf_node)); |
| 338 | intset->mem_used += GetMemoryChunkSpace(n); |
| 339 | |
| 340 | n->level = 0; |
| 341 | n->num_items = 0; |
| 342 | n->next = NULL; |
| 343 | |
| 344 | return n; |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Return the number of entries in the integer set. |
| 349 | */ |
| 350 | uint64 |
| 351 | intset_num_entries(IntegerSet *intset) |
| 352 | { |
| 353 | return intset->num_entries; |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * Return the amount of memory used by the integer set. |
| 358 | */ |
| 359 | uint64 |
| 360 | intset_memory_usage(IntegerSet *intset) |
| 361 | { |
| 362 | return intset->mem_used; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * Add a value to the set. |
| 367 | * |
| 368 | * Values must be added in order. |
| 369 | */ |
| 370 | void |
| 371 | intset_add_member(IntegerSet *intset, uint64 x) |
| 372 | { |
| 373 | if (intset->iter_active) |
| 374 | elog(ERROR, "cannot add new values to integer set while iteration is in progress" ); |
| 375 | |
| 376 | if (x <= intset->highest_value && intset->num_entries > 0) |
| 377 | elog(ERROR, "cannot add value to integer set out of order" ); |
| 378 | |
| 379 | if (intset->num_buffered_values >= MAX_BUFFERED_VALUES) |
| 380 | { |
| 381 | /* Time to flush our buffer */ |
| 382 | intset_flush_buffered_values(intset); |
| 383 | Assert(intset->num_buffered_values < MAX_BUFFERED_VALUES); |
| 384 | } |
| 385 | |
| 386 | /* Add it to the buffer of newly-added values */ |
| 387 | intset->buffered_values[intset->num_buffered_values] = x; |
| 388 | intset->num_buffered_values++; |
| 389 | intset->num_entries++; |
| 390 | intset->highest_value = x; |
| 391 | } |
| 392 | |
| 393 | /* |
| 394 | * Take a batch of buffered values, and pack them into the B-tree. |
| 395 | */ |
| 396 | static void |
| 397 | intset_flush_buffered_values(IntegerSet *intset) |
| 398 | { |
| 399 | uint64 *values = intset->buffered_values; |
| 400 | uint64 num_values = intset->num_buffered_values; |
| 401 | int num_packed = 0; |
| 402 | intset_leaf_node *leaf; |
| 403 | |
| 404 | leaf = (intset_leaf_node *) intset->rightmost_nodes[0]; |
| 405 | |
| 406 | /* |
| 407 | * If the tree is completely empty, create the first leaf page, which is |
| 408 | * also the root. |
| 409 | */ |
| 410 | if (leaf == NULL) |
| 411 | { |
| 412 | /* |
| 413 | * This is the very first item in the set. |
| 414 | * |
| 415 | * Allocate root node. It's also a leaf. |
| 416 | */ |
| 417 | leaf = intset_new_leaf_node(intset); |
| 418 | |
| 419 | intset->root = (intset_node *) leaf; |
| 420 | intset->leftmost_leaf = leaf; |
| 421 | intset->rightmost_nodes[0] = (intset_node *) leaf; |
| 422 | intset->num_levels = 1; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * If there are less than MAX_VALUES_PER_LEAF_ITEM values in the buffer, |
| 427 | * stop. In most cases, we cannot encode that many values in a single |
| 428 | * value, but this way, the encoder doesn't have to worry about running |
| 429 | * out of input. |
| 430 | */ |
| 431 | while (num_values - num_packed >= MAX_VALUES_PER_LEAF_ITEM) |
| 432 | { |
| 433 | leaf_item item; |
| 434 | int num_encoded; |
| 435 | |
| 436 | /* |
| 437 | * Construct the next leaf item, packing as many buffered values as |
| 438 | * possible. |
| 439 | */ |
| 440 | item.first = values[num_packed]; |
| 441 | item.codeword = simple8b_encode(&values[num_packed + 1], |
| 442 | &num_encoded, |
| 443 | item.first); |
| 444 | |
| 445 | /* |
| 446 | * Add the item to the node, allocating a new node if the old one is |
| 447 | * full. |
| 448 | */ |
| 449 | if (leaf->num_items >= MAX_LEAF_ITEMS) |
| 450 | { |
| 451 | /* Allocate new leaf and link it to the tree */ |
| 452 | intset_leaf_node *old_leaf = leaf; |
| 453 | |
| 454 | leaf = intset_new_leaf_node(intset); |
| 455 | old_leaf->next = leaf; |
| 456 | intset->rightmost_nodes[0] = (intset_node *) leaf; |
| 457 | intset_update_upper(intset, 1, (intset_node *) leaf, item.first); |
| 458 | } |
| 459 | leaf->items[leaf->num_items++] = item; |
| 460 | |
| 461 | num_packed += 1 + num_encoded; |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * Move any remaining buffered values to the beginning of the array. |
| 466 | */ |
| 467 | if (num_packed < intset->num_buffered_values) |
| 468 | { |
| 469 | memmove(&intset->buffered_values[0], |
| 470 | &intset->buffered_values[num_packed], |
| 471 | (intset->num_buffered_values - num_packed) * sizeof(uint64)); |
| 472 | } |
| 473 | intset->num_buffered_values -= num_packed; |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * Insert a downlink into parent node, after creating a new node. |
| 478 | * |
| 479 | * Recurses if the parent node is full, too. |
| 480 | */ |
| 481 | static void |
| 482 | intset_update_upper(IntegerSet *intset, int level, intset_node *child, |
| 483 | uint64 child_key) |
| 484 | { |
| 485 | intset_internal_node *parent; |
| 486 | |
| 487 | Assert(level > 0); |
| 488 | |
| 489 | /* |
| 490 | * Create a new root node, if necessary. |
| 491 | */ |
| 492 | if (level >= intset->num_levels) |
| 493 | { |
| 494 | intset_node *oldroot = intset->root; |
| 495 | uint64 downlink_key; |
| 496 | |
| 497 | /* MAX_TREE_LEVELS should be more than enough, this shouldn't happen */ |
| 498 | if (intset->num_levels == MAX_TREE_LEVELS) |
| 499 | elog(ERROR, "could not expand integer set, maximum number of levels reached" ); |
| 500 | intset->num_levels++; |
| 501 | |
| 502 | /* |
| 503 | * Get the first value on the old root page, to be used as the |
| 504 | * downlink. |
| 505 | */ |
| 506 | if (intset->root->level == 0) |
| 507 | downlink_key = ((intset_leaf_node *) oldroot)->items[0].first; |
| 508 | else |
| 509 | downlink_key = ((intset_internal_node *) oldroot)->values[0]; |
| 510 | |
| 511 | parent = intset_new_internal_node(intset); |
| 512 | parent->level = level; |
| 513 | parent->values[0] = downlink_key; |
| 514 | parent->downlinks[0] = oldroot; |
| 515 | parent->num_items = 1; |
| 516 | |
| 517 | intset->root = (intset_node *) parent; |
| 518 | intset->rightmost_nodes[level] = (intset_node *) parent; |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * Place the downlink on the parent page. |
| 523 | */ |
| 524 | parent = (intset_internal_node *) intset->rightmost_nodes[level]; |
| 525 | |
| 526 | if (parent->num_items < MAX_INTERNAL_ITEMS) |
| 527 | { |
| 528 | parent->values[parent->num_items] = child_key; |
| 529 | parent->downlinks[parent->num_items] = child; |
| 530 | parent->num_items++; |
| 531 | } |
| 532 | else |
| 533 | { |
| 534 | /* |
| 535 | * Doesn't fit. Allocate new parent, with the downlink as the first |
| 536 | * item on it, and recursively insert the downlink to the new parent |
| 537 | * to the grandparent. |
| 538 | */ |
| 539 | parent = intset_new_internal_node(intset); |
| 540 | parent->level = level; |
| 541 | parent->values[0] = child_key; |
| 542 | parent->downlinks[0] = child; |
| 543 | parent->num_items = 1; |
| 544 | |
| 545 | intset->rightmost_nodes[level] = (intset_node *) parent; |
| 546 | |
| 547 | intset_update_upper(intset, level + 1, (intset_node *) parent, child_key); |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * Does the set contain the given value? |
| 553 | */ |
| 554 | bool |
| 555 | intset_is_member(IntegerSet *intset, uint64 x) |
| 556 | { |
| 557 | intset_node *node; |
| 558 | intset_leaf_node *leaf; |
| 559 | int level; |
| 560 | int itemno; |
| 561 | leaf_item *item; |
| 562 | |
| 563 | /* |
| 564 | * The value might be in the buffer of newly-added values. |
| 565 | */ |
| 566 | if (intset->num_buffered_values > 0 && x >= intset->buffered_values[0]) |
| 567 | { |
| 568 | int itemno; |
| 569 | |
| 570 | itemno = intset_binsrch_uint64(x, |
| 571 | intset->buffered_values, |
| 572 | intset->num_buffered_values, |
| 573 | false); |
| 574 | if (itemno >= intset->num_buffered_values) |
| 575 | return false; |
| 576 | else |
| 577 | return (intset->buffered_values[itemno] == x); |
| 578 | } |
| 579 | |
| 580 | /* |
| 581 | * Start from the root, and walk down the B-tree to find the right leaf |
| 582 | * node. |
| 583 | */ |
| 584 | if (!intset->root) |
| 585 | return false; |
| 586 | node = intset->root; |
| 587 | for (level = intset->num_levels - 1; level > 0; level--) |
| 588 | { |
| 589 | intset_internal_node *n = (intset_internal_node *) node; |
| 590 | |
| 591 | Assert(node->level == level); |
| 592 | |
| 593 | itemno = intset_binsrch_uint64(x, n->values, n->num_items, true); |
| 594 | if (itemno == 0) |
| 595 | return false; |
| 596 | node = n->downlinks[itemno - 1]; |
| 597 | } |
| 598 | Assert(node->level == 0); |
| 599 | leaf = (intset_leaf_node *) node; |
| 600 | |
| 601 | /* |
| 602 | * Binary search to find the right item on the leaf page |
| 603 | */ |
| 604 | itemno = intset_binsrch_leaf(x, leaf->items, leaf->num_items, true); |
| 605 | if (itemno == 0) |
| 606 | return false; |
| 607 | item = &leaf->items[itemno - 1]; |
| 608 | |
| 609 | /* Is this a match to the first value on the item? */ |
| 610 | if (item->first == x) |
| 611 | return true; |
| 612 | Assert(x > item->first); |
| 613 | |
| 614 | /* Is it in the packed codeword? */ |
| 615 | if (simple8b_contains(item->codeword, x, item->first)) |
| 616 | return true; |
| 617 | |
| 618 | return false; |
| 619 | } |
| 620 | |
| 621 | /* |
| 622 | * Begin in-order scan through all the values. |
| 623 | * |
| 624 | * While the iteration is in-progress, you cannot add new values to the set. |
| 625 | */ |
| 626 | void |
| 627 | intset_begin_iterate(IntegerSet *intset) |
| 628 | { |
| 629 | /* Note that we allow an iteration to be abandoned midway */ |
| 630 | intset->iter_active = true; |
| 631 | intset->iter_node = intset->leftmost_leaf; |
| 632 | intset->iter_itemno = 0; |
| 633 | intset->iter_valueno = 0; |
| 634 | intset->iter_num_values = 0; |
| 635 | intset->iter_values = intset->iter_values_buf; |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Returns the next integer, when iterating. |
| 640 | * |
| 641 | * intset_begin_iterate() must be called first. intset_iterate_next() returns |
| 642 | * the next value in the set. Returns true, if there was another value, and |
| 643 | * stores the value in *next. Otherwise, returns false. |
| 644 | */ |
| 645 | bool |
| 646 | intset_iterate_next(IntegerSet *intset, uint64 *next) |
| 647 | { |
| 648 | Assert(intset->iter_active); |
| 649 | for (;;) |
| 650 | { |
| 651 | /* Return next iter_values[] entry if any */ |
| 652 | if (intset->iter_valueno < intset->iter_num_values) |
| 653 | { |
| 654 | *next = intset->iter_values[intset->iter_valueno++]; |
| 655 | return true; |
| 656 | } |
| 657 | |
| 658 | /* Decode next item in current leaf node, if any */ |
| 659 | if (intset->iter_node && |
| 660 | intset->iter_itemno < intset->iter_node->num_items) |
| 661 | { |
| 662 | leaf_item *item; |
| 663 | int num_decoded; |
| 664 | |
| 665 | item = &intset->iter_node->items[intset->iter_itemno++]; |
| 666 | |
| 667 | intset->iter_values_buf[0] = item->first; |
| 668 | num_decoded = simple8b_decode(item->codeword, |
| 669 | &intset->iter_values_buf[1], |
| 670 | item->first); |
| 671 | intset->iter_num_values = num_decoded + 1; |
| 672 | intset->iter_valueno = 0; |
| 673 | continue; |
| 674 | } |
| 675 | |
| 676 | /* No more items on this leaf, step to next node */ |
| 677 | if (intset->iter_node) |
| 678 | { |
| 679 | intset->iter_node = intset->iter_node->next; |
| 680 | intset->iter_itemno = 0; |
| 681 | continue; |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * We have reached the end of the B-tree. But we might still have |
| 686 | * some integers in the buffer of newly-added values. |
| 687 | */ |
| 688 | if (intset->iter_values == (const uint64 *) intset->iter_values_buf) |
| 689 | { |
| 690 | intset->iter_values = intset->buffered_values; |
| 691 | intset->iter_num_values = intset->num_buffered_values; |
| 692 | intset->iter_valueno = 0; |
| 693 | continue; |
| 694 | } |
| 695 | |
| 696 | break; |
| 697 | } |
| 698 | |
| 699 | /* No more results. */ |
| 700 | intset->iter_active = false; |
| 701 | *next = 0; /* prevent uninitialized-variable warnings */ |
| 702 | return false; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * intset_binsrch_uint64() -- search a sorted array of uint64s |
| 707 | * |
| 708 | * Returns the first position with key equal or less than the given key. |
| 709 | * The returned position would be the "insert" location for the given key, |
| 710 | * that is, the position where the new key should be inserted to. |
| 711 | * |
| 712 | * 'nextkey' affects the behavior on equal keys. If true, and there is an |
| 713 | * equal key in the array, this returns the position immediately after the |
| 714 | * equal key. If false, this returns the position of the equal key itself. |
| 715 | */ |
| 716 | static int |
| 717 | intset_binsrch_uint64(uint64 item, uint64 *arr, int arr_elems, bool nextkey) |
| 718 | { |
| 719 | int low, |
| 720 | high, |
| 721 | mid; |
| 722 | |
| 723 | low = 0; |
| 724 | high = arr_elems; |
| 725 | while (high > low) |
| 726 | { |
| 727 | mid = low + (high - low) / 2; |
| 728 | |
| 729 | if (nextkey) |
| 730 | { |
| 731 | if (item >= arr[mid]) |
| 732 | low = mid + 1; |
| 733 | else |
| 734 | high = mid; |
| 735 | } |
| 736 | else |
| 737 | { |
| 738 | if (item > arr[mid]) |
| 739 | low = mid + 1; |
| 740 | else |
| 741 | high = mid; |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | return low; |
| 746 | } |
| 747 | |
| 748 | /* same, but for an array of leaf items */ |
| 749 | static int |
| 750 | intset_binsrch_leaf(uint64 item, leaf_item *arr, int arr_elems, bool nextkey) |
| 751 | { |
| 752 | int low, |
| 753 | high, |
| 754 | mid; |
| 755 | |
| 756 | low = 0; |
| 757 | high = arr_elems; |
| 758 | while (high > low) |
| 759 | { |
| 760 | mid = low + (high - low) / 2; |
| 761 | |
| 762 | if (nextkey) |
| 763 | { |
| 764 | if (item >= arr[mid].first) |
| 765 | low = mid + 1; |
| 766 | else |
| 767 | high = mid; |
| 768 | } |
| 769 | else |
| 770 | { |
| 771 | if (item > arr[mid].first) |
| 772 | low = mid + 1; |
| 773 | else |
| 774 | high = mid; |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | return low; |
| 779 | } |
| 780 | |
| 781 | /* |
| 782 | * Simple-8b encoding. |
| 783 | * |
| 784 | * The simple-8b algorithm packs between 1 and 240 integers into 64-bit words, |
| 785 | * called "codewords". The number of integers packed into a single codeword |
| 786 | * depends on the integers being packed; small integers are encoded using |
| 787 | * fewer bits than large integers. A single codeword can store a single |
| 788 | * 60-bit integer, or two 30-bit integers, for example. |
| 789 | * |
| 790 | * Since we're storing a unique, sorted, set of integers, we actually encode |
| 791 | * the *differences* between consecutive integers. That way, clusters of |
| 792 | * integers that are close to each other are packed efficiently, regardless |
| 793 | * of their absolute values. |
| 794 | * |
| 795 | * In Simple-8b, each codeword consists of a 4-bit selector, which indicates |
| 796 | * how many integers are encoded in the codeword, and the encoded integers are |
| 797 | * packed into the remaining 60 bits. The selector allows for 16 different |
| 798 | * ways of using the remaining 60 bits, called "modes". The number of integers |
| 799 | * packed into a single codeword in each mode is listed in the simple8b_modes |
| 800 | * table below. For example, consider the following codeword: |
| 801 | * |
| 802 | * 20-bit integer 20-bit integer 20-bit integer |
| 803 | * 1101 00000000000000010010 01111010000100100000 00000000000000010100 |
| 804 | * ^ |
| 805 | * selector |
| 806 | * |
| 807 | * The selector 1101 is 13 in decimal. From the modes table below, we see |
| 808 | * that it means that the codeword encodes three 20-bit integers. In decimal, |
| 809 | * those integers are 18, 500000 and 20. Because we encode deltas rather than |
| 810 | * absolute values, the actual values that they represent are 18, 500018 and |
| 811 | * 500038. |
| 812 | * |
| 813 | * Modes 0 and 1 are a bit special; they encode a run of 240 or 120 zeroes |
| 814 | * (which means 240 or 120 consecutive integers, since we're encoding the |
| 815 | * deltas between integers), without using the rest of the codeword bits |
| 816 | * for anything. |
| 817 | * |
| 818 | * Simple-8b cannot encode integers larger than 60 bits. Values larger than |
| 819 | * that are always stored in the 'first' field of a leaf item, never in the |
| 820 | * packed codeword. If there is a sequence of integers that are more than |
| 821 | * 2^60 apart, the codeword will go unused on those items. To represent that, |
| 822 | * we use a magic EMPTY_CODEWORD codeword value. |
| 823 | */ |
| 824 | static const struct simple8b_mode |
| 825 | { |
| 826 | uint8 bits_per_int; |
| 827 | uint8 num_ints; |
| 828 | } simple8b_modes[17] = |
| 829 | |
| 830 | { |
| 831 | {0, 240}, /* mode 0: 240 zeroes */ |
| 832 | {0, 120}, /* mode 1: 120 zeroes */ |
| 833 | {1, 60}, /* mode 2: sixty 1-bit integers */ |
| 834 | {2, 30}, /* mode 3: thirty 2-bit integers */ |
| 835 | {3, 20}, /* mode 4: twenty 3-bit integers */ |
| 836 | {4, 15}, /* mode 5: fifteen 4-bit integers */ |
| 837 | {5, 12}, /* mode 6: twelve 5-bit integers */ |
| 838 | {6, 10}, /* mode 7: ten 6-bit integers */ |
| 839 | {7, 8}, /* mode 8: eight 7-bit integers (four bits |
| 840 | * are wasted) */ |
| 841 | {8, 7}, /* mode 9: seven 8-bit integers (four bits |
| 842 | * are wasted) */ |
| 843 | {10, 6}, /* mode 10: six 10-bit integers */ |
| 844 | {12, 5}, /* mode 11: five 12-bit integers */ |
| 845 | {15, 4}, /* mode 12: four 15-bit integers */ |
| 846 | {20, 3}, /* mode 13: three 20-bit integers */ |
| 847 | {30, 2}, /* mode 14: two 30-bit integers */ |
| 848 | {60, 1}, /* mode 15: one 60-bit integer */ |
| 849 | |
| 850 | {0, 0} /* sentinel value */ |
| 851 | }; |
| 852 | |
| 853 | /* |
| 854 | * EMPTY_CODEWORD is a special value, used to indicate "no values". |
| 855 | * It is used if the next value is too large to be encoded with Simple-8b. |
| 856 | * |
| 857 | * This value looks like a mode-0 codeword, but we can distinguish it |
| 858 | * because a regular mode-0 codeword would have zeroes in the unused bits. |
| 859 | */ |
| 860 | #define EMPTY_CODEWORD UINT64CONST(0x0FFFFFFFFFFFFFFF) |
| 861 | |
| 862 | /* |
| 863 | * Encode a number of integers into a Simple-8b codeword. |
| 864 | * |
| 865 | * (What we actually encode are deltas between successive integers. |
| 866 | * "base" is the value before ints[0].) |
| 867 | * |
| 868 | * The input array must contain at least SIMPLE8B_MAX_VALUES_PER_CODEWORD |
| 869 | * elements, ensuring that we can produce a full codeword. |
| 870 | * |
| 871 | * Returns the encoded codeword, and sets *num_encoded to the number of |
| 872 | * input integers that were encoded. That can be zero, if the first delta |
| 873 | * is too large to be encoded. |
| 874 | */ |
| 875 | static uint64 |
| 876 | simple8b_encode(const uint64 *ints, int *num_encoded, uint64 base) |
| 877 | { |
| 878 | int selector; |
| 879 | int nints; |
| 880 | int bits; |
| 881 | uint64 diff; |
| 882 | uint64 last_val; |
| 883 | uint64 codeword; |
| 884 | int i; |
| 885 | |
| 886 | Assert(ints[0] > base); |
| 887 | |
| 888 | /* |
| 889 | * Select the "mode" to use for this codeword. |
| 890 | * |
| 891 | * In each iteration, check if the next value can be represented in the |
| 892 | * current mode we're considering. If it's too large, then step up the |
| 893 | * mode to a wider one, and repeat. If it fits, move on to the next |
| 894 | * integer. Repeat until the codeword is full, given the current mode. |
| 895 | * |
| 896 | * Note that we don't have any way to represent unused slots in the |
| 897 | * codeword, so we require each codeword to be "full". It is always |
| 898 | * possible to produce a full codeword unless the very first delta is too |
| 899 | * large to be encoded. For example, if the first delta is small but the |
| 900 | * second is too large to be encoded, we'll end up using the last "mode", |
| 901 | * which has nints == 1. |
| 902 | */ |
| 903 | selector = 0; |
| 904 | nints = simple8b_modes[0].num_ints; |
| 905 | bits = simple8b_modes[0].bits_per_int; |
| 906 | diff = ints[0] - base - 1; |
| 907 | last_val = ints[0]; |
| 908 | i = 0; /* number of deltas we have accepted */ |
| 909 | for (;;) |
| 910 | { |
| 911 | if (diff >= (UINT64CONST(1) << bits)) |
| 912 | { |
| 913 | /* too large, step up to next mode */ |
| 914 | selector++; |
| 915 | nints = simple8b_modes[selector].num_ints; |
| 916 | bits = simple8b_modes[selector].bits_per_int; |
| 917 | /* we might already have accepted enough deltas for this mode */ |
| 918 | if (i >= nints) |
| 919 | break; |
| 920 | } |
| 921 | else |
| 922 | { |
| 923 | /* accept this delta; then done if codeword is full */ |
| 924 | i++; |
| 925 | if (i >= nints) |
| 926 | break; |
| 927 | /* examine next delta */ |
| 928 | Assert(ints[i] > last_val); |
| 929 | diff = ints[i] - last_val - 1; |
| 930 | last_val = ints[i]; |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | if (nints == 0) |
| 935 | { |
| 936 | /* |
| 937 | * The first delta is too large to be encoded with Simple-8b. |
| 938 | * |
| 939 | * If there is at least one not-too-large integer in the input, we |
| 940 | * will encode it using mode 15 (or a more compact mode). Hence, we |
| 941 | * can only get here if the *first* delta is >= 2^60. |
| 942 | */ |
| 943 | Assert(i == 0); |
| 944 | *num_encoded = 0; |
| 945 | return EMPTY_CODEWORD; |
| 946 | } |
| 947 | |
| 948 | /* |
| 949 | * Encode the integers using the selected mode. Note that we shift them |
| 950 | * into the codeword in reverse order, so that they will come out in the |
| 951 | * correct order in the decoder. |
| 952 | */ |
| 953 | codeword = 0; |
| 954 | if (bits > 0) |
| 955 | { |
| 956 | for (i = nints - 1; i > 0; i--) |
| 957 | { |
| 958 | diff = ints[i] - ints[i - 1] - 1; |
| 959 | codeword |= diff; |
| 960 | codeword <<= bits; |
| 961 | } |
| 962 | diff = ints[0] - base - 1; |
| 963 | codeword |= diff; |
| 964 | } |
| 965 | |
| 966 | /* add selector to the codeword, and return */ |
| 967 | codeword |= (uint64) selector << 60; |
| 968 | |
| 969 | *num_encoded = nints; |
| 970 | return codeword; |
| 971 | } |
| 972 | |
| 973 | /* |
| 974 | * Decode a codeword into an array of integers. |
| 975 | * Returns the number of integers decoded. |
| 976 | */ |
| 977 | static int |
| 978 | simple8b_decode(uint64 codeword, uint64 *decoded, uint64 base) |
| 979 | { |
| 980 | int selector = (codeword >> 60); |
| 981 | int nints = simple8b_modes[selector].num_ints; |
| 982 | int bits = simple8b_modes[selector].bits_per_int; |
| 983 | uint64 mask = (UINT64CONST(1) << bits) - 1; |
| 984 | uint64 curr_value; |
| 985 | |
| 986 | if (codeword == EMPTY_CODEWORD) |
| 987 | return 0; |
| 988 | |
| 989 | curr_value = base; |
| 990 | for (int i = 0; i < nints; i++) |
| 991 | { |
| 992 | uint64 diff = codeword & mask; |
| 993 | |
| 994 | curr_value += 1 + diff; |
| 995 | decoded[i] = curr_value; |
| 996 | codeword >>= bits; |
| 997 | } |
| 998 | return nints; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * This is very similar to simple8b_decode(), but instead of decoding all |
| 1003 | * the values to an array, it just checks if the given "key" is part of |
| 1004 | * the codeword. |
| 1005 | */ |
| 1006 | static bool |
| 1007 | simple8b_contains(uint64 codeword, uint64 key, uint64 base) |
| 1008 | { |
| 1009 | int selector = (codeword >> 60); |
| 1010 | int nints = simple8b_modes[selector].num_ints; |
| 1011 | int bits = simple8b_modes[selector].bits_per_int; |
| 1012 | |
| 1013 | if (codeword == EMPTY_CODEWORD) |
| 1014 | return false; |
| 1015 | |
| 1016 | if (bits == 0) |
| 1017 | { |
| 1018 | /* Special handling for 0-bit cases. */ |
| 1019 | return (key - base) <= nints; |
| 1020 | } |
| 1021 | else |
| 1022 | { |
| 1023 | uint64 mask = (UINT64CONST(1) << bits) - 1; |
| 1024 | uint64 curr_value; |
| 1025 | |
| 1026 | curr_value = base; |
| 1027 | for (int i = 0; i < nints; i++) |
| 1028 | { |
| 1029 | uint64 diff = codeword & mask; |
| 1030 | |
| 1031 | curr_value += 1 + diff; |
| 1032 | |
| 1033 | if (curr_value >= key) |
| 1034 | { |
| 1035 | if (curr_value == key) |
| 1036 | return true; |
| 1037 | else |
| 1038 | return false; |
| 1039 | } |
| 1040 | |
| 1041 | codeword >>= bits; |
| 1042 | } |
| 1043 | } |
| 1044 | return false; |
| 1045 | } |
| 1046 | |