| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * planner.c |
| 4 | * The query optimizer external interface. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/optimizer/plan/planner.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include <limits.h> |
| 19 | #include <math.h> |
| 20 | |
| 21 | #include "access/genam.h" |
| 22 | #include "access/htup_details.h" |
| 23 | #include "access/parallel.h" |
| 24 | #include "access/sysattr.h" |
| 25 | #include "access/table.h" |
| 26 | #include "access/xact.h" |
| 27 | #include "catalog/pg_constraint.h" |
| 28 | #include "catalog/pg_inherits.h" |
| 29 | #include "catalog/pg_proc.h" |
| 30 | #include "catalog/pg_type.h" |
| 31 | #include "executor/executor.h" |
| 32 | #include "executor/nodeAgg.h" |
| 33 | #include "foreign/fdwapi.h" |
| 34 | #include "miscadmin.h" |
| 35 | #include "jit/jit.h" |
| 36 | #include "lib/bipartite_match.h" |
| 37 | #include "lib/knapsack.h" |
| 38 | #include "nodes/makefuncs.h" |
| 39 | #include "nodes/nodeFuncs.h" |
| 40 | #ifdef OPTIMIZER_DEBUG |
| 41 | #include "nodes/print.h" |
| 42 | #endif |
| 43 | #include "optimizer/appendinfo.h" |
| 44 | #include "optimizer/clauses.h" |
| 45 | #include "optimizer/cost.h" |
| 46 | #include "optimizer/inherit.h" |
| 47 | #include "optimizer/optimizer.h" |
| 48 | #include "optimizer/paramassign.h" |
| 49 | #include "optimizer/pathnode.h" |
| 50 | #include "optimizer/paths.h" |
| 51 | #include "optimizer/plancat.h" |
| 52 | #include "optimizer/planmain.h" |
| 53 | #include "optimizer/planner.h" |
| 54 | #include "optimizer/prep.h" |
| 55 | #include "optimizer/subselect.h" |
| 56 | #include "optimizer/tlist.h" |
| 57 | #include "parser/analyze.h" |
| 58 | #include "parser/parsetree.h" |
| 59 | #include "parser/parse_agg.h" |
| 60 | #include "partitioning/partdesc.h" |
| 61 | #include "rewrite/rewriteManip.h" |
| 62 | #include "storage/dsm_impl.h" |
| 63 | #include "utils/rel.h" |
| 64 | #include "utils/selfuncs.h" |
| 65 | #include "utils/lsyscache.h" |
| 66 | #include "utils/syscache.h" |
| 67 | |
| 68 | |
| 69 | /* GUC parameters */ |
| 70 | double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION; |
| 71 | int force_parallel_mode = FORCE_PARALLEL_OFF; |
| 72 | bool parallel_leader_participation = true; |
| 73 | |
| 74 | /* Hook for plugins to get control in planner() */ |
| 75 | planner_hook_type planner_hook = NULL; |
| 76 | |
| 77 | /* Hook for plugins to get control when grouping_planner() plans upper rels */ |
| 78 | create_upper_paths_hook_type create_upper_paths_hook = NULL; |
| 79 | |
| 80 | |
| 81 | /* Expression kind codes for preprocess_expression */ |
| 82 | #define EXPRKIND_QUAL 0 |
| 83 | #define EXPRKIND_TARGET 1 |
| 84 | #define EXPRKIND_RTFUNC 2 |
| 85 | #define EXPRKIND_RTFUNC_LATERAL 3 |
| 86 | #define EXPRKIND_VALUES 4 |
| 87 | #define EXPRKIND_VALUES_LATERAL 5 |
| 88 | #define EXPRKIND_LIMIT 6 |
| 89 | #define EXPRKIND_APPINFO 7 |
| 90 | #define EXPRKIND_PHV 8 |
| 91 | #define EXPRKIND_TABLESAMPLE 9 |
| 92 | #define EXPRKIND_ARBITER_ELEM 10 |
| 93 | #define EXPRKIND_TABLEFUNC 11 |
| 94 | #define EXPRKIND_TABLEFUNC_LATERAL 12 |
| 95 | |
| 96 | /* Passthrough data for standard_qp_callback */ |
| 97 | typedef struct |
| 98 | { |
| 99 | List *activeWindows; /* active windows, if any */ |
| 100 | List *groupClause; /* overrides parse->groupClause */ |
| 101 | } standard_qp_extra; |
| 102 | |
| 103 | /* |
| 104 | * Data specific to grouping sets |
| 105 | */ |
| 106 | |
| 107 | typedef struct |
| 108 | { |
| 109 | List *rollups; |
| 110 | List *hash_sets_idx; |
| 111 | double dNumHashGroups; |
| 112 | bool any_hashable; |
| 113 | Bitmapset *unsortable_refs; |
| 114 | Bitmapset *unhashable_refs; |
| 115 | List *unsortable_sets; |
| 116 | int *tleref_to_colnum_map; |
| 117 | } grouping_sets_data; |
| 118 | |
| 119 | /* |
| 120 | * Temporary structure for use during WindowClause reordering in order to be |
| 121 | * able to sort WindowClauses on partitioning/ordering prefix. |
| 122 | */ |
| 123 | typedef struct |
| 124 | { |
| 125 | WindowClause *wc; |
| 126 | List *uniqueOrder; /* A List of unique ordering/partitioning |
| 127 | * clauses per Window */ |
| 128 | } WindowClauseSortData; |
| 129 | |
| 130 | /* Local functions */ |
| 131 | static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind); |
| 132 | static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode); |
| 133 | static void inheritance_planner(PlannerInfo *root); |
| 134 | static void grouping_planner(PlannerInfo *root, bool inheritance_update, |
| 135 | double tuple_fraction); |
| 136 | static grouping_sets_data *preprocess_grouping_sets(PlannerInfo *root); |
| 137 | static List *remap_to_groupclause_idx(List *groupClause, List *gsets, |
| 138 | int *tleref_to_colnum_map); |
| 139 | static void preprocess_rowmarks(PlannerInfo *root); |
| 140 | static double preprocess_limit(PlannerInfo *root, |
| 141 | double tuple_fraction, |
| 142 | int64 *offset_est, int64 *count_est); |
| 143 | static void remove_useless_groupby_columns(PlannerInfo *root); |
| 144 | static List *preprocess_groupclause(PlannerInfo *root, List *force); |
| 145 | static List *extract_rollup_sets(List *groupingSets); |
| 146 | static List *reorder_grouping_sets(List *groupingSets, List *sortclause); |
| 147 | static void standard_qp_callback(PlannerInfo *root, void *); |
| 148 | static double get_number_of_groups(PlannerInfo *root, |
| 149 | double path_rows, |
| 150 | grouping_sets_data *gd, |
| 151 | List *target_list); |
| 152 | static RelOptInfo *create_grouping_paths(PlannerInfo *root, |
| 153 | RelOptInfo *input_rel, |
| 154 | PathTarget *target, |
| 155 | bool target_parallel_safe, |
| 156 | const AggClauseCosts *agg_costs, |
| 157 | grouping_sets_data *gd); |
| 158 | static bool is_degenerate_grouping(PlannerInfo *root); |
| 159 | static void create_degenerate_grouping_paths(PlannerInfo *root, |
| 160 | RelOptInfo *input_rel, |
| 161 | RelOptInfo *grouped_rel); |
| 162 | static RelOptInfo *make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, |
| 163 | PathTarget *target, bool target_parallel_safe, |
| 164 | Node *havingQual); |
| 165 | static void create_ordinary_grouping_paths(PlannerInfo *root, |
| 166 | RelOptInfo *input_rel, |
| 167 | RelOptInfo *grouped_rel, |
| 168 | const AggClauseCosts *agg_costs, |
| 169 | grouping_sets_data *gd, |
| 170 | GroupPathExtraData *, |
| 171 | RelOptInfo **partially_grouped_rel_p); |
| 172 | static void consider_groupingsets_paths(PlannerInfo *root, |
| 173 | RelOptInfo *grouped_rel, |
| 174 | Path *path, |
| 175 | bool is_sorted, |
| 176 | bool can_hash, |
| 177 | grouping_sets_data *gd, |
| 178 | const AggClauseCosts *agg_costs, |
| 179 | double dNumGroups); |
| 180 | static RelOptInfo *create_window_paths(PlannerInfo *root, |
| 181 | RelOptInfo *input_rel, |
| 182 | PathTarget *input_target, |
| 183 | PathTarget *output_target, |
| 184 | bool output_target_parallel_safe, |
| 185 | WindowFuncLists *wflists, |
| 186 | List *activeWindows); |
| 187 | static void create_one_window_path(PlannerInfo *root, |
| 188 | RelOptInfo *window_rel, |
| 189 | Path *path, |
| 190 | PathTarget *input_target, |
| 191 | PathTarget *output_target, |
| 192 | WindowFuncLists *wflists, |
| 193 | List *activeWindows); |
| 194 | static RelOptInfo *create_distinct_paths(PlannerInfo *root, |
| 195 | RelOptInfo *input_rel); |
| 196 | static RelOptInfo *create_ordered_paths(PlannerInfo *root, |
| 197 | RelOptInfo *input_rel, |
| 198 | PathTarget *target, |
| 199 | bool target_parallel_safe, |
| 200 | double limit_tuples); |
| 201 | static PathTarget *make_group_input_target(PlannerInfo *root, |
| 202 | PathTarget *final_target); |
| 203 | static PathTarget *make_partial_grouping_target(PlannerInfo *root, |
| 204 | PathTarget *grouping_target, |
| 205 | Node *havingQual); |
| 206 | static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist); |
| 207 | static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists); |
| 208 | static PathTarget *make_window_input_target(PlannerInfo *root, |
| 209 | PathTarget *final_target, |
| 210 | List *activeWindows); |
| 211 | static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, |
| 212 | List *tlist); |
| 213 | static PathTarget *make_sort_input_target(PlannerInfo *root, |
| 214 | PathTarget *final_target, |
| 215 | bool *have_postponed_srfs); |
| 216 | static void adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, |
| 217 | List *targets, List *targets_contain_srfs); |
| 218 | static void add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, |
| 219 | RelOptInfo *grouped_rel, |
| 220 | RelOptInfo *partially_grouped_rel, |
| 221 | const AggClauseCosts *agg_costs, |
| 222 | grouping_sets_data *gd, |
| 223 | double dNumGroups, |
| 224 | GroupPathExtraData *); |
| 225 | static RelOptInfo *create_partial_grouping_paths(PlannerInfo *root, |
| 226 | RelOptInfo *grouped_rel, |
| 227 | RelOptInfo *input_rel, |
| 228 | grouping_sets_data *gd, |
| 229 | GroupPathExtraData *, |
| 230 | bool force_rel_creation); |
| 231 | static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel); |
| 232 | static bool can_partial_agg(PlannerInfo *root, |
| 233 | const AggClauseCosts *agg_costs); |
| 234 | static void apply_scanjoin_target_to_paths(PlannerInfo *root, |
| 235 | RelOptInfo *rel, |
| 236 | List *scanjoin_targets, |
| 237 | List *scanjoin_targets_contain_srfs, |
| 238 | bool scanjoin_target_parallel_safe, |
| 239 | bool tlist_same_exprs); |
| 240 | static void create_partitionwise_grouping_paths(PlannerInfo *root, |
| 241 | RelOptInfo *input_rel, |
| 242 | RelOptInfo *grouped_rel, |
| 243 | RelOptInfo *partially_grouped_rel, |
| 244 | const AggClauseCosts *agg_costs, |
| 245 | grouping_sets_data *gd, |
| 246 | PartitionwiseAggregateType patype, |
| 247 | GroupPathExtraData *); |
| 248 | static bool group_by_has_partkey(RelOptInfo *input_rel, |
| 249 | List *targetList, |
| 250 | List *groupClause); |
| 251 | static int common_prefix_cmp(const void *a, const void *b); |
| 252 | |
| 253 | |
| 254 | /***************************************************************************** |
| 255 | * |
| 256 | * Query optimizer entry point |
| 257 | * |
| 258 | * To support loadable plugins that monitor or modify planner behavior, |
| 259 | * we provide a hook variable that lets a plugin get control before and |
| 260 | * after the standard planning process. The plugin would normally call |
| 261 | * standard_planner(). |
| 262 | * |
| 263 | * Note to plugin authors: standard_planner() scribbles on its Query input, |
| 264 | * so you'd better copy that data structure if you want to plan more than once. |
| 265 | * |
| 266 | *****************************************************************************/ |
| 267 | PlannedStmt * |
| 268 | planner(Query *parse, int cursorOptions, ParamListInfo boundParams) |
| 269 | { |
| 270 | PlannedStmt *result; |
| 271 | |
| 272 | if (planner_hook) |
| 273 | result = (*planner_hook) (parse, cursorOptions, boundParams); |
| 274 | else |
| 275 | result = standard_planner(parse, cursorOptions, boundParams); |
| 276 | return result; |
| 277 | } |
| 278 | |
| 279 | PlannedStmt * |
| 280 | standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams) |
| 281 | { |
| 282 | PlannedStmt *result; |
| 283 | PlannerGlobal *glob; |
| 284 | double tuple_fraction; |
| 285 | PlannerInfo *root; |
| 286 | RelOptInfo *final_rel; |
| 287 | Path *best_path; |
| 288 | Plan *top_plan; |
| 289 | ListCell *lp, |
| 290 | *lr; |
| 291 | |
| 292 | /* |
| 293 | * Set up global state for this planner invocation. This data is needed |
| 294 | * across all levels of sub-Query that might exist in the given command, |
| 295 | * so we keep it in a separate struct that's linked to by each per-Query |
| 296 | * PlannerInfo. |
| 297 | */ |
| 298 | glob = makeNode(PlannerGlobal); |
| 299 | |
| 300 | glob->boundParams = boundParams; |
| 301 | glob->subplans = NIL; |
| 302 | glob->subroots = NIL; |
| 303 | glob->rewindPlanIDs = NULL; |
| 304 | glob->finalrtable = NIL; |
| 305 | glob->finalrowmarks = NIL; |
| 306 | glob->resultRelations = NIL; |
| 307 | glob->rootResultRelations = NIL; |
| 308 | glob->relationOids = NIL; |
| 309 | glob->invalItems = NIL; |
| 310 | glob->paramExecTypes = NIL; |
| 311 | glob->lastPHId = 0; |
| 312 | glob->lastRowMarkId = 0; |
| 313 | glob->lastPlanNodeId = 0; |
| 314 | glob->transientPlan = false; |
| 315 | glob->dependsOnRole = false; |
| 316 | |
| 317 | /* |
| 318 | * Assess whether it's feasible to use parallel mode for this query. We |
| 319 | * can't do this in a standalone backend, or if the command will try to |
| 320 | * modify any data, or if this is a cursor operation, or if GUCs are set |
| 321 | * to values that don't permit parallelism, or if parallel-unsafe |
| 322 | * functions are present in the query tree. |
| 323 | * |
| 324 | * (Note that we do allow CREATE TABLE AS, SELECT INTO, and CREATE |
| 325 | * MATERIALIZED VIEW to use parallel plans, but this is safe only because |
| 326 | * the command is writing into a completely new table which workers won't |
| 327 | * be able to see. If the workers could see the table, the fact that |
| 328 | * group locking would cause them to ignore the leader's heavyweight |
| 329 | * relation extension lock and GIN page locks would make this unsafe. |
| 330 | * We'll have to fix that somehow if we want to allow parallel inserts in |
| 331 | * general; updates and deletes have additional problems especially around |
| 332 | * combo CIDs.) |
| 333 | * |
| 334 | * For now, we don't try to use parallel mode if we're running inside a |
| 335 | * parallel worker. We might eventually be able to relax this |
| 336 | * restriction, but for now it seems best not to have parallel workers |
| 337 | * trying to create their own parallel workers. |
| 338 | */ |
| 339 | if ((cursorOptions & CURSOR_OPT_PARALLEL_OK) != 0 && |
| 340 | IsUnderPostmaster && |
| 341 | parse->commandType == CMD_SELECT && |
| 342 | !parse->hasModifyingCTE && |
| 343 | max_parallel_workers_per_gather > 0 && |
| 344 | !IsParallelWorker()) |
| 345 | { |
| 346 | /* all the cheap tests pass, so scan the query tree */ |
| 347 | glob->maxParallelHazard = max_parallel_hazard(parse); |
| 348 | glob->parallelModeOK = (glob->maxParallelHazard != PROPARALLEL_UNSAFE); |
| 349 | } |
| 350 | else |
| 351 | { |
| 352 | /* skip the query tree scan, just assume it's unsafe */ |
| 353 | glob->maxParallelHazard = PROPARALLEL_UNSAFE; |
| 354 | glob->parallelModeOK = false; |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * glob->parallelModeNeeded is normally set to false here and changed to |
| 359 | * true during plan creation if a Gather or Gather Merge plan is actually |
| 360 | * created (cf. create_gather_plan, create_gather_merge_plan). |
| 361 | * |
| 362 | * However, if force_parallel_mode = on or force_parallel_mode = regress, |
| 363 | * then we impose parallel mode whenever it's safe to do so, even if the |
| 364 | * final plan doesn't use parallelism. It's not safe to do so if the |
| 365 | * query contains anything parallel-unsafe; parallelModeOK will be false |
| 366 | * in that case. Note that parallelModeOK can't change after this point. |
| 367 | * Otherwise, everything in the query is either parallel-safe or |
| 368 | * parallel-restricted, and in either case it should be OK to impose |
| 369 | * parallel-mode restrictions. If that ends up breaking something, then |
| 370 | * either some function the user included in the query is incorrectly |
| 371 | * labelled as parallel-safe or parallel-restricted when in reality it's |
| 372 | * parallel-unsafe, or else the query planner itself has a bug. |
| 373 | */ |
| 374 | glob->parallelModeNeeded = glob->parallelModeOK && |
| 375 | (force_parallel_mode != FORCE_PARALLEL_OFF); |
| 376 | |
| 377 | /* Determine what fraction of the plan is likely to be scanned */ |
| 378 | if (cursorOptions & CURSOR_OPT_FAST_PLAN) |
| 379 | { |
| 380 | /* |
| 381 | * We have no real idea how many tuples the user will ultimately FETCH |
| 382 | * from a cursor, but it is often the case that he doesn't want 'em |
| 383 | * all, or would prefer a fast-start plan anyway so that he can |
| 384 | * process some of the tuples sooner. Use a GUC parameter to decide |
| 385 | * what fraction to optimize for. |
| 386 | */ |
| 387 | tuple_fraction = cursor_tuple_fraction; |
| 388 | |
| 389 | /* |
| 390 | * We document cursor_tuple_fraction as simply being a fraction, which |
| 391 | * means the edge cases 0 and 1 have to be treated specially here. We |
| 392 | * convert 1 to 0 ("all the tuples") and 0 to a very small fraction. |
| 393 | */ |
| 394 | if (tuple_fraction >= 1.0) |
| 395 | tuple_fraction = 0.0; |
| 396 | else if (tuple_fraction <= 0.0) |
| 397 | tuple_fraction = 1e-10; |
| 398 | } |
| 399 | else |
| 400 | { |
| 401 | /* Default assumption is we need all the tuples */ |
| 402 | tuple_fraction = 0.0; |
| 403 | } |
| 404 | |
| 405 | /* primary planning entry point (may recurse for subqueries) */ |
| 406 | root = subquery_planner(glob, parse, NULL, |
| 407 | false, tuple_fraction); |
| 408 | |
| 409 | /* Select best Path and turn it into a Plan */ |
| 410 | final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL); |
| 411 | best_path = get_cheapest_fractional_path(final_rel, tuple_fraction); |
| 412 | |
| 413 | top_plan = create_plan(root, best_path); |
| 414 | |
| 415 | /* |
| 416 | * If creating a plan for a scrollable cursor, make sure it can run |
| 417 | * backwards on demand. Add a Material node at the top at need. |
| 418 | */ |
| 419 | if (cursorOptions & CURSOR_OPT_SCROLL) |
| 420 | { |
| 421 | if (!ExecSupportsBackwardScan(top_plan)) |
| 422 | top_plan = materialize_finished_plan(top_plan); |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * Optionally add a Gather node for testing purposes, provided this is |
| 427 | * actually a safe thing to do. |
| 428 | */ |
| 429 | if (force_parallel_mode != FORCE_PARALLEL_OFF && top_plan->parallel_safe) |
| 430 | { |
| 431 | Gather *gather = makeNode(Gather); |
| 432 | |
| 433 | /* |
| 434 | * If there are any initPlans attached to the formerly-top plan node, |
| 435 | * move them up to the Gather node; same as we do for Material node in |
| 436 | * materialize_finished_plan. |
| 437 | */ |
| 438 | gather->plan.initPlan = top_plan->initPlan; |
| 439 | top_plan->initPlan = NIL; |
| 440 | |
| 441 | gather->plan.targetlist = top_plan->targetlist; |
| 442 | gather->plan.qual = NIL; |
| 443 | gather->plan.lefttree = top_plan; |
| 444 | gather->plan.righttree = NULL; |
| 445 | gather->num_workers = 1; |
| 446 | gather->single_copy = true; |
| 447 | gather->invisible = (force_parallel_mode == FORCE_PARALLEL_REGRESS); |
| 448 | |
| 449 | /* |
| 450 | * Since this Gather has no parallel-aware descendants to signal to, |
| 451 | * we don't need a rescan Param. |
| 452 | */ |
| 453 | gather->rescan_param = -1; |
| 454 | |
| 455 | /* |
| 456 | * Ideally we'd use cost_gather here, but setting up dummy path data |
| 457 | * to satisfy it doesn't seem much cleaner than knowing what it does. |
| 458 | */ |
| 459 | gather->plan.startup_cost = top_plan->startup_cost + |
| 460 | parallel_setup_cost; |
| 461 | gather->plan.total_cost = top_plan->total_cost + |
| 462 | parallel_setup_cost + parallel_tuple_cost * top_plan->plan_rows; |
| 463 | gather->plan.plan_rows = top_plan->plan_rows; |
| 464 | gather->plan.plan_width = top_plan->plan_width; |
| 465 | gather->plan.parallel_aware = false; |
| 466 | gather->plan.parallel_safe = false; |
| 467 | |
| 468 | /* use parallel mode for parallel plans. */ |
| 469 | root->glob->parallelModeNeeded = true; |
| 470 | |
| 471 | top_plan = &gather->plan; |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * If any Params were generated, run through the plan tree and compute |
| 476 | * each plan node's extParam/allParam sets. Ideally we'd merge this into |
| 477 | * set_plan_references' tree traversal, but for now it has to be separate |
| 478 | * because we need to visit subplans before not after main plan. |
| 479 | */ |
| 480 | if (glob->paramExecTypes != NIL) |
| 481 | { |
| 482 | Assert(list_length(glob->subplans) == list_length(glob->subroots)); |
| 483 | forboth(lp, glob->subplans, lr, glob->subroots) |
| 484 | { |
| 485 | Plan *subplan = (Plan *) lfirst(lp); |
| 486 | PlannerInfo *subroot = lfirst_node(PlannerInfo, lr); |
| 487 | |
| 488 | SS_finalize_plan(subroot, subplan); |
| 489 | } |
| 490 | SS_finalize_plan(root, top_plan); |
| 491 | } |
| 492 | |
| 493 | /* final cleanup of the plan */ |
| 494 | Assert(glob->finalrtable == NIL); |
| 495 | Assert(glob->finalrowmarks == NIL); |
| 496 | Assert(glob->resultRelations == NIL); |
| 497 | Assert(glob->rootResultRelations == NIL); |
| 498 | top_plan = set_plan_references(root, top_plan); |
| 499 | /* ... and the subplans (both regular subplans and initplans) */ |
| 500 | Assert(list_length(glob->subplans) == list_length(glob->subroots)); |
| 501 | forboth(lp, glob->subplans, lr, glob->subroots) |
| 502 | { |
| 503 | Plan *subplan = (Plan *) lfirst(lp); |
| 504 | PlannerInfo *subroot = lfirst_node(PlannerInfo, lr); |
| 505 | |
| 506 | lfirst(lp) = set_plan_references(subroot, subplan); |
| 507 | } |
| 508 | |
| 509 | /* build the PlannedStmt result */ |
| 510 | result = makeNode(PlannedStmt); |
| 511 | |
| 512 | result->commandType = parse->commandType; |
| 513 | result->queryId = parse->queryId; |
| 514 | result->hasReturning = (parse->returningList != NIL); |
| 515 | result->hasModifyingCTE = parse->hasModifyingCTE; |
| 516 | result->canSetTag = parse->canSetTag; |
| 517 | result->transientPlan = glob->transientPlan; |
| 518 | result->dependsOnRole = glob->dependsOnRole; |
| 519 | result->parallelModeNeeded = glob->parallelModeNeeded; |
| 520 | result->planTree = top_plan; |
| 521 | result->rtable = glob->finalrtable; |
| 522 | result->resultRelations = glob->resultRelations; |
| 523 | result->rootResultRelations = glob->rootResultRelations; |
| 524 | result->subplans = glob->subplans; |
| 525 | result->rewindPlanIDs = glob->rewindPlanIDs; |
| 526 | result->rowMarks = glob->finalrowmarks; |
| 527 | result->relationOids = glob->relationOids; |
| 528 | result->invalItems = glob->invalItems; |
| 529 | result->paramExecTypes = glob->paramExecTypes; |
| 530 | /* utilityStmt should be null, but we might as well copy it */ |
| 531 | result->utilityStmt = parse->utilityStmt; |
| 532 | result->stmt_location = parse->stmt_location; |
| 533 | result->stmt_len = parse->stmt_len; |
| 534 | |
| 535 | result->jitFlags = PGJIT_NONE; |
| 536 | if (jit_enabled && jit_above_cost >= 0 && |
| 537 | top_plan->total_cost > jit_above_cost) |
| 538 | { |
| 539 | result->jitFlags |= PGJIT_PERFORM; |
| 540 | |
| 541 | /* |
| 542 | * Decide how much effort should be put into generating better code. |
| 543 | */ |
| 544 | if (jit_optimize_above_cost >= 0 && |
| 545 | top_plan->total_cost > jit_optimize_above_cost) |
| 546 | result->jitFlags |= PGJIT_OPT3; |
| 547 | if (jit_inline_above_cost >= 0 && |
| 548 | top_plan->total_cost > jit_inline_above_cost) |
| 549 | result->jitFlags |= PGJIT_INLINE; |
| 550 | |
| 551 | /* |
| 552 | * Decide which operations should be JITed. |
| 553 | */ |
| 554 | if (jit_expressions) |
| 555 | result->jitFlags |= PGJIT_EXPR; |
| 556 | if (jit_tuple_deforming) |
| 557 | result->jitFlags |= PGJIT_DEFORM; |
| 558 | } |
| 559 | |
| 560 | if (glob->partition_directory != NULL) |
| 561 | DestroyPartitionDirectory(glob->partition_directory); |
| 562 | |
| 563 | return result; |
| 564 | } |
| 565 | |
| 566 | |
| 567 | /*-------------------- |
| 568 | * subquery_planner |
| 569 | * Invokes the planner on a subquery. We recurse to here for each |
| 570 | * sub-SELECT found in the query tree. |
| 571 | * |
| 572 | * glob is the global state for the current planner run. |
| 573 | * parse is the querytree produced by the parser & rewriter. |
| 574 | * parent_root is the immediate parent Query's info (NULL at the top level). |
| 575 | * hasRecursion is true if this is a recursive WITH query. |
| 576 | * tuple_fraction is the fraction of tuples we expect will be retrieved. |
| 577 | * tuple_fraction is interpreted as explained for grouping_planner, below. |
| 578 | * |
| 579 | * Basically, this routine does the stuff that should only be done once |
| 580 | * per Query object. It then calls grouping_planner. At one time, |
| 581 | * grouping_planner could be invoked recursively on the same Query object; |
| 582 | * that's not currently true, but we keep the separation between the two |
| 583 | * routines anyway, in case we need it again someday. |
| 584 | * |
| 585 | * subquery_planner will be called recursively to handle sub-Query nodes |
| 586 | * found within the query's expressions and rangetable. |
| 587 | * |
| 588 | * Returns the PlannerInfo struct ("root") that contains all data generated |
| 589 | * while planning the subquery. In particular, the Path(s) attached to |
| 590 | * the (UPPERREL_FINAL, NULL) upperrel represent our conclusions about the |
| 591 | * cheapest way(s) to implement the query. The top level will select the |
| 592 | * best Path and pass it through createplan.c to produce a finished Plan. |
| 593 | *-------------------- |
| 594 | */ |
| 595 | PlannerInfo * |
| 596 | subquery_planner(PlannerGlobal *glob, Query *parse, |
| 597 | PlannerInfo *parent_root, |
| 598 | bool hasRecursion, double tuple_fraction) |
| 599 | { |
| 600 | PlannerInfo *root; |
| 601 | List *newWithCheckOptions; |
| 602 | List *newHaving; |
| 603 | bool hasOuterJoins; |
| 604 | bool hasResultRTEs; |
| 605 | RelOptInfo *final_rel; |
| 606 | ListCell *l; |
| 607 | |
| 608 | /* Create a PlannerInfo data structure for this subquery */ |
| 609 | root = makeNode(PlannerInfo); |
| 610 | root->parse = parse; |
| 611 | root->glob = glob; |
| 612 | root->query_level = parent_root ? parent_root->query_level + 1 : 1; |
| 613 | root->parent_root = parent_root; |
| 614 | root->plan_params = NIL; |
| 615 | root->outer_params = NULL; |
| 616 | root->planner_cxt = CurrentMemoryContext; |
| 617 | root->init_plans = NIL; |
| 618 | root->cte_plan_ids = NIL; |
| 619 | root->multiexpr_params = NIL; |
| 620 | root->eq_classes = NIL; |
| 621 | root->append_rel_list = NIL; |
| 622 | root->rowMarks = NIL; |
| 623 | memset(root->upper_rels, 0, sizeof(root->upper_rels)); |
| 624 | memset(root->upper_targets, 0, sizeof(root->upper_targets)); |
| 625 | root->processed_tlist = NIL; |
| 626 | root->grouping_map = NULL; |
| 627 | root->minmax_aggs = NIL; |
| 628 | root->qual_security_level = 0; |
| 629 | root->inhTargetKind = INHKIND_NONE; |
| 630 | root->hasRecursion = hasRecursion; |
| 631 | if (hasRecursion) |
| 632 | root->wt_param_id = assign_special_exec_param(root); |
| 633 | else |
| 634 | root->wt_param_id = -1; |
| 635 | root->non_recursive_path = NULL; |
| 636 | root->partColsUpdated = false; |
| 637 | |
| 638 | /* |
| 639 | * If there is a WITH list, process each WITH query and either convert it |
| 640 | * to RTE_SUBQUERY RTE(s) or build an initplan SubPlan structure for it. |
| 641 | */ |
| 642 | if (parse->cteList) |
| 643 | SS_process_ctes(root); |
| 644 | |
| 645 | /* |
| 646 | * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so |
| 647 | * that we don't need so many special cases to deal with that situation. |
| 648 | */ |
| 649 | replace_empty_jointree(parse); |
| 650 | |
| 651 | /* |
| 652 | * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try |
| 653 | * to transform them into joins. Note that this step does not descend |
| 654 | * into subqueries; if we pull up any subqueries below, their SubLinks are |
| 655 | * processed just before pulling them up. |
| 656 | */ |
| 657 | if (parse->hasSubLinks) |
| 658 | pull_up_sublinks(root); |
| 659 | |
| 660 | /* |
| 661 | * Scan the rangetable for set-returning functions, and inline them if |
| 662 | * possible (producing subqueries that might get pulled up next). |
| 663 | * Recursion issues here are handled in the same way as for SubLinks. |
| 664 | */ |
| 665 | inline_set_returning_functions(root); |
| 666 | |
| 667 | /* |
| 668 | * Check to see if any subqueries in the jointree can be merged into this |
| 669 | * query. |
| 670 | */ |
| 671 | pull_up_subqueries(root); |
| 672 | |
| 673 | /* |
| 674 | * If this is a simple UNION ALL query, flatten it into an appendrel. We |
| 675 | * do this now because it requires applying pull_up_subqueries to the leaf |
| 676 | * queries of the UNION ALL, which weren't touched above because they |
| 677 | * weren't referenced by the jointree (they will be after we do this). |
| 678 | */ |
| 679 | if (parse->setOperations) |
| 680 | flatten_simple_union_all(root); |
| 681 | |
| 682 | /* |
| 683 | * Survey the rangetable to see what kinds of entries are present. We can |
| 684 | * skip some later processing if relevant SQL features are not used; for |
| 685 | * example if there are no JOIN RTEs we can avoid the expense of doing |
| 686 | * flatten_join_alias_vars(). This must be done after we have finished |
| 687 | * adding rangetable entries, of course. (Note: actually, processing of |
| 688 | * inherited or partitioned rels can cause RTEs for their child tables to |
| 689 | * get added later; but those must all be RTE_RELATION entries, so they |
| 690 | * don't invalidate the conclusions drawn here.) |
| 691 | */ |
| 692 | root->hasJoinRTEs = false; |
| 693 | root->hasLateralRTEs = false; |
| 694 | hasOuterJoins = false; |
| 695 | hasResultRTEs = false; |
| 696 | foreach(l, parse->rtable) |
| 697 | { |
| 698 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, l); |
| 699 | |
| 700 | switch (rte->rtekind) |
| 701 | { |
| 702 | case RTE_RELATION: |
| 703 | if (rte->inh) |
| 704 | { |
| 705 | /* |
| 706 | * Check to see if the relation actually has any children; |
| 707 | * if not, clear the inh flag so we can treat it as a |
| 708 | * plain base relation. |
| 709 | * |
| 710 | * Note: this could give a false-positive result, if the |
| 711 | * rel once had children but no longer does. We used to |
| 712 | * be able to clear rte->inh later on when we discovered |
| 713 | * that, but no more; we have to handle such cases as |
| 714 | * full-fledged inheritance. |
| 715 | */ |
| 716 | rte->inh = has_subclass(rte->relid); |
| 717 | } |
| 718 | break; |
| 719 | case RTE_JOIN: |
| 720 | root->hasJoinRTEs = true; |
| 721 | if (IS_OUTER_JOIN(rte->jointype)) |
| 722 | hasOuterJoins = true; |
| 723 | break; |
| 724 | case RTE_RESULT: |
| 725 | hasResultRTEs = true; |
| 726 | break; |
| 727 | default: |
| 728 | /* No work here for other RTE types */ |
| 729 | break; |
| 730 | } |
| 731 | |
| 732 | if (rte->lateral) |
| 733 | root->hasLateralRTEs = true; |
| 734 | |
| 735 | /* |
| 736 | * We can also determine the maximum security level required for any |
| 737 | * securityQuals now. Addition of inheritance-child RTEs won't affect |
| 738 | * this, because child tables don't have their own securityQuals; see |
| 739 | * expand_single_inheritance_child(). |
| 740 | */ |
| 741 | if (rte->securityQuals) |
| 742 | root->qual_security_level = Max(root->qual_security_level, |
| 743 | list_length(rte->securityQuals)); |
| 744 | } |
| 745 | |
| 746 | /* |
| 747 | * Preprocess RowMark information. We need to do this after subquery |
| 748 | * pullup, so that all base relations are present. |
| 749 | */ |
| 750 | preprocess_rowmarks(root); |
| 751 | |
| 752 | /* |
| 753 | * Set hasHavingQual to remember if HAVING clause is present. Needed |
| 754 | * because preprocess_expression will reduce a constant-true condition to |
| 755 | * an empty qual list ... but "HAVING TRUE" is not a semantic no-op. |
| 756 | */ |
| 757 | root->hasHavingQual = (parse->havingQual != NULL); |
| 758 | |
| 759 | /* Clear this flag; might get set in distribute_qual_to_rels */ |
| 760 | root->hasPseudoConstantQuals = false; |
| 761 | |
| 762 | /* |
| 763 | * Do expression preprocessing on targetlist and quals, as well as other |
| 764 | * random expressions in the querytree. Note that we do not need to |
| 765 | * handle sort/group expressions explicitly, because they are actually |
| 766 | * part of the targetlist. |
| 767 | */ |
| 768 | parse->targetList = (List *) |
| 769 | preprocess_expression(root, (Node *) parse->targetList, |
| 770 | EXPRKIND_TARGET); |
| 771 | |
| 772 | /* Constant-folding might have removed all set-returning functions */ |
| 773 | if (parse->hasTargetSRFs) |
| 774 | parse->hasTargetSRFs = expression_returns_set((Node *) parse->targetList); |
| 775 | |
| 776 | newWithCheckOptions = NIL; |
| 777 | foreach(l, parse->withCheckOptions) |
| 778 | { |
| 779 | WithCheckOption *wco = lfirst_node(WithCheckOption, l); |
| 780 | |
| 781 | wco->qual = preprocess_expression(root, wco->qual, |
| 782 | EXPRKIND_QUAL); |
| 783 | if (wco->qual != NULL) |
| 784 | newWithCheckOptions = lappend(newWithCheckOptions, wco); |
| 785 | } |
| 786 | parse->withCheckOptions = newWithCheckOptions; |
| 787 | |
| 788 | parse->returningList = (List *) |
| 789 | preprocess_expression(root, (Node *) parse->returningList, |
| 790 | EXPRKIND_TARGET); |
| 791 | |
| 792 | preprocess_qual_conditions(root, (Node *) parse->jointree); |
| 793 | |
| 794 | parse->havingQual = preprocess_expression(root, parse->havingQual, |
| 795 | EXPRKIND_QUAL); |
| 796 | |
| 797 | foreach(l, parse->windowClause) |
| 798 | { |
| 799 | WindowClause *wc = lfirst_node(WindowClause, l); |
| 800 | |
| 801 | /* partitionClause/orderClause are sort/group expressions */ |
| 802 | wc->startOffset = preprocess_expression(root, wc->startOffset, |
| 803 | EXPRKIND_LIMIT); |
| 804 | wc->endOffset = preprocess_expression(root, wc->endOffset, |
| 805 | EXPRKIND_LIMIT); |
| 806 | } |
| 807 | |
| 808 | parse->limitOffset = preprocess_expression(root, parse->limitOffset, |
| 809 | EXPRKIND_LIMIT); |
| 810 | parse->limitCount = preprocess_expression(root, parse->limitCount, |
| 811 | EXPRKIND_LIMIT); |
| 812 | |
| 813 | if (parse->onConflict) |
| 814 | { |
| 815 | parse->onConflict->arbiterElems = (List *) |
| 816 | preprocess_expression(root, |
| 817 | (Node *) parse->onConflict->arbiterElems, |
| 818 | EXPRKIND_ARBITER_ELEM); |
| 819 | parse->onConflict->arbiterWhere = |
| 820 | preprocess_expression(root, |
| 821 | parse->onConflict->arbiterWhere, |
| 822 | EXPRKIND_QUAL); |
| 823 | parse->onConflict->onConflictSet = (List *) |
| 824 | preprocess_expression(root, |
| 825 | (Node *) parse->onConflict->onConflictSet, |
| 826 | EXPRKIND_TARGET); |
| 827 | parse->onConflict->onConflictWhere = |
| 828 | preprocess_expression(root, |
| 829 | parse->onConflict->onConflictWhere, |
| 830 | EXPRKIND_QUAL); |
| 831 | /* exclRelTlist contains only Vars, so no preprocessing needed */ |
| 832 | } |
| 833 | |
| 834 | root->append_rel_list = (List *) |
| 835 | preprocess_expression(root, (Node *) root->append_rel_list, |
| 836 | EXPRKIND_APPINFO); |
| 837 | |
| 838 | /* Also need to preprocess expressions within RTEs */ |
| 839 | foreach(l, parse->rtable) |
| 840 | { |
| 841 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, l); |
| 842 | int kind; |
| 843 | ListCell *lcsq; |
| 844 | |
| 845 | if (rte->rtekind == RTE_RELATION) |
| 846 | { |
| 847 | if (rte->tablesample) |
| 848 | rte->tablesample = (TableSampleClause *) |
| 849 | preprocess_expression(root, |
| 850 | (Node *) rte->tablesample, |
| 851 | EXPRKIND_TABLESAMPLE); |
| 852 | } |
| 853 | else if (rte->rtekind == RTE_SUBQUERY) |
| 854 | { |
| 855 | /* |
| 856 | * We don't want to do all preprocessing yet on the subquery's |
| 857 | * expressions, since that will happen when we plan it. But if it |
| 858 | * contains any join aliases of our level, those have to get |
| 859 | * expanded now, because planning of the subquery won't do it. |
| 860 | * That's only possible if the subquery is LATERAL. |
| 861 | */ |
| 862 | if (rte->lateral && root->hasJoinRTEs) |
| 863 | rte->subquery = (Query *) |
| 864 | flatten_join_alias_vars(root->parse, |
| 865 | (Node *) rte->subquery); |
| 866 | } |
| 867 | else if (rte->rtekind == RTE_FUNCTION) |
| 868 | { |
| 869 | /* Preprocess the function expression(s) fully */ |
| 870 | kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC; |
| 871 | rte->functions = (List *) |
| 872 | preprocess_expression(root, (Node *) rte->functions, kind); |
| 873 | } |
| 874 | else if (rte->rtekind == RTE_TABLEFUNC) |
| 875 | { |
| 876 | /* Preprocess the function expression(s) fully */ |
| 877 | kind = rte->lateral ? EXPRKIND_TABLEFUNC_LATERAL : EXPRKIND_TABLEFUNC; |
| 878 | rte->tablefunc = (TableFunc *) |
| 879 | preprocess_expression(root, (Node *) rte->tablefunc, kind); |
| 880 | } |
| 881 | else if (rte->rtekind == RTE_VALUES) |
| 882 | { |
| 883 | /* Preprocess the values lists fully */ |
| 884 | kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES; |
| 885 | rte->values_lists = (List *) |
| 886 | preprocess_expression(root, (Node *) rte->values_lists, kind); |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * Process each element of the securityQuals list as if it were a |
| 891 | * separate qual expression (as indeed it is). We need to do it this |
| 892 | * way to get proper canonicalization of AND/OR structure. Note that |
| 893 | * this converts each element into an implicit-AND sublist. |
| 894 | */ |
| 895 | foreach(lcsq, rte->securityQuals) |
| 896 | { |
| 897 | lfirst(lcsq) = preprocess_expression(root, |
| 898 | (Node *) lfirst(lcsq), |
| 899 | EXPRKIND_QUAL); |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | * Now that we are done preprocessing expressions, and in particular done |
| 905 | * flattening join alias variables, get rid of the joinaliasvars lists. |
| 906 | * They no longer match what expressions in the rest of the tree look |
| 907 | * like, because we have not preprocessed expressions in those lists (and |
| 908 | * do not want to; for example, expanding a SubLink there would result in |
| 909 | * a useless unreferenced subplan). Leaving them in place simply creates |
| 910 | * a hazard for later scans of the tree. We could try to prevent that by |
| 911 | * using QTW_IGNORE_JOINALIASES in every tree scan done after this point, |
| 912 | * but that doesn't sound very reliable. |
| 913 | */ |
| 914 | if (root->hasJoinRTEs) |
| 915 | { |
| 916 | foreach(l, parse->rtable) |
| 917 | { |
| 918 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, l); |
| 919 | |
| 920 | rte->joinaliasvars = NIL; |
| 921 | } |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * In some cases we may want to transfer a HAVING clause into WHERE. We |
| 926 | * cannot do so if the HAVING clause contains aggregates (obviously) or |
| 927 | * volatile functions (since a HAVING clause is supposed to be executed |
| 928 | * only once per group). We also can't do this if there are any nonempty |
| 929 | * grouping sets; moving such a clause into WHERE would potentially change |
| 930 | * the results, if any referenced column isn't present in all the grouping |
| 931 | * sets. (If there are only empty grouping sets, then the HAVING clause |
| 932 | * must be degenerate as discussed below.) |
| 933 | * |
| 934 | * Also, it may be that the clause is so expensive to execute that we're |
| 935 | * better off doing it only once per group, despite the loss of |
| 936 | * selectivity. This is hard to estimate short of doing the entire |
| 937 | * planning process twice, so we use a heuristic: clauses containing |
| 938 | * subplans are left in HAVING. Otherwise, we move or copy the HAVING |
| 939 | * clause into WHERE, in hopes of eliminating tuples before aggregation |
| 940 | * instead of after. |
| 941 | * |
| 942 | * If the query has explicit grouping then we can simply move such a |
| 943 | * clause into WHERE; any group that fails the clause will not be in the |
| 944 | * output because none of its tuples will reach the grouping or |
| 945 | * aggregation stage. Otherwise we must have a degenerate (variable-free) |
| 946 | * HAVING clause, which we put in WHERE so that query_planner() can use it |
| 947 | * in a gating Result node, but also keep in HAVING to ensure that we |
| 948 | * don't emit a bogus aggregated row. (This could be done better, but it |
| 949 | * seems not worth optimizing.) |
| 950 | * |
| 951 | * Note that both havingQual and parse->jointree->quals are in |
| 952 | * implicitly-ANDed-list form at this point, even though they are declared |
| 953 | * as Node *. |
| 954 | */ |
| 955 | newHaving = NIL; |
| 956 | foreach(l, (List *) parse->havingQual) |
| 957 | { |
| 958 | Node *havingclause = (Node *) lfirst(l); |
| 959 | |
| 960 | if ((parse->groupClause && parse->groupingSets) || |
| 961 | contain_agg_clause(havingclause) || |
| 962 | contain_volatile_functions(havingclause) || |
| 963 | contain_subplans(havingclause)) |
| 964 | { |
| 965 | /* keep it in HAVING */ |
| 966 | newHaving = lappend(newHaving, havingclause); |
| 967 | } |
| 968 | else if (parse->groupClause && !parse->groupingSets) |
| 969 | { |
| 970 | /* move it to WHERE */ |
| 971 | parse->jointree->quals = (Node *) |
| 972 | lappend((List *) parse->jointree->quals, havingclause); |
| 973 | } |
| 974 | else |
| 975 | { |
| 976 | /* put a copy in WHERE, keep it in HAVING */ |
| 977 | parse->jointree->quals = (Node *) |
| 978 | lappend((List *) parse->jointree->quals, |
| 979 | copyObject(havingclause)); |
| 980 | newHaving = lappend(newHaving, havingclause); |
| 981 | } |
| 982 | } |
| 983 | parse->havingQual = (Node *) newHaving; |
| 984 | |
| 985 | /* Remove any redundant GROUP BY columns */ |
| 986 | remove_useless_groupby_columns(root); |
| 987 | |
| 988 | /* |
| 989 | * If we have any outer joins, try to reduce them to plain inner joins. |
| 990 | * This step is most easily done after we've done expression |
| 991 | * preprocessing. |
| 992 | */ |
| 993 | if (hasOuterJoins) |
| 994 | reduce_outer_joins(root); |
| 995 | |
| 996 | /* |
| 997 | * If we have any RTE_RESULT relations, see if they can be deleted from |
| 998 | * the jointree. This step is most effectively done after we've done |
| 999 | * expression preprocessing and outer join reduction. |
| 1000 | */ |
| 1001 | if (hasResultRTEs) |
| 1002 | remove_useless_result_rtes(root); |
| 1003 | |
| 1004 | /* |
| 1005 | * Do the main planning. If we have an inherited target relation, that |
| 1006 | * needs special processing, else go straight to grouping_planner. |
| 1007 | */ |
| 1008 | if (parse->resultRelation && |
| 1009 | rt_fetch(parse->resultRelation, parse->rtable)->inh) |
| 1010 | inheritance_planner(root); |
| 1011 | else |
| 1012 | grouping_planner(root, false, tuple_fraction); |
| 1013 | |
| 1014 | /* |
| 1015 | * Capture the set of outer-level param IDs we have access to, for use in |
| 1016 | * extParam/allParam calculations later. |
| 1017 | */ |
| 1018 | SS_identify_outer_params(root); |
| 1019 | |
| 1020 | /* |
| 1021 | * If any initPlans were created in this query level, adjust the surviving |
| 1022 | * Paths' costs and parallel-safety flags to account for them. The |
| 1023 | * initPlans won't actually get attached to the plan tree till |
| 1024 | * create_plan() runs, but we must include their effects now. |
| 1025 | */ |
| 1026 | final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL); |
| 1027 | SS_charge_for_initplans(root, final_rel); |
| 1028 | |
| 1029 | /* |
| 1030 | * Make sure we've identified the cheapest Path for the final rel. (By |
| 1031 | * doing this here not in grouping_planner, we include initPlan costs in |
| 1032 | * the decision, though it's unlikely that will change anything.) |
| 1033 | */ |
| 1034 | set_cheapest(final_rel); |
| 1035 | |
| 1036 | return root; |
| 1037 | } |
| 1038 | |
| 1039 | /* |
| 1040 | * preprocess_expression |
| 1041 | * Do subquery_planner's preprocessing work for an expression, |
| 1042 | * which can be a targetlist, a WHERE clause (including JOIN/ON |
| 1043 | * conditions), a HAVING clause, or a few other things. |
| 1044 | */ |
| 1045 | static Node * |
| 1046 | preprocess_expression(PlannerInfo *root, Node *expr, int kind) |
| 1047 | { |
| 1048 | /* |
| 1049 | * Fall out quickly if expression is empty. This occurs often enough to |
| 1050 | * be worth checking. Note that null->null is the correct conversion for |
| 1051 | * implicit-AND result format, too. |
| 1052 | */ |
| 1053 | if (expr == NULL) |
| 1054 | return NULL; |
| 1055 | |
| 1056 | /* |
| 1057 | * If the query has any join RTEs, replace join alias variables with |
| 1058 | * base-relation variables. We must do this first, since any expressions |
| 1059 | * we may extract from the joinaliasvars lists have not been preprocessed. |
| 1060 | * For example, if we did this after sublink processing, sublinks expanded |
| 1061 | * out from join aliases would not get processed. But we can skip this in |
| 1062 | * non-lateral RTE functions, VALUES lists, and TABLESAMPLE clauses, since |
| 1063 | * they can't contain any Vars of the current query level. |
| 1064 | */ |
| 1065 | if (root->hasJoinRTEs && |
| 1066 | !(kind == EXPRKIND_RTFUNC || |
| 1067 | kind == EXPRKIND_VALUES || |
| 1068 | kind == EXPRKIND_TABLESAMPLE || |
| 1069 | kind == EXPRKIND_TABLEFUNC)) |
| 1070 | expr = flatten_join_alias_vars(root->parse, expr); |
| 1071 | |
| 1072 | /* |
| 1073 | * Simplify constant expressions. |
| 1074 | * |
| 1075 | * Note: an essential effect of this is to convert named-argument function |
| 1076 | * calls to positional notation and insert the current actual values of |
| 1077 | * any default arguments for functions. To ensure that happens, we *must* |
| 1078 | * process all expressions here. Previous PG versions sometimes skipped |
| 1079 | * const-simplification if it didn't seem worth the trouble, but we can't |
| 1080 | * do that anymore. |
| 1081 | * |
| 1082 | * Note: this also flattens nested AND and OR expressions into N-argument |
| 1083 | * form. All processing of a qual expression after this point must be |
| 1084 | * careful to maintain AND/OR flatness --- that is, do not generate a tree |
| 1085 | * with AND directly under AND, nor OR directly under OR. |
| 1086 | */ |
| 1087 | expr = eval_const_expressions(root, expr); |
| 1088 | |
| 1089 | /* |
| 1090 | * If it's a qual or havingQual, canonicalize it. |
| 1091 | */ |
| 1092 | if (kind == EXPRKIND_QUAL) |
| 1093 | { |
| 1094 | expr = (Node *) canonicalize_qual((Expr *) expr, false); |
| 1095 | |
| 1096 | #ifdef OPTIMIZER_DEBUG |
| 1097 | printf("After canonicalize_qual()\n" ); |
| 1098 | pprint(expr); |
| 1099 | #endif |
| 1100 | } |
| 1101 | |
| 1102 | /* Expand SubLinks to SubPlans */ |
| 1103 | if (root->parse->hasSubLinks) |
| 1104 | expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL)); |
| 1105 | |
| 1106 | /* |
| 1107 | * XXX do not insert anything here unless you have grokked the comments in |
| 1108 | * SS_replace_correlation_vars ... |
| 1109 | */ |
| 1110 | |
| 1111 | /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */ |
| 1112 | if (root->query_level > 1) |
| 1113 | expr = SS_replace_correlation_vars(root, expr); |
| 1114 | |
| 1115 | /* |
| 1116 | * If it's a qual or havingQual, convert it to implicit-AND format. (We |
| 1117 | * don't want to do this before eval_const_expressions, since the latter |
| 1118 | * would be unable to simplify a top-level AND correctly. Also, |
| 1119 | * SS_process_sublinks expects explicit-AND format.) |
| 1120 | */ |
| 1121 | if (kind == EXPRKIND_QUAL) |
| 1122 | expr = (Node *) make_ands_implicit((Expr *) expr); |
| 1123 | |
| 1124 | return expr; |
| 1125 | } |
| 1126 | |
| 1127 | /* |
| 1128 | * preprocess_qual_conditions |
| 1129 | * Recursively scan the query's jointree and do subquery_planner's |
| 1130 | * preprocessing work on each qual condition found therein. |
| 1131 | */ |
| 1132 | static void |
| 1133 | preprocess_qual_conditions(PlannerInfo *root, Node *jtnode) |
| 1134 | { |
| 1135 | if (jtnode == NULL) |
| 1136 | return; |
| 1137 | if (IsA(jtnode, RangeTblRef)) |
| 1138 | { |
| 1139 | /* nothing to do here */ |
| 1140 | } |
| 1141 | else if (IsA(jtnode, FromExpr)) |
| 1142 | { |
| 1143 | FromExpr *f = (FromExpr *) jtnode; |
| 1144 | ListCell *l; |
| 1145 | |
| 1146 | foreach(l, f->fromlist) |
| 1147 | preprocess_qual_conditions(root, lfirst(l)); |
| 1148 | |
| 1149 | f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL); |
| 1150 | } |
| 1151 | else if (IsA(jtnode, JoinExpr)) |
| 1152 | { |
| 1153 | JoinExpr *j = (JoinExpr *) jtnode; |
| 1154 | |
| 1155 | preprocess_qual_conditions(root, j->larg); |
| 1156 | preprocess_qual_conditions(root, j->rarg); |
| 1157 | |
| 1158 | j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL); |
| 1159 | } |
| 1160 | else |
| 1161 | elog(ERROR, "unrecognized node type: %d" , |
| 1162 | (int) nodeTag(jtnode)); |
| 1163 | } |
| 1164 | |
| 1165 | /* |
| 1166 | * preprocess_phv_expression |
| 1167 | * Do preprocessing on a PlaceHolderVar expression that's been pulled up. |
| 1168 | * |
| 1169 | * If a LATERAL subquery references an output of another subquery, and that |
| 1170 | * output must be wrapped in a PlaceHolderVar because of an intermediate outer |
| 1171 | * join, then we'll push the PlaceHolderVar expression down into the subquery |
| 1172 | * and later pull it back up during find_lateral_references, which runs after |
| 1173 | * subquery_planner has preprocessed all the expressions that were in the |
| 1174 | * current query level to start with. So we need to preprocess it then. |
| 1175 | */ |
| 1176 | Expr * |
| 1177 | preprocess_phv_expression(PlannerInfo *root, Expr *expr) |
| 1178 | { |
| 1179 | return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV); |
| 1180 | } |
| 1181 | |
| 1182 | /* |
| 1183 | * inheritance_planner |
| 1184 | * Generate Paths in the case where the result relation is an |
| 1185 | * inheritance set. |
| 1186 | * |
| 1187 | * We have to handle this case differently from cases where a source relation |
| 1188 | * is an inheritance set. Source inheritance is expanded at the bottom of the |
| 1189 | * plan tree (see allpaths.c), but target inheritance has to be expanded at |
| 1190 | * the top. The reason is that for UPDATE, each target relation needs a |
| 1191 | * different targetlist matching its own column set. Fortunately, |
| 1192 | * the UPDATE/DELETE target can never be the nullable side of an outer join, |
| 1193 | * so it's OK to generate the plan this way. |
| 1194 | * |
| 1195 | * Returns nothing; the useful output is in the Paths we attach to |
| 1196 | * the (UPPERREL_FINAL, NULL) upperrel stored in *root. |
| 1197 | * |
| 1198 | * Note that we have not done set_cheapest() on the final rel; it's convenient |
| 1199 | * to leave this to the caller. |
| 1200 | */ |
| 1201 | static void |
| 1202 | inheritance_planner(PlannerInfo *root) |
| 1203 | { |
| 1204 | Query *parse = root->parse; |
| 1205 | int top_parentRTindex = parse->resultRelation; |
| 1206 | List *select_rtable; |
| 1207 | List *select_appinfos; |
| 1208 | List *child_appinfos; |
| 1209 | List *old_child_rtis; |
| 1210 | List *new_child_rtis; |
| 1211 | Bitmapset *subqueryRTindexes; |
| 1212 | Index next_subquery_rti; |
| 1213 | int nominalRelation = -1; |
| 1214 | Index rootRelation = 0; |
| 1215 | List *final_rtable = NIL; |
| 1216 | List *final_rowmarks = NIL; |
| 1217 | int save_rel_array_size = 0; |
| 1218 | RelOptInfo **save_rel_array = NULL; |
| 1219 | AppendRelInfo **save_append_rel_array = NULL; |
| 1220 | List *subpaths = NIL; |
| 1221 | List *subroots = NIL; |
| 1222 | List *resultRelations = NIL; |
| 1223 | List *withCheckOptionLists = NIL; |
| 1224 | List *returningLists = NIL; |
| 1225 | List *rowMarks; |
| 1226 | RelOptInfo *final_rel; |
| 1227 | ListCell *lc; |
| 1228 | ListCell *lc2; |
| 1229 | Index rti; |
| 1230 | RangeTblEntry *parent_rte; |
| 1231 | Bitmapset *parent_relids; |
| 1232 | Query **parent_parses; |
| 1233 | |
| 1234 | /* Should only get here for UPDATE or DELETE */ |
| 1235 | Assert(parse->commandType == CMD_UPDATE || |
| 1236 | parse->commandType == CMD_DELETE); |
| 1237 | |
| 1238 | /* |
| 1239 | * We generate a modified instance of the original Query for each target |
| 1240 | * relation, plan that, and put all the plans into a list that will be |
| 1241 | * controlled by a single ModifyTable node. All the instances share the |
| 1242 | * same rangetable, but each instance must have its own set of subquery |
| 1243 | * RTEs within the finished rangetable because (1) they are likely to get |
| 1244 | * scribbled on during planning, and (2) it's not inconceivable that |
| 1245 | * subqueries could get planned differently in different cases. We need |
| 1246 | * not create duplicate copies of other RTE kinds, in particular not the |
| 1247 | * target relations, because they don't have either of those issues. Not |
| 1248 | * having to duplicate the target relations is important because doing so |
| 1249 | * (1) would result in a rangetable of length O(N^2) for N targets, with |
| 1250 | * at least O(N^3) work expended here; and (2) would greatly complicate |
| 1251 | * management of the rowMarks list. |
| 1252 | * |
| 1253 | * To begin with, generate a bitmapset of the relids of the subquery RTEs. |
| 1254 | */ |
| 1255 | subqueryRTindexes = NULL; |
| 1256 | rti = 1; |
| 1257 | foreach(lc, parse->rtable) |
| 1258 | { |
| 1259 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, lc); |
| 1260 | |
| 1261 | if (rte->rtekind == RTE_SUBQUERY) |
| 1262 | subqueryRTindexes = bms_add_member(subqueryRTindexes, rti); |
| 1263 | rti++; |
| 1264 | } |
| 1265 | |
| 1266 | /* |
| 1267 | * If the parent RTE is a partitioned table, we should use that as the |
| 1268 | * nominal target relation, because the RTEs added for partitioned tables |
| 1269 | * (including the root parent) as child members of the inheritance set do |
| 1270 | * not appear anywhere else in the plan, so the confusion explained below |
| 1271 | * for non-partitioning inheritance cases is not possible. |
| 1272 | */ |
| 1273 | parent_rte = rt_fetch(top_parentRTindex, parse->rtable); |
| 1274 | Assert(parent_rte->inh); |
| 1275 | if (parent_rte->relkind == RELKIND_PARTITIONED_TABLE) |
| 1276 | { |
| 1277 | nominalRelation = top_parentRTindex; |
| 1278 | rootRelation = top_parentRTindex; |
| 1279 | } |
| 1280 | |
| 1281 | /* |
| 1282 | * Before generating the real per-child-relation plans, do a cycle of |
| 1283 | * planning as though the query were a SELECT. The objective here is to |
| 1284 | * find out which child relations need to be processed, using the same |
| 1285 | * expansion and pruning logic as for a SELECT. We'll then pull out the |
| 1286 | * RangeTblEntry-s generated for the child rels, and make use of the |
| 1287 | * AppendRelInfo entries for them to guide the real planning. (This is |
| 1288 | * rather inefficient; we could perhaps stop short of making a full Path |
| 1289 | * tree. But this whole function is inefficient and slated for |
| 1290 | * destruction, so let's not contort query_planner for that.) |
| 1291 | */ |
| 1292 | { |
| 1293 | PlannerInfo *subroot; |
| 1294 | |
| 1295 | /* |
| 1296 | * Flat-copy the PlannerInfo to prevent modification of the original. |
| 1297 | */ |
| 1298 | subroot = makeNode(PlannerInfo); |
| 1299 | memcpy(subroot, root, sizeof(PlannerInfo)); |
| 1300 | |
| 1301 | /* |
| 1302 | * Make a deep copy of the parsetree for this planning cycle to mess |
| 1303 | * around with, and change it to look like a SELECT. (Hack alert: the |
| 1304 | * target RTE still has updatedCols set if this is an UPDATE, so that |
| 1305 | * expand_partitioned_rtentry will correctly update |
| 1306 | * subroot->partColsUpdated.) |
| 1307 | */ |
| 1308 | subroot->parse = copyObject(root->parse); |
| 1309 | |
| 1310 | subroot->parse->commandType = CMD_SELECT; |
| 1311 | subroot->parse->resultRelation = 0; |
| 1312 | |
| 1313 | /* |
| 1314 | * Ensure the subroot has its own copy of the original |
| 1315 | * append_rel_list, since it'll be scribbled on. (Note that at this |
| 1316 | * point, the list only contains AppendRelInfos for flattened UNION |
| 1317 | * ALL subqueries.) |
| 1318 | */ |
| 1319 | subroot->append_rel_list = copyObject(root->append_rel_list); |
| 1320 | |
| 1321 | /* |
| 1322 | * Better make a private copy of the rowMarks, too. |
| 1323 | */ |
| 1324 | subroot->rowMarks = copyObject(root->rowMarks); |
| 1325 | |
| 1326 | /* There shouldn't be any OJ info to translate, as yet */ |
| 1327 | Assert(subroot->join_info_list == NIL); |
| 1328 | /* and we haven't created PlaceHolderInfos, either */ |
| 1329 | Assert(subroot->placeholder_list == NIL); |
| 1330 | |
| 1331 | /* Generate Path(s) for accessing this result relation */ |
| 1332 | grouping_planner(subroot, true, 0.0 /* retrieve all tuples */ ); |
| 1333 | |
| 1334 | /* Extract the info we need. */ |
| 1335 | select_rtable = subroot->parse->rtable; |
| 1336 | select_appinfos = subroot->append_rel_list; |
| 1337 | |
| 1338 | /* |
| 1339 | * We need to propagate partColsUpdated back, too. (The later |
| 1340 | * planning cycles will not set this because they won't run |
| 1341 | * expand_partitioned_rtentry for the UPDATE target.) |
| 1342 | */ |
| 1343 | root->partColsUpdated = subroot->partColsUpdated; |
| 1344 | } |
| 1345 | |
| 1346 | /*---------- |
| 1347 | * Since only one rangetable can exist in the final plan, we need to make |
| 1348 | * sure that it contains all the RTEs needed for any child plan. This is |
| 1349 | * complicated by the need to use separate subquery RTEs for each child. |
| 1350 | * We arrange the final rtable as follows: |
| 1351 | * 1. All original rtable entries (with their original RT indexes). |
| 1352 | * 2. All the relation RTEs generated for children of the target table. |
| 1353 | * 3. Subquery RTEs for children after the first. We need N * (K - 1) |
| 1354 | * RT slots for this, if there are N subqueries and K child tables. |
| 1355 | * 4. Additional RTEs generated during the child planning runs, such as |
| 1356 | * children of inheritable RTEs other than the target table. |
| 1357 | * We assume that each child planning run will create an identical set |
| 1358 | * of type-4 RTEs. |
| 1359 | * |
| 1360 | * So the next thing to do is append the type-2 RTEs (the target table's |
| 1361 | * children) to the original rtable. We look through select_appinfos |
| 1362 | * to find them. |
| 1363 | * |
| 1364 | * To identify which AppendRelInfos are relevant as we thumb through |
| 1365 | * select_appinfos, we need to look for both direct and indirect children |
| 1366 | * of top_parentRTindex, so we use a bitmap of known parent relids. |
| 1367 | * expand_inherited_rtentry() always processes a parent before any of that |
| 1368 | * parent's children, so we should see an intermediate parent before its |
| 1369 | * children. |
| 1370 | *---------- |
| 1371 | */ |
| 1372 | child_appinfos = NIL; |
| 1373 | old_child_rtis = NIL; |
| 1374 | new_child_rtis = NIL; |
| 1375 | parent_relids = bms_make_singleton(top_parentRTindex); |
| 1376 | foreach(lc, select_appinfos) |
| 1377 | { |
| 1378 | AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc); |
| 1379 | RangeTblEntry *child_rte; |
| 1380 | |
| 1381 | /* append_rel_list contains all append rels; ignore others */ |
| 1382 | if (!bms_is_member(appinfo->parent_relid, parent_relids)) |
| 1383 | continue; |
| 1384 | |
| 1385 | /* remember relevant AppendRelInfos for use below */ |
| 1386 | child_appinfos = lappend(child_appinfos, appinfo); |
| 1387 | |
| 1388 | /* extract RTE for this child rel */ |
| 1389 | child_rte = rt_fetch(appinfo->child_relid, select_rtable); |
| 1390 | |
| 1391 | /* and append it to the original rtable */ |
| 1392 | parse->rtable = lappend(parse->rtable, child_rte); |
| 1393 | |
| 1394 | /* remember child's index in the SELECT rtable */ |
| 1395 | old_child_rtis = lappend_int(old_child_rtis, appinfo->child_relid); |
| 1396 | |
| 1397 | /* and its new index in the final rtable */ |
| 1398 | new_child_rtis = lappend_int(new_child_rtis, list_length(parse->rtable)); |
| 1399 | |
| 1400 | /* if child is itself partitioned, update parent_relids */ |
| 1401 | if (child_rte->inh) |
| 1402 | { |
| 1403 | Assert(child_rte->relkind == RELKIND_PARTITIONED_TABLE); |
| 1404 | parent_relids = bms_add_member(parent_relids, appinfo->child_relid); |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * It's possible that the RTIs we just assigned for the child rels in the |
| 1410 | * final rtable are different from what they were in the SELECT query. |
| 1411 | * Adjust the AppendRelInfos so that they will correctly map RT indexes to |
| 1412 | * the final indexes. We can do this left-to-right since no child rel's |
| 1413 | * final RT index could be greater than what it had in the SELECT query. |
| 1414 | */ |
| 1415 | forboth(lc, old_child_rtis, lc2, new_child_rtis) |
| 1416 | { |
| 1417 | int old_child_rti = lfirst_int(lc); |
| 1418 | int new_child_rti = lfirst_int(lc2); |
| 1419 | |
| 1420 | if (old_child_rti == new_child_rti) |
| 1421 | continue; /* nothing to do */ |
| 1422 | |
| 1423 | Assert(old_child_rti > new_child_rti); |
| 1424 | |
| 1425 | ChangeVarNodes((Node *) child_appinfos, |
| 1426 | old_child_rti, new_child_rti, 0); |
| 1427 | } |
| 1428 | |
| 1429 | /* |
| 1430 | * Now set up rangetable entries for subqueries for additional children |
| 1431 | * (the first child will just use the original ones). These all have to |
| 1432 | * look more or less real, or EXPLAIN will get unhappy; so we just make |
| 1433 | * them all clones of the original subqueries. |
| 1434 | */ |
| 1435 | next_subquery_rti = list_length(parse->rtable) + 1; |
| 1436 | if (subqueryRTindexes != NULL) |
| 1437 | { |
| 1438 | int n_children = list_length(child_appinfos); |
| 1439 | |
| 1440 | while (n_children-- > 1) |
| 1441 | { |
| 1442 | int oldrti = -1; |
| 1443 | |
| 1444 | while ((oldrti = bms_next_member(subqueryRTindexes, oldrti)) >= 0) |
| 1445 | { |
| 1446 | RangeTblEntry *subqrte; |
| 1447 | |
| 1448 | subqrte = rt_fetch(oldrti, parse->rtable); |
| 1449 | parse->rtable = lappend(parse->rtable, copyObject(subqrte)); |
| 1450 | } |
| 1451 | } |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | * The query for each child is obtained by translating the query for its |
| 1456 | * immediate parent, since the AppendRelInfo data we have shows deltas |
| 1457 | * between parents and children. We use the parent_parses array to |
| 1458 | * remember the appropriate query trees. This is indexed by parent relid. |
| 1459 | * Since the maximum number of parents is limited by the number of RTEs in |
| 1460 | * the SELECT query, we use that number to allocate the array. An extra |
| 1461 | * entry is needed since relids start from 1. |
| 1462 | */ |
| 1463 | parent_parses = (Query **) palloc0((list_length(select_rtable) + 1) * |
| 1464 | sizeof(Query *)); |
| 1465 | parent_parses[top_parentRTindex] = parse; |
| 1466 | |
| 1467 | /* |
| 1468 | * And now we can get on with generating a plan for each child table. |
| 1469 | */ |
| 1470 | foreach(lc, child_appinfos) |
| 1471 | { |
| 1472 | AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc); |
| 1473 | Index this_subquery_rti = next_subquery_rti; |
| 1474 | Query *parent_parse; |
| 1475 | PlannerInfo *subroot; |
| 1476 | RangeTblEntry *child_rte; |
| 1477 | RelOptInfo *sub_final_rel; |
| 1478 | Path *subpath; |
| 1479 | |
| 1480 | /* |
| 1481 | * expand_inherited_rtentry() always processes a parent before any of |
| 1482 | * that parent's children, so the parent query for this relation |
| 1483 | * should already be available. |
| 1484 | */ |
| 1485 | parent_parse = parent_parses[appinfo->parent_relid]; |
| 1486 | Assert(parent_parse != NULL); |
| 1487 | |
| 1488 | /* |
| 1489 | * We need a working copy of the PlannerInfo so that we can control |
| 1490 | * propagation of information back to the main copy. |
| 1491 | */ |
| 1492 | subroot = makeNode(PlannerInfo); |
| 1493 | memcpy(subroot, root, sizeof(PlannerInfo)); |
| 1494 | |
| 1495 | /* |
| 1496 | * Generate modified query with this rel as target. We first apply |
| 1497 | * adjust_appendrel_attrs, which copies the Query and changes |
| 1498 | * references to the parent RTE to refer to the current child RTE, |
| 1499 | * then fool around with subquery RTEs. |
| 1500 | */ |
| 1501 | subroot->parse = (Query *) |
| 1502 | adjust_appendrel_attrs(subroot, |
| 1503 | (Node *) parent_parse, |
| 1504 | 1, &appinfo); |
| 1505 | |
| 1506 | /* |
| 1507 | * If there are securityQuals attached to the parent, move them to the |
| 1508 | * child rel (they've already been transformed properly for that). |
| 1509 | */ |
| 1510 | parent_rte = rt_fetch(appinfo->parent_relid, subroot->parse->rtable); |
| 1511 | child_rte = rt_fetch(appinfo->child_relid, subroot->parse->rtable); |
| 1512 | child_rte->securityQuals = parent_rte->securityQuals; |
| 1513 | parent_rte->securityQuals = NIL; |
| 1514 | |
| 1515 | /* |
| 1516 | * HACK: setting this to a value other than INHKIND_NONE signals to |
| 1517 | * relation_excluded_by_constraints() to treat the result relation as |
| 1518 | * being an appendrel member. |
| 1519 | */ |
| 1520 | subroot->inhTargetKind = |
| 1521 | (rootRelation != 0) ? INHKIND_PARTITIONED : INHKIND_INHERITED; |
| 1522 | |
| 1523 | /* |
| 1524 | * If this child is further partitioned, remember it as a parent. |
| 1525 | * Since a partitioned table does not have any data, we don't need to |
| 1526 | * create a plan for it, and we can stop processing it here. We do, |
| 1527 | * however, need to remember its modified PlannerInfo for use when |
| 1528 | * processing its children, since we'll update their varnos based on |
| 1529 | * the delta from immediate parent to child, not from top to child. |
| 1530 | * |
| 1531 | * Note: a very non-obvious point is that we have not yet added |
| 1532 | * duplicate subquery RTEs to the subroot's rtable. We mustn't, |
| 1533 | * because then its children would have two sets of duplicates, |
| 1534 | * confusing matters. |
| 1535 | */ |
| 1536 | if (child_rte->inh) |
| 1537 | { |
| 1538 | Assert(child_rte->relkind == RELKIND_PARTITIONED_TABLE); |
| 1539 | parent_parses[appinfo->child_relid] = subroot->parse; |
| 1540 | continue; |
| 1541 | } |
| 1542 | |
| 1543 | /* |
| 1544 | * Set the nominal target relation of the ModifyTable node if not |
| 1545 | * already done. If the target is a partitioned table, we already set |
| 1546 | * nominalRelation to refer to the partition root, above. For |
| 1547 | * non-partitioned inheritance cases, we'll use the first child |
| 1548 | * relation (even if it's excluded) as the nominal target relation. |
| 1549 | * Because of the way expand_inherited_rtentry works, that should be |
| 1550 | * the RTE representing the parent table in its role as a simple |
| 1551 | * member of the inheritance set. |
| 1552 | * |
| 1553 | * It would be logically cleaner to *always* use the inheritance |
| 1554 | * parent RTE as the nominal relation; but that RTE is not otherwise |
| 1555 | * referenced in the plan in the non-partitioned inheritance case. |
| 1556 | * Instead the duplicate child RTE created by expand_inherited_rtentry |
| 1557 | * is used elsewhere in the plan, so using the original parent RTE |
| 1558 | * would give rise to confusing use of multiple aliases in EXPLAIN |
| 1559 | * output for what the user will think is the "same" table. OTOH, |
| 1560 | * it's not a problem in the partitioned inheritance case, because |
| 1561 | * there is no duplicate RTE for the parent. |
| 1562 | */ |
| 1563 | if (nominalRelation < 0) |
| 1564 | nominalRelation = appinfo->child_relid; |
| 1565 | |
| 1566 | /* |
| 1567 | * As above, each child plan run needs its own append_rel_list and |
| 1568 | * rowmarks, which should start out as pristine copies of the |
| 1569 | * originals. There can't be any references to UPDATE/DELETE target |
| 1570 | * rels in them; but there could be subquery references, which we'll |
| 1571 | * fix up in a moment. |
| 1572 | */ |
| 1573 | subroot->append_rel_list = copyObject(root->append_rel_list); |
| 1574 | subroot->rowMarks = copyObject(root->rowMarks); |
| 1575 | |
| 1576 | /* |
| 1577 | * If this isn't the first child Query, adjust Vars and jointree |
| 1578 | * entries to reference the appropriate set of subquery RTEs. |
| 1579 | */ |
| 1580 | if (final_rtable != NIL && subqueryRTindexes != NULL) |
| 1581 | { |
| 1582 | int oldrti = -1; |
| 1583 | |
| 1584 | while ((oldrti = bms_next_member(subqueryRTindexes, oldrti)) >= 0) |
| 1585 | { |
| 1586 | Index newrti = next_subquery_rti++; |
| 1587 | |
| 1588 | ChangeVarNodes((Node *) subroot->parse, oldrti, newrti, 0); |
| 1589 | ChangeVarNodes((Node *) subroot->append_rel_list, |
| 1590 | oldrti, newrti, 0); |
| 1591 | ChangeVarNodes((Node *) subroot->rowMarks, oldrti, newrti, 0); |
| 1592 | } |
| 1593 | } |
| 1594 | |
| 1595 | /* There shouldn't be any OJ info to translate, as yet */ |
| 1596 | Assert(subroot->join_info_list == NIL); |
| 1597 | /* and we haven't created PlaceHolderInfos, either */ |
| 1598 | Assert(subroot->placeholder_list == NIL); |
| 1599 | |
| 1600 | /* Generate Path(s) for accessing this result relation */ |
| 1601 | grouping_planner(subroot, true, 0.0 /* retrieve all tuples */ ); |
| 1602 | |
| 1603 | /* |
| 1604 | * Select cheapest path in case there's more than one. We always run |
| 1605 | * modification queries to conclusion, so we care only for the |
| 1606 | * cheapest-total path. |
| 1607 | */ |
| 1608 | sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL); |
| 1609 | set_cheapest(sub_final_rel); |
| 1610 | subpath = sub_final_rel->cheapest_total_path; |
| 1611 | |
| 1612 | /* |
| 1613 | * If this child rel was excluded by constraint exclusion, exclude it |
| 1614 | * from the result plan. |
| 1615 | */ |
| 1616 | if (IS_DUMMY_REL(sub_final_rel)) |
| 1617 | continue; |
| 1618 | |
| 1619 | /* |
| 1620 | * If this is the first non-excluded child, its post-planning rtable |
| 1621 | * becomes the initial contents of final_rtable; otherwise, copy its |
| 1622 | * modified subquery RTEs into final_rtable, to ensure we have sane |
| 1623 | * copies of those. Also save the first non-excluded child's version |
| 1624 | * of the rowmarks list; we assume all children will end up with |
| 1625 | * equivalent versions of that. |
| 1626 | */ |
| 1627 | if (final_rtable == NIL) |
| 1628 | { |
| 1629 | final_rtable = subroot->parse->rtable; |
| 1630 | final_rowmarks = subroot->rowMarks; |
| 1631 | } |
| 1632 | else |
| 1633 | { |
| 1634 | Assert(list_length(final_rtable) == |
| 1635 | list_length(subroot->parse->rtable)); |
| 1636 | if (subqueryRTindexes != NULL) |
| 1637 | { |
| 1638 | int oldrti = -1; |
| 1639 | |
| 1640 | while ((oldrti = bms_next_member(subqueryRTindexes, oldrti)) >= 0) |
| 1641 | { |
| 1642 | Index newrti = this_subquery_rti++; |
| 1643 | RangeTblEntry *subqrte; |
| 1644 | ListCell *newrticell; |
| 1645 | |
| 1646 | subqrte = rt_fetch(newrti, subroot->parse->rtable); |
| 1647 | newrticell = list_nth_cell(final_rtable, newrti - 1); |
| 1648 | lfirst(newrticell) = subqrte; |
| 1649 | } |
| 1650 | } |
| 1651 | } |
| 1652 | |
| 1653 | /* |
| 1654 | * We need to collect all the RelOptInfos from all child plans into |
| 1655 | * the main PlannerInfo, since setrefs.c will need them. We use the |
| 1656 | * last child's simple_rel_array, so we have to propagate forward the |
| 1657 | * RelOptInfos that were already built in previous children. |
| 1658 | */ |
| 1659 | Assert(subroot->simple_rel_array_size >= save_rel_array_size); |
| 1660 | for (rti = 1; rti < save_rel_array_size; rti++) |
| 1661 | { |
| 1662 | RelOptInfo *brel = save_rel_array[rti]; |
| 1663 | |
| 1664 | if (brel) |
| 1665 | subroot->simple_rel_array[rti] = brel; |
| 1666 | } |
| 1667 | save_rel_array_size = subroot->simple_rel_array_size; |
| 1668 | save_rel_array = subroot->simple_rel_array; |
| 1669 | save_append_rel_array = subroot->append_rel_array; |
| 1670 | |
| 1671 | /* |
| 1672 | * Make sure any initplans from this rel get into the outer list. Note |
| 1673 | * we're effectively assuming all children generate the same |
| 1674 | * init_plans. |
| 1675 | */ |
| 1676 | root->init_plans = subroot->init_plans; |
| 1677 | |
| 1678 | /* Build list of sub-paths */ |
| 1679 | subpaths = lappend(subpaths, subpath); |
| 1680 | |
| 1681 | /* Build list of modified subroots, too */ |
| 1682 | subroots = lappend(subroots, subroot); |
| 1683 | |
| 1684 | /* Build list of target-relation RT indexes */ |
| 1685 | resultRelations = lappend_int(resultRelations, appinfo->child_relid); |
| 1686 | |
| 1687 | /* Build lists of per-relation WCO and RETURNING targetlists */ |
| 1688 | if (parse->withCheckOptions) |
| 1689 | withCheckOptionLists = lappend(withCheckOptionLists, |
| 1690 | subroot->parse->withCheckOptions); |
| 1691 | if (parse->returningList) |
| 1692 | returningLists = lappend(returningLists, |
| 1693 | subroot->parse->returningList); |
| 1694 | |
| 1695 | Assert(!parse->onConflict); |
| 1696 | } |
| 1697 | |
| 1698 | /* Result path must go into outer query's FINAL upperrel */ |
| 1699 | final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL); |
| 1700 | |
| 1701 | /* |
| 1702 | * We don't currently worry about setting final_rel's consider_parallel |
| 1703 | * flag in this case, nor about allowing FDWs or create_upper_paths_hook |
| 1704 | * to get control here. |
| 1705 | */ |
| 1706 | |
| 1707 | if (subpaths == NIL) |
| 1708 | { |
| 1709 | /* |
| 1710 | * We managed to exclude every child rel, so generate a dummy path |
| 1711 | * representing the empty set. Although it's clear that no data will |
| 1712 | * be updated or deleted, we will still need to have a ModifyTable |
| 1713 | * node so that any statement triggers are executed. (This could be |
| 1714 | * cleaner if we fixed nodeModifyTable.c to support zero child nodes, |
| 1715 | * but that probably wouldn't be a net win.) |
| 1716 | */ |
| 1717 | Path *dummy_path; |
| 1718 | |
| 1719 | /* tlist processing never got done, either */ |
| 1720 | root->processed_tlist = preprocess_targetlist(root); |
| 1721 | final_rel->reltarget = create_pathtarget(root, root->processed_tlist); |
| 1722 | |
| 1723 | /* Make a dummy path, cf set_dummy_rel_pathlist() */ |
| 1724 | dummy_path = (Path *) create_append_path(NULL, final_rel, NIL, NIL, |
| 1725 | NIL, NULL, 0, false, |
| 1726 | NIL, -1); |
| 1727 | |
| 1728 | /* These lists must be nonempty to make a valid ModifyTable node */ |
| 1729 | subpaths = list_make1(dummy_path); |
| 1730 | subroots = list_make1(root); |
| 1731 | resultRelations = list_make1_int(parse->resultRelation); |
| 1732 | if (parse->withCheckOptions) |
| 1733 | withCheckOptionLists = list_make1(parse->withCheckOptions); |
| 1734 | if (parse->returningList) |
| 1735 | returningLists = list_make1(parse->returningList); |
| 1736 | /* Disable tuple routing, too, just to be safe */ |
| 1737 | root->partColsUpdated = false; |
| 1738 | } |
| 1739 | else |
| 1740 | { |
| 1741 | /* |
| 1742 | * Put back the final adjusted rtable into the master copy of the |
| 1743 | * Query. (We mustn't do this if we found no non-excluded children, |
| 1744 | * since we never saved an adjusted rtable at all.) |
| 1745 | */ |
| 1746 | parse->rtable = final_rtable; |
| 1747 | root->simple_rel_array_size = save_rel_array_size; |
| 1748 | root->simple_rel_array = save_rel_array; |
| 1749 | root->append_rel_array = save_append_rel_array; |
| 1750 | |
| 1751 | /* Must reconstruct master's simple_rte_array, too */ |
| 1752 | root->simple_rte_array = (RangeTblEntry **) |
| 1753 | palloc0((list_length(final_rtable) + 1) * sizeof(RangeTblEntry *)); |
| 1754 | rti = 1; |
| 1755 | foreach(lc, final_rtable) |
| 1756 | { |
| 1757 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, lc); |
| 1758 | |
| 1759 | root->simple_rte_array[rti++] = rte; |
| 1760 | } |
| 1761 | |
| 1762 | /* Put back adjusted rowmarks, too */ |
| 1763 | root->rowMarks = final_rowmarks; |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will |
| 1768 | * have dealt with fetching non-locked marked rows, else we need to have |
| 1769 | * ModifyTable do that. |
| 1770 | */ |
| 1771 | if (parse->rowMarks) |
| 1772 | rowMarks = NIL; |
| 1773 | else |
| 1774 | rowMarks = root->rowMarks; |
| 1775 | |
| 1776 | /* Create Path representing a ModifyTable to do the UPDATE/DELETE work */ |
| 1777 | add_path(final_rel, (Path *) |
| 1778 | create_modifytable_path(root, final_rel, |
| 1779 | parse->commandType, |
| 1780 | parse->canSetTag, |
| 1781 | nominalRelation, |
| 1782 | rootRelation, |
| 1783 | root->partColsUpdated, |
| 1784 | resultRelations, |
| 1785 | subpaths, |
| 1786 | subroots, |
| 1787 | withCheckOptionLists, |
| 1788 | returningLists, |
| 1789 | rowMarks, |
| 1790 | NULL, |
| 1791 | assign_special_exec_param(root))); |
| 1792 | } |
| 1793 | |
| 1794 | /*-------------------- |
| 1795 | * grouping_planner |
| 1796 | * Perform planning steps related to grouping, aggregation, etc. |
| 1797 | * |
| 1798 | * This function adds all required top-level processing to the scan/join |
| 1799 | * Path(s) produced by query_planner. |
| 1800 | * |
| 1801 | * If inheritance_update is true, we're being called from inheritance_planner |
| 1802 | * and should not include a ModifyTable step in the resulting Path(s). |
| 1803 | * (inheritance_planner will create a single ModifyTable node covering all the |
| 1804 | * target tables.) |
| 1805 | * |
| 1806 | * tuple_fraction is the fraction of tuples we expect will be retrieved. |
| 1807 | * tuple_fraction is interpreted as follows: |
| 1808 | * 0: expect all tuples to be retrieved (normal case) |
| 1809 | * 0 < tuple_fraction < 1: expect the given fraction of tuples available |
| 1810 | * from the plan to be retrieved |
| 1811 | * tuple_fraction >= 1: tuple_fraction is the absolute number of tuples |
| 1812 | * expected to be retrieved (ie, a LIMIT specification) |
| 1813 | * |
| 1814 | * Returns nothing; the useful output is in the Paths we attach to the |
| 1815 | * (UPPERREL_FINAL, NULL) upperrel in *root. In addition, |
| 1816 | * root->processed_tlist contains the final processed targetlist. |
| 1817 | * |
| 1818 | * Note that we have not done set_cheapest() on the final rel; it's convenient |
| 1819 | * to leave this to the caller. |
| 1820 | *-------------------- |
| 1821 | */ |
| 1822 | static void |
| 1823 | grouping_planner(PlannerInfo *root, bool inheritance_update, |
| 1824 | double tuple_fraction) |
| 1825 | { |
| 1826 | Query *parse = root->parse; |
| 1827 | int64 offset_est = 0; |
| 1828 | int64 count_est = 0; |
| 1829 | double limit_tuples = -1.0; |
| 1830 | bool have_postponed_srfs = false; |
| 1831 | PathTarget *final_target; |
| 1832 | List *final_targets; |
| 1833 | List *final_targets_contain_srfs; |
| 1834 | bool final_target_parallel_safe; |
| 1835 | RelOptInfo *current_rel; |
| 1836 | RelOptInfo *final_rel; |
| 1837 | FinalPathExtraData ; |
| 1838 | ListCell *lc; |
| 1839 | |
| 1840 | /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */ |
| 1841 | if (parse->limitCount || parse->limitOffset) |
| 1842 | { |
| 1843 | tuple_fraction = preprocess_limit(root, tuple_fraction, |
| 1844 | &offset_est, &count_est); |
| 1845 | |
| 1846 | /* |
| 1847 | * If we have a known LIMIT, and don't have an unknown OFFSET, we can |
| 1848 | * estimate the effects of using a bounded sort. |
| 1849 | */ |
| 1850 | if (count_est > 0 && offset_est >= 0) |
| 1851 | limit_tuples = (double) count_est + (double) offset_est; |
| 1852 | } |
| 1853 | |
| 1854 | /* Make tuple_fraction accessible to lower-level routines */ |
| 1855 | root->tuple_fraction = tuple_fraction; |
| 1856 | |
| 1857 | if (parse->setOperations) |
| 1858 | { |
| 1859 | /* |
| 1860 | * If there's a top-level ORDER BY, assume we have to fetch all the |
| 1861 | * tuples. This might be too simplistic given all the hackery below |
| 1862 | * to possibly avoid the sort; but the odds of accurate estimates here |
| 1863 | * are pretty low anyway. XXX try to get rid of this in favor of |
| 1864 | * letting plan_set_operations generate both fast-start and |
| 1865 | * cheapest-total paths. |
| 1866 | */ |
| 1867 | if (parse->sortClause) |
| 1868 | root->tuple_fraction = 0.0; |
| 1869 | |
| 1870 | /* |
| 1871 | * Construct Paths for set operations. The results will not need any |
| 1872 | * work except perhaps a top-level sort and/or LIMIT. Note that any |
| 1873 | * special work for recursive unions is the responsibility of |
| 1874 | * plan_set_operations. |
| 1875 | */ |
| 1876 | current_rel = plan_set_operations(root); |
| 1877 | |
| 1878 | /* |
| 1879 | * We should not need to call preprocess_targetlist, since we must be |
| 1880 | * in a SELECT query node. Instead, use the processed_tlist returned |
| 1881 | * by plan_set_operations (since this tells whether it returned any |
| 1882 | * resjunk columns!), and transfer any sort key information from the |
| 1883 | * original tlist. |
| 1884 | */ |
| 1885 | Assert(parse->commandType == CMD_SELECT); |
| 1886 | |
| 1887 | /* for safety, copy processed_tlist instead of modifying in-place */ |
| 1888 | root->processed_tlist = |
| 1889 | postprocess_setop_tlist(copyObject(root->processed_tlist), |
| 1890 | parse->targetList); |
| 1891 | |
| 1892 | /* Also extract the PathTarget form of the setop result tlist */ |
| 1893 | final_target = current_rel->cheapest_total_path->pathtarget; |
| 1894 | |
| 1895 | /* And check whether it's parallel safe */ |
| 1896 | final_target_parallel_safe = |
| 1897 | is_parallel_safe(root, (Node *) final_target->exprs); |
| 1898 | |
| 1899 | /* The setop result tlist couldn't contain any SRFs */ |
| 1900 | Assert(!parse->hasTargetSRFs); |
| 1901 | final_targets = final_targets_contain_srfs = NIL; |
| 1902 | |
| 1903 | /* |
| 1904 | * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have |
| 1905 | * checked already, but let's make sure). |
| 1906 | */ |
| 1907 | if (parse->rowMarks) |
| 1908 | ereport(ERROR, |
| 1909 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1910 | /*------ |
| 1911 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
| 1912 | errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT" , |
| 1913 | LCS_asString(linitial_node(RowMarkClause, |
| 1914 | parse->rowMarks)->strength)))); |
| 1915 | |
| 1916 | /* |
| 1917 | * Calculate pathkeys that represent result ordering requirements |
| 1918 | */ |
| 1919 | Assert(parse->distinctClause == NIL); |
| 1920 | root->sort_pathkeys = make_pathkeys_for_sortclauses(root, |
| 1921 | parse->sortClause, |
| 1922 | root->processed_tlist); |
| 1923 | } |
| 1924 | else |
| 1925 | { |
| 1926 | /* No set operations, do regular planning */ |
| 1927 | PathTarget *sort_input_target; |
| 1928 | List *sort_input_targets; |
| 1929 | List *sort_input_targets_contain_srfs; |
| 1930 | bool sort_input_target_parallel_safe; |
| 1931 | PathTarget *grouping_target; |
| 1932 | List *grouping_targets; |
| 1933 | List *grouping_targets_contain_srfs; |
| 1934 | bool grouping_target_parallel_safe; |
| 1935 | PathTarget *scanjoin_target; |
| 1936 | List *scanjoin_targets; |
| 1937 | List *scanjoin_targets_contain_srfs; |
| 1938 | bool scanjoin_target_parallel_safe; |
| 1939 | bool scanjoin_target_same_exprs; |
| 1940 | bool have_grouping; |
| 1941 | AggClauseCosts agg_costs; |
| 1942 | WindowFuncLists *wflists = NULL; |
| 1943 | List *activeWindows = NIL; |
| 1944 | grouping_sets_data *gset_data = NULL; |
| 1945 | standard_qp_extra ; |
| 1946 | |
| 1947 | /* A recursive query should always have setOperations */ |
| 1948 | Assert(!root->hasRecursion); |
| 1949 | |
| 1950 | /* Preprocess grouping sets and GROUP BY clause, if any */ |
| 1951 | if (parse->groupingSets) |
| 1952 | { |
| 1953 | gset_data = preprocess_grouping_sets(root); |
| 1954 | } |
| 1955 | else |
| 1956 | { |
| 1957 | /* Preprocess regular GROUP BY clause, if any */ |
| 1958 | if (parse->groupClause) |
| 1959 | parse->groupClause = preprocess_groupclause(root, NIL); |
| 1960 | } |
| 1961 | |
| 1962 | /* |
| 1963 | * Preprocess targetlist. Note that much of the remaining planning |
| 1964 | * work will be done with the PathTarget representation of tlists, but |
| 1965 | * we must also maintain the full representation of the final tlist so |
| 1966 | * that we can transfer its decoration (resnames etc) to the topmost |
| 1967 | * tlist of the finished Plan. This is kept in processed_tlist. |
| 1968 | */ |
| 1969 | root->processed_tlist = preprocess_targetlist(root); |
| 1970 | |
| 1971 | /* |
| 1972 | * Collect statistics about aggregates for estimating costs, and mark |
| 1973 | * all the aggregates with resolved aggtranstypes. We must do this |
| 1974 | * before slicing and dicing the tlist into various pathtargets, else |
| 1975 | * some copies of the Aggref nodes might escape being marked with the |
| 1976 | * correct transtypes. |
| 1977 | * |
| 1978 | * Note: currently, we do not detect duplicate aggregates here. This |
| 1979 | * may result in somewhat-overestimated cost, which is fine for our |
| 1980 | * purposes since all Paths will get charged the same. But at some |
| 1981 | * point we might wish to do that detection in the planner, rather |
| 1982 | * than during executor startup. |
| 1983 | */ |
| 1984 | MemSet(&agg_costs, 0, sizeof(AggClauseCosts)); |
| 1985 | if (parse->hasAggs) |
| 1986 | { |
| 1987 | get_agg_clause_costs(root, (Node *) root->processed_tlist, |
| 1988 | AGGSPLIT_SIMPLE, &agg_costs); |
| 1989 | get_agg_clause_costs(root, parse->havingQual, AGGSPLIT_SIMPLE, |
| 1990 | &agg_costs); |
| 1991 | } |
| 1992 | |
| 1993 | /* |
| 1994 | * Locate any window functions in the tlist. (We don't need to look |
| 1995 | * anywhere else, since expressions used in ORDER BY will be in there |
| 1996 | * too.) Note that they could all have been eliminated by constant |
| 1997 | * folding, in which case we don't need to do any more work. |
| 1998 | */ |
| 1999 | if (parse->hasWindowFuncs) |
| 2000 | { |
| 2001 | wflists = find_window_functions((Node *) root->processed_tlist, |
| 2002 | list_length(parse->windowClause)); |
| 2003 | if (wflists->numWindowFuncs > 0) |
| 2004 | activeWindows = select_active_windows(root, wflists); |
| 2005 | else |
| 2006 | parse->hasWindowFuncs = false; |
| 2007 | } |
| 2008 | |
| 2009 | /* |
| 2010 | * Preprocess MIN/MAX aggregates, if any. Note: be careful about |
| 2011 | * adding logic between here and the query_planner() call. Anything |
| 2012 | * that is needed in MIN/MAX-optimizable cases will have to be |
| 2013 | * duplicated in planagg.c. |
| 2014 | */ |
| 2015 | if (parse->hasAggs) |
| 2016 | preprocess_minmax_aggregates(root); |
| 2017 | |
| 2018 | /* |
| 2019 | * Figure out whether there's a hard limit on the number of rows that |
| 2020 | * query_planner's result subplan needs to return. Even if we know a |
| 2021 | * hard limit overall, it doesn't apply if the query has any |
| 2022 | * grouping/aggregation operations, or SRFs in the tlist. |
| 2023 | */ |
| 2024 | if (parse->groupClause || |
| 2025 | parse->groupingSets || |
| 2026 | parse->distinctClause || |
| 2027 | parse->hasAggs || |
| 2028 | parse->hasWindowFuncs || |
| 2029 | parse->hasTargetSRFs || |
| 2030 | root->hasHavingQual) |
| 2031 | root->limit_tuples = -1.0; |
| 2032 | else |
| 2033 | root->limit_tuples = limit_tuples; |
| 2034 | |
| 2035 | /* Set up data needed by standard_qp_callback */ |
| 2036 | qp_extra.activeWindows = activeWindows; |
| 2037 | qp_extra.groupClause = (gset_data |
| 2038 | ? (gset_data->rollups ? linitial_node(RollupData, gset_data->rollups)->groupClause : NIL) |
| 2039 | : parse->groupClause); |
| 2040 | |
| 2041 | /* |
| 2042 | * Generate the best unsorted and presorted paths for the scan/join |
| 2043 | * portion of this Query, ie the processing represented by the |
| 2044 | * FROM/WHERE clauses. (Note there may not be any presorted paths.) |
| 2045 | * We also generate (in standard_qp_callback) pathkey representations |
| 2046 | * of the query's sort clause, distinct clause, etc. |
| 2047 | */ |
| 2048 | current_rel = query_planner(root, standard_qp_callback, &qp_extra); |
| 2049 | |
| 2050 | /* |
| 2051 | * Convert the query's result tlist into PathTarget format. |
| 2052 | * |
| 2053 | * Note: this cannot be done before query_planner() has performed |
| 2054 | * appendrel expansion, because that might add resjunk entries to |
| 2055 | * root->processed_tlist. Waiting till afterwards is also helpful |
| 2056 | * because the target width estimates can use per-Var width numbers |
| 2057 | * that were obtained within query_planner(). |
| 2058 | */ |
| 2059 | final_target = create_pathtarget(root, root->processed_tlist); |
| 2060 | final_target_parallel_safe = |
| 2061 | is_parallel_safe(root, (Node *) final_target->exprs); |
| 2062 | |
| 2063 | /* |
| 2064 | * If ORDER BY was given, consider whether we should use a post-sort |
| 2065 | * projection, and compute the adjusted target for preceding steps if |
| 2066 | * so. |
| 2067 | */ |
| 2068 | if (parse->sortClause) |
| 2069 | { |
| 2070 | sort_input_target = make_sort_input_target(root, |
| 2071 | final_target, |
| 2072 | &have_postponed_srfs); |
| 2073 | sort_input_target_parallel_safe = |
| 2074 | is_parallel_safe(root, (Node *) sort_input_target->exprs); |
| 2075 | } |
| 2076 | else |
| 2077 | { |
| 2078 | sort_input_target = final_target; |
| 2079 | sort_input_target_parallel_safe = final_target_parallel_safe; |
| 2080 | } |
| 2081 | |
| 2082 | /* |
| 2083 | * If we have window functions to deal with, the output from any |
| 2084 | * grouping step needs to be what the window functions want; |
| 2085 | * otherwise, it should be sort_input_target. |
| 2086 | */ |
| 2087 | if (activeWindows) |
| 2088 | { |
| 2089 | grouping_target = make_window_input_target(root, |
| 2090 | final_target, |
| 2091 | activeWindows); |
| 2092 | grouping_target_parallel_safe = |
| 2093 | is_parallel_safe(root, (Node *) grouping_target->exprs); |
| 2094 | } |
| 2095 | else |
| 2096 | { |
| 2097 | grouping_target = sort_input_target; |
| 2098 | grouping_target_parallel_safe = sort_input_target_parallel_safe; |
| 2099 | } |
| 2100 | |
| 2101 | /* |
| 2102 | * If we have grouping or aggregation to do, the topmost scan/join |
| 2103 | * plan node must emit what the grouping step wants; otherwise, it |
| 2104 | * should emit grouping_target. |
| 2105 | */ |
| 2106 | have_grouping = (parse->groupClause || parse->groupingSets || |
| 2107 | parse->hasAggs || root->hasHavingQual); |
| 2108 | if (have_grouping) |
| 2109 | { |
| 2110 | scanjoin_target = make_group_input_target(root, final_target); |
| 2111 | scanjoin_target_parallel_safe = |
| 2112 | is_parallel_safe(root, (Node *) scanjoin_target->exprs); |
| 2113 | } |
| 2114 | else |
| 2115 | { |
| 2116 | scanjoin_target = grouping_target; |
| 2117 | scanjoin_target_parallel_safe = grouping_target_parallel_safe; |
| 2118 | } |
| 2119 | |
| 2120 | /* |
| 2121 | * If there are any SRFs in the targetlist, we must separate each of |
| 2122 | * these PathTargets into SRF-computing and SRF-free targets. Replace |
| 2123 | * each of the named targets with a SRF-free version, and remember the |
| 2124 | * list of additional projection steps we need to add afterwards. |
| 2125 | */ |
| 2126 | if (parse->hasTargetSRFs) |
| 2127 | { |
| 2128 | /* final_target doesn't recompute any SRFs in sort_input_target */ |
| 2129 | split_pathtarget_at_srfs(root, final_target, sort_input_target, |
| 2130 | &final_targets, |
| 2131 | &final_targets_contain_srfs); |
| 2132 | final_target = linitial_node(PathTarget, final_targets); |
| 2133 | Assert(!linitial_int(final_targets_contain_srfs)); |
| 2134 | /* likewise for sort_input_target vs. grouping_target */ |
| 2135 | split_pathtarget_at_srfs(root, sort_input_target, grouping_target, |
| 2136 | &sort_input_targets, |
| 2137 | &sort_input_targets_contain_srfs); |
| 2138 | sort_input_target = linitial_node(PathTarget, sort_input_targets); |
| 2139 | Assert(!linitial_int(sort_input_targets_contain_srfs)); |
| 2140 | /* likewise for grouping_target vs. scanjoin_target */ |
| 2141 | split_pathtarget_at_srfs(root, grouping_target, scanjoin_target, |
| 2142 | &grouping_targets, |
| 2143 | &grouping_targets_contain_srfs); |
| 2144 | grouping_target = linitial_node(PathTarget, grouping_targets); |
| 2145 | Assert(!linitial_int(grouping_targets_contain_srfs)); |
| 2146 | /* scanjoin_target will not have any SRFs precomputed for it */ |
| 2147 | split_pathtarget_at_srfs(root, scanjoin_target, NULL, |
| 2148 | &scanjoin_targets, |
| 2149 | &scanjoin_targets_contain_srfs); |
| 2150 | scanjoin_target = linitial_node(PathTarget, scanjoin_targets); |
| 2151 | Assert(!linitial_int(scanjoin_targets_contain_srfs)); |
| 2152 | } |
| 2153 | else |
| 2154 | { |
| 2155 | /* initialize lists; for most of these, dummy values are OK */ |
| 2156 | final_targets = final_targets_contain_srfs = NIL; |
| 2157 | sort_input_targets = sort_input_targets_contain_srfs = NIL; |
| 2158 | grouping_targets = grouping_targets_contain_srfs = NIL; |
| 2159 | scanjoin_targets = list_make1(scanjoin_target); |
| 2160 | scanjoin_targets_contain_srfs = NIL; |
| 2161 | } |
| 2162 | |
| 2163 | /* Apply scan/join target. */ |
| 2164 | scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1 |
| 2165 | && equal(scanjoin_target->exprs, current_rel->reltarget->exprs); |
| 2166 | apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets, |
| 2167 | scanjoin_targets_contain_srfs, |
| 2168 | scanjoin_target_parallel_safe, |
| 2169 | scanjoin_target_same_exprs); |
| 2170 | |
| 2171 | /* |
| 2172 | * Save the various upper-rel PathTargets we just computed into |
| 2173 | * root->upper_targets[]. The core code doesn't use this, but it |
| 2174 | * provides a convenient place for extensions to get at the info. For |
| 2175 | * consistency, we save all the intermediate targets, even though some |
| 2176 | * of the corresponding upperrels might not be needed for this query. |
| 2177 | */ |
| 2178 | root->upper_targets[UPPERREL_FINAL] = final_target; |
| 2179 | root->upper_targets[UPPERREL_ORDERED] = final_target; |
| 2180 | root->upper_targets[UPPERREL_DISTINCT] = sort_input_target; |
| 2181 | root->upper_targets[UPPERREL_WINDOW] = sort_input_target; |
| 2182 | root->upper_targets[UPPERREL_GROUP_AGG] = grouping_target; |
| 2183 | |
| 2184 | /* |
| 2185 | * If we have grouping and/or aggregation, consider ways to implement |
| 2186 | * that. We build a new upperrel representing the output of this |
| 2187 | * phase. |
| 2188 | */ |
| 2189 | if (have_grouping) |
| 2190 | { |
| 2191 | current_rel = create_grouping_paths(root, |
| 2192 | current_rel, |
| 2193 | grouping_target, |
| 2194 | grouping_target_parallel_safe, |
| 2195 | &agg_costs, |
| 2196 | gset_data); |
| 2197 | /* Fix things up if grouping_target contains SRFs */ |
| 2198 | if (parse->hasTargetSRFs) |
| 2199 | adjust_paths_for_srfs(root, current_rel, |
| 2200 | grouping_targets, |
| 2201 | grouping_targets_contain_srfs); |
| 2202 | } |
| 2203 | |
| 2204 | /* |
| 2205 | * If we have window functions, consider ways to implement those. We |
| 2206 | * build a new upperrel representing the output of this phase. |
| 2207 | */ |
| 2208 | if (activeWindows) |
| 2209 | { |
| 2210 | current_rel = create_window_paths(root, |
| 2211 | current_rel, |
| 2212 | grouping_target, |
| 2213 | sort_input_target, |
| 2214 | sort_input_target_parallel_safe, |
| 2215 | wflists, |
| 2216 | activeWindows); |
| 2217 | /* Fix things up if sort_input_target contains SRFs */ |
| 2218 | if (parse->hasTargetSRFs) |
| 2219 | adjust_paths_for_srfs(root, current_rel, |
| 2220 | sort_input_targets, |
| 2221 | sort_input_targets_contain_srfs); |
| 2222 | } |
| 2223 | |
| 2224 | /* |
| 2225 | * If there is a DISTINCT clause, consider ways to implement that. We |
| 2226 | * build a new upperrel representing the output of this phase. |
| 2227 | */ |
| 2228 | if (parse->distinctClause) |
| 2229 | { |
| 2230 | current_rel = create_distinct_paths(root, |
| 2231 | current_rel); |
| 2232 | } |
| 2233 | } /* end of if (setOperations) */ |
| 2234 | |
| 2235 | /* |
| 2236 | * If ORDER BY was given, consider ways to implement that, and generate a |
| 2237 | * new upperrel containing only paths that emit the correct ordering and |
| 2238 | * project the correct final_target. We can apply the original |
| 2239 | * limit_tuples limit in sort costing here, but only if there are no |
| 2240 | * postponed SRFs. |
| 2241 | */ |
| 2242 | if (parse->sortClause) |
| 2243 | { |
| 2244 | current_rel = create_ordered_paths(root, |
| 2245 | current_rel, |
| 2246 | final_target, |
| 2247 | final_target_parallel_safe, |
| 2248 | have_postponed_srfs ? -1.0 : |
| 2249 | limit_tuples); |
| 2250 | /* Fix things up if final_target contains SRFs */ |
| 2251 | if (parse->hasTargetSRFs) |
| 2252 | adjust_paths_for_srfs(root, current_rel, |
| 2253 | final_targets, |
| 2254 | final_targets_contain_srfs); |
| 2255 | } |
| 2256 | |
| 2257 | /* |
| 2258 | * Now we are prepared to build the final-output upperrel. |
| 2259 | */ |
| 2260 | final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL); |
| 2261 | |
| 2262 | /* |
| 2263 | * If the input rel is marked consider_parallel and there's nothing that's |
| 2264 | * not parallel-safe in the LIMIT clause, then the final_rel can be marked |
| 2265 | * consider_parallel as well. Note that if the query has rowMarks or is |
| 2266 | * not a SELECT, consider_parallel will be false for every relation in the |
| 2267 | * query. |
| 2268 | */ |
| 2269 | if (current_rel->consider_parallel && |
| 2270 | is_parallel_safe(root, parse->limitOffset) && |
| 2271 | is_parallel_safe(root, parse->limitCount)) |
| 2272 | final_rel->consider_parallel = true; |
| 2273 | |
| 2274 | /* |
| 2275 | * If the current_rel belongs to a single FDW, so does the final_rel. |
| 2276 | */ |
| 2277 | final_rel->serverid = current_rel->serverid; |
| 2278 | final_rel->userid = current_rel->userid; |
| 2279 | final_rel->useridiscurrent = current_rel->useridiscurrent; |
| 2280 | final_rel->fdwroutine = current_rel->fdwroutine; |
| 2281 | |
| 2282 | /* |
| 2283 | * Generate paths for the final_rel. Insert all surviving paths, with |
| 2284 | * LockRows, Limit, and/or ModifyTable steps added if needed. |
| 2285 | */ |
| 2286 | foreach(lc, current_rel->pathlist) |
| 2287 | { |
| 2288 | Path *path = (Path *) lfirst(lc); |
| 2289 | |
| 2290 | /* |
| 2291 | * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node. |
| 2292 | * (Note: we intentionally test parse->rowMarks not root->rowMarks |
| 2293 | * here. If there are only non-locking rowmarks, they should be |
| 2294 | * handled by the ModifyTable node instead. However, root->rowMarks |
| 2295 | * is what goes into the LockRows node.) |
| 2296 | */ |
| 2297 | if (parse->rowMarks) |
| 2298 | { |
| 2299 | path = (Path *) create_lockrows_path(root, final_rel, path, |
| 2300 | root->rowMarks, |
| 2301 | assign_special_exec_param(root)); |
| 2302 | } |
| 2303 | |
| 2304 | /* |
| 2305 | * If there is a LIMIT/OFFSET clause, add the LIMIT node. |
| 2306 | */ |
| 2307 | if (limit_needed(parse)) |
| 2308 | { |
| 2309 | path = (Path *) create_limit_path(root, final_rel, path, |
| 2310 | parse->limitOffset, |
| 2311 | parse->limitCount, |
| 2312 | offset_est, count_est); |
| 2313 | } |
| 2314 | |
| 2315 | /* |
| 2316 | * If this is an INSERT/UPDATE/DELETE, and we're not being called from |
| 2317 | * inheritance_planner, add the ModifyTable node. |
| 2318 | */ |
| 2319 | if (parse->commandType != CMD_SELECT && !inheritance_update) |
| 2320 | { |
| 2321 | Index rootRelation; |
| 2322 | List *withCheckOptionLists; |
| 2323 | List *returningLists; |
| 2324 | List *rowMarks; |
| 2325 | |
| 2326 | /* |
| 2327 | * If target is a partition root table, we need to mark the |
| 2328 | * ModifyTable node appropriately for that. |
| 2329 | */ |
| 2330 | if (rt_fetch(parse->resultRelation, parse->rtable)->relkind == |
| 2331 | RELKIND_PARTITIONED_TABLE) |
| 2332 | rootRelation = parse->resultRelation; |
| 2333 | else |
| 2334 | rootRelation = 0; |
| 2335 | |
| 2336 | /* |
| 2337 | * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if |
| 2338 | * needed. |
| 2339 | */ |
| 2340 | if (parse->withCheckOptions) |
| 2341 | withCheckOptionLists = list_make1(parse->withCheckOptions); |
| 2342 | else |
| 2343 | withCheckOptionLists = NIL; |
| 2344 | |
| 2345 | if (parse->returningList) |
| 2346 | returningLists = list_make1(parse->returningList); |
| 2347 | else |
| 2348 | returningLists = NIL; |
| 2349 | |
| 2350 | /* |
| 2351 | * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node |
| 2352 | * will have dealt with fetching non-locked marked rows, else we |
| 2353 | * need to have ModifyTable do that. |
| 2354 | */ |
| 2355 | if (parse->rowMarks) |
| 2356 | rowMarks = NIL; |
| 2357 | else |
| 2358 | rowMarks = root->rowMarks; |
| 2359 | |
| 2360 | path = (Path *) |
| 2361 | create_modifytable_path(root, final_rel, |
| 2362 | parse->commandType, |
| 2363 | parse->canSetTag, |
| 2364 | parse->resultRelation, |
| 2365 | rootRelation, |
| 2366 | false, |
| 2367 | list_make1_int(parse->resultRelation), |
| 2368 | list_make1(path), |
| 2369 | list_make1(root), |
| 2370 | withCheckOptionLists, |
| 2371 | returningLists, |
| 2372 | rowMarks, |
| 2373 | parse->onConflict, |
| 2374 | assign_special_exec_param(root)); |
| 2375 | } |
| 2376 | |
| 2377 | /* And shove it into final_rel */ |
| 2378 | add_path(final_rel, path); |
| 2379 | } |
| 2380 | |
| 2381 | /* |
| 2382 | * Generate partial paths for final_rel, too, if outer query levels might |
| 2383 | * be able to make use of them. |
| 2384 | */ |
| 2385 | if (final_rel->consider_parallel && root->query_level > 1 && |
| 2386 | !limit_needed(parse)) |
| 2387 | { |
| 2388 | Assert(!parse->rowMarks && parse->commandType == CMD_SELECT); |
| 2389 | foreach(lc, current_rel->partial_pathlist) |
| 2390 | { |
| 2391 | Path *partial_path = (Path *) lfirst(lc); |
| 2392 | |
| 2393 | add_partial_path(final_rel, partial_path); |
| 2394 | } |
| 2395 | } |
| 2396 | |
| 2397 | extra.limit_needed = limit_needed(parse); |
| 2398 | extra.limit_tuples = limit_tuples; |
| 2399 | extra.count_est = count_est; |
| 2400 | extra.offset_est = offset_est; |
| 2401 | |
| 2402 | /* |
| 2403 | * If there is an FDW that's responsible for all baserels of the query, |
| 2404 | * let it consider adding ForeignPaths. |
| 2405 | */ |
| 2406 | if (final_rel->fdwroutine && |
| 2407 | final_rel->fdwroutine->GetForeignUpperPaths) |
| 2408 | final_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_FINAL, |
| 2409 | current_rel, final_rel, |
| 2410 | &extra); |
| 2411 | |
| 2412 | /* Let extensions possibly add some more paths */ |
| 2413 | if (create_upper_paths_hook) |
| 2414 | (*create_upper_paths_hook) (root, UPPERREL_FINAL, |
| 2415 | current_rel, final_rel, &extra); |
| 2416 | |
| 2417 | /* Note: currently, we leave it to callers to do set_cheapest() */ |
| 2418 | } |
| 2419 | |
| 2420 | /* |
| 2421 | * Do preprocessing for groupingSets clause and related data. This handles the |
| 2422 | * preliminary steps of expanding the grouping sets, organizing them into lists |
| 2423 | * of rollups, and preparing annotations which will later be filled in with |
| 2424 | * size estimates. |
| 2425 | */ |
| 2426 | static grouping_sets_data * |
| 2427 | preprocess_grouping_sets(PlannerInfo *root) |
| 2428 | { |
| 2429 | Query *parse = root->parse; |
| 2430 | List *sets; |
| 2431 | int maxref = 0; |
| 2432 | ListCell *lc; |
| 2433 | ListCell *lc_set; |
| 2434 | grouping_sets_data *gd = palloc0(sizeof(grouping_sets_data)); |
| 2435 | |
| 2436 | parse->groupingSets = expand_grouping_sets(parse->groupingSets, -1); |
| 2437 | |
| 2438 | gd->any_hashable = false; |
| 2439 | gd->unhashable_refs = NULL; |
| 2440 | gd->unsortable_refs = NULL; |
| 2441 | gd->unsortable_sets = NIL; |
| 2442 | |
| 2443 | if (parse->groupClause) |
| 2444 | { |
| 2445 | ListCell *lc; |
| 2446 | |
| 2447 | foreach(lc, parse->groupClause) |
| 2448 | { |
| 2449 | SortGroupClause *gc = lfirst_node(SortGroupClause, lc); |
| 2450 | Index ref = gc->tleSortGroupRef; |
| 2451 | |
| 2452 | if (ref > maxref) |
| 2453 | maxref = ref; |
| 2454 | |
| 2455 | if (!gc->hashable) |
| 2456 | gd->unhashable_refs = bms_add_member(gd->unhashable_refs, ref); |
| 2457 | |
| 2458 | if (!OidIsValid(gc->sortop)) |
| 2459 | gd->unsortable_refs = bms_add_member(gd->unsortable_refs, ref); |
| 2460 | } |
| 2461 | } |
| 2462 | |
| 2463 | /* Allocate workspace array for remapping */ |
| 2464 | gd->tleref_to_colnum_map = (int *) palloc((maxref + 1) * sizeof(int)); |
| 2465 | |
| 2466 | /* |
| 2467 | * If we have any unsortable sets, we must extract them before trying to |
| 2468 | * prepare rollups. Unsortable sets don't go through |
| 2469 | * reorder_grouping_sets, so we must apply the GroupingSetData annotation |
| 2470 | * here. |
| 2471 | */ |
| 2472 | if (!bms_is_empty(gd->unsortable_refs)) |
| 2473 | { |
| 2474 | List *sortable_sets = NIL; |
| 2475 | |
| 2476 | foreach(lc, parse->groupingSets) |
| 2477 | { |
| 2478 | List *gset = (List *) lfirst(lc); |
| 2479 | |
| 2480 | if (bms_overlap_list(gd->unsortable_refs, gset)) |
| 2481 | { |
| 2482 | GroupingSetData *gs = makeNode(GroupingSetData); |
| 2483 | |
| 2484 | gs->set = gset; |
| 2485 | gd->unsortable_sets = lappend(gd->unsortable_sets, gs); |
| 2486 | |
| 2487 | /* |
| 2488 | * We must enforce here that an unsortable set is hashable; |
| 2489 | * later code assumes this. Parse analysis only checks that |
| 2490 | * every individual column is either hashable or sortable. |
| 2491 | * |
| 2492 | * Note that passing this test doesn't guarantee we can |
| 2493 | * generate a plan; there might be other showstoppers. |
| 2494 | */ |
| 2495 | if (bms_overlap_list(gd->unhashable_refs, gset)) |
| 2496 | ereport(ERROR, |
| 2497 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2498 | errmsg("could not implement GROUP BY" ), |
| 2499 | errdetail("Some of the datatypes only support hashing, while others only support sorting." ))); |
| 2500 | } |
| 2501 | else |
| 2502 | sortable_sets = lappend(sortable_sets, gset); |
| 2503 | } |
| 2504 | |
| 2505 | if (sortable_sets) |
| 2506 | sets = extract_rollup_sets(sortable_sets); |
| 2507 | else |
| 2508 | sets = NIL; |
| 2509 | } |
| 2510 | else |
| 2511 | sets = extract_rollup_sets(parse->groupingSets); |
| 2512 | |
| 2513 | foreach(lc_set, sets) |
| 2514 | { |
| 2515 | List *current_sets = (List *) lfirst(lc_set); |
| 2516 | RollupData *rollup = makeNode(RollupData); |
| 2517 | GroupingSetData *gs; |
| 2518 | |
| 2519 | /* |
| 2520 | * Reorder the current list of grouping sets into correct prefix |
| 2521 | * order. If only one aggregation pass is needed, try to make the |
| 2522 | * list match the ORDER BY clause; if more than one pass is needed, we |
| 2523 | * don't bother with that. |
| 2524 | * |
| 2525 | * Note that this reorders the sets from smallest-member-first to |
| 2526 | * largest-member-first, and applies the GroupingSetData annotations, |
| 2527 | * though the data will be filled in later. |
| 2528 | */ |
| 2529 | current_sets = reorder_grouping_sets(current_sets, |
| 2530 | (list_length(sets) == 1 |
| 2531 | ? parse->sortClause |
| 2532 | : NIL)); |
| 2533 | |
| 2534 | /* |
| 2535 | * Get the initial (and therefore largest) grouping set. |
| 2536 | */ |
| 2537 | gs = linitial_node(GroupingSetData, current_sets); |
| 2538 | |
| 2539 | /* |
| 2540 | * Order the groupClause appropriately. If the first grouping set is |
| 2541 | * empty, then the groupClause must also be empty; otherwise we have |
| 2542 | * to force the groupClause to match that grouping set's order. |
| 2543 | * |
| 2544 | * (The first grouping set can be empty even though parse->groupClause |
| 2545 | * is not empty only if all non-empty grouping sets are unsortable. |
| 2546 | * The groupClauses for hashed grouping sets are built later on.) |
| 2547 | */ |
| 2548 | if (gs->set) |
| 2549 | rollup->groupClause = preprocess_groupclause(root, gs->set); |
| 2550 | else |
| 2551 | rollup->groupClause = NIL; |
| 2552 | |
| 2553 | /* |
| 2554 | * Is it hashable? We pretend empty sets are hashable even though we |
| 2555 | * actually force them not to be hashed later. But don't bother if |
| 2556 | * there's nothing but empty sets (since in that case we can't hash |
| 2557 | * anything). |
| 2558 | */ |
| 2559 | if (gs->set && |
| 2560 | !bms_overlap_list(gd->unhashable_refs, gs->set)) |
| 2561 | { |
| 2562 | rollup->hashable = true; |
| 2563 | gd->any_hashable = true; |
| 2564 | } |
| 2565 | |
| 2566 | /* |
| 2567 | * Now that we've pinned down an order for the groupClause for this |
| 2568 | * list of grouping sets, we need to remap the entries in the grouping |
| 2569 | * sets from sortgrouprefs to plain indices (0-based) into the |
| 2570 | * groupClause for this collection of grouping sets. We keep the |
| 2571 | * original form for later use, though. |
| 2572 | */ |
| 2573 | rollup->gsets = remap_to_groupclause_idx(rollup->groupClause, |
| 2574 | current_sets, |
| 2575 | gd->tleref_to_colnum_map); |
| 2576 | rollup->gsets_data = current_sets; |
| 2577 | |
| 2578 | gd->rollups = lappend(gd->rollups, rollup); |
| 2579 | } |
| 2580 | |
| 2581 | if (gd->unsortable_sets) |
| 2582 | { |
| 2583 | /* |
| 2584 | * We have not yet pinned down a groupclause for this, but we will |
| 2585 | * need index-based lists for estimation purposes. Construct |
| 2586 | * hash_sets_idx based on the entire original groupclause for now. |
| 2587 | */ |
| 2588 | gd->hash_sets_idx = remap_to_groupclause_idx(parse->groupClause, |
| 2589 | gd->unsortable_sets, |
| 2590 | gd->tleref_to_colnum_map); |
| 2591 | gd->any_hashable = true; |
| 2592 | } |
| 2593 | |
| 2594 | return gd; |
| 2595 | } |
| 2596 | |
| 2597 | /* |
| 2598 | * Given a groupclause and a list of GroupingSetData, return equivalent sets |
| 2599 | * (without annotation) mapped to indexes into the given groupclause. |
| 2600 | */ |
| 2601 | static List * |
| 2602 | remap_to_groupclause_idx(List *groupClause, |
| 2603 | List *gsets, |
| 2604 | int *tleref_to_colnum_map) |
| 2605 | { |
| 2606 | int ref = 0; |
| 2607 | List *result = NIL; |
| 2608 | ListCell *lc; |
| 2609 | |
| 2610 | foreach(lc, groupClause) |
| 2611 | { |
| 2612 | SortGroupClause *gc = lfirst_node(SortGroupClause, lc); |
| 2613 | |
| 2614 | tleref_to_colnum_map[gc->tleSortGroupRef] = ref++; |
| 2615 | } |
| 2616 | |
| 2617 | foreach(lc, gsets) |
| 2618 | { |
| 2619 | List *set = NIL; |
| 2620 | ListCell *lc2; |
| 2621 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc); |
| 2622 | |
| 2623 | foreach(lc2, gs->set) |
| 2624 | { |
| 2625 | set = lappend_int(set, tleref_to_colnum_map[lfirst_int(lc2)]); |
| 2626 | } |
| 2627 | |
| 2628 | result = lappend(result, set); |
| 2629 | } |
| 2630 | |
| 2631 | return result; |
| 2632 | } |
| 2633 | |
| 2634 | |
| 2635 | /* |
| 2636 | * preprocess_rowmarks - set up PlanRowMarks if needed |
| 2637 | */ |
| 2638 | static void |
| 2639 | preprocess_rowmarks(PlannerInfo *root) |
| 2640 | { |
| 2641 | Query *parse = root->parse; |
| 2642 | Bitmapset *rels; |
| 2643 | List *prowmarks; |
| 2644 | ListCell *l; |
| 2645 | int i; |
| 2646 | |
| 2647 | if (parse->rowMarks) |
| 2648 | { |
| 2649 | /* |
| 2650 | * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside |
| 2651 | * grouping, since grouping renders a reference to individual tuple |
| 2652 | * CTIDs invalid. This is also checked at parse time, but that's |
| 2653 | * insufficient because of rule substitution, query pullup, etc. |
| 2654 | */ |
| 2655 | CheckSelectLocking(parse, linitial_node(RowMarkClause, |
| 2656 | parse->rowMarks)->strength); |
| 2657 | } |
| 2658 | else |
| 2659 | { |
| 2660 | /* |
| 2661 | * We only need rowmarks for UPDATE, DELETE, or FOR [KEY] |
| 2662 | * UPDATE/SHARE. |
| 2663 | */ |
| 2664 | if (parse->commandType != CMD_UPDATE && |
| 2665 | parse->commandType != CMD_DELETE) |
| 2666 | return; |
| 2667 | } |
| 2668 | |
| 2669 | /* |
| 2670 | * We need to have rowmarks for all base relations except the target. We |
| 2671 | * make a bitmapset of all base rels and then remove the items we don't |
| 2672 | * need or have FOR [KEY] UPDATE/SHARE marks for. |
| 2673 | */ |
| 2674 | rels = get_relids_in_jointree((Node *) parse->jointree, false); |
| 2675 | if (parse->resultRelation) |
| 2676 | rels = bms_del_member(rels, parse->resultRelation); |
| 2677 | |
| 2678 | /* |
| 2679 | * Convert RowMarkClauses to PlanRowMark representation. |
| 2680 | */ |
| 2681 | prowmarks = NIL; |
| 2682 | foreach(l, parse->rowMarks) |
| 2683 | { |
| 2684 | RowMarkClause *rc = lfirst_node(RowMarkClause, l); |
| 2685 | RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable); |
| 2686 | PlanRowMark *newrc; |
| 2687 | |
| 2688 | /* |
| 2689 | * Currently, it is syntactically impossible to have FOR UPDATE et al |
| 2690 | * applied to an update/delete target rel. If that ever becomes |
| 2691 | * possible, we should drop the target from the PlanRowMark list. |
| 2692 | */ |
| 2693 | Assert(rc->rti != parse->resultRelation); |
| 2694 | |
| 2695 | /* |
| 2696 | * Ignore RowMarkClauses for subqueries; they aren't real tables and |
| 2697 | * can't support true locking. Subqueries that got flattened into the |
| 2698 | * main query should be ignored completely. Any that didn't will get |
| 2699 | * ROW_MARK_COPY items in the next loop. |
| 2700 | */ |
| 2701 | if (rte->rtekind != RTE_RELATION) |
| 2702 | continue; |
| 2703 | |
| 2704 | rels = bms_del_member(rels, rc->rti); |
| 2705 | |
| 2706 | newrc = makeNode(PlanRowMark); |
| 2707 | newrc->rti = newrc->prti = rc->rti; |
| 2708 | newrc->rowmarkId = ++(root->glob->lastRowMarkId); |
| 2709 | newrc->markType = select_rowmark_type(rte, rc->strength); |
| 2710 | newrc->allMarkTypes = (1 << newrc->markType); |
| 2711 | newrc->strength = rc->strength; |
| 2712 | newrc->waitPolicy = rc->waitPolicy; |
| 2713 | newrc->isParent = false; |
| 2714 | |
| 2715 | prowmarks = lappend(prowmarks, newrc); |
| 2716 | } |
| 2717 | |
| 2718 | /* |
| 2719 | * Now, add rowmarks for any non-target, non-locked base relations. |
| 2720 | */ |
| 2721 | i = 0; |
| 2722 | foreach(l, parse->rtable) |
| 2723 | { |
| 2724 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, l); |
| 2725 | PlanRowMark *newrc; |
| 2726 | |
| 2727 | i++; |
| 2728 | if (!bms_is_member(i, rels)) |
| 2729 | continue; |
| 2730 | |
| 2731 | newrc = makeNode(PlanRowMark); |
| 2732 | newrc->rti = newrc->prti = i; |
| 2733 | newrc->rowmarkId = ++(root->glob->lastRowMarkId); |
| 2734 | newrc->markType = select_rowmark_type(rte, LCS_NONE); |
| 2735 | newrc->allMarkTypes = (1 << newrc->markType); |
| 2736 | newrc->strength = LCS_NONE; |
| 2737 | newrc->waitPolicy = LockWaitBlock; /* doesn't matter */ |
| 2738 | newrc->isParent = false; |
| 2739 | |
| 2740 | prowmarks = lappend(prowmarks, newrc); |
| 2741 | } |
| 2742 | |
| 2743 | root->rowMarks = prowmarks; |
| 2744 | } |
| 2745 | |
| 2746 | /* |
| 2747 | * Select RowMarkType to use for a given table |
| 2748 | */ |
| 2749 | RowMarkType |
| 2750 | select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength) |
| 2751 | { |
| 2752 | if (rte->rtekind != RTE_RELATION) |
| 2753 | { |
| 2754 | /* If it's not a table at all, use ROW_MARK_COPY */ |
| 2755 | return ROW_MARK_COPY; |
| 2756 | } |
| 2757 | else if (rte->relkind == RELKIND_FOREIGN_TABLE) |
| 2758 | { |
| 2759 | /* Let the FDW select the rowmark type, if it wants to */ |
| 2760 | FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid); |
| 2761 | |
| 2762 | if (fdwroutine->GetForeignRowMarkType != NULL) |
| 2763 | return fdwroutine->GetForeignRowMarkType(rte, strength); |
| 2764 | /* Otherwise, use ROW_MARK_COPY by default */ |
| 2765 | return ROW_MARK_COPY; |
| 2766 | } |
| 2767 | else |
| 2768 | { |
| 2769 | /* Regular table, apply the appropriate lock type */ |
| 2770 | switch (strength) |
| 2771 | { |
| 2772 | case LCS_NONE: |
| 2773 | |
| 2774 | /* |
| 2775 | * We don't need a tuple lock, only the ability to re-fetch |
| 2776 | * the row. |
| 2777 | */ |
| 2778 | return ROW_MARK_REFERENCE; |
| 2779 | break; |
| 2780 | case LCS_FORKEYSHARE: |
| 2781 | return ROW_MARK_KEYSHARE; |
| 2782 | break; |
| 2783 | case LCS_FORSHARE: |
| 2784 | return ROW_MARK_SHARE; |
| 2785 | break; |
| 2786 | case LCS_FORNOKEYUPDATE: |
| 2787 | return ROW_MARK_NOKEYEXCLUSIVE; |
| 2788 | break; |
| 2789 | case LCS_FORUPDATE: |
| 2790 | return ROW_MARK_EXCLUSIVE; |
| 2791 | break; |
| 2792 | } |
| 2793 | elog(ERROR, "unrecognized LockClauseStrength %d" , (int) strength); |
| 2794 | return ROW_MARK_EXCLUSIVE; /* keep compiler quiet */ |
| 2795 | } |
| 2796 | } |
| 2797 | |
| 2798 | /* |
| 2799 | * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses |
| 2800 | * |
| 2801 | * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the |
| 2802 | * results back in *count_est and *offset_est. These variables are set to |
| 2803 | * 0 if the corresponding clause is not present, and -1 if it's present |
| 2804 | * but we couldn't estimate the value for it. (The "0" convention is OK |
| 2805 | * for OFFSET but a little bit bogus for LIMIT: effectively we estimate |
| 2806 | * LIMIT 0 as though it were LIMIT 1. But this is in line with the planner's |
| 2807 | * usual practice of never estimating less than one row.) These values will |
| 2808 | * be passed to create_limit_path, which see if you change this code. |
| 2809 | * |
| 2810 | * The return value is the suitably adjusted tuple_fraction to use for |
| 2811 | * planning the query. This adjustment is not overridable, since it reflects |
| 2812 | * plan actions that grouping_planner() will certainly take, not assumptions |
| 2813 | * about context. |
| 2814 | */ |
| 2815 | static double |
| 2816 | preprocess_limit(PlannerInfo *root, double tuple_fraction, |
| 2817 | int64 *offset_est, int64 *count_est) |
| 2818 | { |
| 2819 | Query *parse = root->parse; |
| 2820 | Node *est; |
| 2821 | double limit_fraction; |
| 2822 | |
| 2823 | /* Should not be called unless LIMIT or OFFSET */ |
| 2824 | Assert(parse->limitCount || parse->limitOffset); |
| 2825 | |
| 2826 | /* |
| 2827 | * Try to obtain the clause values. We use estimate_expression_value |
| 2828 | * primarily because it can sometimes do something useful with Params. |
| 2829 | */ |
| 2830 | if (parse->limitCount) |
| 2831 | { |
| 2832 | est = estimate_expression_value(root, parse->limitCount); |
| 2833 | if (est && IsA(est, Const)) |
| 2834 | { |
| 2835 | if (((Const *) est)->constisnull) |
| 2836 | { |
| 2837 | /* NULL indicates LIMIT ALL, ie, no limit */ |
| 2838 | *count_est = 0; /* treat as not present */ |
| 2839 | } |
| 2840 | else |
| 2841 | { |
| 2842 | *count_est = DatumGetInt64(((Const *) est)->constvalue); |
| 2843 | if (*count_est <= 0) |
| 2844 | *count_est = 1; /* force to at least 1 */ |
| 2845 | } |
| 2846 | } |
| 2847 | else |
| 2848 | *count_est = -1; /* can't estimate */ |
| 2849 | } |
| 2850 | else |
| 2851 | *count_est = 0; /* not present */ |
| 2852 | |
| 2853 | if (parse->limitOffset) |
| 2854 | { |
| 2855 | est = estimate_expression_value(root, parse->limitOffset); |
| 2856 | if (est && IsA(est, Const)) |
| 2857 | { |
| 2858 | if (((Const *) est)->constisnull) |
| 2859 | { |
| 2860 | /* Treat NULL as no offset; the executor will too */ |
| 2861 | *offset_est = 0; /* treat as not present */ |
| 2862 | } |
| 2863 | else |
| 2864 | { |
| 2865 | *offset_est = DatumGetInt64(((Const *) est)->constvalue); |
| 2866 | if (*offset_est < 0) |
| 2867 | *offset_est = 0; /* treat as not present */ |
| 2868 | } |
| 2869 | } |
| 2870 | else |
| 2871 | *offset_est = -1; /* can't estimate */ |
| 2872 | } |
| 2873 | else |
| 2874 | *offset_est = 0; /* not present */ |
| 2875 | |
| 2876 | if (*count_est != 0) |
| 2877 | { |
| 2878 | /* |
| 2879 | * A LIMIT clause limits the absolute number of tuples returned. |
| 2880 | * However, if it's not a constant LIMIT then we have to guess; for |
| 2881 | * lack of a better idea, assume 10% of the plan's result is wanted. |
| 2882 | */ |
| 2883 | if (*count_est < 0 || *offset_est < 0) |
| 2884 | { |
| 2885 | /* LIMIT or OFFSET is an expression ... punt ... */ |
| 2886 | limit_fraction = 0.10; |
| 2887 | } |
| 2888 | else |
| 2889 | { |
| 2890 | /* LIMIT (plus OFFSET, if any) is max number of tuples needed */ |
| 2891 | limit_fraction = (double) *count_est + (double) *offset_est; |
| 2892 | } |
| 2893 | |
| 2894 | /* |
| 2895 | * If we have absolute limits from both caller and LIMIT, use the |
| 2896 | * smaller value; likewise if they are both fractional. If one is |
| 2897 | * fractional and the other absolute, we can't easily determine which |
| 2898 | * is smaller, but we use the heuristic that the absolute will usually |
| 2899 | * be smaller. |
| 2900 | */ |
| 2901 | if (tuple_fraction >= 1.0) |
| 2902 | { |
| 2903 | if (limit_fraction >= 1.0) |
| 2904 | { |
| 2905 | /* both absolute */ |
| 2906 | tuple_fraction = Min(tuple_fraction, limit_fraction); |
| 2907 | } |
| 2908 | else |
| 2909 | { |
| 2910 | /* caller absolute, limit fractional; use caller's value */ |
| 2911 | } |
| 2912 | } |
| 2913 | else if (tuple_fraction > 0.0) |
| 2914 | { |
| 2915 | if (limit_fraction >= 1.0) |
| 2916 | { |
| 2917 | /* caller fractional, limit absolute; use limit */ |
| 2918 | tuple_fraction = limit_fraction; |
| 2919 | } |
| 2920 | else |
| 2921 | { |
| 2922 | /* both fractional */ |
| 2923 | tuple_fraction = Min(tuple_fraction, limit_fraction); |
| 2924 | } |
| 2925 | } |
| 2926 | else |
| 2927 | { |
| 2928 | /* no info from caller, just use limit */ |
| 2929 | tuple_fraction = limit_fraction; |
| 2930 | } |
| 2931 | } |
| 2932 | else if (*offset_est != 0 && tuple_fraction > 0.0) |
| 2933 | { |
| 2934 | /* |
| 2935 | * We have an OFFSET but no LIMIT. This acts entirely differently |
| 2936 | * from the LIMIT case: here, we need to increase rather than decrease |
| 2937 | * the caller's tuple_fraction, because the OFFSET acts to cause more |
| 2938 | * tuples to be fetched instead of fewer. This only matters if we got |
| 2939 | * a tuple_fraction > 0, however. |
| 2940 | * |
| 2941 | * As above, use 10% if OFFSET is present but unestimatable. |
| 2942 | */ |
| 2943 | if (*offset_est < 0) |
| 2944 | limit_fraction = 0.10; |
| 2945 | else |
| 2946 | limit_fraction = (double) *offset_est; |
| 2947 | |
| 2948 | /* |
| 2949 | * If we have absolute counts from both caller and OFFSET, add them |
| 2950 | * together; likewise if they are both fractional. If one is |
| 2951 | * fractional and the other absolute, we want to take the larger, and |
| 2952 | * we heuristically assume that's the fractional one. |
| 2953 | */ |
| 2954 | if (tuple_fraction >= 1.0) |
| 2955 | { |
| 2956 | if (limit_fraction >= 1.0) |
| 2957 | { |
| 2958 | /* both absolute, so add them together */ |
| 2959 | tuple_fraction += limit_fraction; |
| 2960 | } |
| 2961 | else |
| 2962 | { |
| 2963 | /* caller absolute, limit fractional; use limit */ |
| 2964 | tuple_fraction = limit_fraction; |
| 2965 | } |
| 2966 | } |
| 2967 | else |
| 2968 | { |
| 2969 | if (limit_fraction >= 1.0) |
| 2970 | { |
| 2971 | /* caller fractional, limit absolute; use caller's value */ |
| 2972 | } |
| 2973 | else |
| 2974 | { |
| 2975 | /* both fractional, so add them together */ |
| 2976 | tuple_fraction += limit_fraction; |
| 2977 | if (tuple_fraction >= 1.0) |
| 2978 | tuple_fraction = 0.0; /* assume fetch all */ |
| 2979 | } |
| 2980 | } |
| 2981 | } |
| 2982 | |
| 2983 | return tuple_fraction; |
| 2984 | } |
| 2985 | |
| 2986 | /* |
| 2987 | * limit_needed - do we actually need a Limit plan node? |
| 2988 | * |
| 2989 | * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding |
| 2990 | * a Limit node. This is worth checking for because "OFFSET 0" is a common |
| 2991 | * locution for an optimization fence. (Because other places in the planner |
| 2992 | * merely check whether parse->limitOffset isn't NULL, it will still work as |
| 2993 | * an optimization fence --- we're just suppressing unnecessary run-time |
| 2994 | * overhead.) |
| 2995 | * |
| 2996 | * This might look like it could be merged into preprocess_limit, but there's |
| 2997 | * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas |
| 2998 | * in preprocess_limit it's good enough to consider estimated values. |
| 2999 | */ |
| 3000 | bool |
| 3001 | limit_needed(Query *parse) |
| 3002 | { |
| 3003 | Node *node; |
| 3004 | |
| 3005 | node = parse->limitCount; |
| 3006 | if (node) |
| 3007 | { |
| 3008 | if (IsA(node, Const)) |
| 3009 | { |
| 3010 | /* NULL indicates LIMIT ALL, ie, no limit */ |
| 3011 | if (!((Const *) node)->constisnull) |
| 3012 | return true; /* LIMIT with a constant value */ |
| 3013 | } |
| 3014 | else |
| 3015 | return true; /* non-constant LIMIT */ |
| 3016 | } |
| 3017 | |
| 3018 | node = parse->limitOffset; |
| 3019 | if (node) |
| 3020 | { |
| 3021 | if (IsA(node, Const)) |
| 3022 | { |
| 3023 | /* Treat NULL as no offset; the executor would too */ |
| 3024 | if (!((Const *) node)->constisnull) |
| 3025 | { |
| 3026 | int64 offset = DatumGetInt64(((Const *) node)->constvalue); |
| 3027 | |
| 3028 | if (offset != 0) |
| 3029 | return true; /* OFFSET with a nonzero value */ |
| 3030 | } |
| 3031 | } |
| 3032 | else |
| 3033 | return true; /* non-constant OFFSET */ |
| 3034 | } |
| 3035 | |
| 3036 | return false; /* don't need a Limit plan node */ |
| 3037 | } |
| 3038 | |
| 3039 | |
| 3040 | /* |
| 3041 | * remove_useless_groupby_columns |
| 3042 | * Remove any columns in the GROUP BY clause that are redundant due to |
| 3043 | * being functionally dependent on other GROUP BY columns. |
| 3044 | * |
| 3045 | * Since some other DBMSes do not allow references to ungrouped columns, it's |
| 3046 | * not unusual to find all columns listed in GROUP BY even though listing the |
| 3047 | * primary-key columns would be sufficient. Deleting such excess columns |
| 3048 | * avoids redundant sorting work, so it's worth doing. When we do this, we |
| 3049 | * must mark the plan as dependent on the pkey constraint (compare the |
| 3050 | * parser's check_ungrouped_columns() and check_functional_grouping()). |
| 3051 | * |
| 3052 | * In principle, we could treat any NOT-NULL columns appearing in a UNIQUE |
| 3053 | * index as the determining columns. But as with check_functional_grouping(), |
| 3054 | * there's currently no way to represent dependency on a NOT NULL constraint, |
| 3055 | * so we consider only the pkey for now. |
| 3056 | */ |
| 3057 | static void |
| 3058 | remove_useless_groupby_columns(PlannerInfo *root) |
| 3059 | { |
| 3060 | Query *parse = root->parse; |
| 3061 | Bitmapset **groupbyattnos; |
| 3062 | Bitmapset **surplusvars; |
| 3063 | ListCell *lc; |
| 3064 | int relid; |
| 3065 | |
| 3066 | /* No chance to do anything if there are less than two GROUP BY items */ |
| 3067 | if (list_length(parse->groupClause) < 2) |
| 3068 | return; |
| 3069 | |
| 3070 | /* Don't fiddle with the GROUP BY clause if the query has grouping sets */ |
| 3071 | if (parse->groupingSets) |
| 3072 | return; |
| 3073 | |
| 3074 | /* |
| 3075 | * Scan the GROUP BY clause to find GROUP BY items that are simple Vars. |
| 3076 | * Fill groupbyattnos[k] with a bitmapset of the column attnos of RTE k |
| 3077 | * that are GROUP BY items. |
| 3078 | */ |
| 3079 | groupbyattnos = (Bitmapset **) palloc0(sizeof(Bitmapset *) * |
| 3080 | (list_length(parse->rtable) + 1)); |
| 3081 | foreach(lc, parse->groupClause) |
| 3082 | { |
| 3083 | SortGroupClause *sgc = lfirst_node(SortGroupClause, lc); |
| 3084 | TargetEntry *tle = get_sortgroupclause_tle(sgc, parse->targetList); |
| 3085 | Var *var = (Var *) tle->expr; |
| 3086 | |
| 3087 | /* |
| 3088 | * Ignore non-Vars and Vars from other query levels. |
| 3089 | * |
| 3090 | * XXX in principle, stable expressions containing Vars could also be |
| 3091 | * removed, if all the Vars are functionally dependent on other GROUP |
| 3092 | * BY items. But it's not clear that such cases occur often enough to |
| 3093 | * be worth troubling over. |
| 3094 | */ |
| 3095 | if (!IsA(var, Var) || |
| 3096 | var->varlevelsup > 0) |
| 3097 | continue; |
| 3098 | |
| 3099 | /* OK, remember we have this Var */ |
| 3100 | relid = var->varno; |
| 3101 | Assert(relid <= list_length(parse->rtable)); |
| 3102 | groupbyattnos[relid] = bms_add_member(groupbyattnos[relid], |
| 3103 | var->varattno - FirstLowInvalidHeapAttributeNumber); |
| 3104 | } |
| 3105 | |
| 3106 | /* |
| 3107 | * Consider each relation and see if it is possible to remove some of its |
| 3108 | * Vars from GROUP BY. For simplicity and speed, we do the actual removal |
| 3109 | * in a separate pass. Here, we just fill surplusvars[k] with a bitmapset |
| 3110 | * of the column attnos of RTE k that are removable GROUP BY items. |
| 3111 | */ |
| 3112 | surplusvars = NULL; /* don't allocate array unless required */ |
| 3113 | relid = 0; |
| 3114 | foreach(lc, parse->rtable) |
| 3115 | { |
| 3116 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, lc); |
| 3117 | Bitmapset *relattnos; |
| 3118 | Bitmapset *pkattnos; |
| 3119 | Oid constraintOid; |
| 3120 | |
| 3121 | relid++; |
| 3122 | |
| 3123 | /* Only plain relations could have primary-key constraints */ |
| 3124 | if (rte->rtekind != RTE_RELATION) |
| 3125 | continue; |
| 3126 | |
| 3127 | /* |
| 3128 | * We must skip inheritance parent tables as some of the child rels |
| 3129 | * may cause duplicate rows. This cannot happen with partitioned |
| 3130 | * tables, however. |
| 3131 | */ |
| 3132 | if (rte->inh && rte->relkind != RELKIND_PARTITIONED_TABLE) |
| 3133 | continue; |
| 3134 | |
| 3135 | /* Nothing to do unless this rel has multiple Vars in GROUP BY */ |
| 3136 | relattnos = groupbyattnos[relid]; |
| 3137 | if (bms_membership(relattnos) != BMS_MULTIPLE) |
| 3138 | continue; |
| 3139 | |
| 3140 | /* |
| 3141 | * Can't remove any columns for this rel if there is no suitable |
| 3142 | * (i.e., nondeferrable) primary key constraint. |
| 3143 | */ |
| 3144 | pkattnos = get_primary_key_attnos(rte->relid, false, &constraintOid); |
| 3145 | if (pkattnos == NULL) |
| 3146 | continue; |
| 3147 | |
| 3148 | /* |
| 3149 | * If the primary key is a proper subset of relattnos then we have |
| 3150 | * some items in the GROUP BY that can be removed. |
| 3151 | */ |
| 3152 | if (bms_subset_compare(pkattnos, relattnos) == BMS_SUBSET1) |
| 3153 | { |
| 3154 | /* |
| 3155 | * To easily remember whether we've found anything to do, we don't |
| 3156 | * allocate the surplusvars[] array until we find something. |
| 3157 | */ |
| 3158 | if (surplusvars == NULL) |
| 3159 | surplusvars = (Bitmapset **) palloc0(sizeof(Bitmapset *) * |
| 3160 | (list_length(parse->rtable) + 1)); |
| 3161 | |
| 3162 | /* Remember the attnos of the removable columns */ |
| 3163 | surplusvars[relid] = bms_difference(relattnos, pkattnos); |
| 3164 | |
| 3165 | /* Also, mark the resulting plan as dependent on this constraint */ |
| 3166 | parse->constraintDeps = lappend_oid(parse->constraintDeps, |
| 3167 | constraintOid); |
| 3168 | } |
| 3169 | } |
| 3170 | |
| 3171 | /* |
| 3172 | * If we found any surplus Vars, build a new GROUP BY clause without them. |
| 3173 | * (Note: this may leave some TLEs with unreferenced ressortgroupref |
| 3174 | * markings, but that's harmless.) |
| 3175 | */ |
| 3176 | if (surplusvars != NULL) |
| 3177 | { |
| 3178 | List *new_groupby = NIL; |
| 3179 | |
| 3180 | foreach(lc, parse->groupClause) |
| 3181 | { |
| 3182 | SortGroupClause *sgc = lfirst_node(SortGroupClause, lc); |
| 3183 | TargetEntry *tle = get_sortgroupclause_tle(sgc, parse->targetList); |
| 3184 | Var *var = (Var *) tle->expr; |
| 3185 | |
| 3186 | /* |
| 3187 | * New list must include non-Vars, outer Vars, and anything not |
| 3188 | * marked as surplus. |
| 3189 | */ |
| 3190 | if (!IsA(var, Var) || |
| 3191 | var->varlevelsup > 0 || |
| 3192 | !bms_is_member(var->varattno - FirstLowInvalidHeapAttributeNumber, |
| 3193 | surplusvars[var->varno])) |
| 3194 | new_groupby = lappend(new_groupby, sgc); |
| 3195 | } |
| 3196 | |
| 3197 | parse->groupClause = new_groupby; |
| 3198 | } |
| 3199 | } |
| 3200 | |
| 3201 | /* |
| 3202 | * preprocess_groupclause - do preparatory work on GROUP BY clause |
| 3203 | * |
| 3204 | * The idea here is to adjust the ordering of the GROUP BY elements |
| 3205 | * (which in itself is semantically insignificant) to match ORDER BY, |
| 3206 | * thereby allowing a single sort operation to both implement the ORDER BY |
| 3207 | * requirement and set up for a Unique step that implements GROUP BY. |
| 3208 | * |
| 3209 | * In principle it might be interesting to consider other orderings of the |
| 3210 | * GROUP BY elements, which could match the sort ordering of other |
| 3211 | * possible plans (eg an indexscan) and thereby reduce cost. We don't |
| 3212 | * bother with that, though. Hashed grouping will frequently win anyway. |
| 3213 | * |
| 3214 | * Note: we need no comparable processing of the distinctClause because |
| 3215 | * the parser already enforced that that matches ORDER BY. |
| 3216 | * |
| 3217 | * For grouping sets, the order of items is instead forced to agree with that |
| 3218 | * of the grouping set (and items not in the grouping set are skipped). The |
| 3219 | * work of sorting the order of grouping set elements to match the ORDER BY if |
| 3220 | * possible is done elsewhere. |
| 3221 | */ |
| 3222 | static List * |
| 3223 | preprocess_groupclause(PlannerInfo *root, List *force) |
| 3224 | { |
| 3225 | Query *parse = root->parse; |
| 3226 | List *new_groupclause = NIL; |
| 3227 | bool partial_match; |
| 3228 | ListCell *sl; |
| 3229 | ListCell *gl; |
| 3230 | |
| 3231 | /* For grouping sets, we need to force the ordering */ |
| 3232 | if (force) |
| 3233 | { |
| 3234 | foreach(sl, force) |
| 3235 | { |
| 3236 | Index ref = lfirst_int(sl); |
| 3237 | SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause); |
| 3238 | |
| 3239 | new_groupclause = lappend(new_groupclause, cl); |
| 3240 | } |
| 3241 | |
| 3242 | return new_groupclause; |
| 3243 | } |
| 3244 | |
| 3245 | /* If no ORDER BY, nothing useful to do here */ |
| 3246 | if (parse->sortClause == NIL) |
| 3247 | return parse->groupClause; |
| 3248 | |
| 3249 | /* |
| 3250 | * Scan the ORDER BY clause and construct a list of matching GROUP BY |
| 3251 | * items, but only as far as we can make a matching prefix. |
| 3252 | * |
| 3253 | * This code assumes that the sortClause contains no duplicate items. |
| 3254 | */ |
| 3255 | foreach(sl, parse->sortClause) |
| 3256 | { |
| 3257 | SortGroupClause *sc = lfirst_node(SortGroupClause, sl); |
| 3258 | |
| 3259 | foreach(gl, parse->groupClause) |
| 3260 | { |
| 3261 | SortGroupClause *gc = lfirst_node(SortGroupClause, gl); |
| 3262 | |
| 3263 | if (equal(gc, sc)) |
| 3264 | { |
| 3265 | new_groupclause = lappend(new_groupclause, gc); |
| 3266 | break; |
| 3267 | } |
| 3268 | } |
| 3269 | if (gl == NULL) |
| 3270 | break; /* no match, so stop scanning */ |
| 3271 | } |
| 3272 | |
| 3273 | /* Did we match all of the ORDER BY list, or just some of it? */ |
| 3274 | partial_match = (sl != NULL); |
| 3275 | |
| 3276 | /* If no match at all, no point in reordering GROUP BY */ |
| 3277 | if (new_groupclause == NIL) |
| 3278 | return parse->groupClause; |
| 3279 | |
| 3280 | /* |
| 3281 | * Add any remaining GROUP BY items to the new list, but only if we were |
| 3282 | * able to make a complete match. In other words, we only rearrange the |
| 3283 | * GROUP BY list if the result is that one list is a prefix of the other |
| 3284 | * --- otherwise there's no possibility of a common sort. Also, give up |
| 3285 | * if there are any non-sortable GROUP BY items, since then there's no |
| 3286 | * hope anyway. |
| 3287 | */ |
| 3288 | foreach(gl, parse->groupClause) |
| 3289 | { |
| 3290 | SortGroupClause *gc = lfirst_node(SortGroupClause, gl); |
| 3291 | |
| 3292 | if (list_member_ptr(new_groupclause, gc)) |
| 3293 | continue; /* it matched an ORDER BY item */ |
| 3294 | if (partial_match) |
| 3295 | return parse->groupClause; /* give up, no common sort possible */ |
| 3296 | if (!OidIsValid(gc->sortop)) |
| 3297 | return parse->groupClause; /* give up, GROUP BY can't be sorted */ |
| 3298 | new_groupclause = lappend(new_groupclause, gc); |
| 3299 | } |
| 3300 | |
| 3301 | /* Success --- install the rearranged GROUP BY list */ |
| 3302 | Assert(list_length(parse->groupClause) == list_length(new_groupclause)); |
| 3303 | return new_groupclause; |
| 3304 | } |
| 3305 | |
| 3306 | /* |
| 3307 | * Extract lists of grouping sets that can be implemented using a single |
| 3308 | * rollup-type aggregate pass each. Returns a list of lists of grouping sets. |
| 3309 | * |
| 3310 | * Input must be sorted with smallest sets first. Result has each sublist |
| 3311 | * sorted with smallest sets first. |
| 3312 | * |
| 3313 | * We want to produce the absolute minimum possible number of lists here to |
| 3314 | * avoid excess sorts. Fortunately, there is an algorithm for this; the problem |
| 3315 | * of finding the minimal partition of a partially-ordered set into chains |
| 3316 | * (which is what we need, taking the list of grouping sets as a poset ordered |
| 3317 | * by set inclusion) can be mapped to the problem of finding the maximum |
| 3318 | * cardinality matching on a bipartite graph, which is solvable in polynomial |
| 3319 | * time with a worst case of no worse than O(n^2.5) and usually much |
| 3320 | * better. Since our N is at most 4096, we don't need to consider fallbacks to |
| 3321 | * heuristic or approximate methods. (Planning time for a 12-d cube is under |
| 3322 | * half a second on my modest system even with optimization off and assertions |
| 3323 | * on.) |
| 3324 | */ |
| 3325 | static List * |
| 3326 | (List *groupingSets) |
| 3327 | { |
| 3328 | int num_sets_raw = list_length(groupingSets); |
| 3329 | int num_empty = 0; |
| 3330 | int num_sets = 0; /* distinct sets */ |
| 3331 | int num_chains = 0; |
| 3332 | List *result = NIL; |
| 3333 | List **results; |
| 3334 | List **orig_sets; |
| 3335 | Bitmapset **set_masks; |
| 3336 | int *chains; |
| 3337 | short **adjacency; |
| 3338 | short *adjacency_buf; |
| 3339 | BipartiteMatchState *state; |
| 3340 | int i; |
| 3341 | int j; |
| 3342 | int j_size; |
| 3343 | ListCell *lc1 = list_head(groupingSets); |
| 3344 | ListCell *lc; |
| 3345 | |
| 3346 | /* |
| 3347 | * Start by stripping out empty sets. The algorithm doesn't require this, |
| 3348 | * but the planner currently needs all empty sets to be returned in the |
| 3349 | * first list, so we strip them here and add them back after. |
| 3350 | */ |
| 3351 | while (lc1 && lfirst(lc1) == NIL) |
| 3352 | { |
| 3353 | ++num_empty; |
| 3354 | lc1 = lnext(lc1); |
| 3355 | } |
| 3356 | |
| 3357 | /* bail out now if it turns out that all we had were empty sets. */ |
| 3358 | if (!lc1) |
| 3359 | return list_make1(groupingSets); |
| 3360 | |
| 3361 | /*---------- |
| 3362 | * We don't strictly need to remove duplicate sets here, but if we don't, |
| 3363 | * they tend to become scattered through the result, which is a bit |
| 3364 | * confusing (and irritating if we ever decide to optimize them out). |
| 3365 | * So we remove them here and add them back after. |
| 3366 | * |
| 3367 | * For each non-duplicate set, we fill in the following: |
| 3368 | * |
| 3369 | * orig_sets[i] = list of the original set lists |
| 3370 | * set_masks[i] = bitmapset for testing inclusion |
| 3371 | * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices |
| 3372 | * |
| 3373 | * chains[i] will be the result group this set is assigned to. |
| 3374 | * |
| 3375 | * We index all of these from 1 rather than 0 because it is convenient |
| 3376 | * to leave 0 free for the NIL node in the graph algorithm. |
| 3377 | *---------- |
| 3378 | */ |
| 3379 | orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *)); |
| 3380 | set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *)); |
| 3381 | adjacency = palloc0((num_sets_raw + 1) * sizeof(short *)); |
| 3382 | adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short)); |
| 3383 | |
| 3384 | j_size = 0; |
| 3385 | j = 0; |
| 3386 | i = 1; |
| 3387 | |
| 3388 | for_each_cell(lc, lc1) |
| 3389 | { |
| 3390 | List *candidate = (List *) lfirst(lc); |
| 3391 | Bitmapset *candidate_set = NULL; |
| 3392 | ListCell *lc2; |
| 3393 | int dup_of = 0; |
| 3394 | |
| 3395 | foreach(lc2, candidate) |
| 3396 | { |
| 3397 | candidate_set = bms_add_member(candidate_set, lfirst_int(lc2)); |
| 3398 | } |
| 3399 | |
| 3400 | /* we can only be a dup if we're the same length as a previous set */ |
| 3401 | if (j_size == list_length(candidate)) |
| 3402 | { |
| 3403 | int k; |
| 3404 | |
| 3405 | for (k = j; k < i; ++k) |
| 3406 | { |
| 3407 | if (bms_equal(set_masks[k], candidate_set)) |
| 3408 | { |
| 3409 | dup_of = k; |
| 3410 | break; |
| 3411 | } |
| 3412 | } |
| 3413 | } |
| 3414 | else if (j_size < list_length(candidate)) |
| 3415 | { |
| 3416 | j_size = list_length(candidate); |
| 3417 | j = i; |
| 3418 | } |
| 3419 | |
| 3420 | if (dup_of > 0) |
| 3421 | { |
| 3422 | orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate); |
| 3423 | bms_free(candidate_set); |
| 3424 | } |
| 3425 | else |
| 3426 | { |
| 3427 | int k; |
| 3428 | int n_adj = 0; |
| 3429 | |
| 3430 | orig_sets[i] = list_make1(candidate); |
| 3431 | set_masks[i] = candidate_set; |
| 3432 | |
| 3433 | /* fill in adjacency list; no need to compare equal-size sets */ |
| 3434 | |
| 3435 | for (k = j - 1; k > 0; --k) |
| 3436 | { |
| 3437 | if (bms_is_subset(set_masks[k], candidate_set)) |
| 3438 | adjacency_buf[++n_adj] = k; |
| 3439 | } |
| 3440 | |
| 3441 | if (n_adj > 0) |
| 3442 | { |
| 3443 | adjacency_buf[0] = n_adj; |
| 3444 | adjacency[i] = palloc((n_adj + 1) * sizeof(short)); |
| 3445 | memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short)); |
| 3446 | } |
| 3447 | else |
| 3448 | adjacency[i] = NULL; |
| 3449 | |
| 3450 | ++i; |
| 3451 | } |
| 3452 | } |
| 3453 | |
| 3454 | num_sets = i - 1; |
| 3455 | |
| 3456 | /* |
| 3457 | * Apply the graph matching algorithm to do the work. |
| 3458 | */ |
| 3459 | state = BipartiteMatch(num_sets, num_sets, adjacency); |
| 3460 | |
| 3461 | /* |
| 3462 | * Now, the state->pair* fields have the info we need to assign sets to |
| 3463 | * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or |
| 3464 | * pair_vu[v] = u (both will be true, but we check both so that we can do |
| 3465 | * it in one pass) |
| 3466 | */ |
| 3467 | chains = palloc0((num_sets + 1) * sizeof(int)); |
| 3468 | |
| 3469 | for (i = 1; i <= num_sets; ++i) |
| 3470 | { |
| 3471 | int u = state->pair_vu[i]; |
| 3472 | int v = state->pair_uv[i]; |
| 3473 | |
| 3474 | if (u > 0 && u < i) |
| 3475 | chains[i] = chains[u]; |
| 3476 | else if (v > 0 && v < i) |
| 3477 | chains[i] = chains[v]; |
| 3478 | else |
| 3479 | chains[i] = ++num_chains; |
| 3480 | } |
| 3481 | |
| 3482 | /* build result lists. */ |
| 3483 | results = palloc0((num_chains + 1) * sizeof(List *)); |
| 3484 | |
| 3485 | for (i = 1; i <= num_sets; ++i) |
| 3486 | { |
| 3487 | int c = chains[i]; |
| 3488 | |
| 3489 | Assert(c > 0); |
| 3490 | |
| 3491 | results[c] = list_concat(results[c], orig_sets[i]); |
| 3492 | } |
| 3493 | |
| 3494 | /* push any empty sets back on the first list. */ |
| 3495 | while (num_empty-- > 0) |
| 3496 | results[1] = lcons(NIL, results[1]); |
| 3497 | |
| 3498 | /* make result list */ |
| 3499 | for (i = 1; i <= num_chains; ++i) |
| 3500 | result = lappend(result, results[i]); |
| 3501 | |
| 3502 | /* |
| 3503 | * Free all the things. |
| 3504 | * |
| 3505 | * (This is over-fussy for small sets but for large sets we could have |
| 3506 | * tied up a nontrivial amount of memory.) |
| 3507 | */ |
| 3508 | BipartiteMatchFree(state); |
| 3509 | pfree(results); |
| 3510 | pfree(chains); |
| 3511 | for (i = 1; i <= num_sets; ++i) |
| 3512 | if (adjacency[i]) |
| 3513 | pfree(adjacency[i]); |
| 3514 | pfree(adjacency); |
| 3515 | pfree(adjacency_buf); |
| 3516 | pfree(orig_sets); |
| 3517 | for (i = 1; i <= num_sets; ++i) |
| 3518 | bms_free(set_masks[i]); |
| 3519 | pfree(set_masks); |
| 3520 | |
| 3521 | return result; |
| 3522 | } |
| 3523 | |
| 3524 | /* |
| 3525 | * Reorder the elements of a list of grouping sets such that they have correct |
| 3526 | * prefix relationships. Also inserts the GroupingSetData annotations. |
| 3527 | * |
| 3528 | * The input must be ordered with smallest sets first; the result is returned |
| 3529 | * with largest sets first. Note that the result shares no list substructure |
| 3530 | * with the input, so it's safe for the caller to modify it later. |
| 3531 | * |
| 3532 | * If we're passed in a sortclause, we follow its order of columns to the |
| 3533 | * extent possible, to minimize the chance that we add unnecessary sorts. |
| 3534 | * (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a |
| 3535 | * gets implemented in one pass.) |
| 3536 | */ |
| 3537 | static List * |
| 3538 | reorder_grouping_sets(List *groupingsets, List *sortclause) |
| 3539 | { |
| 3540 | ListCell *lc; |
| 3541 | List *previous = NIL; |
| 3542 | List *result = NIL; |
| 3543 | |
| 3544 | foreach(lc, groupingsets) |
| 3545 | { |
| 3546 | List *candidate = (List *) lfirst(lc); |
| 3547 | List *new_elems = list_difference_int(candidate, previous); |
| 3548 | GroupingSetData *gs = makeNode(GroupingSetData); |
| 3549 | |
| 3550 | while (list_length(sortclause) > list_length(previous) && |
| 3551 | list_length(new_elems) > 0) |
| 3552 | { |
| 3553 | SortGroupClause *sc = list_nth(sortclause, list_length(previous)); |
| 3554 | int ref = sc->tleSortGroupRef; |
| 3555 | |
| 3556 | if (list_member_int(new_elems, ref)) |
| 3557 | { |
| 3558 | previous = lappend_int(previous, ref); |
| 3559 | new_elems = list_delete_int(new_elems, ref); |
| 3560 | } |
| 3561 | else |
| 3562 | { |
| 3563 | /* diverged from the sortclause; give up on it */ |
| 3564 | sortclause = NIL; |
| 3565 | break; |
| 3566 | } |
| 3567 | } |
| 3568 | |
| 3569 | /* |
| 3570 | * Safe to use list_concat (which shares cells of the second arg) |
| 3571 | * because we know that new_elems does not share cells with anything. |
| 3572 | */ |
| 3573 | previous = list_concat(previous, new_elems); |
| 3574 | |
| 3575 | gs->set = list_copy(previous); |
| 3576 | result = lcons(gs, result); |
| 3577 | } |
| 3578 | |
| 3579 | list_free(previous); |
| 3580 | |
| 3581 | return result; |
| 3582 | } |
| 3583 | |
| 3584 | /* |
| 3585 | * Compute query_pathkeys and other pathkeys during plan generation |
| 3586 | */ |
| 3587 | static void |
| 3588 | standard_qp_callback(PlannerInfo *root, void *) |
| 3589 | { |
| 3590 | Query *parse = root->parse; |
| 3591 | standard_qp_extra * = (standard_qp_extra *) extra; |
| 3592 | List *tlist = root->processed_tlist; |
| 3593 | List *activeWindows = qp_extra->activeWindows; |
| 3594 | |
| 3595 | /* |
| 3596 | * Calculate pathkeys that represent grouping/ordering requirements. The |
| 3597 | * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not |
| 3598 | * be, in which case we just leave their pathkeys empty. |
| 3599 | */ |
| 3600 | if (qp_extra->groupClause && |
| 3601 | grouping_is_sortable(qp_extra->groupClause)) |
| 3602 | root->group_pathkeys = |
| 3603 | make_pathkeys_for_sortclauses(root, |
| 3604 | qp_extra->groupClause, |
| 3605 | tlist); |
| 3606 | else |
| 3607 | root->group_pathkeys = NIL; |
| 3608 | |
| 3609 | /* We consider only the first (bottom) window in pathkeys logic */ |
| 3610 | if (activeWindows != NIL) |
| 3611 | { |
| 3612 | WindowClause *wc = linitial_node(WindowClause, activeWindows); |
| 3613 | |
| 3614 | root->window_pathkeys = make_pathkeys_for_window(root, |
| 3615 | wc, |
| 3616 | tlist); |
| 3617 | } |
| 3618 | else |
| 3619 | root->window_pathkeys = NIL; |
| 3620 | |
| 3621 | if (parse->distinctClause && |
| 3622 | grouping_is_sortable(parse->distinctClause)) |
| 3623 | root->distinct_pathkeys = |
| 3624 | make_pathkeys_for_sortclauses(root, |
| 3625 | parse->distinctClause, |
| 3626 | tlist); |
| 3627 | else |
| 3628 | root->distinct_pathkeys = NIL; |
| 3629 | |
| 3630 | root->sort_pathkeys = |
| 3631 | make_pathkeys_for_sortclauses(root, |
| 3632 | parse->sortClause, |
| 3633 | tlist); |
| 3634 | |
| 3635 | /* |
| 3636 | * Figure out whether we want a sorted result from query_planner. |
| 3637 | * |
| 3638 | * If we have a sortable GROUP BY clause, then we want a result sorted |
| 3639 | * properly for grouping. Otherwise, if we have window functions to |
| 3640 | * evaluate, we try to sort for the first window. Otherwise, if there's a |
| 3641 | * sortable DISTINCT clause that's more rigorous than the ORDER BY clause, |
| 3642 | * we try to produce output that's sufficiently well sorted for the |
| 3643 | * DISTINCT. Otherwise, if there is an ORDER BY clause, we want to sort |
| 3644 | * by the ORDER BY clause. |
| 3645 | * |
| 3646 | * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset |
| 3647 | * of GROUP BY, it would be tempting to request sort by ORDER BY --- but |
| 3648 | * that might just leave us failing to exploit an available sort order at |
| 3649 | * all. Needs more thought. The choice for DISTINCT versus ORDER BY is |
| 3650 | * much easier, since we know that the parser ensured that one is a |
| 3651 | * superset of the other. |
| 3652 | */ |
| 3653 | if (root->group_pathkeys) |
| 3654 | root->query_pathkeys = root->group_pathkeys; |
| 3655 | else if (root->window_pathkeys) |
| 3656 | root->query_pathkeys = root->window_pathkeys; |
| 3657 | else if (list_length(root->distinct_pathkeys) > |
| 3658 | list_length(root->sort_pathkeys)) |
| 3659 | root->query_pathkeys = root->distinct_pathkeys; |
| 3660 | else if (root->sort_pathkeys) |
| 3661 | root->query_pathkeys = root->sort_pathkeys; |
| 3662 | else |
| 3663 | root->query_pathkeys = NIL; |
| 3664 | } |
| 3665 | |
| 3666 | /* |
| 3667 | * Estimate number of groups produced by grouping clauses (1 if not grouping) |
| 3668 | * |
| 3669 | * path_rows: number of output rows from scan/join step |
| 3670 | * gd: grouping sets data including list of grouping sets and their clauses |
| 3671 | * target_list: target list containing group clause references |
| 3672 | * |
| 3673 | * If doing grouping sets, we also annotate the gsets data with the estimates |
| 3674 | * for each set and each individual rollup list, with a view to later |
| 3675 | * determining whether some combination of them could be hashed instead. |
| 3676 | */ |
| 3677 | static double |
| 3678 | get_number_of_groups(PlannerInfo *root, |
| 3679 | double path_rows, |
| 3680 | grouping_sets_data *gd, |
| 3681 | List *target_list) |
| 3682 | { |
| 3683 | Query *parse = root->parse; |
| 3684 | double dNumGroups; |
| 3685 | |
| 3686 | if (parse->groupClause) |
| 3687 | { |
| 3688 | List *groupExprs; |
| 3689 | |
| 3690 | if (parse->groupingSets) |
| 3691 | { |
| 3692 | /* Add up the estimates for each grouping set */ |
| 3693 | ListCell *lc; |
| 3694 | ListCell *lc2; |
| 3695 | |
| 3696 | Assert(gd); /* keep Coverity happy */ |
| 3697 | |
| 3698 | dNumGroups = 0; |
| 3699 | |
| 3700 | foreach(lc, gd->rollups) |
| 3701 | { |
| 3702 | RollupData *rollup = lfirst_node(RollupData, lc); |
| 3703 | ListCell *lc; |
| 3704 | |
| 3705 | groupExprs = get_sortgrouplist_exprs(rollup->groupClause, |
| 3706 | target_list); |
| 3707 | |
| 3708 | rollup->numGroups = 0.0; |
| 3709 | |
| 3710 | forboth(lc, rollup->gsets, lc2, rollup->gsets_data) |
| 3711 | { |
| 3712 | List *gset = (List *) lfirst(lc); |
| 3713 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc2); |
| 3714 | double numGroups = estimate_num_groups(root, |
| 3715 | groupExprs, |
| 3716 | path_rows, |
| 3717 | &gset); |
| 3718 | |
| 3719 | gs->numGroups = numGroups; |
| 3720 | rollup->numGroups += numGroups; |
| 3721 | } |
| 3722 | |
| 3723 | dNumGroups += rollup->numGroups; |
| 3724 | } |
| 3725 | |
| 3726 | if (gd->hash_sets_idx) |
| 3727 | { |
| 3728 | ListCell *lc; |
| 3729 | |
| 3730 | gd->dNumHashGroups = 0; |
| 3731 | |
| 3732 | groupExprs = get_sortgrouplist_exprs(parse->groupClause, |
| 3733 | target_list); |
| 3734 | |
| 3735 | forboth(lc, gd->hash_sets_idx, lc2, gd->unsortable_sets) |
| 3736 | { |
| 3737 | List *gset = (List *) lfirst(lc); |
| 3738 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc2); |
| 3739 | double numGroups = estimate_num_groups(root, |
| 3740 | groupExprs, |
| 3741 | path_rows, |
| 3742 | &gset); |
| 3743 | |
| 3744 | gs->numGroups = numGroups; |
| 3745 | gd->dNumHashGroups += numGroups; |
| 3746 | } |
| 3747 | |
| 3748 | dNumGroups += gd->dNumHashGroups; |
| 3749 | } |
| 3750 | } |
| 3751 | else |
| 3752 | { |
| 3753 | /* Plain GROUP BY */ |
| 3754 | groupExprs = get_sortgrouplist_exprs(parse->groupClause, |
| 3755 | target_list); |
| 3756 | |
| 3757 | dNumGroups = estimate_num_groups(root, groupExprs, path_rows, |
| 3758 | NULL); |
| 3759 | } |
| 3760 | } |
| 3761 | else if (parse->groupingSets) |
| 3762 | { |
| 3763 | /* Empty grouping sets ... one result row for each one */ |
| 3764 | dNumGroups = list_length(parse->groupingSets); |
| 3765 | } |
| 3766 | else if (parse->hasAggs || root->hasHavingQual) |
| 3767 | { |
| 3768 | /* Plain aggregation, one result row */ |
| 3769 | dNumGroups = 1; |
| 3770 | } |
| 3771 | else |
| 3772 | { |
| 3773 | /* Not grouping */ |
| 3774 | dNumGroups = 1; |
| 3775 | } |
| 3776 | |
| 3777 | return dNumGroups; |
| 3778 | } |
| 3779 | |
| 3780 | /* |
| 3781 | * create_grouping_paths |
| 3782 | * |
| 3783 | * Build a new upperrel containing Paths for grouping and/or aggregation. |
| 3784 | * Along the way, we also build an upperrel for Paths which are partially |
| 3785 | * grouped and/or aggregated. A partially grouped and/or aggregated path |
| 3786 | * needs a FinalizeAggregate node to complete the aggregation. Currently, |
| 3787 | * the only partially grouped paths we build are also partial paths; that |
| 3788 | * is, they need a Gather and then a FinalizeAggregate. |
| 3789 | * |
| 3790 | * input_rel: contains the source-data Paths |
| 3791 | * target: the pathtarget for the result Paths to compute |
| 3792 | * agg_costs: cost info about all aggregates in query (in AGGSPLIT_SIMPLE mode) |
| 3793 | * gd: grouping sets data including list of grouping sets and their clauses |
| 3794 | * |
| 3795 | * Note: all Paths in input_rel are expected to return the target computed |
| 3796 | * by make_group_input_target. |
| 3797 | */ |
| 3798 | static RelOptInfo * |
| 3799 | create_grouping_paths(PlannerInfo *root, |
| 3800 | RelOptInfo *input_rel, |
| 3801 | PathTarget *target, |
| 3802 | bool target_parallel_safe, |
| 3803 | const AggClauseCosts *agg_costs, |
| 3804 | grouping_sets_data *gd) |
| 3805 | { |
| 3806 | Query *parse = root->parse; |
| 3807 | RelOptInfo *grouped_rel; |
| 3808 | RelOptInfo *partially_grouped_rel; |
| 3809 | |
| 3810 | /* |
| 3811 | * Create grouping relation to hold fully aggregated grouping and/or |
| 3812 | * aggregation paths. |
| 3813 | */ |
| 3814 | grouped_rel = make_grouping_rel(root, input_rel, target, |
| 3815 | target_parallel_safe, parse->havingQual); |
| 3816 | |
| 3817 | /* |
| 3818 | * Create either paths for a degenerate grouping or paths for ordinary |
| 3819 | * grouping, as appropriate. |
| 3820 | */ |
| 3821 | if (is_degenerate_grouping(root)) |
| 3822 | create_degenerate_grouping_paths(root, input_rel, grouped_rel); |
| 3823 | else |
| 3824 | { |
| 3825 | int flags = 0; |
| 3826 | GroupPathExtraData ; |
| 3827 | |
| 3828 | /* |
| 3829 | * Determine whether it's possible to perform sort-based |
| 3830 | * implementations of grouping. (Note that if groupClause is empty, |
| 3831 | * grouping_is_sortable() is trivially true, and all the |
| 3832 | * pathkeys_contained_in() tests will succeed too, so that we'll |
| 3833 | * consider every surviving input path.) |
| 3834 | * |
| 3835 | * If we have grouping sets, we might be able to sort some but not all |
| 3836 | * of them; in this case, we need can_sort to be true as long as we |
| 3837 | * must consider any sorted-input plan. |
| 3838 | */ |
| 3839 | if ((gd && gd->rollups != NIL) |
| 3840 | || grouping_is_sortable(parse->groupClause)) |
| 3841 | flags |= GROUPING_CAN_USE_SORT; |
| 3842 | |
| 3843 | /* |
| 3844 | * Determine whether we should consider hash-based implementations of |
| 3845 | * grouping. |
| 3846 | * |
| 3847 | * Hashed aggregation only applies if we're grouping. If we have |
| 3848 | * grouping sets, some groups might be hashable but others not; in |
| 3849 | * this case we set can_hash true as long as there is nothing globally |
| 3850 | * preventing us from hashing (and we should therefore consider plans |
| 3851 | * with hashes). |
| 3852 | * |
| 3853 | * Executor doesn't support hashed aggregation with DISTINCT or ORDER |
| 3854 | * BY aggregates. (Doing so would imply storing *all* the input |
| 3855 | * values in the hash table, and/or running many sorts in parallel, |
| 3856 | * either of which seems like a certain loser.) We similarly don't |
| 3857 | * support ordered-set aggregates in hashed aggregation, but that case |
| 3858 | * is also included in the numOrderedAggs count. |
| 3859 | * |
| 3860 | * Note: grouping_is_hashable() is much more expensive to check than |
| 3861 | * the other gating conditions, so we want to do it last. |
| 3862 | */ |
| 3863 | if ((parse->groupClause != NIL && |
| 3864 | agg_costs->numOrderedAggs == 0 && |
| 3865 | (gd ? gd->any_hashable : grouping_is_hashable(parse->groupClause)))) |
| 3866 | flags |= GROUPING_CAN_USE_HASH; |
| 3867 | |
| 3868 | /* |
| 3869 | * Determine whether partial aggregation is possible. |
| 3870 | */ |
| 3871 | if (can_partial_agg(root, agg_costs)) |
| 3872 | flags |= GROUPING_CAN_PARTIAL_AGG; |
| 3873 | |
| 3874 | extra.flags = flags; |
| 3875 | extra.target_parallel_safe = target_parallel_safe; |
| 3876 | extra.havingQual = parse->havingQual; |
| 3877 | extra.targetList = parse->targetList; |
| 3878 | extra.partial_costs_set = false; |
| 3879 | |
| 3880 | /* |
| 3881 | * Determine whether partitionwise aggregation is in theory possible. |
| 3882 | * It can be disabled by the user, and for now, we don't try to |
| 3883 | * support grouping sets. create_ordinary_grouping_paths() will check |
| 3884 | * additional conditions, such as whether input_rel is partitioned. |
| 3885 | */ |
| 3886 | if (enable_partitionwise_aggregate && !parse->groupingSets) |
| 3887 | extra.patype = PARTITIONWISE_AGGREGATE_FULL; |
| 3888 | else |
| 3889 | extra.patype = PARTITIONWISE_AGGREGATE_NONE; |
| 3890 | |
| 3891 | create_ordinary_grouping_paths(root, input_rel, grouped_rel, |
| 3892 | agg_costs, gd, &extra, |
| 3893 | &partially_grouped_rel); |
| 3894 | } |
| 3895 | |
| 3896 | set_cheapest(grouped_rel); |
| 3897 | return grouped_rel; |
| 3898 | } |
| 3899 | |
| 3900 | /* |
| 3901 | * make_grouping_rel |
| 3902 | * |
| 3903 | * Create a new grouping rel and set basic properties. |
| 3904 | * |
| 3905 | * input_rel represents the underlying scan/join relation. |
| 3906 | * target is the output expected from the grouping relation. |
| 3907 | */ |
| 3908 | static RelOptInfo * |
| 3909 | make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, |
| 3910 | PathTarget *target, bool target_parallel_safe, |
| 3911 | Node *havingQual) |
| 3912 | { |
| 3913 | RelOptInfo *grouped_rel; |
| 3914 | |
| 3915 | if (IS_OTHER_REL(input_rel)) |
| 3916 | { |
| 3917 | grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, |
| 3918 | input_rel->relids); |
| 3919 | grouped_rel->reloptkind = RELOPT_OTHER_UPPER_REL; |
| 3920 | } |
| 3921 | else |
| 3922 | { |
| 3923 | /* |
| 3924 | * By tradition, the relids set for the main grouping relation is |
| 3925 | * NULL. (This could be changed, but might require adjustments |
| 3926 | * elsewhere.) |
| 3927 | */ |
| 3928 | grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL); |
| 3929 | } |
| 3930 | |
| 3931 | /* Set target. */ |
| 3932 | grouped_rel->reltarget = target; |
| 3933 | |
| 3934 | /* |
| 3935 | * If the input relation is not parallel-safe, then the grouped relation |
| 3936 | * can't be parallel-safe, either. Otherwise, it's parallel-safe if the |
| 3937 | * target list and HAVING quals are parallel-safe. |
| 3938 | */ |
| 3939 | if (input_rel->consider_parallel && target_parallel_safe && |
| 3940 | is_parallel_safe(root, (Node *) havingQual)) |
| 3941 | grouped_rel->consider_parallel = true; |
| 3942 | |
| 3943 | /* |
| 3944 | * If the input rel belongs to a single FDW, so does the grouped rel. |
| 3945 | */ |
| 3946 | grouped_rel->serverid = input_rel->serverid; |
| 3947 | grouped_rel->userid = input_rel->userid; |
| 3948 | grouped_rel->useridiscurrent = input_rel->useridiscurrent; |
| 3949 | grouped_rel->fdwroutine = input_rel->fdwroutine; |
| 3950 | |
| 3951 | return grouped_rel; |
| 3952 | } |
| 3953 | |
| 3954 | /* |
| 3955 | * is_degenerate_grouping |
| 3956 | * |
| 3957 | * A degenerate grouping is one in which the query has a HAVING qual and/or |
| 3958 | * grouping sets, but no aggregates and no GROUP BY (which implies that the |
| 3959 | * grouping sets are all empty). |
| 3960 | */ |
| 3961 | static bool |
| 3962 | is_degenerate_grouping(PlannerInfo *root) |
| 3963 | { |
| 3964 | Query *parse = root->parse; |
| 3965 | |
| 3966 | return (root->hasHavingQual || parse->groupingSets) && |
| 3967 | !parse->hasAggs && parse->groupClause == NIL; |
| 3968 | } |
| 3969 | |
| 3970 | /* |
| 3971 | * create_degenerate_grouping_paths |
| 3972 | * |
| 3973 | * When the grouping is degenerate (see is_degenerate_grouping), we are |
| 3974 | * supposed to emit either zero or one row for each grouping set depending on |
| 3975 | * whether HAVING succeeds. Furthermore, there cannot be any variables in |
| 3976 | * either HAVING or the targetlist, so we actually do not need the FROM table |
| 3977 | * at all! We can just throw away the plan-so-far and generate a Result node. |
| 3978 | * This is a sufficiently unusual corner case that it's not worth contorting |
| 3979 | * the structure of this module to avoid having to generate the earlier paths |
| 3980 | * in the first place. |
| 3981 | */ |
| 3982 | static void |
| 3983 | create_degenerate_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, |
| 3984 | RelOptInfo *grouped_rel) |
| 3985 | { |
| 3986 | Query *parse = root->parse; |
| 3987 | int nrows; |
| 3988 | Path *path; |
| 3989 | |
| 3990 | nrows = list_length(parse->groupingSets); |
| 3991 | if (nrows > 1) |
| 3992 | { |
| 3993 | /* |
| 3994 | * Doesn't seem worthwhile writing code to cons up a generate_series |
| 3995 | * or a values scan to emit multiple rows. Instead just make N clones |
| 3996 | * and append them. (With a volatile HAVING clause, this means you |
| 3997 | * might get between 0 and N output rows. Offhand I think that's |
| 3998 | * desired.) |
| 3999 | */ |
| 4000 | List *paths = NIL; |
| 4001 | |
| 4002 | while (--nrows >= 0) |
| 4003 | { |
| 4004 | path = (Path *) |
| 4005 | create_group_result_path(root, grouped_rel, |
| 4006 | grouped_rel->reltarget, |
| 4007 | (List *) parse->havingQual); |
| 4008 | paths = lappend(paths, path); |
| 4009 | } |
| 4010 | path = (Path *) |
| 4011 | create_append_path(root, |
| 4012 | grouped_rel, |
| 4013 | paths, |
| 4014 | NIL, |
| 4015 | NIL, |
| 4016 | NULL, |
| 4017 | 0, |
| 4018 | false, |
| 4019 | NIL, |
| 4020 | -1); |
| 4021 | } |
| 4022 | else |
| 4023 | { |
| 4024 | /* No grouping sets, or just one, so one output row */ |
| 4025 | path = (Path *) |
| 4026 | create_group_result_path(root, grouped_rel, |
| 4027 | grouped_rel->reltarget, |
| 4028 | (List *) parse->havingQual); |
| 4029 | } |
| 4030 | |
| 4031 | add_path(grouped_rel, path); |
| 4032 | } |
| 4033 | |
| 4034 | /* |
| 4035 | * create_ordinary_grouping_paths |
| 4036 | * |
| 4037 | * Create grouping paths for the ordinary (that is, non-degenerate) case. |
| 4038 | * |
| 4039 | * We need to consider sorted and hashed aggregation in the same function, |
| 4040 | * because otherwise (1) it would be harder to throw an appropriate error |
| 4041 | * message if neither way works, and (2) we should not allow hashtable size |
| 4042 | * considerations to dissuade us from using hashing if sorting is not possible. |
| 4043 | * |
| 4044 | * *partially_grouped_rel_p will be set to the partially grouped rel which this |
| 4045 | * function creates, or to NULL if it doesn't create one. |
| 4046 | */ |
| 4047 | static void |
| 4048 | create_ordinary_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, |
| 4049 | RelOptInfo *grouped_rel, |
| 4050 | const AggClauseCosts *agg_costs, |
| 4051 | grouping_sets_data *gd, |
| 4052 | GroupPathExtraData *, |
| 4053 | RelOptInfo **partially_grouped_rel_p) |
| 4054 | { |
| 4055 | Path *cheapest_path = input_rel->cheapest_total_path; |
| 4056 | RelOptInfo *partially_grouped_rel = NULL; |
| 4057 | double dNumGroups; |
| 4058 | PartitionwiseAggregateType patype = PARTITIONWISE_AGGREGATE_NONE; |
| 4059 | |
| 4060 | /* |
| 4061 | * If this is the topmost grouping relation or if the parent relation is |
| 4062 | * doing some form of partitionwise aggregation, then we may be able to do |
| 4063 | * it at this level also. However, if the input relation is not |
| 4064 | * partitioned, partitionwise aggregate is impossible. |
| 4065 | */ |
| 4066 | if (extra->patype != PARTITIONWISE_AGGREGATE_NONE && |
| 4067 | IS_PARTITIONED_REL(input_rel)) |
| 4068 | { |
| 4069 | /* |
| 4070 | * If this is the topmost relation or if the parent relation is doing |
| 4071 | * full partitionwise aggregation, then we can do full partitionwise |
| 4072 | * aggregation provided that the GROUP BY clause contains all of the |
| 4073 | * partitioning columns at this level. Otherwise, we can do at most |
| 4074 | * partial partitionwise aggregation. But if partial aggregation is |
| 4075 | * not supported in general then we can't use it for partitionwise |
| 4076 | * aggregation either. |
| 4077 | */ |
| 4078 | if (extra->patype == PARTITIONWISE_AGGREGATE_FULL && |
| 4079 | group_by_has_partkey(input_rel, extra->targetList, |
| 4080 | root->parse->groupClause)) |
| 4081 | patype = PARTITIONWISE_AGGREGATE_FULL; |
| 4082 | else if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0) |
| 4083 | patype = PARTITIONWISE_AGGREGATE_PARTIAL; |
| 4084 | else |
| 4085 | patype = PARTITIONWISE_AGGREGATE_NONE; |
| 4086 | } |
| 4087 | |
| 4088 | /* |
| 4089 | * Before generating paths for grouped_rel, we first generate any possible |
| 4090 | * partially grouped paths; that way, later code can easily consider both |
| 4091 | * parallel and non-parallel approaches to grouping. |
| 4092 | */ |
| 4093 | if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0) |
| 4094 | { |
| 4095 | bool force_rel_creation; |
| 4096 | |
| 4097 | /* |
| 4098 | * If we're doing partitionwise aggregation at this level, force |
| 4099 | * creation of a partially_grouped_rel so we can add partitionwise |
| 4100 | * paths to it. |
| 4101 | */ |
| 4102 | force_rel_creation = (patype == PARTITIONWISE_AGGREGATE_PARTIAL); |
| 4103 | |
| 4104 | partially_grouped_rel = |
| 4105 | create_partial_grouping_paths(root, |
| 4106 | grouped_rel, |
| 4107 | input_rel, |
| 4108 | gd, |
| 4109 | extra, |
| 4110 | force_rel_creation); |
| 4111 | } |
| 4112 | |
| 4113 | /* Set out parameter. */ |
| 4114 | *partially_grouped_rel_p = partially_grouped_rel; |
| 4115 | |
| 4116 | /* Apply partitionwise aggregation technique, if possible. */ |
| 4117 | if (patype != PARTITIONWISE_AGGREGATE_NONE) |
| 4118 | create_partitionwise_grouping_paths(root, input_rel, grouped_rel, |
| 4119 | partially_grouped_rel, agg_costs, |
| 4120 | gd, patype, extra); |
| 4121 | |
| 4122 | /* If we are doing partial aggregation only, return. */ |
| 4123 | if (extra->patype == PARTITIONWISE_AGGREGATE_PARTIAL) |
| 4124 | { |
| 4125 | Assert(partially_grouped_rel); |
| 4126 | |
| 4127 | if (partially_grouped_rel->pathlist) |
| 4128 | set_cheapest(partially_grouped_rel); |
| 4129 | |
| 4130 | return; |
| 4131 | } |
| 4132 | |
| 4133 | /* Gather any partially grouped partial paths. */ |
| 4134 | if (partially_grouped_rel && partially_grouped_rel->partial_pathlist) |
| 4135 | { |
| 4136 | gather_grouping_paths(root, partially_grouped_rel); |
| 4137 | set_cheapest(partially_grouped_rel); |
| 4138 | } |
| 4139 | |
| 4140 | /* |
| 4141 | * Estimate number of groups. |
| 4142 | */ |
| 4143 | dNumGroups = get_number_of_groups(root, |
| 4144 | cheapest_path->rows, |
| 4145 | gd, |
| 4146 | extra->targetList); |
| 4147 | |
| 4148 | /* Build final grouping paths */ |
| 4149 | add_paths_to_grouping_rel(root, input_rel, grouped_rel, |
| 4150 | partially_grouped_rel, agg_costs, gd, |
| 4151 | dNumGroups, extra); |
| 4152 | |
| 4153 | /* Give a helpful error if we failed to find any implementation */ |
| 4154 | if (grouped_rel->pathlist == NIL) |
| 4155 | ereport(ERROR, |
| 4156 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 4157 | errmsg("could not implement GROUP BY" ), |
| 4158 | errdetail("Some of the datatypes only support hashing, while others only support sorting." ))); |
| 4159 | |
| 4160 | /* |
| 4161 | * If there is an FDW that's responsible for all baserels of the query, |
| 4162 | * let it consider adding ForeignPaths. |
| 4163 | */ |
| 4164 | if (grouped_rel->fdwroutine && |
| 4165 | grouped_rel->fdwroutine->GetForeignUpperPaths) |
| 4166 | grouped_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_GROUP_AGG, |
| 4167 | input_rel, grouped_rel, |
| 4168 | extra); |
| 4169 | |
| 4170 | /* Let extensions possibly add some more paths */ |
| 4171 | if (create_upper_paths_hook) |
| 4172 | (*create_upper_paths_hook) (root, UPPERREL_GROUP_AGG, |
| 4173 | input_rel, grouped_rel, |
| 4174 | extra); |
| 4175 | } |
| 4176 | |
| 4177 | /* |
| 4178 | * For a given input path, consider the possible ways of doing grouping sets on |
| 4179 | * it, by combinations of hashing and sorting. This can be called multiple |
| 4180 | * times, so it's important that it not scribble on input. No result is |
| 4181 | * returned, but any generated paths are added to grouped_rel. |
| 4182 | */ |
| 4183 | static void |
| 4184 | consider_groupingsets_paths(PlannerInfo *root, |
| 4185 | RelOptInfo *grouped_rel, |
| 4186 | Path *path, |
| 4187 | bool is_sorted, |
| 4188 | bool can_hash, |
| 4189 | grouping_sets_data *gd, |
| 4190 | const AggClauseCosts *agg_costs, |
| 4191 | double dNumGroups) |
| 4192 | { |
| 4193 | Query *parse = root->parse; |
| 4194 | |
| 4195 | /* |
| 4196 | * If we're not being offered sorted input, then only consider plans that |
| 4197 | * can be done entirely by hashing. |
| 4198 | * |
| 4199 | * We can hash everything if it looks like it'll fit in work_mem. But if |
| 4200 | * the input is actually sorted despite not being advertised as such, we |
| 4201 | * prefer to make use of that in order to use less memory. |
| 4202 | * |
| 4203 | * If none of the grouping sets are sortable, then ignore the work_mem |
| 4204 | * limit and generate a path anyway, since otherwise we'll just fail. |
| 4205 | */ |
| 4206 | if (!is_sorted) |
| 4207 | { |
| 4208 | List *new_rollups = NIL; |
| 4209 | RollupData *unhashed_rollup = NULL; |
| 4210 | List *sets_data; |
| 4211 | List *empty_sets_data = NIL; |
| 4212 | List *empty_sets = NIL; |
| 4213 | ListCell *lc; |
| 4214 | ListCell *l_start = list_head(gd->rollups); |
| 4215 | AggStrategy strat = AGG_HASHED; |
| 4216 | double hashsize; |
| 4217 | double exclude_groups = 0.0; |
| 4218 | |
| 4219 | Assert(can_hash); |
| 4220 | |
| 4221 | /* |
| 4222 | * If the input is coincidentally sorted usefully (which can happen |
| 4223 | * even if is_sorted is false, since that only means that our caller |
| 4224 | * has set up the sorting for us), then save some hashtable space by |
| 4225 | * making use of that. But we need to watch out for degenerate cases: |
| 4226 | * |
| 4227 | * 1) If there are any empty grouping sets, then group_pathkeys might |
| 4228 | * be NIL if all non-empty grouping sets are unsortable. In this case, |
| 4229 | * there will be a rollup containing only empty groups, and the |
| 4230 | * pathkeys_contained_in test is vacuously true; this is ok. |
| 4231 | * |
| 4232 | * XXX: the above relies on the fact that group_pathkeys is generated |
| 4233 | * from the first rollup. If we add the ability to consider multiple |
| 4234 | * sort orders for grouping input, this assumption might fail. |
| 4235 | * |
| 4236 | * 2) If there are no empty sets and only unsortable sets, then the |
| 4237 | * rollups list will be empty (and thus l_start == NULL), and |
| 4238 | * group_pathkeys will be NIL; we must ensure that the vacuously-true |
| 4239 | * pathkeys_contain_in test doesn't cause us to crash. |
| 4240 | */ |
| 4241 | if (l_start != NULL && |
| 4242 | pathkeys_contained_in(root->group_pathkeys, path->pathkeys)) |
| 4243 | { |
| 4244 | unhashed_rollup = lfirst_node(RollupData, l_start); |
| 4245 | exclude_groups = unhashed_rollup->numGroups; |
| 4246 | l_start = lnext(l_start); |
| 4247 | } |
| 4248 | |
| 4249 | hashsize = estimate_hashagg_tablesize(path, |
| 4250 | agg_costs, |
| 4251 | dNumGroups - exclude_groups); |
| 4252 | |
| 4253 | /* |
| 4254 | * gd->rollups is empty if we have only unsortable columns to work |
| 4255 | * with. Override work_mem in that case; otherwise, we'll rely on the |
| 4256 | * sorted-input case to generate usable mixed paths. |
| 4257 | */ |
| 4258 | if (hashsize > work_mem * 1024L && gd->rollups) |
| 4259 | return; /* nope, won't fit */ |
| 4260 | |
| 4261 | /* |
| 4262 | * We need to burst the existing rollups list into individual grouping |
| 4263 | * sets and recompute a groupClause for each set. |
| 4264 | */ |
| 4265 | sets_data = list_copy(gd->unsortable_sets); |
| 4266 | |
| 4267 | for_each_cell(lc, l_start) |
| 4268 | { |
| 4269 | RollupData *rollup = lfirst_node(RollupData, lc); |
| 4270 | |
| 4271 | /* |
| 4272 | * If we find an unhashable rollup that's not been skipped by the |
| 4273 | * "actually sorted" check above, we can't cope; we'd need sorted |
| 4274 | * input (with a different sort order) but we can't get that here. |
| 4275 | * So bail out; we'll get a valid path from the is_sorted case |
| 4276 | * instead. |
| 4277 | * |
| 4278 | * The mere presence of empty grouping sets doesn't make a rollup |
| 4279 | * unhashable (see preprocess_grouping_sets), we handle those |
| 4280 | * specially below. |
| 4281 | */ |
| 4282 | if (!rollup->hashable) |
| 4283 | return; |
| 4284 | else |
| 4285 | sets_data = list_concat(sets_data, list_copy(rollup->gsets_data)); |
| 4286 | } |
| 4287 | foreach(lc, sets_data) |
| 4288 | { |
| 4289 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc); |
| 4290 | List *gset = gs->set; |
| 4291 | RollupData *rollup; |
| 4292 | |
| 4293 | if (gset == NIL) |
| 4294 | { |
| 4295 | /* Empty grouping sets can't be hashed. */ |
| 4296 | empty_sets_data = lappend(empty_sets_data, gs); |
| 4297 | empty_sets = lappend(empty_sets, NIL); |
| 4298 | } |
| 4299 | else |
| 4300 | { |
| 4301 | rollup = makeNode(RollupData); |
| 4302 | |
| 4303 | rollup->groupClause = preprocess_groupclause(root, gset); |
| 4304 | rollup->gsets_data = list_make1(gs); |
| 4305 | rollup->gsets = remap_to_groupclause_idx(rollup->groupClause, |
| 4306 | rollup->gsets_data, |
| 4307 | gd->tleref_to_colnum_map); |
| 4308 | rollup->numGroups = gs->numGroups; |
| 4309 | rollup->hashable = true; |
| 4310 | rollup->is_hashed = true; |
| 4311 | new_rollups = lappend(new_rollups, rollup); |
| 4312 | } |
| 4313 | } |
| 4314 | |
| 4315 | /* |
| 4316 | * If we didn't find anything nonempty to hash, then bail. We'll |
| 4317 | * generate a path from the is_sorted case. |
| 4318 | */ |
| 4319 | if (new_rollups == NIL) |
| 4320 | return; |
| 4321 | |
| 4322 | /* |
| 4323 | * If there were empty grouping sets they should have been in the |
| 4324 | * first rollup. |
| 4325 | */ |
| 4326 | Assert(!unhashed_rollup || !empty_sets); |
| 4327 | |
| 4328 | if (unhashed_rollup) |
| 4329 | { |
| 4330 | new_rollups = lappend(new_rollups, unhashed_rollup); |
| 4331 | strat = AGG_MIXED; |
| 4332 | } |
| 4333 | else if (empty_sets) |
| 4334 | { |
| 4335 | RollupData *rollup = makeNode(RollupData); |
| 4336 | |
| 4337 | rollup->groupClause = NIL; |
| 4338 | rollup->gsets_data = empty_sets_data; |
| 4339 | rollup->gsets = empty_sets; |
| 4340 | rollup->numGroups = list_length(empty_sets); |
| 4341 | rollup->hashable = false; |
| 4342 | rollup->is_hashed = false; |
| 4343 | new_rollups = lappend(new_rollups, rollup); |
| 4344 | strat = AGG_MIXED; |
| 4345 | } |
| 4346 | |
| 4347 | add_path(grouped_rel, (Path *) |
| 4348 | create_groupingsets_path(root, |
| 4349 | grouped_rel, |
| 4350 | path, |
| 4351 | (List *) parse->havingQual, |
| 4352 | strat, |
| 4353 | new_rollups, |
| 4354 | agg_costs, |
| 4355 | dNumGroups)); |
| 4356 | return; |
| 4357 | } |
| 4358 | |
| 4359 | /* |
| 4360 | * If we have sorted input but nothing we can do with it, bail. |
| 4361 | */ |
| 4362 | if (list_length(gd->rollups) == 0) |
| 4363 | return; |
| 4364 | |
| 4365 | /* |
| 4366 | * Given sorted input, we try and make two paths: one sorted and one mixed |
| 4367 | * sort/hash. (We need to try both because hashagg might be disabled, or |
| 4368 | * some columns might not be sortable.) |
| 4369 | * |
| 4370 | * can_hash is passed in as false if some obstacle elsewhere (such as |
| 4371 | * ordered aggs) means that we shouldn't consider hashing at all. |
| 4372 | */ |
| 4373 | if (can_hash && gd->any_hashable) |
| 4374 | { |
| 4375 | List *rollups = NIL; |
| 4376 | List *hash_sets = list_copy(gd->unsortable_sets); |
| 4377 | double availspace = (work_mem * 1024.0); |
| 4378 | ListCell *lc; |
| 4379 | |
| 4380 | /* |
| 4381 | * Account first for space needed for groups we can't sort at all. |
| 4382 | */ |
| 4383 | availspace -= estimate_hashagg_tablesize(path, |
| 4384 | agg_costs, |
| 4385 | gd->dNumHashGroups); |
| 4386 | |
| 4387 | if (availspace > 0 && list_length(gd->rollups) > 1) |
| 4388 | { |
| 4389 | double scale; |
| 4390 | int num_rollups = list_length(gd->rollups); |
| 4391 | int k_capacity; |
| 4392 | int *k_weights = palloc(num_rollups * sizeof(int)); |
| 4393 | Bitmapset *hash_items = NULL; |
| 4394 | int i; |
| 4395 | |
| 4396 | /* |
| 4397 | * We treat this as a knapsack problem: the knapsack capacity |
| 4398 | * represents work_mem, the item weights are the estimated memory |
| 4399 | * usage of the hashtables needed to implement a single rollup, |
| 4400 | * and we really ought to use the cost saving as the item value; |
| 4401 | * however, currently the costs assigned to sort nodes don't |
| 4402 | * reflect the comparison costs well, and so we treat all items as |
| 4403 | * of equal value (each rollup we hash instead saves us one sort). |
| 4404 | * |
| 4405 | * To use the discrete knapsack, we need to scale the values to a |
| 4406 | * reasonably small bounded range. We choose to allow a 5% error |
| 4407 | * margin; we have no more than 4096 rollups in the worst possible |
| 4408 | * case, which with a 5% error margin will require a bit over 42MB |
| 4409 | * of workspace. (Anyone wanting to plan queries that complex had |
| 4410 | * better have the memory for it. In more reasonable cases, with |
| 4411 | * no more than a couple of dozen rollups, the memory usage will |
| 4412 | * be negligible.) |
| 4413 | * |
| 4414 | * k_capacity is naturally bounded, but we clamp the values for |
| 4415 | * scale and weight (below) to avoid overflows or underflows (or |
| 4416 | * uselessly trying to use a scale factor less than 1 byte). |
| 4417 | */ |
| 4418 | scale = Max(availspace / (20.0 * num_rollups), 1.0); |
| 4419 | k_capacity = (int) floor(availspace / scale); |
| 4420 | |
| 4421 | /* |
| 4422 | * We leave the first rollup out of consideration since it's the |
| 4423 | * one that matches the input sort order. We assign indexes "i" |
| 4424 | * to only those entries considered for hashing; the second loop, |
| 4425 | * below, must use the same condition. |
| 4426 | */ |
| 4427 | i = 0; |
| 4428 | for_each_cell(lc, lnext(list_head(gd->rollups))) |
| 4429 | { |
| 4430 | RollupData *rollup = lfirst_node(RollupData, lc); |
| 4431 | |
| 4432 | if (rollup->hashable) |
| 4433 | { |
| 4434 | double sz = estimate_hashagg_tablesize(path, |
| 4435 | agg_costs, |
| 4436 | rollup->numGroups); |
| 4437 | |
| 4438 | /* |
| 4439 | * If sz is enormous, but work_mem (and hence scale) is |
| 4440 | * small, avoid integer overflow here. |
| 4441 | */ |
| 4442 | k_weights[i] = (int) Min(floor(sz / scale), |
| 4443 | k_capacity + 1.0); |
| 4444 | ++i; |
| 4445 | } |
| 4446 | } |
| 4447 | |
| 4448 | /* |
| 4449 | * Apply knapsack algorithm; compute the set of items which |
| 4450 | * maximizes the value stored (in this case the number of sorts |
| 4451 | * saved) while keeping the total size (approximately) within |
| 4452 | * capacity. |
| 4453 | */ |
| 4454 | if (i > 0) |
| 4455 | hash_items = DiscreteKnapsack(k_capacity, i, k_weights, NULL); |
| 4456 | |
| 4457 | if (!bms_is_empty(hash_items)) |
| 4458 | { |
| 4459 | rollups = list_make1(linitial(gd->rollups)); |
| 4460 | |
| 4461 | i = 0; |
| 4462 | for_each_cell(lc, lnext(list_head(gd->rollups))) |
| 4463 | { |
| 4464 | RollupData *rollup = lfirst_node(RollupData, lc); |
| 4465 | |
| 4466 | if (rollup->hashable) |
| 4467 | { |
| 4468 | if (bms_is_member(i, hash_items)) |
| 4469 | hash_sets = list_concat(hash_sets, |
| 4470 | list_copy(rollup->gsets_data)); |
| 4471 | else |
| 4472 | rollups = lappend(rollups, rollup); |
| 4473 | ++i; |
| 4474 | } |
| 4475 | else |
| 4476 | rollups = lappend(rollups, rollup); |
| 4477 | } |
| 4478 | } |
| 4479 | } |
| 4480 | |
| 4481 | if (!rollups && hash_sets) |
| 4482 | rollups = list_copy(gd->rollups); |
| 4483 | |
| 4484 | foreach(lc, hash_sets) |
| 4485 | { |
| 4486 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc); |
| 4487 | RollupData *rollup = makeNode(RollupData); |
| 4488 | |
| 4489 | Assert(gs->set != NIL); |
| 4490 | |
| 4491 | rollup->groupClause = preprocess_groupclause(root, gs->set); |
| 4492 | rollup->gsets_data = list_make1(gs); |
| 4493 | rollup->gsets = remap_to_groupclause_idx(rollup->groupClause, |
| 4494 | rollup->gsets_data, |
| 4495 | gd->tleref_to_colnum_map); |
| 4496 | rollup->numGroups = gs->numGroups; |
| 4497 | rollup->hashable = true; |
| 4498 | rollup->is_hashed = true; |
| 4499 | rollups = lcons(rollup, rollups); |
| 4500 | } |
| 4501 | |
| 4502 | if (rollups) |
| 4503 | { |
| 4504 | add_path(grouped_rel, (Path *) |
| 4505 | create_groupingsets_path(root, |
| 4506 | grouped_rel, |
| 4507 | path, |
| 4508 | (List *) parse->havingQual, |
| 4509 | AGG_MIXED, |
| 4510 | rollups, |
| 4511 | agg_costs, |
| 4512 | dNumGroups)); |
| 4513 | } |
| 4514 | } |
| 4515 | |
| 4516 | /* |
| 4517 | * Now try the simple sorted case. |
| 4518 | */ |
| 4519 | if (!gd->unsortable_sets) |
| 4520 | add_path(grouped_rel, (Path *) |
| 4521 | create_groupingsets_path(root, |
| 4522 | grouped_rel, |
| 4523 | path, |
| 4524 | (List *) parse->havingQual, |
| 4525 | AGG_SORTED, |
| 4526 | gd->rollups, |
| 4527 | agg_costs, |
| 4528 | dNumGroups)); |
| 4529 | } |
| 4530 | |
| 4531 | /* |
| 4532 | * create_window_paths |
| 4533 | * |
| 4534 | * Build a new upperrel containing Paths for window-function evaluation. |
| 4535 | * |
| 4536 | * input_rel: contains the source-data Paths |
| 4537 | * input_target: result of make_window_input_target |
| 4538 | * output_target: what the topmost WindowAggPath should return |
| 4539 | * wflists: result of find_window_functions |
| 4540 | * activeWindows: result of select_active_windows |
| 4541 | * |
| 4542 | * Note: all Paths in input_rel are expected to return input_target. |
| 4543 | */ |
| 4544 | static RelOptInfo * |
| 4545 | create_window_paths(PlannerInfo *root, |
| 4546 | RelOptInfo *input_rel, |
| 4547 | PathTarget *input_target, |
| 4548 | PathTarget *output_target, |
| 4549 | bool output_target_parallel_safe, |
| 4550 | WindowFuncLists *wflists, |
| 4551 | List *activeWindows) |
| 4552 | { |
| 4553 | RelOptInfo *window_rel; |
| 4554 | ListCell *lc; |
| 4555 | |
| 4556 | /* For now, do all work in the (WINDOW, NULL) upperrel */ |
| 4557 | window_rel = fetch_upper_rel(root, UPPERREL_WINDOW, NULL); |
| 4558 | |
| 4559 | /* |
| 4560 | * If the input relation is not parallel-safe, then the window relation |
| 4561 | * can't be parallel-safe, either. Otherwise, we need to examine the |
| 4562 | * target list and active windows for non-parallel-safe constructs. |
| 4563 | */ |
| 4564 | if (input_rel->consider_parallel && output_target_parallel_safe && |
| 4565 | is_parallel_safe(root, (Node *) activeWindows)) |
| 4566 | window_rel->consider_parallel = true; |
| 4567 | |
| 4568 | /* |
| 4569 | * If the input rel belongs to a single FDW, so does the window rel. |
| 4570 | */ |
| 4571 | window_rel->serverid = input_rel->serverid; |
| 4572 | window_rel->userid = input_rel->userid; |
| 4573 | window_rel->useridiscurrent = input_rel->useridiscurrent; |
| 4574 | window_rel->fdwroutine = input_rel->fdwroutine; |
| 4575 | |
| 4576 | /* |
| 4577 | * Consider computing window functions starting from the existing |
| 4578 | * cheapest-total path (which will likely require a sort) as well as any |
| 4579 | * existing paths that satisfy root->window_pathkeys (which won't). |
| 4580 | */ |
| 4581 | foreach(lc, input_rel->pathlist) |
| 4582 | { |
| 4583 | Path *path = (Path *) lfirst(lc); |
| 4584 | |
| 4585 | if (path == input_rel->cheapest_total_path || |
| 4586 | pathkeys_contained_in(root->window_pathkeys, path->pathkeys)) |
| 4587 | create_one_window_path(root, |
| 4588 | window_rel, |
| 4589 | path, |
| 4590 | input_target, |
| 4591 | output_target, |
| 4592 | wflists, |
| 4593 | activeWindows); |
| 4594 | } |
| 4595 | |
| 4596 | /* |
| 4597 | * If there is an FDW that's responsible for all baserels of the query, |
| 4598 | * let it consider adding ForeignPaths. |
| 4599 | */ |
| 4600 | if (window_rel->fdwroutine && |
| 4601 | window_rel->fdwroutine->GetForeignUpperPaths) |
| 4602 | window_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_WINDOW, |
| 4603 | input_rel, window_rel, |
| 4604 | NULL); |
| 4605 | |
| 4606 | /* Let extensions possibly add some more paths */ |
| 4607 | if (create_upper_paths_hook) |
| 4608 | (*create_upper_paths_hook) (root, UPPERREL_WINDOW, |
| 4609 | input_rel, window_rel, NULL); |
| 4610 | |
| 4611 | /* Now choose the best path(s) */ |
| 4612 | set_cheapest(window_rel); |
| 4613 | |
| 4614 | return window_rel; |
| 4615 | } |
| 4616 | |
| 4617 | /* |
| 4618 | * Stack window-function implementation steps atop the given Path, and |
| 4619 | * add the result to window_rel. |
| 4620 | * |
| 4621 | * window_rel: upperrel to contain result |
| 4622 | * path: input Path to use (must return input_target) |
| 4623 | * input_target: result of make_window_input_target |
| 4624 | * output_target: what the topmost WindowAggPath should return |
| 4625 | * wflists: result of find_window_functions |
| 4626 | * activeWindows: result of select_active_windows |
| 4627 | */ |
| 4628 | static void |
| 4629 | create_one_window_path(PlannerInfo *root, |
| 4630 | RelOptInfo *window_rel, |
| 4631 | Path *path, |
| 4632 | PathTarget *input_target, |
| 4633 | PathTarget *output_target, |
| 4634 | WindowFuncLists *wflists, |
| 4635 | List *activeWindows) |
| 4636 | { |
| 4637 | PathTarget *window_target; |
| 4638 | ListCell *l; |
| 4639 | |
| 4640 | /* |
| 4641 | * Since each window clause could require a different sort order, we stack |
| 4642 | * up a WindowAgg node for each clause, with sort steps between them as |
| 4643 | * needed. (We assume that select_active_windows chose a good order for |
| 4644 | * executing the clauses in.) |
| 4645 | * |
| 4646 | * input_target should contain all Vars and Aggs needed for the result. |
| 4647 | * (In some cases we wouldn't need to propagate all of these all the way |
| 4648 | * to the top, since they might only be needed as inputs to WindowFuncs. |
| 4649 | * It's probably not worth trying to optimize that though.) It must also |
| 4650 | * contain all window partitioning and sorting expressions, to ensure |
| 4651 | * they're computed only once at the bottom of the stack (that's critical |
| 4652 | * for volatile functions). As we climb up the stack, we'll add outputs |
| 4653 | * for the WindowFuncs computed at each level. |
| 4654 | */ |
| 4655 | window_target = input_target; |
| 4656 | |
| 4657 | foreach(l, activeWindows) |
| 4658 | { |
| 4659 | WindowClause *wc = lfirst_node(WindowClause, l); |
| 4660 | List *window_pathkeys; |
| 4661 | |
| 4662 | window_pathkeys = make_pathkeys_for_window(root, |
| 4663 | wc, |
| 4664 | root->processed_tlist); |
| 4665 | |
| 4666 | /* Sort if necessary */ |
| 4667 | if (!pathkeys_contained_in(window_pathkeys, path->pathkeys)) |
| 4668 | { |
| 4669 | path = (Path *) create_sort_path(root, window_rel, |
| 4670 | path, |
| 4671 | window_pathkeys, |
| 4672 | -1.0); |
| 4673 | } |
| 4674 | |
| 4675 | if (lnext(l)) |
| 4676 | { |
| 4677 | /* |
| 4678 | * Add the current WindowFuncs to the output target for this |
| 4679 | * intermediate WindowAggPath. We must copy window_target to |
| 4680 | * avoid changing the previous path's target. |
| 4681 | * |
| 4682 | * Note: a WindowFunc adds nothing to the target's eval costs; but |
| 4683 | * we do need to account for the increase in tlist width. |
| 4684 | */ |
| 4685 | ListCell *lc2; |
| 4686 | |
| 4687 | window_target = copy_pathtarget(window_target); |
| 4688 | foreach(lc2, wflists->windowFuncs[wc->winref]) |
| 4689 | { |
| 4690 | WindowFunc *wfunc = lfirst_node(WindowFunc, lc2); |
| 4691 | |
| 4692 | add_column_to_pathtarget(window_target, (Expr *) wfunc, 0); |
| 4693 | window_target->width += get_typavgwidth(wfunc->wintype, -1); |
| 4694 | } |
| 4695 | } |
| 4696 | else |
| 4697 | { |
| 4698 | /* Install the goal target in the topmost WindowAgg */ |
| 4699 | window_target = output_target; |
| 4700 | } |
| 4701 | |
| 4702 | path = (Path *) |
| 4703 | create_windowagg_path(root, window_rel, path, window_target, |
| 4704 | wflists->windowFuncs[wc->winref], |
| 4705 | wc); |
| 4706 | } |
| 4707 | |
| 4708 | add_path(window_rel, path); |
| 4709 | } |
| 4710 | |
| 4711 | /* |
| 4712 | * create_distinct_paths |
| 4713 | * |
| 4714 | * Build a new upperrel containing Paths for SELECT DISTINCT evaluation. |
| 4715 | * |
| 4716 | * input_rel: contains the source-data Paths |
| 4717 | * |
| 4718 | * Note: input paths should already compute the desired pathtarget, since |
| 4719 | * Sort/Unique won't project anything. |
| 4720 | */ |
| 4721 | static RelOptInfo * |
| 4722 | create_distinct_paths(PlannerInfo *root, |
| 4723 | RelOptInfo *input_rel) |
| 4724 | { |
| 4725 | Query *parse = root->parse; |
| 4726 | Path *cheapest_input_path = input_rel->cheapest_total_path; |
| 4727 | RelOptInfo *distinct_rel; |
| 4728 | double numDistinctRows; |
| 4729 | bool allow_hash; |
| 4730 | Path *path; |
| 4731 | ListCell *lc; |
| 4732 | |
| 4733 | /* For now, do all work in the (DISTINCT, NULL) upperrel */ |
| 4734 | distinct_rel = fetch_upper_rel(root, UPPERREL_DISTINCT, NULL); |
| 4735 | |
| 4736 | /* |
| 4737 | * We don't compute anything at this level, so distinct_rel will be |
| 4738 | * parallel-safe if the input rel is parallel-safe. In particular, if |
| 4739 | * there is a DISTINCT ON (...) clause, any path for the input_rel will |
| 4740 | * output those expressions, and will not be parallel-safe unless those |
| 4741 | * expressions are parallel-safe. |
| 4742 | */ |
| 4743 | distinct_rel->consider_parallel = input_rel->consider_parallel; |
| 4744 | |
| 4745 | /* |
| 4746 | * If the input rel belongs to a single FDW, so does the distinct_rel. |
| 4747 | */ |
| 4748 | distinct_rel->serverid = input_rel->serverid; |
| 4749 | distinct_rel->userid = input_rel->userid; |
| 4750 | distinct_rel->useridiscurrent = input_rel->useridiscurrent; |
| 4751 | distinct_rel->fdwroutine = input_rel->fdwroutine; |
| 4752 | |
| 4753 | /* Estimate number of distinct rows there will be */ |
| 4754 | if (parse->groupClause || parse->groupingSets || parse->hasAggs || |
| 4755 | root->hasHavingQual) |
| 4756 | { |
| 4757 | /* |
| 4758 | * If there was grouping or aggregation, use the number of input rows |
| 4759 | * as the estimated number of DISTINCT rows (ie, assume the input is |
| 4760 | * already mostly unique). |
| 4761 | */ |
| 4762 | numDistinctRows = cheapest_input_path->rows; |
| 4763 | } |
| 4764 | else |
| 4765 | { |
| 4766 | /* |
| 4767 | * Otherwise, the UNIQUE filter has effects comparable to GROUP BY. |
| 4768 | */ |
| 4769 | List *distinctExprs; |
| 4770 | |
| 4771 | distinctExprs = get_sortgrouplist_exprs(parse->distinctClause, |
| 4772 | parse->targetList); |
| 4773 | numDistinctRows = estimate_num_groups(root, distinctExprs, |
| 4774 | cheapest_input_path->rows, |
| 4775 | NULL); |
| 4776 | } |
| 4777 | |
| 4778 | /* |
| 4779 | * Consider sort-based implementations of DISTINCT, if possible. |
| 4780 | */ |
| 4781 | if (grouping_is_sortable(parse->distinctClause)) |
| 4782 | { |
| 4783 | /* |
| 4784 | * First, if we have any adequately-presorted paths, just stick a |
| 4785 | * Unique node on those. Then consider doing an explicit sort of the |
| 4786 | * cheapest input path and Unique'ing that. |
| 4787 | * |
| 4788 | * When we have DISTINCT ON, we must sort by the more rigorous of |
| 4789 | * DISTINCT and ORDER BY, else it won't have the desired behavior. |
| 4790 | * Also, if we do have to do an explicit sort, we might as well use |
| 4791 | * the more rigorous ordering to avoid a second sort later. (Note |
| 4792 | * that the parser will have ensured that one clause is a prefix of |
| 4793 | * the other.) |
| 4794 | */ |
| 4795 | List *needed_pathkeys; |
| 4796 | |
| 4797 | if (parse->hasDistinctOn && |
| 4798 | list_length(root->distinct_pathkeys) < |
| 4799 | list_length(root->sort_pathkeys)) |
| 4800 | needed_pathkeys = root->sort_pathkeys; |
| 4801 | else |
| 4802 | needed_pathkeys = root->distinct_pathkeys; |
| 4803 | |
| 4804 | foreach(lc, input_rel->pathlist) |
| 4805 | { |
| 4806 | Path *path = (Path *) lfirst(lc); |
| 4807 | |
| 4808 | if (pathkeys_contained_in(needed_pathkeys, path->pathkeys)) |
| 4809 | { |
| 4810 | add_path(distinct_rel, (Path *) |
| 4811 | create_upper_unique_path(root, distinct_rel, |
| 4812 | path, |
| 4813 | list_length(root->distinct_pathkeys), |
| 4814 | numDistinctRows)); |
| 4815 | } |
| 4816 | } |
| 4817 | |
| 4818 | /* For explicit-sort case, always use the more rigorous clause */ |
| 4819 | if (list_length(root->distinct_pathkeys) < |
| 4820 | list_length(root->sort_pathkeys)) |
| 4821 | { |
| 4822 | needed_pathkeys = root->sort_pathkeys; |
| 4823 | /* Assert checks that parser didn't mess up... */ |
| 4824 | Assert(pathkeys_contained_in(root->distinct_pathkeys, |
| 4825 | needed_pathkeys)); |
| 4826 | } |
| 4827 | else |
| 4828 | needed_pathkeys = root->distinct_pathkeys; |
| 4829 | |
| 4830 | path = cheapest_input_path; |
| 4831 | if (!pathkeys_contained_in(needed_pathkeys, path->pathkeys)) |
| 4832 | path = (Path *) create_sort_path(root, distinct_rel, |
| 4833 | path, |
| 4834 | needed_pathkeys, |
| 4835 | -1.0); |
| 4836 | |
| 4837 | add_path(distinct_rel, (Path *) |
| 4838 | create_upper_unique_path(root, distinct_rel, |
| 4839 | path, |
| 4840 | list_length(root->distinct_pathkeys), |
| 4841 | numDistinctRows)); |
| 4842 | } |
| 4843 | |
| 4844 | /* |
| 4845 | * Consider hash-based implementations of DISTINCT, if possible. |
| 4846 | * |
| 4847 | * If we were not able to make any other types of path, we *must* hash or |
| 4848 | * die trying. If we do have other choices, there are several things that |
| 4849 | * should prevent selection of hashing: if the query uses DISTINCT ON |
| 4850 | * (because it won't really have the expected behavior if we hash), or if |
| 4851 | * enable_hashagg is off, or if it looks like the hashtable will exceed |
| 4852 | * work_mem. |
| 4853 | * |
| 4854 | * Note: grouping_is_hashable() is much more expensive to check than the |
| 4855 | * other gating conditions, so we want to do it last. |
| 4856 | */ |
| 4857 | if (distinct_rel->pathlist == NIL) |
| 4858 | allow_hash = true; /* we have no alternatives */ |
| 4859 | else if (parse->hasDistinctOn || !enable_hashagg) |
| 4860 | allow_hash = false; /* policy-based decision not to hash */ |
| 4861 | else |
| 4862 | { |
| 4863 | Size hashentrysize; |
| 4864 | |
| 4865 | /* Estimate per-hash-entry space at tuple width... */ |
| 4866 | hashentrysize = MAXALIGN(cheapest_input_path->pathtarget->width) + |
| 4867 | MAXALIGN(SizeofMinimalTupleHeader); |
| 4868 | /* plus the per-hash-entry overhead */ |
| 4869 | hashentrysize += hash_agg_entry_size(0); |
| 4870 | |
| 4871 | /* Allow hashing only if hashtable is predicted to fit in work_mem */ |
| 4872 | allow_hash = (hashentrysize * numDistinctRows <= work_mem * 1024L); |
| 4873 | } |
| 4874 | |
| 4875 | if (allow_hash && grouping_is_hashable(parse->distinctClause)) |
| 4876 | { |
| 4877 | /* Generate hashed aggregate path --- no sort needed */ |
| 4878 | add_path(distinct_rel, (Path *) |
| 4879 | create_agg_path(root, |
| 4880 | distinct_rel, |
| 4881 | cheapest_input_path, |
| 4882 | cheapest_input_path->pathtarget, |
| 4883 | AGG_HASHED, |
| 4884 | AGGSPLIT_SIMPLE, |
| 4885 | parse->distinctClause, |
| 4886 | NIL, |
| 4887 | NULL, |
| 4888 | numDistinctRows)); |
| 4889 | } |
| 4890 | |
| 4891 | /* Give a helpful error if we failed to find any implementation */ |
| 4892 | if (distinct_rel->pathlist == NIL) |
| 4893 | ereport(ERROR, |
| 4894 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 4895 | errmsg("could not implement DISTINCT" ), |
| 4896 | errdetail("Some of the datatypes only support hashing, while others only support sorting." ))); |
| 4897 | |
| 4898 | /* |
| 4899 | * If there is an FDW that's responsible for all baserels of the query, |
| 4900 | * let it consider adding ForeignPaths. |
| 4901 | */ |
| 4902 | if (distinct_rel->fdwroutine && |
| 4903 | distinct_rel->fdwroutine->GetForeignUpperPaths) |
| 4904 | distinct_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_DISTINCT, |
| 4905 | input_rel, distinct_rel, |
| 4906 | NULL); |
| 4907 | |
| 4908 | /* Let extensions possibly add some more paths */ |
| 4909 | if (create_upper_paths_hook) |
| 4910 | (*create_upper_paths_hook) (root, UPPERREL_DISTINCT, |
| 4911 | input_rel, distinct_rel, NULL); |
| 4912 | |
| 4913 | /* Now choose the best path(s) */ |
| 4914 | set_cheapest(distinct_rel); |
| 4915 | |
| 4916 | return distinct_rel; |
| 4917 | } |
| 4918 | |
| 4919 | /* |
| 4920 | * create_ordered_paths |
| 4921 | * |
| 4922 | * Build a new upperrel containing Paths for ORDER BY evaluation. |
| 4923 | * |
| 4924 | * All paths in the result must satisfy the ORDER BY ordering. |
| 4925 | * The only new path we need consider is an explicit sort on the |
| 4926 | * cheapest-total existing path. |
| 4927 | * |
| 4928 | * input_rel: contains the source-data Paths |
| 4929 | * target: the output tlist the result Paths must emit |
| 4930 | * limit_tuples: estimated bound on the number of output tuples, |
| 4931 | * or -1 if no LIMIT or couldn't estimate |
| 4932 | */ |
| 4933 | static RelOptInfo * |
| 4934 | create_ordered_paths(PlannerInfo *root, |
| 4935 | RelOptInfo *input_rel, |
| 4936 | PathTarget *target, |
| 4937 | bool target_parallel_safe, |
| 4938 | double limit_tuples) |
| 4939 | { |
| 4940 | Path *cheapest_input_path = input_rel->cheapest_total_path; |
| 4941 | RelOptInfo *ordered_rel; |
| 4942 | ListCell *lc; |
| 4943 | |
| 4944 | /* For now, do all work in the (ORDERED, NULL) upperrel */ |
| 4945 | ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL); |
| 4946 | |
| 4947 | /* |
| 4948 | * If the input relation is not parallel-safe, then the ordered relation |
| 4949 | * can't be parallel-safe, either. Otherwise, it's parallel-safe if the |
| 4950 | * target list is parallel-safe. |
| 4951 | */ |
| 4952 | if (input_rel->consider_parallel && target_parallel_safe) |
| 4953 | ordered_rel->consider_parallel = true; |
| 4954 | |
| 4955 | /* |
| 4956 | * If the input rel belongs to a single FDW, so does the ordered_rel. |
| 4957 | */ |
| 4958 | ordered_rel->serverid = input_rel->serverid; |
| 4959 | ordered_rel->userid = input_rel->userid; |
| 4960 | ordered_rel->useridiscurrent = input_rel->useridiscurrent; |
| 4961 | ordered_rel->fdwroutine = input_rel->fdwroutine; |
| 4962 | |
| 4963 | foreach(lc, input_rel->pathlist) |
| 4964 | { |
| 4965 | Path *path = (Path *) lfirst(lc); |
| 4966 | bool is_sorted; |
| 4967 | |
| 4968 | is_sorted = pathkeys_contained_in(root->sort_pathkeys, |
| 4969 | path->pathkeys); |
| 4970 | if (path == cheapest_input_path || is_sorted) |
| 4971 | { |
| 4972 | if (!is_sorted) |
| 4973 | { |
| 4974 | /* An explicit sort here can take advantage of LIMIT */ |
| 4975 | path = (Path *) create_sort_path(root, |
| 4976 | ordered_rel, |
| 4977 | path, |
| 4978 | root->sort_pathkeys, |
| 4979 | limit_tuples); |
| 4980 | } |
| 4981 | |
| 4982 | /* Add projection step if needed */ |
| 4983 | if (path->pathtarget != target) |
| 4984 | path = apply_projection_to_path(root, ordered_rel, |
| 4985 | path, target); |
| 4986 | |
| 4987 | add_path(ordered_rel, path); |
| 4988 | } |
| 4989 | } |
| 4990 | |
| 4991 | /* |
| 4992 | * generate_gather_paths() will have already generated a simple Gather |
| 4993 | * path for the best parallel path, if any, and the loop above will have |
| 4994 | * considered sorting it. Similarly, generate_gather_paths() will also |
| 4995 | * have generated order-preserving Gather Merge plans which can be used |
| 4996 | * without sorting if they happen to match the sort_pathkeys, and the loop |
| 4997 | * above will have handled those as well. However, there's one more |
| 4998 | * possibility: it may make sense to sort the cheapest partial path |
| 4999 | * according to the required output order and then use Gather Merge. |
| 5000 | */ |
| 5001 | if (ordered_rel->consider_parallel && root->sort_pathkeys != NIL && |
| 5002 | input_rel->partial_pathlist != NIL) |
| 5003 | { |
| 5004 | Path *cheapest_partial_path; |
| 5005 | |
| 5006 | cheapest_partial_path = linitial(input_rel->partial_pathlist); |
| 5007 | |
| 5008 | /* |
| 5009 | * If cheapest partial path doesn't need a sort, this is redundant |
| 5010 | * with what's already been tried. |
| 5011 | */ |
| 5012 | if (!pathkeys_contained_in(root->sort_pathkeys, |
| 5013 | cheapest_partial_path->pathkeys)) |
| 5014 | { |
| 5015 | Path *path; |
| 5016 | double total_groups; |
| 5017 | |
| 5018 | path = (Path *) create_sort_path(root, |
| 5019 | ordered_rel, |
| 5020 | cheapest_partial_path, |
| 5021 | root->sort_pathkeys, |
| 5022 | limit_tuples); |
| 5023 | |
| 5024 | total_groups = cheapest_partial_path->rows * |
| 5025 | cheapest_partial_path->parallel_workers; |
| 5026 | path = (Path *) |
| 5027 | create_gather_merge_path(root, ordered_rel, |
| 5028 | path, |
| 5029 | path->pathtarget, |
| 5030 | root->sort_pathkeys, NULL, |
| 5031 | &total_groups); |
| 5032 | |
| 5033 | /* Add projection step if needed */ |
| 5034 | if (path->pathtarget != target) |
| 5035 | path = apply_projection_to_path(root, ordered_rel, |
| 5036 | path, target); |
| 5037 | |
| 5038 | add_path(ordered_rel, path); |
| 5039 | } |
| 5040 | } |
| 5041 | |
| 5042 | /* |
| 5043 | * If there is an FDW that's responsible for all baserels of the query, |
| 5044 | * let it consider adding ForeignPaths. |
| 5045 | */ |
| 5046 | if (ordered_rel->fdwroutine && |
| 5047 | ordered_rel->fdwroutine->GetForeignUpperPaths) |
| 5048 | ordered_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_ORDERED, |
| 5049 | input_rel, ordered_rel, |
| 5050 | NULL); |
| 5051 | |
| 5052 | /* Let extensions possibly add some more paths */ |
| 5053 | if (create_upper_paths_hook) |
| 5054 | (*create_upper_paths_hook) (root, UPPERREL_ORDERED, |
| 5055 | input_rel, ordered_rel, NULL); |
| 5056 | |
| 5057 | /* |
| 5058 | * No need to bother with set_cheapest here; grouping_planner does not |
| 5059 | * need us to do it. |
| 5060 | */ |
| 5061 | Assert(ordered_rel->pathlist != NIL); |
| 5062 | |
| 5063 | return ordered_rel; |
| 5064 | } |
| 5065 | |
| 5066 | |
| 5067 | /* |
| 5068 | * make_group_input_target |
| 5069 | * Generate appropriate PathTarget for initial input to grouping nodes. |
| 5070 | * |
| 5071 | * If there is grouping or aggregation, the scan/join subplan cannot emit |
| 5072 | * the query's final targetlist; for example, it certainly can't emit any |
| 5073 | * aggregate function calls. This routine generates the correct target |
| 5074 | * for the scan/join subplan. |
| 5075 | * |
| 5076 | * The query target list passed from the parser already contains entries |
| 5077 | * for all ORDER BY and GROUP BY expressions, but it will not have entries |
| 5078 | * for variables used only in HAVING clauses; so we need to add those |
| 5079 | * variables to the subplan target list. Also, we flatten all expressions |
| 5080 | * except GROUP BY items into their component variables; other expressions |
| 5081 | * will be computed by the upper plan nodes rather than by the subplan. |
| 5082 | * For example, given a query like |
| 5083 | * SELECT a+b,SUM(c+d) FROM table GROUP BY a+b; |
| 5084 | * we want to pass this targetlist to the subplan: |
| 5085 | * a+b,c,d |
| 5086 | * where the a+b target will be used by the Sort/Group steps, and the |
| 5087 | * other targets will be used for computing the final results. |
| 5088 | * |
| 5089 | * 'final_target' is the query's final target list (in PathTarget form) |
| 5090 | * |
| 5091 | * The result is the PathTarget to be computed by the Paths returned from |
| 5092 | * query_planner(). |
| 5093 | */ |
| 5094 | static PathTarget * |
| 5095 | make_group_input_target(PlannerInfo *root, PathTarget *final_target) |
| 5096 | { |
| 5097 | Query *parse = root->parse; |
| 5098 | PathTarget *input_target; |
| 5099 | List *non_group_cols; |
| 5100 | List *non_group_vars; |
| 5101 | int i; |
| 5102 | ListCell *lc; |
| 5103 | |
| 5104 | /* |
| 5105 | * We must build a target containing all grouping columns, plus any other |
| 5106 | * Vars mentioned in the query's targetlist and HAVING qual. |
| 5107 | */ |
| 5108 | input_target = create_empty_pathtarget(); |
| 5109 | non_group_cols = NIL; |
| 5110 | |
| 5111 | i = 0; |
| 5112 | foreach(lc, final_target->exprs) |
| 5113 | { |
| 5114 | Expr *expr = (Expr *) lfirst(lc); |
| 5115 | Index sgref = get_pathtarget_sortgroupref(final_target, i); |
| 5116 | |
| 5117 | if (sgref && parse->groupClause && |
| 5118 | get_sortgroupref_clause_noerr(sgref, parse->groupClause) != NULL) |
| 5119 | { |
| 5120 | /* |
| 5121 | * It's a grouping column, so add it to the input target as-is. |
| 5122 | */ |
| 5123 | add_column_to_pathtarget(input_target, expr, sgref); |
| 5124 | } |
| 5125 | else |
| 5126 | { |
| 5127 | /* |
| 5128 | * Non-grouping column, so just remember the expression for later |
| 5129 | * call to pull_var_clause. |
| 5130 | */ |
| 5131 | non_group_cols = lappend(non_group_cols, expr); |
| 5132 | } |
| 5133 | |
| 5134 | i++; |
| 5135 | } |
| 5136 | |
| 5137 | /* |
| 5138 | * If there's a HAVING clause, we'll need the Vars it uses, too. |
| 5139 | */ |
| 5140 | if (parse->havingQual) |
| 5141 | non_group_cols = lappend(non_group_cols, parse->havingQual); |
| 5142 | |
| 5143 | /* |
| 5144 | * Pull out all the Vars mentioned in non-group cols (plus HAVING), and |
| 5145 | * add them to the input target if not already present. (A Var used |
| 5146 | * directly as a GROUP BY item will be present already.) Note this |
| 5147 | * includes Vars used in resjunk items, so we are covering the needs of |
| 5148 | * ORDER BY and window specifications. Vars used within Aggrefs and |
| 5149 | * WindowFuncs will be pulled out here, too. |
| 5150 | */ |
| 5151 | non_group_vars = pull_var_clause((Node *) non_group_cols, |
| 5152 | PVC_RECURSE_AGGREGATES | |
| 5153 | PVC_RECURSE_WINDOWFUNCS | |
| 5154 | PVC_INCLUDE_PLACEHOLDERS); |
| 5155 | add_new_columns_to_pathtarget(input_target, non_group_vars); |
| 5156 | |
| 5157 | /* clean up cruft */ |
| 5158 | list_free(non_group_vars); |
| 5159 | list_free(non_group_cols); |
| 5160 | |
| 5161 | /* XXX this causes some redundant cost calculation ... */ |
| 5162 | return set_pathtarget_cost_width(root, input_target); |
| 5163 | } |
| 5164 | |
| 5165 | /* |
| 5166 | * make_partial_grouping_target |
| 5167 | * Generate appropriate PathTarget for output of partial aggregate |
| 5168 | * (or partial grouping, if there are no aggregates) nodes. |
| 5169 | * |
| 5170 | * A partial aggregation node needs to emit all the same aggregates that |
| 5171 | * a regular aggregation node would, plus any aggregates used in HAVING; |
| 5172 | * except that the Aggref nodes should be marked as partial aggregates. |
| 5173 | * |
| 5174 | * In addition, we'd better emit any Vars and PlaceholderVars that are |
| 5175 | * used outside of Aggrefs in the aggregation tlist and HAVING. (Presumably, |
| 5176 | * these would be Vars that are grouped by or used in grouping expressions.) |
| 5177 | * |
| 5178 | * grouping_target is the tlist to be emitted by the topmost aggregation step. |
| 5179 | * havingQual represents the HAVING clause. |
| 5180 | */ |
| 5181 | static PathTarget * |
| 5182 | make_partial_grouping_target(PlannerInfo *root, |
| 5183 | PathTarget *grouping_target, |
| 5184 | Node *havingQual) |
| 5185 | { |
| 5186 | Query *parse = root->parse; |
| 5187 | PathTarget *partial_target; |
| 5188 | List *non_group_cols; |
| 5189 | List *non_group_exprs; |
| 5190 | int i; |
| 5191 | ListCell *lc; |
| 5192 | |
| 5193 | partial_target = create_empty_pathtarget(); |
| 5194 | non_group_cols = NIL; |
| 5195 | |
| 5196 | i = 0; |
| 5197 | foreach(lc, grouping_target->exprs) |
| 5198 | { |
| 5199 | Expr *expr = (Expr *) lfirst(lc); |
| 5200 | Index sgref = get_pathtarget_sortgroupref(grouping_target, i); |
| 5201 | |
| 5202 | if (sgref && parse->groupClause && |
| 5203 | get_sortgroupref_clause_noerr(sgref, parse->groupClause) != NULL) |
| 5204 | { |
| 5205 | /* |
| 5206 | * It's a grouping column, so add it to the partial_target as-is. |
| 5207 | * (This allows the upper agg step to repeat the grouping calcs.) |
| 5208 | */ |
| 5209 | add_column_to_pathtarget(partial_target, expr, sgref); |
| 5210 | } |
| 5211 | else |
| 5212 | { |
| 5213 | /* |
| 5214 | * Non-grouping column, so just remember the expression for later |
| 5215 | * call to pull_var_clause. |
| 5216 | */ |
| 5217 | non_group_cols = lappend(non_group_cols, expr); |
| 5218 | } |
| 5219 | |
| 5220 | i++; |
| 5221 | } |
| 5222 | |
| 5223 | /* |
| 5224 | * If there's a HAVING clause, we'll need the Vars/Aggrefs it uses, too. |
| 5225 | */ |
| 5226 | if (havingQual) |
| 5227 | non_group_cols = lappend(non_group_cols, havingQual); |
| 5228 | |
| 5229 | /* |
| 5230 | * Pull out all the Vars, PlaceHolderVars, and Aggrefs mentioned in |
| 5231 | * non-group cols (plus HAVING), and add them to the partial_target if not |
| 5232 | * already present. (An expression used directly as a GROUP BY item will |
| 5233 | * be present already.) Note this includes Vars used in resjunk items, so |
| 5234 | * we are covering the needs of ORDER BY and window specifications. |
| 5235 | */ |
| 5236 | non_group_exprs = pull_var_clause((Node *) non_group_cols, |
| 5237 | PVC_INCLUDE_AGGREGATES | |
| 5238 | PVC_RECURSE_WINDOWFUNCS | |
| 5239 | PVC_INCLUDE_PLACEHOLDERS); |
| 5240 | |
| 5241 | add_new_columns_to_pathtarget(partial_target, non_group_exprs); |
| 5242 | |
| 5243 | /* |
| 5244 | * Adjust Aggrefs to put them in partial mode. At this point all Aggrefs |
| 5245 | * are at the top level of the target list, so we can just scan the list |
| 5246 | * rather than recursing through the expression trees. |
| 5247 | */ |
| 5248 | foreach(lc, partial_target->exprs) |
| 5249 | { |
| 5250 | Aggref *aggref = (Aggref *) lfirst(lc); |
| 5251 | |
| 5252 | if (IsA(aggref, Aggref)) |
| 5253 | { |
| 5254 | Aggref *newaggref; |
| 5255 | |
| 5256 | /* |
| 5257 | * We shouldn't need to copy the substructure of the Aggref node, |
| 5258 | * but flat-copy the node itself to avoid damaging other trees. |
| 5259 | */ |
| 5260 | newaggref = makeNode(Aggref); |
| 5261 | memcpy(newaggref, aggref, sizeof(Aggref)); |
| 5262 | |
| 5263 | /* For now, assume serialization is required */ |
| 5264 | mark_partial_aggref(newaggref, AGGSPLIT_INITIAL_SERIAL); |
| 5265 | |
| 5266 | lfirst(lc) = newaggref; |
| 5267 | } |
| 5268 | } |
| 5269 | |
| 5270 | /* clean up cruft */ |
| 5271 | list_free(non_group_exprs); |
| 5272 | list_free(non_group_cols); |
| 5273 | |
| 5274 | /* XXX this causes some redundant cost calculation ... */ |
| 5275 | return set_pathtarget_cost_width(root, partial_target); |
| 5276 | } |
| 5277 | |
| 5278 | /* |
| 5279 | * mark_partial_aggref |
| 5280 | * Adjust an Aggref to make it represent a partial-aggregation step. |
| 5281 | * |
| 5282 | * The Aggref node is modified in-place; caller must do any copying required. |
| 5283 | */ |
| 5284 | void |
| 5285 | mark_partial_aggref(Aggref *agg, AggSplit aggsplit) |
| 5286 | { |
| 5287 | /* aggtranstype should be computed by this point */ |
| 5288 | Assert(OidIsValid(agg->aggtranstype)); |
| 5289 | /* ... but aggsplit should still be as the parser left it */ |
| 5290 | Assert(agg->aggsplit == AGGSPLIT_SIMPLE); |
| 5291 | |
| 5292 | /* Mark the Aggref with the intended partial-aggregation mode */ |
| 5293 | agg->aggsplit = aggsplit; |
| 5294 | |
| 5295 | /* |
| 5296 | * Adjust result type if needed. Normally, a partial aggregate returns |
| 5297 | * the aggregate's transition type; but if that's INTERNAL and we're |
| 5298 | * serializing, it returns BYTEA instead. |
| 5299 | */ |
| 5300 | if (DO_AGGSPLIT_SKIPFINAL(aggsplit)) |
| 5301 | { |
| 5302 | if (agg->aggtranstype == INTERNALOID && DO_AGGSPLIT_SERIALIZE(aggsplit)) |
| 5303 | agg->aggtype = BYTEAOID; |
| 5304 | else |
| 5305 | agg->aggtype = agg->aggtranstype; |
| 5306 | } |
| 5307 | } |
| 5308 | |
| 5309 | /* |
| 5310 | * postprocess_setop_tlist |
| 5311 | * Fix up targetlist returned by plan_set_operations(). |
| 5312 | * |
| 5313 | * We need to transpose sort key info from the orig_tlist into new_tlist. |
| 5314 | * NOTE: this would not be good enough if we supported resjunk sort keys |
| 5315 | * for results of set operations --- then, we'd need to project a whole |
| 5316 | * new tlist to evaluate the resjunk columns. For now, just ereport if we |
| 5317 | * find any resjunk columns in orig_tlist. |
| 5318 | */ |
| 5319 | static List * |
| 5320 | postprocess_setop_tlist(List *new_tlist, List *orig_tlist) |
| 5321 | { |
| 5322 | ListCell *l; |
| 5323 | ListCell *orig_tlist_item = list_head(orig_tlist); |
| 5324 | |
| 5325 | foreach(l, new_tlist) |
| 5326 | { |
| 5327 | TargetEntry *new_tle = lfirst_node(TargetEntry, l); |
| 5328 | TargetEntry *orig_tle; |
| 5329 | |
| 5330 | /* ignore resjunk columns in setop result */ |
| 5331 | if (new_tle->resjunk) |
| 5332 | continue; |
| 5333 | |
| 5334 | Assert(orig_tlist_item != NULL); |
| 5335 | orig_tle = lfirst_node(TargetEntry, orig_tlist_item); |
| 5336 | orig_tlist_item = lnext(orig_tlist_item); |
| 5337 | if (orig_tle->resjunk) /* should not happen */ |
| 5338 | elog(ERROR, "resjunk output columns are not implemented" ); |
| 5339 | Assert(new_tle->resno == orig_tle->resno); |
| 5340 | new_tle->ressortgroupref = orig_tle->ressortgroupref; |
| 5341 | } |
| 5342 | if (orig_tlist_item != NULL) |
| 5343 | elog(ERROR, "resjunk output columns are not implemented" ); |
| 5344 | return new_tlist; |
| 5345 | } |
| 5346 | |
| 5347 | /* |
| 5348 | * select_active_windows |
| 5349 | * Create a list of the "active" window clauses (ie, those referenced |
| 5350 | * by non-deleted WindowFuncs) in the order they are to be executed. |
| 5351 | */ |
| 5352 | static List * |
| 5353 | select_active_windows(PlannerInfo *root, WindowFuncLists *wflists) |
| 5354 | { |
| 5355 | List *windowClause = root->parse->windowClause; |
| 5356 | List *result = NIL; |
| 5357 | ListCell *lc; |
| 5358 | int nActive = 0; |
| 5359 | WindowClauseSortData *actives = palloc(sizeof(WindowClauseSortData) |
| 5360 | * list_length(windowClause)); |
| 5361 | |
| 5362 | /* First, construct an array of the active windows */ |
| 5363 | foreach(lc, windowClause) |
| 5364 | { |
| 5365 | WindowClause *wc = lfirst_node(WindowClause, lc); |
| 5366 | |
| 5367 | /* It's only active if wflists shows some related WindowFuncs */ |
| 5368 | Assert(wc->winref <= wflists->maxWinRef); |
| 5369 | if (wflists->windowFuncs[wc->winref] == NIL) |
| 5370 | continue; |
| 5371 | |
| 5372 | actives[nActive].wc = wc; /* original clause */ |
| 5373 | |
| 5374 | /* |
| 5375 | * For sorting, we want the list of partition keys followed by the |
| 5376 | * list of sort keys. But pathkeys construction will remove duplicates |
| 5377 | * between the two, so we can as well (even though we can't detect all |
| 5378 | * of the duplicates, since some may come from ECs - that might mean |
| 5379 | * we miss optimization chances here). We must, however, ensure that |
| 5380 | * the order of entries is preserved with respect to the ones we do |
| 5381 | * keep. |
| 5382 | * |
| 5383 | * partitionClause and orderClause had their own duplicates removed in |
| 5384 | * parse analysis, so we're only concerned here with removing |
| 5385 | * orderClause entries that also appear in partitionClause. |
| 5386 | */ |
| 5387 | actives[nActive].uniqueOrder = |
| 5388 | list_concat_unique(list_copy(wc->partitionClause), |
| 5389 | wc->orderClause); |
| 5390 | nActive++; |
| 5391 | } |
| 5392 | |
| 5393 | /* |
| 5394 | * Sort active windows by their partitioning/ordering clauses, ignoring |
| 5395 | * any framing clauses, so that the windows that need the same sorting are |
| 5396 | * adjacent in the list. When we come to generate paths, this will avoid |
| 5397 | * inserting additional Sort nodes. |
| 5398 | * |
| 5399 | * This is how we implement a specific requirement from the SQL standard, |
| 5400 | * which says that when two or more windows are order-equivalent (i.e. |
| 5401 | * have matching partition and order clauses, even if their names or |
| 5402 | * framing clauses differ), then all peer rows must be presented in the |
| 5403 | * same order in all of them. If we allowed multiple sort nodes for such |
| 5404 | * cases, we'd risk having the peer rows end up in different orders in |
| 5405 | * equivalent windows due to sort instability. (See General Rule 4 of |
| 5406 | * <window clause> in SQL2008 - SQL2016.) |
| 5407 | * |
| 5408 | * Additionally, if the entire list of clauses of one window is a prefix |
| 5409 | * of another, put first the window with stronger sorting requirements. |
| 5410 | * This way we will first sort for stronger window, and won't have to sort |
| 5411 | * again for the weaker one. |
| 5412 | */ |
| 5413 | qsort(actives, nActive, sizeof(WindowClauseSortData), common_prefix_cmp); |
| 5414 | |
| 5415 | /* build ordered list of the original WindowClause nodes */ |
| 5416 | for (int i = 0; i < nActive; i++) |
| 5417 | result = lappend(result, actives[i].wc); |
| 5418 | |
| 5419 | pfree(actives); |
| 5420 | |
| 5421 | return result; |
| 5422 | } |
| 5423 | |
| 5424 | /* |
| 5425 | * common_prefix_cmp |
| 5426 | * QSort comparison function for WindowClauseSortData |
| 5427 | * |
| 5428 | * Sort the windows by the required sorting clauses. First, compare the sort |
| 5429 | * clauses themselves. Second, if one window's clauses are a prefix of another |
| 5430 | * one's clauses, put the window with more sort clauses first. |
| 5431 | */ |
| 5432 | static int |
| 5433 | common_prefix_cmp(const void *a, const void *b) |
| 5434 | { |
| 5435 | const WindowClauseSortData *wcsa = a; |
| 5436 | const WindowClauseSortData *wcsb = b; |
| 5437 | ListCell *item_a; |
| 5438 | ListCell *item_b; |
| 5439 | |
| 5440 | forboth(item_a, wcsa->uniqueOrder, item_b, wcsb->uniqueOrder) |
| 5441 | { |
| 5442 | SortGroupClause *sca = lfirst_node(SortGroupClause, item_a); |
| 5443 | SortGroupClause *scb = lfirst_node(SortGroupClause, item_b); |
| 5444 | |
| 5445 | if (sca->tleSortGroupRef > scb->tleSortGroupRef) |
| 5446 | return -1; |
| 5447 | else if (sca->tleSortGroupRef < scb->tleSortGroupRef) |
| 5448 | return 1; |
| 5449 | else if (sca->sortop > scb->sortop) |
| 5450 | return -1; |
| 5451 | else if (sca->sortop < scb->sortop) |
| 5452 | return 1; |
| 5453 | else if (sca->nulls_first && !scb->nulls_first) |
| 5454 | return -1; |
| 5455 | else if (!sca->nulls_first && scb->nulls_first) |
| 5456 | return 1; |
| 5457 | /* no need to compare eqop, since it is fully determined by sortop */ |
| 5458 | } |
| 5459 | |
| 5460 | if (list_length(wcsa->uniqueOrder) > list_length(wcsb->uniqueOrder)) |
| 5461 | return -1; |
| 5462 | else if (list_length(wcsa->uniqueOrder) < list_length(wcsb->uniqueOrder)) |
| 5463 | return 1; |
| 5464 | |
| 5465 | return 0; |
| 5466 | } |
| 5467 | |
| 5468 | /* |
| 5469 | * make_window_input_target |
| 5470 | * Generate appropriate PathTarget for initial input to WindowAgg nodes. |
| 5471 | * |
| 5472 | * When the query has window functions, this function computes the desired |
| 5473 | * target to be computed by the node just below the first WindowAgg. |
| 5474 | * This tlist must contain all values needed to evaluate the window functions, |
| 5475 | * compute the final target list, and perform any required final sort step. |
| 5476 | * If multiple WindowAggs are needed, each intermediate one adds its window |
| 5477 | * function results onto this base tlist; only the topmost WindowAgg computes |
| 5478 | * the actual desired target list. |
| 5479 | * |
| 5480 | * This function is much like make_group_input_target, though not quite enough |
| 5481 | * like it to share code. As in that function, we flatten most expressions |
| 5482 | * into their component variables. But we do not want to flatten window |
| 5483 | * PARTITION BY/ORDER BY clauses, since that might result in multiple |
| 5484 | * evaluations of them, which would be bad (possibly even resulting in |
| 5485 | * inconsistent answers, if they contain volatile functions). |
| 5486 | * Also, we must not flatten GROUP BY clauses that were left unflattened by |
| 5487 | * make_group_input_target, because we may no longer have access to the |
| 5488 | * individual Vars in them. |
| 5489 | * |
| 5490 | * Another key difference from make_group_input_target is that we don't |
| 5491 | * flatten Aggref expressions, since those are to be computed below the |
| 5492 | * window functions and just referenced like Vars above that. |
| 5493 | * |
| 5494 | * 'final_target' is the query's final target list (in PathTarget form) |
| 5495 | * 'activeWindows' is the list of active windows previously identified by |
| 5496 | * select_active_windows. |
| 5497 | * |
| 5498 | * The result is the PathTarget to be computed by the plan node immediately |
| 5499 | * below the first WindowAgg node. |
| 5500 | */ |
| 5501 | static PathTarget * |
| 5502 | make_window_input_target(PlannerInfo *root, |
| 5503 | PathTarget *final_target, |
| 5504 | List *activeWindows) |
| 5505 | { |
| 5506 | Query *parse = root->parse; |
| 5507 | PathTarget *input_target; |
| 5508 | Bitmapset *sgrefs; |
| 5509 | List *flattenable_cols; |
| 5510 | List *flattenable_vars; |
| 5511 | int i; |
| 5512 | ListCell *lc; |
| 5513 | |
| 5514 | Assert(parse->hasWindowFuncs); |
| 5515 | |
| 5516 | /* |
| 5517 | * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses |
| 5518 | * into a bitmapset for convenient reference below. |
| 5519 | */ |
| 5520 | sgrefs = NULL; |
| 5521 | foreach(lc, activeWindows) |
| 5522 | { |
| 5523 | WindowClause *wc = lfirst_node(WindowClause, lc); |
| 5524 | ListCell *lc2; |
| 5525 | |
| 5526 | foreach(lc2, wc->partitionClause) |
| 5527 | { |
| 5528 | SortGroupClause *sortcl = lfirst_node(SortGroupClause, lc2); |
| 5529 | |
| 5530 | sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef); |
| 5531 | } |
| 5532 | foreach(lc2, wc->orderClause) |
| 5533 | { |
| 5534 | SortGroupClause *sortcl = lfirst_node(SortGroupClause, lc2); |
| 5535 | |
| 5536 | sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef); |
| 5537 | } |
| 5538 | } |
| 5539 | |
| 5540 | /* Add in sortgroupref numbers of GROUP BY clauses, too */ |
| 5541 | foreach(lc, parse->groupClause) |
| 5542 | { |
| 5543 | SortGroupClause *grpcl = lfirst_node(SortGroupClause, lc); |
| 5544 | |
| 5545 | sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef); |
| 5546 | } |
| 5547 | |
| 5548 | /* |
| 5549 | * Construct a target containing all the non-flattenable targetlist items, |
| 5550 | * and save aside the others for a moment. |
| 5551 | */ |
| 5552 | input_target = create_empty_pathtarget(); |
| 5553 | flattenable_cols = NIL; |
| 5554 | |
| 5555 | i = 0; |
| 5556 | foreach(lc, final_target->exprs) |
| 5557 | { |
| 5558 | Expr *expr = (Expr *) lfirst(lc); |
| 5559 | Index sgref = get_pathtarget_sortgroupref(final_target, i); |
| 5560 | |
| 5561 | /* |
| 5562 | * Don't want to deconstruct window clauses or GROUP BY items. (Note |
| 5563 | * that such items can't contain window functions, so it's okay to |
| 5564 | * compute them below the WindowAgg nodes.) |
| 5565 | */ |
| 5566 | if (sgref != 0 && bms_is_member(sgref, sgrefs)) |
| 5567 | { |
| 5568 | /* |
| 5569 | * Don't want to deconstruct this value, so add it to the input |
| 5570 | * target as-is. |
| 5571 | */ |
| 5572 | add_column_to_pathtarget(input_target, expr, sgref); |
| 5573 | } |
| 5574 | else |
| 5575 | { |
| 5576 | /* |
| 5577 | * Column is to be flattened, so just remember the expression for |
| 5578 | * later call to pull_var_clause. |
| 5579 | */ |
| 5580 | flattenable_cols = lappend(flattenable_cols, expr); |
| 5581 | } |
| 5582 | |
| 5583 | i++; |
| 5584 | } |
| 5585 | |
| 5586 | /* |
| 5587 | * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and |
| 5588 | * add them to the input target if not already present. (Some might be |
| 5589 | * there already because they're used directly as window/group clauses.) |
| 5590 | * |
| 5591 | * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that any |
| 5592 | * Aggrefs are placed in the Agg node's tlist and not left to be computed |
| 5593 | * at higher levels. On the other hand, we should recurse into |
| 5594 | * WindowFuncs to make sure their input expressions are available. |
| 5595 | */ |
| 5596 | flattenable_vars = pull_var_clause((Node *) flattenable_cols, |
| 5597 | PVC_INCLUDE_AGGREGATES | |
| 5598 | PVC_RECURSE_WINDOWFUNCS | |
| 5599 | PVC_INCLUDE_PLACEHOLDERS); |
| 5600 | add_new_columns_to_pathtarget(input_target, flattenable_vars); |
| 5601 | |
| 5602 | /* clean up cruft */ |
| 5603 | list_free(flattenable_vars); |
| 5604 | list_free(flattenable_cols); |
| 5605 | |
| 5606 | /* XXX this causes some redundant cost calculation ... */ |
| 5607 | return set_pathtarget_cost_width(root, input_target); |
| 5608 | } |
| 5609 | |
| 5610 | /* |
| 5611 | * make_pathkeys_for_window |
| 5612 | * Create a pathkeys list describing the required input ordering |
| 5613 | * for the given WindowClause. |
| 5614 | * |
| 5615 | * The required ordering is first the PARTITION keys, then the ORDER keys. |
| 5616 | * In the future we might try to implement windowing using hashing, in which |
| 5617 | * case the ordering could be relaxed, but for now we always sort. |
| 5618 | */ |
| 5619 | static List * |
| 5620 | make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, |
| 5621 | List *tlist) |
| 5622 | { |
| 5623 | List *window_pathkeys; |
| 5624 | List *window_sortclauses; |
| 5625 | |
| 5626 | /* Throw error if can't sort */ |
| 5627 | if (!grouping_is_sortable(wc->partitionClause)) |
| 5628 | ereport(ERROR, |
| 5629 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 5630 | errmsg("could not implement window PARTITION BY" ), |
| 5631 | errdetail("Window partitioning columns must be of sortable datatypes." ))); |
| 5632 | if (!grouping_is_sortable(wc->orderClause)) |
| 5633 | ereport(ERROR, |
| 5634 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 5635 | errmsg("could not implement window ORDER BY" ), |
| 5636 | errdetail("Window ordering columns must be of sortable datatypes." ))); |
| 5637 | |
| 5638 | /* Okay, make the combined pathkeys */ |
| 5639 | window_sortclauses = list_concat(list_copy(wc->partitionClause), |
| 5640 | list_copy(wc->orderClause)); |
| 5641 | window_pathkeys = make_pathkeys_for_sortclauses(root, |
| 5642 | window_sortclauses, |
| 5643 | tlist); |
| 5644 | list_free(window_sortclauses); |
| 5645 | return window_pathkeys; |
| 5646 | } |
| 5647 | |
| 5648 | /* |
| 5649 | * make_sort_input_target |
| 5650 | * Generate appropriate PathTarget for initial input to Sort step. |
| 5651 | * |
| 5652 | * If the query has ORDER BY, this function chooses the target to be computed |
| 5653 | * by the node just below the Sort (and DISTINCT, if any, since Unique can't |
| 5654 | * project) steps. This might or might not be identical to the query's final |
| 5655 | * output target. |
| 5656 | * |
| 5657 | * The main argument for keeping the sort-input tlist the same as the final |
| 5658 | * is that we avoid a separate projection node (which will be needed if |
| 5659 | * they're different, because Sort can't project). However, there are also |
| 5660 | * advantages to postponing tlist evaluation till after the Sort: it ensures |
| 5661 | * a consistent order of evaluation for any volatile functions in the tlist, |
| 5662 | * and if there's also a LIMIT, we can stop the query without ever computing |
| 5663 | * tlist functions for later rows, which is beneficial for both volatile and |
| 5664 | * expensive functions. |
| 5665 | * |
| 5666 | * Our current policy is to postpone volatile expressions till after the sort |
| 5667 | * unconditionally (assuming that that's possible, ie they are in plain tlist |
| 5668 | * columns and not ORDER BY/GROUP BY/DISTINCT columns). We also prefer to |
| 5669 | * postpone set-returning expressions, because running them beforehand would |
| 5670 | * bloat the sort dataset, and because it might cause unexpected output order |
| 5671 | * if the sort isn't stable. However there's a constraint on that: all SRFs |
| 5672 | * in the tlist should be evaluated at the same plan step, so that they can |
| 5673 | * run in sync in nodeProjectSet. So if any SRFs are in sort columns, we |
| 5674 | * mustn't postpone any SRFs. (Note that in principle that policy should |
| 5675 | * probably get applied to the group/window input targetlists too, but we |
| 5676 | * have not done that historically.) Lastly, expensive expressions are |
| 5677 | * postponed if there is a LIMIT, or if root->tuple_fraction shows that |
| 5678 | * partial evaluation of the query is possible (if neither is true, we expect |
| 5679 | * to have to evaluate the expressions for every row anyway), or if there are |
| 5680 | * any volatile or set-returning expressions (since once we've put in a |
| 5681 | * projection at all, it won't cost any more to postpone more stuff). |
| 5682 | * |
| 5683 | * Another issue that could potentially be considered here is that |
| 5684 | * evaluating tlist expressions could result in data that's either wider |
| 5685 | * or narrower than the input Vars, thus changing the volume of data that |
| 5686 | * has to go through the Sort. However, we usually have only a very bad |
| 5687 | * idea of the output width of any expression more complex than a Var, |
| 5688 | * so for now it seems too risky to try to optimize on that basis. |
| 5689 | * |
| 5690 | * Note that if we do produce a modified sort-input target, and then the |
| 5691 | * query ends up not using an explicit Sort, no particular harm is done: |
| 5692 | * we'll initially use the modified target for the preceding path nodes, |
| 5693 | * but then change them to the final target with apply_projection_to_path. |
| 5694 | * Moreover, in such a case the guarantees about evaluation order of |
| 5695 | * volatile functions still hold, since the rows are sorted already. |
| 5696 | * |
| 5697 | * This function has some things in common with make_group_input_target and |
| 5698 | * make_window_input_target, though the detailed rules for what to do are |
| 5699 | * different. We never flatten/postpone any grouping or ordering columns; |
| 5700 | * those are needed before the sort. If we do flatten a particular |
| 5701 | * expression, we leave Aggref and WindowFunc nodes alone, since those were |
| 5702 | * computed earlier. |
| 5703 | * |
| 5704 | * 'final_target' is the query's final target list (in PathTarget form) |
| 5705 | * 'have_postponed_srfs' is an output argument, see below |
| 5706 | * |
| 5707 | * The result is the PathTarget to be computed by the plan node immediately |
| 5708 | * below the Sort step (and the Distinct step, if any). This will be |
| 5709 | * exactly final_target if we decide a projection step wouldn't be helpful. |
| 5710 | * |
| 5711 | * In addition, *have_postponed_srfs is set to true if we choose to postpone |
| 5712 | * any set-returning functions to after the Sort. |
| 5713 | */ |
| 5714 | static PathTarget * |
| 5715 | make_sort_input_target(PlannerInfo *root, |
| 5716 | PathTarget *final_target, |
| 5717 | bool *have_postponed_srfs) |
| 5718 | { |
| 5719 | Query *parse = root->parse; |
| 5720 | PathTarget *input_target; |
| 5721 | int ncols; |
| 5722 | bool *col_is_srf; |
| 5723 | bool *postpone_col; |
| 5724 | bool have_srf; |
| 5725 | bool have_volatile; |
| 5726 | bool have_expensive; |
| 5727 | bool have_srf_sortcols; |
| 5728 | bool postpone_srfs; |
| 5729 | List *postponable_cols; |
| 5730 | List *postponable_vars; |
| 5731 | int i; |
| 5732 | ListCell *lc; |
| 5733 | |
| 5734 | /* Shouldn't get here unless query has ORDER BY */ |
| 5735 | Assert(parse->sortClause); |
| 5736 | |
| 5737 | *have_postponed_srfs = false; /* default result */ |
| 5738 | |
| 5739 | /* Inspect tlist and collect per-column information */ |
| 5740 | ncols = list_length(final_target->exprs); |
| 5741 | col_is_srf = (bool *) palloc0(ncols * sizeof(bool)); |
| 5742 | postpone_col = (bool *) palloc0(ncols * sizeof(bool)); |
| 5743 | have_srf = have_volatile = have_expensive = have_srf_sortcols = false; |
| 5744 | |
| 5745 | i = 0; |
| 5746 | foreach(lc, final_target->exprs) |
| 5747 | { |
| 5748 | Expr *expr = (Expr *) lfirst(lc); |
| 5749 | |
| 5750 | /* |
| 5751 | * If the column has a sortgroupref, assume it has to be evaluated |
| 5752 | * before sorting. Generally such columns would be ORDER BY, GROUP |
| 5753 | * BY, etc targets. One exception is columns that were removed from |
| 5754 | * GROUP BY by remove_useless_groupby_columns() ... but those would |
| 5755 | * only be Vars anyway. There don't seem to be any cases where it |
| 5756 | * would be worth the trouble to double-check. |
| 5757 | */ |
| 5758 | if (get_pathtarget_sortgroupref(final_target, i) == 0) |
| 5759 | { |
| 5760 | /* |
| 5761 | * Check for SRF or volatile functions. Check the SRF case first |
| 5762 | * because we must know whether we have any postponed SRFs. |
| 5763 | */ |
| 5764 | if (parse->hasTargetSRFs && |
| 5765 | expression_returns_set((Node *) expr)) |
| 5766 | { |
| 5767 | /* We'll decide below whether these are postponable */ |
| 5768 | col_is_srf[i] = true; |
| 5769 | have_srf = true; |
| 5770 | } |
| 5771 | else if (contain_volatile_functions((Node *) expr)) |
| 5772 | { |
| 5773 | /* Unconditionally postpone */ |
| 5774 | postpone_col[i] = true; |
| 5775 | have_volatile = true; |
| 5776 | } |
| 5777 | else |
| 5778 | { |
| 5779 | /* |
| 5780 | * Else check the cost. XXX it's annoying to have to do this |
| 5781 | * when set_pathtarget_cost_width() just did it. Refactor to |
| 5782 | * allow sharing the work? |
| 5783 | */ |
| 5784 | QualCost cost; |
| 5785 | |
| 5786 | cost_qual_eval_node(&cost, (Node *) expr, root); |
| 5787 | |
| 5788 | /* |
| 5789 | * We arbitrarily define "expensive" as "more than 10X |
| 5790 | * cpu_operator_cost". Note this will take in any PL function |
| 5791 | * with default cost. |
| 5792 | */ |
| 5793 | if (cost.per_tuple > 10 * cpu_operator_cost) |
| 5794 | { |
| 5795 | postpone_col[i] = true; |
| 5796 | have_expensive = true; |
| 5797 | } |
| 5798 | } |
| 5799 | } |
| 5800 | else |
| 5801 | { |
| 5802 | /* For sortgroupref cols, just check if any contain SRFs */ |
| 5803 | if (!have_srf_sortcols && |
| 5804 | parse->hasTargetSRFs && |
| 5805 | expression_returns_set((Node *) expr)) |
| 5806 | have_srf_sortcols = true; |
| 5807 | } |
| 5808 | |
| 5809 | i++; |
| 5810 | } |
| 5811 | |
| 5812 | /* |
| 5813 | * We can postpone SRFs if we have some but none are in sortgroupref cols. |
| 5814 | */ |
| 5815 | postpone_srfs = (have_srf && !have_srf_sortcols); |
| 5816 | |
| 5817 | /* |
| 5818 | * If we don't need a post-sort projection, just return final_target. |
| 5819 | */ |
| 5820 | if (!(postpone_srfs || have_volatile || |
| 5821 | (have_expensive && |
| 5822 | (parse->limitCount || root->tuple_fraction > 0)))) |
| 5823 | return final_target; |
| 5824 | |
| 5825 | /* |
| 5826 | * Report whether the post-sort projection will contain set-returning |
| 5827 | * functions. This is important because it affects whether the Sort can |
| 5828 | * rely on the query's LIMIT (if any) to bound the number of rows it needs |
| 5829 | * to return. |
| 5830 | */ |
| 5831 | *have_postponed_srfs = postpone_srfs; |
| 5832 | |
| 5833 | /* |
| 5834 | * Construct the sort-input target, taking all non-postponable columns and |
| 5835 | * then adding Vars, PlaceHolderVars, Aggrefs, and WindowFuncs found in |
| 5836 | * the postponable ones. |
| 5837 | */ |
| 5838 | input_target = create_empty_pathtarget(); |
| 5839 | postponable_cols = NIL; |
| 5840 | |
| 5841 | i = 0; |
| 5842 | foreach(lc, final_target->exprs) |
| 5843 | { |
| 5844 | Expr *expr = (Expr *) lfirst(lc); |
| 5845 | |
| 5846 | if (postpone_col[i] || (postpone_srfs && col_is_srf[i])) |
| 5847 | postponable_cols = lappend(postponable_cols, expr); |
| 5848 | else |
| 5849 | add_column_to_pathtarget(input_target, expr, |
| 5850 | get_pathtarget_sortgroupref(final_target, i)); |
| 5851 | |
| 5852 | i++; |
| 5853 | } |
| 5854 | |
| 5855 | /* |
| 5856 | * Pull out all the Vars, Aggrefs, and WindowFuncs mentioned in |
| 5857 | * postponable columns, and add them to the sort-input target if not |
| 5858 | * already present. (Some might be there already.) We mustn't |
| 5859 | * deconstruct Aggrefs or WindowFuncs here, since the projection node |
| 5860 | * would be unable to recompute them. |
| 5861 | */ |
| 5862 | postponable_vars = pull_var_clause((Node *) postponable_cols, |
| 5863 | PVC_INCLUDE_AGGREGATES | |
| 5864 | PVC_INCLUDE_WINDOWFUNCS | |
| 5865 | PVC_INCLUDE_PLACEHOLDERS); |
| 5866 | add_new_columns_to_pathtarget(input_target, postponable_vars); |
| 5867 | |
| 5868 | /* clean up cruft */ |
| 5869 | list_free(postponable_vars); |
| 5870 | list_free(postponable_cols); |
| 5871 | |
| 5872 | /* XXX this represents even more redundant cost calculation ... */ |
| 5873 | return set_pathtarget_cost_width(root, input_target); |
| 5874 | } |
| 5875 | |
| 5876 | /* |
| 5877 | * get_cheapest_fractional_path |
| 5878 | * Find the cheapest path for retrieving a specified fraction of all |
| 5879 | * the tuples expected to be returned by the given relation. |
| 5880 | * |
| 5881 | * We interpret tuple_fraction the same way as grouping_planner. |
| 5882 | * |
| 5883 | * We assume set_cheapest() has been run on the given rel. |
| 5884 | */ |
| 5885 | Path * |
| 5886 | get_cheapest_fractional_path(RelOptInfo *rel, double tuple_fraction) |
| 5887 | { |
| 5888 | Path *best_path = rel->cheapest_total_path; |
| 5889 | ListCell *l; |
| 5890 | |
| 5891 | /* If all tuples will be retrieved, just return the cheapest-total path */ |
| 5892 | if (tuple_fraction <= 0.0) |
| 5893 | return best_path; |
| 5894 | |
| 5895 | /* Convert absolute # of tuples to a fraction; no need to clamp to 0..1 */ |
| 5896 | if (tuple_fraction >= 1.0 && best_path->rows > 0) |
| 5897 | tuple_fraction /= best_path->rows; |
| 5898 | |
| 5899 | foreach(l, rel->pathlist) |
| 5900 | { |
| 5901 | Path *path = (Path *) lfirst(l); |
| 5902 | |
| 5903 | if (path == rel->cheapest_total_path || |
| 5904 | compare_fractional_path_costs(best_path, path, tuple_fraction) <= 0) |
| 5905 | continue; |
| 5906 | |
| 5907 | best_path = path; |
| 5908 | } |
| 5909 | |
| 5910 | return best_path; |
| 5911 | } |
| 5912 | |
| 5913 | /* |
| 5914 | * adjust_paths_for_srfs |
| 5915 | * Fix up the Paths of the given upperrel to handle tSRFs properly. |
| 5916 | * |
| 5917 | * The executor can only handle set-returning functions that appear at the |
| 5918 | * top level of the targetlist of a ProjectSet plan node. If we have any SRFs |
| 5919 | * that are not at top level, we need to split up the evaluation into multiple |
| 5920 | * plan levels in which each level satisfies this constraint. This function |
| 5921 | * modifies each Path of an upperrel that (might) compute any SRFs in its |
| 5922 | * output tlist to insert appropriate projection steps. |
| 5923 | * |
| 5924 | * The given targets and targets_contain_srfs lists are from |
| 5925 | * split_pathtarget_at_srfs(). We assume the existing Paths emit the first |
| 5926 | * target in targets. |
| 5927 | */ |
| 5928 | static void |
| 5929 | adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, |
| 5930 | List *targets, List *targets_contain_srfs) |
| 5931 | { |
| 5932 | ListCell *lc; |
| 5933 | |
| 5934 | Assert(list_length(targets) == list_length(targets_contain_srfs)); |
| 5935 | Assert(!linitial_int(targets_contain_srfs)); |
| 5936 | |
| 5937 | /* If no SRFs appear at this plan level, nothing to do */ |
| 5938 | if (list_length(targets) == 1) |
| 5939 | return; |
| 5940 | |
| 5941 | /* |
| 5942 | * Stack SRF-evaluation nodes atop each path for the rel. |
| 5943 | * |
| 5944 | * In principle we should re-run set_cheapest() here to identify the |
| 5945 | * cheapest path, but it seems unlikely that adding the same tlist eval |
| 5946 | * costs to all the paths would change that, so we don't bother. Instead, |
| 5947 | * just assume that the cheapest-startup and cheapest-total paths remain |
| 5948 | * so. (There should be no parameterized paths anymore, so we needn't |
| 5949 | * worry about updating cheapest_parameterized_paths.) |
| 5950 | */ |
| 5951 | foreach(lc, rel->pathlist) |
| 5952 | { |
| 5953 | Path *subpath = (Path *) lfirst(lc); |
| 5954 | Path *newpath = subpath; |
| 5955 | ListCell *lc1, |
| 5956 | *lc2; |
| 5957 | |
| 5958 | Assert(subpath->param_info == NULL); |
| 5959 | forboth(lc1, targets, lc2, targets_contain_srfs) |
| 5960 | { |
| 5961 | PathTarget *thistarget = lfirst_node(PathTarget, lc1); |
| 5962 | bool contains_srfs = (bool) lfirst_int(lc2); |
| 5963 | |
| 5964 | /* If this level doesn't contain SRFs, do regular projection */ |
| 5965 | if (contains_srfs) |
| 5966 | newpath = (Path *) create_set_projection_path(root, |
| 5967 | rel, |
| 5968 | newpath, |
| 5969 | thistarget); |
| 5970 | else |
| 5971 | newpath = (Path *) apply_projection_to_path(root, |
| 5972 | rel, |
| 5973 | newpath, |
| 5974 | thistarget); |
| 5975 | } |
| 5976 | lfirst(lc) = newpath; |
| 5977 | if (subpath == rel->cheapest_startup_path) |
| 5978 | rel->cheapest_startup_path = newpath; |
| 5979 | if (subpath == rel->cheapest_total_path) |
| 5980 | rel->cheapest_total_path = newpath; |
| 5981 | } |
| 5982 | |
| 5983 | /* Likewise for partial paths, if any */ |
| 5984 | foreach(lc, rel->partial_pathlist) |
| 5985 | { |
| 5986 | Path *subpath = (Path *) lfirst(lc); |
| 5987 | Path *newpath = subpath; |
| 5988 | ListCell *lc1, |
| 5989 | *lc2; |
| 5990 | |
| 5991 | Assert(subpath->param_info == NULL); |
| 5992 | forboth(lc1, targets, lc2, targets_contain_srfs) |
| 5993 | { |
| 5994 | PathTarget *thistarget = lfirst_node(PathTarget, lc1); |
| 5995 | bool contains_srfs = (bool) lfirst_int(lc2); |
| 5996 | |
| 5997 | /* If this level doesn't contain SRFs, do regular projection */ |
| 5998 | if (contains_srfs) |
| 5999 | newpath = (Path *) create_set_projection_path(root, |
| 6000 | rel, |
| 6001 | newpath, |
| 6002 | thistarget); |
| 6003 | else |
| 6004 | { |
| 6005 | /* avoid apply_projection_to_path, in case of multiple refs */ |
| 6006 | newpath = (Path *) create_projection_path(root, |
| 6007 | rel, |
| 6008 | newpath, |
| 6009 | thistarget); |
| 6010 | } |
| 6011 | } |
| 6012 | lfirst(lc) = newpath; |
| 6013 | } |
| 6014 | } |
| 6015 | |
| 6016 | /* |
| 6017 | * expression_planner |
| 6018 | * Perform planner's transformations on a standalone expression. |
| 6019 | * |
| 6020 | * Various utility commands need to evaluate expressions that are not part |
| 6021 | * of a plannable query. They can do so using the executor's regular |
| 6022 | * expression-execution machinery, but first the expression has to be fed |
| 6023 | * through here to transform it from parser output to something executable. |
| 6024 | * |
| 6025 | * Currently, we disallow sublinks in standalone expressions, so there's no |
| 6026 | * real "planning" involved here. (That might not always be true though.) |
| 6027 | * What we must do is run eval_const_expressions to ensure that any function |
| 6028 | * calls are converted to positional notation and function default arguments |
| 6029 | * get inserted. The fact that constant subexpressions get simplified is a |
| 6030 | * side-effect that is useful when the expression will get evaluated more than |
| 6031 | * once. Also, we must fix operator function IDs. |
| 6032 | * |
| 6033 | * This does not return any information about dependencies of the expression. |
| 6034 | * Hence callers should use the results only for the duration of the current |
| 6035 | * query. Callers that would like to cache the results for longer should use |
| 6036 | * expression_planner_with_deps, probably via the plancache. |
| 6037 | * |
| 6038 | * Note: this must not make any damaging changes to the passed-in expression |
| 6039 | * tree. (It would actually be okay to apply fix_opfuncids to it, but since |
| 6040 | * we first do an expression_tree_mutator-based walk, what is returned will |
| 6041 | * be a new node tree.) The result is constructed in the current memory |
| 6042 | * context; beware that this can leak a lot of additional stuff there, too. |
| 6043 | */ |
| 6044 | Expr * |
| 6045 | expression_planner(Expr *expr) |
| 6046 | { |
| 6047 | Node *result; |
| 6048 | |
| 6049 | /* |
| 6050 | * Convert named-argument function calls, insert default arguments and |
| 6051 | * simplify constant subexprs |
| 6052 | */ |
| 6053 | result = eval_const_expressions(NULL, (Node *) expr); |
| 6054 | |
| 6055 | /* Fill in opfuncid values if missing */ |
| 6056 | fix_opfuncids(result); |
| 6057 | |
| 6058 | return (Expr *) result; |
| 6059 | } |
| 6060 | |
| 6061 | /* |
| 6062 | * expression_planner_with_deps |
| 6063 | * Perform planner's transformations on a standalone expression, |
| 6064 | * returning expression dependency information along with the result. |
| 6065 | * |
| 6066 | * This is identical to expression_planner() except that it also returns |
| 6067 | * information about possible dependencies of the expression, ie identities of |
| 6068 | * objects whose definitions affect the result. As in a PlannedStmt, these |
| 6069 | * are expressed as a list of relation Oids and a list of PlanInvalItems. |
| 6070 | */ |
| 6071 | Expr * |
| 6072 | expression_planner_with_deps(Expr *expr, |
| 6073 | List **relationOids, |
| 6074 | List **invalItems) |
| 6075 | { |
| 6076 | Node *result; |
| 6077 | PlannerGlobal glob; |
| 6078 | PlannerInfo root; |
| 6079 | |
| 6080 | /* Make up dummy planner state so we can use setrefs machinery */ |
| 6081 | MemSet(&glob, 0, sizeof(glob)); |
| 6082 | glob.type = T_PlannerGlobal; |
| 6083 | glob.relationOids = NIL; |
| 6084 | glob.invalItems = NIL; |
| 6085 | |
| 6086 | MemSet(&root, 0, sizeof(root)); |
| 6087 | root.type = T_PlannerInfo; |
| 6088 | root.glob = &glob; |
| 6089 | |
| 6090 | /* |
| 6091 | * Convert named-argument function calls, insert default arguments and |
| 6092 | * simplify constant subexprs. Collect identities of inlined functions |
| 6093 | * and elided domains, too. |
| 6094 | */ |
| 6095 | result = eval_const_expressions(&root, (Node *) expr); |
| 6096 | |
| 6097 | /* Fill in opfuncid values if missing */ |
| 6098 | fix_opfuncids(result); |
| 6099 | |
| 6100 | /* |
| 6101 | * Now walk the finished expression to find anything else we ought to |
| 6102 | * record as an expression dependency. |
| 6103 | */ |
| 6104 | (void) extract_query_dependencies_walker(result, &root); |
| 6105 | |
| 6106 | *relationOids = glob.relationOids; |
| 6107 | *invalItems = glob.invalItems; |
| 6108 | |
| 6109 | return (Expr *) result; |
| 6110 | } |
| 6111 | |
| 6112 | |
| 6113 | /* |
| 6114 | * plan_cluster_use_sort |
| 6115 | * Use the planner to decide how CLUSTER should implement sorting |
| 6116 | * |
| 6117 | * tableOid is the OID of a table to be clustered on its index indexOid |
| 6118 | * (which is already known to be a btree index). Decide whether it's |
| 6119 | * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER. |
| 6120 | * Return true to use sorting, false to use an indexscan. |
| 6121 | * |
| 6122 | * Note: caller had better already hold some type of lock on the table. |
| 6123 | */ |
| 6124 | bool |
| 6125 | plan_cluster_use_sort(Oid tableOid, Oid indexOid) |
| 6126 | { |
| 6127 | PlannerInfo *root; |
| 6128 | Query *query; |
| 6129 | PlannerGlobal *glob; |
| 6130 | RangeTblEntry *rte; |
| 6131 | RelOptInfo *rel; |
| 6132 | IndexOptInfo *indexInfo; |
| 6133 | QualCost indexExprCost; |
| 6134 | Cost comparisonCost; |
| 6135 | Path *seqScanPath; |
| 6136 | Path seqScanAndSortPath; |
| 6137 | IndexPath *indexScanPath; |
| 6138 | ListCell *lc; |
| 6139 | |
| 6140 | /* We can short-circuit the cost comparison if indexscans are disabled */ |
| 6141 | if (!enable_indexscan) |
| 6142 | return true; /* use sort */ |
| 6143 | |
| 6144 | /* Set up mostly-dummy planner state */ |
| 6145 | query = makeNode(Query); |
| 6146 | query->commandType = CMD_SELECT; |
| 6147 | |
| 6148 | glob = makeNode(PlannerGlobal); |
| 6149 | |
| 6150 | root = makeNode(PlannerInfo); |
| 6151 | root->parse = query; |
| 6152 | root->glob = glob; |
| 6153 | root->query_level = 1; |
| 6154 | root->planner_cxt = CurrentMemoryContext; |
| 6155 | root->wt_param_id = -1; |
| 6156 | |
| 6157 | /* Build a minimal RTE for the rel */ |
| 6158 | rte = makeNode(RangeTblEntry); |
| 6159 | rte->rtekind = RTE_RELATION; |
| 6160 | rte->relid = tableOid; |
| 6161 | rte->relkind = RELKIND_RELATION; /* Don't be too picky. */ |
| 6162 | rte->rellockmode = AccessShareLock; |
| 6163 | rte->lateral = false; |
| 6164 | rte->inh = false; |
| 6165 | rte->inFromCl = true; |
| 6166 | query->rtable = list_make1(rte); |
| 6167 | |
| 6168 | /* Set up RTE/RelOptInfo arrays */ |
| 6169 | setup_simple_rel_arrays(root); |
| 6170 | |
| 6171 | /* Build RelOptInfo */ |
| 6172 | rel = build_simple_rel(root, 1, NULL); |
| 6173 | |
| 6174 | /* Locate IndexOptInfo for the target index */ |
| 6175 | indexInfo = NULL; |
| 6176 | foreach(lc, rel->indexlist) |
| 6177 | { |
| 6178 | indexInfo = lfirst_node(IndexOptInfo, lc); |
| 6179 | if (indexInfo->indexoid == indexOid) |
| 6180 | break; |
| 6181 | } |
| 6182 | |
| 6183 | /* |
| 6184 | * It's possible that get_relation_info did not generate an IndexOptInfo |
| 6185 | * for the desired index; this could happen if it's not yet reached its |
| 6186 | * indcheckxmin usability horizon, or if it's a system index and we're |
| 6187 | * ignoring system indexes. In such cases we should tell CLUSTER to not |
| 6188 | * trust the index contents but use seqscan-and-sort. |
| 6189 | */ |
| 6190 | if (lc == NULL) /* not in the list? */ |
| 6191 | return true; /* use sort */ |
| 6192 | |
| 6193 | /* |
| 6194 | * Rather than doing all the pushups that would be needed to use |
| 6195 | * set_baserel_size_estimates, just do a quick hack for rows and width. |
| 6196 | */ |
| 6197 | rel->rows = rel->tuples; |
| 6198 | rel->reltarget->width = get_relation_data_width(tableOid, NULL); |
| 6199 | |
| 6200 | root->total_table_pages = rel->pages; |
| 6201 | |
| 6202 | /* |
| 6203 | * Determine eval cost of the index expressions, if any. We need to |
| 6204 | * charge twice that amount for each tuple comparison that happens during |
| 6205 | * the sort, since tuplesort.c will have to re-evaluate the index |
| 6206 | * expressions each time. (XXX that's pretty inefficient...) |
| 6207 | */ |
| 6208 | cost_qual_eval(&indexExprCost, indexInfo->indexprs, root); |
| 6209 | comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple); |
| 6210 | |
| 6211 | /* Estimate the cost of seq scan + sort */ |
| 6212 | seqScanPath = create_seqscan_path(root, rel, NULL, 0); |
| 6213 | cost_sort(&seqScanAndSortPath, root, NIL, |
| 6214 | seqScanPath->total_cost, rel->tuples, rel->reltarget->width, |
| 6215 | comparisonCost, maintenance_work_mem, -1.0); |
| 6216 | |
| 6217 | /* Estimate the cost of index scan */ |
| 6218 | indexScanPath = create_index_path(root, indexInfo, |
| 6219 | NIL, NIL, NIL, NIL, |
| 6220 | ForwardScanDirection, false, |
| 6221 | NULL, 1.0, false); |
| 6222 | |
| 6223 | return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost); |
| 6224 | } |
| 6225 | |
| 6226 | /* |
| 6227 | * plan_create_index_workers |
| 6228 | * Use the planner to decide how many parallel worker processes |
| 6229 | * CREATE INDEX should request for use |
| 6230 | * |
| 6231 | * tableOid is the table on which the index is to be built. indexOid is the |
| 6232 | * OID of an index to be created or reindexed (which must be a btree index). |
| 6233 | * |
| 6234 | * Return value is the number of parallel worker processes to request. It |
| 6235 | * may be unsafe to proceed if this is 0. Note that this does not include the |
| 6236 | * leader participating as a worker (value is always a number of parallel |
| 6237 | * worker processes). |
| 6238 | * |
| 6239 | * Note: caller had better already hold some type of lock on the table and |
| 6240 | * index. |
| 6241 | */ |
| 6242 | int |
| 6243 | plan_create_index_workers(Oid tableOid, Oid indexOid) |
| 6244 | { |
| 6245 | PlannerInfo *root; |
| 6246 | Query *query; |
| 6247 | PlannerGlobal *glob; |
| 6248 | RangeTblEntry *rte; |
| 6249 | Relation heap; |
| 6250 | Relation index; |
| 6251 | RelOptInfo *rel; |
| 6252 | int parallel_workers; |
| 6253 | BlockNumber heap_blocks; |
| 6254 | double reltuples; |
| 6255 | double allvisfrac; |
| 6256 | |
| 6257 | /* Return immediately when parallelism disabled */ |
| 6258 | if (max_parallel_maintenance_workers == 0) |
| 6259 | return 0; |
| 6260 | |
| 6261 | /* Set up largely-dummy planner state */ |
| 6262 | query = makeNode(Query); |
| 6263 | query->commandType = CMD_SELECT; |
| 6264 | |
| 6265 | glob = makeNode(PlannerGlobal); |
| 6266 | |
| 6267 | root = makeNode(PlannerInfo); |
| 6268 | root->parse = query; |
| 6269 | root->glob = glob; |
| 6270 | root->query_level = 1; |
| 6271 | root->planner_cxt = CurrentMemoryContext; |
| 6272 | root->wt_param_id = -1; |
| 6273 | |
| 6274 | /* |
| 6275 | * Build a minimal RTE. |
| 6276 | * |
| 6277 | * Mark the RTE with inh = true. This is a kludge to prevent |
| 6278 | * get_relation_info() from fetching index info, which is necessary |
| 6279 | * because it does not expect that any IndexOptInfo is currently |
| 6280 | * undergoing REINDEX. |
| 6281 | */ |
| 6282 | rte = makeNode(RangeTblEntry); |
| 6283 | rte->rtekind = RTE_RELATION; |
| 6284 | rte->relid = tableOid; |
| 6285 | rte->relkind = RELKIND_RELATION; /* Don't be too picky. */ |
| 6286 | rte->rellockmode = AccessShareLock; |
| 6287 | rte->lateral = false; |
| 6288 | rte->inh = true; |
| 6289 | rte->inFromCl = true; |
| 6290 | query->rtable = list_make1(rte); |
| 6291 | |
| 6292 | /* Set up RTE/RelOptInfo arrays */ |
| 6293 | setup_simple_rel_arrays(root); |
| 6294 | |
| 6295 | /* Build RelOptInfo */ |
| 6296 | rel = build_simple_rel(root, 1, NULL); |
| 6297 | |
| 6298 | /* Rels are assumed already locked by the caller */ |
| 6299 | heap = table_open(tableOid, NoLock); |
| 6300 | index = index_open(indexOid, NoLock); |
| 6301 | |
| 6302 | /* |
| 6303 | * Determine if it's safe to proceed. |
| 6304 | * |
| 6305 | * Currently, parallel workers can't access the leader's temporary tables. |
| 6306 | * Furthermore, any index predicate or index expressions must be parallel |
| 6307 | * safe. |
| 6308 | */ |
| 6309 | if (heap->rd_rel->relpersistence == RELPERSISTENCE_TEMP || |
| 6310 | !is_parallel_safe(root, (Node *) RelationGetIndexExpressions(index)) || |
| 6311 | !is_parallel_safe(root, (Node *) RelationGetIndexPredicate(index))) |
| 6312 | { |
| 6313 | parallel_workers = 0; |
| 6314 | goto done; |
| 6315 | } |
| 6316 | |
| 6317 | /* |
| 6318 | * If parallel_workers storage parameter is set for the table, accept that |
| 6319 | * as the number of parallel worker processes to launch (though still cap |
| 6320 | * at max_parallel_maintenance_workers). Note that we deliberately do not |
| 6321 | * consider any other factor when parallel_workers is set. (e.g., memory |
| 6322 | * use by workers.) |
| 6323 | */ |
| 6324 | if (rel->rel_parallel_workers != -1) |
| 6325 | { |
| 6326 | parallel_workers = Min(rel->rel_parallel_workers, |
| 6327 | max_parallel_maintenance_workers); |
| 6328 | goto done; |
| 6329 | } |
| 6330 | |
| 6331 | /* |
| 6332 | * Estimate heap relation size ourselves, since rel->pages cannot be |
| 6333 | * trusted (heap RTE was marked as inheritance parent) |
| 6334 | */ |
| 6335 | estimate_rel_size(heap, NULL, &heap_blocks, &reltuples, &allvisfrac); |
| 6336 | |
| 6337 | /* |
| 6338 | * Determine number of workers to scan the heap relation using generic |
| 6339 | * model |
| 6340 | */ |
| 6341 | parallel_workers = compute_parallel_worker(rel, heap_blocks, -1, |
| 6342 | max_parallel_maintenance_workers); |
| 6343 | |
| 6344 | /* |
| 6345 | * Cap workers based on available maintenance_work_mem as needed. |
| 6346 | * |
| 6347 | * Note that each tuplesort participant receives an even share of the |
| 6348 | * total maintenance_work_mem budget. Aim to leave participants |
| 6349 | * (including the leader as a participant) with no less than 32MB of |
| 6350 | * memory. This leaves cases where maintenance_work_mem is set to 64MB |
| 6351 | * immediately past the threshold of being capable of launching a single |
| 6352 | * parallel worker to sort. |
| 6353 | */ |
| 6354 | while (parallel_workers > 0 && |
| 6355 | maintenance_work_mem / (parallel_workers + 1) < 32768L) |
| 6356 | parallel_workers--; |
| 6357 | |
| 6358 | done: |
| 6359 | index_close(index, NoLock); |
| 6360 | table_close(heap, NoLock); |
| 6361 | |
| 6362 | return parallel_workers; |
| 6363 | } |
| 6364 | |
| 6365 | /* |
| 6366 | * add_paths_to_grouping_rel |
| 6367 | * |
| 6368 | * Add non-partial paths to grouping relation. |
| 6369 | */ |
| 6370 | static void |
| 6371 | add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, |
| 6372 | RelOptInfo *grouped_rel, |
| 6373 | RelOptInfo *partially_grouped_rel, |
| 6374 | const AggClauseCosts *agg_costs, |
| 6375 | grouping_sets_data *gd, double dNumGroups, |
| 6376 | GroupPathExtraData *) |
| 6377 | { |
| 6378 | Query *parse = root->parse; |
| 6379 | Path *cheapest_path = input_rel->cheapest_total_path; |
| 6380 | ListCell *lc; |
| 6381 | bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0; |
| 6382 | bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0; |
| 6383 | List *havingQual = (List *) extra->havingQual; |
| 6384 | AggClauseCosts *agg_final_costs = &extra->agg_final_costs; |
| 6385 | |
| 6386 | if (can_sort) |
| 6387 | { |
| 6388 | /* |
| 6389 | * Use any available suitably-sorted path as input, and also consider |
| 6390 | * sorting the cheapest-total path. |
| 6391 | */ |
| 6392 | foreach(lc, input_rel->pathlist) |
| 6393 | { |
| 6394 | Path *path = (Path *) lfirst(lc); |
| 6395 | bool is_sorted; |
| 6396 | |
| 6397 | is_sorted = pathkeys_contained_in(root->group_pathkeys, |
| 6398 | path->pathkeys); |
| 6399 | if (path == cheapest_path || is_sorted) |
| 6400 | { |
| 6401 | /* Sort the cheapest-total path if it isn't already sorted */ |
| 6402 | if (!is_sorted) |
| 6403 | path = (Path *) create_sort_path(root, |
| 6404 | grouped_rel, |
| 6405 | path, |
| 6406 | root->group_pathkeys, |
| 6407 | -1.0); |
| 6408 | |
| 6409 | /* Now decide what to stick atop it */ |
| 6410 | if (parse->groupingSets) |
| 6411 | { |
| 6412 | consider_groupingsets_paths(root, grouped_rel, |
| 6413 | path, true, can_hash, |
| 6414 | gd, agg_costs, dNumGroups); |
| 6415 | } |
| 6416 | else if (parse->hasAggs) |
| 6417 | { |
| 6418 | /* |
| 6419 | * We have aggregation, possibly with plain GROUP BY. Make |
| 6420 | * an AggPath. |
| 6421 | */ |
| 6422 | add_path(grouped_rel, (Path *) |
| 6423 | create_agg_path(root, |
| 6424 | grouped_rel, |
| 6425 | path, |
| 6426 | grouped_rel->reltarget, |
| 6427 | parse->groupClause ? AGG_SORTED : AGG_PLAIN, |
| 6428 | AGGSPLIT_SIMPLE, |
| 6429 | parse->groupClause, |
| 6430 | havingQual, |
| 6431 | agg_costs, |
| 6432 | dNumGroups)); |
| 6433 | } |
| 6434 | else if (parse->groupClause) |
| 6435 | { |
| 6436 | /* |
| 6437 | * We have GROUP BY without aggregation or grouping sets. |
| 6438 | * Make a GroupPath. |
| 6439 | */ |
| 6440 | add_path(grouped_rel, (Path *) |
| 6441 | create_group_path(root, |
| 6442 | grouped_rel, |
| 6443 | path, |
| 6444 | parse->groupClause, |
| 6445 | havingQual, |
| 6446 | dNumGroups)); |
| 6447 | } |
| 6448 | else |
| 6449 | { |
| 6450 | /* Other cases should have been handled above */ |
| 6451 | Assert(false); |
| 6452 | } |
| 6453 | } |
| 6454 | } |
| 6455 | |
| 6456 | /* |
| 6457 | * Instead of operating directly on the input relation, we can |
| 6458 | * consider finalizing a partially aggregated path. |
| 6459 | */ |
| 6460 | if (partially_grouped_rel != NULL) |
| 6461 | { |
| 6462 | foreach(lc, partially_grouped_rel->pathlist) |
| 6463 | { |
| 6464 | Path *path = (Path *) lfirst(lc); |
| 6465 | |
| 6466 | /* |
| 6467 | * Insert a Sort node, if required. But there's no point in |
| 6468 | * sorting anything but the cheapest path. |
| 6469 | */ |
| 6470 | if (!pathkeys_contained_in(root->group_pathkeys, path->pathkeys)) |
| 6471 | { |
| 6472 | if (path != partially_grouped_rel->cheapest_total_path) |
| 6473 | continue; |
| 6474 | path = (Path *) create_sort_path(root, |
| 6475 | grouped_rel, |
| 6476 | path, |
| 6477 | root->group_pathkeys, |
| 6478 | -1.0); |
| 6479 | } |
| 6480 | |
| 6481 | if (parse->hasAggs) |
| 6482 | add_path(grouped_rel, (Path *) |
| 6483 | create_agg_path(root, |
| 6484 | grouped_rel, |
| 6485 | path, |
| 6486 | grouped_rel->reltarget, |
| 6487 | parse->groupClause ? AGG_SORTED : AGG_PLAIN, |
| 6488 | AGGSPLIT_FINAL_DESERIAL, |
| 6489 | parse->groupClause, |
| 6490 | havingQual, |
| 6491 | agg_final_costs, |
| 6492 | dNumGroups)); |
| 6493 | else |
| 6494 | add_path(grouped_rel, (Path *) |
| 6495 | create_group_path(root, |
| 6496 | grouped_rel, |
| 6497 | path, |
| 6498 | parse->groupClause, |
| 6499 | havingQual, |
| 6500 | dNumGroups)); |
| 6501 | } |
| 6502 | } |
| 6503 | } |
| 6504 | |
| 6505 | if (can_hash) |
| 6506 | { |
| 6507 | double hashaggtablesize; |
| 6508 | |
| 6509 | if (parse->groupingSets) |
| 6510 | { |
| 6511 | /* |
| 6512 | * Try for a hash-only groupingsets path over unsorted input. |
| 6513 | */ |
| 6514 | consider_groupingsets_paths(root, grouped_rel, |
| 6515 | cheapest_path, false, true, |
| 6516 | gd, agg_costs, dNumGroups); |
| 6517 | } |
| 6518 | else |
| 6519 | { |
| 6520 | hashaggtablesize = estimate_hashagg_tablesize(cheapest_path, |
| 6521 | agg_costs, |
| 6522 | dNumGroups); |
| 6523 | |
| 6524 | /* |
| 6525 | * Provided that the estimated size of the hashtable does not |
| 6526 | * exceed work_mem, we'll generate a HashAgg Path, although if we |
| 6527 | * were unable to sort above, then we'd better generate a Path, so |
| 6528 | * that we at least have one. |
| 6529 | */ |
| 6530 | if (hashaggtablesize < work_mem * 1024L || |
| 6531 | grouped_rel->pathlist == NIL) |
| 6532 | { |
| 6533 | /* |
| 6534 | * We just need an Agg over the cheapest-total input path, |
| 6535 | * since input order won't matter. |
| 6536 | */ |
| 6537 | add_path(grouped_rel, (Path *) |
| 6538 | create_agg_path(root, grouped_rel, |
| 6539 | cheapest_path, |
| 6540 | grouped_rel->reltarget, |
| 6541 | AGG_HASHED, |
| 6542 | AGGSPLIT_SIMPLE, |
| 6543 | parse->groupClause, |
| 6544 | havingQual, |
| 6545 | agg_costs, |
| 6546 | dNumGroups)); |
| 6547 | } |
| 6548 | } |
| 6549 | |
| 6550 | /* |
| 6551 | * Generate a Finalize HashAgg Path atop of the cheapest partially |
| 6552 | * grouped path, assuming there is one. Once again, we'll only do this |
| 6553 | * if it looks as though the hash table won't exceed work_mem. |
| 6554 | */ |
| 6555 | if (partially_grouped_rel && partially_grouped_rel->pathlist) |
| 6556 | { |
| 6557 | Path *path = partially_grouped_rel->cheapest_total_path; |
| 6558 | |
| 6559 | hashaggtablesize = estimate_hashagg_tablesize(path, |
| 6560 | agg_final_costs, |
| 6561 | dNumGroups); |
| 6562 | |
| 6563 | if (hashaggtablesize < work_mem * 1024L) |
| 6564 | add_path(grouped_rel, (Path *) |
| 6565 | create_agg_path(root, |
| 6566 | grouped_rel, |
| 6567 | path, |
| 6568 | grouped_rel->reltarget, |
| 6569 | AGG_HASHED, |
| 6570 | AGGSPLIT_FINAL_DESERIAL, |
| 6571 | parse->groupClause, |
| 6572 | havingQual, |
| 6573 | agg_final_costs, |
| 6574 | dNumGroups)); |
| 6575 | } |
| 6576 | } |
| 6577 | |
| 6578 | /* |
| 6579 | * When partitionwise aggregate is used, we might have fully aggregated |
| 6580 | * paths in the partial pathlist, because add_paths_to_append_rel() will |
| 6581 | * consider a path for grouped_rel consisting of a Parallel Append of |
| 6582 | * non-partial paths from each child. |
| 6583 | */ |
| 6584 | if (grouped_rel->partial_pathlist != NIL) |
| 6585 | gather_grouping_paths(root, grouped_rel); |
| 6586 | } |
| 6587 | |
| 6588 | /* |
| 6589 | * create_partial_grouping_paths |
| 6590 | * |
| 6591 | * Create a new upper relation representing the result of partial aggregation |
| 6592 | * and populate it with appropriate paths. Note that we don't finalize the |
| 6593 | * lists of paths here, so the caller can add additional partial or non-partial |
| 6594 | * paths and must afterward call gather_grouping_paths and set_cheapest on |
| 6595 | * the returned upper relation. |
| 6596 | * |
| 6597 | * All paths for this new upper relation -- both partial and non-partial -- |
| 6598 | * have been partially aggregated but require a subsequent FinalizeAggregate |
| 6599 | * step. |
| 6600 | * |
| 6601 | * NB: This function is allowed to return NULL if it determines that there is |
| 6602 | * no real need to create a new RelOptInfo. |
| 6603 | */ |
| 6604 | static RelOptInfo * |
| 6605 | create_partial_grouping_paths(PlannerInfo *root, |
| 6606 | RelOptInfo *grouped_rel, |
| 6607 | RelOptInfo *input_rel, |
| 6608 | grouping_sets_data *gd, |
| 6609 | GroupPathExtraData *, |
| 6610 | bool force_rel_creation) |
| 6611 | { |
| 6612 | Query *parse = root->parse; |
| 6613 | RelOptInfo *partially_grouped_rel; |
| 6614 | AggClauseCosts *agg_partial_costs = &extra->agg_partial_costs; |
| 6615 | AggClauseCosts *agg_final_costs = &extra->agg_final_costs; |
| 6616 | Path *cheapest_partial_path = NULL; |
| 6617 | Path *cheapest_total_path = NULL; |
| 6618 | double dNumPartialGroups = 0; |
| 6619 | double dNumPartialPartialGroups = 0; |
| 6620 | ListCell *lc; |
| 6621 | bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0; |
| 6622 | bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0; |
| 6623 | |
| 6624 | /* |
| 6625 | * Consider whether we should generate partially aggregated non-partial |
| 6626 | * paths. We can only do this if we have a non-partial path, and only if |
| 6627 | * the parent of the input rel is performing partial partitionwise |
| 6628 | * aggregation. (Note that extra->patype is the type of partitionwise |
| 6629 | * aggregation being used at the parent level, not this level.) |
| 6630 | */ |
| 6631 | if (input_rel->pathlist != NIL && |
| 6632 | extra->patype == PARTITIONWISE_AGGREGATE_PARTIAL) |
| 6633 | cheapest_total_path = input_rel->cheapest_total_path; |
| 6634 | |
| 6635 | /* |
| 6636 | * If parallelism is possible for grouped_rel, then we should consider |
| 6637 | * generating partially-grouped partial paths. However, if the input rel |
| 6638 | * has no partial paths, then we can't. |
| 6639 | */ |
| 6640 | if (grouped_rel->consider_parallel && input_rel->partial_pathlist != NIL) |
| 6641 | cheapest_partial_path = linitial(input_rel->partial_pathlist); |
| 6642 | |
| 6643 | /* |
| 6644 | * If we can't partially aggregate partial paths, and we can't partially |
| 6645 | * aggregate non-partial paths, then don't bother creating the new |
| 6646 | * RelOptInfo at all, unless the caller specified force_rel_creation. |
| 6647 | */ |
| 6648 | if (cheapest_total_path == NULL && |
| 6649 | cheapest_partial_path == NULL && |
| 6650 | !force_rel_creation) |
| 6651 | return NULL; |
| 6652 | |
| 6653 | /* |
| 6654 | * Build a new upper relation to represent the result of partially |
| 6655 | * aggregating the rows from the input relation. |
| 6656 | */ |
| 6657 | partially_grouped_rel = fetch_upper_rel(root, |
| 6658 | UPPERREL_PARTIAL_GROUP_AGG, |
| 6659 | grouped_rel->relids); |
| 6660 | partially_grouped_rel->consider_parallel = |
| 6661 | grouped_rel->consider_parallel; |
| 6662 | partially_grouped_rel->reloptkind = grouped_rel->reloptkind; |
| 6663 | partially_grouped_rel->serverid = grouped_rel->serverid; |
| 6664 | partially_grouped_rel->userid = grouped_rel->userid; |
| 6665 | partially_grouped_rel->useridiscurrent = grouped_rel->useridiscurrent; |
| 6666 | partially_grouped_rel->fdwroutine = grouped_rel->fdwroutine; |
| 6667 | |
| 6668 | /* |
| 6669 | * Build target list for partial aggregate paths. These paths cannot just |
| 6670 | * emit the same tlist as regular aggregate paths, because (1) we must |
| 6671 | * include Vars and Aggrefs needed in HAVING, which might not appear in |
| 6672 | * the result tlist, and (2) the Aggrefs must be set in partial mode. |
| 6673 | */ |
| 6674 | partially_grouped_rel->reltarget = |
| 6675 | make_partial_grouping_target(root, grouped_rel->reltarget, |
| 6676 | extra->havingQual); |
| 6677 | |
| 6678 | if (!extra->partial_costs_set) |
| 6679 | { |
| 6680 | /* |
| 6681 | * Collect statistics about aggregates for estimating costs of |
| 6682 | * performing aggregation in parallel. |
| 6683 | */ |
| 6684 | MemSet(agg_partial_costs, 0, sizeof(AggClauseCosts)); |
| 6685 | MemSet(agg_final_costs, 0, sizeof(AggClauseCosts)); |
| 6686 | if (parse->hasAggs) |
| 6687 | { |
| 6688 | List *partial_target_exprs; |
| 6689 | |
| 6690 | /* partial phase */ |
| 6691 | partial_target_exprs = partially_grouped_rel->reltarget->exprs; |
| 6692 | get_agg_clause_costs(root, (Node *) partial_target_exprs, |
| 6693 | AGGSPLIT_INITIAL_SERIAL, |
| 6694 | agg_partial_costs); |
| 6695 | |
| 6696 | /* final phase */ |
| 6697 | get_agg_clause_costs(root, (Node *) grouped_rel->reltarget->exprs, |
| 6698 | AGGSPLIT_FINAL_DESERIAL, |
| 6699 | agg_final_costs); |
| 6700 | get_agg_clause_costs(root, extra->havingQual, |
| 6701 | AGGSPLIT_FINAL_DESERIAL, |
| 6702 | agg_final_costs); |
| 6703 | } |
| 6704 | |
| 6705 | extra->partial_costs_set = true; |
| 6706 | } |
| 6707 | |
| 6708 | /* Estimate number of partial groups. */ |
| 6709 | if (cheapest_total_path != NULL) |
| 6710 | dNumPartialGroups = |
| 6711 | get_number_of_groups(root, |
| 6712 | cheapest_total_path->rows, |
| 6713 | gd, |
| 6714 | extra->targetList); |
| 6715 | if (cheapest_partial_path != NULL) |
| 6716 | dNumPartialPartialGroups = |
| 6717 | get_number_of_groups(root, |
| 6718 | cheapest_partial_path->rows, |
| 6719 | gd, |
| 6720 | extra->targetList); |
| 6721 | |
| 6722 | if (can_sort && cheapest_total_path != NULL) |
| 6723 | { |
| 6724 | /* This should have been checked previously */ |
| 6725 | Assert(parse->hasAggs || parse->groupClause); |
| 6726 | |
| 6727 | /* |
| 6728 | * Use any available suitably-sorted path as input, and also consider |
| 6729 | * sorting the cheapest partial path. |
| 6730 | */ |
| 6731 | foreach(lc, input_rel->pathlist) |
| 6732 | { |
| 6733 | Path *path = (Path *) lfirst(lc); |
| 6734 | bool is_sorted; |
| 6735 | |
| 6736 | is_sorted = pathkeys_contained_in(root->group_pathkeys, |
| 6737 | path->pathkeys); |
| 6738 | if (path == cheapest_total_path || is_sorted) |
| 6739 | { |
| 6740 | /* Sort the cheapest partial path, if it isn't already */ |
| 6741 | if (!is_sorted) |
| 6742 | path = (Path *) create_sort_path(root, |
| 6743 | partially_grouped_rel, |
| 6744 | path, |
| 6745 | root->group_pathkeys, |
| 6746 | -1.0); |
| 6747 | |
| 6748 | if (parse->hasAggs) |
| 6749 | add_path(partially_grouped_rel, (Path *) |
| 6750 | create_agg_path(root, |
| 6751 | partially_grouped_rel, |
| 6752 | path, |
| 6753 | partially_grouped_rel->reltarget, |
| 6754 | parse->groupClause ? AGG_SORTED : AGG_PLAIN, |
| 6755 | AGGSPLIT_INITIAL_SERIAL, |
| 6756 | parse->groupClause, |
| 6757 | NIL, |
| 6758 | agg_partial_costs, |
| 6759 | dNumPartialGroups)); |
| 6760 | else |
| 6761 | add_path(partially_grouped_rel, (Path *) |
| 6762 | create_group_path(root, |
| 6763 | partially_grouped_rel, |
| 6764 | path, |
| 6765 | parse->groupClause, |
| 6766 | NIL, |
| 6767 | dNumPartialGroups)); |
| 6768 | } |
| 6769 | } |
| 6770 | } |
| 6771 | |
| 6772 | if (can_sort && cheapest_partial_path != NULL) |
| 6773 | { |
| 6774 | /* Similar to above logic, but for partial paths. */ |
| 6775 | foreach(lc, input_rel->partial_pathlist) |
| 6776 | { |
| 6777 | Path *path = (Path *) lfirst(lc); |
| 6778 | bool is_sorted; |
| 6779 | |
| 6780 | is_sorted = pathkeys_contained_in(root->group_pathkeys, |
| 6781 | path->pathkeys); |
| 6782 | if (path == cheapest_partial_path || is_sorted) |
| 6783 | { |
| 6784 | /* Sort the cheapest partial path, if it isn't already */ |
| 6785 | if (!is_sorted) |
| 6786 | path = (Path *) create_sort_path(root, |
| 6787 | partially_grouped_rel, |
| 6788 | path, |
| 6789 | root->group_pathkeys, |
| 6790 | -1.0); |
| 6791 | |
| 6792 | if (parse->hasAggs) |
| 6793 | add_partial_path(partially_grouped_rel, (Path *) |
| 6794 | create_agg_path(root, |
| 6795 | partially_grouped_rel, |
| 6796 | path, |
| 6797 | partially_grouped_rel->reltarget, |
| 6798 | parse->groupClause ? AGG_SORTED : AGG_PLAIN, |
| 6799 | AGGSPLIT_INITIAL_SERIAL, |
| 6800 | parse->groupClause, |
| 6801 | NIL, |
| 6802 | agg_partial_costs, |
| 6803 | dNumPartialPartialGroups)); |
| 6804 | else |
| 6805 | add_partial_path(partially_grouped_rel, (Path *) |
| 6806 | create_group_path(root, |
| 6807 | partially_grouped_rel, |
| 6808 | path, |
| 6809 | parse->groupClause, |
| 6810 | NIL, |
| 6811 | dNumPartialPartialGroups)); |
| 6812 | } |
| 6813 | } |
| 6814 | } |
| 6815 | |
| 6816 | if (can_hash && cheapest_total_path != NULL) |
| 6817 | { |
| 6818 | double hashaggtablesize; |
| 6819 | |
| 6820 | /* Checked above */ |
| 6821 | Assert(parse->hasAggs || parse->groupClause); |
| 6822 | |
| 6823 | hashaggtablesize = |
| 6824 | estimate_hashagg_tablesize(cheapest_total_path, |
| 6825 | agg_partial_costs, |
| 6826 | dNumPartialGroups); |
| 6827 | |
| 6828 | /* |
| 6829 | * Tentatively produce a partial HashAgg Path, depending on if it |
| 6830 | * looks as if the hash table will fit in work_mem. |
| 6831 | */ |
| 6832 | if (hashaggtablesize < work_mem * 1024L && |
| 6833 | cheapest_total_path != NULL) |
| 6834 | { |
| 6835 | add_path(partially_grouped_rel, (Path *) |
| 6836 | create_agg_path(root, |
| 6837 | partially_grouped_rel, |
| 6838 | cheapest_total_path, |
| 6839 | partially_grouped_rel->reltarget, |
| 6840 | AGG_HASHED, |
| 6841 | AGGSPLIT_INITIAL_SERIAL, |
| 6842 | parse->groupClause, |
| 6843 | NIL, |
| 6844 | agg_partial_costs, |
| 6845 | dNumPartialGroups)); |
| 6846 | } |
| 6847 | } |
| 6848 | |
| 6849 | if (can_hash && cheapest_partial_path != NULL) |
| 6850 | { |
| 6851 | double hashaggtablesize; |
| 6852 | |
| 6853 | hashaggtablesize = |
| 6854 | estimate_hashagg_tablesize(cheapest_partial_path, |
| 6855 | agg_partial_costs, |
| 6856 | dNumPartialPartialGroups); |
| 6857 | |
| 6858 | /* Do the same for partial paths. */ |
| 6859 | if (hashaggtablesize < work_mem * 1024L && |
| 6860 | cheapest_partial_path != NULL) |
| 6861 | { |
| 6862 | add_partial_path(partially_grouped_rel, (Path *) |
| 6863 | create_agg_path(root, |
| 6864 | partially_grouped_rel, |
| 6865 | cheapest_partial_path, |
| 6866 | partially_grouped_rel->reltarget, |
| 6867 | AGG_HASHED, |
| 6868 | AGGSPLIT_INITIAL_SERIAL, |
| 6869 | parse->groupClause, |
| 6870 | NIL, |
| 6871 | agg_partial_costs, |
| 6872 | dNumPartialPartialGroups)); |
| 6873 | } |
| 6874 | } |
| 6875 | |
| 6876 | /* |
| 6877 | * If there is an FDW that's responsible for all baserels of the query, |
| 6878 | * let it consider adding partially grouped ForeignPaths. |
| 6879 | */ |
| 6880 | if (partially_grouped_rel->fdwroutine && |
| 6881 | partially_grouped_rel->fdwroutine->GetForeignUpperPaths) |
| 6882 | { |
| 6883 | FdwRoutine *fdwroutine = partially_grouped_rel->fdwroutine; |
| 6884 | |
| 6885 | fdwroutine->GetForeignUpperPaths(root, |
| 6886 | UPPERREL_PARTIAL_GROUP_AGG, |
| 6887 | input_rel, partially_grouped_rel, |
| 6888 | extra); |
| 6889 | } |
| 6890 | |
| 6891 | return partially_grouped_rel; |
| 6892 | } |
| 6893 | |
| 6894 | /* |
| 6895 | * Generate Gather and Gather Merge paths for a grouping relation or partial |
| 6896 | * grouping relation. |
| 6897 | * |
| 6898 | * generate_gather_paths does most of the work, but we also consider a special |
| 6899 | * case: we could try sorting the data by the group_pathkeys and then applying |
| 6900 | * Gather Merge. |
| 6901 | * |
| 6902 | * NB: This function shouldn't be used for anything other than a grouped or |
| 6903 | * partially grouped relation not only because of the fact that it explicitly |
| 6904 | * references group_pathkeys but we pass "true" as the third argument to |
| 6905 | * generate_gather_paths(). |
| 6906 | */ |
| 6907 | static void |
| 6908 | gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel) |
| 6909 | { |
| 6910 | Path *cheapest_partial_path; |
| 6911 | |
| 6912 | /* Try Gather for unordered paths and Gather Merge for ordered ones. */ |
| 6913 | generate_gather_paths(root, rel, true); |
| 6914 | |
| 6915 | /* Try cheapest partial path + explicit Sort + Gather Merge. */ |
| 6916 | cheapest_partial_path = linitial(rel->partial_pathlist); |
| 6917 | if (!pathkeys_contained_in(root->group_pathkeys, |
| 6918 | cheapest_partial_path->pathkeys)) |
| 6919 | { |
| 6920 | Path *path; |
| 6921 | double total_groups; |
| 6922 | |
| 6923 | total_groups = |
| 6924 | cheapest_partial_path->rows * cheapest_partial_path->parallel_workers; |
| 6925 | path = (Path *) create_sort_path(root, rel, cheapest_partial_path, |
| 6926 | root->group_pathkeys, |
| 6927 | -1.0); |
| 6928 | path = (Path *) |
| 6929 | create_gather_merge_path(root, |
| 6930 | rel, |
| 6931 | path, |
| 6932 | rel->reltarget, |
| 6933 | root->group_pathkeys, |
| 6934 | NULL, |
| 6935 | &total_groups); |
| 6936 | |
| 6937 | add_path(rel, path); |
| 6938 | } |
| 6939 | } |
| 6940 | |
| 6941 | /* |
| 6942 | * can_partial_agg |
| 6943 | * |
| 6944 | * Determines whether or not partial grouping and/or aggregation is possible. |
| 6945 | * Returns true when possible, false otherwise. |
| 6946 | */ |
| 6947 | static bool |
| 6948 | can_partial_agg(PlannerInfo *root, const AggClauseCosts *agg_costs) |
| 6949 | { |
| 6950 | Query *parse = root->parse; |
| 6951 | |
| 6952 | if (!parse->hasAggs && parse->groupClause == NIL) |
| 6953 | { |
| 6954 | /* |
| 6955 | * We don't know how to do parallel aggregation unless we have either |
| 6956 | * some aggregates or a grouping clause. |
| 6957 | */ |
| 6958 | return false; |
| 6959 | } |
| 6960 | else if (parse->groupingSets) |
| 6961 | { |
| 6962 | /* We don't know how to do grouping sets in parallel. */ |
| 6963 | return false; |
| 6964 | } |
| 6965 | else if (agg_costs->hasNonPartial || agg_costs->hasNonSerial) |
| 6966 | { |
| 6967 | /* Insufficient support for partial mode. */ |
| 6968 | return false; |
| 6969 | } |
| 6970 | |
| 6971 | /* Everything looks good. */ |
| 6972 | return true; |
| 6973 | } |
| 6974 | |
| 6975 | /* |
| 6976 | * apply_scanjoin_target_to_paths |
| 6977 | * |
| 6978 | * Adjust the final scan/join relation, and recursively all of its children, |
| 6979 | * to generate the final scan/join target. It would be more correct to model |
| 6980 | * this as a separate planning step with a new RelOptInfo at the toplevel and |
| 6981 | * for each child relation, but doing it this way is noticeably cheaper. |
| 6982 | * Maybe that problem can be solved at some point, but for now we do this. |
| 6983 | * |
| 6984 | * If tlist_same_exprs is true, then the scan/join target to be applied has |
| 6985 | * the same expressions as the existing reltarget, so we need only insert the |
| 6986 | * appropriate sortgroupref information. By avoiding the creation of |
| 6987 | * projection paths we save effort both immediately and at plan creation time. |
| 6988 | */ |
| 6989 | static void |
| 6990 | apply_scanjoin_target_to_paths(PlannerInfo *root, |
| 6991 | RelOptInfo *rel, |
| 6992 | List *scanjoin_targets, |
| 6993 | List *scanjoin_targets_contain_srfs, |
| 6994 | bool scanjoin_target_parallel_safe, |
| 6995 | bool tlist_same_exprs) |
| 6996 | { |
| 6997 | bool rel_is_partitioned = IS_PARTITIONED_REL(rel); |
| 6998 | PathTarget *scanjoin_target; |
| 6999 | ListCell *lc; |
| 7000 | |
| 7001 | /* This recurses, so be paranoid. */ |
| 7002 | check_stack_depth(); |
| 7003 | |
| 7004 | /* |
| 7005 | * If the rel is partitioned, we want to drop its existing paths and |
| 7006 | * generate new ones. This function would still be correct if we kept the |
| 7007 | * existing paths: we'd modify them to generate the correct target above |
| 7008 | * the partitioning Append, and then they'd compete on cost with paths |
| 7009 | * generating the target below the Append. However, in our current cost |
| 7010 | * model the latter way is always the same or cheaper cost, so modifying |
| 7011 | * the existing paths would just be useless work. Moreover, when the cost |
| 7012 | * is the same, varying roundoff errors might sometimes allow an existing |
| 7013 | * path to be picked, resulting in undesirable cross-platform plan |
| 7014 | * variations. So we drop old paths and thereby force the work to be done |
| 7015 | * below the Append, except in the case of a non-parallel-safe target. |
| 7016 | * |
| 7017 | * Some care is needed, because we have to allow generate_gather_paths to |
| 7018 | * see the old partial paths in the next stanza. Hence, zap the main |
| 7019 | * pathlist here, then allow generate_gather_paths to add path(s) to the |
| 7020 | * main list, and finally zap the partial pathlist. |
| 7021 | */ |
| 7022 | if (rel_is_partitioned) |
| 7023 | rel->pathlist = NIL; |
| 7024 | |
| 7025 | /* |
| 7026 | * If the scan/join target is not parallel-safe, partial paths cannot |
| 7027 | * generate it. |
| 7028 | */ |
| 7029 | if (!scanjoin_target_parallel_safe) |
| 7030 | { |
| 7031 | /* |
| 7032 | * Since we can't generate the final scan/join target in parallel |
| 7033 | * workers, this is our last opportunity to use any partial paths that |
| 7034 | * exist; so build Gather path(s) that use them and emit whatever the |
| 7035 | * current reltarget is. We don't do this in the case where the |
| 7036 | * target is parallel-safe, since we will be able to generate superior |
| 7037 | * paths by doing it after the final scan/join target has been |
| 7038 | * applied. |
| 7039 | */ |
| 7040 | generate_gather_paths(root, rel, false); |
| 7041 | |
| 7042 | /* Can't use parallel query above this level. */ |
| 7043 | rel->partial_pathlist = NIL; |
| 7044 | rel->consider_parallel = false; |
| 7045 | } |
| 7046 | |
| 7047 | /* Finish dropping old paths for a partitioned rel, per comment above */ |
| 7048 | if (rel_is_partitioned) |
| 7049 | rel->partial_pathlist = NIL; |
| 7050 | |
| 7051 | /* Extract SRF-free scan/join target. */ |
| 7052 | scanjoin_target = linitial_node(PathTarget, scanjoin_targets); |
| 7053 | |
| 7054 | /* |
| 7055 | * Apply the SRF-free scan/join target to each existing path. |
| 7056 | * |
| 7057 | * If the tlist exprs are the same, we can just inject the sortgroupref |
| 7058 | * information into the existing pathtargets. Otherwise, replace each |
| 7059 | * path with a projection path that generates the SRF-free scan/join |
| 7060 | * target. This can't change the ordering of paths within rel->pathlist, |
| 7061 | * so we just modify the list in place. |
| 7062 | */ |
| 7063 | foreach(lc, rel->pathlist) |
| 7064 | { |
| 7065 | Path *subpath = (Path *) lfirst(lc); |
| 7066 | |
| 7067 | /* Shouldn't have any parameterized paths anymore */ |
| 7068 | Assert(subpath->param_info == NULL); |
| 7069 | |
| 7070 | if (tlist_same_exprs) |
| 7071 | subpath->pathtarget->sortgrouprefs = |
| 7072 | scanjoin_target->sortgrouprefs; |
| 7073 | else |
| 7074 | { |
| 7075 | Path *newpath; |
| 7076 | |
| 7077 | newpath = (Path *) create_projection_path(root, rel, subpath, |
| 7078 | scanjoin_target); |
| 7079 | lfirst(lc) = newpath; |
| 7080 | } |
| 7081 | } |
| 7082 | |
| 7083 | /* Likewise adjust the targets for any partial paths. */ |
| 7084 | foreach(lc, rel->partial_pathlist) |
| 7085 | { |
| 7086 | Path *subpath = (Path *) lfirst(lc); |
| 7087 | |
| 7088 | /* Shouldn't have any parameterized paths anymore */ |
| 7089 | Assert(subpath->param_info == NULL); |
| 7090 | |
| 7091 | if (tlist_same_exprs) |
| 7092 | subpath->pathtarget->sortgrouprefs = |
| 7093 | scanjoin_target->sortgrouprefs; |
| 7094 | else |
| 7095 | { |
| 7096 | Path *newpath; |
| 7097 | |
| 7098 | newpath = (Path *) create_projection_path(root, rel, subpath, |
| 7099 | scanjoin_target); |
| 7100 | lfirst(lc) = newpath; |
| 7101 | } |
| 7102 | } |
| 7103 | |
| 7104 | /* |
| 7105 | * Now, if final scan/join target contains SRFs, insert ProjectSetPath(s) |
| 7106 | * atop each existing path. (Note that this function doesn't look at the |
| 7107 | * cheapest-path fields, which is a good thing because they're bogus right |
| 7108 | * now.) |
| 7109 | */ |
| 7110 | if (root->parse->hasTargetSRFs) |
| 7111 | adjust_paths_for_srfs(root, rel, |
| 7112 | scanjoin_targets, |
| 7113 | scanjoin_targets_contain_srfs); |
| 7114 | |
| 7115 | /* |
| 7116 | * Update the rel's target to be the final (with SRFs) scan/join target. |
| 7117 | * This now matches the actual output of all the paths, and we might get |
| 7118 | * confused in createplan.c if they don't agree. We must do this now so |
| 7119 | * that any append paths made in the next part will use the correct |
| 7120 | * pathtarget (cf. create_append_path). |
| 7121 | * |
| 7122 | * Note that this is also necessary if GetForeignUpperPaths() gets called |
| 7123 | * on the final scan/join relation or on any of its children, since the |
| 7124 | * FDW might look at the rel's target to create ForeignPaths. |
| 7125 | */ |
| 7126 | rel->reltarget = llast_node(PathTarget, scanjoin_targets); |
| 7127 | |
| 7128 | /* |
| 7129 | * If the relation is partitioned, recursively apply the scan/join target |
| 7130 | * to all partitions, and generate brand-new Append paths in which the |
| 7131 | * scan/join target is computed below the Append rather than above it. |
| 7132 | * Since Append is not projection-capable, that might save a separate |
| 7133 | * Result node, and it also is important for partitionwise aggregate. |
| 7134 | */ |
| 7135 | if (rel_is_partitioned) |
| 7136 | { |
| 7137 | List *live_children = NIL; |
| 7138 | int partition_idx; |
| 7139 | |
| 7140 | /* Adjust each partition. */ |
| 7141 | for (partition_idx = 0; partition_idx < rel->nparts; partition_idx++) |
| 7142 | { |
| 7143 | RelOptInfo *child_rel = rel->part_rels[partition_idx]; |
| 7144 | AppendRelInfo **appinfos; |
| 7145 | int nappinfos; |
| 7146 | List *child_scanjoin_targets = NIL; |
| 7147 | ListCell *lc; |
| 7148 | |
| 7149 | /* Pruned or dummy children can be ignored. */ |
| 7150 | if (child_rel == NULL || IS_DUMMY_REL(child_rel)) |
| 7151 | continue; |
| 7152 | |
| 7153 | /* Translate scan/join targets for this child. */ |
| 7154 | appinfos = find_appinfos_by_relids(root, child_rel->relids, |
| 7155 | &nappinfos); |
| 7156 | foreach(lc, scanjoin_targets) |
| 7157 | { |
| 7158 | PathTarget *target = lfirst_node(PathTarget, lc); |
| 7159 | |
| 7160 | target = copy_pathtarget(target); |
| 7161 | target->exprs = (List *) |
| 7162 | adjust_appendrel_attrs(root, |
| 7163 | (Node *) target->exprs, |
| 7164 | nappinfos, appinfos); |
| 7165 | child_scanjoin_targets = lappend(child_scanjoin_targets, |
| 7166 | target); |
| 7167 | } |
| 7168 | pfree(appinfos); |
| 7169 | |
| 7170 | /* Recursion does the real work. */ |
| 7171 | apply_scanjoin_target_to_paths(root, child_rel, |
| 7172 | child_scanjoin_targets, |
| 7173 | scanjoin_targets_contain_srfs, |
| 7174 | scanjoin_target_parallel_safe, |
| 7175 | tlist_same_exprs); |
| 7176 | |
| 7177 | /* Save non-dummy children for Append paths. */ |
| 7178 | if (!IS_DUMMY_REL(child_rel)) |
| 7179 | live_children = lappend(live_children, child_rel); |
| 7180 | } |
| 7181 | |
| 7182 | /* Build new paths for this relation by appending child paths. */ |
| 7183 | add_paths_to_append_rel(root, rel, live_children); |
| 7184 | } |
| 7185 | |
| 7186 | /* |
| 7187 | * Consider generating Gather or Gather Merge paths. We must only do this |
| 7188 | * if the relation is parallel safe, and we don't do it for child rels to |
| 7189 | * avoid creating multiple Gather nodes within the same plan. We must do |
| 7190 | * this after all paths have been generated and before set_cheapest, since |
| 7191 | * one of the generated paths may turn out to be the cheapest one. |
| 7192 | */ |
| 7193 | if (rel->consider_parallel && !IS_OTHER_REL(rel)) |
| 7194 | generate_gather_paths(root, rel, false); |
| 7195 | |
| 7196 | /* |
| 7197 | * Reassess which paths are the cheapest, now that we've potentially added |
| 7198 | * new Gather (or Gather Merge) and/or Append (or MergeAppend) paths to |
| 7199 | * this relation. |
| 7200 | */ |
| 7201 | set_cheapest(rel); |
| 7202 | } |
| 7203 | |
| 7204 | /* |
| 7205 | * create_partitionwise_grouping_paths |
| 7206 | * |
| 7207 | * If the partition keys of input relation are part of the GROUP BY clause, all |
| 7208 | * the rows belonging to a given group come from a single partition. This |
| 7209 | * allows aggregation/grouping over a partitioned relation to be broken down |
| 7210 | * into aggregation/grouping on each partition. This should be no worse, and |
| 7211 | * often better, than the normal approach. |
| 7212 | * |
| 7213 | * However, if the GROUP BY clause does not contain all the partition keys, |
| 7214 | * rows from a given group may be spread across multiple partitions. In that |
| 7215 | * case, we perform partial aggregation for each group, append the results, |
| 7216 | * and then finalize aggregation. This is less certain to win than the |
| 7217 | * previous case. It may win if the PartialAggregate stage greatly reduces |
| 7218 | * the number of groups, because fewer rows will pass through the Append node. |
| 7219 | * It may lose if we have lots of small groups. |
| 7220 | */ |
| 7221 | static void |
| 7222 | create_partitionwise_grouping_paths(PlannerInfo *root, |
| 7223 | RelOptInfo *input_rel, |
| 7224 | RelOptInfo *grouped_rel, |
| 7225 | RelOptInfo *partially_grouped_rel, |
| 7226 | const AggClauseCosts *agg_costs, |
| 7227 | grouping_sets_data *gd, |
| 7228 | PartitionwiseAggregateType patype, |
| 7229 | GroupPathExtraData *) |
| 7230 | { |
| 7231 | int nparts = input_rel->nparts; |
| 7232 | int cnt_parts; |
| 7233 | List *grouped_live_children = NIL; |
| 7234 | List *partially_grouped_live_children = NIL; |
| 7235 | PathTarget *target = grouped_rel->reltarget; |
| 7236 | bool partial_grouping_valid = true; |
| 7237 | |
| 7238 | Assert(patype != PARTITIONWISE_AGGREGATE_NONE); |
| 7239 | Assert(patype != PARTITIONWISE_AGGREGATE_PARTIAL || |
| 7240 | partially_grouped_rel != NULL); |
| 7241 | |
| 7242 | /* Add paths for partitionwise aggregation/grouping. */ |
| 7243 | for (cnt_parts = 0; cnt_parts < nparts; cnt_parts++) |
| 7244 | { |
| 7245 | RelOptInfo *child_input_rel = input_rel->part_rels[cnt_parts]; |
| 7246 | PathTarget *child_target = copy_pathtarget(target); |
| 7247 | AppendRelInfo **appinfos; |
| 7248 | int nappinfos; |
| 7249 | GroupPathExtraData ; |
| 7250 | RelOptInfo *child_grouped_rel; |
| 7251 | RelOptInfo *child_partially_grouped_rel; |
| 7252 | |
| 7253 | /* Pruned or dummy children can be ignored. */ |
| 7254 | if (child_input_rel == NULL || IS_DUMMY_REL(child_input_rel)) |
| 7255 | continue; |
| 7256 | |
| 7257 | /* |
| 7258 | * Copy the given "extra" structure as is and then override the |
| 7259 | * members specific to this child. |
| 7260 | */ |
| 7261 | memcpy(&child_extra, extra, sizeof(child_extra)); |
| 7262 | |
| 7263 | appinfos = find_appinfos_by_relids(root, child_input_rel->relids, |
| 7264 | &nappinfos); |
| 7265 | |
| 7266 | child_target->exprs = (List *) |
| 7267 | adjust_appendrel_attrs(root, |
| 7268 | (Node *) target->exprs, |
| 7269 | nappinfos, appinfos); |
| 7270 | |
| 7271 | /* Translate havingQual and targetList. */ |
| 7272 | child_extra.havingQual = (Node *) |
| 7273 | adjust_appendrel_attrs(root, |
| 7274 | extra->havingQual, |
| 7275 | nappinfos, appinfos); |
| 7276 | child_extra.targetList = (List *) |
| 7277 | adjust_appendrel_attrs(root, |
| 7278 | (Node *) extra->targetList, |
| 7279 | nappinfos, appinfos); |
| 7280 | |
| 7281 | /* |
| 7282 | * extra->patype was the value computed for our parent rel; patype is |
| 7283 | * the value for this relation. For the child, our value is its |
| 7284 | * parent rel's value. |
| 7285 | */ |
| 7286 | child_extra.patype = patype; |
| 7287 | |
| 7288 | /* |
| 7289 | * Create grouping relation to hold fully aggregated grouping and/or |
| 7290 | * aggregation paths for the child. |
| 7291 | */ |
| 7292 | child_grouped_rel = make_grouping_rel(root, child_input_rel, |
| 7293 | child_target, |
| 7294 | extra->target_parallel_safe, |
| 7295 | child_extra.havingQual); |
| 7296 | |
| 7297 | /* Create grouping paths for this child relation. */ |
| 7298 | create_ordinary_grouping_paths(root, child_input_rel, |
| 7299 | child_grouped_rel, |
| 7300 | agg_costs, gd, &child_extra, |
| 7301 | &child_partially_grouped_rel); |
| 7302 | |
| 7303 | if (child_partially_grouped_rel) |
| 7304 | { |
| 7305 | partially_grouped_live_children = |
| 7306 | lappend(partially_grouped_live_children, |
| 7307 | child_partially_grouped_rel); |
| 7308 | } |
| 7309 | else |
| 7310 | partial_grouping_valid = false; |
| 7311 | |
| 7312 | if (patype == PARTITIONWISE_AGGREGATE_FULL) |
| 7313 | { |
| 7314 | set_cheapest(child_grouped_rel); |
| 7315 | grouped_live_children = lappend(grouped_live_children, |
| 7316 | child_grouped_rel); |
| 7317 | } |
| 7318 | |
| 7319 | pfree(appinfos); |
| 7320 | } |
| 7321 | |
| 7322 | /* |
| 7323 | * Try to create append paths for partially grouped children. For full |
| 7324 | * partitionwise aggregation, we might have paths in the partial_pathlist |
| 7325 | * if parallel aggregation is possible. For partial partitionwise |
| 7326 | * aggregation, we may have paths in both pathlist and partial_pathlist. |
| 7327 | * |
| 7328 | * NB: We must have a partially grouped path for every child in order to |
| 7329 | * generate a partially grouped path for this relation. |
| 7330 | */ |
| 7331 | if (partially_grouped_rel && partial_grouping_valid) |
| 7332 | { |
| 7333 | Assert(partially_grouped_live_children != NIL); |
| 7334 | |
| 7335 | add_paths_to_append_rel(root, partially_grouped_rel, |
| 7336 | partially_grouped_live_children); |
| 7337 | |
| 7338 | /* |
| 7339 | * We need call set_cheapest, since the finalization step will use the |
| 7340 | * cheapest path from the rel. |
| 7341 | */ |
| 7342 | if (partially_grouped_rel->pathlist) |
| 7343 | set_cheapest(partially_grouped_rel); |
| 7344 | } |
| 7345 | |
| 7346 | /* If possible, create append paths for fully grouped children. */ |
| 7347 | if (patype == PARTITIONWISE_AGGREGATE_FULL) |
| 7348 | { |
| 7349 | Assert(grouped_live_children != NIL); |
| 7350 | |
| 7351 | add_paths_to_append_rel(root, grouped_rel, grouped_live_children); |
| 7352 | } |
| 7353 | } |
| 7354 | |
| 7355 | /* |
| 7356 | * group_by_has_partkey |
| 7357 | * |
| 7358 | * Returns true, if all the partition keys of the given relation are part of |
| 7359 | * the GROUP BY clauses, false otherwise. |
| 7360 | */ |
| 7361 | static bool |
| 7362 | group_by_has_partkey(RelOptInfo *input_rel, |
| 7363 | List *targetList, |
| 7364 | List *groupClause) |
| 7365 | { |
| 7366 | List *groupexprs = get_sortgrouplist_exprs(groupClause, targetList); |
| 7367 | int cnt = 0; |
| 7368 | int partnatts; |
| 7369 | |
| 7370 | /* Input relation should be partitioned. */ |
| 7371 | Assert(input_rel->part_scheme); |
| 7372 | |
| 7373 | /* Rule out early, if there are no partition keys present. */ |
| 7374 | if (!input_rel->partexprs) |
| 7375 | return false; |
| 7376 | |
| 7377 | partnatts = input_rel->part_scheme->partnatts; |
| 7378 | |
| 7379 | for (cnt = 0; cnt < partnatts; cnt++) |
| 7380 | { |
| 7381 | List *partexprs = input_rel->partexprs[cnt]; |
| 7382 | ListCell *lc; |
| 7383 | bool found = false; |
| 7384 | |
| 7385 | foreach(lc, partexprs) |
| 7386 | { |
| 7387 | Expr *partexpr = lfirst(lc); |
| 7388 | |
| 7389 | if (list_member(groupexprs, partexpr)) |
| 7390 | { |
| 7391 | found = true; |
| 7392 | break; |
| 7393 | } |
| 7394 | } |
| 7395 | |
| 7396 | /* |
| 7397 | * If none of the partition key expressions match with any of the |
| 7398 | * GROUP BY expression, return false. |
| 7399 | */ |
| 7400 | if (!found) |
| 7401 | return false; |
| 7402 | } |
| 7403 | |
| 7404 | return true; |
| 7405 | } |
| 7406 | |