1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * planner.c |
4 | * The query optimizer external interface. |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/optimizer/plan/planner.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | |
16 | #include "postgres.h" |
17 | |
18 | #include <limits.h> |
19 | #include <math.h> |
20 | |
21 | #include "access/genam.h" |
22 | #include "access/htup_details.h" |
23 | #include "access/parallel.h" |
24 | #include "access/sysattr.h" |
25 | #include "access/table.h" |
26 | #include "access/xact.h" |
27 | #include "catalog/pg_constraint.h" |
28 | #include "catalog/pg_inherits.h" |
29 | #include "catalog/pg_proc.h" |
30 | #include "catalog/pg_type.h" |
31 | #include "executor/executor.h" |
32 | #include "executor/nodeAgg.h" |
33 | #include "foreign/fdwapi.h" |
34 | #include "miscadmin.h" |
35 | #include "jit/jit.h" |
36 | #include "lib/bipartite_match.h" |
37 | #include "lib/knapsack.h" |
38 | #include "nodes/makefuncs.h" |
39 | #include "nodes/nodeFuncs.h" |
40 | #ifdef OPTIMIZER_DEBUG |
41 | #include "nodes/print.h" |
42 | #endif |
43 | #include "optimizer/appendinfo.h" |
44 | #include "optimizer/clauses.h" |
45 | #include "optimizer/cost.h" |
46 | #include "optimizer/inherit.h" |
47 | #include "optimizer/optimizer.h" |
48 | #include "optimizer/paramassign.h" |
49 | #include "optimizer/pathnode.h" |
50 | #include "optimizer/paths.h" |
51 | #include "optimizer/plancat.h" |
52 | #include "optimizer/planmain.h" |
53 | #include "optimizer/planner.h" |
54 | #include "optimizer/prep.h" |
55 | #include "optimizer/subselect.h" |
56 | #include "optimizer/tlist.h" |
57 | #include "parser/analyze.h" |
58 | #include "parser/parsetree.h" |
59 | #include "parser/parse_agg.h" |
60 | #include "partitioning/partdesc.h" |
61 | #include "rewrite/rewriteManip.h" |
62 | #include "storage/dsm_impl.h" |
63 | #include "utils/rel.h" |
64 | #include "utils/selfuncs.h" |
65 | #include "utils/lsyscache.h" |
66 | #include "utils/syscache.h" |
67 | |
68 | |
69 | /* GUC parameters */ |
70 | double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION; |
71 | int force_parallel_mode = FORCE_PARALLEL_OFF; |
72 | bool parallel_leader_participation = true; |
73 | |
74 | /* Hook for plugins to get control in planner() */ |
75 | planner_hook_type planner_hook = NULL; |
76 | |
77 | /* Hook for plugins to get control when grouping_planner() plans upper rels */ |
78 | create_upper_paths_hook_type create_upper_paths_hook = NULL; |
79 | |
80 | |
81 | /* Expression kind codes for preprocess_expression */ |
82 | #define EXPRKIND_QUAL 0 |
83 | #define EXPRKIND_TARGET 1 |
84 | #define EXPRKIND_RTFUNC 2 |
85 | #define EXPRKIND_RTFUNC_LATERAL 3 |
86 | #define EXPRKIND_VALUES 4 |
87 | #define EXPRKIND_VALUES_LATERAL 5 |
88 | #define EXPRKIND_LIMIT 6 |
89 | #define EXPRKIND_APPINFO 7 |
90 | #define EXPRKIND_PHV 8 |
91 | #define EXPRKIND_TABLESAMPLE 9 |
92 | #define EXPRKIND_ARBITER_ELEM 10 |
93 | #define EXPRKIND_TABLEFUNC 11 |
94 | #define EXPRKIND_TABLEFUNC_LATERAL 12 |
95 | |
96 | /* Passthrough data for standard_qp_callback */ |
97 | typedef struct |
98 | { |
99 | List *activeWindows; /* active windows, if any */ |
100 | List *groupClause; /* overrides parse->groupClause */ |
101 | } standard_qp_extra; |
102 | |
103 | /* |
104 | * Data specific to grouping sets |
105 | */ |
106 | |
107 | typedef struct |
108 | { |
109 | List *rollups; |
110 | List *hash_sets_idx; |
111 | double dNumHashGroups; |
112 | bool any_hashable; |
113 | Bitmapset *unsortable_refs; |
114 | Bitmapset *unhashable_refs; |
115 | List *unsortable_sets; |
116 | int *tleref_to_colnum_map; |
117 | } grouping_sets_data; |
118 | |
119 | /* |
120 | * Temporary structure for use during WindowClause reordering in order to be |
121 | * able to sort WindowClauses on partitioning/ordering prefix. |
122 | */ |
123 | typedef struct |
124 | { |
125 | WindowClause *wc; |
126 | List *uniqueOrder; /* A List of unique ordering/partitioning |
127 | * clauses per Window */ |
128 | } WindowClauseSortData; |
129 | |
130 | /* Local functions */ |
131 | static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind); |
132 | static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode); |
133 | static void inheritance_planner(PlannerInfo *root); |
134 | static void grouping_planner(PlannerInfo *root, bool inheritance_update, |
135 | double tuple_fraction); |
136 | static grouping_sets_data *preprocess_grouping_sets(PlannerInfo *root); |
137 | static List *remap_to_groupclause_idx(List *groupClause, List *gsets, |
138 | int *tleref_to_colnum_map); |
139 | static void preprocess_rowmarks(PlannerInfo *root); |
140 | static double preprocess_limit(PlannerInfo *root, |
141 | double tuple_fraction, |
142 | int64 *offset_est, int64 *count_est); |
143 | static void remove_useless_groupby_columns(PlannerInfo *root); |
144 | static List *preprocess_groupclause(PlannerInfo *root, List *force); |
145 | static List *extract_rollup_sets(List *groupingSets); |
146 | static List *reorder_grouping_sets(List *groupingSets, List *sortclause); |
147 | static void standard_qp_callback(PlannerInfo *root, void *); |
148 | static double get_number_of_groups(PlannerInfo *root, |
149 | double path_rows, |
150 | grouping_sets_data *gd, |
151 | List *target_list); |
152 | static RelOptInfo *create_grouping_paths(PlannerInfo *root, |
153 | RelOptInfo *input_rel, |
154 | PathTarget *target, |
155 | bool target_parallel_safe, |
156 | const AggClauseCosts *agg_costs, |
157 | grouping_sets_data *gd); |
158 | static bool is_degenerate_grouping(PlannerInfo *root); |
159 | static void create_degenerate_grouping_paths(PlannerInfo *root, |
160 | RelOptInfo *input_rel, |
161 | RelOptInfo *grouped_rel); |
162 | static RelOptInfo *make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, |
163 | PathTarget *target, bool target_parallel_safe, |
164 | Node *havingQual); |
165 | static void create_ordinary_grouping_paths(PlannerInfo *root, |
166 | RelOptInfo *input_rel, |
167 | RelOptInfo *grouped_rel, |
168 | const AggClauseCosts *agg_costs, |
169 | grouping_sets_data *gd, |
170 | GroupPathExtraData *, |
171 | RelOptInfo **partially_grouped_rel_p); |
172 | static void consider_groupingsets_paths(PlannerInfo *root, |
173 | RelOptInfo *grouped_rel, |
174 | Path *path, |
175 | bool is_sorted, |
176 | bool can_hash, |
177 | grouping_sets_data *gd, |
178 | const AggClauseCosts *agg_costs, |
179 | double dNumGroups); |
180 | static RelOptInfo *create_window_paths(PlannerInfo *root, |
181 | RelOptInfo *input_rel, |
182 | PathTarget *input_target, |
183 | PathTarget *output_target, |
184 | bool output_target_parallel_safe, |
185 | WindowFuncLists *wflists, |
186 | List *activeWindows); |
187 | static void create_one_window_path(PlannerInfo *root, |
188 | RelOptInfo *window_rel, |
189 | Path *path, |
190 | PathTarget *input_target, |
191 | PathTarget *output_target, |
192 | WindowFuncLists *wflists, |
193 | List *activeWindows); |
194 | static RelOptInfo *create_distinct_paths(PlannerInfo *root, |
195 | RelOptInfo *input_rel); |
196 | static RelOptInfo *create_ordered_paths(PlannerInfo *root, |
197 | RelOptInfo *input_rel, |
198 | PathTarget *target, |
199 | bool target_parallel_safe, |
200 | double limit_tuples); |
201 | static PathTarget *make_group_input_target(PlannerInfo *root, |
202 | PathTarget *final_target); |
203 | static PathTarget *make_partial_grouping_target(PlannerInfo *root, |
204 | PathTarget *grouping_target, |
205 | Node *havingQual); |
206 | static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist); |
207 | static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists); |
208 | static PathTarget *make_window_input_target(PlannerInfo *root, |
209 | PathTarget *final_target, |
210 | List *activeWindows); |
211 | static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, |
212 | List *tlist); |
213 | static PathTarget *make_sort_input_target(PlannerInfo *root, |
214 | PathTarget *final_target, |
215 | bool *have_postponed_srfs); |
216 | static void adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, |
217 | List *targets, List *targets_contain_srfs); |
218 | static void add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, |
219 | RelOptInfo *grouped_rel, |
220 | RelOptInfo *partially_grouped_rel, |
221 | const AggClauseCosts *agg_costs, |
222 | grouping_sets_data *gd, |
223 | double dNumGroups, |
224 | GroupPathExtraData *); |
225 | static RelOptInfo *create_partial_grouping_paths(PlannerInfo *root, |
226 | RelOptInfo *grouped_rel, |
227 | RelOptInfo *input_rel, |
228 | grouping_sets_data *gd, |
229 | GroupPathExtraData *, |
230 | bool force_rel_creation); |
231 | static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel); |
232 | static bool can_partial_agg(PlannerInfo *root, |
233 | const AggClauseCosts *agg_costs); |
234 | static void apply_scanjoin_target_to_paths(PlannerInfo *root, |
235 | RelOptInfo *rel, |
236 | List *scanjoin_targets, |
237 | List *scanjoin_targets_contain_srfs, |
238 | bool scanjoin_target_parallel_safe, |
239 | bool tlist_same_exprs); |
240 | static void create_partitionwise_grouping_paths(PlannerInfo *root, |
241 | RelOptInfo *input_rel, |
242 | RelOptInfo *grouped_rel, |
243 | RelOptInfo *partially_grouped_rel, |
244 | const AggClauseCosts *agg_costs, |
245 | grouping_sets_data *gd, |
246 | PartitionwiseAggregateType patype, |
247 | GroupPathExtraData *); |
248 | static bool group_by_has_partkey(RelOptInfo *input_rel, |
249 | List *targetList, |
250 | List *groupClause); |
251 | static int common_prefix_cmp(const void *a, const void *b); |
252 | |
253 | |
254 | /***************************************************************************** |
255 | * |
256 | * Query optimizer entry point |
257 | * |
258 | * To support loadable plugins that monitor or modify planner behavior, |
259 | * we provide a hook variable that lets a plugin get control before and |
260 | * after the standard planning process. The plugin would normally call |
261 | * standard_planner(). |
262 | * |
263 | * Note to plugin authors: standard_planner() scribbles on its Query input, |
264 | * so you'd better copy that data structure if you want to plan more than once. |
265 | * |
266 | *****************************************************************************/ |
267 | PlannedStmt * |
268 | planner(Query *parse, int cursorOptions, ParamListInfo boundParams) |
269 | { |
270 | PlannedStmt *result; |
271 | |
272 | if (planner_hook) |
273 | result = (*planner_hook) (parse, cursorOptions, boundParams); |
274 | else |
275 | result = standard_planner(parse, cursorOptions, boundParams); |
276 | return result; |
277 | } |
278 | |
279 | PlannedStmt * |
280 | standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams) |
281 | { |
282 | PlannedStmt *result; |
283 | PlannerGlobal *glob; |
284 | double tuple_fraction; |
285 | PlannerInfo *root; |
286 | RelOptInfo *final_rel; |
287 | Path *best_path; |
288 | Plan *top_plan; |
289 | ListCell *lp, |
290 | *lr; |
291 | |
292 | /* |
293 | * Set up global state for this planner invocation. This data is needed |
294 | * across all levels of sub-Query that might exist in the given command, |
295 | * so we keep it in a separate struct that's linked to by each per-Query |
296 | * PlannerInfo. |
297 | */ |
298 | glob = makeNode(PlannerGlobal); |
299 | |
300 | glob->boundParams = boundParams; |
301 | glob->subplans = NIL; |
302 | glob->subroots = NIL; |
303 | glob->rewindPlanIDs = NULL; |
304 | glob->finalrtable = NIL; |
305 | glob->finalrowmarks = NIL; |
306 | glob->resultRelations = NIL; |
307 | glob->rootResultRelations = NIL; |
308 | glob->relationOids = NIL; |
309 | glob->invalItems = NIL; |
310 | glob->paramExecTypes = NIL; |
311 | glob->lastPHId = 0; |
312 | glob->lastRowMarkId = 0; |
313 | glob->lastPlanNodeId = 0; |
314 | glob->transientPlan = false; |
315 | glob->dependsOnRole = false; |
316 | |
317 | /* |
318 | * Assess whether it's feasible to use parallel mode for this query. We |
319 | * can't do this in a standalone backend, or if the command will try to |
320 | * modify any data, or if this is a cursor operation, or if GUCs are set |
321 | * to values that don't permit parallelism, or if parallel-unsafe |
322 | * functions are present in the query tree. |
323 | * |
324 | * (Note that we do allow CREATE TABLE AS, SELECT INTO, and CREATE |
325 | * MATERIALIZED VIEW to use parallel plans, but this is safe only because |
326 | * the command is writing into a completely new table which workers won't |
327 | * be able to see. If the workers could see the table, the fact that |
328 | * group locking would cause them to ignore the leader's heavyweight |
329 | * relation extension lock and GIN page locks would make this unsafe. |
330 | * We'll have to fix that somehow if we want to allow parallel inserts in |
331 | * general; updates and deletes have additional problems especially around |
332 | * combo CIDs.) |
333 | * |
334 | * For now, we don't try to use parallel mode if we're running inside a |
335 | * parallel worker. We might eventually be able to relax this |
336 | * restriction, but for now it seems best not to have parallel workers |
337 | * trying to create their own parallel workers. |
338 | */ |
339 | if ((cursorOptions & CURSOR_OPT_PARALLEL_OK) != 0 && |
340 | IsUnderPostmaster && |
341 | parse->commandType == CMD_SELECT && |
342 | !parse->hasModifyingCTE && |
343 | max_parallel_workers_per_gather > 0 && |
344 | !IsParallelWorker()) |
345 | { |
346 | /* all the cheap tests pass, so scan the query tree */ |
347 | glob->maxParallelHazard = max_parallel_hazard(parse); |
348 | glob->parallelModeOK = (glob->maxParallelHazard != PROPARALLEL_UNSAFE); |
349 | } |
350 | else |
351 | { |
352 | /* skip the query tree scan, just assume it's unsafe */ |
353 | glob->maxParallelHazard = PROPARALLEL_UNSAFE; |
354 | glob->parallelModeOK = false; |
355 | } |
356 | |
357 | /* |
358 | * glob->parallelModeNeeded is normally set to false here and changed to |
359 | * true during plan creation if a Gather or Gather Merge plan is actually |
360 | * created (cf. create_gather_plan, create_gather_merge_plan). |
361 | * |
362 | * However, if force_parallel_mode = on or force_parallel_mode = regress, |
363 | * then we impose parallel mode whenever it's safe to do so, even if the |
364 | * final plan doesn't use parallelism. It's not safe to do so if the |
365 | * query contains anything parallel-unsafe; parallelModeOK will be false |
366 | * in that case. Note that parallelModeOK can't change after this point. |
367 | * Otherwise, everything in the query is either parallel-safe or |
368 | * parallel-restricted, and in either case it should be OK to impose |
369 | * parallel-mode restrictions. If that ends up breaking something, then |
370 | * either some function the user included in the query is incorrectly |
371 | * labelled as parallel-safe or parallel-restricted when in reality it's |
372 | * parallel-unsafe, or else the query planner itself has a bug. |
373 | */ |
374 | glob->parallelModeNeeded = glob->parallelModeOK && |
375 | (force_parallel_mode != FORCE_PARALLEL_OFF); |
376 | |
377 | /* Determine what fraction of the plan is likely to be scanned */ |
378 | if (cursorOptions & CURSOR_OPT_FAST_PLAN) |
379 | { |
380 | /* |
381 | * We have no real idea how many tuples the user will ultimately FETCH |
382 | * from a cursor, but it is often the case that he doesn't want 'em |
383 | * all, or would prefer a fast-start plan anyway so that he can |
384 | * process some of the tuples sooner. Use a GUC parameter to decide |
385 | * what fraction to optimize for. |
386 | */ |
387 | tuple_fraction = cursor_tuple_fraction; |
388 | |
389 | /* |
390 | * We document cursor_tuple_fraction as simply being a fraction, which |
391 | * means the edge cases 0 and 1 have to be treated specially here. We |
392 | * convert 1 to 0 ("all the tuples") and 0 to a very small fraction. |
393 | */ |
394 | if (tuple_fraction >= 1.0) |
395 | tuple_fraction = 0.0; |
396 | else if (tuple_fraction <= 0.0) |
397 | tuple_fraction = 1e-10; |
398 | } |
399 | else |
400 | { |
401 | /* Default assumption is we need all the tuples */ |
402 | tuple_fraction = 0.0; |
403 | } |
404 | |
405 | /* primary planning entry point (may recurse for subqueries) */ |
406 | root = subquery_planner(glob, parse, NULL, |
407 | false, tuple_fraction); |
408 | |
409 | /* Select best Path and turn it into a Plan */ |
410 | final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL); |
411 | best_path = get_cheapest_fractional_path(final_rel, tuple_fraction); |
412 | |
413 | top_plan = create_plan(root, best_path); |
414 | |
415 | /* |
416 | * If creating a plan for a scrollable cursor, make sure it can run |
417 | * backwards on demand. Add a Material node at the top at need. |
418 | */ |
419 | if (cursorOptions & CURSOR_OPT_SCROLL) |
420 | { |
421 | if (!ExecSupportsBackwardScan(top_plan)) |
422 | top_plan = materialize_finished_plan(top_plan); |
423 | } |
424 | |
425 | /* |
426 | * Optionally add a Gather node for testing purposes, provided this is |
427 | * actually a safe thing to do. |
428 | */ |
429 | if (force_parallel_mode != FORCE_PARALLEL_OFF && top_plan->parallel_safe) |
430 | { |
431 | Gather *gather = makeNode(Gather); |
432 | |
433 | /* |
434 | * If there are any initPlans attached to the formerly-top plan node, |
435 | * move them up to the Gather node; same as we do for Material node in |
436 | * materialize_finished_plan. |
437 | */ |
438 | gather->plan.initPlan = top_plan->initPlan; |
439 | top_plan->initPlan = NIL; |
440 | |
441 | gather->plan.targetlist = top_plan->targetlist; |
442 | gather->plan.qual = NIL; |
443 | gather->plan.lefttree = top_plan; |
444 | gather->plan.righttree = NULL; |
445 | gather->num_workers = 1; |
446 | gather->single_copy = true; |
447 | gather->invisible = (force_parallel_mode == FORCE_PARALLEL_REGRESS); |
448 | |
449 | /* |
450 | * Since this Gather has no parallel-aware descendants to signal to, |
451 | * we don't need a rescan Param. |
452 | */ |
453 | gather->rescan_param = -1; |
454 | |
455 | /* |
456 | * Ideally we'd use cost_gather here, but setting up dummy path data |
457 | * to satisfy it doesn't seem much cleaner than knowing what it does. |
458 | */ |
459 | gather->plan.startup_cost = top_plan->startup_cost + |
460 | parallel_setup_cost; |
461 | gather->plan.total_cost = top_plan->total_cost + |
462 | parallel_setup_cost + parallel_tuple_cost * top_plan->plan_rows; |
463 | gather->plan.plan_rows = top_plan->plan_rows; |
464 | gather->plan.plan_width = top_plan->plan_width; |
465 | gather->plan.parallel_aware = false; |
466 | gather->plan.parallel_safe = false; |
467 | |
468 | /* use parallel mode for parallel plans. */ |
469 | root->glob->parallelModeNeeded = true; |
470 | |
471 | top_plan = &gather->plan; |
472 | } |
473 | |
474 | /* |
475 | * If any Params were generated, run through the plan tree and compute |
476 | * each plan node's extParam/allParam sets. Ideally we'd merge this into |
477 | * set_plan_references' tree traversal, but for now it has to be separate |
478 | * because we need to visit subplans before not after main plan. |
479 | */ |
480 | if (glob->paramExecTypes != NIL) |
481 | { |
482 | Assert(list_length(glob->subplans) == list_length(glob->subroots)); |
483 | forboth(lp, glob->subplans, lr, glob->subroots) |
484 | { |
485 | Plan *subplan = (Plan *) lfirst(lp); |
486 | PlannerInfo *subroot = lfirst_node(PlannerInfo, lr); |
487 | |
488 | SS_finalize_plan(subroot, subplan); |
489 | } |
490 | SS_finalize_plan(root, top_plan); |
491 | } |
492 | |
493 | /* final cleanup of the plan */ |
494 | Assert(glob->finalrtable == NIL); |
495 | Assert(glob->finalrowmarks == NIL); |
496 | Assert(glob->resultRelations == NIL); |
497 | Assert(glob->rootResultRelations == NIL); |
498 | top_plan = set_plan_references(root, top_plan); |
499 | /* ... and the subplans (both regular subplans and initplans) */ |
500 | Assert(list_length(glob->subplans) == list_length(glob->subroots)); |
501 | forboth(lp, glob->subplans, lr, glob->subroots) |
502 | { |
503 | Plan *subplan = (Plan *) lfirst(lp); |
504 | PlannerInfo *subroot = lfirst_node(PlannerInfo, lr); |
505 | |
506 | lfirst(lp) = set_plan_references(subroot, subplan); |
507 | } |
508 | |
509 | /* build the PlannedStmt result */ |
510 | result = makeNode(PlannedStmt); |
511 | |
512 | result->commandType = parse->commandType; |
513 | result->queryId = parse->queryId; |
514 | result->hasReturning = (parse->returningList != NIL); |
515 | result->hasModifyingCTE = parse->hasModifyingCTE; |
516 | result->canSetTag = parse->canSetTag; |
517 | result->transientPlan = glob->transientPlan; |
518 | result->dependsOnRole = glob->dependsOnRole; |
519 | result->parallelModeNeeded = glob->parallelModeNeeded; |
520 | result->planTree = top_plan; |
521 | result->rtable = glob->finalrtable; |
522 | result->resultRelations = glob->resultRelations; |
523 | result->rootResultRelations = glob->rootResultRelations; |
524 | result->subplans = glob->subplans; |
525 | result->rewindPlanIDs = glob->rewindPlanIDs; |
526 | result->rowMarks = glob->finalrowmarks; |
527 | result->relationOids = glob->relationOids; |
528 | result->invalItems = glob->invalItems; |
529 | result->paramExecTypes = glob->paramExecTypes; |
530 | /* utilityStmt should be null, but we might as well copy it */ |
531 | result->utilityStmt = parse->utilityStmt; |
532 | result->stmt_location = parse->stmt_location; |
533 | result->stmt_len = parse->stmt_len; |
534 | |
535 | result->jitFlags = PGJIT_NONE; |
536 | if (jit_enabled && jit_above_cost >= 0 && |
537 | top_plan->total_cost > jit_above_cost) |
538 | { |
539 | result->jitFlags |= PGJIT_PERFORM; |
540 | |
541 | /* |
542 | * Decide how much effort should be put into generating better code. |
543 | */ |
544 | if (jit_optimize_above_cost >= 0 && |
545 | top_plan->total_cost > jit_optimize_above_cost) |
546 | result->jitFlags |= PGJIT_OPT3; |
547 | if (jit_inline_above_cost >= 0 && |
548 | top_plan->total_cost > jit_inline_above_cost) |
549 | result->jitFlags |= PGJIT_INLINE; |
550 | |
551 | /* |
552 | * Decide which operations should be JITed. |
553 | */ |
554 | if (jit_expressions) |
555 | result->jitFlags |= PGJIT_EXPR; |
556 | if (jit_tuple_deforming) |
557 | result->jitFlags |= PGJIT_DEFORM; |
558 | } |
559 | |
560 | if (glob->partition_directory != NULL) |
561 | DestroyPartitionDirectory(glob->partition_directory); |
562 | |
563 | return result; |
564 | } |
565 | |
566 | |
567 | /*-------------------- |
568 | * subquery_planner |
569 | * Invokes the planner on a subquery. We recurse to here for each |
570 | * sub-SELECT found in the query tree. |
571 | * |
572 | * glob is the global state for the current planner run. |
573 | * parse is the querytree produced by the parser & rewriter. |
574 | * parent_root is the immediate parent Query's info (NULL at the top level). |
575 | * hasRecursion is true if this is a recursive WITH query. |
576 | * tuple_fraction is the fraction of tuples we expect will be retrieved. |
577 | * tuple_fraction is interpreted as explained for grouping_planner, below. |
578 | * |
579 | * Basically, this routine does the stuff that should only be done once |
580 | * per Query object. It then calls grouping_planner. At one time, |
581 | * grouping_planner could be invoked recursively on the same Query object; |
582 | * that's not currently true, but we keep the separation between the two |
583 | * routines anyway, in case we need it again someday. |
584 | * |
585 | * subquery_planner will be called recursively to handle sub-Query nodes |
586 | * found within the query's expressions and rangetable. |
587 | * |
588 | * Returns the PlannerInfo struct ("root") that contains all data generated |
589 | * while planning the subquery. In particular, the Path(s) attached to |
590 | * the (UPPERREL_FINAL, NULL) upperrel represent our conclusions about the |
591 | * cheapest way(s) to implement the query. The top level will select the |
592 | * best Path and pass it through createplan.c to produce a finished Plan. |
593 | *-------------------- |
594 | */ |
595 | PlannerInfo * |
596 | subquery_planner(PlannerGlobal *glob, Query *parse, |
597 | PlannerInfo *parent_root, |
598 | bool hasRecursion, double tuple_fraction) |
599 | { |
600 | PlannerInfo *root; |
601 | List *newWithCheckOptions; |
602 | List *newHaving; |
603 | bool hasOuterJoins; |
604 | bool hasResultRTEs; |
605 | RelOptInfo *final_rel; |
606 | ListCell *l; |
607 | |
608 | /* Create a PlannerInfo data structure for this subquery */ |
609 | root = makeNode(PlannerInfo); |
610 | root->parse = parse; |
611 | root->glob = glob; |
612 | root->query_level = parent_root ? parent_root->query_level + 1 : 1; |
613 | root->parent_root = parent_root; |
614 | root->plan_params = NIL; |
615 | root->outer_params = NULL; |
616 | root->planner_cxt = CurrentMemoryContext; |
617 | root->init_plans = NIL; |
618 | root->cte_plan_ids = NIL; |
619 | root->multiexpr_params = NIL; |
620 | root->eq_classes = NIL; |
621 | root->append_rel_list = NIL; |
622 | root->rowMarks = NIL; |
623 | memset(root->upper_rels, 0, sizeof(root->upper_rels)); |
624 | memset(root->upper_targets, 0, sizeof(root->upper_targets)); |
625 | root->processed_tlist = NIL; |
626 | root->grouping_map = NULL; |
627 | root->minmax_aggs = NIL; |
628 | root->qual_security_level = 0; |
629 | root->inhTargetKind = INHKIND_NONE; |
630 | root->hasRecursion = hasRecursion; |
631 | if (hasRecursion) |
632 | root->wt_param_id = assign_special_exec_param(root); |
633 | else |
634 | root->wt_param_id = -1; |
635 | root->non_recursive_path = NULL; |
636 | root->partColsUpdated = false; |
637 | |
638 | /* |
639 | * If there is a WITH list, process each WITH query and either convert it |
640 | * to RTE_SUBQUERY RTE(s) or build an initplan SubPlan structure for it. |
641 | */ |
642 | if (parse->cteList) |
643 | SS_process_ctes(root); |
644 | |
645 | /* |
646 | * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so |
647 | * that we don't need so many special cases to deal with that situation. |
648 | */ |
649 | replace_empty_jointree(parse); |
650 | |
651 | /* |
652 | * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try |
653 | * to transform them into joins. Note that this step does not descend |
654 | * into subqueries; if we pull up any subqueries below, their SubLinks are |
655 | * processed just before pulling them up. |
656 | */ |
657 | if (parse->hasSubLinks) |
658 | pull_up_sublinks(root); |
659 | |
660 | /* |
661 | * Scan the rangetable for set-returning functions, and inline them if |
662 | * possible (producing subqueries that might get pulled up next). |
663 | * Recursion issues here are handled in the same way as for SubLinks. |
664 | */ |
665 | inline_set_returning_functions(root); |
666 | |
667 | /* |
668 | * Check to see if any subqueries in the jointree can be merged into this |
669 | * query. |
670 | */ |
671 | pull_up_subqueries(root); |
672 | |
673 | /* |
674 | * If this is a simple UNION ALL query, flatten it into an appendrel. We |
675 | * do this now because it requires applying pull_up_subqueries to the leaf |
676 | * queries of the UNION ALL, which weren't touched above because they |
677 | * weren't referenced by the jointree (they will be after we do this). |
678 | */ |
679 | if (parse->setOperations) |
680 | flatten_simple_union_all(root); |
681 | |
682 | /* |
683 | * Survey the rangetable to see what kinds of entries are present. We can |
684 | * skip some later processing if relevant SQL features are not used; for |
685 | * example if there are no JOIN RTEs we can avoid the expense of doing |
686 | * flatten_join_alias_vars(). This must be done after we have finished |
687 | * adding rangetable entries, of course. (Note: actually, processing of |
688 | * inherited or partitioned rels can cause RTEs for their child tables to |
689 | * get added later; but those must all be RTE_RELATION entries, so they |
690 | * don't invalidate the conclusions drawn here.) |
691 | */ |
692 | root->hasJoinRTEs = false; |
693 | root->hasLateralRTEs = false; |
694 | hasOuterJoins = false; |
695 | hasResultRTEs = false; |
696 | foreach(l, parse->rtable) |
697 | { |
698 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, l); |
699 | |
700 | switch (rte->rtekind) |
701 | { |
702 | case RTE_RELATION: |
703 | if (rte->inh) |
704 | { |
705 | /* |
706 | * Check to see if the relation actually has any children; |
707 | * if not, clear the inh flag so we can treat it as a |
708 | * plain base relation. |
709 | * |
710 | * Note: this could give a false-positive result, if the |
711 | * rel once had children but no longer does. We used to |
712 | * be able to clear rte->inh later on when we discovered |
713 | * that, but no more; we have to handle such cases as |
714 | * full-fledged inheritance. |
715 | */ |
716 | rte->inh = has_subclass(rte->relid); |
717 | } |
718 | break; |
719 | case RTE_JOIN: |
720 | root->hasJoinRTEs = true; |
721 | if (IS_OUTER_JOIN(rte->jointype)) |
722 | hasOuterJoins = true; |
723 | break; |
724 | case RTE_RESULT: |
725 | hasResultRTEs = true; |
726 | break; |
727 | default: |
728 | /* No work here for other RTE types */ |
729 | break; |
730 | } |
731 | |
732 | if (rte->lateral) |
733 | root->hasLateralRTEs = true; |
734 | |
735 | /* |
736 | * We can also determine the maximum security level required for any |
737 | * securityQuals now. Addition of inheritance-child RTEs won't affect |
738 | * this, because child tables don't have their own securityQuals; see |
739 | * expand_single_inheritance_child(). |
740 | */ |
741 | if (rte->securityQuals) |
742 | root->qual_security_level = Max(root->qual_security_level, |
743 | list_length(rte->securityQuals)); |
744 | } |
745 | |
746 | /* |
747 | * Preprocess RowMark information. We need to do this after subquery |
748 | * pullup, so that all base relations are present. |
749 | */ |
750 | preprocess_rowmarks(root); |
751 | |
752 | /* |
753 | * Set hasHavingQual to remember if HAVING clause is present. Needed |
754 | * because preprocess_expression will reduce a constant-true condition to |
755 | * an empty qual list ... but "HAVING TRUE" is not a semantic no-op. |
756 | */ |
757 | root->hasHavingQual = (parse->havingQual != NULL); |
758 | |
759 | /* Clear this flag; might get set in distribute_qual_to_rels */ |
760 | root->hasPseudoConstantQuals = false; |
761 | |
762 | /* |
763 | * Do expression preprocessing on targetlist and quals, as well as other |
764 | * random expressions in the querytree. Note that we do not need to |
765 | * handle sort/group expressions explicitly, because they are actually |
766 | * part of the targetlist. |
767 | */ |
768 | parse->targetList = (List *) |
769 | preprocess_expression(root, (Node *) parse->targetList, |
770 | EXPRKIND_TARGET); |
771 | |
772 | /* Constant-folding might have removed all set-returning functions */ |
773 | if (parse->hasTargetSRFs) |
774 | parse->hasTargetSRFs = expression_returns_set((Node *) parse->targetList); |
775 | |
776 | newWithCheckOptions = NIL; |
777 | foreach(l, parse->withCheckOptions) |
778 | { |
779 | WithCheckOption *wco = lfirst_node(WithCheckOption, l); |
780 | |
781 | wco->qual = preprocess_expression(root, wco->qual, |
782 | EXPRKIND_QUAL); |
783 | if (wco->qual != NULL) |
784 | newWithCheckOptions = lappend(newWithCheckOptions, wco); |
785 | } |
786 | parse->withCheckOptions = newWithCheckOptions; |
787 | |
788 | parse->returningList = (List *) |
789 | preprocess_expression(root, (Node *) parse->returningList, |
790 | EXPRKIND_TARGET); |
791 | |
792 | preprocess_qual_conditions(root, (Node *) parse->jointree); |
793 | |
794 | parse->havingQual = preprocess_expression(root, parse->havingQual, |
795 | EXPRKIND_QUAL); |
796 | |
797 | foreach(l, parse->windowClause) |
798 | { |
799 | WindowClause *wc = lfirst_node(WindowClause, l); |
800 | |
801 | /* partitionClause/orderClause are sort/group expressions */ |
802 | wc->startOffset = preprocess_expression(root, wc->startOffset, |
803 | EXPRKIND_LIMIT); |
804 | wc->endOffset = preprocess_expression(root, wc->endOffset, |
805 | EXPRKIND_LIMIT); |
806 | } |
807 | |
808 | parse->limitOffset = preprocess_expression(root, parse->limitOffset, |
809 | EXPRKIND_LIMIT); |
810 | parse->limitCount = preprocess_expression(root, parse->limitCount, |
811 | EXPRKIND_LIMIT); |
812 | |
813 | if (parse->onConflict) |
814 | { |
815 | parse->onConflict->arbiterElems = (List *) |
816 | preprocess_expression(root, |
817 | (Node *) parse->onConflict->arbiterElems, |
818 | EXPRKIND_ARBITER_ELEM); |
819 | parse->onConflict->arbiterWhere = |
820 | preprocess_expression(root, |
821 | parse->onConflict->arbiterWhere, |
822 | EXPRKIND_QUAL); |
823 | parse->onConflict->onConflictSet = (List *) |
824 | preprocess_expression(root, |
825 | (Node *) parse->onConflict->onConflictSet, |
826 | EXPRKIND_TARGET); |
827 | parse->onConflict->onConflictWhere = |
828 | preprocess_expression(root, |
829 | parse->onConflict->onConflictWhere, |
830 | EXPRKIND_QUAL); |
831 | /* exclRelTlist contains only Vars, so no preprocessing needed */ |
832 | } |
833 | |
834 | root->append_rel_list = (List *) |
835 | preprocess_expression(root, (Node *) root->append_rel_list, |
836 | EXPRKIND_APPINFO); |
837 | |
838 | /* Also need to preprocess expressions within RTEs */ |
839 | foreach(l, parse->rtable) |
840 | { |
841 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, l); |
842 | int kind; |
843 | ListCell *lcsq; |
844 | |
845 | if (rte->rtekind == RTE_RELATION) |
846 | { |
847 | if (rte->tablesample) |
848 | rte->tablesample = (TableSampleClause *) |
849 | preprocess_expression(root, |
850 | (Node *) rte->tablesample, |
851 | EXPRKIND_TABLESAMPLE); |
852 | } |
853 | else if (rte->rtekind == RTE_SUBQUERY) |
854 | { |
855 | /* |
856 | * We don't want to do all preprocessing yet on the subquery's |
857 | * expressions, since that will happen when we plan it. But if it |
858 | * contains any join aliases of our level, those have to get |
859 | * expanded now, because planning of the subquery won't do it. |
860 | * That's only possible if the subquery is LATERAL. |
861 | */ |
862 | if (rte->lateral && root->hasJoinRTEs) |
863 | rte->subquery = (Query *) |
864 | flatten_join_alias_vars(root->parse, |
865 | (Node *) rte->subquery); |
866 | } |
867 | else if (rte->rtekind == RTE_FUNCTION) |
868 | { |
869 | /* Preprocess the function expression(s) fully */ |
870 | kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC; |
871 | rte->functions = (List *) |
872 | preprocess_expression(root, (Node *) rte->functions, kind); |
873 | } |
874 | else if (rte->rtekind == RTE_TABLEFUNC) |
875 | { |
876 | /* Preprocess the function expression(s) fully */ |
877 | kind = rte->lateral ? EXPRKIND_TABLEFUNC_LATERAL : EXPRKIND_TABLEFUNC; |
878 | rte->tablefunc = (TableFunc *) |
879 | preprocess_expression(root, (Node *) rte->tablefunc, kind); |
880 | } |
881 | else if (rte->rtekind == RTE_VALUES) |
882 | { |
883 | /* Preprocess the values lists fully */ |
884 | kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES; |
885 | rte->values_lists = (List *) |
886 | preprocess_expression(root, (Node *) rte->values_lists, kind); |
887 | } |
888 | |
889 | /* |
890 | * Process each element of the securityQuals list as if it were a |
891 | * separate qual expression (as indeed it is). We need to do it this |
892 | * way to get proper canonicalization of AND/OR structure. Note that |
893 | * this converts each element into an implicit-AND sublist. |
894 | */ |
895 | foreach(lcsq, rte->securityQuals) |
896 | { |
897 | lfirst(lcsq) = preprocess_expression(root, |
898 | (Node *) lfirst(lcsq), |
899 | EXPRKIND_QUAL); |
900 | } |
901 | } |
902 | |
903 | /* |
904 | * Now that we are done preprocessing expressions, and in particular done |
905 | * flattening join alias variables, get rid of the joinaliasvars lists. |
906 | * They no longer match what expressions in the rest of the tree look |
907 | * like, because we have not preprocessed expressions in those lists (and |
908 | * do not want to; for example, expanding a SubLink there would result in |
909 | * a useless unreferenced subplan). Leaving them in place simply creates |
910 | * a hazard for later scans of the tree. We could try to prevent that by |
911 | * using QTW_IGNORE_JOINALIASES in every tree scan done after this point, |
912 | * but that doesn't sound very reliable. |
913 | */ |
914 | if (root->hasJoinRTEs) |
915 | { |
916 | foreach(l, parse->rtable) |
917 | { |
918 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, l); |
919 | |
920 | rte->joinaliasvars = NIL; |
921 | } |
922 | } |
923 | |
924 | /* |
925 | * In some cases we may want to transfer a HAVING clause into WHERE. We |
926 | * cannot do so if the HAVING clause contains aggregates (obviously) or |
927 | * volatile functions (since a HAVING clause is supposed to be executed |
928 | * only once per group). We also can't do this if there are any nonempty |
929 | * grouping sets; moving such a clause into WHERE would potentially change |
930 | * the results, if any referenced column isn't present in all the grouping |
931 | * sets. (If there are only empty grouping sets, then the HAVING clause |
932 | * must be degenerate as discussed below.) |
933 | * |
934 | * Also, it may be that the clause is so expensive to execute that we're |
935 | * better off doing it only once per group, despite the loss of |
936 | * selectivity. This is hard to estimate short of doing the entire |
937 | * planning process twice, so we use a heuristic: clauses containing |
938 | * subplans are left in HAVING. Otherwise, we move or copy the HAVING |
939 | * clause into WHERE, in hopes of eliminating tuples before aggregation |
940 | * instead of after. |
941 | * |
942 | * If the query has explicit grouping then we can simply move such a |
943 | * clause into WHERE; any group that fails the clause will not be in the |
944 | * output because none of its tuples will reach the grouping or |
945 | * aggregation stage. Otherwise we must have a degenerate (variable-free) |
946 | * HAVING clause, which we put in WHERE so that query_planner() can use it |
947 | * in a gating Result node, but also keep in HAVING to ensure that we |
948 | * don't emit a bogus aggregated row. (This could be done better, but it |
949 | * seems not worth optimizing.) |
950 | * |
951 | * Note that both havingQual and parse->jointree->quals are in |
952 | * implicitly-ANDed-list form at this point, even though they are declared |
953 | * as Node *. |
954 | */ |
955 | newHaving = NIL; |
956 | foreach(l, (List *) parse->havingQual) |
957 | { |
958 | Node *havingclause = (Node *) lfirst(l); |
959 | |
960 | if ((parse->groupClause && parse->groupingSets) || |
961 | contain_agg_clause(havingclause) || |
962 | contain_volatile_functions(havingclause) || |
963 | contain_subplans(havingclause)) |
964 | { |
965 | /* keep it in HAVING */ |
966 | newHaving = lappend(newHaving, havingclause); |
967 | } |
968 | else if (parse->groupClause && !parse->groupingSets) |
969 | { |
970 | /* move it to WHERE */ |
971 | parse->jointree->quals = (Node *) |
972 | lappend((List *) parse->jointree->quals, havingclause); |
973 | } |
974 | else |
975 | { |
976 | /* put a copy in WHERE, keep it in HAVING */ |
977 | parse->jointree->quals = (Node *) |
978 | lappend((List *) parse->jointree->quals, |
979 | copyObject(havingclause)); |
980 | newHaving = lappend(newHaving, havingclause); |
981 | } |
982 | } |
983 | parse->havingQual = (Node *) newHaving; |
984 | |
985 | /* Remove any redundant GROUP BY columns */ |
986 | remove_useless_groupby_columns(root); |
987 | |
988 | /* |
989 | * If we have any outer joins, try to reduce them to plain inner joins. |
990 | * This step is most easily done after we've done expression |
991 | * preprocessing. |
992 | */ |
993 | if (hasOuterJoins) |
994 | reduce_outer_joins(root); |
995 | |
996 | /* |
997 | * If we have any RTE_RESULT relations, see if they can be deleted from |
998 | * the jointree. This step is most effectively done after we've done |
999 | * expression preprocessing and outer join reduction. |
1000 | */ |
1001 | if (hasResultRTEs) |
1002 | remove_useless_result_rtes(root); |
1003 | |
1004 | /* |
1005 | * Do the main planning. If we have an inherited target relation, that |
1006 | * needs special processing, else go straight to grouping_planner. |
1007 | */ |
1008 | if (parse->resultRelation && |
1009 | rt_fetch(parse->resultRelation, parse->rtable)->inh) |
1010 | inheritance_planner(root); |
1011 | else |
1012 | grouping_planner(root, false, tuple_fraction); |
1013 | |
1014 | /* |
1015 | * Capture the set of outer-level param IDs we have access to, for use in |
1016 | * extParam/allParam calculations later. |
1017 | */ |
1018 | SS_identify_outer_params(root); |
1019 | |
1020 | /* |
1021 | * If any initPlans were created in this query level, adjust the surviving |
1022 | * Paths' costs and parallel-safety flags to account for them. The |
1023 | * initPlans won't actually get attached to the plan tree till |
1024 | * create_plan() runs, but we must include their effects now. |
1025 | */ |
1026 | final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL); |
1027 | SS_charge_for_initplans(root, final_rel); |
1028 | |
1029 | /* |
1030 | * Make sure we've identified the cheapest Path for the final rel. (By |
1031 | * doing this here not in grouping_planner, we include initPlan costs in |
1032 | * the decision, though it's unlikely that will change anything.) |
1033 | */ |
1034 | set_cheapest(final_rel); |
1035 | |
1036 | return root; |
1037 | } |
1038 | |
1039 | /* |
1040 | * preprocess_expression |
1041 | * Do subquery_planner's preprocessing work for an expression, |
1042 | * which can be a targetlist, a WHERE clause (including JOIN/ON |
1043 | * conditions), a HAVING clause, or a few other things. |
1044 | */ |
1045 | static Node * |
1046 | preprocess_expression(PlannerInfo *root, Node *expr, int kind) |
1047 | { |
1048 | /* |
1049 | * Fall out quickly if expression is empty. This occurs often enough to |
1050 | * be worth checking. Note that null->null is the correct conversion for |
1051 | * implicit-AND result format, too. |
1052 | */ |
1053 | if (expr == NULL) |
1054 | return NULL; |
1055 | |
1056 | /* |
1057 | * If the query has any join RTEs, replace join alias variables with |
1058 | * base-relation variables. We must do this first, since any expressions |
1059 | * we may extract from the joinaliasvars lists have not been preprocessed. |
1060 | * For example, if we did this after sublink processing, sublinks expanded |
1061 | * out from join aliases would not get processed. But we can skip this in |
1062 | * non-lateral RTE functions, VALUES lists, and TABLESAMPLE clauses, since |
1063 | * they can't contain any Vars of the current query level. |
1064 | */ |
1065 | if (root->hasJoinRTEs && |
1066 | !(kind == EXPRKIND_RTFUNC || |
1067 | kind == EXPRKIND_VALUES || |
1068 | kind == EXPRKIND_TABLESAMPLE || |
1069 | kind == EXPRKIND_TABLEFUNC)) |
1070 | expr = flatten_join_alias_vars(root->parse, expr); |
1071 | |
1072 | /* |
1073 | * Simplify constant expressions. |
1074 | * |
1075 | * Note: an essential effect of this is to convert named-argument function |
1076 | * calls to positional notation and insert the current actual values of |
1077 | * any default arguments for functions. To ensure that happens, we *must* |
1078 | * process all expressions here. Previous PG versions sometimes skipped |
1079 | * const-simplification if it didn't seem worth the trouble, but we can't |
1080 | * do that anymore. |
1081 | * |
1082 | * Note: this also flattens nested AND and OR expressions into N-argument |
1083 | * form. All processing of a qual expression after this point must be |
1084 | * careful to maintain AND/OR flatness --- that is, do not generate a tree |
1085 | * with AND directly under AND, nor OR directly under OR. |
1086 | */ |
1087 | expr = eval_const_expressions(root, expr); |
1088 | |
1089 | /* |
1090 | * If it's a qual or havingQual, canonicalize it. |
1091 | */ |
1092 | if (kind == EXPRKIND_QUAL) |
1093 | { |
1094 | expr = (Node *) canonicalize_qual((Expr *) expr, false); |
1095 | |
1096 | #ifdef OPTIMIZER_DEBUG |
1097 | printf("After canonicalize_qual()\n" ); |
1098 | pprint(expr); |
1099 | #endif |
1100 | } |
1101 | |
1102 | /* Expand SubLinks to SubPlans */ |
1103 | if (root->parse->hasSubLinks) |
1104 | expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL)); |
1105 | |
1106 | /* |
1107 | * XXX do not insert anything here unless you have grokked the comments in |
1108 | * SS_replace_correlation_vars ... |
1109 | */ |
1110 | |
1111 | /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */ |
1112 | if (root->query_level > 1) |
1113 | expr = SS_replace_correlation_vars(root, expr); |
1114 | |
1115 | /* |
1116 | * If it's a qual or havingQual, convert it to implicit-AND format. (We |
1117 | * don't want to do this before eval_const_expressions, since the latter |
1118 | * would be unable to simplify a top-level AND correctly. Also, |
1119 | * SS_process_sublinks expects explicit-AND format.) |
1120 | */ |
1121 | if (kind == EXPRKIND_QUAL) |
1122 | expr = (Node *) make_ands_implicit((Expr *) expr); |
1123 | |
1124 | return expr; |
1125 | } |
1126 | |
1127 | /* |
1128 | * preprocess_qual_conditions |
1129 | * Recursively scan the query's jointree and do subquery_planner's |
1130 | * preprocessing work on each qual condition found therein. |
1131 | */ |
1132 | static void |
1133 | preprocess_qual_conditions(PlannerInfo *root, Node *jtnode) |
1134 | { |
1135 | if (jtnode == NULL) |
1136 | return; |
1137 | if (IsA(jtnode, RangeTblRef)) |
1138 | { |
1139 | /* nothing to do here */ |
1140 | } |
1141 | else if (IsA(jtnode, FromExpr)) |
1142 | { |
1143 | FromExpr *f = (FromExpr *) jtnode; |
1144 | ListCell *l; |
1145 | |
1146 | foreach(l, f->fromlist) |
1147 | preprocess_qual_conditions(root, lfirst(l)); |
1148 | |
1149 | f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL); |
1150 | } |
1151 | else if (IsA(jtnode, JoinExpr)) |
1152 | { |
1153 | JoinExpr *j = (JoinExpr *) jtnode; |
1154 | |
1155 | preprocess_qual_conditions(root, j->larg); |
1156 | preprocess_qual_conditions(root, j->rarg); |
1157 | |
1158 | j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL); |
1159 | } |
1160 | else |
1161 | elog(ERROR, "unrecognized node type: %d" , |
1162 | (int) nodeTag(jtnode)); |
1163 | } |
1164 | |
1165 | /* |
1166 | * preprocess_phv_expression |
1167 | * Do preprocessing on a PlaceHolderVar expression that's been pulled up. |
1168 | * |
1169 | * If a LATERAL subquery references an output of another subquery, and that |
1170 | * output must be wrapped in a PlaceHolderVar because of an intermediate outer |
1171 | * join, then we'll push the PlaceHolderVar expression down into the subquery |
1172 | * and later pull it back up during find_lateral_references, which runs after |
1173 | * subquery_planner has preprocessed all the expressions that were in the |
1174 | * current query level to start with. So we need to preprocess it then. |
1175 | */ |
1176 | Expr * |
1177 | preprocess_phv_expression(PlannerInfo *root, Expr *expr) |
1178 | { |
1179 | return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV); |
1180 | } |
1181 | |
1182 | /* |
1183 | * inheritance_planner |
1184 | * Generate Paths in the case where the result relation is an |
1185 | * inheritance set. |
1186 | * |
1187 | * We have to handle this case differently from cases where a source relation |
1188 | * is an inheritance set. Source inheritance is expanded at the bottom of the |
1189 | * plan tree (see allpaths.c), but target inheritance has to be expanded at |
1190 | * the top. The reason is that for UPDATE, each target relation needs a |
1191 | * different targetlist matching its own column set. Fortunately, |
1192 | * the UPDATE/DELETE target can never be the nullable side of an outer join, |
1193 | * so it's OK to generate the plan this way. |
1194 | * |
1195 | * Returns nothing; the useful output is in the Paths we attach to |
1196 | * the (UPPERREL_FINAL, NULL) upperrel stored in *root. |
1197 | * |
1198 | * Note that we have not done set_cheapest() on the final rel; it's convenient |
1199 | * to leave this to the caller. |
1200 | */ |
1201 | static void |
1202 | inheritance_planner(PlannerInfo *root) |
1203 | { |
1204 | Query *parse = root->parse; |
1205 | int top_parentRTindex = parse->resultRelation; |
1206 | List *select_rtable; |
1207 | List *select_appinfos; |
1208 | List *child_appinfos; |
1209 | List *old_child_rtis; |
1210 | List *new_child_rtis; |
1211 | Bitmapset *subqueryRTindexes; |
1212 | Index next_subquery_rti; |
1213 | int nominalRelation = -1; |
1214 | Index rootRelation = 0; |
1215 | List *final_rtable = NIL; |
1216 | List *final_rowmarks = NIL; |
1217 | int save_rel_array_size = 0; |
1218 | RelOptInfo **save_rel_array = NULL; |
1219 | AppendRelInfo **save_append_rel_array = NULL; |
1220 | List *subpaths = NIL; |
1221 | List *subroots = NIL; |
1222 | List *resultRelations = NIL; |
1223 | List *withCheckOptionLists = NIL; |
1224 | List *returningLists = NIL; |
1225 | List *rowMarks; |
1226 | RelOptInfo *final_rel; |
1227 | ListCell *lc; |
1228 | ListCell *lc2; |
1229 | Index rti; |
1230 | RangeTblEntry *parent_rte; |
1231 | Bitmapset *parent_relids; |
1232 | Query **parent_parses; |
1233 | |
1234 | /* Should only get here for UPDATE or DELETE */ |
1235 | Assert(parse->commandType == CMD_UPDATE || |
1236 | parse->commandType == CMD_DELETE); |
1237 | |
1238 | /* |
1239 | * We generate a modified instance of the original Query for each target |
1240 | * relation, plan that, and put all the plans into a list that will be |
1241 | * controlled by a single ModifyTable node. All the instances share the |
1242 | * same rangetable, but each instance must have its own set of subquery |
1243 | * RTEs within the finished rangetable because (1) they are likely to get |
1244 | * scribbled on during planning, and (2) it's not inconceivable that |
1245 | * subqueries could get planned differently in different cases. We need |
1246 | * not create duplicate copies of other RTE kinds, in particular not the |
1247 | * target relations, because they don't have either of those issues. Not |
1248 | * having to duplicate the target relations is important because doing so |
1249 | * (1) would result in a rangetable of length O(N^2) for N targets, with |
1250 | * at least O(N^3) work expended here; and (2) would greatly complicate |
1251 | * management of the rowMarks list. |
1252 | * |
1253 | * To begin with, generate a bitmapset of the relids of the subquery RTEs. |
1254 | */ |
1255 | subqueryRTindexes = NULL; |
1256 | rti = 1; |
1257 | foreach(lc, parse->rtable) |
1258 | { |
1259 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, lc); |
1260 | |
1261 | if (rte->rtekind == RTE_SUBQUERY) |
1262 | subqueryRTindexes = bms_add_member(subqueryRTindexes, rti); |
1263 | rti++; |
1264 | } |
1265 | |
1266 | /* |
1267 | * If the parent RTE is a partitioned table, we should use that as the |
1268 | * nominal target relation, because the RTEs added for partitioned tables |
1269 | * (including the root parent) as child members of the inheritance set do |
1270 | * not appear anywhere else in the plan, so the confusion explained below |
1271 | * for non-partitioning inheritance cases is not possible. |
1272 | */ |
1273 | parent_rte = rt_fetch(top_parentRTindex, parse->rtable); |
1274 | Assert(parent_rte->inh); |
1275 | if (parent_rte->relkind == RELKIND_PARTITIONED_TABLE) |
1276 | { |
1277 | nominalRelation = top_parentRTindex; |
1278 | rootRelation = top_parentRTindex; |
1279 | } |
1280 | |
1281 | /* |
1282 | * Before generating the real per-child-relation plans, do a cycle of |
1283 | * planning as though the query were a SELECT. The objective here is to |
1284 | * find out which child relations need to be processed, using the same |
1285 | * expansion and pruning logic as for a SELECT. We'll then pull out the |
1286 | * RangeTblEntry-s generated for the child rels, and make use of the |
1287 | * AppendRelInfo entries for them to guide the real planning. (This is |
1288 | * rather inefficient; we could perhaps stop short of making a full Path |
1289 | * tree. But this whole function is inefficient and slated for |
1290 | * destruction, so let's not contort query_planner for that.) |
1291 | */ |
1292 | { |
1293 | PlannerInfo *subroot; |
1294 | |
1295 | /* |
1296 | * Flat-copy the PlannerInfo to prevent modification of the original. |
1297 | */ |
1298 | subroot = makeNode(PlannerInfo); |
1299 | memcpy(subroot, root, sizeof(PlannerInfo)); |
1300 | |
1301 | /* |
1302 | * Make a deep copy of the parsetree for this planning cycle to mess |
1303 | * around with, and change it to look like a SELECT. (Hack alert: the |
1304 | * target RTE still has updatedCols set if this is an UPDATE, so that |
1305 | * expand_partitioned_rtentry will correctly update |
1306 | * subroot->partColsUpdated.) |
1307 | */ |
1308 | subroot->parse = copyObject(root->parse); |
1309 | |
1310 | subroot->parse->commandType = CMD_SELECT; |
1311 | subroot->parse->resultRelation = 0; |
1312 | |
1313 | /* |
1314 | * Ensure the subroot has its own copy of the original |
1315 | * append_rel_list, since it'll be scribbled on. (Note that at this |
1316 | * point, the list only contains AppendRelInfos for flattened UNION |
1317 | * ALL subqueries.) |
1318 | */ |
1319 | subroot->append_rel_list = copyObject(root->append_rel_list); |
1320 | |
1321 | /* |
1322 | * Better make a private copy of the rowMarks, too. |
1323 | */ |
1324 | subroot->rowMarks = copyObject(root->rowMarks); |
1325 | |
1326 | /* There shouldn't be any OJ info to translate, as yet */ |
1327 | Assert(subroot->join_info_list == NIL); |
1328 | /* and we haven't created PlaceHolderInfos, either */ |
1329 | Assert(subroot->placeholder_list == NIL); |
1330 | |
1331 | /* Generate Path(s) for accessing this result relation */ |
1332 | grouping_planner(subroot, true, 0.0 /* retrieve all tuples */ ); |
1333 | |
1334 | /* Extract the info we need. */ |
1335 | select_rtable = subroot->parse->rtable; |
1336 | select_appinfos = subroot->append_rel_list; |
1337 | |
1338 | /* |
1339 | * We need to propagate partColsUpdated back, too. (The later |
1340 | * planning cycles will not set this because they won't run |
1341 | * expand_partitioned_rtentry for the UPDATE target.) |
1342 | */ |
1343 | root->partColsUpdated = subroot->partColsUpdated; |
1344 | } |
1345 | |
1346 | /*---------- |
1347 | * Since only one rangetable can exist in the final plan, we need to make |
1348 | * sure that it contains all the RTEs needed for any child plan. This is |
1349 | * complicated by the need to use separate subquery RTEs for each child. |
1350 | * We arrange the final rtable as follows: |
1351 | * 1. All original rtable entries (with their original RT indexes). |
1352 | * 2. All the relation RTEs generated for children of the target table. |
1353 | * 3. Subquery RTEs for children after the first. We need N * (K - 1) |
1354 | * RT slots for this, if there are N subqueries and K child tables. |
1355 | * 4. Additional RTEs generated during the child planning runs, such as |
1356 | * children of inheritable RTEs other than the target table. |
1357 | * We assume that each child planning run will create an identical set |
1358 | * of type-4 RTEs. |
1359 | * |
1360 | * So the next thing to do is append the type-2 RTEs (the target table's |
1361 | * children) to the original rtable. We look through select_appinfos |
1362 | * to find them. |
1363 | * |
1364 | * To identify which AppendRelInfos are relevant as we thumb through |
1365 | * select_appinfos, we need to look for both direct and indirect children |
1366 | * of top_parentRTindex, so we use a bitmap of known parent relids. |
1367 | * expand_inherited_rtentry() always processes a parent before any of that |
1368 | * parent's children, so we should see an intermediate parent before its |
1369 | * children. |
1370 | *---------- |
1371 | */ |
1372 | child_appinfos = NIL; |
1373 | old_child_rtis = NIL; |
1374 | new_child_rtis = NIL; |
1375 | parent_relids = bms_make_singleton(top_parentRTindex); |
1376 | foreach(lc, select_appinfos) |
1377 | { |
1378 | AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc); |
1379 | RangeTblEntry *child_rte; |
1380 | |
1381 | /* append_rel_list contains all append rels; ignore others */ |
1382 | if (!bms_is_member(appinfo->parent_relid, parent_relids)) |
1383 | continue; |
1384 | |
1385 | /* remember relevant AppendRelInfos for use below */ |
1386 | child_appinfos = lappend(child_appinfos, appinfo); |
1387 | |
1388 | /* extract RTE for this child rel */ |
1389 | child_rte = rt_fetch(appinfo->child_relid, select_rtable); |
1390 | |
1391 | /* and append it to the original rtable */ |
1392 | parse->rtable = lappend(parse->rtable, child_rte); |
1393 | |
1394 | /* remember child's index in the SELECT rtable */ |
1395 | old_child_rtis = lappend_int(old_child_rtis, appinfo->child_relid); |
1396 | |
1397 | /* and its new index in the final rtable */ |
1398 | new_child_rtis = lappend_int(new_child_rtis, list_length(parse->rtable)); |
1399 | |
1400 | /* if child is itself partitioned, update parent_relids */ |
1401 | if (child_rte->inh) |
1402 | { |
1403 | Assert(child_rte->relkind == RELKIND_PARTITIONED_TABLE); |
1404 | parent_relids = bms_add_member(parent_relids, appinfo->child_relid); |
1405 | } |
1406 | } |
1407 | |
1408 | /* |
1409 | * It's possible that the RTIs we just assigned for the child rels in the |
1410 | * final rtable are different from what they were in the SELECT query. |
1411 | * Adjust the AppendRelInfos so that they will correctly map RT indexes to |
1412 | * the final indexes. We can do this left-to-right since no child rel's |
1413 | * final RT index could be greater than what it had in the SELECT query. |
1414 | */ |
1415 | forboth(lc, old_child_rtis, lc2, new_child_rtis) |
1416 | { |
1417 | int old_child_rti = lfirst_int(lc); |
1418 | int new_child_rti = lfirst_int(lc2); |
1419 | |
1420 | if (old_child_rti == new_child_rti) |
1421 | continue; /* nothing to do */ |
1422 | |
1423 | Assert(old_child_rti > new_child_rti); |
1424 | |
1425 | ChangeVarNodes((Node *) child_appinfos, |
1426 | old_child_rti, new_child_rti, 0); |
1427 | } |
1428 | |
1429 | /* |
1430 | * Now set up rangetable entries for subqueries for additional children |
1431 | * (the first child will just use the original ones). These all have to |
1432 | * look more or less real, or EXPLAIN will get unhappy; so we just make |
1433 | * them all clones of the original subqueries. |
1434 | */ |
1435 | next_subquery_rti = list_length(parse->rtable) + 1; |
1436 | if (subqueryRTindexes != NULL) |
1437 | { |
1438 | int n_children = list_length(child_appinfos); |
1439 | |
1440 | while (n_children-- > 1) |
1441 | { |
1442 | int oldrti = -1; |
1443 | |
1444 | while ((oldrti = bms_next_member(subqueryRTindexes, oldrti)) >= 0) |
1445 | { |
1446 | RangeTblEntry *subqrte; |
1447 | |
1448 | subqrte = rt_fetch(oldrti, parse->rtable); |
1449 | parse->rtable = lappend(parse->rtable, copyObject(subqrte)); |
1450 | } |
1451 | } |
1452 | } |
1453 | |
1454 | /* |
1455 | * The query for each child is obtained by translating the query for its |
1456 | * immediate parent, since the AppendRelInfo data we have shows deltas |
1457 | * between parents and children. We use the parent_parses array to |
1458 | * remember the appropriate query trees. This is indexed by parent relid. |
1459 | * Since the maximum number of parents is limited by the number of RTEs in |
1460 | * the SELECT query, we use that number to allocate the array. An extra |
1461 | * entry is needed since relids start from 1. |
1462 | */ |
1463 | parent_parses = (Query **) palloc0((list_length(select_rtable) + 1) * |
1464 | sizeof(Query *)); |
1465 | parent_parses[top_parentRTindex] = parse; |
1466 | |
1467 | /* |
1468 | * And now we can get on with generating a plan for each child table. |
1469 | */ |
1470 | foreach(lc, child_appinfos) |
1471 | { |
1472 | AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc); |
1473 | Index this_subquery_rti = next_subquery_rti; |
1474 | Query *parent_parse; |
1475 | PlannerInfo *subroot; |
1476 | RangeTblEntry *child_rte; |
1477 | RelOptInfo *sub_final_rel; |
1478 | Path *subpath; |
1479 | |
1480 | /* |
1481 | * expand_inherited_rtentry() always processes a parent before any of |
1482 | * that parent's children, so the parent query for this relation |
1483 | * should already be available. |
1484 | */ |
1485 | parent_parse = parent_parses[appinfo->parent_relid]; |
1486 | Assert(parent_parse != NULL); |
1487 | |
1488 | /* |
1489 | * We need a working copy of the PlannerInfo so that we can control |
1490 | * propagation of information back to the main copy. |
1491 | */ |
1492 | subroot = makeNode(PlannerInfo); |
1493 | memcpy(subroot, root, sizeof(PlannerInfo)); |
1494 | |
1495 | /* |
1496 | * Generate modified query with this rel as target. We first apply |
1497 | * adjust_appendrel_attrs, which copies the Query and changes |
1498 | * references to the parent RTE to refer to the current child RTE, |
1499 | * then fool around with subquery RTEs. |
1500 | */ |
1501 | subroot->parse = (Query *) |
1502 | adjust_appendrel_attrs(subroot, |
1503 | (Node *) parent_parse, |
1504 | 1, &appinfo); |
1505 | |
1506 | /* |
1507 | * If there are securityQuals attached to the parent, move them to the |
1508 | * child rel (they've already been transformed properly for that). |
1509 | */ |
1510 | parent_rte = rt_fetch(appinfo->parent_relid, subroot->parse->rtable); |
1511 | child_rte = rt_fetch(appinfo->child_relid, subroot->parse->rtable); |
1512 | child_rte->securityQuals = parent_rte->securityQuals; |
1513 | parent_rte->securityQuals = NIL; |
1514 | |
1515 | /* |
1516 | * HACK: setting this to a value other than INHKIND_NONE signals to |
1517 | * relation_excluded_by_constraints() to treat the result relation as |
1518 | * being an appendrel member. |
1519 | */ |
1520 | subroot->inhTargetKind = |
1521 | (rootRelation != 0) ? INHKIND_PARTITIONED : INHKIND_INHERITED; |
1522 | |
1523 | /* |
1524 | * If this child is further partitioned, remember it as a parent. |
1525 | * Since a partitioned table does not have any data, we don't need to |
1526 | * create a plan for it, and we can stop processing it here. We do, |
1527 | * however, need to remember its modified PlannerInfo for use when |
1528 | * processing its children, since we'll update their varnos based on |
1529 | * the delta from immediate parent to child, not from top to child. |
1530 | * |
1531 | * Note: a very non-obvious point is that we have not yet added |
1532 | * duplicate subquery RTEs to the subroot's rtable. We mustn't, |
1533 | * because then its children would have two sets of duplicates, |
1534 | * confusing matters. |
1535 | */ |
1536 | if (child_rte->inh) |
1537 | { |
1538 | Assert(child_rte->relkind == RELKIND_PARTITIONED_TABLE); |
1539 | parent_parses[appinfo->child_relid] = subroot->parse; |
1540 | continue; |
1541 | } |
1542 | |
1543 | /* |
1544 | * Set the nominal target relation of the ModifyTable node if not |
1545 | * already done. If the target is a partitioned table, we already set |
1546 | * nominalRelation to refer to the partition root, above. For |
1547 | * non-partitioned inheritance cases, we'll use the first child |
1548 | * relation (even if it's excluded) as the nominal target relation. |
1549 | * Because of the way expand_inherited_rtentry works, that should be |
1550 | * the RTE representing the parent table in its role as a simple |
1551 | * member of the inheritance set. |
1552 | * |
1553 | * It would be logically cleaner to *always* use the inheritance |
1554 | * parent RTE as the nominal relation; but that RTE is not otherwise |
1555 | * referenced in the plan in the non-partitioned inheritance case. |
1556 | * Instead the duplicate child RTE created by expand_inherited_rtentry |
1557 | * is used elsewhere in the plan, so using the original parent RTE |
1558 | * would give rise to confusing use of multiple aliases in EXPLAIN |
1559 | * output for what the user will think is the "same" table. OTOH, |
1560 | * it's not a problem in the partitioned inheritance case, because |
1561 | * there is no duplicate RTE for the parent. |
1562 | */ |
1563 | if (nominalRelation < 0) |
1564 | nominalRelation = appinfo->child_relid; |
1565 | |
1566 | /* |
1567 | * As above, each child plan run needs its own append_rel_list and |
1568 | * rowmarks, which should start out as pristine copies of the |
1569 | * originals. There can't be any references to UPDATE/DELETE target |
1570 | * rels in them; but there could be subquery references, which we'll |
1571 | * fix up in a moment. |
1572 | */ |
1573 | subroot->append_rel_list = copyObject(root->append_rel_list); |
1574 | subroot->rowMarks = copyObject(root->rowMarks); |
1575 | |
1576 | /* |
1577 | * If this isn't the first child Query, adjust Vars and jointree |
1578 | * entries to reference the appropriate set of subquery RTEs. |
1579 | */ |
1580 | if (final_rtable != NIL && subqueryRTindexes != NULL) |
1581 | { |
1582 | int oldrti = -1; |
1583 | |
1584 | while ((oldrti = bms_next_member(subqueryRTindexes, oldrti)) >= 0) |
1585 | { |
1586 | Index newrti = next_subquery_rti++; |
1587 | |
1588 | ChangeVarNodes((Node *) subroot->parse, oldrti, newrti, 0); |
1589 | ChangeVarNodes((Node *) subroot->append_rel_list, |
1590 | oldrti, newrti, 0); |
1591 | ChangeVarNodes((Node *) subroot->rowMarks, oldrti, newrti, 0); |
1592 | } |
1593 | } |
1594 | |
1595 | /* There shouldn't be any OJ info to translate, as yet */ |
1596 | Assert(subroot->join_info_list == NIL); |
1597 | /* and we haven't created PlaceHolderInfos, either */ |
1598 | Assert(subroot->placeholder_list == NIL); |
1599 | |
1600 | /* Generate Path(s) for accessing this result relation */ |
1601 | grouping_planner(subroot, true, 0.0 /* retrieve all tuples */ ); |
1602 | |
1603 | /* |
1604 | * Select cheapest path in case there's more than one. We always run |
1605 | * modification queries to conclusion, so we care only for the |
1606 | * cheapest-total path. |
1607 | */ |
1608 | sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL); |
1609 | set_cheapest(sub_final_rel); |
1610 | subpath = sub_final_rel->cheapest_total_path; |
1611 | |
1612 | /* |
1613 | * If this child rel was excluded by constraint exclusion, exclude it |
1614 | * from the result plan. |
1615 | */ |
1616 | if (IS_DUMMY_REL(sub_final_rel)) |
1617 | continue; |
1618 | |
1619 | /* |
1620 | * If this is the first non-excluded child, its post-planning rtable |
1621 | * becomes the initial contents of final_rtable; otherwise, copy its |
1622 | * modified subquery RTEs into final_rtable, to ensure we have sane |
1623 | * copies of those. Also save the first non-excluded child's version |
1624 | * of the rowmarks list; we assume all children will end up with |
1625 | * equivalent versions of that. |
1626 | */ |
1627 | if (final_rtable == NIL) |
1628 | { |
1629 | final_rtable = subroot->parse->rtable; |
1630 | final_rowmarks = subroot->rowMarks; |
1631 | } |
1632 | else |
1633 | { |
1634 | Assert(list_length(final_rtable) == |
1635 | list_length(subroot->parse->rtable)); |
1636 | if (subqueryRTindexes != NULL) |
1637 | { |
1638 | int oldrti = -1; |
1639 | |
1640 | while ((oldrti = bms_next_member(subqueryRTindexes, oldrti)) >= 0) |
1641 | { |
1642 | Index newrti = this_subquery_rti++; |
1643 | RangeTblEntry *subqrte; |
1644 | ListCell *newrticell; |
1645 | |
1646 | subqrte = rt_fetch(newrti, subroot->parse->rtable); |
1647 | newrticell = list_nth_cell(final_rtable, newrti - 1); |
1648 | lfirst(newrticell) = subqrte; |
1649 | } |
1650 | } |
1651 | } |
1652 | |
1653 | /* |
1654 | * We need to collect all the RelOptInfos from all child plans into |
1655 | * the main PlannerInfo, since setrefs.c will need them. We use the |
1656 | * last child's simple_rel_array, so we have to propagate forward the |
1657 | * RelOptInfos that were already built in previous children. |
1658 | */ |
1659 | Assert(subroot->simple_rel_array_size >= save_rel_array_size); |
1660 | for (rti = 1; rti < save_rel_array_size; rti++) |
1661 | { |
1662 | RelOptInfo *brel = save_rel_array[rti]; |
1663 | |
1664 | if (brel) |
1665 | subroot->simple_rel_array[rti] = brel; |
1666 | } |
1667 | save_rel_array_size = subroot->simple_rel_array_size; |
1668 | save_rel_array = subroot->simple_rel_array; |
1669 | save_append_rel_array = subroot->append_rel_array; |
1670 | |
1671 | /* |
1672 | * Make sure any initplans from this rel get into the outer list. Note |
1673 | * we're effectively assuming all children generate the same |
1674 | * init_plans. |
1675 | */ |
1676 | root->init_plans = subroot->init_plans; |
1677 | |
1678 | /* Build list of sub-paths */ |
1679 | subpaths = lappend(subpaths, subpath); |
1680 | |
1681 | /* Build list of modified subroots, too */ |
1682 | subroots = lappend(subroots, subroot); |
1683 | |
1684 | /* Build list of target-relation RT indexes */ |
1685 | resultRelations = lappend_int(resultRelations, appinfo->child_relid); |
1686 | |
1687 | /* Build lists of per-relation WCO and RETURNING targetlists */ |
1688 | if (parse->withCheckOptions) |
1689 | withCheckOptionLists = lappend(withCheckOptionLists, |
1690 | subroot->parse->withCheckOptions); |
1691 | if (parse->returningList) |
1692 | returningLists = lappend(returningLists, |
1693 | subroot->parse->returningList); |
1694 | |
1695 | Assert(!parse->onConflict); |
1696 | } |
1697 | |
1698 | /* Result path must go into outer query's FINAL upperrel */ |
1699 | final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL); |
1700 | |
1701 | /* |
1702 | * We don't currently worry about setting final_rel's consider_parallel |
1703 | * flag in this case, nor about allowing FDWs or create_upper_paths_hook |
1704 | * to get control here. |
1705 | */ |
1706 | |
1707 | if (subpaths == NIL) |
1708 | { |
1709 | /* |
1710 | * We managed to exclude every child rel, so generate a dummy path |
1711 | * representing the empty set. Although it's clear that no data will |
1712 | * be updated or deleted, we will still need to have a ModifyTable |
1713 | * node so that any statement triggers are executed. (This could be |
1714 | * cleaner if we fixed nodeModifyTable.c to support zero child nodes, |
1715 | * but that probably wouldn't be a net win.) |
1716 | */ |
1717 | Path *dummy_path; |
1718 | |
1719 | /* tlist processing never got done, either */ |
1720 | root->processed_tlist = preprocess_targetlist(root); |
1721 | final_rel->reltarget = create_pathtarget(root, root->processed_tlist); |
1722 | |
1723 | /* Make a dummy path, cf set_dummy_rel_pathlist() */ |
1724 | dummy_path = (Path *) create_append_path(NULL, final_rel, NIL, NIL, |
1725 | NIL, NULL, 0, false, |
1726 | NIL, -1); |
1727 | |
1728 | /* These lists must be nonempty to make a valid ModifyTable node */ |
1729 | subpaths = list_make1(dummy_path); |
1730 | subroots = list_make1(root); |
1731 | resultRelations = list_make1_int(parse->resultRelation); |
1732 | if (parse->withCheckOptions) |
1733 | withCheckOptionLists = list_make1(parse->withCheckOptions); |
1734 | if (parse->returningList) |
1735 | returningLists = list_make1(parse->returningList); |
1736 | /* Disable tuple routing, too, just to be safe */ |
1737 | root->partColsUpdated = false; |
1738 | } |
1739 | else |
1740 | { |
1741 | /* |
1742 | * Put back the final adjusted rtable into the master copy of the |
1743 | * Query. (We mustn't do this if we found no non-excluded children, |
1744 | * since we never saved an adjusted rtable at all.) |
1745 | */ |
1746 | parse->rtable = final_rtable; |
1747 | root->simple_rel_array_size = save_rel_array_size; |
1748 | root->simple_rel_array = save_rel_array; |
1749 | root->append_rel_array = save_append_rel_array; |
1750 | |
1751 | /* Must reconstruct master's simple_rte_array, too */ |
1752 | root->simple_rte_array = (RangeTblEntry **) |
1753 | palloc0((list_length(final_rtable) + 1) * sizeof(RangeTblEntry *)); |
1754 | rti = 1; |
1755 | foreach(lc, final_rtable) |
1756 | { |
1757 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, lc); |
1758 | |
1759 | root->simple_rte_array[rti++] = rte; |
1760 | } |
1761 | |
1762 | /* Put back adjusted rowmarks, too */ |
1763 | root->rowMarks = final_rowmarks; |
1764 | } |
1765 | |
1766 | /* |
1767 | * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will |
1768 | * have dealt with fetching non-locked marked rows, else we need to have |
1769 | * ModifyTable do that. |
1770 | */ |
1771 | if (parse->rowMarks) |
1772 | rowMarks = NIL; |
1773 | else |
1774 | rowMarks = root->rowMarks; |
1775 | |
1776 | /* Create Path representing a ModifyTable to do the UPDATE/DELETE work */ |
1777 | add_path(final_rel, (Path *) |
1778 | create_modifytable_path(root, final_rel, |
1779 | parse->commandType, |
1780 | parse->canSetTag, |
1781 | nominalRelation, |
1782 | rootRelation, |
1783 | root->partColsUpdated, |
1784 | resultRelations, |
1785 | subpaths, |
1786 | subroots, |
1787 | withCheckOptionLists, |
1788 | returningLists, |
1789 | rowMarks, |
1790 | NULL, |
1791 | assign_special_exec_param(root))); |
1792 | } |
1793 | |
1794 | /*-------------------- |
1795 | * grouping_planner |
1796 | * Perform planning steps related to grouping, aggregation, etc. |
1797 | * |
1798 | * This function adds all required top-level processing to the scan/join |
1799 | * Path(s) produced by query_planner. |
1800 | * |
1801 | * If inheritance_update is true, we're being called from inheritance_planner |
1802 | * and should not include a ModifyTable step in the resulting Path(s). |
1803 | * (inheritance_planner will create a single ModifyTable node covering all the |
1804 | * target tables.) |
1805 | * |
1806 | * tuple_fraction is the fraction of tuples we expect will be retrieved. |
1807 | * tuple_fraction is interpreted as follows: |
1808 | * 0: expect all tuples to be retrieved (normal case) |
1809 | * 0 < tuple_fraction < 1: expect the given fraction of tuples available |
1810 | * from the plan to be retrieved |
1811 | * tuple_fraction >= 1: tuple_fraction is the absolute number of tuples |
1812 | * expected to be retrieved (ie, a LIMIT specification) |
1813 | * |
1814 | * Returns nothing; the useful output is in the Paths we attach to the |
1815 | * (UPPERREL_FINAL, NULL) upperrel in *root. In addition, |
1816 | * root->processed_tlist contains the final processed targetlist. |
1817 | * |
1818 | * Note that we have not done set_cheapest() on the final rel; it's convenient |
1819 | * to leave this to the caller. |
1820 | *-------------------- |
1821 | */ |
1822 | static void |
1823 | grouping_planner(PlannerInfo *root, bool inheritance_update, |
1824 | double tuple_fraction) |
1825 | { |
1826 | Query *parse = root->parse; |
1827 | int64 offset_est = 0; |
1828 | int64 count_est = 0; |
1829 | double limit_tuples = -1.0; |
1830 | bool have_postponed_srfs = false; |
1831 | PathTarget *final_target; |
1832 | List *final_targets; |
1833 | List *final_targets_contain_srfs; |
1834 | bool final_target_parallel_safe; |
1835 | RelOptInfo *current_rel; |
1836 | RelOptInfo *final_rel; |
1837 | FinalPathExtraData ; |
1838 | ListCell *lc; |
1839 | |
1840 | /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */ |
1841 | if (parse->limitCount || parse->limitOffset) |
1842 | { |
1843 | tuple_fraction = preprocess_limit(root, tuple_fraction, |
1844 | &offset_est, &count_est); |
1845 | |
1846 | /* |
1847 | * If we have a known LIMIT, and don't have an unknown OFFSET, we can |
1848 | * estimate the effects of using a bounded sort. |
1849 | */ |
1850 | if (count_est > 0 && offset_est >= 0) |
1851 | limit_tuples = (double) count_est + (double) offset_est; |
1852 | } |
1853 | |
1854 | /* Make tuple_fraction accessible to lower-level routines */ |
1855 | root->tuple_fraction = tuple_fraction; |
1856 | |
1857 | if (parse->setOperations) |
1858 | { |
1859 | /* |
1860 | * If there's a top-level ORDER BY, assume we have to fetch all the |
1861 | * tuples. This might be too simplistic given all the hackery below |
1862 | * to possibly avoid the sort; but the odds of accurate estimates here |
1863 | * are pretty low anyway. XXX try to get rid of this in favor of |
1864 | * letting plan_set_operations generate both fast-start and |
1865 | * cheapest-total paths. |
1866 | */ |
1867 | if (parse->sortClause) |
1868 | root->tuple_fraction = 0.0; |
1869 | |
1870 | /* |
1871 | * Construct Paths for set operations. The results will not need any |
1872 | * work except perhaps a top-level sort and/or LIMIT. Note that any |
1873 | * special work for recursive unions is the responsibility of |
1874 | * plan_set_operations. |
1875 | */ |
1876 | current_rel = plan_set_operations(root); |
1877 | |
1878 | /* |
1879 | * We should not need to call preprocess_targetlist, since we must be |
1880 | * in a SELECT query node. Instead, use the processed_tlist returned |
1881 | * by plan_set_operations (since this tells whether it returned any |
1882 | * resjunk columns!), and transfer any sort key information from the |
1883 | * original tlist. |
1884 | */ |
1885 | Assert(parse->commandType == CMD_SELECT); |
1886 | |
1887 | /* for safety, copy processed_tlist instead of modifying in-place */ |
1888 | root->processed_tlist = |
1889 | postprocess_setop_tlist(copyObject(root->processed_tlist), |
1890 | parse->targetList); |
1891 | |
1892 | /* Also extract the PathTarget form of the setop result tlist */ |
1893 | final_target = current_rel->cheapest_total_path->pathtarget; |
1894 | |
1895 | /* And check whether it's parallel safe */ |
1896 | final_target_parallel_safe = |
1897 | is_parallel_safe(root, (Node *) final_target->exprs); |
1898 | |
1899 | /* The setop result tlist couldn't contain any SRFs */ |
1900 | Assert(!parse->hasTargetSRFs); |
1901 | final_targets = final_targets_contain_srfs = NIL; |
1902 | |
1903 | /* |
1904 | * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have |
1905 | * checked already, but let's make sure). |
1906 | */ |
1907 | if (parse->rowMarks) |
1908 | ereport(ERROR, |
1909 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1910 | /*------ |
1911 | translator: %s is a SQL row locking clause such as FOR UPDATE */ |
1912 | errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT" , |
1913 | LCS_asString(linitial_node(RowMarkClause, |
1914 | parse->rowMarks)->strength)))); |
1915 | |
1916 | /* |
1917 | * Calculate pathkeys that represent result ordering requirements |
1918 | */ |
1919 | Assert(parse->distinctClause == NIL); |
1920 | root->sort_pathkeys = make_pathkeys_for_sortclauses(root, |
1921 | parse->sortClause, |
1922 | root->processed_tlist); |
1923 | } |
1924 | else |
1925 | { |
1926 | /* No set operations, do regular planning */ |
1927 | PathTarget *sort_input_target; |
1928 | List *sort_input_targets; |
1929 | List *sort_input_targets_contain_srfs; |
1930 | bool sort_input_target_parallel_safe; |
1931 | PathTarget *grouping_target; |
1932 | List *grouping_targets; |
1933 | List *grouping_targets_contain_srfs; |
1934 | bool grouping_target_parallel_safe; |
1935 | PathTarget *scanjoin_target; |
1936 | List *scanjoin_targets; |
1937 | List *scanjoin_targets_contain_srfs; |
1938 | bool scanjoin_target_parallel_safe; |
1939 | bool scanjoin_target_same_exprs; |
1940 | bool have_grouping; |
1941 | AggClauseCosts agg_costs; |
1942 | WindowFuncLists *wflists = NULL; |
1943 | List *activeWindows = NIL; |
1944 | grouping_sets_data *gset_data = NULL; |
1945 | standard_qp_extra ; |
1946 | |
1947 | /* A recursive query should always have setOperations */ |
1948 | Assert(!root->hasRecursion); |
1949 | |
1950 | /* Preprocess grouping sets and GROUP BY clause, if any */ |
1951 | if (parse->groupingSets) |
1952 | { |
1953 | gset_data = preprocess_grouping_sets(root); |
1954 | } |
1955 | else |
1956 | { |
1957 | /* Preprocess regular GROUP BY clause, if any */ |
1958 | if (parse->groupClause) |
1959 | parse->groupClause = preprocess_groupclause(root, NIL); |
1960 | } |
1961 | |
1962 | /* |
1963 | * Preprocess targetlist. Note that much of the remaining planning |
1964 | * work will be done with the PathTarget representation of tlists, but |
1965 | * we must also maintain the full representation of the final tlist so |
1966 | * that we can transfer its decoration (resnames etc) to the topmost |
1967 | * tlist of the finished Plan. This is kept in processed_tlist. |
1968 | */ |
1969 | root->processed_tlist = preprocess_targetlist(root); |
1970 | |
1971 | /* |
1972 | * Collect statistics about aggregates for estimating costs, and mark |
1973 | * all the aggregates with resolved aggtranstypes. We must do this |
1974 | * before slicing and dicing the tlist into various pathtargets, else |
1975 | * some copies of the Aggref nodes might escape being marked with the |
1976 | * correct transtypes. |
1977 | * |
1978 | * Note: currently, we do not detect duplicate aggregates here. This |
1979 | * may result in somewhat-overestimated cost, which is fine for our |
1980 | * purposes since all Paths will get charged the same. But at some |
1981 | * point we might wish to do that detection in the planner, rather |
1982 | * than during executor startup. |
1983 | */ |
1984 | MemSet(&agg_costs, 0, sizeof(AggClauseCosts)); |
1985 | if (parse->hasAggs) |
1986 | { |
1987 | get_agg_clause_costs(root, (Node *) root->processed_tlist, |
1988 | AGGSPLIT_SIMPLE, &agg_costs); |
1989 | get_agg_clause_costs(root, parse->havingQual, AGGSPLIT_SIMPLE, |
1990 | &agg_costs); |
1991 | } |
1992 | |
1993 | /* |
1994 | * Locate any window functions in the tlist. (We don't need to look |
1995 | * anywhere else, since expressions used in ORDER BY will be in there |
1996 | * too.) Note that they could all have been eliminated by constant |
1997 | * folding, in which case we don't need to do any more work. |
1998 | */ |
1999 | if (parse->hasWindowFuncs) |
2000 | { |
2001 | wflists = find_window_functions((Node *) root->processed_tlist, |
2002 | list_length(parse->windowClause)); |
2003 | if (wflists->numWindowFuncs > 0) |
2004 | activeWindows = select_active_windows(root, wflists); |
2005 | else |
2006 | parse->hasWindowFuncs = false; |
2007 | } |
2008 | |
2009 | /* |
2010 | * Preprocess MIN/MAX aggregates, if any. Note: be careful about |
2011 | * adding logic between here and the query_planner() call. Anything |
2012 | * that is needed in MIN/MAX-optimizable cases will have to be |
2013 | * duplicated in planagg.c. |
2014 | */ |
2015 | if (parse->hasAggs) |
2016 | preprocess_minmax_aggregates(root); |
2017 | |
2018 | /* |
2019 | * Figure out whether there's a hard limit on the number of rows that |
2020 | * query_planner's result subplan needs to return. Even if we know a |
2021 | * hard limit overall, it doesn't apply if the query has any |
2022 | * grouping/aggregation operations, or SRFs in the tlist. |
2023 | */ |
2024 | if (parse->groupClause || |
2025 | parse->groupingSets || |
2026 | parse->distinctClause || |
2027 | parse->hasAggs || |
2028 | parse->hasWindowFuncs || |
2029 | parse->hasTargetSRFs || |
2030 | root->hasHavingQual) |
2031 | root->limit_tuples = -1.0; |
2032 | else |
2033 | root->limit_tuples = limit_tuples; |
2034 | |
2035 | /* Set up data needed by standard_qp_callback */ |
2036 | qp_extra.activeWindows = activeWindows; |
2037 | qp_extra.groupClause = (gset_data |
2038 | ? (gset_data->rollups ? linitial_node(RollupData, gset_data->rollups)->groupClause : NIL) |
2039 | : parse->groupClause); |
2040 | |
2041 | /* |
2042 | * Generate the best unsorted and presorted paths for the scan/join |
2043 | * portion of this Query, ie the processing represented by the |
2044 | * FROM/WHERE clauses. (Note there may not be any presorted paths.) |
2045 | * We also generate (in standard_qp_callback) pathkey representations |
2046 | * of the query's sort clause, distinct clause, etc. |
2047 | */ |
2048 | current_rel = query_planner(root, standard_qp_callback, &qp_extra); |
2049 | |
2050 | /* |
2051 | * Convert the query's result tlist into PathTarget format. |
2052 | * |
2053 | * Note: this cannot be done before query_planner() has performed |
2054 | * appendrel expansion, because that might add resjunk entries to |
2055 | * root->processed_tlist. Waiting till afterwards is also helpful |
2056 | * because the target width estimates can use per-Var width numbers |
2057 | * that were obtained within query_planner(). |
2058 | */ |
2059 | final_target = create_pathtarget(root, root->processed_tlist); |
2060 | final_target_parallel_safe = |
2061 | is_parallel_safe(root, (Node *) final_target->exprs); |
2062 | |
2063 | /* |
2064 | * If ORDER BY was given, consider whether we should use a post-sort |
2065 | * projection, and compute the adjusted target for preceding steps if |
2066 | * so. |
2067 | */ |
2068 | if (parse->sortClause) |
2069 | { |
2070 | sort_input_target = make_sort_input_target(root, |
2071 | final_target, |
2072 | &have_postponed_srfs); |
2073 | sort_input_target_parallel_safe = |
2074 | is_parallel_safe(root, (Node *) sort_input_target->exprs); |
2075 | } |
2076 | else |
2077 | { |
2078 | sort_input_target = final_target; |
2079 | sort_input_target_parallel_safe = final_target_parallel_safe; |
2080 | } |
2081 | |
2082 | /* |
2083 | * If we have window functions to deal with, the output from any |
2084 | * grouping step needs to be what the window functions want; |
2085 | * otherwise, it should be sort_input_target. |
2086 | */ |
2087 | if (activeWindows) |
2088 | { |
2089 | grouping_target = make_window_input_target(root, |
2090 | final_target, |
2091 | activeWindows); |
2092 | grouping_target_parallel_safe = |
2093 | is_parallel_safe(root, (Node *) grouping_target->exprs); |
2094 | } |
2095 | else |
2096 | { |
2097 | grouping_target = sort_input_target; |
2098 | grouping_target_parallel_safe = sort_input_target_parallel_safe; |
2099 | } |
2100 | |
2101 | /* |
2102 | * If we have grouping or aggregation to do, the topmost scan/join |
2103 | * plan node must emit what the grouping step wants; otherwise, it |
2104 | * should emit grouping_target. |
2105 | */ |
2106 | have_grouping = (parse->groupClause || parse->groupingSets || |
2107 | parse->hasAggs || root->hasHavingQual); |
2108 | if (have_grouping) |
2109 | { |
2110 | scanjoin_target = make_group_input_target(root, final_target); |
2111 | scanjoin_target_parallel_safe = |
2112 | is_parallel_safe(root, (Node *) scanjoin_target->exprs); |
2113 | } |
2114 | else |
2115 | { |
2116 | scanjoin_target = grouping_target; |
2117 | scanjoin_target_parallel_safe = grouping_target_parallel_safe; |
2118 | } |
2119 | |
2120 | /* |
2121 | * If there are any SRFs in the targetlist, we must separate each of |
2122 | * these PathTargets into SRF-computing and SRF-free targets. Replace |
2123 | * each of the named targets with a SRF-free version, and remember the |
2124 | * list of additional projection steps we need to add afterwards. |
2125 | */ |
2126 | if (parse->hasTargetSRFs) |
2127 | { |
2128 | /* final_target doesn't recompute any SRFs in sort_input_target */ |
2129 | split_pathtarget_at_srfs(root, final_target, sort_input_target, |
2130 | &final_targets, |
2131 | &final_targets_contain_srfs); |
2132 | final_target = linitial_node(PathTarget, final_targets); |
2133 | Assert(!linitial_int(final_targets_contain_srfs)); |
2134 | /* likewise for sort_input_target vs. grouping_target */ |
2135 | split_pathtarget_at_srfs(root, sort_input_target, grouping_target, |
2136 | &sort_input_targets, |
2137 | &sort_input_targets_contain_srfs); |
2138 | sort_input_target = linitial_node(PathTarget, sort_input_targets); |
2139 | Assert(!linitial_int(sort_input_targets_contain_srfs)); |
2140 | /* likewise for grouping_target vs. scanjoin_target */ |
2141 | split_pathtarget_at_srfs(root, grouping_target, scanjoin_target, |
2142 | &grouping_targets, |
2143 | &grouping_targets_contain_srfs); |
2144 | grouping_target = linitial_node(PathTarget, grouping_targets); |
2145 | Assert(!linitial_int(grouping_targets_contain_srfs)); |
2146 | /* scanjoin_target will not have any SRFs precomputed for it */ |
2147 | split_pathtarget_at_srfs(root, scanjoin_target, NULL, |
2148 | &scanjoin_targets, |
2149 | &scanjoin_targets_contain_srfs); |
2150 | scanjoin_target = linitial_node(PathTarget, scanjoin_targets); |
2151 | Assert(!linitial_int(scanjoin_targets_contain_srfs)); |
2152 | } |
2153 | else |
2154 | { |
2155 | /* initialize lists; for most of these, dummy values are OK */ |
2156 | final_targets = final_targets_contain_srfs = NIL; |
2157 | sort_input_targets = sort_input_targets_contain_srfs = NIL; |
2158 | grouping_targets = grouping_targets_contain_srfs = NIL; |
2159 | scanjoin_targets = list_make1(scanjoin_target); |
2160 | scanjoin_targets_contain_srfs = NIL; |
2161 | } |
2162 | |
2163 | /* Apply scan/join target. */ |
2164 | scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1 |
2165 | && equal(scanjoin_target->exprs, current_rel->reltarget->exprs); |
2166 | apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets, |
2167 | scanjoin_targets_contain_srfs, |
2168 | scanjoin_target_parallel_safe, |
2169 | scanjoin_target_same_exprs); |
2170 | |
2171 | /* |
2172 | * Save the various upper-rel PathTargets we just computed into |
2173 | * root->upper_targets[]. The core code doesn't use this, but it |
2174 | * provides a convenient place for extensions to get at the info. For |
2175 | * consistency, we save all the intermediate targets, even though some |
2176 | * of the corresponding upperrels might not be needed for this query. |
2177 | */ |
2178 | root->upper_targets[UPPERREL_FINAL] = final_target; |
2179 | root->upper_targets[UPPERREL_ORDERED] = final_target; |
2180 | root->upper_targets[UPPERREL_DISTINCT] = sort_input_target; |
2181 | root->upper_targets[UPPERREL_WINDOW] = sort_input_target; |
2182 | root->upper_targets[UPPERREL_GROUP_AGG] = grouping_target; |
2183 | |
2184 | /* |
2185 | * If we have grouping and/or aggregation, consider ways to implement |
2186 | * that. We build a new upperrel representing the output of this |
2187 | * phase. |
2188 | */ |
2189 | if (have_grouping) |
2190 | { |
2191 | current_rel = create_grouping_paths(root, |
2192 | current_rel, |
2193 | grouping_target, |
2194 | grouping_target_parallel_safe, |
2195 | &agg_costs, |
2196 | gset_data); |
2197 | /* Fix things up if grouping_target contains SRFs */ |
2198 | if (parse->hasTargetSRFs) |
2199 | adjust_paths_for_srfs(root, current_rel, |
2200 | grouping_targets, |
2201 | grouping_targets_contain_srfs); |
2202 | } |
2203 | |
2204 | /* |
2205 | * If we have window functions, consider ways to implement those. We |
2206 | * build a new upperrel representing the output of this phase. |
2207 | */ |
2208 | if (activeWindows) |
2209 | { |
2210 | current_rel = create_window_paths(root, |
2211 | current_rel, |
2212 | grouping_target, |
2213 | sort_input_target, |
2214 | sort_input_target_parallel_safe, |
2215 | wflists, |
2216 | activeWindows); |
2217 | /* Fix things up if sort_input_target contains SRFs */ |
2218 | if (parse->hasTargetSRFs) |
2219 | adjust_paths_for_srfs(root, current_rel, |
2220 | sort_input_targets, |
2221 | sort_input_targets_contain_srfs); |
2222 | } |
2223 | |
2224 | /* |
2225 | * If there is a DISTINCT clause, consider ways to implement that. We |
2226 | * build a new upperrel representing the output of this phase. |
2227 | */ |
2228 | if (parse->distinctClause) |
2229 | { |
2230 | current_rel = create_distinct_paths(root, |
2231 | current_rel); |
2232 | } |
2233 | } /* end of if (setOperations) */ |
2234 | |
2235 | /* |
2236 | * If ORDER BY was given, consider ways to implement that, and generate a |
2237 | * new upperrel containing only paths that emit the correct ordering and |
2238 | * project the correct final_target. We can apply the original |
2239 | * limit_tuples limit in sort costing here, but only if there are no |
2240 | * postponed SRFs. |
2241 | */ |
2242 | if (parse->sortClause) |
2243 | { |
2244 | current_rel = create_ordered_paths(root, |
2245 | current_rel, |
2246 | final_target, |
2247 | final_target_parallel_safe, |
2248 | have_postponed_srfs ? -1.0 : |
2249 | limit_tuples); |
2250 | /* Fix things up if final_target contains SRFs */ |
2251 | if (parse->hasTargetSRFs) |
2252 | adjust_paths_for_srfs(root, current_rel, |
2253 | final_targets, |
2254 | final_targets_contain_srfs); |
2255 | } |
2256 | |
2257 | /* |
2258 | * Now we are prepared to build the final-output upperrel. |
2259 | */ |
2260 | final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL); |
2261 | |
2262 | /* |
2263 | * If the input rel is marked consider_parallel and there's nothing that's |
2264 | * not parallel-safe in the LIMIT clause, then the final_rel can be marked |
2265 | * consider_parallel as well. Note that if the query has rowMarks or is |
2266 | * not a SELECT, consider_parallel will be false for every relation in the |
2267 | * query. |
2268 | */ |
2269 | if (current_rel->consider_parallel && |
2270 | is_parallel_safe(root, parse->limitOffset) && |
2271 | is_parallel_safe(root, parse->limitCount)) |
2272 | final_rel->consider_parallel = true; |
2273 | |
2274 | /* |
2275 | * If the current_rel belongs to a single FDW, so does the final_rel. |
2276 | */ |
2277 | final_rel->serverid = current_rel->serverid; |
2278 | final_rel->userid = current_rel->userid; |
2279 | final_rel->useridiscurrent = current_rel->useridiscurrent; |
2280 | final_rel->fdwroutine = current_rel->fdwroutine; |
2281 | |
2282 | /* |
2283 | * Generate paths for the final_rel. Insert all surviving paths, with |
2284 | * LockRows, Limit, and/or ModifyTable steps added if needed. |
2285 | */ |
2286 | foreach(lc, current_rel->pathlist) |
2287 | { |
2288 | Path *path = (Path *) lfirst(lc); |
2289 | |
2290 | /* |
2291 | * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node. |
2292 | * (Note: we intentionally test parse->rowMarks not root->rowMarks |
2293 | * here. If there are only non-locking rowmarks, they should be |
2294 | * handled by the ModifyTable node instead. However, root->rowMarks |
2295 | * is what goes into the LockRows node.) |
2296 | */ |
2297 | if (parse->rowMarks) |
2298 | { |
2299 | path = (Path *) create_lockrows_path(root, final_rel, path, |
2300 | root->rowMarks, |
2301 | assign_special_exec_param(root)); |
2302 | } |
2303 | |
2304 | /* |
2305 | * If there is a LIMIT/OFFSET clause, add the LIMIT node. |
2306 | */ |
2307 | if (limit_needed(parse)) |
2308 | { |
2309 | path = (Path *) create_limit_path(root, final_rel, path, |
2310 | parse->limitOffset, |
2311 | parse->limitCount, |
2312 | offset_est, count_est); |
2313 | } |
2314 | |
2315 | /* |
2316 | * If this is an INSERT/UPDATE/DELETE, and we're not being called from |
2317 | * inheritance_planner, add the ModifyTable node. |
2318 | */ |
2319 | if (parse->commandType != CMD_SELECT && !inheritance_update) |
2320 | { |
2321 | Index rootRelation; |
2322 | List *withCheckOptionLists; |
2323 | List *returningLists; |
2324 | List *rowMarks; |
2325 | |
2326 | /* |
2327 | * If target is a partition root table, we need to mark the |
2328 | * ModifyTable node appropriately for that. |
2329 | */ |
2330 | if (rt_fetch(parse->resultRelation, parse->rtable)->relkind == |
2331 | RELKIND_PARTITIONED_TABLE) |
2332 | rootRelation = parse->resultRelation; |
2333 | else |
2334 | rootRelation = 0; |
2335 | |
2336 | /* |
2337 | * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if |
2338 | * needed. |
2339 | */ |
2340 | if (parse->withCheckOptions) |
2341 | withCheckOptionLists = list_make1(parse->withCheckOptions); |
2342 | else |
2343 | withCheckOptionLists = NIL; |
2344 | |
2345 | if (parse->returningList) |
2346 | returningLists = list_make1(parse->returningList); |
2347 | else |
2348 | returningLists = NIL; |
2349 | |
2350 | /* |
2351 | * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node |
2352 | * will have dealt with fetching non-locked marked rows, else we |
2353 | * need to have ModifyTable do that. |
2354 | */ |
2355 | if (parse->rowMarks) |
2356 | rowMarks = NIL; |
2357 | else |
2358 | rowMarks = root->rowMarks; |
2359 | |
2360 | path = (Path *) |
2361 | create_modifytable_path(root, final_rel, |
2362 | parse->commandType, |
2363 | parse->canSetTag, |
2364 | parse->resultRelation, |
2365 | rootRelation, |
2366 | false, |
2367 | list_make1_int(parse->resultRelation), |
2368 | list_make1(path), |
2369 | list_make1(root), |
2370 | withCheckOptionLists, |
2371 | returningLists, |
2372 | rowMarks, |
2373 | parse->onConflict, |
2374 | assign_special_exec_param(root)); |
2375 | } |
2376 | |
2377 | /* And shove it into final_rel */ |
2378 | add_path(final_rel, path); |
2379 | } |
2380 | |
2381 | /* |
2382 | * Generate partial paths for final_rel, too, if outer query levels might |
2383 | * be able to make use of them. |
2384 | */ |
2385 | if (final_rel->consider_parallel && root->query_level > 1 && |
2386 | !limit_needed(parse)) |
2387 | { |
2388 | Assert(!parse->rowMarks && parse->commandType == CMD_SELECT); |
2389 | foreach(lc, current_rel->partial_pathlist) |
2390 | { |
2391 | Path *partial_path = (Path *) lfirst(lc); |
2392 | |
2393 | add_partial_path(final_rel, partial_path); |
2394 | } |
2395 | } |
2396 | |
2397 | extra.limit_needed = limit_needed(parse); |
2398 | extra.limit_tuples = limit_tuples; |
2399 | extra.count_est = count_est; |
2400 | extra.offset_est = offset_est; |
2401 | |
2402 | /* |
2403 | * If there is an FDW that's responsible for all baserels of the query, |
2404 | * let it consider adding ForeignPaths. |
2405 | */ |
2406 | if (final_rel->fdwroutine && |
2407 | final_rel->fdwroutine->GetForeignUpperPaths) |
2408 | final_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_FINAL, |
2409 | current_rel, final_rel, |
2410 | &extra); |
2411 | |
2412 | /* Let extensions possibly add some more paths */ |
2413 | if (create_upper_paths_hook) |
2414 | (*create_upper_paths_hook) (root, UPPERREL_FINAL, |
2415 | current_rel, final_rel, &extra); |
2416 | |
2417 | /* Note: currently, we leave it to callers to do set_cheapest() */ |
2418 | } |
2419 | |
2420 | /* |
2421 | * Do preprocessing for groupingSets clause and related data. This handles the |
2422 | * preliminary steps of expanding the grouping sets, organizing them into lists |
2423 | * of rollups, and preparing annotations which will later be filled in with |
2424 | * size estimates. |
2425 | */ |
2426 | static grouping_sets_data * |
2427 | preprocess_grouping_sets(PlannerInfo *root) |
2428 | { |
2429 | Query *parse = root->parse; |
2430 | List *sets; |
2431 | int maxref = 0; |
2432 | ListCell *lc; |
2433 | ListCell *lc_set; |
2434 | grouping_sets_data *gd = palloc0(sizeof(grouping_sets_data)); |
2435 | |
2436 | parse->groupingSets = expand_grouping_sets(parse->groupingSets, -1); |
2437 | |
2438 | gd->any_hashable = false; |
2439 | gd->unhashable_refs = NULL; |
2440 | gd->unsortable_refs = NULL; |
2441 | gd->unsortable_sets = NIL; |
2442 | |
2443 | if (parse->groupClause) |
2444 | { |
2445 | ListCell *lc; |
2446 | |
2447 | foreach(lc, parse->groupClause) |
2448 | { |
2449 | SortGroupClause *gc = lfirst_node(SortGroupClause, lc); |
2450 | Index ref = gc->tleSortGroupRef; |
2451 | |
2452 | if (ref > maxref) |
2453 | maxref = ref; |
2454 | |
2455 | if (!gc->hashable) |
2456 | gd->unhashable_refs = bms_add_member(gd->unhashable_refs, ref); |
2457 | |
2458 | if (!OidIsValid(gc->sortop)) |
2459 | gd->unsortable_refs = bms_add_member(gd->unsortable_refs, ref); |
2460 | } |
2461 | } |
2462 | |
2463 | /* Allocate workspace array for remapping */ |
2464 | gd->tleref_to_colnum_map = (int *) palloc((maxref + 1) * sizeof(int)); |
2465 | |
2466 | /* |
2467 | * If we have any unsortable sets, we must extract them before trying to |
2468 | * prepare rollups. Unsortable sets don't go through |
2469 | * reorder_grouping_sets, so we must apply the GroupingSetData annotation |
2470 | * here. |
2471 | */ |
2472 | if (!bms_is_empty(gd->unsortable_refs)) |
2473 | { |
2474 | List *sortable_sets = NIL; |
2475 | |
2476 | foreach(lc, parse->groupingSets) |
2477 | { |
2478 | List *gset = (List *) lfirst(lc); |
2479 | |
2480 | if (bms_overlap_list(gd->unsortable_refs, gset)) |
2481 | { |
2482 | GroupingSetData *gs = makeNode(GroupingSetData); |
2483 | |
2484 | gs->set = gset; |
2485 | gd->unsortable_sets = lappend(gd->unsortable_sets, gs); |
2486 | |
2487 | /* |
2488 | * We must enforce here that an unsortable set is hashable; |
2489 | * later code assumes this. Parse analysis only checks that |
2490 | * every individual column is either hashable or sortable. |
2491 | * |
2492 | * Note that passing this test doesn't guarantee we can |
2493 | * generate a plan; there might be other showstoppers. |
2494 | */ |
2495 | if (bms_overlap_list(gd->unhashable_refs, gset)) |
2496 | ereport(ERROR, |
2497 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
2498 | errmsg("could not implement GROUP BY" ), |
2499 | errdetail("Some of the datatypes only support hashing, while others only support sorting." ))); |
2500 | } |
2501 | else |
2502 | sortable_sets = lappend(sortable_sets, gset); |
2503 | } |
2504 | |
2505 | if (sortable_sets) |
2506 | sets = extract_rollup_sets(sortable_sets); |
2507 | else |
2508 | sets = NIL; |
2509 | } |
2510 | else |
2511 | sets = extract_rollup_sets(parse->groupingSets); |
2512 | |
2513 | foreach(lc_set, sets) |
2514 | { |
2515 | List *current_sets = (List *) lfirst(lc_set); |
2516 | RollupData *rollup = makeNode(RollupData); |
2517 | GroupingSetData *gs; |
2518 | |
2519 | /* |
2520 | * Reorder the current list of grouping sets into correct prefix |
2521 | * order. If only one aggregation pass is needed, try to make the |
2522 | * list match the ORDER BY clause; if more than one pass is needed, we |
2523 | * don't bother with that. |
2524 | * |
2525 | * Note that this reorders the sets from smallest-member-first to |
2526 | * largest-member-first, and applies the GroupingSetData annotations, |
2527 | * though the data will be filled in later. |
2528 | */ |
2529 | current_sets = reorder_grouping_sets(current_sets, |
2530 | (list_length(sets) == 1 |
2531 | ? parse->sortClause |
2532 | : NIL)); |
2533 | |
2534 | /* |
2535 | * Get the initial (and therefore largest) grouping set. |
2536 | */ |
2537 | gs = linitial_node(GroupingSetData, current_sets); |
2538 | |
2539 | /* |
2540 | * Order the groupClause appropriately. If the first grouping set is |
2541 | * empty, then the groupClause must also be empty; otherwise we have |
2542 | * to force the groupClause to match that grouping set's order. |
2543 | * |
2544 | * (The first grouping set can be empty even though parse->groupClause |
2545 | * is not empty only if all non-empty grouping sets are unsortable. |
2546 | * The groupClauses for hashed grouping sets are built later on.) |
2547 | */ |
2548 | if (gs->set) |
2549 | rollup->groupClause = preprocess_groupclause(root, gs->set); |
2550 | else |
2551 | rollup->groupClause = NIL; |
2552 | |
2553 | /* |
2554 | * Is it hashable? We pretend empty sets are hashable even though we |
2555 | * actually force them not to be hashed later. But don't bother if |
2556 | * there's nothing but empty sets (since in that case we can't hash |
2557 | * anything). |
2558 | */ |
2559 | if (gs->set && |
2560 | !bms_overlap_list(gd->unhashable_refs, gs->set)) |
2561 | { |
2562 | rollup->hashable = true; |
2563 | gd->any_hashable = true; |
2564 | } |
2565 | |
2566 | /* |
2567 | * Now that we've pinned down an order for the groupClause for this |
2568 | * list of grouping sets, we need to remap the entries in the grouping |
2569 | * sets from sortgrouprefs to plain indices (0-based) into the |
2570 | * groupClause for this collection of grouping sets. We keep the |
2571 | * original form for later use, though. |
2572 | */ |
2573 | rollup->gsets = remap_to_groupclause_idx(rollup->groupClause, |
2574 | current_sets, |
2575 | gd->tleref_to_colnum_map); |
2576 | rollup->gsets_data = current_sets; |
2577 | |
2578 | gd->rollups = lappend(gd->rollups, rollup); |
2579 | } |
2580 | |
2581 | if (gd->unsortable_sets) |
2582 | { |
2583 | /* |
2584 | * We have not yet pinned down a groupclause for this, but we will |
2585 | * need index-based lists for estimation purposes. Construct |
2586 | * hash_sets_idx based on the entire original groupclause for now. |
2587 | */ |
2588 | gd->hash_sets_idx = remap_to_groupclause_idx(parse->groupClause, |
2589 | gd->unsortable_sets, |
2590 | gd->tleref_to_colnum_map); |
2591 | gd->any_hashable = true; |
2592 | } |
2593 | |
2594 | return gd; |
2595 | } |
2596 | |
2597 | /* |
2598 | * Given a groupclause and a list of GroupingSetData, return equivalent sets |
2599 | * (without annotation) mapped to indexes into the given groupclause. |
2600 | */ |
2601 | static List * |
2602 | remap_to_groupclause_idx(List *groupClause, |
2603 | List *gsets, |
2604 | int *tleref_to_colnum_map) |
2605 | { |
2606 | int ref = 0; |
2607 | List *result = NIL; |
2608 | ListCell *lc; |
2609 | |
2610 | foreach(lc, groupClause) |
2611 | { |
2612 | SortGroupClause *gc = lfirst_node(SortGroupClause, lc); |
2613 | |
2614 | tleref_to_colnum_map[gc->tleSortGroupRef] = ref++; |
2615 | } |
2616 | |
2617 | foreach(lc, gsets) |
2618 | { |
2619 | List *set = NIL; |
2620 | ListCell *lc2; |
2621 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc); |
2622 | |
2623 | foreach(lc2, gs->set) |
2624 | { |
2625 | set = lappend_int(set, tleref_to_colnum_map[lfirst_int(lc2)]); |
2626 | } |
2627 | |
2628 | result = lappend(result, set); |
2629 | } |
2630 | |
2631 | return result; |
2632 | } |
2633 | |
2634 | |
2635 | /* |
2636 | * preprocess_rowmarks - set up PlanRowMarks if needed |
2637 | */ |
2638 | static void |
2639 | preprocess_rowmarks(PlannerInfo *root) |
2640 | { |
2641 | Query *parse = root->parse; |
2642 | Bitmapset *rels; |
2643 | List *prowmarks; |
2644 | ListCell *l; |
2645 | int i; |
2646 | |
2647 | if (parse->rowMarks) |
2648 | { |
2649 | /* |
2650 | * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside |
2651 | * grouping, since grouping renders a reference to individual tuple |
2652 | * CTIDs invalid. This is also checked at parse time, but that's |
2653 | * insufficient because of rule substitution, query pullup, etc. |
2654 | */ |
2655 | CheckSelectLocking(parse, linitial_node(RowMarkClause, |
2656 | parse->rowMarks)->strength); |
2657 | } |
2658 | else |
2659 | { |
2660 | /* |
2661 | * We only need rowmarks for UPDATE, DELETE, or FOR [KEY] |
2662 | * UPDATE/SHARE. |
2663 | */ |
2664 | if (parse->commandType != CMD_UPDATE && |
2665 | parse->commandType != CMD_DELETE) |
2666 | return; |
2667 | } |
2668 | |
2669 | /* |
2670 | * We need to have rowmarks for all base relations except the target. We |
2671 | * make a bitmapset of all base rels and then remove the items we don't |
2672 | * need or have FOR [KEY] UPDATE/SHARE marks for. |
2673 | */ |
2674 | rels = get_relids_in_jointree((Node *) parse->jointree, false); |
2675 | if (parse->resultRelation) |
2676 | rels = bms_del_member(rels, parse->resultRelation); |
2677 | |
2678 | /* |
2679 | * Convert RowMarkClauses to PlanRowMark representation. |
2680 | */ |
2681 | prowmarks = NIL; |
2682 | foreach(l, parse->rowMarks) |
2683 | { |
2684 | RowMarkClause *rc = lfirst_node(RowMarkClause, l); |
2685 | RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable); |
2686 | PlanRowMark *newrc; |
2687 | |
2688 | /* |
2689 | * Currently, it is syntactically impossible to have FOR UPDATE et al |
2690 | * applied to an update/delete target rel. If that ever becomes |
2691 | * possible, we should drop the target from the PlanRowMark list. |
2692 | */ |
2693 | Assert(rc->rti != parse->resultRelation); |
2694 | |
2695 | /* |
2696 | * Ignore RowMarkClauses for subqueries; they aren't real tables and |
2697 | * can't support true locking. Subqueries that got flattened into the |
2698 | * main query should be ignored completely. Any that didn't will get |
2699 | * ROW_MARK_COPY items in the next loop. |
2700 | */ |
2701 | if (rte->rtekind != RTE_RELATION) |
2702 | continue; |
2703 | |
2704 | rels = bms_del_member(rels, rc->rti); |
2705 | |
2706 | newrc = makeNode(PlanRowMark); |
2707 | newrc->rti = newrc->prti = rc->rti; |
2708 | newrc->rowmarkId = ++(root->glob->lastRowMarkId); |
2709 | newrc->markType = select_rowmark_type(rte, rc->strength); |
2710 | newrc->allMarkTypes = (1 << newrc->markType); |
2711 | newrc->strength = rc->strength; |
2712 | newrc->waitPolicy = rc->waitPolicy; |
2713 | newrc->isParent = false; |
2714 | |
2715 | prowmarks = lappend(prowmarks, newrc); |
2716 | } |
2717 | |
2718 | /* |
2719 | * Now, add rowmarks for any non-target, non-locked base relations. |
2720 | */ |
2721 | i = 0; |
2722 | foreach(l, parse->rtable) |
2723 | { |
2724 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, l); |
2725 | PlanRowMark *newrc; |
2726 | |
2727 | i++; |
2728 | if (!bms_is_member(i, rels)) |
2729 | continue; |
2730 | |
2731 | newrc = makeNode(PlanRowMark); |
2732 | newrc->rti = newrc->prti = i; |
2733 | newrc->rowmarkId = ++(root->glob->lastRowMarkId); |
2734 | newrc->markType = select_rowmark_type(rte, LCS_NONE); |
2735 | newrc->allMarkTypes = (1 << newrc->markType); |
2736 | newrc->strength = LCS_NONE; |
2737 | newrc->waitPolicy = LockWaitBlock; /* doesn't matter */ |
2738 | newrc->isParent = false; |
2739 | |
2740 | prowmarks = lappend(prowmarks, newrc); |
2741 | } |
2742 | |
2743 | root->rowMarks = prowmarks; |
2744 | } |
2745 | |
2746 | /* |
2747 | * Select RowMarkType to use for a given table |
2748 | */ |
2749 | RowMarkType |
2750 | select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength) |
2751 | { |
2752 | if (rte->rtekind != RTE_RELATION) |
2753 | { |
2754 | /* If it's not a table at all, use ROW_MARK_COPY */ |
2755 | return ROW_MARK_COPY; |
2756 | } |
2757 | else if (rte->relkind == RELKIND_FOREIGN_TABLE) |
2758 | { |
2759 | /* Let the FDW select the rowmark type, if it wants to */ |
2760 | FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid); |
2761 | |
2762 | if (fdwroutine->GetForeignRowMarkType != NULL) |
2763 | return fdwroutine->GetForeignRowMarkType(rte, strength); |
2764 | /* Otherwise, use ROW_MARK_COPY by default */ |
2765 | return ROW_MARK_COPY; |
2766 | } |
2767 | else |
2768 | { |
2769 | /* Regular table, apply the appropriate lock type */ |
2770 | switch (strength) |
2771 | { |
2772 | case LCS_NONE: |
2773 | |
2774 | /* |
2775 | * We don't need a tuple lock, only the ability to re-fetch |
2776 | * the row. |
2777 | */ |
2778 | return ROW_MARK_REFERENCE; |
2779 | break; |
2780 | case LCS_FORKEYSHARE: |
2781 | return ROW_MARK_KEYSHARE; |
2782 | break; |
2783 | case LCS_FORSHARE: |
2784 | return ROW_MARK_SHARE; |
2785 | break; |
2786 | case LCS_FORNOKEYUPDATE: |
2787 | return ROW_MARK_NOKEYEXCLUSIVE; |
2788 | break; |
2789 | case LCS_FORUPDATE: |
2790 | return ROW_MARK_EXCLUSIVE; |
2791 | break; |
2792 | } |
2793 | elog(ERROR, "unrecognized LockClauseStrength %d" , (int) strength); |
2794 | return ROW_MARK_EXCLUSIVE; /* keep compiler quiet */ |
2795 | } |
2796 | } |
2797 | |
2798 | /* |
2799 | * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses |
2800 | * |
2801 | * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the |
2802 | * results back in *count_est and *offset_est. These variables are set to |
2803 | * 0 if the corresponding clause is not present, and -1 if it's present |
2804 | * but we couldn't estimate the value for it. (The "0" convention is OK |
2805 | * for OFFSET but a little bit bogus for LIMIT: effectively we estimate |
2806 | * LIMIT 0 as though it were LIMIT 1. But this is in line with the planner's |
2807 | * usual practice of never estimating less than one row.) These values will |
2808 | * be passed to create_limit_path, which see if you change this code. |
2809 | * |
2810 | * The return value is the suitably adjusted tuple_fraction to use for |
2811 | * planning the query. This adjustment is not overridable, since it reflects |
2812 | * plan actions that grouping_planner() will certainly take, not assumptions |
2813 | * about context. |
2814 | */ |
2815 | static double |
2816 | preprocess_limit(PlannerInfo *root, double tuple_fraction, |
2817 | int64 *offset_est, int64 *count_est) |
2818 | { |
2819 | Query *parse = root->parse; |
2820 | Node *est; |
2821 | double limit_fraction; |
2822 | |
2823 | /* Should not be called unless LIMIT or OFFSET */ |
2824 | Assert(parse->limitCount || parse->limitOffset); |
2825 | |
2826 | /* |
2827 | * Try to obtain the clause values. We use estimate_expression_value |
2828 | * primarily because it can sometimes do something useful with Params. |
2829 | */ |
2830 | if (parse->limitCount) |
2831 | { |
2832 | est = estimate_expression_value(root, parse->limitCount); |
2833 | if (est && IsA(est, Const)) |
2834 | { |
2835 | if (((Const *) est)->constisnull) |
2836 | { |
2837 | /* NULL indicates LIMIT ALL, ie, no limit */ |
2838 | *count_est = 0; /* treat as not present */ |
2839 | } |
2840 | else |
2841 | { |
2842 | *count_est = DatumGetInt64(((Const *) est)->constvalue); |
2843 | if (*count_est <= 0) |
2844 | *count_est = 1; /* force to at least 1 */ |
2845 | } |
2846 | } |
2847 | else |
2848 | *count_est = -1; /* can't estimate */ |
2849 | } |
2850 | else |
2851 | *count_est = 0; /* not present */ |
2852 | |
2853 | if (parse->limitOffset) |
2854 | { |
2855 | est = estimate_expression_value(root, parse->limitOffset); |
2856 | if (est && IsA(est, Const)) |
2857 | { |
2858 | if (((Const *) est)->constisnull) |
2859 | { |
2860 | /* Treat NULL as no offset; the executor will too */ |
2861 | *offset_est = 0; /* treat as not present */ |
2862 | } |
2863 | else |
2864 | { |
2865 | *offset_est = DatumGetInt64(((Const *) est)->constvalue); |
2866 | if (*offset_est < 0) |
2867 | *offset_est = 0; /* treat as not present */ |
2868 | } |
2869 | } |
2870 | else |
2871 | *offset_est = -1; /* can't estimate */ |
2872 | } |
2873 | else |
2874 | *offset_est = 0; /* not present */ |
2875 | |
2876 | if (*count_est != 0) |
2877 | { |
2878 | /* |
2879 | * A LIMIT clause limits the absolute number of tuples returned. |
2880 | * However, if it's not a constant LIMIT then we have to guess; for |
2881 | * lack of a better idea, assume 10% of the plan's result is wanted. |
2882 | */ |
2883 | if (*count_est < 0 || *offset_est < 0) |
2884 | { |
2885 | /* LIMIT or OFFSET is an expression ... punt ... */ |
2886 | limit_fraction = 0.10; |
2887 | } |
2888 | else |
2889 | { |
2890 | /* LIMIT (plus OFFSET, if any) is max number of tuples needed */ |
2891 | limit_fraction = (double) *count_est + (double) *offset_est; |
2892 | } |
2893 | |
2894 | /* |
2895 | * If we have absolute limits from both caller and LIMIT, use the |
2896 | * smaller value; likewise if they are both fractional. If one is |
2897 | * fractional and the other absolute, we can't easily determine which |
2898 | * is smaller, but we use the heuristic that the absolute will usually |
2899 | * be smaller. |
2900 | */ |
2901 | if (tuple_fraction >= 1.0) |
2902 | { |
2903 | if (limit_fraction >= 1.0) |
2904 | { |
2905 | /* both absolute */ |
2906 | tuple_fraction = Min(tuple_fraction, limit_fraction); |
2907 | } |
2908 | else |
2909 | { |
2910 | /* caller absolute, limit fractional; use caller's value */ |
2911 | } |
2912 | } |
2913 | else if (tuple_fraction > 0.0) |
2914 | { |
2915 | if (limit_fraction >= 1.0) |
2916 | { |
2917 | /* caller fractional, limit absolute; use limit */ |
2918 | tuple_fraction = limit_fraction; |
2919 | } |
2920 | else |
2921 | { |
2922 | /* both fractional */ |
2923 | tuple_fraction = Min(tuple_fraction, limit_fraction); |
2924 | } |
2925 | } |
2926 | else |
2927 | { |
2928 | /* no info from caller, just use limit */ |
2929 | tuple_fraction = limit_fraction; |
2930 | } |
2931 | } |
2932 | else if (*offset_est != 0 && tuple_fraction > 0.0) |
2933 | { |
2934 | /* |
2935 | * We have an OFFSET but no LIMIT. This acts entirely differently |
2936 | * from the LIMIT case: here, we need to increase rather than decrease |
2937 | * the caller's tuple_fraction, because the OFFSET acts to cause more |
2938 | * tuples to be fetched instead of fewer. This only matters if we got |
2939 | * a tuple_fraction > 0, however. |
2940 | * |
2941 | * As above, use 10% if OFFSET is present but unestimatable. |
2942 | */ |
2943 | if (*offset_est < 0) |
2944 | limit_fraction = 0.10; |
2945 | else |
2946 | limit_fraction = (double) *offset_est; |
2947 | |
2948 | /* |
2949 | * If we have absolute counts from both caller and OFFSET, add them |
2950 | * together; likewise if they are both fractional. If one is |
2951 | * fractional and the other absolute, we want to take the larger, and |
2952 | * we heuristically assume that's the fractional one. |
2953 | */ |
2954 | if (tuple_fraction >= 1.0) |
2955 | { |
2956 | if (limit_fraction >= 1.0) |
2957 | { |
2958 | /* both absolute, so add them together */ |
2959 | tuple_fraction += limit_fraction; |
2960 | } |
2961 | else |
2962 | { |
2963 | /* caller absolute, limit fractional; use limit */ |
2964 | tuple_fraction = limit_fraction; |
2965 | } |
2966 | } |
2967 | else |
2968 | { |
2969 | if (limit_fraction >= 1.0) |
2970 | { |
2971 | /* caller fractional, limit absolute; use caller's value */ |
2972 | } |
2973 | else |
2974 | { |
2975 | /* both fractional, so add them together */ |
2976 | tuple_fraction += limit_fraction; |
2977 | if (tuple_fraction >= 1.0) |
2978 | tuple_fraction = 0.0; /* assume fetch all */ |
2979 | } |
2980 | } |
2981 | } |
2982 | |
2983 | return tuple_fraction; |
2984 | } |
2985 | |
2986 | /* |
2987 | * limit_needed - do we actually need a Limit plan node? |
2988 | * |
2989 | * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding |
2990 | * a Limit node. This is worth checking for because "OFFSET 0" is a common |
2991 | * locution for an optimization fence. (Because other places in the planner |
2992 | * merely check whether parse->limitOffset isn't NULL, it will still work as |
2993 | * an optimization fence --- we're just suppressing unnecessary run-time |
2994 | * overhead.) |
2995 | * |
2996 | * This might look like it could be merged into preprocess_limit, but there's |
2997 | * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas |
2998 | * in preprocess_limit it's good enough to consider estimated values. |
2999 | */ |
3000 | bool |
3001 | limit_needed(Query *parse) |
3002 | { |
3003 | Node *node; |
3004 | |
3005 | node = parse->limitCount; |
3006 | if (node) |
3007 | { |
3008 | if (IsA(node, Const)) |
3009 | { |
3010 | /* NULL indicates LIMIT ALL, ie, no limit */ |
3011 | if (!((Const *) node)->constisnull) |
3012 | return true; /* LIMIT with a constant value */ |
3013 | } |
3014 | else |
3015 | return true; /* non-constant LIMIT */ |
3016 | } |
3017 | |
3018 | node = parse->limitOffset; |
3019 | if (node) |
3020 | { |
3021 | if (IsA(node, Const)) |
3022 | { |
3023 | /* Treat NULL as no offset; the executor would too */ |
3024 | if (!((Const *) node)->constisnull) |
3025 | { |
3026 | int64 offset = DatumGetInt64(((Const *) node)->constvalue); |
3027 | |
3028 | if (offset != 0) |
3029 | return true; /* OFFSET with a nonzero value */ |
3030 | } |
3031 | } |
3032 | else |
3033 | return true; /* non-constant OFFSET */ |
3034 | } |
3035 | |
3036 | return false; /* don't need a Limit plan node */ |
3037 | } |
3038 | |
3039 | |
3040 | /* |
3041 | * remove_useless_groupby_columns |
3042 | * Remove any columns in the GROUP BY clause that are redundant due to |
3043 | * being functionally dependent on other GROUP BY columns. |
3044 | * |
3045 | * Since some other DBMSes do not allow references to ungrouped columns, it's |
3046 | * not unusual to find all columns listed in GROUP BY even though listing the |
3047 | * primary-key columns would be sufficient. Deleting such excess columns |
3048 | * avoids redundant sorting work, so it's worth doing. When we do this, we |
3049 | * must mark the plan as dependent on the pkey constraint (compare the |
3050 | * parser's check_ungrouped_columns() and check_functional_grouping()). |
3051 | * |
3052 | * In principle, we could treat any NOT-NULL columns appearing in a UNIQUE |
3053 | * index as the determining columns. But as with check_functional_grouping(), |
3054 | * there's currently no way to represent dependency on a NOT NULL constraint, |
3055 | * so we consider only the pkey for now. |
3056 | */ |
3057 | static void |
3058 | remove_useless_groupby_columns(PlannerInfo *root) |
3059 | { |
3060 | Query *parse = root->parse; |
3061 | Bitmapset **groupbyattnos; |
3062 | Bitmapset **surplusvars; |
3063 | ListCell *lc; |
3064 | int relid; |
3065 | |
3066 | /* No chance to do anything if there are less than two GROUP BY items */ |
3067 | if (list_length(parse->groupClause) < 2) |
3068 | return; |
3069 | |
3070 | /* Don't fiddle with the GROUP BY clause if the query has grouping sets */ |
3071 | if (parse->groupingSets) |
3072 | return; |
3073 | |
3074 | /* |
3075 | * Scan the GROUP BY clause to find GROUP BY items that are simple Vars. |
3076 | * Fill groupbyattnos[k] with a bitmapset of the column attnos of RTE k |
3077 | * that are GROUP BY items. |
3078 | */ |
3079 | groupbyattnos = (Bitmapset **) palloc0(sizeof(Bitmapset *) * |
3080 | (list_length(parse->rtable) + 1)); |
3081 | foreach(lc, parse->groupClause) |
3082 | { |
3083 | SortGroupClause *sgc = lfirst_node(SortGroupClause, lc); |
3084 | TargetEntry *tle = get_sortgroupclause_tle(sgc, parse->targetList); |
3085 | Var *var = (Var *) tle->expr; |
3086 | |
3087 | /* |
3088 | * Ignore non-Vars and Vars from other query levels. |
3089 | * |
3090 | * XXX in principle, stable expressions containing Vars could also be |
3091 | * removed, if all the Vars are functionally dependent on other GROUP |
3092 | * BY items. But it's not clear that such cases occur often enough to |
3093 | * be worth troubling over. |
3094 | */ |
3095 | if (!IsA(var, Var) || |
3096 | var->varlevelsup > 0) |
3097 | continue; |
3098 | |
3099 | /* OK, remember we have this Var */ |
3100 | relid = var->varno; |
3101 | Assert(relid <= list_length(parse->rtable)); |
3102 | groupbyattnos[relid] = bms_add_member(groupbyattnos[relid], |
3103 | var->varattno - FirstLowInvalidHeapAttributeNumber); |
3104 | } |
3105 | |
3106 | /* |
3107 | * Consider each relation and see if it is possible to remove some of its |
3108 | * Vars from GROUP BY. For simplicity and speed, we do the actual removal |
3109 | * in a separate pass. Here, we just fill surplusvars[k] with a bitmapset |
3110 | * of the column attnos of RTE k that are removable GROUP BY items. |
3111 | */ |
3112 | surplusvars = NULL; /* don't allocate array unless required */ |
3113 | relid = 0; |
3114 | foreach(lc, parse->rtable) |
3115 | { |
3116 | RangeTblEntry *rte = lfirst_node(RangeTblEntry, lc); |
3117 | Bitmapset *relattnos; |
3118 | Bitmapset *pkattnos; |
3119 | Oid constraintOid; |
3120 | |
3121 | relid++; |
3122 | |
3123 | /* Only plain relations could have primary-key constraints */ |
3124 | if (rte->rtekind != RTE_RELATION) |
3125 | continue; |
3126 | |
3127 | /* |
3128 | * We must skip inheritance parent tables as some of the child rels |
3129 | * may cause duplicate rows. This cannot happen with partitioned |
3130 | * tables, however. |
3131 | */ |
3132 | if (rte->inh && rte->relkind != RELKIND_PARTITIONED_TABLE) |
3133 | continue; |
3134 | |
3135 | /* Nothing to do unless this rel has multiple Vars in GROUP BY */ |
3136 | relattnos = groupbyattnos[relid]; |
3137 | if (bms_membership(relattnos) != BMS_MULTIPLE) |
3138 | continue; |
3139 | |
3140 | /* |
3141 | * Can't remove any columns for this rel if there is no suitable |
3142 | * (i.e., nondeferrable) primary key constraint. |
3143 | */ |
3144 | pkattnos = get_primary_key_attnos(rte->relid, false, &constraintOid); |
3145 | if (pkattnos == NULL) |
3146 | continue; |
3147 | |
3148 | /* |
3149 | * If the primary key is a proper subset of relattnos then we have |
3150 | * some items in the GROUP BY that can be removed. |
3151 | */ |
3152 | if (bms_subset_compare(pkattnos, relattnos) == BMS_SUBSET1) |
3153 | { |
3154 | /* |
3155 | * To easily remember whether we've found anything to do, we don't |
3156 | * allocate the surplusvars[] array until we find something. |
3157 | */ |
3158 | if (surplusvars == NULL) |
3159 | surplusvars = (Bitmapset **) palloc0(sizeof(Bitmapset *) * |
3160 | (list_length(parse->rtable) + 1)); |
3161 | |
3162 | /* Remember the attnos of the removable columns */ |
3163 | surplusvars[relid] = bms_difference(relattnos, pkattnos); |
3164 | |
3165 | /* Also, mark the resulting plan as dependent on this constraint */ |
3166 | parse->constraintDeps = lappend_oid(parse->constraintDeps, |
3167 | constraintOid); |
3168 | } |
3169 | } |
3170 | |
3171 | /* |
3172 | * If we found any surplus Vars, build a new GROUP BY clause without them. |
3173 | * (Note: this may leave some TLEs with unreferenced ressortgroupref |
3174 | * markings, but that's harmless.) |
3175 | */ |
3176 | if (surplusvars != NULL) |
3177 | { |
3178 | List *new_groupby = NIL; |
3179 | |
3180 | foreach(lc, parse->groupClause) |
3181 | { |
3182 | SortGroupClause *sgc = lfirst_node(SortGroupClause, lc); |
3183 | TargetEntry *tle = get_sortgroupclause_tle(sgc, parse->targetList); |
3184 | Var *var = (Var *) tle->expr; |
3185 | |
3186 | /* |
3187 | * New list must include non-Vars, outer Vars, and anything not |
3188 | * marked as surplus. |
3189 | */ |
3190 | if (!IsA(var, Var) || |
3191 | var->varlevelsup > 0 || |
3192 | !bms_is_member(var->varattno - FirstLowInvalidHeapAttributeNumber, |
3193 | surplusvars[var->varno])) |
3194 | new_groupby = lappend(new_groupby, sgc); |
3195 | } |
3196 | |
3197 | parse->groupClause = new_groupby; |
3198 | } |
3199 | } |
3200 | |
3201 | /* |
3202 | * preprocess_groupclause - do preparatory work on GROUP BY clause |
3203 | * |
3204 | * The idea here is to adjust the ordering of the GROUP BY elements |
3205 | * (which in itself is semantically insignificant) to match ORDER BY, |
3206 | * thereby allowing a single sort operation to both implement the ORDER BY |
3207 | * requirement and set up for a Unique step that implements GROUP BY. |
3208 | * |
3209 | * In principle it might be interesting to consider other orderings of the |
3210 | * GROUP BY elements, which could match the sort ordering of other |
3211 | * possible plans (eg an indexscan) and thereby reduce cost. We don't |
3212 | * bother with that, though. Hashed grouping will frequently win anyway. |
3213 | * |
3214 | * Note: we need no comparable processing of the distinctClause because |
3215 | * the parser already enforced that that matches ORDER BY. |
3216 | * |
3217 | * For grouping sets, the order of items is instead forced to agree with that |
3218 | * of the grouping set (and items not in the grouping set are skipped). The |
3219 | * work of sorting the order of grouping set elements to match the ORDER BY if |
3220 | * possible is done elsewhere. |
3221 | */ |
3222 | static List * |
3223 | preprocess_groupclause(PlannerInfo *root, List *force) |
3224 | { |
3225 | Query *parse = root->parse; |
3226 | List *new_groupclause = NIL; |
3227 | bool partial_match; |
3228 | ListCell *sl; |
3229 | ListCell *gl; |
3230 | |
3231 | /* For grouping sets, we need to force the ordering */ |
3232 | if (force) |
3233 | { |
3234 | foreach(sl, force) |
3235 | { |
3236 | Index ref = lfirst_int(sl); |
3237 | SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause); |
3238 | |
3239 | new_groupclause = lappend(new_groupclause, cl); |
3240 | } |
3241 | |
3242 | return new_groupclause; |
3243 | } |
3244 | |
3245 | /* If no ORDER BY, nothing useful to do here */ |
3246 | if (parse->sortClause == NIL) |
3247 | return parse->groupClause; |
3248 | |
3249 | /* |
3250 | * Scan the ORDER BY clause and construct a list of matching GROUP BY |
3251 | * items, but only as far as we can make a matching prefix. |
3252 | * |
3253 | * This code assumes that the sortClause contains no duplicate items. |
3254 | */ |
3255 | foreach(sl, parse->sortClause) |
3256 | { |
3257 | SortGroupClause *sc = lfirst_node(SortGroupClause, sl); |
3258 | |
3259 | foreach(gl, parse->groupClause) |
3260 | { |
3261 | SortGroupClause *gc = lfirst_node(SortGroupClause, gl); |
3262 | |
3263 | if (equal(gc, sc)) |
3264 | { |
3265 | new_groupclause = lappend(new_groupclause, gc); |
3266 | break; |
3267 | } |
3268 | } |
3269 | if (gl == NULL) |
3270 | break; /* no match, so stop scanning */ |
3271 | } |
3272 | |
3273 | /* Did we match all of the ORDER BY list, or just some of it? */ |
3274 | partial_match = (sl != NULL); |
3275 | |
3276 | /* If no match at all, no point in reordering GROUP BY */ |
3277 | if (new_groupclause == NIL) |
3278 | return parse->groupClause; |
3279 | |
3280 | /* |
3281 | * Add any remaining GROUP BY items to the new list, but only if we were |
3282 | * able to make a complete match. In other words, we only rearrange the |
3283 | * GROUP BY list if the result is that one list is a prefix of the other |
3284 | * --- otherwise there's no possibility of a common sort. Also, give up |
3285 | * if there are any non-sortable GROUP BY items, since then there's no |
3286 | * hope anyway. |
3287 | */ |
3288 | foreach(gl, parse->groupClause) |
3289 | { |
3290 | SortGroupClause *gc = lfirst_node(SortGroupClause, gl); |
3291 | |
3292 | if (list_member_ptr(new_groupclause, gc)) |
3293 | continue; /* it matched an ORDER BY item */ |
3294 | if (partial_match) |
3295 | return parse->groupClause; /* give up, no common sort possible */ |
3296 | if (!OidIsValid(gc->sortop)) |
3297 | return parse->groupClause; /* give up, GROUP BY can't be sorted */ |
3298 | new_groupclause = lappend(new_groupclause, gc); |
3299 | } |
3300 | |
3301 | /* Success --- install the rearranged GROUP BY list */ |
3302 | Assert(list_length(parse->groupClause) == list_length(new_groupclause)); |
3303 | return new_groupclause; |
3304 | } |
3305 | |
3306 | /* |
3307 | * Extract lists of grouping sets that can be implemented using a single |
3308 | * rollup-type aggregate pass each. Returns a list of lists of grouping sets. |
3309 | * |
3310 | * Input must be sorted with smallest sets first. Result has each sublist |
3311 | * sorted with smallest sets first. |
3312 | * |
3313 | * We want to produce the absolute minimum possible number of lists here to |
3314 | * avoid excess sorts. Fortunately, there is an algorithm for this; the problem |
3315 | * of finding the minimal partition of a partially-ordered set into chains |
3316 | * (which is what we need, taking the list of grouping sets as a poset ordered |
3317 | * by set inclusion) can be mapped to the problem of finding the maximum |
3318 | * cardinality matching on a bipartite graph, which is solvable in polynomial |
3319 | * time with a worst case of no worse than O(n^2.5) and usually much |
3320 | * better. Since our N is at most 4096, we don't need to consider fallbacks to |
3321 | * heuristic or approximate methods. (Planning time for a 12-d cube is under |
3322 | * half a second on my modest system even with optimization off and assertions |
3323 | * on.) |
3324 | */ |
3325 | static List * |
3326 | (List *groupingSets) |
3327 | { |
3328 | int num_sets_raw = list_length(groupingSets); |
3329 | int num_empty = 0; |
3330 | int num_sets = 0; /* distinct sets */ |
3331 | int num_chains = 0; |
3332 | List *result = NIL; |
3333 | List **results; |
3334 | List **orig_sets; |
3335 | Bitmapset **set_masks; |
3336 | int *chains; |
3337 | short **adjacency; |
3338 | short *adjacency_buf; |
3339 | BipartiteMatchState *state; |
3340 | int i; |
3341 | int j; |
3342 | int j_size; |
3343 | ListCell *lc1 = list_head(groupingSets); |
3344 | ListCell *lc; |
3345 | |
3346 | /* |
3347 | * Start by stripping out empty sets. The algorithm doesn't require this, |
3348 | * but the planner currently needs all empty sets to be returned in the |
3349 | * first list, so we strip them here and add them back after. |
3350 | */ |
3351 | while (lc1 && lfirst(lc1) == NIL) |
3352 | { |
3353 | ++num_empty; |
3354 | lc1 = lnext(lc1); |
3355 | } |
3356 | |
3357 | /* bail out now if it turns out that all we had were empty sets. */ |
3358 | if (!lc1) |
3359 | return list_make1(groupingSets); |
3360 | |
3361 | /*---------- |
3362 | * We don't strictly need to remove duplicate sets here, but if we don't, |
3363 | * they tend to become scattered through the result, which is a bit |
3364 | * confusing (and irritating if we ever decide to optimize them out). |
3365 | * So we remove them here and add them back after. |
3366 | * |
3367 | * For each non-duplicate set, we fill in the following: |
3368 | * |
3369 | * orig_sets[i] = list of the original set lists |
3370 | * set_masks[i] = bitmapset for testing inclusion |
3371 | * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices |
3372 | * |
3373 | * chains[i] will be the result group this set is assigned to. |
3374 | * |
3375 | * We index all of these from 1 rather than 0 because it is convenient |
3376 | * to leave 0 free for the NIL node in the graph algorithm. |
3377 | *---------- |
3378 | */ |
3379 | orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *)); |
3380 | set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *)); |
3381 | adjacency = palloc0((num_sets_raw + 1) * sizeof(short *)); |
3382 | adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short)); |
3383 | |
3384 | j_size = 0; |
3385 | j = 0; |
3386 | i = 1; |
3387 | |
3388 | for_each_cell(lc, lc1) |
3389 | { |
3390 | List *candidate = (List *) lfirst(lc); |
3391 | Bitmapset *candidate_set = NULL; |
3392 | ListCell *lc2; |
3393 | int dup_of = 0; |
3394 | |
3395 | foreach(lc2, candidate) |
3396 | { |
3397 | candidate_set = bms_add_member(candidate_set, lfirst_int(lc2)); |
3398 | } |
3399 | |
3400 | /* we can only be a dup if we're the same length as a previous set */ |
3401 | if (j_size == list_length(candidate)) |
3402 | { |
3403 | int k; |
3404 | |
3405 | for (k = j; k < i; ++k) |
3406 | { |
3407 | if (bms_equal(set_masks[k], candidate_set)) |
3408 | { |
3409 | dup_of = k; |
3410 | break; |
3411 | } |
3412 | } |
3413 | } |
3414 | else if (j_size < list_length(candidate)) |
3415 | { |
3416 | j_size = list_length(candidate); |
3417 | j = i; |
3418 | } |
3419 | |
3420 | if (dup_of > 0) |
3421 | { |
3422 | orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate); |
3423 | bms_free(candidate_set); |
3424 | } |
3425 | else |
3426 | { |
3427 | int k; |
3428 | int n_adj = 0; |
3429 | |
3430 | orig_sets[i] = list_make1(candidate); |
3431 | set_masks[i] = candidate_set; |
3432 | |
3433 | /* fill in adjacency list; no need to compare equal-size sets */ |
3434 | |
3435 | for (k = j - 1; k > 0; --k) |
3436 | { |
3437 | if (bms_is_subset(set_masks[k], candidate_set)) |
3438 | adjacency_buf[++n_adj] = k; |
3439 | } |
3440 | |
3441 | if (n_adj > 0) |
3442 | { |
3443 | adjacency_buf[0] = n_adj; |
3444 | adjacency[i] = palloc((n_adj + 1) * sizeof(short)); |
3445 | memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short)); |
3446 | } |
3447 | else |
3448 | adjacency[i] = NULL; |
3449 | |
3450 | ++i; |
3451 | } |
3452 | } |
3453 | |
3454 | num_sets = i - 1; |
3455 | |
3456 | /* |
3457 | * Apply the graph matching algorithm to do the work. |
3458 | */ |
3459 | state = BipartiteMatch(num_sets, num_sets, adjacency); |
3460 | |
3461 | /* |
3462 | * Now, the state->pair* fields have the info we need to assign sets to |
3463 | * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or |
3464 | * pair_vu[v] = u (both will be true, but we check both so that we can do |
3465 | * it in one pass) |
3466 | */ |
3467 | chains = palloc0((num_sets + 1) * sizeof(int)); |
3468 | |
3469 | for (i = 1; i <= num_sets; ++i) |
3470 | { |
3471 | int u = state->pair_vu[i]; |
3472 | int v = state->pair_uv[i]; |
3473 | |
3474 | if (u > 0 && u < i) |
3475 | chains[i] = chains[u]; |
3476 | else if (v > 0 && v < i) |
3477 | chains[i] = chains[v]; |
3478 | else |
3479 | chains[i] = ++num_chains; |
3480 | } |
3481 | |
3482 | /* build result lists. */ |
3483 | results = palloc0((num_chains + 1) * sizeof(List *)); |
3484 | |
3485 | for (i = 1; i <= num_sets; ++i) |
3486 | { |
3487 | int c = chains[i]; |
3488 | |
3489 | Assert(c > 0); |
3490 | |
3491 | results[c] = list_concat(results[c], orig_sets[i]); |
3492 | } |
3493 | |
3494 | /* push any empty sets back on the first list. */ |
3495 | while (num_empty-- > 0) |
3496 | results[1] = lcons(NIL, results[1]); |
3497 | |
3498 | /* make result list */ |
3499 | for (i = 1; i <= num_chains; ++i) |
3500 | result = lappend(result, results[i]); |
3501 | |
3502 | /* |
3503 | * Free all the things. |
3504 | * |
3505 | * (This is over-fussy for small sets but for large sets we could have |
3506 | * tied up a nontrivial amount of memory.) |
3507 | */ |
3508 | BipartiteMatchFree(state); |
3509 | pfree(results); |
3510 | pfree(chains); |
3511 | for (i = 1; i <= num_sets; ++i) |
3512 | if (adjacency[i]) |
3513 | pfree(adjacency[i]); |
3514 | pfree(adjacency); |
3515 | pfree(adjacency_buf); |
3516 | pfree(orig_sets); |
3517 | for (i = 1; i <= num_sets; ++i) |
3518 | bms_free(set_masks[i]); |
3519 | pfree(set_masks); |
3520 | |
3521 | return result; |
3522 | } |
3523 | |
3524 | /* |
3525 | * Reorder the elements of a list of grouping sets such that they have correct |
3526 | * prefix relationships. Also inserts the GroupingSetData annotations. |
3527 | * |
3528 | * The input must be ordered with smallest sets first; the result is returned |
3529 | * with largest sets first. Note that the result shares no list substructure |
3530 | * with the input, so it's safe for the caller to modify it later. |
3531 | * |
3532 | * If we're passed in a sortclause, we follow its order of columns to the |
3533 | * extent possible, to minimize the chance that we add unnecessary sorts. |
3534 | * (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a |
3535 | * gets implemented in one pass.) |
3536 | */ |
3537 | static List * |
3538 | reorder_grouping_sets(List *groupingsets, List *sortclause) |
3539 | { |
3540 | ListCell *lc; |
3541 | List *previous = NIL; |
3542 | List *result = NIL; |
3543 | |
3544 | foreach(lc, groupingsets) |
3545 | { |
3546 | List *candidate = (List *) lfirst(lc); |
3547 | List *new_elems = list_difference_int(candidate, previous); |
3548 | GroupingSetData *gs = makeNode(GroupingSetData); |
3549 | |
3550 | while (list_length(sortclause) > list_length(previous) && |
3551 | list_length(new_elems) > 0) |
3552 | { |
3553 | SortGroupClause *sc = list_nth(sortclause, list_length(previous)); |
3554 | int ref = sc->tleSortGroupRef; |
3555 | |
3556 | if (list_member_int(new_elems, ref)) |
3557 | { |
3558 | previous = lappend_int(previous, ref); |
3559 | new_elems = list_delete_int(new_elems, ref); |
3560 | } |
3561 | else |
3562 | { |
3563 | /* diverged from the sortclause; give up on it */ |
3564 | sortclause = NIL; |
3565 | break; |
3566 | } |
3567 | } |
3568 | |
3569 | /* |
3570 | * Safe to use list_concat (which shares cells of the second arg) |
3571 | * because we know that new_elems does not share cells with anything. |
3572 | */ |
3573 | previous = list_concat(previous, new_elems); |
3574 | |
3575 | gs->set = list_copy(previous); |
3576 | result = lcons(gs, result); |
3577 | } |
3578 | |
3579 | list_free(previous); |
3580 | |
3581 | return result; |
3582 | } |
3583 | |
3584 | /* |
3585 | * Compute query_pathkeys and other pathkeys during plan generation |
3586 | */ |
3587 | static void |
3588 | standard_qp_callback(PlannerInfo *root, void *) |
3589 | { |
3590 | Query *parse = root->parse; |
3591 | standard_qp_extra * = (standard_qp_extra *) extra; |
3592 | List *tlist = root->processed_tlist; |
3593 | List *activeWindows = qp_extra->activeWindows; |
3594 | |
3595 | /* |
3596 | * Calculate pathkeys that represent grouping/ordering requirements. The |
3597 | * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not |
3598 | * be, in which case we just leave their pathkeys empty. |
3599 | */ |
3600 | if (qp_extra->groupClause && |
3601 | grouping_is_sortable(qp_extra->groupClause)) |
3602 | root->group_pathkeys = |
3603 | make_pathkeys_for_sortclauses(root, |
3604 | qp_extra->groupClause, |
3605 | tlist); |
3606 | else |
3607 | root->group_pathkeys = NIL; |
3608 | |
3609 | /* We consider only the first (bottom) window in pathkeys logic */ |
3610 | if (activeWindows != NIL) |
3611 | { |
3612 | WindowClause *wc = linitial_node(WindowClause, activeWindows); |
3613 | |
3614 | root->window_pathkeys = make_pathkeys_for_window(root, |
3615 | wc, |
3616 | tlist); |
3617 | } |
3618 | else |
3619 | root->window_pathkeys = NIL; |
3620 | |
3621 | if (parse->distinctClause && |
3622 | grouping_is_sortable(parse->distinctClause)) |
3623 | root->distinct_pathkeys = |
3624 | make_pathkeys_for_sortclauses(root, |
3625 | parse->distinctClause, |
3626 | tlist); |
3627 | else |
3628 | root->distinct_pathkeys = NIL; |
3629 | |
3630 | root->sort_pathkeys = |
3631 | make_pathkeys_for_sortclauses(root, |
3632 | parse->sortClause, |
3633 | tlist); |
3634 | |
3635 | /* |
3636 | * Figure out whether we want a sorted result from query_planner. |
3637 | * |
3638 | * If we have a sortable GROUP BY clause, then we want a result sorted |
3639 | * properly for grouping. Otherwise, if we have window functions to |
3640 | * evaluate, we try to sort for the first window. Otherwise, if there's a |
3641 | * sortable DISTINCT clause that's more rigorous than the ORDER BY clause, |
3642 | * we try to produce output that's sufficiently well sorted for the |
3643 | * DISTINCT. Otherwise, if there is an ORDER BY clause, we want to sort |
3644 | * by the ORDER BY clause. |
3645 | * |
3646 | * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset |
3647 | * of GROUP BY, it would be tempting to request sort by ORDER BY --- but |
3648 | * that might just leave us failing to exploit an available sort order at |
3649 | * all. Needs more thought. The choice for DISTINCT versus ORDER BY is |
3650 | * much easier, since we know that the parser ensured that one is a |
3651 | * superset of the other. |
3652 | */ |
3653 | if (root->group_pathkeys) |
3654 | root->query_pathkeys = root->group_pathkeys; |
3655 | else if (root->window_pathkeys) |
3656 | root->query_pathkeys = root->window_pathkeys; |
3657 | else if (list_length(root->distinct_pathkeys) > |
3658 | list_length(root->sort_pathkeys)) |
3659 | root->query_pathkeys = root->distinct_pathkeys; |
3660 | else if (root->sort_pathkeys) |
3661 | root->query_pathkeys = root->sort_pathkeys; |
3662 | else |
3663 | root->query_pathkeys = NIL; |
3664 | } |
3665 | |
3666 | /* |
3667 | * Estimate number of groups produced by grouping clauses (1 if not grouping) |
3668 | * |
3669 | * path_rows: number of output rows from scan/join step |
3670 | * gd: grouping sets data including list of grouping sets and their clauses |
3671 | * target_list: target list containing group clause references |
3672 | * |
3673 | * If doing grouping sets, we also annotate the gsets data with the estimates |
3674 | * for each set and each individual rollup list, with a view to later |
3675 | * determining whether some combination of them could be hashed instead. |
3676 | */ |
3677 | static double |
3678 | get_number_of_groups(PlannerInfo *root, |
3679 | double path_rows, |
3680 | grouping_sets_data *gd, |
3681 | List *target_list) |
3682 | { |
3683 | Query *parse = root->parse; |
3684 | double dNumGroups; |
3685 | |
3686 | if (parse->groupClause) |
3687 | { |
3688 | List *groupExprs; |
3689 | |
3690 | if (parse->groupingSets) |
3691 | { |
3692 | /* Add up the estimates for each grouping set */ |
3693 | ListCell *lc; |
3694 | ListCell *lc2; |
3695 | |
3696 | Assert(gd); /* keep Coverity happy */ |
3697 | |
3698 | dNumGroups = 0; |
3699 | |
3700 | foreach(lc, gd->rollups) |
3701 | { |
3702 | RollupData *rollup = lfirst_node(RollupData, lc); |
3703 | ListCell *lc; |
3704 | |
3705 | groupExprs = get_sortgrouplist_exprs(rollup->groupClause, |
3706 | target_list); |
3707 | |
3708 | rollup->numGroups = 0.0; |
3709 | |
3710 | forboth(lc, rollup->gsets, lc2, rollup->gsets_data) |
3711 | { |
3712 | List *gset = (List *) lfirst(lc); |
3713 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc2); |
3714 | double numGroups = estimate_num_groups(root, |
3715 | groupExprs, |
3716 | path_rows, |
3717 | &gset); |
3718 | |
3719 | gs->numGroups = numGroups; |
3720 | rollup->numGroups += numGroups; |
3721 | } |
3722 | |
3723 | dNumGroups += rollup->numGroups; |
3724 | } |
3725 | |
3726 | if (gd->hash_sets_idx) |
3727 | { |
3728 | ListCell *lc; |
3729 | |
3730 | gd->dNumHashGroups = 0; |
3731 | |
3732 | groupExprs = get_sortgrouplist_exprs(parse->groupClause, |
3733 | target_list); |
3734 | |
3735 | forboth(lc, gd->hash_sets_idx, lc2, gd->unsortable_sets) |
3736 | { |
3737 | List *gset = (List *) lfirst(lc); |
3738 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc2); |
3739 | double numGroups = estimate_num_groups(root, |
3740 | groupExprs, |
3741 | path_rows, |
3742 | &gset); |
3743 | |
3744 | gs->numGroups = numGroups; |
3745 | gd->dNumHashGroups += numGroups; |
3746 | } |
3747 | |
3748 | dNumGroups += gd->dNumHashGroups; |
3749 | } |
3750 | } |
3751 | else |
3752 | { |
3753 | /* Plain GROUP BY */ |
3754 | groupExprs = get_sortgrouplist_exprs(parse->groupClause, |
3755 | target_list); |
3756 | |
3757 | dNumGroups = estimate_num_groups(root, groupExprs, path_rows, |
3758 | NULL); |
3759 | } |
3760 | } |
3761 | else if (parse->groupingSets) |
3762 | { |
3763 | /* Empty grouping sets ... one result row for each one */ |
3764 | dNumGroups = list_length(parse->groupingSets); |
3765 | } |
3766 | else if (parse->hasAggs || root->hasHavingQual) |
3767 | { |
3768 | /* Plain aggregation, one result row */ |
3769 | dNumGroups = 1; |
3770 | } |
3771 | else |
3772 | { |
3773 | /* Not grouping */ |
3774 | dNumGroups = 1; |
3775 | } |
3776 | |
3777 | return dNumGroups; |
3778 | } |
3779 | |
3780 | /* |
3781 | * create_grouping_paths |
3782 | * |
3783 | * Build a new upperrel containing Paths for grouping and/or aggregation. |
3784 | * Along the way, we also build an upperrel for Paths which are partially |
3785 | * grouped and/or aggregated. A partially grouped and/or aggregated path |
3786 | * needs a FinalizeAggregate node to complete the aggregation. Currently, |
3787 | * the only partially grouped paths we build are also partial paths; that |
3788 | * is, they need a Gather and then a FinalizeAggregate. |
3789 | * |
3790 | * input_rel: contains the source-data Paths |
3791 | * target: the pathtarget for the result Paths to compute |
3792 | * agg_costs: cost info about all aggregates in query (in AGGSPLIT_SIMPLE mode) |
3793 | * gd: grouping sets data including list of grouping sets and their clauses |
3794 | * |
3795 | * Note: all Paths in input_rel are expected to return the target computed |
3796 | * by make_group_input_target. |
3797 | */ |
3798 | static RelOptInfo * |
3799 | create_grouping_paths(PlannerInfo *root, |
3800 | RelOptInfo *input_rel, |
3801 | PathTarget *target, |
3802 | bool target_parallel_safe, |
3803 | const AggClauseCosts *agg_costs, |
3804 | grouping_sets_data *gd) |
3805 | { |
3806 | Query *parse = root->parse; |
3807 | RelOptInfo *grouped_rel; |
3808 | RelOptInfo *partially_grouped_rel; |
3809 | |
3810 | /* |
3811 | * Create grouping relation to hold fully aggregated grouping and/or |
3812 | * aggregation paths. |
3813 | */ |
3814 | grouped_rel = make_grouping_rel(root, input_rel, target, |
3815 | target_parallel_safe, parse->havingQual); |
3816 | |
3817 | /* |
3818 | * Create either paths for a degenerate grouping or paths for ordinary |
3819 | * grouping, as appropriate. |
3820 | */ |
3821 | if (is_degenerate_grouping(root)) |
3822 | create_degenerate_grouping_paths(root, input_rel, grouped_rel); |
3823 | else |
3824 | { |
3825 | int flags = 0; |
3826 | GroupPathExtraData ; |
3827 | |
3828 | /* |
3829 | * Determine whether it's possible to perform sort-based |
3830 | * implementations of grouping. (Note that if groupClause is empty, |
3831 | * grouping_is_sortable() is trivially true, and all the |
3832 | * pathkeys_contained_in() tests will succeed too, so that we'll |
3833 | * consider every surviving input path.) |
3834 | * |
3835 | * If we have grouping sets, we might be able to sort some but not all |
3836 | * of them; in this case, we need can_sort to be true as long as we |
3837 | * must consider any sorted-input plan. |
3838 | */ |
3839 | if ((gd && gd->rollups != NIL) |
3840 | || grouping_is_sortable(parse->groupClause)) |
3841 | flags |= GROUPING_CAN_USE_SORT; |
3842 | |
3843 | /* |
3844 | * Determine whether we should consider hash-based implementations of |
3845 | * grouping. |
3846 | * |
3847 | * Hashed aggregation only applies if we're grouping. If we have |
3848 | * grouping sets, some groups might be hashable but others not; in |
3849 | * this case we set can_hash true as long as there is nothing globally |
3850 | * preventing us from hashing (and we should therefore consider plans |
3851 | * with hashes). |
3852 | * |
3853 | * Executor doesn't support hashed aggregation with DISTINCT or ORDER |
3854 | * BY aggregates. (Doing so would imply storing *all* the input |
3855 | * values in the hash table, and/or running many sorts in parallel, |
3856 | * either of which seems like a certain loser.) We similarly don't |
3857 | * support ordered-set aggregates in hashed aggregation, but that case |
3858 | * is also included in the numOrderedAggs count. |
3859 | * |
3860 | * Note: grouping_is_hashable() is much more expensive to check than |
3861 | * the other gating conditions, so we want to do it last. |
3862 | */ |
3863 | if ((parse->groupClause != NIL && |
3864 | agg_costs->numOrderedAggs == 0 && |
3865 | (gd ? gd->any_hashable : grouping_is_hashable(parse->groupClause)))) |
3866 | flags |= GROUPING_CAN_USE_HASH; |
3867 | |
3868 | /* |
3869 | * Determine whether partial aggregation is possible. |
3870 | */ |
3871 | if (can_partial_agg(root, agg_costs)) |
3872 | flags |= GROUPING_CAN_PARTIAL_AGG; |
3873 | |
3874 | extra.flags = flags; |
3875 | extra.target_parallel_safe = target_parallel_safe; |
3876 | extra.havingQual = parse->havingQual; |
3877 | extra.targetList = parse->targetList; |
3878 | extra.partial_costs_set = false; |
3879 | |
3880 | /* |
3881 | * Determine whether partitionwise aggregation is in theory possible. |
3882 | * It can be disabled by the user, and for now, we don't try to |
3883 | * support grouping sets. create_ordinary_grouping_paths() will check |
3884 | * additional conditions, such as whether input_rel is partitioned. |
3885 | */ |
3886 | if (enable_partitionwise_aggregate && !parse->groupingSets) |
3887 | extra.patype = PARTITIONWISE_AGGREGATE_FULL; |
3888 | else |
3889 | extra.patype = PARTITIONWISE_AGGREGATE_NONE; |
3890 | |
3891 | create_ordinary_grouping_paths(root, input_rel, grouped_rel, |
3892 | agg_costs, gd, &extra, |
3893 | &partially_grouped_rel); |
3894 | } |
3895 | |
3896 | set_cheapest(grouped_rel); |
3897 | return grouped_rel; |
3898 | } |
3899 | |
3900 | /* |
3901 | * make_grouping_rel |
3902 | * |
3903 | * Create a new grouping rel and set basic properties. |
3904 | * |
3905 | * input_rel represents the underlying scan/join relation. |
3906 | * target is the output expected from the grouping relation. |
3907 | */ |
3908 | static RelOptInfo * |
3909 | make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, |
3910 | PathTarget *target, bool target_parallel_safe, |
3911 | Node *havingQual) |
3912 | { |
3913 | RelOptInfo *grouped_rel; |
3914 | |
3915 | if (IS_OTHER_REL(input_rel)) |
3916 | { |
3917 | grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, |
3918 | input_rel->relids); |
3919 | grouped_rel->reloptkind = RELOPT_OTHER_UPPER_REL; |
3920 | } |
3921 | else |
3922 | { |
3923 | /* |
3924 | * By tradition, the relids set for the main grouping relation is |
3925 | * NULL. (This could be changed, but might require adjustments |
3926 | * elsewhere.) |
3927 | */ |
3928 | grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL); |
3929 | } |
3930 | |
3931 | /* Set target. */ |
3932 | grouped_rel->reltarget = target; |
3933 | |
3934 | /* |
3935 | * If the input relation is not parallel-safe, then the grouped relation |
3936 | * can't be parallel-safe, either. Otherwise, it's parallel-safe if the |
3937 | * target list and HAVING quals are parallel-safe. |
3938 | */ |
3939 | if (input_rel->consider_parallel && target_parallel_safe && |
3940 | is_parallel_safe(root, (Node *) havingQual)) |
3941 | grouped_rel->consider_parallel = true; |
3942 | |
3943 | /* |
3944 | * If the input rel belongs to a single FDW, so does the grouped rel. |
3945 | */ |
3946 | grouped_rel->serverid = input_rel->serverid; |
3947 | grouped_rel->userid = input_rel->userid; |
3948 | grouped_rel->useridiscurrent = input_rel->useridiscurrent; |
3949 | grouped_rel->fdwroutine = input_rel->fdwroutine; |
3950 | |
3951 | return grouped_rel; |
3952 | } |
3953 | |
3954 | /* |
3955 | * is_degenerate_grouping |
3956 | * |
3957 | * A degenerate grouping is one in which the query has a HAVING qual and/or |
3958 | * grouping sets, but no aggregates and no GROUP BY (which implies that the |
3959 | * grouping sets are all empty). |
3960 | */ |
3961 | static bool |
3962 | is_degenerate_grouping(PlannerInfo *root) |
3963 | { |
3964 | Query *parse = root->parse; |
3965 | |
3966 | return (root->hasHavingQual || parse->groupingSets) && |
3967 | !parse->hasAggs && parse->groupClause == NIL; |
3968 | } |
3969 | |
3970 | /* |
3971 | * create_degenerate_grouping_paths |
3972 | * |
3973 | * When the grouping is degenerate (see is_degenerate_grouping), we are |
3974 | * supposed to emit either zero or one row for each grouping set depending on |
3975 | * whether HAVING succeeds. Furthermore, there cannot be any variables in |
3976 | * either HAVING or the targetlist, so we actually do not need the FROM table |
3977 | * at all! We can just throw away the plan-so-far and generate a Result node. |
3978 | * This is a sufficiently unusual corner case that it's not worth contorting |
3979 | * the structure of this module to avoid having to generate the earlier paths |
3980 | * in the first place. |
3981 | */ |
3982 | static void |
3983 | create_degenerate_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, |
3984 | RelOptInfo *grouped_rel) |
3985 | { |
3986 | Query *parse = root->parse; |
3987 | int nrows; |
3988 | Path *path; |
3989 | |
3990 | nrows = list_length(parse->groupingSets); |
3991 | if (nrows > 1) |
3992 | { |
3993 | /* |
3994 | * Doesn't seem worthwhile writing code to cons up a generate_series |
3995 | * or a values scan to emit multiple rows. Instead just make N clones |
3996 | * and append them. (With a volatile HAVING clause, this means you |
3997 | * might get between 0 and N output rows. Offhand I think that's |
3998 | * desired.) |
3999 | */ |
4000 | List *paths = NIL; |
4001 | |
4002 | while (--nrows >= 0) |
4003 | { |
4004 | path = (Path *) |
4005 | create_group_result_path(root, grouped_rel, |
4006 | grouped_rel->reltarget, |
4007 | (List *) parse->havingQual); |
4008 | paths = lappend(paths, path); |
4009 | } |
4010 | path = (Path *) |
4011 | create_append_path(root, |
4012 | grouped_rel, |
4013 | paths, |
4014 | NIL, |
4015 | NIL, |
4016 | NULL, |
4017 | 0, |
4018 | false, |
4019 | NIL, |
4020 | -1); |
4021 | } |
4022 | else |
4023 | { |
4024 | /* No grouping sets, or just one, so one output row */ |
4025 | path = (Path *) |
4026 | create_group_result_path(root, grouped_rel, |
4027 | grouped_rel->reltarget, |
4028 | (List *) parse->havingQual); |
4029 | } |
4030 | |
4031 | add_path(grouped_rel, path); |
4032 | } |
4033 | |
4034 | /* |
4035 | * create_ordinary_grouping_paths |
4036 | * |
4037 | * Create grouping paths for the ordinary (that is, non-degenerate) case. |
4038 | * |
4039 | * We need to consider sorted and hashed aggregation in the same function, |
4040 | * because otherwise (1) it would be harder to throw an appropriate error |
4041 | * message if neither way works, and (2) we should not allow hashtable size |
4042 | * considerations to dissuade us from using hashing if sorting is not possible. |
4043 | * |
4044 | * *partially_grouped_rel_p will be set to the partially grouped rel which this |
4045 | * function creates, or to NULL if it doesn't create one. |
4046 | */ |
4047 | static void |
4048 | create_ordinary_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, |
4049 | RelOptInfo *grouped_rel, |
4050 | const AggClauseCosts *agg_costs, |
4051 | grouping_sets_data *gd, |
4052 | GroupPathExtraData *, |
4053 | RelOptInfo **partially_grouped_rel_p) |
4054 | { |
4055 | Path *cheapest_path = input_rel->cheapest_total_path; |
4056 | RelOptInfo *partially_grouped_rel = NULL; |
4057 | double dNumGroups; |
4058 | PartitionwiseAggregateType patype = PARTITIONWISE_AGGREGATE_NONE; |
4059 | |
4060 | /* |
4061 | * If this is the topmost grouping relation or if the parent relation is |
4062 | * doing some form of partitionwise aggregation, then we may be able to do |
4063 | * it at this level also. However, if the input relation is not |
4064 | * partitioned, partitionwise aggregate is impossible. |
4065 | */ |
4066 | if (extra->patype != PARTITIONWISE_AGGREGATE_NONE && |
4067 | IS_PARTITIONED_REL(input_rel)) |
4068 | { |
4069 | /* |
4070 | * If this is the topmost relation or if the parent relation is doing |
4071 | * full partitionwise aggregation, then we can do full partitionwise |
4072 | * aggregation provided that the GROUP BY clause contains all of the |
4073 | * partitioning columns at this level. Otherwise, we can do at most |
4074 | * partial partitionwise aggregation. But if partial aggregation is |
4075 | * not supported in general then we can't use it for partitionwise |
4076 | * aggregation either. |
4077 | */ |
4078 | if (extra->patype == PARTITIONWISE_AGGREGATE_FULL && |
4079 | group_by_has_partkey(input_rel, extra->targetList, |
4080 | root->parse->groupClause)) |
4081 | patype = PARTITIONWISE_AGGREGATE_FULL; |
4082 | else if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0) |
4083 | patype = PARTITIONWISE_AGGREGATE_PARTIAL; |
4084 | else |
4085 | patype = PARTITIONWISE_AGGREGATE_NONE; |
4086 | } |
4087 | |
4088 | /* |
4089 | * Before generating paths for grouped_rel, we first generate any possible |
4090 | * partially grouped paths; that way, later code can easily consider both |
4091 | * parallel and non-parallel approaches to grouping. |
4092 | */ |
4093 | if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0) |
4094 | { |
4095 | bool force_rel_creation; |
4096 | |
4097 | /* |
4098 | * If we're doing partitionwise aggregation at this level, force |
4099 | * creation of a partially_grouped_rel so we can add partitionwise |
4100 | * paths to it. |
4101 | */ |
4102 | force_rel_creation = (patype == PARTITIONWISE_AGGREGATE_PARTIAL); |
4103 | |
4104 | partially_grouped_rel = |
4105 | create_partial_grouping_paths(root, |
4106 | grouped_rel, |
4107 | input_rel, |
4108 | gd, |
4109 | extra, |
4110 | force_rel_creation); |
4111 | } |
4112 | |
4113 | /* Set out parameter. */ |
4114 | *partially_grouped_rel_p = partially_grouped_rel; |
4115 | |
4116 | /* Apply partitionwise aggregation technique, if possible. */ |
4117 | if (patype != PARTITIONWISE_AGGREGATE_NONE) |
4118 | create_partitionwise_grouping_paths(root, input_rel, grouped_rel, |
4119 | partially_grouped_rel, agg_costs, |
4120 | gd, patype, extra); |
4121 | |
4122 | /* If we are doing partial aggregation only, return. */ |
4123 | if (extra->patype == PARTITIONWISE_AGGREGATE_PARTIAL) |
4124 | { |
4125 | Assert(partially_grouped_rel); |
4126 | |
4127 | if (partially_grouped_rel->pathlist) |
4128 | set_cheapest(partially_grouped_rel); |
4129 | |
4130 | return; |
4131 | } |
4132 | |
4133 | /* Gather any partially grouped partial paths. */ |
4134 | if (partially_grouped_rel && partially_grouped_rel->partial_pathlist) |
4135 | { |
4136 | gather_grouping_paths(root, partially_grouped_rel); |
4137 | set_cheapest(partially_grouped_rel); |
4138 | } |
4139 | |
4140 | /* |
4141 | * Estimate number of groups. |
4142 | */ |
4143 | dNumGroups = get_number_of_groups(root, |
4144 | cheapest_path->rows, |
4145 | gd, |
4146 | extra->targetList); |
4147 | |
4148 | /* Build final grouping paths */ |
4149 | add_paths_to_grouping_rel(root, input_rel, grouped_rel, |
4150 | partially_grouped_rel, agg_costs, gd, |
4151 | dNumGroups, extra); |
4152 | |
4153 | /* Give a helpful error if we failed to find any implementation */ |
4154 | if (grouped_rel->pathlist == NIL) |
4155 | ereport(ERROR, |
4156 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
4157 | errmsg("could not implement GROUP BY" ), |
4158 | errdetail("Some of the datatypes only support hashing, while others only support sorting." ))); |
4159 | |
4160 | /* |
4161 | * If there is an FDW that's responsible for all baserels of the query, |
4162 | * let it consider adding ForeignPaths. |
4163 | */ |
4164 | if (grouped_rel->fdwroutine && |
4165 | grouped_rel->fdwroutine->GetForeignUpperPaths) |
4166 | grouped_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_GROUP_AGG, |
4167 | input_rel, grouped_rel, |
4168 | extra); |
4169 | |
4170 | /* Let extensions possibly add some more paths */ |
4171 | if (create_upper_paths_hook) |
4172 | (*create_upper_paths_hook) (root, UPPERREL_GROUP_AGG, |
4173 | input_rel, grouped_rel, |
4174 | extra); |
4175 | } |
4176 | |
4177 | /* |
4178 | * For a given input path, consider the possible ways of doing grouping sets on |
4179 | * it, by combinations of hashing and sorting. This can be called multiple |
4180 | * times, so it's important that it not scribble on input. No result is |
4181 | * returned, but any generated paths are added to grouped_rel. |
4182 | */ |
4183 | static void |
4184 | consider_groupingsets_paths(PlannerInfo *root, |
4185 | RelOptInfo *grouped_rel, |
4186 | Path *path, |
4187 | bool is_sorted, |
4188 | bool can_hash, |
4189 | grouping_sets_data *gd, |
4190 | const AggClauseCosts *agg_costs, |
4191 | double dNumGroups) |
4192 | { |
4193 | Query *parse = root->parse; |
4194 | |
4195 | /* |
4196 | * If we're not being offered sorted input, then only consider plans that |
4197 | * can be done entirely by hashing. |
4198 | * |
4199 | * We can hash everything if it looks like it'll fit in work_mem. But if |
4200 | * the input is actually sorted despite not being advertised as such, we |
4201 | * prefer to make use of that in order to use less memory. |
4202 | * |
4203 | * If none of the grouping sets are sortable, then ignore the work_mem |
4204 | * limit and generate a path anyway, since otherwise we'll just fail. |
4205 | */ |
4206 | if (!is_sorted) |
4207 | { |
4208 | List *new_rollups = NIL; |
4209 | RollupData *unhashed_rollup = NULL; |
4210 | List *sets_data; |
4211 | List *empty_sets_data = NIL; |
4212 | List *empty_sets = NIL; |
4213 | ListCell *lc; |
4214 | ListCell *l_start = list_head(gd->rollups); |
4215 | AggStrategy strat = AGG_HASHED; |
4216 | double hashsize; |
4217 | double exclude_groups = 0.0; |
4218 | |
4219 | Assert(can_hash); |
4220 | |
4221 | /* |
4222 | * If the input is coincidentally sorted usefully (which can happen |
4223 | * even if is_sorted is false, since that only means that our caller |
4224 | * has set up the sorting for us), then save some hashtable space by |
4225 | * making use of that. But we need to watch out for degenerate cases: |
4226 | * |
4227 | * 1) If there are any empty grouping sets, then group_pathkeys might |
4228 | * be NIL if all non-empty grouping sets are unsortable. In this case, |
4229 | * there will be a rollup containing only empty groups, and the |
4230 | * pathkeys_contained_in test is vacuously true; this is ok. |
4231 | * |
4232 | * XXX: the above relies on the fact that group_pathkeys is generated |
4233 | * from the first rollup. If we add the ability to consider multiple |
4234 | * sort orders for grouping input, this assumption might fail. |
4235 | * |
4236 | * 2) If there are no empty sets and only unsortable sets, then the |
4237 | * rollups list will be empty (and thus l_start == NULL), and |
4238 | * group_pathkeys will be NIL; we must ensure that the vacuously-true |
4239 | * pathkeys_contain_in test doesn't cause us to crash. |
4240 | */ |
4241 | if (l_start != NULL && |
4242 | pathkeys_contained_in(root->group_pathkeys, path->pathkeys)) |
4243 | { |
4244 | unhashed_rollup = lfirst_node(RollupData, l_start); |
4245 | exclude_groups = unhashed_rollup->numGroups; |
4246 | l_start = lnext(l_start); |
4247 | } |
4248 | |
4249 | hashsize = estimate_hashagg_tablesize(path, |
4250 | agg_costs, |
4251 | dNumGroups - exclude_groups); |
4252 | |
4253 | /* |
4254 | * gd->rollups is empty if we have only unsortable columns to work |
4255 | * with. Override work_mem in that case; otherwise, we'll rely on the |
4256 | * sorted-input case to generate usable mixed paths. |
4257 | */ |
4258 | if (hashsize > work_mem * 1024L && gd->rollups) |
4259 | return; /* nope, won't fit */ |
4260 | |
4261 | /* |
4262 | * We need to burst the existing rollups list into individual grouping |
4263 | * sets and recompute a groupClause for each set. |
4264 | */ |
4265 | sets_data = list_copy(gd->unsortable_sets); |
4266 | |
4267 | for_each_cell(lc, l_start) |
4268 | { |
4269 | RollupData *rollup = lfirst_node(RollupData, lc); |
4270 | |
4271 | /* |
4272 | * If we find an unhashable rollup that's not been skipped by the |
4273 | * "actually sorted" check above, we can't cope; we'd need sorted |
4274 | * input (with a different sort order) but we can't get that here. |
4275 | * So bail out; we'll get a valid path from the is_sorted case |
4276 | * instead. |
4277 | * |
4278 | * The mere presence of empty grouping sets doesn't make a rollup |
4279 | * unhashable (see preprocess_grouping_sets), we handle those |
4280 | * specially below. |
4281 | */ |
4282 | if (!rollup->hashable) |
4283 | return; |
4284 | else |
4285 | sets_data = list_concat(sets_data, list_copy(rollup->gsets_data)); |
4286 | } |
4287 | foreach(lc, sets_data) |
4288 | { |
4289 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc); |
4290 | List *gset = gs->set; |
4291 | RollupData *rollup; |
4292 | |
4293 | if (gset == NIL) |
4294 | { |
4295 | /* Empty grouping sets can't be hashed. */ |
4296 | empty_sets_data = lappend(empty_sets_data, gs); |
4297 | empty_sets = lappend(empty_sets, NIL); |
4298 | } |
4299 | else |
4300 | { |
4301 | rollup = makeNode(RollupData); |
4302 | |
4303 | rollup->groupClause = preprocess_groupclause(root, gset); |
4304 | rollup->gsets_data = list_make1(gs); |
4305 | rollup->gsets = remap_to_groupclause_idx(rollup->groupClause, |
4306 | rollup->gsets_data, |
4307 | gd->tleref_to_colnum_map); |
4308 | rollup->numGroups = gs->numGroups; |
4309 | rollup->hashable = true; |
4310 | rollup->is_hashed = true; |
4311 | new_rollups = lappend(new_rollups, rollup); |
4312 | } |
4313 | } |
4314 | |
4315 | /* |
4316 | * If we didn't find anything nonempty to hash, then bail. We'll |
4317 | * generate a path from the is_sorted case. |
4318 | */ |
4319 | if (new_rollups == NIL) |
4320 | return; |
4321 | |
4322 | /* |
4323 | * If there were empty grouping sets they should have been in the |
4324 | * first rollup. |
4325 | */ |
4326 | Assert(!unhashed_rollup || !empty_sets); |
4327 | |
4328 | if (unhashed_rollup) |
4329 | { |
4330 | new_rollups = lappend(new_rollups, unhashed_rollup); |
4331 | strat = AGG_MIXED; |
4332 | } |
4333 | else if (empty_sets) |
4334 | { |
4335 | RollupData *rollup = makeNode(RollupData); |
4336 | |
4337 | rollup->groupClause = NIL; |
4338 | rollup->gsets_data = empty_sets_data; |
4339 | rollup->gsets = empty_sets; |
4340 | rollup->numGroups = list_length(empty_sets); |
4341 | rollup->hashable = false; |
4342 | rollup->is_hashed = false; |
4343 | new_rollups = lappend(new_rollups, rollup); |
4344 | strat = AGG_MIXED; |
4345 | } |
4346 | |
4347 | add_path(grouped_rel, (Path *) |
4348 | create_groupingsets_path(root, |
4349 | grouped_rel, |
4350 | path, |
4351 | (List *) parse->havingQual, |
4352 | strat, |
4353 | new_rollups, |
4354 | agg_costs, |
4355 | dNumGroups)); |
4356 | return; |
4357 | } |
4358 | |
4359 | /* |
4360 | * If we have sorted input but nothing we can do with it, bail. |
4361 | */ |
4362 | if (list_length(gd->rollups) == 0) |
4363 | return; |
4364 | |
4365 | /* |
4366 | * Given sorted input, we try and make two paths: one sorted and one mixed |
4367 | * sort/hash. (We need to try both because hashagg might be disabled, or |
4368 | * some columns might not be sortable.) |
4369 | * |
4370 | * can_hash is passed in as false if some obstacle elsewhere (such as |
4371 | * ordered aggs) means that we shouldn't consider hashing at all. |
4372 | */ |
4373 | if (can_hash && gd->any_hashable) |
4374 | { |
4375 | List *rollups = NIL; |
4376 | List *hash_sets = list_copy(gd->unsortable_sets); |
4377 | double availspace = (work_mem * 1024.0); |
4378 | ListCell *lc; |
4379 | |
4380 | /* |
4381 | * Account first for space needed for groups we can't sort at all. |
4382 | */ |
4383 | availspace -= estimate_hashagg_tablesize(path, |
4384 | agg_costs, |
4385 | gd->dNumHashGroups); |
4386 | |
4387 | if (availspace > 0 && list_length(gd->rollups) > 1) |
4388 | { |
4389 | double scale; |
4390 | int num_rollups = list_length(gd->rollups); |
4391 | int k_capacity; |
4392 | int *k_weights = palloc(num_rollups * sizeof(int)); |
4393 | Bitmapset *hash_items = NULL; |
4394 | int i; |
4395 | |
4396 | /* |
4397 | * We treat this as a knapsack problem: the knapsack capacity |
4398 | * represents work_mem, the item weights are the estimated memory |
4399 | * usage of the hashtables needed to implement a single rollup, |
4400 | * and we really ought to use the cost saving as the item value; |
4401 | * however, currently the costs assigned to sort nodes don't |
4402 | * reflect the comparison costs well, and so we treat all items as |
4403 | * of equal value (each rollup we hash instead saves us one sort). |
4404 | * |
4405 | * To use the discrete knapsack, we need to scale the values to a |
4406 | * reasonably small bounded range. We choose to allow a 5% error |
4407 | * margin; we have no more than 4096 rollups in the worst possible |
4408 | * case, which with a 5% error margin will require a bit over 42MB |
4409 | * of workspace. (Anyone wanting to plan queries that complex had |
4410 | * better have the memory for it. In more reasonable cases, with |
4411 | * no more than a couple of dozen rollups, the memory usage will |
4412 | * be negligible.) |
4413 | * |
4414 | * k_capacity is naturally bounded, but we clamp the values for |
4415 | * scale and weight (below) to avoid overflows or underflows (or |
4416 | * uselessly trying to use a scale factor less than 1 byte). |
4417 | */ |
4418 | scale = Max(availspace / (20.0 * num_rollups), 1.0); |
4419 | k_capacity = (int) floor(availspace / scale); |
4420 | |
4421 | /* |
4422 | * We leave the first rollup out of consideration since it's the |
4423 | * one that matches the input sort order. We assign indexes "i" |
4424 | * to only those entries considered for hashing; the second loop, |
4425 | * below, must use the same condition. |
4426 | */ |
4427 | i = 0; |
4428 | for_each_cell(lc, lnext(list_head(gd->rollups))) |
4429 | { |
4430 | RollupData *rollup = lfirst_node(RollupData, lc); |
4431 | |
4432 | if (rollup->hashable) |
4433 | { |
4434 | double sz = estimate_hashagg_tablesize(path, |
4435 | agg_costs, |
4436 | rollup->numGroups); |
4437 | |
4438 | /* |
4439 | * If sz is enormous, but work_mem (and hence scale) is |
4440 | * small, avoid integer overflow here. |
4441 | */ |
4442 | k_weights[i] = (int) Min(floor(sz / scale), |
4443 | k_capacity + 1.0); |
4444 | ++i; |
4445 | } |
4446 | } |
4447 | |
4448 | /* |
4449 | * Apply knapsack algorithm; compute the set of items which |
4450 | * maximizes the value stored (in this case the number of sorts |
4451 | * saved) while keeping the total size (approximately) within |
4452 | * capacity. |
4453 | */ |
4454 | if (i > 0) |
4455 | hash_items = DiscreteKnapsack(k_capacity, i, k_weights, NULL); |
4456 | |
4457 | if (!bms_is_empty(hash_items)) |
4458 | { |
4459 | rollups = list_make1(linitial(gd->rollups)); |
4460 | |
4461 | i = 0; |
4462 | for_each_cell(lc, lnext(list_head(gd->rollups))) |
4463 | { |
4464 | RollupData *rollup = lfirst_node(RollupData, lc); |
4465 | |
4466 | if (rollup->hashable) |
4467 | { |
4468 | if (bms_is_member(i, hash_items)) |
4469 | hash_sets = list_concat(hash_sets, |
4470 | list_copy(rollup->gsets_data)); |
4471 | else |
4472 | rollups = lappend(rollups, rollup); |
4473 | ++i; |
4474 | } |
4475 | else |
4476 | rollups = lappend(rollups, rollup); |
4477 | } |
4478 | } |
4479 | } |
4480 | |
4481 | if (!rollups && hash_sets) |
4482 | rollups = list_copy(gd->rollups); |
4483 | |
4484 | foreach(lc, hash_sets) |
4485 | { |
4486 | GroupingSetData *gs = lfirst_node(GroupingSetData, lc); |
4487 | RollupData *rollup = makeNode(RollupData); |
4488 | |
4489 | Assert(gs->set != NIL); |
4490 | |
4491 | rollup->groupClause = preprocess_groupclause(root, gs->set); |
4492 | rollup->gsets_data = list_make1(gs); |
4493 | rollup->gsets = remap_to_groupclause_idx(rollup->groupClause, |
4494 | rollup->gsets_data, |
4495 | gd->tleref_to_colnum_map); |
4496 | rollup->numGroups = gs->numGroups; |
4497 | rollup->hashable = true; |
4498 | rollup->is_hashed = true; |
4499 | rollups = lcons(rollup, rollups); |
4500 | } |
4501 | |
4502 | if (rollups) |
4503 | { |
4504 | add_path(grouped_rel, (Path *) |
4505 | create_groupingsets_path(root, |
4506 | grouped_rel, |
4507 | path, |
4508 | (List *) parse->havingQual, |
4509 | AGG_MIXED, |
4510 | rollups, |
4511 | agg_costs, |
4512 | dNumGroups)); |
4513 | } |
4514 | } |
4515 | |
4516 | /* |
4517 | * Now try the simple sorted case. |
4518 | */ |
4519 | if (!gd->unsortable_sets) |
4520 | add_path(grouped_rel, (Path *) |
4521 | create_groupingsets_path(root, |
4522 | grouped_rel, |
4523 | path, |
4524 | (List *) parse->havingQual, |
4525 | AGG_SORTED, |
4526 | gd->rollups, |
4527 | agg_costs, |
4528 | dNumGroups)); |
4529 | } |
4530 | |
4531 | /* |
4532 | * create_window_paths |
4533 | * |
4534 | * Build a new upperrel containing Paths for window-function evaluation. |
4535 | * |
4536 | * input_rel: contains the source-data Paths |
4537 | * input_target: result of make_window_input_target |
4538 | * output_target: what the topmost WindowAggPath should return |
4539 | * wflists: result of find_window_functions |
4540 | * activeWindows: result of select_active_windows |
4541 | * |
4542 | * Note: all Paths in input_rel are expected to return input_target. |
4543 | */ |
4544 | static RelOptInfo * |
4545 | create_window_paths(PlannerInfo *root, |
4546 | RelOptInfo *input_rel, |
4547 | PathTarget *input_target, |
4548 | PathTarget *output_target, |
4549 | bool output_target_parallel_safe, |
4550 | WindowFuncLists *wflists, |
4551 | List *activeWindows) |
4552 | { |
4553 | RelOptInfo *window_rel; |
4554 | ListCell *lc; |
4555 | |
4556 | /* For now, do all work in the (WINDOW, NULL) upperrel */ |
4557 | window_rel = fetch_upper_rel(root, UPPERREL_WINDOW, NULL); |
4558 | |
4559 | /* |
4560 | * If the input relation is not parallel-safe, then the window relation |
4561 | * can't be parallel-safe, either. Otherwise, we need to examine the |
4562 | * target list and active windows for non-parallel-safe constructs. |
4563 | */ |
4564 | if (input_rel->consider_parallel && output_target_parallel_safe && |
4565 | is_parallel_safe(root, (Node *) activeWindows)) |
4566 | window_rel->consider_parallel = true; |
4567 | |
4568 | /* |
4569 | * If the input rel belongs to a single FDW, so does the window rel. |
4570 | */ |
4571 | window_rel->serverid = input_rel->serverid; |
4572 | window_rel->userid = input_rel->userid; |
4573 | window_rel->useridiscurrent = input_rel->useridiscurrent; |
4574 | window_rel->fdwroutine = input_rel->fdwroutine; |
4575 | |
4576 | /* |
4577 | * Consider computing window functions starting from the existing |
4578 | * cheapest-total path (which will likely require a sort) as well as any |
4579 | * existing paths that satisfy root->window_pathkeys (which won't). |
4580 | */ |
4581 | foreach(lc, input_rel->pathlist) |
4582 | { |
4583 | Path *path = (Path *) lfirst(lc); |
4584 | |
4585 | if (path == input_rel->cheapest_total_path || |
4586 | pathkeys_contained_in(root->window_pathkeys, path->pathkeys)) |
4587 | create_one_window_path(root, |
4588 | window_rel, |
4589 | path, |
4590 | input_target, |
4591 | output_target, |
4592 | wflists, |
4593 | activeWindows); |
4594 | } |
4595 | |
4596 | /* |
4597 | * If there is an FDW that's responsible for all baserels of the query, |
4598 | * let it consider adding ForeignPaths. |
4599 | */ |
4600 | if (window_rel->fdwroutine && |
4601 | window_rel->fdwroutine->GetForeignUpperPaths) |
4602 | window_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_WINDOW, |
4603 | input_rel, window_rel, |
4604 | NULL); |
4605 | |
4606 | /* Let extensions possibly add some more paths */ |
4607 | if (create_upper_paths_hook) |
4608 | (*create_upper_paths_hook) (root, UPPERREL_WINDOW, |
4609 | input_rel, window_rel, NULL); |
4610 | |
4611 | /* Now choose the best path(s) */ |
4612 | set_cheapest(window_rel); |
4613 | |
4614 | return window_rel; |
4615 | } |
4616 | |
4617 | /* |
4618 | * Stack window-function implementation steps atop the given Path, and |
4619 | * add the result to window_rel. |
4620 | * |
4621 | * window_rel: upperrel to contain result |
4622 | * path: input Path to use (must return input_target) |
4623 | * input_target: result of make_window_input_target |
4624 | * output_target: what the topmost WindowAggPath should return |
4625 | * wflists: result of find_window_functions |
4626 | * activeWindows: result of select_active_windows |
4627 | */ |
4628 | static void |
4629 | create_one_window_path(PlannerInfo *root, |
4630 | RelOptInfo *window_rel, |
4631 | Path *path, |
4632 | PathTarget *input_target, |
4633 | PathTarget *output_target, |
4634 | WindowFuncLists *wflists, |
4635 | List *activeWindows) |
4636 | { |
4637 | PathTarget *window_target; |
4638 | ListCell *l; |
4639 | |
4640 | /* |
4641 | * Since each window clause could require a different sort order, we stack |
4642 | * up a WindowAgg node for each clause, with sort steps between them as |
4643 | * needed. (We assume that select_active_windows chose a good order for |
4644 | * executing the clauses in.) |
4645 | * |
4646 | * input_target should contain all Vars and Aggs needed for the result. |
4647 | * (In some cases we wouldn't need to propagate all of these all the way |
4648 | * to the top, since they might only be needed as inputs to WindowFuncs. |
4649 | * It's probably not worth trying to optimize that though.) It must also |
4650 | * contain all window partitioning and sorting expressions, to ensure |
4651 | * they're computed only once at the bottom of the stack (that's critical |
4652 | * for volatile functions). As we climb up the stack, we'll add outputs |
4653 | * for the WindowFuncs computed at each level. |
4654 | */ |
4655 | window_target = input_target; |
4656 | |
4657 | foreach(l, activeWindows) |
4658 | { |
4659 | WindowClause *wc = lfirst_node(WindowClause, l); |
4660 | List *window_pathkeys; |
4661 | |
4662 | window_pathkeys = make_pathkeys_for_window(root, |
4663 | wc, |
4664 | root->processed_tlist); |
4665 | |
4666 | /* Sort if necessary */ |
4667 | if (!pathkeys_contained_in(window_pathkeys, path->pathkeys)) |
4668 | { |
4669 | path = (Path *) create_sort_path(root, window_rel, |
4670 | path, |
4671 | window_pathkeys, |
4672 | -1.0); |
4673 | } |
4674 | |
4675 | if (lnext(l)) |
4676 | { |
4677 | /* |
4678 | * Add the current WindowFuncs to the output target for this |
4679 | * intermediate WindowAggPath. We must copy window_target to |
4680 | * avoid changing the previous path's target. |
4681 | * |
4682 | * Note: a WindowFunc adds nothing to the target's eval costs; but |
4683 | * we do need to account for the increase in tlist width. |
4684 | */ |
4685 | ListCell *lc2; |
4686 | |
4687 | window_target = copy_pathtarget(window_target); |
4688 | foreach(lc2, wflists->windowFuncs[wc->winref]) |
4689 | { |
4690 | WindowFunc *wfunc = lfirst_node(WindowFunc, lc2); |
4691 | |
4692 | add_column_to_pathtarget(window_target, (Expr *) wfunc, 0); |
4693 | window_target->width += get_typavgwidth(wfunc->wintype, -1); |
4694 | } |
4695 | } |
4696 | else |
4697 | { |
4698 | /* Install the goal target in the topmost WindowAgg */ |
4699 | window_target = output_target; |
4700 | } |
4701 | |
4702 | path = (Path *) |
4703 | create_windowagg_path(root, window_rel, path, window_target, |
4704 | wflists->windowFuncs[wc->winref], |
4705 | wc); |
4706 | } |
4707 | |
4708 | add_path(window_rel, path); |
4709 | } |
4710 | |
4711 | /* |
4712 | * create_distinct_paths |
4713 | * |
4714 | * Build a new upperrel containing Paths for SELECT DISTINCT evaluation. |
4715 | * |
4716 | * input_rel: contains the source-data Paths |
4717 | * |
4718 | * Note: input paths should already compute the desired pathtarget, since |
4719 | * Sort/Unique won't project anything. |
4720 | */ |
4721 | static RelOptInfo * |
4722 | create_distinct_paths(PlannerInfo *root, |
4723 | RelOptInfo *input_rel) |
4724 | { |
4725 | Query *parse = root->parse; |
4726 | Path *cheapest_input_path = input_rel->cheapest_total_path; |
4727 | RelOptInfo *distinct_rel; |
4728 | double numDistinctRows; |
4729 | bool allow_hash; |
4730 | Path *path; |
4731 | ListCell *lc; |
4732 | |
4733 | /* For now, do all work in the (DISTINCT, NULL) upperrel */ |
4734 | distinct_rel = fetch_upper_rel(root, UPPERREL_DISTINCT, NULL); |
4735 | |
4736 | /* |
4737 | * We don't compute anything at this level, so distinct_rel will be |
4738 | * parallel-safe if the input rel is parallel-safe. In particular, if |
4739 | * there is a DISTINCT ON (...) clause, any path for the input_rel will |
4740 | * output those expressions, and will not be parallel-safe unless those |
4741 | * expressions are parallel-safe. |
4742 | */ |
4743 | distinct_rel->consider_parallel = input_rel->consider_parallel; |
4744 | |
4745 | /* |
4746 | * If the input rel belongs to a single FDW, so does the distinct_rel. |
4747 | */ |
4748 | distinct_rel->serverid = input_rel->serverid; |
4749 | distinct_rel->userid = input_rel->userid; |
4750 | distinct_rel->useridiscurrent = input_rel->useridiscurrent; |
4751 | distinct_rel->fdwroutine = input_rel->fdwroutine; |
4752 | |
4753 | /* Estimate number of distinct rows there will be */ |
4754 | if (parse->groupClause || parse->groupingSets || parse->hasAggs || |
4755 | root->hasHavingQual) |
4756 | { |
4757 | /* |
4758 | * If there was grouping or aggregation, use the number of input rows |
4759 | * as the estimated number of DISTINCT rows (ie, assume the input is |
4760 | * already mostly unique). |
4761 | */ |
4762 | numDistinctRows = cheapest_input_path->rows; |
4763 | } |
4764 | else |
4765 | { |
4766 | /* |
4767 | * Otherwise, the UNIQUE filter has effects comparable to GROUP BY. |
4768 | */ |
4769 | List *distinctExprs; |
4770 | |
4771 | distinctExprs = get_sortgrouplist_exprs(parse->distinctClause, |
4772 | parse->targetList); |
4773 | numDistinctRows = estimate_num_groups(root, distinctExprs, |
4774 | cheapest_input_path->rows, |
4775 | NULL); |
4776 | } |
4777 | |
4778 | /* |
4779 | * Consider sort-based implementations of DISTINCT, if possible. |
4780 | */ |
4781 | if (grouping_is_sortable(parse->distinctClause)) |
4782 | { |
4783 | /* |
4784 | * First, if we have any adequately-presorted paths, just stick a |
4785 | * Unique node on those. Then consider doing an explicit sort of the |
4786 | * cheapest input path and Unique'ing that. |
4787 | * |
4788 | * When we have DISTINCT ON, we must sort by the more rigorous of |
4789 | * DISTINCT and ORDER BY, else it won't have the desired behavior. |
4790 | * Also, if we do have to do an explicit sort, we might as well use |
4791 | * the more rigorous ordering to avoid a second sort later. (Note |
4792 | * that the parser will have ensured that one clause is a prefix of |
4793 | * the other.) |
4794 | */ |
4795 | List *needed_pathkeys; |
4796 | |
4797 | if (parse->hasDistinctOn && |
4798 | list_length(root->distinct_pathkeys) < |
4799 | list_length(root->sort_pathkeys)) |
4800 | needed_pathkeys = root->sort_pathkeys; |
4801 | else |
4802 | needed_pathkeys = root->distinct_pathkeys; |
4803 | |
4804 | foreach(lc, input_rel->pathlist) |
4805 | { |
4806 | Path *path = (Path *) lfirst(lc); |
4807 | |
4808 | if (pathkeys_contained_in(needed_pathkeys, path->pathkeys)) |
4809 | { |
4810 | add_path(distinct_rel, (Path *) |
4811 | create_upper_unique_path(root, distinct_rel, |
4812 | path, |
4813 | list_length(root->distinct_pathkeys), |
4814 | numDistinctRows)); |
4815 | } |
4816 | } |
4817 | |
4818 | /* For explicit-sort case, always use the more rigorous clause */ |
4819 | if (list_length(root->distinct_pathkeys) < |
4820 | list_length(root->sort_pathkeys)) |
4821 | { |
4822 | needed_pathkeys = root->sort_pathkeys; |
4823 | /* Assert checks that parser didn't mess up... */ |
4824 | Assert(pathkeys_contained_in(root->distinct_pathkeys, |
4825 | needed_pathkeys)); |
4826 | } |
4827 | else |
4828 | needed_pathkeys = root->distinct_pathkeys; |
4829 | |
4830 | path = cheapest_input_path; |
4831 | if (!pathkeys_contained_in(needed_pathkeys, path->pathkeys)) |
4832 | path = (Path *) create_sort_path(root, distinct_rel, |
4833 | path, |
4834 | needed_pathkeys, |
4835 | -1.0); |
4836 | |
4837 | add_path(distinct_rel, (Path *) |
4838 | create_upper_unique_path(root, distinct_rel, |
4839 | path, |
4840 | list_length(root->distinct_pathkeys), |
4841 | numDistinctRows)); |
4842 | } |
4843 | |
4844 | /* |
4845 | * Consider hash-based implementations of DISTINCT, if possible. |
4846 | * |
4847 | * If we were not able to make any other types of path, we *must* hash or |
4848 | * die trying. If we do have other choices, there are several things that |
4849 | * should prevent selection of hashing: if the query uses DISTINCT ON |
4850 | * (because it won't really have the expected behavior if we hash), or if |
4851 | * enable_hashagg is off, or if it looks like the hashtable will exceed |
4852 | * work_mem. |
4853 | * |
4854 | * Note: grouping_is_hashable() is much more expensive to check than the |
4855 | * other gating conditions, so we want to do it last. |
4856 | */ |
4857 | if (distinct_rel->pathlist == NIL) |
4858 | allow_hash = true; /* we have no alternatives */ |
4859 | else if (parse->hasDistinctOn || !enable_hashagg) |
4860 | allow_hash = false; /* policy-based decision not to hash */ |
4861 | else |
4862 | { |
4863 | Size hashentrysize; |
4864 | |
4865 | /* Estimate per-hash-entry space at tuple width... */ |
4866 | hashentrysize = MAXALIGN(cheapest_input_path->pathtarget->width) + |
4867 | MAXALIGN(SizeofMinimalTupleHeader); |
4868 | /* plus the per-hash-entry overhead */ |
4869 | hashentrysize += hash_agg_entry_size(0); |
4870 | |
4871 | /* Allow hashing only if hashtable is predicted to fit in work_mem */ |
4872 | allow_hash = (hashentrysize * numDistinctRows <= work_mem * 1024L); |
4873 | } |
4874 | |
4875 | if (allow_hash && grouping_is_hashable(parse->distinctClause)) |
4876 | { |
4877 | /* Generate hashed aggregate path --- no sort needed */ |
4878 | add_path(distinct_rel, (Path *) |
4879 | create_agg_path(root, |
4880 | distinct_rel, |
4881 | cheapest_input_path, |
4882 | cheapest_input_path->pathtarget, |
4883 | AGG_HASHED, |
4884 | AGGSPLIT_SIMPLE, |
4885 | parse->distinctClause, |
4886 | NIL, |
4887 | NULL, |
4888 | numDistinctRows)); |
4889 | } |
4890 | |
4891 | /* Give a helpful error if we failed to find any implementation */ |
4892 | if (distinct_rel->pathlist == NIL) |
4893 | ereport(ERROR, |
4894 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
4895 | errmsg("could not implement DISTINCT" ), |
4896 | errdetail("Some of the datatypes only support hashing, while others only support sorting." ))); |
4897 | |
4898 | /* |
4899 | * If there is an FDW that's responsible for all baserels of the query, |
4900 | * let it consider adding ForeignPaths. |
4901 | */ |
4902 | if (distinct_rel->fdwroutine && |
4903 | distinct_rel->fdwroutine->GetForeignUpperPaths) |
4904 | distinct_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_DISTINCT, |
4905 | input_rel, distinct_rel, |
4906 | NULL); |
4907 | |
4908 | /* Let extensions possibly add some more paths */ |
4909 | if (create_upper_paths_hook) |
4910 | (*create_upper_paths_hook) (root, UPPERREL_DISTINCT, |
4911 | input_rel, distinct_rel, NULL); |
4912 | |
4913 | /* Now choose the best path(s) */ |
4914 | set_cheapest(distinct_rel); |
4915 | |
4916 | return distinct_rel; |
4917 | } |
4918 | |
4919 | /* |
4920 | * create_ordered_paths |
4921 | * |
4922 | * Build a new upperrel containing Paths for ORDER BY evaluation. |
4923 | * |
4924 | * All paths in the result must satisfy the ORDER BY ordering. |
4925 | * The only new path we need consider is an explicit sort on the |
4926 | * cheapest-total existing path. |
4927 | * |
4928 | * input_rel: contains the source-data Paths |
4929 | * target: the output tlist the result Paths must emit |
4930 | * limit_tuples: estimated bound on the number of output tuples, |
4931 | * or -1 if no LIMIT or couldn't estimate |
4932 | */ |
4933 | static RelOptInfo * |
4934 | create_ordered_paths(PlannerInfo *root, |
4935 | RelOptInfo *input_rel, |
4936 | PathTarget *target, |
4937 | bool target_parallel_safe, |
4938 | double limit_tuples) |
4939 | { |
4940 | Path *cheapest_input_path = input_rel->cheapest_total_path; |
4941 | RelOptInfo *ordered_rel; |
4942 | ListCell *lc; |
4943 | |
4944 | /* For now, do all work in the (ORDERED, NULL) upperrel */ |
4945 | ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL); |
4946 | |
4947 | /* |
4948 | * If the input relation is not parallel-safe, then the ordered relation |
4949 | * can't be parallel-safe, either. Otherwise, it's parallel-safe if the |
4950 | * target list is parallel-safe. |
4951 | */ |
4952 | if (input_rel->consider_parallel && target_parallel_safe) |
4953 | ordered_rel->consider_parallel = true; |
4954 | |
4955 | /* |
4956 | * If the input rel belongs to a single FDW, so does the ordered_rel. |
4957 | */ |
4958 | ordered_rel->serverid = input_rel->serverid; |
4959 | ordered_rel->userid = input_rel->userid; |
4960 | ordered_rel->useridiscurrent = input_rel->useridiscurrent; |
4961 | ordered_rel->fdwroutine = input_rel->fdwroutine; |
4962 | |
4963 | foreach(lc, input_rel->pathlist) |
4964 | { |
4965 | Path *path = (Path *) lfirst(lc); |
4966 | bool is_sorted; |
4967 | |
4968 | is_sorted = pathkeys_contained_in(root->sort_pathkeys, |
4969 | path->pathkeys); |
4970 | if (path == cheapest_input_path || is_sorted) |
4971 | { |
4972 | if (!is_sorted) |
4973 | { |
4974 | /* An explicit sort here can take advantage of LIMIT */ |
4975 | path = (Path *) create_sort_path(root, |
4976 | ordered_rel, |
4977 | path, |
4978 | root->sort_pathkeys, |
4979 | limit_tuples); |
4980 | } |
4981 | |
4982 | /* Add projection step if needed */ |
4983 | if (path->pathtarget != target) |
4984 | path = apply_projection_to_path(root, ordered_rel, |
4985 | path, target); |
4986 | |
4987 | add_path(ordered_rel, path); |
4988 | } |
4989 | } |
4990 | |
4991 | /* |
4992 | * generate_gather_paths() will have already generated a simple Gather |
4993 | * path for the best parallel path, if any, and the loop above will have |
4994 | * considered sorting it. Similarly, generate_gather_paths() will also |
4995 | * have generated order-preserving Gather Merge plans which can be used |
4996 | * without sorting if they happen to match the sort_pathkeys, and the loop |
4997 | * above will have handled those as well. However, there's one more |
4998 | * possibility: it may make sense to sort the cheapest partial path |
4999 | * according to the required output order and then use Gather Merge. |
5000 | */ |
5001 | if (ordered_rel->consider_parallel && root->sort_pathkeys != NIL && |
5002 | input_rel->partial_pathlist != NIL) |
5003 | { |
5004 | Path *cheapest_partial_path; |
5005 | |
5006 | cheapest_partial_path = linitial(input_rel->partial_pathlist); |
5007 | |
5008 | /* |
5009 | * If cheapest partial path doesn't need a sort, this is redundant |
5010 | * with what's already been tried. |
5011 | */ |
5012 | if (!pathkeys_contained_in(root->sort_pathkeys, |
5013 | cheapest_partial_path->pathkeys)) |
5014 | { |
5015 | Path *path; |
5016 | double total_groups; |
5017 | |
5018 | path = (Path *) create_sort_path(root, |
5019 | ordered_rel, |
5020 | cheapest_partial_path, |
5021 | root->sort_pathkeys, |
5022 | limit_tuples); |
5023 | |
5024 | total_groups = cheapest_partial_path->rows * |
5025 | cheapest_partial_path->parallel_workers; |
5026 | path = (Path *) |
5027 | create_gather_merge_path(root, ordered_rel, |
5028 | path, |
5029 | path->pathtarget, |
5030 | root->sort_pathkeys, NULL, |
5031 | &total_groups); |
5032 | |
5033 | /* Add projection step if needed */ |
5034 | if (path->pathtarget != target) |
5035 | path = apply_projection_to_path(root, ordered_rel, |
5036 | path, target); |
5037 | |
5038 | add_path(ordered_rel, path); |
5039 | } |
5040 | } |
5041 | |
5042 | /* |
5043 | * If there is an FDW that's responsible for all baserels of the query, |
5044 | * let it consider adding ForeignPaths. |
5045 | */ |
5046 | if (ordered_rel->fdwroutine && |
5047 | ordered_rel->fdwroutine->GetForeignUpperPaths) |
5048 | ordered_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_ORDERED, |
5049 | input_rel, ordered_rel, |
5050 | NULL); |
5051 | |
5052 | /* Let extensions possibly add some more paths */ |
5053 | if (create_upper_paths_hook) |
5054 | (*create_upper_paths_hook) (root, UPPERREL_ORDERED, |
5055 | input_rel, ordered_rel, NULL); |
5056 | |
5057 | /* |
5058 | * No need to bother with set_cheapest here; grouping_planner does not |
5059 | * need us to do it. |
5060 | */ |
5061 | Assert(ordered_rel->pathlist != NIL); |
5062 | |
5063 | return ordered_rel; |
5064 | } |
5065 | |
5066 | |
5067 | /* |
5068 | * make_group_input_target |
5069 | * Generate appropriate PathTarget for initial input to grouping nodes. |
5070 | * |
5071 | * If there is grouping or aggregation, the scan/join subplan cannot emit |
5072 | * the query's final targetlist; for example, it certainly can't emit any |
5073 | * aggregate function calls. This routine generates the correct target |
5074 | * for the scan/join subplan. |
5075 | * |
5076 | * The query target list passed from the parser already contains entries |
5077 | * for all ORDER BY and GROUP BY expressions, but it will not have entries |
5078 | * for variables used only in HAVING clauses; so we need to add those |
5079 | * variables to the subplan target list. Also, we flatten all expressions |
5080 | * except GROUP BY items into their component variables; other expressions |
5081 | * will be computed by the upper plan nodes rather than by the subplan. |
5082 | * For example, given a query like |
5083 | * SELECT a+b,SUM(c+d) FROM table GROUP BY a+b; |
5084 | * we want to pass this targetlist to the subplan: |
5085 | * a+b,c,d |
5086 | * where the a+b target will be used by the Sort/Group steps, and the |
5087 | * other targets will be used for computing the final results. |
5088 | * |
5089 | * 'final_target' is the query's final target list (in PathTarget form) |
5090 | * |
5091 | * The result is the PathTarget to be computed by the Paths returned from |
5092 | * query_planner(). |
5093 | */ |
5094 | static PathTarget * |
5095 | make_group_input_target(PlannerInfo *root, PathTarget *final_target) |
5096 | { |
5097 | Query *parse = root->parse; |
5098 | PathTarget *input_target; |
5099 | List *non_group_cols; |
5100 | List *non_group_vars; |
5101 | int i; |
5102 | ListCell *lc; |
5103 | |
5104 | /* |
5105 | * We must build a target containing all grouping columns, plus any other |
5106 | * Vars mentioned in the query's targetlist and HAVING qual. |
5107 | */ |
5108 | input_target = create_empty_pathtarget(); |
5109 | non_group_cols = NIL; |
5110 | |
5111 | i = 0; |
5112 | foreach(lc, final_target->exprs) |
5113 | { |
5114 | Expr *expr = (Expr *) lfirst(lc); |
5115 | Index sgref = get_pathtarget_sortgroupref(final_target, i); |
5116 | |
5117 | if (sgref && parse->groupClause && |
5118 | get_sortgroupref_clause_noerr(sgref, parse->groupClause) != NULL) |
5119 | { |
5120 | /* |
5121 | * It's a grouping column, so add it to the input target as-is. |
5122 | */ |
5123 | add_column_to_pathtarget(input_target, expr, sgref); |
5124 | } |
5125 | else |
5126 | { |
5127 | /* |
5128 | * Non-grouping column, so just remember the expression for later |
5129 | * call to pull_var_clause. |
5130 | */ |
5131 | non_group_cols = lappend(non_group_cols, expr); |
5132 | } |
5133 | |
5134 | i++; |
5135 | } |
5136 | |
5137 | /* |
5138 | * If there's a HAVING clause, we'll need the Vars it uses, too. |
5139 | */ |
5140 | if (parse->havingQual) |
5141 | non_group_cols = lappend(non_group_cols, parse->havingQual); |
5142 | |
5143 | /* |
5144 | * Pull out all the Vars mentioned in non-group cols (plus HAVING), and |
5145 | * add them to the input target if not already present. (A Var used |
5146 | * directly as a GROUP BY item will be present already.) Note this |
5147 | * includes Vars used in resjunk items, so we are covering the needs of |
5148 | * ORDER BY and window specifications. Vars used within Aggrefs and |
5149 | * WindowFuncs will be pulled out here, too. |
5150 | */ |
5151 | non_group_vars = pull_var_clause((Node *) non_group_cols, |
5152 | PVC_RECURSE_AGGREGATES | |
5153 | PVC_RECURSE_WINDOWFUNCS | |
5154 | PVC_INCLUDE_PLACEHOLDERS); |
5155 | add_new_columns_to_pathtarget(input_target, non_group_vars); |
5156 | |
5157 | /* clean up cruft */ |
5158 | list_free(non_group_vars); |
5159 | list_free(non_group_cols); |
5160 | |
5161 | /* XXX this causes some redundant cost calculation ... */ |
5162 | return set_pathtarget_cost_width(root, input_target); |
5163 | } |
5164 | |
5165 | /* |
5166 | * make_partial_grouping_target |
5167 | * Generate appropriate PathTarget for output of partial aggregate |
5168 | * (or partial grouping, if there are no aggregates) nodes. |
5169 | * |
5170 | * A partial aggregation node needs to emit all the same aggregates that |
5171 | * a regular aggregation node would, plus any aggregates used in HAVING; |
5172 | * except that the Aggref nodes should be marked as partial aggregates. |
5173 | * |
5174 | * In addition, we'd better emit any Vars and PlaceholderVars that are |
5175 | * used outside of Aggrefs in the aggregation tlist and HAVING. (Presumably, |
5176 | * these would be Vars that are grouped by or used in grouping expressions.) |
5177 | * |
5178 | * grouping_target is the tlist to be emitted by the topmost aggregation step. |
5179 | * havingQual represents the HAVING clause. |
5180 | */ |
5181 | static PathTarget * |
5182 | make_partial_grouping_target(PlannerInfo *root, |
5183 | PathTarget *grouping_target, |
5184 | Node *havingQual) |
5185 | { |
5186 | Query *parse = root->parse; |
5187 | PathTarget *partial_target; |
5188 | List *non_group_cols; |
5189 | List *non_group_exprs; |
5190 | int i; |
5191 | ListCell *lc; |
5192 | |
5193 | partial_target = create_empty_pathtarget(); |
5194 | non_group_cols = NIL; |
5195 | |
5196 | i = 0; |
5197 | foreach(lc, grouping_target->exprs) |
5198 | { |
5199 | Expr *expr = (Expr *) lfirst(lc); |
5200 | Index sgref = get_pathtarget_sortgroupref(grouping_target, i); |
5201 | |
5202 | if (sgref && parse->groupClause && |
5203 | get_sortgroupref_clause_noerr(sgref, parse->groupClause) != NULL) |
5204 | { |
5205 | /* |
5206 | * It's a grouping column, so add it to the partial_target as-is. |
5207 | * (This allows the upper agg step to repeat the grouping calcs.) |
5208 | */ |
5209 | add_column_to_pathtarget(partial_target, expr, sgref); |
5210 | } |
5211 | else |
5212 | { |
5213 | /* |
5214 | * Non-grouping column, so just remember the expression for later |
5215 | * call to pull_var_clause. |
5216 | */ |
5217 | non_group_cols = lappend(non_group_cols, expr); |
5218 | } |
5219 | |
5220 | i++; |
5221 | } |
5222 | |
5223 | /* |
5224 | * If there's a HAVING clause, we'll need the Vars/Aggrefs it uses, too. |
5225 | */ |
5226 | if (havingQual) |
5227 | non_group_cols = lappend(non_group_cols, havingQual); |
5228 | |
5229 | /* |
5230 | * Pull out all the Vars, PlaceHolderVars, and Aggrefs mentioned in |
5231 | * non-group cols (plus HAVING), and add them to the partial_target if not |
5232 | * already present. (An expression used directly as a GROUP BY item will |
5233 | * be present already.) Note this includes Vars used in resjunk items, so |
5234 | * we are covering the needs of ORDER BY and window specifications. |
5235 | */ |
5236 | non_group_exprs = pull_var_clause((Node *) non_group_cols, |
5237 | PVC_INCLUDE_AGGREGATES | |
5238 | PVC_RECURSE_WINDOWFUNCS | |
5239 | PVC_INCLUDE_PLACEHOLDERS); |
5240 | |
5241 | add_new_columns_to_pathtarget(partial_target, non_group_exprs); |
5242 | |
5243 | /* |
5244 | * Adjust Aggrefs to put them in partial mode. At this point all Aggrefs |
5245 | * are at the top level of the target list, so we can just scan the list |
5246 | * rather than recursing through the expression trees. |
5247 | */ |
5248 | foreach(lc, partial_target->exprs) |
5249 | { |
5250 | Aggref *aggref = (Aggref *) lfirst(lc); |
5251 | |
5252 | if (IsA(aggref, Aggref)) |
5253 | { |
5254 | Aggref *newaggref; |
5255 | |
5256 | /* |
5257 | * We shouldn't need to copy the substructure of the Aggref node, |
5258 | * but flat-copy the node itself to avoid damaging other trees. |
5259 | */ |
5260 | newaggref = makeNode(Aggref); |
5261 | memcpy(newaggref, aggref, sizeof(Aggref)); |
5262 | |
5263 | /* For now, assume serialization is required */ |
5264 | mark_partial_aggref(newaggref, AGGSPLIT_INITIAL_SERIAL); |
5265 | |
5266 | lfirst(lc) = newaggref; |
5267 | } |
5268 | } |
5269 | |
5270 | /* clean up cruft */ |
5271 | list_free(non_group_exprs); |
5272 | list_free(non_group_cols); |
5273 | |
5274 | /* XXX this causes some redundant cost calculation ... */ |
5275 | return set_pathtarget_cost_width(root, partial_target); |
5276 | } |
5277 | |
5278 | /* |
5279 | * mark_partial_aggref |
5280 | * Adjust an Aggref to make it represent a partial-aggregation step. |
5281 | * |
5282 | * The Aggref node is modified in-place; caller must do any copying required. |
5283 | */ |
5284 | void |
5285 | mark_partial_aggref(Aggref *agg, AggSplit aggsplit) |
5286 | { |
5287 | /* aggtranstype should be computed by this point */ |
5288 | Assert(OidIsValid(agg->aggtranstype)); |
5289 | /* ... but aggsplit should still be as the parser left it */ |
5290 | Assert(agg->aggsplit == AGGSPLIT_SIMPLE); |
5291 | |
5292 | /* Mark the Aggref with the intended partial-aggregation mode */ |
5293 | agg->aggsplit = aggsplit; |
5294 | |
5295 | /* |
5296 | * Adjust result type if needed. Normally, a partial aggregate returns |
5297 | * the aggregate's transition type; but if that's INTERNAL and we're |
5298 | * serializing, it returns BYTEA instead. |
5299 | */ |
5300 | if (DO_AGGSPLIT_SKIPFINAL(aggsplit)) |
5301 | { |
5302 | if (agg->aggtranstype == INTERNALOID && DO_AGGSPLIT_SERIALIZE(aggsplit)) |
5303 | agg->aggtype = BYTEAOID; |
5304 | else |
5305 | agg->aggtype = agg->aggtranstype; |
5306 | } |
5307 | } |
5308 | |
5309 | /* |
5310 | * postprocess_setop_tlist |
5311 | * Fix up targetlist returned by plan_set_operations(). |
5312 | * |
5313 | * We need to transpose sort key info from the orig_tlist into new_tlist. |
5314 | * NOTE: this would not be good enough if we supported resjunk sort keys |
5315 | * for results of set operations --- then, we'd need to project a whole |
5316 | * new tlist to evaluate the resjunk columns. For now, just ereport if we |
5317 | * find any resjunk columns in orig_tlist. |
5318 | */ |
5319 | static List * |
5320 | postprocess_setop_tlist(List *new_tlist, List *orig_tlist) |
5321 | { |
5322 | ListCell *l; |
5323 | ListCell *orig_tlist_item = list_head(orig_tlist); |
5324 | |
5325 | foreach(l, new_tlist) |
5326 | { |
5327 | TargetEntry *new_tle = lfirst_node(TargetEntry, l); |
5328 | TargetEntry *orig_tle; |
5329 | |
5330 | /* ignore resjunk columns in setop result */ |
5331 | if (new_tle->resjunk) |
5332 | continue; |
5333 | |
5334 | Assert(orig_tlist_item != NULL); |
5335 | orig_tle = lfirst_node(TargetEntry, orig_tlist_item); |
5336 | orig_tlist_item = lnext(orig_tlist_item); |
5337 | if (orig_tle->resjunk) /* should not happen */ |
5338 | elog(ERROR, "resjunk output columns are not implemented" ); |
5339 | Assert(new_tle->resno == orig_tle->resno); |
5340 | new_tle->ressortgroupref = orig_tle->ressortgroupref; |
5341 | } |
5342 | if (orig_tlist_item != NULL) |
5343 | elog(ERROR, "resjunk output columns are not implemented" ); |
5344 | return new_tlist; |
5345 | } |
5346 | |
5347 | /* |
5348 | * select_active_windows |
5349 | * Create a list of the "active" window clauses (ie, those referenced |
5350 | * by non-deleted WindowFuncs) in the order they are to be executed. |
5351 | */ |
5352 | static List * |
5353 | select_active_windows(PlannerInfo *root, WindowFuncLists *wflists) |
5354 | { |
5355 | List *windowClause = root->parse->windowClause; |
5356 | List *result = NIL; |
5357 | ListCell *lc; |
5358 | int nActive = 0; |
5359 | WindowClauseSortData *actives = palloc(sizeof(WindowClauseSortData) |
5360 | * list_length(windowClause)); |
5361 | |
5362 | /* First, construct an array of the active windows */ |
5363 | foreach(lc, windowClause) |
5364 | { |
5365 | WindowClause *wc = lfirst_node(WindowClause, lc); |
5366 | |
5367 | /* It's only active if wflists shows some related WindowFuncs */ |
5368 | Assert(wc->winref <= wflists->maxWinRef); |
5369 | if (wflists->windowFuncs[wc->winref] == NIL) |
5370 | continue; |
5371 | |
5372 | actives[nActive].wc = wc; /* original clause */ |
5373 | |
5374 | /* |
5375 | * For sorting, we want the list of partition keys followed by the |
5376 | * list of sort keys. But pathkeys construction will remove duplicates |
5377 | * between the two, so we can as well (even though we can't detect all |
5378 | * of the duplicates, since some may come from ECs - that might mean |
5379 | * we miss optimization chances here). We must, however, ensure that |
5380 | * the order of entries is preserved with respect to the ones we do |
5381 | * keep. |
5382 | * |
5383 | * partitionClause and orderClause had their own duplicates removed in |
5384 | * parse analysis, so we're only concerned here with removing |
5385 | * orderClause entries that also appear in partitionClause. |
5386 | */ |
5387 | actives[nActive].uniqueOrder = |
5388 | list_concat_unique(list_copy(wc->partitionClause), |
5389 | wc->orderClause); |
5390 | nActive++; |
5391 | } |
5392 | |
5393 | /* |
5394 | * Sort active windows by their partitioning/ordering clauses, ignoring |
5395 | * any framing clauses, so that the windows that need the same sorting are |
5396 | * adjacent in the list. When we come to generate paths, this will avoid |
5397 | * inserting additional Sort nodes. |
5398 | * |
5399 | * This is how we implement a specific requirement from the SQL standard, |
5400 | * which says that when two or more windows are order-equivalent (i.e. |
5401 | * have matching partition and order clauses, even if their names or |
5402 | * framing clauses differ), then all peer rows must be presented in the |
5403 | * same order in all of them. If we allowed multiple sort nodes for such |
5404 | * cases, we'd risk having the peer rows end up in different orders in |
5405 | * equivalent windows due to sort instability. (See General Rule 4 of |
5406 | * <window clause> in SQL2008 - SQL2016.) |
5407 | * |
5408 | * Additionally, if the entire list of clauses of one window is a prefix |
5409 | * of another, put first the window with stronger sorting requirements. |
5410 | * This way we will first sort for stronger window, and won't have to sort |
5411 | * again for the weaker one. |
5412 | */ |
5413 | qsort(actives, nActive, sizeof(WindowClauseSortData), common_prefix_cmp); |
5414 | |
5415 | /* build ordered list of the original WindowClause nodes */ |
5416 | for (int i = 0; i < nActive; i++) |
5417 | result = lappend(result, actives[i].wc); |
5418 | |
5419 | pfree(actives); |
5420 | |
5421 | return result; |
5422 | } |
5423 | |
5424 | /* |
5425 | * common_prefix_cmp |
5426 | * QSort comparison function for WindowClauseSortData |
5427 | * |
5428 | * Sort the windows by the required sorting clauses. First, compare the sort |
5429 | * clauses themselves. Second, if one window's clauses are a prefix of another |
5430 | * one's clauses, put the window with more sort clauses first. |
5431 | */ |
5432 | static int |
5433 | common_prefix_cmp(const void *a, const void *b) |
5434 | { |
5435 | const WindowClauseSortData *wcsa = a; |
5436 | const WindowClauseSortData *wcsb = b; |
5437 | ListCell *item_a; |
5438 | ListCell *item_b; |
5439 | |
5440 | forboth(item_a, wcsa->uniqueOrder, item_b, wcsb->uniqueOrder) |
5441 | { |
5442 | SortGroupClause *sca = lfirst_node(SortGroupClause, item_a); |
5443 | SortGroupClause *scb = lfirst_node(SortGroupClause, item_b); |
5444 | |
5445 | if (sca->tleSortGroupRef > scb->tleSortGroupRef) |
5446 | return -1; |
5447 | else if (sca->tleSortGroupRef < scb->tleSortGroupRef) |
5448 | return 1; |
5449 | else if (sca->sortop > scb->sortop) |
5450 | return -1; |
5451 | else if (sca->sortop < scb->sortop) |
5452 | return 1; |
5453 | else if (sca->nulls_first && !scb->nulls_first) |
5454 | return -1; |
5455 | else if (!sca->nulls_first && scb->nulls_first) |
5456 | return 1; |
5457 | /* no need to compare eqop, since it is fully determined by sortop */ |
5458 | } |
5459 | |
5460 | if (list_length(wcsa->uniqueOrder) > list_length(wcsb->uniqueOrder)) |
5461 | return -1; |
5462 | else if (list_length(wcsa->uniqueOrder) < list_length(wcsb->uniqueOrder)) |
5463 | return 1; |
5464 | |
5465 | return 0; |
5466 | } |
5467 | |
5468 | /* |
5469 | * make_window_input_target |
5470 | * Generate appropriate PathTarget for initial input to WindowAgg nodes. |
5471 | * |
5472 | * When the query has window functions, this function computes the desired |
5473 | * target to be computed by the node just below the first WindowAgg. |
5474 | * This tlist must contain all values needed to evaluate the window functions, |
5475 | * compute the final target list, and perform any required final sort step. |
5476 | * If multiple WindowAggs are needed, each intermediate one adds its window |
5477 | * function results onto this base tlist; only the topmost WindowAgg computes |
5478 | * the actual desired target list. |
5479 | * |
5480 | * This function is much like make_group_input_target, though not quite enough |
5481 | * like it to share code. As in that function, we flatten most expressions |
5482 | * into their component variables. But we do not want to flatten window |
5483 | * PARTITION BY/ORDER BY clauses, since that might result in multiple |
5484 | * evaluations of them, which would be bad (possibly even resulting in |
5485 | * inconsistent answers, if they contain volatile functions). |
5486 | * Also, we must not flatten GROUP BY clauses that were left unflattened by |
5487 | * make_group_input_target, because we may no longer have access to the |
5488 | * individual Vars in them. |
5489 | * |
5490 | * Another key difference from make_group_input_target is that we don't |
5491 | * flatten Aggref expressions, since those are to be computed below the |
5492 | * window functions and just referenced like Vars above that. |
5493 | * |
5494 | * 'final_target' is the query's final target list (in PathTarget form) |
5495 | * 'activeWindows' is the list of active windows previously identified by |
5496 | * select_active_windows. |
5497 | * |
5498 | * The result is the PathTarget to be computed by the plan node immediately |
5499 | * below the first WindowAgg node. |
5500 | */ |
5501 | static PathTarget * |
5502 | make_window_input_target(PlannerInfo *root, |
5503 | PathTarget *final_target, |
5504 | List *activeWindows) |
5505 | { |
5506 | Query *parse = root->parse; |
5507 | PathTarget *input_target; |
5508 | Bitmapset *sgrefs; |
5509 | List *flattenable_cols; |
5510 | List *flattenable_vars; |
5511 | int i; |
5512 | ListCell *lc; |
5513 | |
5514 | Assert(parse->hasWindowFuncs); |
5515 | |
5516 | /* |
5517 | * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses |
5518 | * into a bitmapset for convenient reference below. |
5519 | */ |
5520 | sgrefs = NULL; |
5521 | foreach(lc, activeWindows) |
5522 | { |
5523 | WindowClause *wc = lfirst_node(WindowClause, lc); |
5524 | ListCell *lc2; |
5525 | |
5526 | foreach(lc2, wc->partitionClause) |
5527 | { |
5528 | SortGroupClause *sortcl = lfirst_node(SortGroupClause, lc2); |
5529 | |
5530 | sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef); |
5531 | } |
5532 | foreach(lc2, wc->orderClause) |
5533 | { |
5534 | SortGroupClause *sortcl = lfirst_node(SortGroupClause, lc2); |
5535 | |
5536 | sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef); |
5537 | } |
5538 | } |
5539 | |
5540 | /* Add in sortgroupref numbers of GROUP BY clauses, too */ |
5541 | foreach(lc, parse->groupClause) |
5542 | { |
5543 | SortGroupClause *grpcl = lfirst_node(SortGroupClause, lc); |
5544 | |
5545 | sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef); |
5546 | } |
5547 | |
5548 | /* |
5549 | * Construct a target containing all the non-flattenable targetlist items, |
5550 | * and save aside the others for a moment. |
5551 | */ |
5552 | input_target = create_empty_pathtarget(); |
5553 | flattenable_cols = NIL; |
5554 | |
5555 | i = 0; |
5556 | foreach(lc, final_target->exprs) |
5557 | { |
5558 | Expr *expr = (Expr *) lfirst(lc); |
5559 | Index sgref = get_pathtarget_sortgroupref(final_target, i); |
5560 | |
5561 | /* |
5562 | * Don't want to deconstruct window clauses or GROUP BY items. (Note |
5563 | * that such items can't contain window functions, so it's okay to |
5564 | * compute them below the WindowAgg nodes.) |
5565 | */ |
5566 | if (sgref != 0 && bms_is_member(sgref, sgrefs)) |
5567 | { |
5568 | /* |
5569 | * Don't want to deconstruct this value, so add it to the input |
5570 | * target as-is. |
5571 | */ |
5572 | add_column_to_pathtarget(input_target, expr, sgref); |
5573 | } |
5574 | else |
5575 | { |
5576 | /* |
5577 | * Column is to be flattened, so just remember the expression for |
5578 | * later call to pull_var_clause. |
5579 | */ |
5580 | flattenable_cols = lappend(flattenable_cols, expr); |
5581 | } |
5582 | |
5583 | i++; |
5584 | } |
5585 | |
5586 | /* |
5587 | * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and |
5588 | * add them to the input target if not already present. (Some might be |
5589 | * there already because they're used directly as window/group clauses.) |
5590 | * |
5591 | * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that any |
5592 | * Aggrefs are placed in the Agg node's tlist and not left to be computed |
5593 | * at higher levels. On the other hand, we should recurse into |
5594 | * WindowFuncs to make sure their input expressions are available. |
5595 | */ |
5596 | flattenable_vars = pull_var_clause((Node *) flattenable_cols, |
5597 | PVC_INCLUDE_AGGREGATES | |
5598 | PVC_RECURSE_WINDOWFUNCS | |
5599 | PVC_INCLUDE_PLACEHOLDERS); |
5600 | add_new_columns_to_pathtarget(input_target, flattenable_vars); |
5601 | |
5602 | /* clean up cruft */ |
5603 | list_free(flattenable_vars); |
5604 | list_free(flattenable_cols); |
5605 | |
5606 | /* XXX this causes some redundant cost calculation ... */ |
5607 | return set_pathtarget_cost_width(root, input_target); |
5608 | } |
5609 | |
5610 | /* |
5611 | * make_pathkeys_for_window |
5612 | * Create a pathkeys list describing the required input ordering |
5613 | * for the given WindowClause. |
5614 | * |
5615 | * The required ordering is first the PARTITION keys, then the ORDER keys. |
5616 | * In the future we might try to implement windowing using hashing, in which |
5617 | * case the ordering could be relaxed, but for now we always sort. |
5618 | */ |
5619 | static List * |
5620 | make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, |
5621 | List *tlist) |
5622 | { |
5623 | List *window_pathkeys; |
5624 | List *window_sortclauses; |
5625 | |
5626 | /* Throw error if can't sort */ |
5627 | if (!grouping_is_sortable(wc->partitionClause)) |
5628 | ereport(ERROR, |
5629 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
5630 | errmsg("could not implement window PARTITION BY" ), |
5631 | errdetail("Window partitioning columns must be of sortable datatypes." ))); |
5632 | if (!grouping_is_sortable(wc->orderClause)) |
5633 | ereport(ERROR, |
5634 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
5635 | errmsg("could not implement window ORDER BY" ), |
5636 | errdetail("Window ordering columns must be of sortable datatypes." ))); |
5637 | |
5638 | /* Okay, make the combined pathkeys */ |
5639 | window_sortclauses = list_concat(list_copy(wc->partitionClause), |
5640 | list_copy(wc->orderClause)); |
5641 | window_pathkeys = make_pathkeys_for_sortclauses(root, |
5642 | window_sortclauses, |
5643 | tlist); |
5644 | list_free(window_sortclauses); |
5645 | return window_pathkeys; |
5646 | } |
5647 | |
5648 | /* |
5649 | * make_sort_input_target |
5650 | * Generate appropriate PathTarget for initial input to Sort step. |
5651 | * |
5652 | * If the query has ORDER BY, this function chooses the target to be computed |
5653 | * by the node just below the Sort (and DISTINCT, if any, since Unique can't |
5654 | * project) steps. This might or might not be identical to the query's final |
5655 | * output target. |
5656 | * |
5657 | * The main argument for keeping the sort-input tlist the same as the final |
5658 | * is that we avoid a separate projection node (which will be needed if |
5659 | * they're different, because Sort can't project). However, there are also |
5660 | * advantages to postponing tlist evaluation till after the Sort: it ensures |
5661 | * a consistent order of evaluation for any volatile functions in the tlist, |
5662 | * and if there's also a LIMIT, we can stop the query without ever computing |
5663 | * tlist functions for later rows, which is beneficial for both volatile and |
5664 | * expensive functions. |
5665 | * |
5666 | * Our current policy is to postpone volatile expressions till after the sort |
5667 | * unconditionally (assuming that that's possible, ie they are in plain tlist |
5668 | * columns and not ORDER BY/GROUP BY/DISTINCT columns). We also prefer to |
5669 | * postpone set-returning expressions, because running them beforehand would |
5670 | * bloat the sort dataset, and because it might cause unexpected output order |
5671 | * if the sort isn't stable. However there's a constraint on that: all SRFs |
5672 | * in the tlist should be evaluated at the same plan step, so that they can |
5673 | * run in sync in nodeProjectSet. So if any SRFs are in sort columns, we |
5674 | * mustn't postpone any SRFs. (Note that in principle that policy should |
5675 | * probably get applied to the group/window input targetlists too, but we |
5676 | * have not done that historically.) Lastly, expensive expressions are |
5677 | * postponed if there is a LIMIT, or if root->tuple_fraction shows that |
5678 | * partial evaluation of the query is possible (if neither is true, we expect |
5679 | * to have to evaluate the expressions for every row anyway), or if there are |
5680 | * any volatile or set-returning expressions (since once we've put in a |
5681 | * projection at all, it won't cost any more to postpone more stuff). |
5682 | * |
5683 | * Another issue that could potentially be considered here is that |
5684 | * evaluating tlist expressions could result in data that's either wider |
5685 | * or narrower than the input Vars, thus changing the volume of data that |
5686 | * has to go through the Sort. However, we usually have only a very bad |
5687 | * idea of the output width of any expression more complex than a Var, |
5688 | * so for now it seems too risky to try to optimize on that basis. |
5689 | * |
5690 | * Note that if we do produce a modified sort-input target, and then the |
5691 | * query ends up not using an explicit Sort, no particular harm is done: |
5692 | * we'll initially use the modified target for the preceding path nodes, |
5693 | * but then change them to the final target with apply_projection_to_path. |
5694 | * Moreover, in such a case the guarantees about evaluation order of |
5695 | * volatile functions still hold, since the rows are sorted already. |
5696 | * |
5697 | * This function has some things in common with make_group_input_target and |
5698 | * make_window_input_target, though the detailed rules for what to do are |
5699 | * different. We never flatten/postpone any grouping or ordering columns; |
5700 | * those are needed before the sort. If we do flatten a particular |
5701 | * expression, we leave Aggref and WindowFunc nodes alone, since those were |
5702 | * computed earlier. |
5703 | * |
5704 | * 'final_target' is the query's final target list (in PathTarget form) |
5705 | * 'have_postponed_srfs' is an output argument, see below |
5706 | * |
5707 | * The result is the PathTarget to be computed by the plan node immediately |
5708 | * below the Sort step (and the Distinct step, if any). This will be |
5709 | * exactly final_target if we decide a projection step wouldn't be helpful. |
5710 | * |
5711 | * In addition, *have_postponed_srfs is set to true if we choose to postpone |
5712 | * any set-returning functions to after the Sort. |
5713 | */ |
5714 | static PathTarget * |
5715 | make_sort_input_target(PlannerInfo *root, |
5716 | PathTarget *final_target, |
5717 | bool *have_postponed_srfs) |
5718 | { |
5719 | Query *parse = root->parse; |
5720 | PathTarget *input_target; |
5721 | int ncols; |
5722 | bool *col_is_srf; |
5723 | bool *postpone_col; |
5724 | bool have_srf; |
5725 | bool have_volatile; |
5726 | bool have_expensive; |
5727 | bool have_srf_sortcols; |
5728 | bool postpone_srfs; |
5729 | List *postponable_cols; |
5730 | List *postponable_vars; |
5731 | int i; |
5732 | ListCell *lc; |
5733 | |
5734 | /* Shouldn't get here unless query has ORDER BY */ |
5735 | Assert(parse->sortClause); |
5736 | |
5737 | *have_postponed_srfs = false; /* default result */ |
5738 | |
5739 | /* Inspect tlist and collect per-column information */ |
5740 | ncols = list_length(final_target->exprs); |
5741 | col_is_srf = (bool *) palloc0(ncols * sizeof(bool)); |
5742 | postpone_col = (bool *) palloc0(ncols * sizeof(bool)); |
5743 | have_srf = have_volatile = have_expensive = have_srf_sortcols = false; |
5744 | |
5745 | i = 0; |
5746 | foreach(lc, final_target->exprs) |
5747 | { |
5748 | Expr *expr = (Expr *) lfirst(lc); |
5749 | |
5750 | /* |
5751 | * If the column has a sortgroupref, assume it has to be evaluated |
5752 | * before sorting. Generally such columns would be ORDER BY, GROUP |
5753 | * BY, etc targets. One exception is columns that were removed from |
5754 | * GROUP BY by remove_useless_groupby_columns() ... but those would |
5755 | * only be Vars anyway. There don't seem to be any cases where it |
5756 | * would be worth the trouble to double-check. |
5757 | */ |
5758 | if (get_pathtarget_sortgroupref(final_target, i) == 0) |
5759 | { |
5760 | /* |
5761 | * Check for SRF or volatile functions. Check the SRF case first |
5762 | * because we must know whether we have any postponed SRFs. |
5763 | */ |
5764 | if (parse->hasTargetSRFs && |
5765 | expression_returns_set((Node *) expr)) |
5766 | { |
5767 | /* We'll decide below whether these are postponable */ |
5768 | col_is_srf[i] = true; |
5769 | have_srf = true; |
5770 | } |
5771 | else if (contain_volatile_functions((Node *) expr)) |
5772 | { |
5773 | /* Unconditionally postpone */ |
5774 | postpone_col[i] = true; |
5775 | have_volatile = true; |
5776 | } |
5777 | else |
5778 | { |
5779 | /* |
5780 | * Else check the cost. XXX it's annoying to have to do this |
5781 | * when set_pathtarget_cost_width() just did it. Refactor to |
5782 | * allow sharing the work? |
5783 | */ |
5784 | QualCost cost; |
5785 | |
5786 | cost_qual_eval_node(&cost, (Node *) expr, root); |
5787 | |
5788 | /* |
5789 | * We arbitrarily define "expensive" as "more than 10X |
5790 | * cpu_operator_cost". Note this will take in any PL function |
5791 | * with default cost. |
5792 | */ |
5793 | if (cost.per_tuple > 10 * cpu_operator_cost) |
5794 | { |
5795 | postpone_col[i] = true; |
5796 | have_expensive = true; |
5797 | } |
5798 | } |
5799 | } |
5800 | else |
5801 | { |
5802 | /* For sortgroupref cols, just check if any contain SRFs */ |
5803 | if (!have_srf_sortcols && |
5804 | parse->hasTargetSRFs && |
5805 | expression_returns_set((Node *) expr)) |
5806 | have_srf_sortcols = true; |
5807 | } |
5808 | |
5809 | i++; |
5810 | } |
5811 | |
5812 | /* |
5813 | * We can postpone SRFs if we have some but none are in sortgroupref cols. |
5814 | */ |
5815 | postpone_srfs = (have_srf && !have_srf_sortcols); |
5816 | |
5817 | /* |
5818 | * If we don't need a post-sort projection, just return final_target. |
5819 | */ |
5820 | if (!(postpone_srfs || have_volatile || |
5821 | (have_expensive && |
5822 | (parse->limitCount || root->tuple_fraction > 0)))) |
5823 | return final_target; |
5824 | |
5825 | /* |
5826 | * Report whether the post-sort projection will contain set-returning |
5827 | * functions. This is important because it affects whether the Sort can |
5828 | * rely on the query's LIMIT (if any) to bound the number of rows it needs |
5829 | * to return. |
5830 | */ |
5831 | *have_postponed_srfs = postpone_srfs; |
5832 | |
5833 | /* |
5834 | * Construct the sort-input target, taking all non-postponable columns and |
5835 | * then adding Vars, PlaceHolderVars, Aggrefs, and WindowFuncs found in |
5836 | * the postponable ones. |
5837 | */ |
5838 | input_target = create_empty_pathtarget(); |
5839 | postponable_cols = NIL; |
5840 | |
5841 | i = 0; |
5842 | foreach(lc, final_target->exprs) |
5843 | { |
5844 | Expr *expr = (Expr *) lfirst(lc); |
5845 | |
5846 | if (postpone_col[i] || (postpone_srfs && col_is_srf[i])) |
5847 | postponable_cols = lappend(postponable_cols, expr); |
5848 | else |
5849 | add_column_to_pathtarget(input_target, expr, |
5850 | get_pathtarget_sortgroupref(final_target, i)); |
5851 | |
5852 | i++; |
5853 | } |
5854 | |
5855 | /* |
5856 | * Pull out all the Vars, Aggrefs, and WindowFuncs mentioned in |
5857 | * postponable columns, and add them to the sort-input target if not |
5858 | * already present. (Some might be there already.) We mustn't |
5859 | * deconstruct Aggrefs or WindowFuncs here, since the projection node |
5860 | * would be unable to recompute them. |
5861 | */ |
5862 | postponable_vars = pull_var_clause((Node *) postponable_cols, |
5863 | PVC_INCLUDE_AGGREGATES | |
5864 | PVC_INCLUDE_WINDOWFUNCS | |
5865 | PVC_INCLUDE_PLACEHOLDERS); |
5866 | add_new_columns_to_pathtarget(input_target, postponable_vars); |
5867 | |
5868 | /* clean up cruft */ |
5869 | list_free(postponable_vars); |
5870 | list_free(postponable_cols); |
5871 | |
5872 | /* XXX this represents even more redundant cost calculation ... */ |
5873 | return set_pathtarget_cost_width(root, input_target); |
5874 | } |
5875 | |
5876 | /* |
5877 | * get_cheapest_fractional_path |
5878 | * Find the cheapest path for retrieving a specified fraction of all |
5879 | * the tuples expected to be returned by the given relation. |
5880 | * |
5881 | * We interpret tuple_fraction the same way as grouping_planner. |
5882 | * |
5883 | * We assume set_cheapest() has been run on the given rel. |
5884 | */ |
5885 | Path * |
5886 | get_cheapest_fractional_path(RelOptInfo *rel, double tuple_fraction) |
5887 | { |
5888 | Path *best_path = rel->cheapest_total_path; |
5889 | ListCell *l; |
5890 | |
5891 | /* If all tuples will be retrieved, just return the cheapest-total path */ |
5892 | if (tuple_fraction <= 0.0) |
5893 | return best_path; |
5894 | |
5895 | /* Convert absolute # of tuples to a fraction; no need to clamp to 0..1 */ |
5896 | if (tuple_fraction >= 1.0 && best_path->rows > 0) |
5897 | tuple_fraction /= best_path->rows; |
5898 | |
5899 | foreach(l, rel->pathlist) |
5900 | { |
5901 | Path *path = (Path *) lfirst(l); |
5902 | |
5903 | if (path == rel->cheapest_total_path || |
5904 | compare_fractional_path_costs(best_path, path, tuple_fraction) <= 0) |
5905 | continue; |
5906 | |
5907 | best_path = path; |
5908 | } |
5909 | |
5910 | return best_path; |
5911 | } |
5912 | |
5913 | /* |
5914 | * adjust_paths_for_srfs |
5915 | * Fix up the Paths of the given upperrel to handle tSRFs properly. |
5916 | * |
5917 | * The executor can only handle set-returning functions that appear at the |
5918 | * top level of the targetlist of a ProjectSet plan node. If we have any SRFs |
5919 | * that are not at top level, we need to split up the evaluation into multiple |
5920 | * plan levels in which each level satisfies this constraint. This function |
5921 | * modifies each Path of an upperrel that (might) compute any SRFs in its |
5922 | * output tlist to insert appropriate projection steps. |
5923 | * |
5924 | * The given targets and targets_contain_srfs lists are from |
5925 | * split_pathtarget_at_srfs(). We assume the existing Paths emit the first |
5926 | * target in targets. |
5927 | */ |
5928 | static void |
5929 | adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, |
5930 | List *targets, List *targets_contain_srfs) |
5931 | { |
5932 | ListCell *lc; |
5933 | |
5934 | Assert(list_length(targets) == list_length(targets_contain_srfs)); |
5935 | Assert(!linitial_int(targets_contain_srfs)); |
5936 | |
5937 | /* If no SRFs appear at this plan level, nothing to do */ |
5938 | if (list_length(targets) == 1) |
5939 | return; |
5940 | |
5941 | /* |
5942 | * Stack SRF-evaluation nodes atop each path for the rel. |
5943 | * |
5944 | * In principle we should re-run set_cheapest() here to identify the |
5945 | * cheapest path, but it seems unlikely that adding the same tlist eval |
5946 | * costs to all the paths would change that, so we don't bother. Instead, |
5947 | * just assume that the cheapest-startup and cheapest-total paths remain |
5948 | * so. (There should be no parameterized paths anymore, so we needn't |
5949 | * worry about updating cheapest_parameterized_paths.) |
5950 | */ |
5951 | foreach(lc, rel->pathlist) |
5952 | { |
5953 | Path *subpath = (Path *) lfirst(lc); |
5954 | Path *newpath = subpath; |
5955 | ListCell *lc1, |
5956 | *lc2; |
5957 | |
5958 | Assert(subpath->param_info == NULL); |
5959 | forboth(lc1, targets, lc2, targets_contain_srfs) |
5960 | { |
5961 | PathTarget *thistarget = lfirst_node(PathTarget, lc1); |
5962 | bool contains_srfs = (bool) lfirst_int(lc2); |
5963 | |
5964 | /* If this level doesn't contain SRFs, do regular projection */ |
5965 | if (contains_srfs) |
5966 | newpath = (Path *) create_set_projection_path(root, |
5967 | rel, |
5968 | newpath, |
5969 | thistarget); |
5970 | else |
5971 | newpath = (Path *) apply_projection_to_path(root, |
5972 | rel, |
5973 | newpath, |
5974 | thistarget); |
5975 | } |
5976 | lfirst(lc) = newpath; |
5977 | if (subpath == rel->cheapest_startup_path) |
5978 | rel->cheapest_startup_path = newpath; |
5979 | if (subpath == rel->cheapest_total_path) |
5980 | rel->cheapest_total_path = newpath; |
5981 | } |
5982 | |
5983 | /* Likewise for partial paths, if any */ |
5984 | foreach(lc, rel->partial_pathlist) |
5985 | { |
5986 | Path *subpath = (Path *) lfirst(lc); |
5987 | Path *newpath = subpath; |
5988 | ListCell *lc1, |
5989 | *lc2; |
5990 | |
5991 | Assert(subpath->param_info == NULL); |
5992 | forboth(lc1, targets, lc2, targets_contain_srfs) |
5993 | { |
5994 | PathTarget *thistarget = lfirst_node(PathTarget, lc1); |
5995 | bool contains_srfs = (bool) lfirst_int(lc2); |
5996 | |
5997 | /* If this level doesn't contain SRFs, do regular projection */ |
5998 | if (contains_srfs) |
5999 | newpath = (Path *) create_set_projection_path(root, |
6000 | rel, |
6001 | newpath, |
6002 | thistarget); |
6003 | else |
6004 | { |
6005 | /* avoid apply_projection_to_path, in case of multiple refs */ |
6006 | newpath = (Path *) create_projection_path(root, |
6007 | rel, |
6008 | newpath, |
6009 | thistarget); |
6010 | } |
6011 | } |
6012 | lfirst(lc) = newpath; |
6013 | } |
6014 | } |
6015 | |
6016 | /* |
6017 | * expression_planner |
6018 | * Perform planner's transformations on a standalone expression. |
6019 | * |
6020 | * Various utility commands need to evaluate expressions that are not part |
6021 | * of a plannable query. They can do so using the executor's regular |
6022 | * expression-execution machinery, but first the expression has to be fed |
6023 | * through here to transform it from parser output to something executable. |
6024 | * |
6025 | * Currently, we disallow sublinks in standalone expressions, so there's no |
6026 | * real "planning" involved here. (That might not always be true though.) |
6027 | * What we must do is run eval_const_expressions to ensure that any function |
6028 | * calls are converted to positional notation and function default arguments |
6029 | * get inserted. The fact that constant subexpressions get simplified is a |
6030 | * side-effect that is useful when the expression will get evaluated more than |
6031 | * once. Also, we must fix operator function IDs. |
6032 | * |
6033 | * This does not return any information about dependencies of the expression. |
6034 | * Hence callers should use the results only for the duration of the current |
6035 | * query. Callers that would like to cache the results for longer should use |
6036 | * expression_planner_with_deps, probably via the plancache. |
6037 | * |
6038 | * Note: this must not make any damaging changes to the passed-in expression |
6039 | * tree. (It would actually be okay to apply fix_opfuncids to it, but since |
6040 | * we first do an expression_tree_mutator-based walk, what is returned will |
6041 | * be a new node tree.) The result is constructed in the current memory |
6042 | * context; beware that this can leak a lot of additional stuff there, too. |
6043 | */ |
6044 | Expr * |
6045 | expression_planner(Expr *expr) |
6046 | { |
6047 | Node *result; |
6048 | |
6049 | /* |
6050 | * Convert named-argument function calls, insert default arguments and |
6051 | * simplify constant subexprs |
6052 | */ |
6053 | result = eval_const_expressions(NULL, (Node *) expr); |
6054 | |
6055 | /* Fill in opfuncid values if missing */ |
6056 | fix_opfuncids(result); |
6057 | |
6058 | return (Expr *) result; |
6059 | } |
6060 | |
6061 | /* |
6062 | * expression_planner_with_deps |
6063 | * Perform planner's transformations on a standalone expression, |
6064 | * returning expression dependency information along with the result. |
6065 | * |
6066 | * This is identical to expression_planner() except that it also returns |
6067 | * information about possible dependencies of the expression, ie identities of |
6068 | * objects whose definitions affect the result. As in a PlannedStmt, these |
6069 | * are expressed as a list of relation Oids and a list of PlanInvalItems. |
6070 | */ |
6071 | Expr * |
6072 | expression_planner_with_deps(Expr *expr, |
6073 | List **relationOids, |
6074 | List **invalItems) |
6075 | { |
6076 | Node *result; |
6077 | PlannerGlobal glob; |
6078 | PlannerInfo root; |
6079 | |
6080 | /* Make up dummy planner state so we can use setrefs machinery */ |
6081 | MemSet(&glob, 0, sizeof(glob)); |
6082 | glob.type = T_PlannerGlobal; |
6083 | glob.relationOids = NIL; |
6084 | glob.invalItems = NIL; |
6085 | |
6086 | MemSet(&root, 0, sizeof(root)); |
6087 | root.type = T_PlannerInfo; |
6088 | root.glob = &glob; |
6089 | |
6090 | /* |
6091 | * Convert named-argument function calls, insert default arguments and |
6092 | * simplify constant subexprs. Collect identities of inlined functions |
6093 | * and elided domains, too. |
6094 | */ |
6095 | result = eval_const_expressions(&root, (Node *) expr); |
6096 | |
6097 | /* Fill in opfuncid values if missing */ |
6098 | fix_opfuncids(result); |
6099 | |
6100 | /* |
6101 | * Now walk the finished expression to find anything else we ought to |
6102 | * record as an expression dependency. |
6103 | */ |
6104 | (void) extract_query_dependencies_walker(result, &root); |
6105 | |
6106 | *relationOids = glob.relationOids; |
6107 | *invalItems = glob.invalItems; |
6108 | |
6109 | return (Expr *) result; |
6110 | } |
6111 | |
6112 | |
6113 | /* |
6114 | * plan_cluster_use_sort |
6115 | * Use the planner to decide how CLUSTER should implement sorting |
6116 | * |
6117 | * tableOid is the OID of a table to be clustered on its index indexOid |
6118 | * (which is already known to be a btree index). Decide whether it's |
6119 | * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER. |
6120 | * Return true to use sorting, false to use an indexscan. |
6121 | * |
6122 | * Note: caller had better already hold some type of lock on the table. |
6123 | */ |
6124 | bool |
6125 | plan_cluster_use_sort(Oid tableOid, Oid indexOid) |
6126 | { |
6127 | PlannerInfo *root; |
6128 | Query *query; |
6129 | PlannerGlobal *glob; |
6130 | RangeTblEntry *rte; |
6131 | RelOptInfo *rel; |
6132 | IndexOptInfo *indexInfo; |
6133 | QualCost indexExprCost; |
6134 | Cost comparisonCost; |
6135 | Path *seqScanPath; |
6136 | Path seqScanAndSortPath; |
6137 | IndexPath *indexScanPath; |
6138 | ListCell *lc; |
6139 | |
6140 | /* We can short-circuit the cost comparison if indexscans are disabled */ |
6141 | if (!enable_indexscan) |
6142 | return true; /* use sort */ |
6143 | |
6144 | /* Set up mostly-dummy planner state */ |
6145 | query = makeNode(Query); |
6146 | query->commandType = CMD_SELECT; |
6147 | |
6148 | glob = makeNode(PlannerGlobal); |
6149 | |
6150 | root = makeNode(PlannerInfo); |
6151 | root->parse = query; |
6152 | root->glob = glob; |
6153 | root->query_level = 1; |
6154 | root->planner_cxt = CurrentMemoryContext; |
6155 | root->wt_param_id = -1; |
6156 | |
6157 | /* Build a minimal RTE for the rel */ |
6158 | rte = makeNode(RangeTblEntry); |
6159 | rte->rtekind = RTE_RELATION; |
6160 | rte->relid = tableOid; |
6161 | rte->relkind = RELKIND_RELATION; /* Don't be too picky. */ |
6162 | rte->rellockmode = AccessShareLock; |
6163 | rte->lateral = false; |
6164 | rte->inh = false; |
6165 | rte->inFromCl = true; |
6166 | query->rtable = list_make1(rte); |
6167 | |
6168 | /* Set up RTE/RelOptInfo arrays */ |
6169 | setup_simple_rel_arrays(root); |
6170 | |
6171 | /* Build RelOptInfo */ |
6172 | rel = build_simple_rel(root, 1, NULL); |
6173 | |
6174 | /* Locate IndexOptInfo for the target index */ |
6175 | indexInfo = NULL; |
6176 | foreach(lc, rel->indexlist) |
6177 | { |
6178 | indexInfo = lfirst_node(IndexOptInfo, lc); |
6179 | if (indexInfo->indexoid == indexOid) |
6180 | break; |
6181 | } |
6182 | |
6183 | /* |
6184 | * It's possible that get_relation_info did not generate an IndexOptInfo |
6185 | * for the desired index; this could happen if it's not yet reached its |
6186 | * indcheckxmin usability horizon, or if it's a system index and we're |
6187 | * ignoring system indexes. In such cases we should tell CLUSTER to not |
6188 | * trust the index contents but use seqscan-and-sort. |
6189 | */ |
6190 | if (lc == NULL) /* not in the list? */ |
6191 | return true; /* use sort */ |
6192 | |
6193 | /* |
6194 | * Rather than doing all the pushups that would be needed to use |
6195 | * set_baserel_size_estimates, just do a quick hack for rows and width. |
6196 | */ |
6197 | rel->rows = rel->tuples; |
6198 | rel->reltarget->width = get_relation_data_width(tableOid, NULL); |
6199 | |
6200 | root->total_table_pages = rel->pages; |
6201 | |
6202 | /* |
6203 | * Determine eval cost of the index expressions, if any. We need to |
6204 | * charge twice that amount for each tuple comparison that happens during |
6205 | * the sort, since tuplesort.c will have to re-evaluate the index |
6206 | * expressions each time. (XXX that's pretty inefficient...) |
6207 | */ |
6208 | cost_qual_eval(&indexExprCost, indexInfo->indexprs, root); |
6209 | comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple); |
6210 | |
6211 | /* Estimate the cost of seq scan + sort */ |
6212 | seqScanPath = create_seqscan_path(root, rel, NULL, 0); |
6213 | cost_sort(&seqScanAndSortPath, root, NIL, |
6214 | seqScanPath->total_cost, rel->tuples, rel->reltarget->width, |
6215 | comparisonCost, maintenance_work_mem, -1.0); |
6216 | |
6217 | /* Estimate the cost of index scan */ |
6218 | indexScanPath = create_index_path(root, indexInfo, |
6219 | NIL, NIL, NIL, NIL, |
6220 | ForwardScanDirection, false, |
6221 | NULL, 1.0, false); |
6222 | |
6223 | return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost); |
6224 | } |
6225 | |
6226 | /* |
6227 | * plan_create_index_workers |
6228 | * Use the planner to decide how many parallel worker processes |
6229 | * CREATE INDEX should request for use |
6230 | * |
6231 | * tableOid is the table on which the index is to be built. indexOid is the |
6232 | * OID of an index to be created or reindexed (which must be a btree index). |
6233 | * |
6234 | * Return value is the number of parallel worker processes to request. It |
6235 | * may be unsafe to proceed if this is 0. Note that this does not include the |
6236 | * leader participating as a worker (value is always a number of parallel |
6237 | * worker processes). |
6238 | * |
6239 | * Note: caller had better already hold some type of lock on the table and |
6240 | * index. |
6241 | */ |
6242 | int |
6243 | plan_create_index_workers(Oid tableOid, Oid indexOid) |
6244 | { |
6245 | PlannerInfo *root; |
6246 | Query *query; |
6247 | PlannerGlobal *glob; |
6248 | RangeTblEntry *rte; |
6249 | Relation heap; |
6250 | Relation index; |
6251 | RelOptInfo *rel; |
6252 | int parallel_workers; |
6253 | BlockNumber heap_blocks; |
6254 | double reltuples; |
6255 | double allvisfrac; |
6256 | |
6257 | /* Return immediately when parallelism disabled */ |
6258 | if (max_parallel_maintenance_workers == 0) |
6259 | return 0; |
6260 | |
6261 | /* Set up largely-dummy planner state */ |
6262 | query = makeNode(Query); |
6263 | query->commandType = CMD_SELECT; |
6264 | |
6265 | glob = makeNode(PlannerGlobal); |
6266 | |
6267 | root = makeNode(PlannerInfo); |
6268 | root->parse = query; |
6269 | root->glob = glob; |
6270 | root->query_level = 1; |
6271 | root->planner_cxt = CurrentMemoryContext; |
6272 | root->wt_param_id = -1; |
6273 | |
6274 | /* |
6275 | * Build a minimal RTE. |
6276 | * |
6277 | * Mark the RTE with inh = true. This is a kludge to prevent |
6278 | * get_relation_info() from fetching index info, which is necessary |
6279 | * because it does not expect that any IndexOptInfo is currently |
6280 | * undergoing REINDEX. |
6281 | */ |
6282 | rte = makeNode(RangeTblEntry); |
6283 | rte->rtekind = RTE_RELATION; |
6284 | rte->relid = tableOid; |
6285 | rte->relkind = RELKIND_RELATION; /* Don't be too picky. */ |
6286 | rte->rellockmode = AccessShareLock; |
6287 | rte->lateral = false; |
6288 | rte->inh = true; |
6289 | rte->inFromCl = true; |
6290 | query->rtable = list_make1(rte); |
6291 | |
6292 | /* Set up RTE/RelOptInfo arrays */ |
6293 | setup_simple_rel_arrays(root); |
6294 | |
6295 | /* Build RelOptInfo */ |
6296 | rel = build_simple_rel(root, 1, NULL); |
6297 | |
6298 | /* Rels are assumed already locked by the caller */ |
6299 | heap = table_open(tableOid, NoLock); |
6300 | index = index_open(indexOid, NoLock); |
6301 | |
6302 | /* |
6303 | * Determine if it's safe to proceed. |
6304 | * |
6305 | * Currently, parallel workers can't access the leader's temporary tables. |
6306 | * Furthermore, any index predicate or index expressions must be parallel |
6307 | * safe. |
6308 | */ |
6309 | if (heap->rd_rel->relpersistence == RELPERSISTENCE_TEMP || |
6310 | !is_parallel_safe(root, (Node *) RelationGetIndexExpressions(index)) || |
6311 | !is_parallel_safe(root, (Node *) RelationGetIndexPredicate(index))) |
6312 | { |
6313 | parallel_workers = 0; |
6314 | goto done; |
6315 | } |
6316 | |
6317 | /* |
6318 | * If parallel_workers storage parameter is set for the table, accept that |
6319 | * as the number of parallel worker processes to launch (though still cap |
6320 | * at max_parallel_maintenance_workers). Note that we deliberately do not |
6321 | * consider any other factor when parallel_workers is set. (e.g., memory |
6322 | * use by workers.) |
6323 | */ |
6324 | if (rel->rel_parallel_workers != -1) |
6325 | { |
6326 | parallel_workers = Min(rel->rel_parallel_workers, |
6327 | max_parallel_maintenance_workers); |
6328 | goto done; |
6329 | } |
6330 | |
6331 | /* |
6332 | * Estimate heap relation size ourselves, since rel->pages cannot be |
6333 | * trusted (heap RTE was marked as inheritance parent) |
6334 | */ |
6335 | estimate_rel_size(heap, NULL, &heap_blocks, &reltuples, &allvisfrac); |
6336 | |
6337 | /* |
6338 | * Determine number of workers to scan the heap relation using generic |
6339 | * model |
6340 | */ |
6341 | parallel_workers = compute_parallel_worker(rel, heap_blocks, -1, |
6342 | max_parallel_maintenance_workers); |
6343 | |
6344 | /* |
6345 | * Cap workers based on available maintenance_work_mem as needed. |
6346 | * |
6347 | * Note that each tuplesort participant receives an even share of the |
6348 | * total maintenance_work_mem budget. Aim to leave participants |
6349 | * (including the leader as a participant) with no less than 32MB of |
6350 | * memory. This leaves cases where maintenance_work_mem is set to 64MB |
6351 | * immediately past the threshold of being capable of launching a single |
6352 | * parallel worker to sort. |
6353 | */ |
6354 | while (parallel_workers > 0 && |
6355 | maintenance_work_mem / (parallel_workers + 1) < 32768L) |
6356 | parallel_workers--; |
6357 | |
6358 | done: |
6359 | index_close(index, NoLock); |
6360 | table_close(heap, NoLock); |
6361 | |
6362 | return parallel_workers; |
6363 | } |
6364 | |
6365 | /* |
6366 | * add_paths_to_grouping_rel |
6367 | * |
6368 | * Add non-partial paths to grouping relation. |
6369 | */ |
6370 | static void |
6371 | add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, |
6372 | RelOptInfo *grouped_rel, |
6373 | RelOptInfo *partially_grouped_rel, |
6374 | const AggClauseCosts *agg_costs, |
6375 | grouping_sets_data *gd, double dNumGroups, |
6376 | GroupPathExtraData *) |
6377 | { |
6378 | Query *parse = root->parse; |
6379 | Path *cheapest_path = input_rel->cheapest_total_path; |
6380 | ListCell *lc; |
6381 | bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0; |
6382 | bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0; |
6383 | List *havingQual = (List *) extra->havingQual; |
6384 | AggClauseCosts *agg_final_costs = &extra->agg_final_costs; |
6385 | |
6386 | if (can_sort) |
6387 | { |
6388 | /* |
6389 | * Use any available suitably-sorted path as input, and also consider |
6390 | * sorting the cheapest-total path. |
6391 | */ |
6392 | foreach(lc, input_rel->pathlist) |
6393 | { |
6394 | Path *path = (Path *) lfirst(lc); |
6395 | bool is_sorted; |
6396 | |
6397 | is_sorted = pathkeys_contained_in(root->group_pathkeys, |
6398 | path->pathkeys); |
6399 | if (path == cheapest_path || is_sorted) |
6400 | { |
6401 | /* Sort the cheapest-total path if it isn't already sorted */ |
6402 | if (!is_sorted) |
6403 | path = (Path *) create_sort_path(root, |
6404 | grouped_rel, |
6405 | path, |
6406 | root->group_pathkeys, |
6407 | -1.0); |
6408 | |
6409 | /* Now decide what to stick atop it */ |
6410 | if (parse->groupingSets) |
6411 | { |
6412 | consider_groupingsets_paths(root, grouped_rel, |
6413 | path, true, can_hash, |
6414 | gd, agg_costs, dNumGroups); |
6415 | } |
6416 | else if (parse->hasAggs) |
6417 | { |
6418 | /* |
6419 | * We have aggregation, possibly with plain GROUP BY. Make |
6420 | * an AggPath. |
6421 | */ |
6422 | add_path(grouped_rel, (Path *) |
6423 | create_agg_path(root, |
6424 | grouped_rel, |
6425 | path, |
6426 | grouped_rel->reltarget, |
6427 | parse->groupClause ? AGG_SORTED : AGG_PLAIN, |
6428 | AGGSPLIT_SIMPLE, |
6429 | parse->groupClause, |
6430 | havingQual, |
6431 | agg_costs, |
6432 | dNumGroups)); |
6433 | } |
6434 | else if (parse->groupClause) |
6435 | { |
6436 | /* |
6437 | * We have GROUP BY without aggregation or grouping sets. |
6438 | * Make a GroupPath. |
6439 | */ |
6440 | add_path(grouped_rel, (Path *) |
6441 | create_group_path(root, |
6442 | grouped_rel, |
6443 | path, |
6444 | parse->groupClause, |
6445 | havingQual, |
6446 | dNumGroups)); |
6447 | } |
6448 | else |
6449 | { |
6450 | /* Other cases should have been handled above */ |
6451 | Assert(false); |
6452 | } |
6453 | } |
6454 | } |
6455 | |
6456 | /* |
6457 | * Instead of operating directly on the input relation, we can |
6458 | * consider finalizing a partially aggregated path. |
6459 | */ |
6460 | if (partially_grouped_rel != NULL) |
6461 | { |
6462 | foreach(lc, partially_grouped_rel->pathlist) |
6463 | { |
6464 | Path *path = (Path *) lfirst(lc); |
6465 | |
6466 | /* |
6467 | * Insert a Sort node, if required. But there's no point in |
6468 | * sorting anything but the cheapest path. |
6469 | */ |
6470 | if (!pathkeys_contained_in(root->group_pathkeys, path->pathkeys)) |
6471 | { |
6472 | if (path != partially_grouped_rel->cheapest_total_path) |
6473 | continue; |
6474 | path = (Path *) create_sort_path(root, |
6475 | grouped_rel, |
6476 | path, |
6477 | root->group_pathkeys, |
6478 | -1.0); |
6479 | } |
6480 | |
6481 | if (parse->hasAggs) |
6482 | add_path(grouped_rel, (Path *) |
6483 | create_agg_path(root, |
6484 | grouped_rel, |
6485 | path, |
6486 | grouped_rel->reltarget, |
6487 | parse->groupClause ? AGG_SORTED : AGG_PLAIN, |
6488 | AGGSPLIT_FINAL_DESERIAL, |
6489 | parse->groupClause, |
6490 | havingQual, |
6491 | agg_final_costs, |
6492 | dNumGroups)); |
6493 | else |
6494 | add_path(grouped_rel, (Path *) |
6495 | create_group_path(root, |
6496 | grouped_rel, |
6497 | path, |
6498 | parse->groupClause, |
6499 | havingQual, |
6500 | dNumGroups)); |
6501 | } |
6502 | } |
6503 | } |
6504 | |
6505 | if (can_hash) |
6506 | { |
6507 | double hashaggtablesize; |
6508 | |
6509 | if (parse->groupingSets) |
6510 | { |
6511 | /* |
6512 | * Try for a hash-only groupingsets path over unsorted input. |
6513 | */ |
6514 | consider_groupingsets_paths(root, grouped_rel, |
6515 | cheapest_path, false, true, |
6516 | gd, agg_costs, dNumGroups); |
6517 | } |
6518 | else |
6519 | { |
6520 | hashaggtablesize = estimate_hashagg_tablesize(cheapest_path, |
6521 | agg_costs, |
6522 | dNumGroups); |
6523 | |
6524 | /* |
6525 | * Provided that the estimated size of the hashtable does not |
6526 | * exceed work_mem, we'll generate a HashAgg Path, although if we |
6527 | * were unable to sort above, then we'd better generate a Path, so |
6528 | * that we at least have one. |
6529 | */ |
6530 | if (hashaggtablesize < work_mem * 1024L || |
6531 | grouped_rel->pathlist == NIL) |
6532 | { |
6533 | /* |
6534 | * We just need an Agg over the cheapest-total input path, |
6535 | * since input order won't matter. |
6536 | */ |
6537 | add_path(grouped_rel, (Path *) |
6538 | create_agg_path(root, grouped_rel, |
6539 | cheapest_path, |
6540 | grouped_rel->reltarget, |
6541 | AGG_HASHED, |
6542 | AGGSPLIT_SIMPLE, |
6543 | parse->groupClause, |
6544 | havingQual, |
6545 | agg_costs, |
6546 | dNumGroups)); |
6547 | } |
6548 | } |
6549 | |
6550 | /* |
6551 | * Generate a Finalize HashAgg Path atop of the cheapest partially |
6552 | * grouped path, assuming there is one. Once again, we'll only do this |
6553 | * if it looks as though the hash table won't exceed work_mem. |
6554 | */ |
6555 | if (partially_grouped_rel && partially_grouped_rel->pathlist) |
6556 | { |
6557 | Path *path = partially_grouped_rel->cheapest_total_path; |
6558 | |
6559 | hashaggtablesize = estimate_hashagg_tablesize(path, |
6560 | agg_final_costs, |
6561 | dNumGroups); |
6562 | |
6563 | if (hashaggtablesize < work_mem * 1024L) |
6564 | add_path(grouped_rel, (Path *) |
6565 | create_agg_path(root, |
6566 | grouped_rel, |
6567 | path, |
6568 | grouped_rel->reltarget, |
6569 | AGG_HASHED, |
6570 | AGGSPLIT_FINAL_DESERIAL, |
6571 | parse->groupClause, |
6572 | havingQual, |
6573 | agg_final_costs, |
6574 | dNumGroups)); |
6575 | } |
6576 | } |
6577 | |
6578 | /* |
6579 | * When partitionwise aggregate is used, we might have fully aggregated |
6580 | * paths in the partial pathlist, because add_paths_to_append_rel() will |
6581 | * consider a path for grouped_rel consisting of a Parallel Append of |
6582 | * non-partial paths from each child. |
6583 | */ |
6584 | if (grouped_rel->partial_pathlist != NIL) |
6585 | gather_grouping_paths(root, grouped_rel); |
6586 | } |
6587 | |
6588 | /* |
6589 | * create_partial_grouping_paths |
6590 | * |
6591 | * Create a new upper relation representing the result of partial aggregation |
6592 | * and populate it with appropriate paths. Note that we don't finalize the |
6593 | * lists of paths here, so the caller can add additional partial or non-partial |
6594 | * paths and must afterward call gather_grouping_paths and set_cheapest on |
6595 | * the returned upper relation. |
6596 | * |
6597 | * All paths for this new upper relation -- both partial and non-partial -- |
6598 | * have been partially aggregated but require a subsequent FinalizeAggregate |
6599 | * step. |
6600 | * |
6601 | * NB: This function is allowed to return NULL if it determines that there is |
6602 | * no real need to create a new RelOptInfo. |
6603 | */ |
6604 | static RelOptInfo * |
6605 | create_partial_grouping_paths(PlannerInfo *root, |
6606 | RelOptInfo *grouped_rel, |
6607 | RelOptInfo *input_rel, |
6608 | grouping_sets_data *gd, |
6609 | GroupPathExtraData *, |
6610 | bool force_rel_creation) |
6611 | { |
6612 | Query *parse = root->parse; |
6613 | RelOptInfo *partially_grouped_rel; |
6614 | AggClauseCosts *agg_partial_costs = &extra->agg_partial_costs; |
6615 | AggClauseCosts *agg_final_costs = &extra->agg_final_costs; |
6616 | Path *cheapest_partial_path = NULL; |
6617 | Path *cheapest_total_path = NULL; |
6618 | double dNumPartialGroups = 0; |
6619 | double dNumPartialPartialGroups = 0; |
6620 | ListCell *lc; |
6621 | bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0; |
6622 | bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0; |
6623 | |
6624 | /* |
6625 | * Consider whether we should generate partially aggregated non-partial |
6626 | * paths. We can only do this if we have a non-partial path, and only if |
6627 | * the parent of the input rel is performing partial partitionwise |
6628 | * aggregation. (Note that extra->patype is the type of partitionwise |
6629 | * aggregation being used at the parent level, not this level.) |
6630 | */ |
6631 | if (input_rel->pathlist != NIL && |
6632 | extra->patype == PARTITIONWISE_AGGREGATE_PARTIAL) |
6633 | cheapest_total_path = input_rel->cheapest_total_path; |
6634 | |
6635 | /* |
6636 | * If parallelism is possible for grouped_rel, then we should consider |
6637 | * generating partially-grouped partial paths. However, if the input rel |
6638 | * has no partial paths, then we can't. |
6639 | */ |
6640 | if (grouped_rel->consider_parallel && input_rel->partial_pathlist != NIL) |
6641 | cheapest_partial_path = linitial(input_rel->partial_pathlist); |
6642 | |
6643 | /* |
6644 | * If we can't partially aggregate partial paths, and we can't partially |
6645 | * aggregate non-partial paths, then don't bother creating the new |
6646 | * RelOptInfo at all, unless the caller specified force_rel_creation. |
6647 | */ |
6648 | if (cheapest_total_path == NULL && |
6649 | cheapest_partial_path == NULL && |
6650 | !force_rel_creation) |
6651 | return NULL; |
6652 | |
6653 | /* |
6654 | * Build a new upper relation to represent the result of partially |
6655 | * aggregating the rows from the input relation. |
6656 | */ |
6657 | partially_grouped_rel = fetch_upper_rel(root, |
6658 | UPPERREL_PARTIAL_GROUP_AGG, |
6659 | grouped_rel->relids); |
6660 | partially_grouped_rel->consider_parallel = |
6661 | grouped_rel->consider_parallel; |
6662 | partially_grouped_rel->reloptkind = grouped_rel->reloptkind; |
6663 | partially_grouped_rel->serverid = grouped_rel->serverid; |
6664 | partially_grouped_rel->userid = grouped_rel->userid; |
6665 | partially_grouped_rel->useridiscurrent = grouped_rel->useridiscurrent; |
6666 | partially_grouped_rel->fdwroutine = grouped_rel->fdwroutine; |
6667 | |
6668 | /* |
6669 | * Build target list for partial aggregate paths. These paths cannot just |
6670 | * emit the same tlist as regular aggregate paths, because (1) we must |
6671 | * include Vars and Aggrefs needed in HAVING, which might not appear in |
6672 | * the result tlist, and (2) the Aggrefs must be set in partial mode. |
6673 | */ |
6674 | partially_grouped_rel->reltarget = |
6675 | make_partial_grouping_target(root, grouped_rel->reltarget, |
6676 | extra->havingQual); |
6677 | |
6678 | if (!extra->partial_costs_set) |
6679 | { |
6680 | /* |
6681 | * Collect statistics about aggregates for estimating costs of |
6682 | * performing aggregation in parallel. |
6683 | */ |
6684 | MemSet(agg_partial_costs, 0, sizeof(AggClauseCosts)); |
6685 | MemSet(agg_final_costs, 0, sizeof(AggClauseCosts)); |
6686 | if (parse->hasAggs) |
6687 | { |
6688 | List *partial_target_exprs; |
6689 | |
6690 | /* partial phase */ |
6691 | partial_target_exprs = partially_grouped_rel->reltarget->exprs; |
6692 | get_agg_clause_costs(root, (Node *) partial_target_exprs, |
6693 | AGGSPLIT_INITIAL_SERIAL, |
6694 | agg_partial_costs); |
6695 | |
6696 | /* final phase */ |
6697 | get_agg_clause_costs(root, (Node *) grouped_rel->reltarget->exprs, |
6698 | AGGSPLIT_FINAL_DESERIAL, |
6699 | agg_final_costs); |
6700 | get_agg_clause_costs(root, extra->havingQual, |
6701 | AGGSPLIT_FINAL_DESERIAL, |
6702 | agg_final_costs); |
6703 | } |
6704 | |
6705 | extra->partial_costs_set = true; |
6706 | } |
6707 | |
6708 | /* Estimate number of partial groups. */ |
6709 | if (cheapest_total_path != NULL) |
6710 | dNumPartialGroups = |
6711 | get_number_of_groups(root, |
6712 | cheapest_total_path->rows, |
6713 | gd, |
6714 | extra->targetList); |
6715 | if (cheapest_partial_path != NULL) |
6716 | dNumPartialPartialGroups = |
6717 | get_number_of_groups(root, |
6718 | cheapest_partial_path->rows, |
6719 | gd, |
6720 | extra->targetList); |
6721 | |
6722 | if (can_sort && cheapest_total_path != NULL) |
6723 | { |
6724 | /* This should have been checked previously */ |
6725 | Assert(parse->hasAggs || parse->groupClause); |
6726 | |
6727 | /* |
6728 | * Use any available suitably-sorted path as input, and also consider |
6729 | * sorting the cheapest partial path. |
6730 | */ |
6731 | foreach(lc, input_rel->pathlist) |
6732 | { |
6733 | Path *path = (Path *) lfirst(lc); |
6734 | bool is_sorted; |
6735 | |
6736 | is_sorted = pathkeys_contained_in(root->group_pathkeys, |
6737 | path->pathkeys); |
6738 | if (path == cheapest_total_path || is_sorted) |
6739 | { |
6740 | /* Sort the cheapest partial path, if it isn't already */ |
6741 | if (!is_sorted) |
6742 | path = (Path *) create_sort_path(root, |
6743 | partially_grouped_rel, |
6744 | path, |
6745 | root->group_pathkeys, |
6746 | -1.0); |
6747 | |
6748 | if (parse->hasAggs) |
6749 | add_path(partially_grouped_rel, (Path *) |
6750 | create_agg_path(root, |
6751 | partially_grouped_rel, |
6752 | path, |
6753 | partially_grouped_rel->reltarget, |
6754 | parse->groupClause ? AGG_SORTED : AGG_PLAIN, |
6755 | AGGSPLIT_INITIAL_SERIAL, |
6756 | parse->groupClause, |
6757 | NIL, |
6758 | agg_partial_costs, |
6759 | dNumPartialGroups)); |
6760 | else |
6761 | add_path(partially_grouped_rel, (Path *) |
6762 | create_group_path(root, |
6763 | partially_grouped_rel, |
6764 | path, |
6765 | parse->groupClause, |
6766 | NIL, |
6767 | dNumPartialGroups)); |
6768 | } |
6769 | } |
6770 | } |
6771 | |
6772 | if (can_sort && cheapest_partial_path != NULL) |
6773 | { |
6774 | /* Similar to above logic, but for partial paths. */ |
6775 | foreach(lc, input_rel->partial_pathlist) |
6776 | { |
6777 | Path *path = (Path *) lfirst(lc); |
6778 | bool is_sorted; |
6779 | |
6780 | is_sorted = pathkeys_contained_in(root->group_pathkeys, |
6781 | path->pathkeys); |
6782 | if (path == cheapest_partial_path || is_sorted) |
6783 | { |
6784 | /* Sort the cheapest partial path, if it isn't already */ |
6785 | if (!is_sorted) |
6786 | path = (Path *) create_sort_path(root, |
6787 | partially_grouped_rel, |
6788 | path, |
6789 | root->group_pathkeys, |
6790 | -1.0); |
6791 | |
6792 | if (parse->hasAggs) |
6793 | add_partial_path(partially_grouped_rel, (Path *) |
6794 | create_agg_path(root, |
6795 | partially_grouped_rel, |
6796 | path, |
6797 | partially_grouped_rel->reltarget, |
6798 | parse->groupClause ? AGG_SORTED : AGG_PLAIN, |
6799 | AGGSPLIT_INITIAL_SERIAL, |
6800 | parse->groupClause, |
6801 | NIL, |
6802 | agg_partial_costs, |
6803 | dNumPartialPartialGroups)); |
6804 | else |
6805 | add_partial_path(partially_grouped_rel, (Path *) |
6806 | create_group_path(root, |
6807 | partially_grouped_rel, |
6808 | path, |
6809 | parse->groupClause, |
6810 | NIL, |
6811 | dNumPartialPartialGroups)); |
6812 | } |
6813 | } |
6814 | } |
6815 | |
6816 | if (can_hash && cheapest_total_path != NULL) |
6817 | { |
6818 | double hashaggtablesize; |
6819 | |
6820 | /* Checked above */ |
6821 | Assert(parse->hasAggs || parse->groupClause); |
6822 | |
6823 | hashaggtablesize = |
6824 | estimate_hashagg_tablesize(cheapest_total_path, |
6825 | agg_partial_costs, |
6826 | dNumPartialGroups); |
6827 | |
6828 | /* |
6829 | * Tentatively produce a partial HashAgg Path, depending on if it |
6830 | * looks as if the hash table will fit in work_mem. |
6831 | */ |
6832 | if (hashaggtablesize < work_mem * 1024L && |
6833 | cheapest_total_path != NULL) |
6834 | { |
6835 | add_path(partially_grouped_rel, (Path *) |
6836 | create_agg_path(root, |
6837 | partially_grouped_rel, |
6838 | cheapest_total_path, |
6839 | partially_grouped_rel->reltarget, |
6840 | AGG_HASHED, |
6841 | AGGSPLIT_INITIAL_SERIAL, |
6842 | parse->groupClause, |
6843 | NIL, |
6844 | agg_partial_costs, |
6845 | dNumPartialGroups)); |
6846 | } |
6847 | } |
6848 | |
6849 | if (can_hash && cheapest_partial_path != NULL) |
6850 | { |
6851 | double hashaggtablesize; |
6852 | |
6853 | hashaggtablesize = |
6854 | estimate_hashagg_tablesize(cheapest_partial_path, |
6855 | agg_partial_costs, |
6856 | dNumPartialPartialGroups); |
6857 | |
6858 | /* Do the same for partial paths. */ |
6859 | if (hashaggtablesize < work_mem * 1024L && |
6860 | cheapest_partial_path != NULL) |
6861 | { |
6862 | add_partial_path(partially_grouped_rel, (Path *) |
6863 | create_agg_path(root, |
6864 | partially_grouped_rel, |
6865 | cheapest_partial_path, |
6866 | partially_grouped_rel->reltarget, |
6867 | AGG_HASHED, |
6868 | AGGSPLIT_INITIAL_SERIAL, |
6869 | parse->groupClause, |
6870 | NIL, |
6871 | agg_partial_costs, |
6872 | dNumPartialPartialGroups)); |
6873 | } |
6874 | } |
6875 | |
6876 | /* |
6877 | * If there is an FDW that's responsible for all baserels of the query, |
6878 | * let it consider adding partially grouped ForeignPaths. |
6879 | */ |
6880 | if (partially_grouped_rel->fdwroutine && |
6881 | partially_grouped_rel->fdwroutine->GetForeignUpperPaths) |
6882 | { |
6883 | FdwRoutine *fdwroutine = partially_grouped_rel->fdwroutine; |
6884 | |
6885 | fdwroutine->GetForeignUpperPaths(root, |
6886 | UPPERREL_PARTIAL_GROUP_AGG, |
6887 | input_rel, partially_grouped_rel, |
6888 | extra); |
6889 | } |
6890 | |
6891 | return partially_grouped_rel; |
6892 | } |
6893 | |
6894 | /* |
6895 | * Generate Gather and Gather Merge paths for a grouping relation or partial |
6896 | * grouping relation. |
6897 | * |
6898 | * generate_gather_paths does most of the work, but we also consider a special |
6899 | * case: we could try sorting the data by the group_pathkeys and then applying |
6900 | * Gather Merge. |
6901 | * |
6902 | * NB: This function shouldn't be used for anything other than a grouped or |
6903 | * partially grouped relation not only because of the fact that it explicitly |
6904 | * references group_pathkeys but we pass "true" as the third argument to |
6905 | * generate_gather_paths(). |
6906 | */ |
6907 | static void |
6908 | gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel) |
6909 | { |
6910 | Path *cheapest_partial_path; |
6911 | |
6912 | /* Try Gather for unordered paths and Gather Merge for ordered ones. */ |
6913 | generate_gather_paths(root, rel, true); |
6914 | |
6915 | /* Try cheapest partial path + explicit Sort + Gather Merge. */ |
6916 | cheapest_partial_path = linitial(rel->partial_pathlist); |
6917 | if (!pathkeys_contained_in(root->group_pathkeys, |
6918 | cheapest_partial_path->pathkeys)) |
6919 | { |
6920 | Path *path; |
6921 | double total_groups; |
6922 | |
6923 | total_groups = |
6924 | cheapest_partial_path->rows * cheapest_partial_path->parallel_workers; |
6925 | path = (Path *) create_sort_path(root, rel, cheapest_partial_path, |
6926 | root->group_pathkeys, |
6927 | -1.0); |
6928 | path = (Path *) |
6929 | create_gather_merge_path(root, |
6930 | rel, |
6931 | path, |
6932 | rel->reltarget, |
6933 | root->group_pathkeys, |
6934 | NULL, |
6935 | &total_groups); |
6936 | |
6937 | add_path(rel, path); |
6938 | } |
6939 | } |
6940 | |
6941 | /* |
6942 | * can_partial_agg |
6943 | * |
6944 | * Determines whether or not partial grouping and/or aggregation is possible. |
6945 | * Returns true when possible, false otherwise. |
6946 | */ |
6947 | static bool |
6948 | can_partial_agg(PlannerInfo *root, const AggClauseCosts *agg_costs) |
6949 | { |
6950 | Query *parse = root->parse; |
6951 | |
6952 | if (!parse->hasAggs && parse->groupClause == NIL) |
6953 | { |
6954 | /* |
6955 | * We don't know how to do parallel aggregation unless we have either |
6956 | * some aggregates or a grouping clause. |
6957 | */ |
6958 | return false; |
6959 | } |
6960 | else if (parse->groupingSets) |
6961 | { |
6962 | /* We don't know how to do grouping sets in parallel. */ |
6963 | return false; |
6964 | } |
6965 | else if (agg_costs->hasNonPartial || agg_costs->hasNonSerial) |
6966 | { |
6967 | /* Insufficient support for partial mode. */ |
6968 | return false; |
6969 | } |
6970 | |
6971 | /* Everything looks good. */ |
6972 | return true; |
6973 | } |
6974 | |
6975 | /* |
6976 | * apply_scanjoin_target_to_paths |
6977 | * |
6978 | * Adjust the final scan/join relation, and recursively all of its children, |
6979 | * to generate the final scan/join target. It would be more correct to model |
6980 | * this as a separate planning step with a new RelOptInfo at the toplevel and |
6981 | * for each child relation, but doing it this way is noticeably cheaper. |
6982 | * Maybe that problem can be solved at some point, but for now we do this. |
6983 | * |
6984 | * If tlist_same_exprs is true, then the scan/join target to be applied has |
6985 | * the same expressions as the existing reltarget, so we need only insert the |
6986 | * appropriate sortgroupref information. By avoiding the creation of |
6987 | * projection paths we save effort both immediately and at plan creation time. |
6988 | */ |
6989 | static void |
6990 | apply_scanjoin_target_to_paths(PlannerInfo *root, |
6991 | RelOptInfo *rel, |
6992 | List *scanjoin_targets, |
6993 | List *scanjoin_targets_contain_srfs, |
6994 | bool scanjoin_target_parallel_safe, |
6995 | bool tlist_same_exprs) |
6996 | { |
6997 | bool rel_is_partitioned = IS_PARTITIONED_REL(rel); |
6998 | PathTarget *scanjoin_target; |
6999 | ListCell *lc; |
7000 | |
7001 | /* This recurses, so be paranoid. */ |
7002 | check_stack_depth(); |
7003 | |
7004 | /* |
7005 | * If the rel is partitioned, we want to drop its existing paths and |
7006 | * generate new ones. This function would still be correct if we kept the |
7007 | * existing paths: we'd modify them to generate the correct target above |
7008 | * the partitioning Append, and then they'd compete on cost with paths |
7009 | * generating the target below the Append. However, in our current cost |
7010 | * model the latter way is always the same or cheaper cost, so modifying |
7011 | * the existing paths would just be useless work. Moreover, when the cost |
7012 | * is the same, varying roundoff errors might sometimes allow an existing |
7013 | * path to be picked, resulting in undesirable cross-platform plan |
7014 | * variations. So we drop old paths and thereby force the work to be done |
7015 | * below the Append, except in the case of a non-parallel-safe target. |
7016 | * |
7017 | * Some care is needed, because we have to allow generate_gather_paths to |
7018 | * see the old partial paths in the next stanza. Hence, zap the main |
7019 | * pathlist here, then allow generate_gather_paths to add path(s) to the |
7020 | * main list, and finally zap the partial pathlist. |
7021 | */ |
7022 | if (rel_is_partitioned) |
7023 | rel->pathlist = NIL; |
7024 | |
7025 | /* |
7026 | * If the scan/join target is not parallel-safe, partial paths cannot |
7027 | * generate it. |
7028 | */ |
7029 | if (!scanjoin_target_parallel_safe) |
7030 | { |
7031 | /* |
7032 | * Since we can't generate the final scan/join target in parallel |
7033 | * workers, this is our last opportunity to use any partial paths that |
7034 | * exist; so build Gather path(s) that use them and emit whatever the |
7035 | * current reltarget is. We don't do this in the case where the |
7036 | * target is parallel-safe, since we will be able to generate superior |
7037 | * paths by doing it after the final scan/join target has been |
7038 | * applied. |
7039 | */ |
7040 | generate_gather_paths(root, rel, false); |
7041 | |
7042 | /* Can't use parallel query above this level. */ |
7043 | rel->partial_pathlist = NIL; |
7044 | rel->consider_parallel = false; |
7045 | } |
7046 | |
7047 | /* Finish dropping old paths for a partitioned rel, per comment above */ |
7048 | if (rel_is_partitioned) |
7049 | rel->partial_pathlist = NIL; |
7050 | |
7051 | /* Extract SRF-free scan/join target. */ |
7052 | scanjoin_target = linitial_node(PathTarget, scanjoin_targets); |
7053 | |
7054 | /* |
7055 | * Apply the SRF-free scan/join target to each existing path. |
7056 | * |
7057 | * If the tlist exprs are the same, we can just inject the sortgroupref |
7058 | * information into the existing pathtargets. Otherwise, replace each |
7059 | * path with a projection path that generates the SRF-free scan/join |
7060 | * target. This can't change the ordering of paths within rel->pathlist, |
7061 | * so we just modify the list in place. |
7062 | */ |
7063 | foreach(lc, rel->pathlist) |
7064 | { |
7065 | Path *subpath = (Path *) lfirst(lc); |
7066 | |
7067 | /* Shouldn't have any parameterized paths anymore */ |
7068 | Assert(subpath->param_info == NULL); |
7069 | |
7070 | if (tlist_same_exprs) |
7071 | subpath->pathtarget->sortgrouprefs = |
7072 | scanjoin_target->sortgrouprefs; |
7073 | else |
7074 | { |
7075 | Path *newpath; |
7076 | |
7077 | newpath = (Path *) create_projection_path(root, rel, subpath, |
7078 | scanjoin_target); |
7079 | lfirst(lc) = newpath; |
7080 | } |
7081 | } |
7082 | |
7083 | /* Likewise adjust the targets for any partial paths. */ |
7084 | foreach(lc, rel->partial_pathlist) |
7085 | { |
7086 | Path *subpath = (Path *) lfirst(lc); |
7087 | |
7088 | /* Shouldn't have any parameterized paths anymore */ |
7089 | Assert(subpath->param_info == NULL); |
7090 | |
7091 | if (tlist_same_exprs) |
7092 | subpath->pathtarget->sortgrouprefs = |
7093 | scanjoin_target->sortgrouprefs; |
7094 | else |
7095 | { |
7096 | Path *newpath; |
7097 | |
7098 | newpath = (Path *) create_projection_path(root, rel, subpath, |
7099 | scanjoin_target); |
7100 | lfirst(lc) = newpath; |
7101 | } |
7102 | } |
7103 | |
7104 | /* |
7105 | * Now, if final scan/join target contains SRFs, insert ProjectSetPath(s) |
7106 | * atop each existing path. (Note that this function doesn't look at the |
7107 | * cheapest-path fields, which is a good thing because they're bogus right |
7108 | * now.) |
7109 | */ |
7110 | if (root->parse->hasTargetSRFs) |
7111 | adjust_paths_for_srfs(root, rel, |
7112 | scanjoin_targets, |
7113 | scanjoin_targets_contain_srfs); |
7114 | |
7115 | /* |
7116 | * Update the rel's target to be the final (with SRFs) scan/join target. |
7117 | * This now matches the actual output of all the paths, and we might get |
7118 | * confused in createplan.c if they don't agree. We must do this now so |
7119 | * that any append paths made in the next part will use the correct |
7120 | * pathtarget (cf. create_append_path). |
7121 | * |
7122 | * Note that this is also necessary if GetForeignUpperPaths() gets called |
7123 | * on the final scan/join relation or on any of its children, since the |
7124 | * FDW might look at the rel's target to create ForeignPaths. |
7125 | */ |
7126 | rel->reltarget = llast_node(PathTarget, scanjoin_targets); |
7127 | |
7128 | /* |
7129 | * If the relation is partitioned, recursively apply the scan/join target |
7130 | * to all partitions, and generate brand-new Append paths in which the |
7131 | * scan/join target is computed below the Append rather than above it. |
7132 | * Since Append is not projection-capable, that might save a separate |
7133 | * Result node, and it also is important for partitionwise aggregate. |
7134 | */ |
7135 | if (rel_is_partitioned) |
7136 | { |
7137 | List *live_children = NIL; |
7138 | int partition_idx; |
7139 | |
7140 | /* Adjust each partition. */ |
7141 | for (partition_idx = 0; partition_idx < rel->nparts; partition_idx++) |
7142 | { |
7143 | RelOptInfo *child_rel = rel->part_rels[partition_idx]; |
7144 | AppendRelInfo **appinfos; |
7145 | int nappinfos; |
7146 | List *child_scanjoin_targets = NIL; |
7147 | ListCell *lc; |
7148 | |
7149 | /* Pruned or dummy children can be ignored. */ |
7150 | if (child_rel == NULL || IS_DUMMY_REL(child_rel)) |
7151 | continue; |
7152 | |
7153 | /* Translate scan/join targets for this child. */ |
7154 | appinfos = find_appinfos_by_relids(root, child_rel->relids, |
7155 | &nappinfos); |
7156 | foreach(lc, scanjoin_targets) |
7157 | { |
7158 | PathTarget *target = lfirst_node(PathTarget, lc); |
7159 | |
7160 | target = copy_pathtarget(target); |
7161 | target->exprs = (List *) |
7162 | adjust_appendrel_attrs(root, |
7163 | (Node *) target->exprs, |
7164 | nappinfos, appinfos); |
7165 | child_scanjoin_targets = lappend(child_scanjoin_targets, |
7166 | target); |
7167 | } |
7168 | pfree(appinfos); |
7169 | |
7170 | /* Recursion does the real work. */ |
7171 | apply_scanjoin_target_to_paths(root, child_rel, |
7172 | child_scanjoin_targets, |
7173 | scanjoin_targets_contain_srfs, |
7174 | scanjoin_target_parallel_safe, |
7175 | tlist_same_exprs); |
7176 | |
7177 | /* Save non-dummy children for Append paths. */ |
7178 | if (!IS_DUMMY_REL(child_rel)) |
7179 | live_children = lappend(live_children, child_rel); |
7180 | } |
7181 | |
7182 | /* Build new paths for this relation by appending child paths. */ |
7183 | add_paths_to_append_rel(root, rel, live_children); |
7184 | } |
7185 | |
7186 | /* |
7187 | * Consider generating Gather or Gather Merge paths. We must only do this |
7188 | * if the relation is parallel safe, and we don't do it for child rels to |
7189 | * avoid creating multiple Gather nodes within the same plan. We must do |
7190 | * this after all paths have been generated and before set_cheapest, since |
7191 | * one of the generated paths may turn out to be the cheapest one. |
7192 | */ |
7193 | if (rel->consider_parallel && !IS_OTHER_REL(rel)) |
7194 | generate_gather_paths(root, rel, false); |
7195 | |
7196 | /* |
7197 | * Reassess which paths are the cheapest, now that we've potentially added |
7198 | * new Gather (or Gather Merge) and/or Append (or MergeAppend) paths to |
7199 | * this relation. |
7200 | */ |
7201 | set_cheapest(rel); |
7202 | } |
7203 | |
7204 | /* |
7205 | * create_partitionwise_grouping_paths |
7206 | * |
7207 | * If the partition keys of input relation are part of the GROUP BY clause, all |
7208 | * the rows belonging to a given group come from a single partition. This |
7209 | * allows aggregation/grouping over a partitioned relation to be broken down |
7210 | * into aggregation/grouping on each partition. This should be no worse, and |
7211 | * often better, than the normal approach. |
7212 | * |
7213 | * However, if the GROUP BY clause does not contain all the partition keys, |
7214 | * rows from a given group may be spread across multiple partitions. In that |
7215 | * case, we perform partial aggregation for each group, append the results, |
7216 | * and then finalize aggregation. This is less certain to win than the |
7217 | * previous case. It may win if the PartialAggregate stage greatly reduces |
7218 | * the number of groups, because fewer rows will pass through the Append node. |
7219 | * It may lose if we have lots of small groups. |
7220 | */ |
7221 | static void |
7222 | create_partitionwise_grouping_paths(PlannerInfo *root, |
7223 | RelOptInfo *input_rel, |
7224 | RelOptInfo *grouped_rel, |
7225 | RelOptInfo *partially_grouped_rel, |
7226 | const AggClauseCosts *agg_costs, |
7227 | grouping_sets_data *gd, |
7228 | PartitionwiseAggregateType patype, |
7229 | GroupPathExtraData *) |
7230 | { |
7231 | int nparts = input_rel->nparts; |
7232 | int cnt_parts; |
7233 | List *grouped_live_children = NIL; |
7234 | List *partially_grouped_live_children = NIL; |
7235 | PathTarget *target = grouped_rel->reltarget; |
7236 | bool partial_grouping_valid = true; |
7237 | |
7238 | Assert(patype != PARTITIONWISE_AGGREGATE_NONE); |
7239 | Assert(patype != PARTITIONWISE_AGGREGATE_PARTIAL || |
7240 | partially_grouped_rel != NULL); |
7241 | |
7242 | /* Add paths for partitionwise aggregation/grouping. */ |
7243 | for (cnt_parts = 0; cnt_parts < nparts; cnt_parts++) |
7244 | { |
7245 | RelOptInfo *child_input_rel = input_rel->part_rels[cnt_parts]; |
7246 | PathTarget *child_target = copy_pathtarget(target); |
7247 | AppendRelInfo **appinfos; |
7248 | int nappinfos; |
7249 | GroupPathExtraData ; |
7250 | RelOptInfo *child_grouped_rel; |
7251 | RelOptInfo *child_partially_grouped_rel; |
7252 | |
7253 | /* Pruned or dummy children can be ignored. */ |
7254 | if (child_input_rel == NULL || IS_DUMMY_REL(child_input_rel)) |
7255 | continue; |
7256 | |
7257 | /* |
7258 | * Copy the given "extra" structure as is and then override the |
7259 | * members specific to this child. |
7260 | */ |
7261 | memcpy(&child_extra, extra, sizeof(child_extra)); |
7262 | |
7263 | appinfos = find_appinfos_by_relids(root, child_input_rel->relids, |
7264 | &nappinfos); |
7265 | |
7266 | child_target->exprs = (List *) |
7267 | adjust_appendrel_attrs(root, |
7268 | (Node *) target->exprs, |
7269 | nappinfos, appinfos); |
7270 | |
7271 | /* Translate havingQual and targetList. */ |
7272 | child_extra.havingQual = (Node *) |
7273 | adjust_appendrel_attrs(root, |
7274 | extra->havingQual, |
7275 | nappinfos, appinfos); |
7276 | child_extra.targetList = (List *) |
7277 | adjust_appendrel_attrs(root, |
7278 | (Node *) extra->targetList, |
7279 | nappinfos, appinfos); |
7280 | |
7281 | /* |
7282 | * extra->patype was the value computed for our parent rel; patype is |
7283 | * the value for this relation. For the child, our value is its |
7284 | * parent rel's value. |
7285 | */ |
7286 | child_extra.patype = patype; |
7287 | |
7288 | /* |
7289 | * Create grouping relation to hold fully aggregated grouping and/or |
7290 | * aggregation paths for the child. |
7291 | */ |
7292 | child_grouped_rel = make_grouping_rel(root, child_input_rel, |
7293 | child_target, |
7294 | extra->target_parallel_safe, |
7295 | child_extra.havingQual); |
7296 | |
7297 | /* Create grouping paths for this child relation. */ |
7298 | create_ordinary_grouping_paths(root, child_input_rel, |
7299 | child_grouped_rel, |
7300 | agg_costs, gd, &child_extra, |
7301 | &child_partially_grouped_rel); |
7302 | |
7303 | if (child_partially_grouped_rel) |
7304 | { |
7305 | partially_grouped_live_children = |
7306 | lappend(partially_grouped_live_children, |
7307 | child_partially_grouped_rel); |
7308 | } |
7309 | else |
7310 | partial_grouping_valid = false; |
7311 | |
7312 | if (patype == PARTITIONWISE_AGGREGATE_FULL) |
7313 | { |
7314 | set_cheapest(child_grouped_rel); |
7315 | grouped_live_children = lappend(grouped_live_children, |
7316 | child_grouped_rel); |
7317 | } |
7318 | |
7319 | pfree(appinfos); |
7320 | } |
7321 | |
7322 | /* |
7323 | * Try to create append paths for partially grouped children. For full |
7324 | * partitionwise aggregation, we might have paths in the partial_pathlist |
7325 | * if parallel aggregation is possible. For partial partitionwise |
7326 | * aggregation, we may have paths in both pathlist and partial_pathlist. |
7327 | * |
7328 | * NB: We must have a partially grouped path for every child in order to |
7329 | * generate a partially grouped path for this relation. |
7330 | */ |
7331 | if (partially_grouped_rel && partial_grouping_valid) |
7332 | { |
7333 | Assert(partially_grouped_live_children != NIL); |
7334 | |
7335 | add_paths_to_append_rel(root, partially_grouped_rel, |
7336 | partially_grouped_live_children); |
7337 | |
7338 | /* |
7339 | * We need call set_cheapest, since the finalization step will use the |
7340 | * cheapest path from the rel. |
7341 | */ |
7342 | if (partially_grouped_rel->pathlist) |
7343 | set_cheapest(partially_grouped_rel); |
7344 | } |
7345 | |
7346 | /* If possible, create append paths for fully grouped children. */ |
7347 | if (patype == PARTITIONWISE_AGGREGATE_FULL) |
7348 | { |
7349 | Assert(grouped_live_children != NIL); |
7350 | |
7351 | add_paths_to_append_rel(root, grouped_rel, grouped_live_children); |
7352 | } |
7353 | } |
7354 | |
7355 | /* |
7356 | * group_by_has_partkey |
7357 | * |
7358 | * Returns true, if all the partition keys of the given relation are part of |
7359 | * the GROUP BY clauses, false otherwise. |
7360 | */ |
7361 | static bool |
7362 | group_by_has_partkey(RelOptInfo *input_rel, |
7363 | List *targetList, |
7364 | List *groupClause) |
7365 | { |
7366 | List *groupexprs = get_sortgrouplist_exprs(groupClause, targetList); |
7367 | int cnt = 0; |
7368 | int partnatts; |
7369 | |
7370 | /* Input relation should be partitioned. */ |
7371 | Assert(input_rel->part_scheme); |
7372 | |
7373 | /* Rule out early, if there are no partition keys present. */ |
7374 | if (!input_rel->partexprs) |
7375 | return false; |
7376 | |
7377 | partnatts = input_rel->part_scheme->partnatts; |
7378 | |
7379 | for (cnt = 0; cnt < partnatts; cnt++) |
7380 | { |
7381 | List *partexprs = input_rel->partexprs[cnt]; |
7382 | ListCell *lc; |
7383 | bool found = false; |
7384 | |
7385 | foreach(lc, partexprs) |
7386 | { |
7387 | Expr *partexpr = lfirst(lc); |
7388 | |
7389 | if (list_member(groupexprs, partexpr)) |
7390 | { |
7391 | found = true; |
7392 | break; |
7393 | } |
7394 | } |
7395 | |
7396 | /* |
7397 | * If none of the partition key expressions match with any of the |
7398 | * GROUP BY expression, return false. |
7399 | */ |
7400 | if (!found) |
7401 | return false; |
7402 | } |
7403 | |
7404 | return true; |
7405 | } |
7406 | |