| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * prepunion.c |
| 4 | * Routines to plan set-operation queries. The filename is a leftover |
| 5 | * from a time when only UNIONs were implemented. |
| 6 | * |
| 7 | * There are two code paths in the planner for set-operation queries. |
| 8 | * If a subquery consists entirely of simple UNION ALL operations, it |
| 9 | * is converted into an "append relation". Otherwise, it is handled |
| 10 | * by the general code in this module (plan_set_operations and its |
| 11 | * subroutines). There is some support code here for the append-relation |
| 12 | * case, but most of the heavy lifting for that is done elsewhere, |
| 13 | * notably in prepjointree.c and allpaths.c. |
| 14 | * |
| 15 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 16 | * Portions Copyright (c) 1994, Regents of the University of California |
| 17 | * |
| 18 | * |
| 19 | * IDENTIFICATION |
| 20 | * src/backend/optimizer/prep/prepunion.c |
| 21 | * |
| 22 | *------------------------------------------------------------------------- |
| 23 | */ |
| 24 | #include "postgres.h" |
| 25 | |
| 26 | #include "access/htup_details.h" |
| 27 | #include "access/sysattr.h" |
| 28 | #include "catalog/partition.h" |
| 29 | #include "catalog/pg_inherits.h" |
| 30 | #include "catalog/pg_type.h" |
| 31 | #include "miscadmin.h" |
| 32 | #include "nodes/makefuncs.h" |
| 33 | #include "nodes/nodeFuncs.h" |
| 34 | #include "optimizer/cost.h" |
| 35 | #include "optimizer/pathnode.h" |
| 36 | #include "optimizer/paths.h" |
| 37 | #include "optimizer/planmain.h" |
| 38 | #include "optimizer/planner.h" |
| 39 | #include "optimizer/prep.h" |
| 40 | #include "optimizer/tlist.h" |
| 41 | #include "parser/parse_coerce.h" |
| 42 | #include "parser/parsetree.h" |
| 43 | #include "utils/lsyscache.h" |
| 44 | #include "utils/rel.h" |
| 45 | #include "utils/selfuncs.h" |
| 46 | #include "utils/syscache.h" |
| 47 | |
| 48 | |
| 49 | static RelOptInfo *recurse_set_operations(Node *setOp, PlannerInfo *root, |
| 50 | List *colTypes, List *colCollations, |
| 51 | bool junkOK, |
| 52 | int flag, List *refnames_tlist, |
| 53 | List **pTargetList, |
| 54 | double *pNumGroups); |
| 55 | static RelOptInfo *generate_recursion_path(SetOperationStmt *setOp, |
| 56 | PlannerInfo *root, |
| 57 | List *refnames_tlist, |
| 58 | List **pTargetList); |
| 59 | static RelOptInfo *generate_union_paths(SetOperationStmt *op, PlannerInfo *root, |
| 60 | List *refnames_tlist, |
| 61 | List **pTargetList); |
| 62 | static RelOptInfo *generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, |
| 63 | List *refnames_tlist, |
| 64 | List **pTargetList); |
| 65 | static List *plan_union_children(PlannerInfo *root, |
| 66 | SetOperationStmt *top_union, |
| 67 | List *refnames_tlist, |
| 68 | List **tlist_list); |
| 69 | static Path *make_union_unique(SetOperationStmt *op, Path *path, List *tlist, |
| 70 | PlannerInfo *root); |
| 71 | static void postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel); |
| 72 | static bool choose_hashed_setop(PlannerInfo *root, List *groupClauses, |
| 73 | Path *input_path, |
| 74 | double dNumGroups, double dNumOutputRows, |
| 75 | const char *construct); |
| 76 | static List *generate_setop_tlist(List *colTypes, List *colCollations, |
| 77 | int flag, |
| 78 | Index varno, |
| 79 | bool hack_constants, |
| 80 | List *input_tlist, |
| 81 | List *refnames_tlist); |
| 82 | static List *generate_append_tlist(List *colTypes, List *colCollations, |
| 83 | bool flag, |
| 84 | List *input_tlists, |
| 85 | List *refnames_tlist); |
| 86 | static List *generate_setop_grouplist(SetOperationStmt *op, List *targetlist); |
| 87 | |
| 88 | |
| 89 | /* |
| 90 | * plan_set_operations |
| 91 | * |
| 92 | * Plans the queries for a tree of set operations (UNION/INTERSECT/EXCEPT) |
| 93 | * |
| 94 | * This routine only deals with the setOperations tree of the given query. |
| 95 | * Any top-level ORDER BY requested in root->parse->sortClause will be handled |
| 96 | * when we return to grouping_planner; likewise for LIMIT. |
| 97 | * |
| 98 | * What we return is an "upperrel" RelOptInfo containing at least one Path |
| 99 | * that implements the set-operation tree. In addition, root->processed_tlist |
| 100 | * receives a targetlist representing the output of the topmost setop node. |
| 101 | */ |
| 102 | RelOptInfo * |
| 103 | plan_set_operations(PlannerInfo *root) |
| 104 | { |
| 105 | Query *parse = root->parse; |
| 106 | SetOperationStmt *topop = castNode(SetOperationStmt, parse->setOperations); |
| 107 | Node *node; |
| 108 | RangeTblEntry *leftmostRTE; |
| 109 | Query *leftmostQuery; |
| 110 | RelOptInfo *setop_rel; |
| 111 | List *top_tlist; |
| 112 | |
| 113 | Assert(topop); |
| 114 | |
| 115 | /* check for unsupported stuff */ |
| 116 | Assert(parse->jointree->fromlist == NIL); |
| 117 | Assert(parse->jointree->quals == NULL); |
| 118 | Assert(parse->groupClause == NIL); |
| 119 | Assert(parse->havingQual == NULL); |
| 120 | Assert(parse->windowClause == NIL); |
| 121 | Assert(parse->distinctClause == NIL); |
| 122 | |
| 123 | /* |
| 124 | * We'll need to build RelOptInfos for each of the leaf subqueries, which |
| 125 | * are RTE_SUBQUERY rangetable entries in this Query. Prepare the index |
| 126 | * arrays for that. |
| 127 | */ |
| 128 | setup_simple_rel_arrays(root); |
| 129 | |
| 130 | /* |
| 131 | * Populate append_rel_array with each AppendRelInfo to allow direct |
| 132 | * lookups by child relid. |
| 133 | */ |
| 134 | setup_append_rel_array(root); |
| 135 | |
| 136 | /* |
| 137 | * Find the leftmost component Query. We need to use its column names for |
| 138 | * all generated tlists (else SELECT INTO won't work right). |
| 139 | */ |
| 140 | node = topop->larg; |
| 141 | while (node && IsA(node, SetOperationStmt)) |
| 142 | node = ((SetOperationStmt *) node)->larg; |
| 143 | Assert(node && IsA(node, RangeTblRef)); |
| 144 | leftmostRTE = root->simple_rte_array[((RangeTblRef *) node)->rtindex]; |
| 145 | leftmostQuery = leftmostRTE->subquery; |
| 146 | Assert(leftmostQuery != NULL); |
| 147 | |
| 148 | /* |
| 149 | * If the topmost node is a recursive union, it needs special processing. |
| 150 | */ |
| 151 | if (root->hasRecursion) |
| 152 | { |
| 153 | setop_rel = generate_recursion_path(topop, root, |
| 154 | leftmostQuery->targetList, |
| 155 | &top_tlist); |
| 156 | } |
| 157 | else |
| 158 | { |
| 159 | /* |
| 160 | * Recurse on setOperations tree to generate paths for set ops. The |
| 161 | * final output paths should have just the column types shown as the |
| 162 | * output from the top-level node, plus possibly resjunk working |
| 163 | * columns (we can rely on upper-level nodes to deal with that). |
| 164 | */ |
| 165 | setop_rel = recurse_set_operations((Node *) topop, root, |
| 166 | topop->colTypes, topop->colCollations, |
| 167 | true, -1, |
| 168 | leftmostQuery->targetList, |
| 169 | &top_tlist, |
| 170 | NULL); |
| 171 | } |
| 172 | |
| 173 | /* Must return the built tlist into root->processed_tlist. */ |
| 174 | root->processed_tlist = top_tlist; |
| 175 | |
| 176 | return setop_rel; |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * recurse_set_operations |
| 181 | * Recursively handle one step in a tree of set operations |
| 182 | * |
| 183 | * colTypes: OID list of set-op's result column datatypes |
| 184 | * colCollations: OID list of set-op's result column collations |
| 185 | * junkOK: if true, child resjunk columns may be left in the result |
| 186 | * flag: if >= 0, add a resjunk output column indicating value of flag |
| 187 | * refnames_tlist: targetlist to take column names from |
| 188 | * |
| 189 | * Returns a RelOptInfo for the subtree, as well as these output parameters: |
| 190 | * *pTargetList: receives the fully-fledged tlist for the subtree's top plan |
| 191 | * *pNumGroups: if not NULL, we estimate the number of distinct groups |
| 192 | * in the result, and store it there |
| 193 | * |
| 194 | * The pTargetList output parameter is mostly redundant with the pathtarget |
| 195 | * of the returned RelOptInfo, but for the moment we need it because much of |
| 196 | * the logic in this file depends on flag columns being marked resjunk. |
| 197 | * Pending a redesign of how that works, this is the easy way out. |
| 198 | * |
| 199 | * We don't have to care about typmods here: the only allowed difference |
| 200 | * between set-op input and output typmods is input is a specific typmod |
| 201 | * and output is -1, and that does not require a coercion. |
| 202 | */ |
| 203 | static RelOptInfo * |
| 204 | recurse_set_operations(Node *setOp, PlannerInfo *root, |
| 205 | List *colTypes, List *colCollations, |
| 206 | bool junkOK, |
| 207 | int flag, List *refnames_tlist, |
| 208 | List **pTargetList, |
| 209 | double *pNumGroups) |
| 210 | { |
| 211 | RelOptInfo *rel = NULL; /* keep compiler quiet */ |
| 212 | |
| 213 | /* Guard against stack overflow due to overly complex setop nests */ |
| 214 | check_stack_depth(); |
| 215 | |
| 216 | if (IsA(setOp, RangeTblRef)) |
| 217 | { |
| 218 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
| 219 | RangeTblEntry *rte = root->simple_rte_array[rtr->rtindex]; |
| 220 | Query *subquery = rte->subquery; |
| 221 | PlannerInfo *subroot; |
| 222 | RelOptInfo *final_rel; |
| 223 | Path *subpath; |
| 224 | Path *path; |
| 225 | List *tlist; |
| 226 | |
| 227 | Assert(subquery != NULL); |
| 228 | |
| 229 | /* Build a RelOptInfo for this leaf subquery. */ |
| 230 | rel = build_simple_rel(root, rtr->rtindex, NULL); |
| 231 | |
| 232 | /* plan_params should not be in use in current query level */ |
| 233 | Assert(root->plan_params == NIL); |
| 234 | |
| 235 | /* Generate a subroot and Paths for the subquery */ |
| 236 | subroot = rel->subroot = subquery_planner(root->glob, subquery, |
| 237 | root, |
| 238 | false, |
| 239 | root->tuple_fraction); |
| 240 | |
| 241 | /* |
| 242 | * It should not be possible for the primitive query to contain any |
| 243 | * cross-references to other primitive queries in the setop tree. |
| 244 | */ |
| 245 | if (root->plan_params) |
| 246 | elog(ERROR, "unexpected outer reference in set operation subquery" ); |
| 247 | |
| 248 | /* Figure out the appropriate target list for this subquery. */ |
| 249 | tlist = generate_setop_tlist(colTypes, colCollations, |
| 250 | flag, |
| 251 | rtr->rtindex, |
| 252 | true, |
| 253 | subroot->processed_tlist, |
| 254 | refnames_tlist); |
| 255 | rel->reltarget = create_pathtarget(root, tlist); |
| 256 | |
| 257 | /* Return the fully-fledged tlist to caller, too */ |
| 258 | *pTargetList = tlist; |
| 259 | |
| 260 | /* |
| 261 | * Mark rel with estimated output rows, width, etc. Note that we have |
| 262 | * to do this before generating outer-query paths, else |
| 263 | * cost_subqueryscan is not happy. |
| 264 | */ |
| 265 | set_subquery_size_estimates(root, rel); |
| 266 | |
| 267 | /* |
| 268 | * Since we may want to add a partial path to this relation, we must |
| 269 | * set its consider_parallel flag correctly. |
| 270 | */ |
| 271 | final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL); |
| 272 | rel->consider_parallel = final_rel->consider_parallel; |
| 273 | |
| 274 | /* |
| 275 | * For the moment, we consider only a single Path for the subquery. |
| 276 | * This should change soon (make it look more like |
| 277 | * set_subquery_pathlist). |
| 278 | */ |
| 279 | subpath = get_cheapest_fractional_path(final_rel, |
| 280 | root->tuple_fraction); |
| 281 | |
| 282 | /* |
| 283 | * Stick a SubqueryScanPath atop that. |
| 284 | * |
| 285 | * We don't bother to determine the subquery's output ordering since |
| 286 | * it won't be reflected in the set-op result anyhow; so just label |
| 287 | * the SubqueryScanPath with nil pathkeys. (XXX that should change |
| 288 | * soon too, likely.) |
| 289 | */ |
| 290 | path = (Path *) create_subqueryscan_path(root, rel, subpath, |
| 291 | NIL, NULL); |
| 292 | |
| 293 | add_path(rel, path); |
| 294 | |
| 295 | /* |
| 296 | * If we have a partial path for the child relation, we can use that |
| 297 | * to build a partial path for this relation. But there's no point in |
| 298 | * considering any path but the cheapest. |
| 299 | */ |
| 300 | if (rel->consider_parallel && bms_is_empty(rel->lateral_relids) && |
| 301 | final_rel->partial_pathlist != NIL) |
| 302 | { |
| 303 | Path *partial_subpath; |
| 304 | Path *partial_path; |
| 305 | |
| 306 | partial_subpath = linitial(final_rel->partial_pathlist); |
| 307 | partial_path = (Path *) |
| 308 | create_subqueryscan_path(root, rel, partial_subpath, |
| 309 | NIL, NULL); |
| 310 | add_partial_path(rel, partial_path); |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Estimate number of groups if caller wants it. If the subquery used |
| 315 | * grouping or aggregation, its output is probably mostly unique |
| 316 | * anyway; otherwise do statistical estimation. |
| 317 | * |
| 318 | * XXX you don't really want to know about this: we do the estimation |
| 319 | * using the subquery's original targetlist expressions, not the |
| 320 | * subroot->processed_tlist which might seem more appropriate. The |
| 321 | * reason is that if the subquery is itself a setop, it may return a |
| 322 | * processed_tlist containing "varno 0" Vars generated by |
| 323 | * generate_append_tlist, and those would confuse estimate_num_groups |
| 324 | * mightily. We ought to get rid of the "varno 0" hack, but that |
| 325 | * requires a redesign of the parsetree representation of setops, so |
| 326 | * that there can be an RTE corresponding to each setop's output. |
| 327 | */ |
| 328 | if (pNumGroups) |
| 329 | { |
| 330 | if (subquery->groupClause || subquery->groupingSets || |
| 331 | subquery->distinctClause || |
| 332 | subroot->hasHavingQual || subquery->hasAggs) |
| 333 | *pNumGroups = subpath->rows; |
| 334 | else |
| 335 | *pNumGroups = estimate_num_groups(subroot, |
| 336 | get_tlist_exprs(subquery->targetList, false), |
| 337 | subpath->rows, |
| 338 | NULL); |
| 339 | } |
| 340 | } |
| 341 | else if (IsA(setOp, SetOperationStmt)) |
| 342 | { |
| 343 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
| 344 | |
| 345 | /* UNIONs are much different from INTERSECT/EXCEPT */ |
| 346 | if (op->op == SETOP_UNION) |
| 347 | rel = generate_union_paths(op, root, |
| 348 | refnames_tlist, |
| 349 | pTargetList); |
| 350 | else |
| 351 | rel = generate_nonunion_paths(op, root, |
| 352 | refnames_tlist, |
| 353 | pTargetList); |
| 354 | if (pNumGroups) |
| 355 | *pNumGroups = rel->rows; |
| 356 | |
| 357 | /* |
| 358 | * If necessary, add a Result node to project the caller-requested |
| 359 | * output columns. |
| 360 | * |
| 361 | * XXX you don't really want to know about this: setrefs.c will apply |
| 362 | * fix_upper_expr() to the Result node's tlist. This would fail if the |
| 363 | * Vars generated by generate_setop_tlist() were not exactly equal() |
| 364 | * to the corresponding tlist entries of the subplan. However, since |
| 365 | * the subplan was generated by generate_union_plan() or |
| 366 | * generate_nonunion_plan(), and hence its tlist was generated by |
| 367 | * generate_append_tlist(), this will work. We just tell |
| 368 | * generate_setop_tlist() to use varno 0. |
| 369 | */ |
| 370 | if (flag >= 0 || |
| 371 | !tlist_same_datatypes(*pTargetList, colTypes, junkOK) || |
| 372 | !tlist_same_collations(*pTargetList, colCollations, junkOK)) |
| 373 | { |
| 374 | PathTarget *target; |
| 375 | ListCell *lc; |
| 376 | |
| 377 | *pTargetList = generate_setop_tlist(colTypes, colCollations, |
| 378 | flag, |
| 379 | 0, |
| 380 | false, |
| 381 | *pTargetList, |
| 382 | refnames_tlist); |
| 383 | target = create_pathtarget(root, *pTargetList); |
| 384 | |
| 385 | /* Apply projection to each path */ |
| 386 | foreach(lc, rel->pathlist) |
| 387 | { |
| 388 | Path *subpath = (Path *) lfirst(lc); |
| 389 | Path *path; |
| 390 | |
| 391 | Assert(subpath->param_info == NULL); |
| 392 | path = apply_projection_to_path(root, subpath->parent, |
| 393 | subpath, target); |
| 394 | /* If we had to add a Result, path is different from subpath */ |
| 395 | if (path != subpath) |
| 396 | lfirst(lc) = path; |
| 397 | } |
| 398 | |
| 399 | /* Apply projection to each partial path */ |
| 400 | foreach(lc, rel->partial_pathlist) |
| 401 | { |
| 402 | Path *subpath = (Path *) lfirst(lc); |
| 403 | Path *path; |
| 404 | |
| 405 | Assert(subpath->param_info == NULL); |
| 406 | |
| 407 | /* avoid apply_projection_to_path, in case of multiple refs */ |
| 408 | path = (Path *) create_projection_path(root, subpath->parent, |
| 409 | subpath, target); |
| 410 | lfirst(lc) = path; |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | else |
| 415 | { |
| 416 | elog(ERROR, "unrecognized node type: %d" , |
| 417 | (int) nodeTag(setOp)); |
| 418 | *pTargetList = NIL; |
| 419 | } |
| 420 | |
| 421 | postprocess_setop_rel(root, rel); |
| 422 | |
| 423 | return rel; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * Generate paths for a recursive UNION node |
| 428 | */ |
| 429 | static RelOptInfo * |
| 430 | generate_recursion_path(SetOperationStmt *setOp, PlannerInfo *root, |
| 431 | List *refnames_tlist, |
| 432 | List **pTargetList) |
| 433 | { |
| 434 | RelOptInfo *result_rel; |
| 435 | Path *path; |
| 436 | RelOptInfo *lrel, |
| 437 | *rrel; |
| 438 | Path *lpath; |
| 439 | Path *rpath; |
| 440 | List *lpath_tlist; |
| 441 | List *rpath_tlist; |
| 442 | List *tlist; |
| 443 | List *groupList; |
| 444 | double dNumGroups; |
| 445 | |
| 446 | /* Parser should have rejected other cases */ |
| 447 | if (setOp->op != SETOP_UNION) |
| 448 | elog(ERROR, "only UNION queries can be recursive" ); |
| 449 | /* Worktable ID should be assigned */ |
| 450 | Assert(root->wt_param_id >= 0); |
| 451 | |
| 452 | /* |
| 453 | * Unlike a regular UNION node, process the left and right inputs |
| 454 | * separately without any intention of combining them into one Append. |
| 455 | */ |
| 456 | lrel = recurse_set_operations(setOp->larg, root, |
| 457 | setOp->colTypes, setOp->colCollations, |
| 458 | false, -1, |
| 459 | refnames_tlist, |
| 460 | &lpath_tlist, |
| 461 | NULL); |
| 462 | lpath = lrel->cheapest_total_path; |
| 463 | /* The right path will want to look at the left one ... */ |
| 464 | root->non_recursive_path = lpath; |
| 465 | rrel = recurse_set_operations(setOp->rarg, root, |
| 466 | setOp->colTypes, setOp->colCollations, |
| 467 | false, -1, |
| 468 | refnames_tlist, |
| 469 | &rpath_tlist, |
| 470 | NULL); |
| 471 | rpath = rrel->cheapest_total_path; |
| 472 | root->non_recursive_path = NULL; |
| 473 | |
| 474 | /* |
| 475 | * Generate tlist for RecursiveUnion path node --- same as in Append cases |
| 476 | */ |
| 477 | tlist = generate_append_tlist(setOp->colTypes, setOp->colCollations, false, |
| 478 | list_make2(lpath_tlist, rpath_tlist), |
| 479 | refnames_tlist); |
| 480 | |
| 481 | *pTargetList = tlist; |
| 482 | |
| 483 | /* Build result relation. */ |
| 484 | result_rel = fetch_upper_rel(root, UPPERREL_SETOP, |
| 485 | bms_union(lrel->relids, rrel->relids)); |
| 486 | result_rel->reltarget = create_pathtarget(root, tlist); |
| 487 | |
| 488 | /* |
| 489 | * If UNION, identify the grouping operators |
| 490 | */ |
| 491 | if (setOp->all) |
| 492 | { |
| 493 | groupList = NIL; |
| 494 | dNumGroups = 0; |
| 495 | } |
| 496 | else |
| 497 | { |
| 498 | /* Identify the grouping semantics */ |
| 499 | groupList = generate_setop_grouplist(setOp, tlist); |
| 500 | |
| 501 | /* We only support hashing here */ |
| 502 | if (!grouping_is_hashable(groupList)) |
| 503 | ereport(ERROR, |
| 504 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 505 | errmsg("could not implement recursive UNION" ), |
| 506 | errdetail("All column datatypes must be hashable." ))); |
| 507 | |
| 508 | /* |
| 509 | * For the moment, take the number of distinct groups as equal to the |
| 510 | * total input size, ie, the worst case. |
| 511 | */ |
| 512 | dNumGroups = lpath->rows + rpath->rows * 10; |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * And make the path node. |
| 517 | */ |
| 518 | path = (Path *) create_recursiveunion_path(root, |
| 519 | result_rel, |
| 520 | lpath, |
| 521 | rpath, |
| 522 | result_rel->reltarget, |
| 523 | groupList, |
| 524 | root->wt_param_id, |
| 525 | dNumGroups); |
| 526 | |
| 527 | add_path(result_rel, path); |
| 528 | postprocess_setop_rel(root, result_rel); |
| 529 | return result_rel; |
| 530 | } |
| 531 | |
| 532 | /* |
| 533 | * Generate paths for a UNION or UNION ALL node |
| 534 | */ |
| 535 | static RelOptInfo * |
| 536 | generate_union_paths(SetOperationStmt *op, PlannerInfo *root, |
| 537 | List *refnames_tlist, |
| 538 | List **pTargetList) |
| 539 | { |
| 540 | Relids relids = NULL; |
| 541 | RelOptInfo *result_rel; |
| 542 | double save_fraction = root->tuple_fraction; |
| 543 | ListCell *lc; |
| 544 | List *pathlist = NIL; |
| 545 | List *partial_pathlist = NIL; |
| 546 | bool partial_paths_valid = true; |
| 547 | bool consider_parallel = true; |
| 548 | List *rellist; |
| 549 | List *tlist_list; |
| 550 | List *tlist; |
| 551 | Path *path; |
| 552 | |
| 553 | /* |
| 554 | * If plain UNION, tell children to fetch all tuples. |
| 555 | * |
| 556 | * Note: in UNION ALL, we pass the top-level tuple_fraction unmodified to |
| 557 | * each arm of the UNION ALL. One could make a case for reducing the |
| 558 | * tuple fraction for later arms (discounting by the expected size of the |
| 559 | * earlier arms' results) but it seems not worth the trouble. The normal |
| 560 | * case where tuple_fraction isn't already zero is a LIMIT at top level, |
| 561 | * and passing it down as-is is usually enough to get the desired result |
| 562 | * of preferring fast-start plans. |
| 563 | */ |
| 564 | if (!op->all) |
| 565 | root->tuple_fraction = 0.0; |
| 566 | |
| 567 | /* |
| 568 | * If any of my children are identical UNION nodes (same op, all-flag, and |
| 569 | * colTypes) then they can be merged into this node so that we generate |
| 570 | * only one Append and unique-ification for the lot. Recurse to find such |
| 571 | * nodes and compute their children's paths. |
| 572 | */ |
| 573 | rellist = plan_union_children(root, op, refnames_tlist, &tlist_list); |
| 574 | |
| 575 | /* |
| 576 | * Generate tlist for Append plan node. |
| 577 | * |
| 578 | * The tlist for an Append plan isn't important as far as the Append is |
| 579 | * concerned, but we must make it look real anyway for the benefit of the |
| 580 | * next plan level up. |
| 581 | */ |
| 582 | tlist = generate_append_tlist(op->colTypes, op->colCollations, false, |
| 583 | tlist_list, refnames_tlist); |
| 584 | |
| 585 | *pTargetList = tlist; |
| 586 | |
| 587 | /* Build path lists and relid set. */ |
| 588 | foreach(lc, rellist) |
| 589 | { |
| 590 | RelOptInfo *rel = lfirst(lc); |
| 591 | |
| 592 | pathlist = lappend(pathlist, rel->cheapest_total_path); |
| 593 | |
| 594 | if (consider_parallel) |
| 595 | { |
| 596 | if (!rel->consider_parallel) |
| 597 | { |
| 598 | consider_parallel = false; |
| 599 | partial_paths_valid = false; |
| 600 | } |
| 601 | else if (rel->partial_pathlist == NIL) |
| 602 | partial_paths_valid = false; |
| 603 | else |
| 604 | partial_pathlist = lappend(partial_pathlist, |
| 605 | linitial(rel->partial_pathlist)); |
| 606 | } |
| 607 | |
| 608 | relids = bms_union(relids, rel->relids); |
| 609 | } |
| 610 | |
| 611 | /* Build result relation. */ |
| 612 | result_rel = fetch_upper_rel(root, UPPERREL_SETOP, relids); |
| 613 | result_rel->reltarget = create_pathtarget(root, tlist); |
| 614 | result_rel->consider_parallel = consider_parallel; |
| 615 | |
| 616 | /* |
| 617 | * Append the child results together. |
| 618 | */ |
| 619 | path = (Path *) create_append_path(root, result_rel, pathlist, NIL, |
| 620 | NIL, NULL, 0, false, NIL, -1); |
| 621 | |
| 622 | /* |
| 623 | * For UNION ALL, we just need the Append path. For UNION, need to add |
| 624 | * node(s) to remove duplicates. |
| 625 | */ |
| 626 | if (!op->all) |
| 627 | path = make_union_unique(op, path, tlist, root); |
| 628 | |
| 629 | add_path(result_rel, path); |
| 630 | |
| 631 | /* |
| 632 | * Estimate number of groups. For now we just assume the output is unique |
| 633 | * --- this is certainly true for the UNION case, and we want worst-case |
| 634 | * estimates anyway. |
| 635 | */ |
| 636 | result_rel->rows = path->rows; |
| 637 | |
| 638 | /* |
| 639 | * Now consider doing the same thing using the partial paths plus Append |
| 640 | * plus Gather. |
| 641 | */ |
| 642 | if (partial_paths_valid) |
| 643 | { |
| 644 | Path *ppath; |
| 645 | ListCell *lc; |
| 646 | int parallel_workers = 0; |
| 647 | |
| 648 | /* Find the highest number of workers requested for any subpath. */ |
| 649 | foreach(lc, partial_pathlist) |
| 650 | { |
| 651 | Path *path = lfirst(lc); |
| 652 | |
| 653 | parallel_workers = Max(parallel_workers, path->parallel_workers); |
| 654 | } |
| 655 | Assert(parallel_workers > 0); |
| 656 | |
| 657 | /* |
| 658 | * If the use of parallel append is permitted, always request at least |
| 659 | * log2(# of children) paths. We assume it can be useful to have |
| 660 | * extra workers in this case because they will be spread out across |
| 661 | * the children. The precise formula is just a guess; see |
| 662 | * add_paths_to_append_rel. |
| 663 | */ |
| 664 | if (enable_parallel_append) |
| 665 | { |
| 666 | parallel_workers = Max(parallel_workers, |
| 667 | fls(list_length(partial_pathlist))); |
| 668 | parallel_workers = Min(parallel_workers, |
| 669 | max_parallel_workers_per_gather); |
| 670 | } |
| 671 | Assert(parallel_workers > 0); |
| 672 | |
| 673 | ppath = (Path *) |
| 674 | create_append_path(root, result_rel, NIL, partial_pathlist, |
| 675 | NIL, NULL, |
| 676 | parallel_workers, enable_parallel_append, |
| 677 | NIL, -1); |
| 678 | ppath = (Path *) |
| 679 | create_gather_path(root, result_rel, ppath, |
| 680 | result_rel->reltarget, NULL, NULL); |
| 681 | if (!op->all) |
| 682 | ppath = make_union_unique(op, ppath, tlist, root); |
| 683 | add_path(result_rel, ppath); |
| 684 | } |
| 685 | |
| 686 | /* Undo effects of possibly forcing tuple_fraction to 0 */ |
| 687 | root->tuple_fraction = save_fraction; |
| 688 | |
| 689 | return result_rel; |
| 690 | } |
| 691 | |
| 692 | /* |
| 693 | * Generate paths for an INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL node |
| 694 | */ |
| 695 | static RelOptInfo * |
| 696 | generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, |
| 697 | List *refnames_tlist, |
| 698 | List **pTargetList) |
| 699 | { |
| 700 | RelOptInfo *result_rel; |
| 701 | RelOptInfo *lrel, |
| 702 | *rrel; |
| 703 | double save_fraction = root->tuple_fraction; |
| 704 | Path *lpath, |
| 705 | *rpath, |
| 706 | *path; |
| 707 | List *lpath_tlist, |
| 708 | *rpath_tlist, |
| 709 | *tlist_list, |
| 710 | *tlist, |
| 711 | *groupList, |
| 712 | *pathlist; |
| 713 | double dLeftGroups, |
| 714 | dRightGroups, |
| 715 | dNumGroups, |
| 716 | dNumOutputRows; |
| 717 | bool use_hash; |
| 718 | SetOpCmd cmd; |
| 719 | int firstFlag; |
| 720 | |
| 721 | /* |
| 722 | * Tell children to fetch all tuples. |
| 723 | */ |
| 724 | root->tuple_fraction = 0.0; |
| 725 | |
| 726 | /* Recurse on children, ensuring their outputs are marked */ |
| 727 | lrel = recurse_set_operations(op->larg, root, |
| 728 | op->colTypes, op->colCollations, |
| 729 | false, 0, |
| 730 | refnames_tlist, |
| 731 | &lpath_tlist, |
| 732 | &dLeftGroups); |
| 733 | lpath = lrel->cheapest_total_path; |
| 734 | rrel = recurse_set_operations(op->rarg, root, |
| 735 | op->colTypes, op->colCollations, |
| 736 | false, 1, |
| 737 | refnames_tlist, |
| 738 | &rpath_tlist, |
| 739 | &dRightGroups); |
| 740 | rpath = rrel->cheapest_total_path; |
| 741 | |
| 742 | /* Undo effects of forcing tuple_fraction to 0 */ |
| 743 | root->tuple_fraction = save_fraction; |
| 744 | |
| 745 | /* |
| 746 | * For EXCEPT, we must put the left input first. For INTERSECT, either |
| 747 | * order should give the same results, and we prefer to put the smaller |
| 748 | * input first in order to minimize the size of the hash table in the |
| 749 | * hashing case. "Smaller" means the one with the fewer groups. |
| 750 | */ |
| 751 | if (op->op == SETOP_EXCEPT || dLeftGroups <= dRightGroups) |
| 752 | { |
| 753 | pathlist = list_make2(lpath, rpath); |
| 754 | tlist_list = list_make2(lpath_tlist, rpath_tlist); |
| 755 | firstFlag = 0; |
| 756 | } |
| 757 | else |
| 758 | { |
| 759 | pathlist = list_make2(rpath, lpath); |
| 760 | tlist_list = list_make2(rpath_tlist, lpath_tlist); |
| 761 | firstFlag = 1; |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * Generate tlist for Append plan node. |
| 766 | * |
| 767 | * The tlist for an Append plan isn't important as far as the Append is |
| 768 | * concerned, but we must make it look real anyway for the benefit of the |
| 769 | * next plan level up. In fact, it has to be real enough that the flag |
| 770 | * column is shown as a variable not a constant, else setrefs.c will get |
| 771 | * confused. |
| 772 | */ |
| 773 | tlist = generate_append_tlist(op->colTypes, op->colCollations, true, |
| 774 | tlist_list, refnames_tlist); |
| 775 | |
| 776 | *pTargetList = tlist; |
| 777 | |
| 778 | /* Build result relation. */ |
| 779 | result_rel = fetch_upper_rel(root, UPPERREL_SETOP, |
| 780 | bms_union(lrel->relids, rrel->relids)); |
| 781 | result_rel->reltarget = create_pathtarget(root, tlist); |
| 782 | |
| 783 | /* |
| 784 | * Append the child results together. |
| 785 | */ |
| 786 | path = (Path *) create_append_path(root, result_rel, pathlist, NIL, |
| 787 | NIL, NULL, 0, false, NIL, -1); |
| 788 | |
| 789 | /* Identify the grouping semantics */ |
| 790 | groupList = generate_setop_grouplist(op, tlist); |
| 791 | |
| 792 | /* |
| 793 | * Estimate number of distinct groups that we'll need hashtable entries |
| 794 | * for; this is the size of the left-hand input for EXCEPT, or the smaller |
| 795 | * input for INTERSECT. Also estimate the number of eventual output rows. |
| 796 | * In non-ALL cases, we estimate each group produces one output row; in |
| 797 | * ALL cases use the relevant relation size. These are worst-case |
| 798 | * estimates, of course, but we need to be conservative. |
| 799 | */ |
| 800 | if (op->op == SETOP_EXCEPT) |
| 801 | { |
| 802 | dNumGroups = dLeftGroups; |
| 803 | dNumOutputRows = op->all ? lpath->rows : dNumGroups; |
| 804 | } |
| 805 | else |
| 806 | { |
| 807 | dNumGroups = Min(dLeftGroups, dRightGroups); |
| 808 | dNumOutputRows = op->all ? Min(lpath->rows, rpath->rows) : dNumGroups; |
| 809 | } |
| 810 | |
| 811 | /* |
| 812 | * Decide whether to hash or sort, and add a sort node if needed. |
| 813 | */ |
| 814 | use_hash = choose_hashed_setop(root, groupList, path, |
| 815 | dNumGroups, dNumOutputRows, |
| 816 | (op->op == SETOP_INTERSECT) ? "INTERSECT" : "EXCEPT" ); |
| 817 | |
| 818 | if (groupList && !use_hash) |
| 819 | path = (Path *) create_sort_path(root, |
| 820 | result_rel, |
| 821 | path, |
| 822 | make_pathkeys_for_sortclauses(root, |
| 823 | groupList, |
| 824 | tlist), |
| 825 | -1.0); |
| 826 | |
| 827 | /* |
| 828 | * Finally, add a SetOp path node to generate the correct output. |
| 829 | */ |
| 830 | switch (op->op) |
| 831 | { |
| 832 | case SETOP_INTERSECT: |
| 833 | cmd = op->all ? SETOPCMD_INTERSECT_ALL : SETOPCMD_INTERSECT; |
| 834 | break; |
| 835 | case SETOP_EXCEPT: |
| 836 | cmd = op->all ? SETOPCMD_EXCEPT_ALL : SETOPCMD_EXCEPT; |
| 837 | break; |
| 838 | default: |
| 839 | elog(ERROR, "unrecognized set op: %d" , (int) op->op); |
| 840 | cmd = SETOPCMD_INTERSECT; /* keep compiler quiet */ |
| 841 | break; |
| 842 | } |
| 843 | path = (Path *) create_setop_path(root, |
| 844 | result_rel, |
| 845 | path, |
| 846 | cmd, |
| 847 | use_hash ? SETOP_HASHED : SETOP_SORTED, |
| 848 | groupList, |
| 849 | list_length(op->colTypes) + 1, |
| 850 | use_hash ? firstFlag : -1, |
| 851 | dNumGroups, |
| 852 | dNumOutputRows); |
| 853 | |
| 854 | result_rel->rows = path->rows; |
| 855 | add_path(result_rel, path); |
| 856 | return result_rel; |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * Pull up children of a UNION node that are identically-propertied UNIONs. |
| 861 | * |
| 862 | * NOTE: we can also pull a UNION ALL up into a UNION, since the distinct |
| 863 | * output rows will be lost anyway. |
| 864 | * |
| 865 | * NOTE: currently, we ignore collations while determining if a child has |
| 866 | * the same properties. This is semantically sound only so long as all |
| 867 | * collations have the same notion of equality. It is valid from an |
| 868 | * implementation standpoint because we don't care about the ordering of |
| 869 | * a UNION child's result: UNION ALL results are always unordered, and |
| 870 | * generate_union_paths will force a fresh sort if the top level is a UNION. |
| 871 | */ |
| 872 | static List * |
| 873 | plan_union_children(PlannerInfo *root, |
| 874 | SetOperationStmt *top_union, |
| 875 | List *refnames_tlist, |
| 876 | List **tlist_list) |
| 877 | { |
| 878 | List *pending_rels = list_make1(top_union); |
| 879 | List *result = NIL; |
| 880 | List *child_tlist; |
| 881 | |
| 882 | *tlist_list = NIL; |
| 883 | |
| 884 | while (pending_rels != NIL) |
| 885 | { |
| 886 | Node *setOp = linitial(pending_rels); |
| 887 | |
| 888 | pending_rels = list_delete_first(pending_rels); |
| 889 | |
| 890 | if (IsA(setOp, SetOperationStmt)) |
| 891 | { |
| 892 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
| 893 | |
| 894 | if (op->op == top_union->op && |
| 895 | (op->all == top_union->all || op->all) && |
| 896 | equal(op->colTypes, top_union->colTypes)) |
| 897 | { |
| 898 | /* Same UNION, so fold children into parent */ |
| 899 | pending_rels = lcons(op->rarg, pending_rels); |
| 900 | pending_rels = lcons(op->larg, pending_rels); |
| 901 | continue; |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | /* |
| 906 | * Not same, so plan this child separately. |
| 907 | * |
| 908 | * Note we disallow any resjunk columns in child results. This is |
| 909 | * necessary since the Append node that implements the union won't do |
| 910 | * any projection, and upper levels will get confused if some of our |
| 911 | * output tuples have junk and some don't. This case only arises when |
| 912 | * we have an EXCEPT or INTERSECT as child, else there won't be |
| 913 | * resjunk anyway. |
| 914 | */ |
| 915 | result = lappend(result, recurse_set_operations(setOp, root, |
| 916 | top_union->colTypes, |
| 917 | top_union->colCollations, |
| 918 | false, -1, |
| 919 | refnames_tlist, |
| 920 | &child_tlist, |
| 921 | NULL)); |
| 922 | *tlist_list = lappend(*tlist_list, child_tlist); |
| 923 | } |
| 924 | |
| 925 | return result; |
| 926 | } |
| 927 | |
| 928 | /* |
| 929 | * Add nodes to the given path tree to unique-ify the result of a UNION. |
| 930 | */ |
| 931 | static Path * |
| 932 | make_union_unique(SetOperationStmt *op, Path *path, List *tlist, |
| 933 | PlannerInfo *root) |
| 934 | { |
| 935 | RelOptInfo *result_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL); |
| 936 | List *groupList; |
| 937 | double dNumGroups; |
| 938 | |
| 939 | /* Identify the grouping semantics */ |
| 940 | groupList = generate_setop_grouplist(op, tlist); |
| 941 | |
| 942 | /* |
| 943 | * XXX for the moment, take the number of distinct groups as equal to the |
| 944 | * total input size, ie, the worst case. This is too conservative, but we |
| 945 | * don't want to risk having the hashtable overrun memory; also, it's not |
| 946 | * clear how to get a decent estimate of the true size. One should note |
| 947 | * as well the propensity of novices to write UNION rather than UNION ALL |
| 948 | * even when they don't expect any duplicates... |
| 949 | */ |
| 950 | dNumGroups = path->rows; |
| 951 | |
| 952 | /* Decide whether to hash or sort */ |
| 953 | if (choose_hashed_setop(root, groupList, path, |
| 954 | dNumGroups, dNumGroups, |
| 955 | "UNION" )) |
| 956 | { |
| 957 | /* Hashed aggregate plan --- no sort needed */ |
| 958 | path = (Path *) create_agg_path(root, |
| 959 | result_rel, |
| 960 | path, |
| 961 | create_pathtarget(root, tlist), |
| 962 | AGG_HASHED, |
| 963 | AGGSPLIT_SIMPLE, |
| 964 | groupList, |
| 965 | NIL, |
| 966 | NULL, |
| 967 | dNumGroups); |
| 968 | } |
| 969 | else |
| 970 | { |
| 971 | /* Sort and Unique */ |
| 972 | if (groupList) |
| 973 | path = (Path *) |
| 974 | create_sort_path(root, |
| 975 | result_rel, |
| 976 | path, |
| 977 | make_pathkeys_for_sortclauses(root, |
| 978 | groupList, |
| 979 | tlist), |
| 980 | -1.0); |
| 981 | path = (Path *) create_upper_unique_path(root, |
| 982 | result_rel, |
| 983 | path, |
| 984 | list_length(path->pathkeys), |
| 985 | dNumGroups); |
| 986 | } |
| 987 | |
| 988 | return path; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * postprocess_setop_rel - perform steps required after adding paths |
| 993 | */ |
| 994 | static void |
| 995 | postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel) |
| 996 | { |
| 997 | /* |
| 998 | * We don't currently worry about allowing FDWs to contribute paths to |
| 999 | * this relation, but give extensions a chance. |
| 1000 | */ |
| 1001 | if (create_upper_paths_hook) |
| 1002 | (*create_upper_paths_hook) (root, UPPERREL_SETOP, |
| 1003 | NULL, rel, NULL); |
| 1004 | |
| 1005 | /* Select cheapest path */ |
| 1006 | set_cheapest(rel); |
| 1007 | } |
| 1008 | |
| 1009 | /* |
| 1010 | * choose_hashed_setop - should we use hashing for a set operation? |
| 1011 | */ |
| 1012 | static bool |
| 1013 | choose_hashed_setop(PlannerInfo *root, List *groupClauses, |
| 1014 | Path *input_path, |
| 1015 | double dNumGroups, double dNumOutputRows, |
| 1016 | const char *construct) |
| 1017 | { |
| 1018 | int numGroupCols = list_length(groupClauses); |
| 1019 | bool can_sort; |
| 1020 | bool can_hash; |
| 1021 | Size hashentrysize; |
| 1022 | Path hashed_p; |
| 1023 | Path sorted_p; |
| 1024 | double tuple_fraction; |
| 1025 | |
| 1026 | /* Check whether the operators support sorting or hashing */ |
| 1027 | can_sort = grouping_is_sortable(groupClauses); |
| 1028 | can_hash = grouping_is_hashable(groupClauses); |
| 1029 | if (can_hash && can_sort) |
| 1030 | { |
| 1031 | /* we have a meaningful choice to make, continue ... */ |
| 1032 | } |
| 1033 | else if (can_hash) |
| 1034 | return true; |
| 1035 | else if (can_sort) |
| 1036 | return false; |
| 1037 | else |
| 1038 | ereport(ERROR, |
| 1039 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1040 | /* translator: %s is UNION, INTERSECT, or EXCEPT */ |
| 1041 | errmsg("could not implement %s" , construct), |
| 1042 | errdetail("Some of the datatypes only support hashing, while others only support sorting." ))); |
| 1043 | |
| 1044 | /* Prefer sorting when enable_hashagg is off */ |
| 1045 | if (!enable_hashagg) |
| 1046 | return false; |
| 1047 | |
| 1048 | /* |
| 1049 | * Don't do it if it doesn't look like the hashtable will fit into |
| 1050 | * work_mem. |
| 1051 | */ |
| 1052 | hashentrysize = MAXALIGN(input_path->pathtarget->width) + MAXALIGN(SizeofMinimalTupleHeader); |
| 1053 | |
| 1054 | if (hashentrysize * dNumGroups > work_mem * 1024L) |
| 1055 | return false; |
| 1056 | |
| 1057 | /* |
| 1058 | * See if the estimated cost is no more than doing it the other way. |
| 1059 | * |
| 1060 | * We need to consider input_plan + hashagg versus input_plan + sort + |
| 1061 | * group. Note that the actual result plan might involve a SetOp or |
| 1062 | * Unique node, not Agg or Group, but the cost estimates for Agg and Group |
| 1063 | * should be close enough for our purposes here. |
| 1064 | * |
| 1065 | * These path variables are dummies that just hold cost fields; we don't |
| 1066 | * make actual Paths for these steps. |
| 1067 | */ |
| 1068 | cost_agg(&hashed_p, root, AGG_HASHED, NULL, |
| 1069 | numGroupCols, dNumGroups, |
| 1070 | NIL, |
| 1071 | input_path->startup_cost, input_path->total_cost, |
| 1072 | input_path->rows); |
| 1073 | |
| 1074 | /* |
| 1075 | * Now for the sorted case. Note that the input is *always* unsorted, |
| 1076 | * since it was made by appending unrelated sub-relations together. |
| 1077 | */ |
| 1078 | sorted_p.startup_cost = input_path->startup_cost; |
| 1079 | sorted_p.total_cost = input_path->total_cost; |
| 1080 | /* XXX cost_sort doesn't actually look at pathkeys, so just pass NIL */ |
| 1081 | cost_sort(&sorted_p, root, NIL, sorted_p.total_cost, |
| 1082 | input_path->rows, input_path->pathtarget->width, |
| 1083 | 0.0, work_mem, -1.0); |
| 1084 | cost_group(&sorted_p, root, numGroupCols, dNumGroups, |
| 1085 | NIL, |
| 1086 | sorted_p.startup_cost, sorted_p.total_cost, |
| 1087 | input_path->rows); |
| 1088 | |
| 1089 | /* |
| 1090 | * Now make the decision using the top-level tuple fraction. First we |
| 1091 | * have to convert an absolute count (LIMIT) into fractional form. |
| 1092 | */ |
| 1093 | tuple_fraction = root->tuple_fraction; |
| 1094 | if (tuple_fraction >= 1.0) |
| 1095 | tuple_fraction /= dNumOutputRows; |
| 1096 | |
| 1097 | if (compare_fractional_path_costs(&hashed_p, &sorted_p, |
| 1098 | tuple_fraction) < 0) |
| 1099 | { |
| 1100 | /* Hashed is cheaper, so use it */ |
| 1101 | return true; |
| 1102 | } |
| 1103 | return false; |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * Generate targetlist for a set-operation plan node |
| 1108 | * |
| 1109 | * colTypes: OID list of set-op's result column datatypes |
| 1110 | * colCollations: OID list of set-op's result column collations |
| 1111 | * flag: -1 if no flag column needed, 0 or 1 to create a const flag column |
| 1112 | * varno: varno to use in generated Vars |
| 1113 | * hack_constants: true to copy up constants (see comments in code) |
| 1114 | * input_tlist: targetlist of this node's input node |
| 1115 | * refnames_tlist: targetlist to take column names from |
| 1116 | */ |
| 1117 | static List * |
| 1118 | generate_setop_tlist(List *colTypes, List *colCollations, |
| 1119 | int flag, |
| 1120 | Index varno, |
| 1121 | bool hack_constants, |
| 1122 | List *input_tlist, |
| 1123 | List *refnames_tlist) |
| 1124 | { |
| 1125 | List *tlist = NIL; |
| 1126 | int resno = 1; |
| 1127 | ListCell *ctlc, |
| 1128 | *cclc, |
| 1129 | *itlc, |
| 1130 | *rtlc; |
| 1131 | TargetEntry *tle; |
| 1132 | Node *expr; |
| 1133 | |
| 1134 | forfour(ctlc, colTypes, cclc, colCollations, |
| 1135 | itlc, input_tlist, rtlc, refnames_tlist) |
| 1136 | { |
| 1137 | Oid colType = lfirst_oid(ctlc); |
| 1138 | Oid colColl = lfirst_oid(cclc); |
| 1139 | TargetEntry *inputtle = (TargetEntry *) lfirst(itlc); |
| 1140 | TargetEntry *reftle = (TargetEntry *) lfirst(rtlc); |
| 1141 | |
| 1142 | Assert(inputtle->resno == resno); |
| 1143 | Assert(reftle->resno == resno); |
| 1144 | Assert(!inputtle->resjunk); |
| 1145 | Assert(!reftle->resjunk); |
| 1146 | |
| 1147 | /* |
| 1148 | * Generate columns referencing input columns and having appropriate |
| 1149 | * data types and column names. Insert datatype coercions where |
| 1150 | * necessary. |
| 1151 | * |
| 1152 | * HACK: constants in the input's targetlist are copied up as-is |
| 1153 | * rather than being referenced as subquery outputs. This is mainly |
| 1154 | * to ensure that when we try to coerce them to the output column's |
| 1155 | * datatype, the right things happen for UNKNOWN constants. But do |
| 1156 | * this only at the first level of subquery-scan plans; we don't want |
| 1157 | * phony constants appearing in the output tlists of upper-level |
| 1158 | * nodes! |
| 1159 | */ |
| 1160 | if (hack_constants && inputtle->expr && IsA(inputtle->expr, Const)) |
| 1161 | expr = (Node *) inputtle->expr; |
| 1162 | else |
| 1163 | expr = (Node *) makeVar(varno, |
| 1164 | inputtle->resno, |
| 1165 | exprType((Node *) inputtle->expr), |
| 1166 | exprTypmod((Node *) inputtle->expr), |
| 1167 | exprCollation((Node *) inputtle->expr), |
| 1168 | 0); |
| 1169 | |
| 1170 | if (exprType(expr) != colType) |
| 1171 | { |
| 1172 | /* |
| 1173 | * Note: it's not really cool to be applying coerce_to_common_type |
| 1174 | * here; one notable point is that assign_expr_collations never |
| 1175 | * gets run on any generated nodes. For the moment that's not a |
| 1176 | * problem because we force the correct exposed collation below. |
| 1177 | * It would likely be best to make the parser generate the correct |
| 1178 | * output tlist for every set-op to begin with, though. |
| 1179 | */ |
| 1180 | expr = coerce_to_common_type(NULL, /* no UNKNOWNs here */ |
| 1181 | expr, |
| 1182 | colType, |
| 1183 | "UNION/INTERSECT/EXCEPT" ); |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * Ensure the tlist entry's exposed collation matches the set-op. This |
| 1188 | * is necessary because plan_set_operations() reports the result |
| 1189 | * ordering as a list of SortGroupClauses, which don't carry collation |
| 1190 | * themselves but just refer to tlist entries. If we don't show the |
| 1191 | * right collation then planner.c might do the wrong thing in |
| 1192 | * higher-level queries. |
| 1193 | * |
| 1194 | * Note we use RelabelType, not CollateExpr, since this expression |
| 1195 | * will reach the executor without any further processing. |
| 1196 | */ |
| 1197 | if (exprCollation(expr) != colColl) |
| 1198 | { |
| 1199 | expr = (Node *) makeRelabelType((Expr *) expr, |
| 1200 | exprType(expr), |
| 1201 | exprTypmod(expr), |
| 1202 | colColl, |
| 1203 | COERCE_IMPLICIT_CAST); |
| 1204 | } |
| 1205 | |
| 1206 | tle = makeTargetEntry((Expr *) expr, |
| 1207 | (AttrNumber) resno++, |
| 1208 | pstrdup(reftle->resname), |
| 1209 | false); |
| 1210 | |
| 1211 | /* |
| 1212 | * By convention, all non-resjunk columns in a setop tree have |
| 1213 | * ressortgroupref equal to their resno. In some cases the ref isn't |
| 1214 | * needed, but this is a cleaner way than modifying the tlist later. |
| 1215 | */ |
| 1216 | tle->ressortgroupref = tle->resno; |
| 1217 | |
| 1218 | tlist = lappend(tlist, tle); |
| 1219 | } |
| 1220 | |
| 1221 | if (flag >= 0) |
| 1222 | { |
| 1223 | /* Add a resjunk flag column */ |
| 1224 | /* flag value is the given constant */ |
| 1225 | expr = (Node *) makeConst(INT4OID, |
| 1226 | -1, |
| 1227 | InvalidOid, |
| 1228 | sizeof(int32), |
| 1229 | Int32GetDatum(flag), |
| 1230 | false, |
| 1231 | true); |
| 1232 | tle = makeTargetEntry((Expr *) expr, |
| 1233 | (AttrNumber) resno++, |
| 1234 | pstrdup("flag" ), |
| 1235 | true); |
| 1236 | tlist = lappend(tlist, tle); |
| 1237 | } |
| 1238 | |
| 1239 | return tlist; |
| 1240 | } |
| 1241 | |
| 1242 | /* |
| 1243 | * Generate targetlist for a set-operation Append node |
| 1244 | * |
| 1245 | * colTypes: OID list of set-op's result column datatypes |
| 1246 | * colCollations: OID list of set-op's result column collations |
| 1247 | * flag: true to create a flag column copied up from subplans |
| 1248 | * input_tlists: list of tlists for sub-plans of the Append |
| 1249 | * refnames_tlist: targetlist to take column names from |
| 1250 | * |
| 1251 | * The entries in the Append's targetlist should always be simple Vars; |
| 1252 | * we just have to make sure they have the right datatypes/typmods/collations. |
| 1253 | * The Vars are always generated with varno 0. |
| 1254 | * |
| 1255 | * XXX a problem with the varno-zero approach is that set_pathtarget_cost_width |
| 1256 | * cannot figure out a realistic width for the tlist we make here. But we |
| 1257 | * ought to refactor this code to produce a PathTarget directly, anyway. |
| 1258 | */ |
| 1259 | static List * |
| 1260 | generate_append_tlist(List *colTypes, List *colCollations, |
| 1261 | bool flag, |
| 1262 | List *input_tlists, |
| 1263 | List *refnames_tlist) |
| 1264 | { |
| 1265 | List *tlist = NIL; |
| 1266 | int resno = 1; |
| 1267 | ListCell *curColType; |
| 1268 | ListCell *curColCollation; |
| 1269 | ListCell *ref_tl_item; |
| 1270 | int colindex; |
| 1271 | TargetEntry *tle; |
| 1272 | Node *expr; |
| 1273 | ListCell *tlistl; |
| 1274 | int32 *colTypmods; |
| 1275 | |
| 1276 | /* |
| 1277 | * First extract typmods to use. |
| 1278 | * |
| 1279 | * If the inputs all agree on type and typmod of a particular column, use |
| 1280 | * that typmod; else use -1. |
| 1281 | */ |
| 1282 | colTypmods = (int32 *) palloc(list_length(colTypes) * sizeof(int32)); |
| 1283 | |
| 1284 | foreach(tlistl, input_tlists) |
| 1285 | { |
| 1286 | List *subtlist = (List *) lfirst(tlistl); |
| 1287 | ListCell *subtlistl; |
| 1288 | |
| 1289 | curColType = list_head(colTypes); |
| 1290 | colindex = 0; |
| 1291 | foreach(subtlistl, subtlist) |
| 1292 | { |
| 1293 | TargetEntry *subtle = (TargetEntry *) lfirst(subtlistl); |
| 1294 | |
| 1295 | if (subtle->resjunk) |
| 1296 | continue; |
| 1297 | Assert(curColType != NULL); |
| 1298 | if (exprType((Node *) subtle->expr) == lfirst_oid(curColType)) |
| 1299 | { |
| 1300 | /* If first subplan, copy the typmod; else compare */ |
| 1301 | int32 subtypmod = exprTypmod((Node *) subtle->expr); |
| 1302 | |
| 1303 | if (tlistl == list_head(input_tlists)) |
| 1304 | colTypmods[colindex] = subtypmod; |
| 1305 | else if (subtypmod != colTypmods[colindex]) |
| 1306 | colTypmods[colindex] = -1; |
| 1307 | } |
| 1308 | else |
| 1309 | { |
| 1310 | /* types disagree, so force typmod to -1 */ |
| 1311 | colTypmods[colindex] = -1; |
| 1312 | } |
| 1313 | curColType = lnext(curColType); |
| 1314 | colindex++; |
| 1315 | } |
| 1316 | Assert(curColType == NULL); |
| 1317 | } |
| 1318 | |
| 1319 | /* |
| 1320 | * Now we can build the tlist for the Append. |
| 1321 | */ |
| 1322 | colindex = 0; |
| 1323 | forthree(curColType, colTypes, curColCollation, colCollations, |
| 1324 | ref_tl_item, refnames_tlist) |
| 1325 | { |
| 1326 | Oid colType = lfirst_oid(curColType); |
| 1327 | int32 colTypmod = colTypmods[colindex++]; |
| 1328 | Oid colColl = lfirst_oid(curColCollation); |
| 1329 | TargetEntry *reftle = (TargetEntry *) lfirst(ref_tl_item); |
| 1330 | |
| 1331 | Assert(reftle->resno == resno); |
| 1332 | Assert(!reftle->resjunk); |
| 1333 | expr = (Node *) makeVar(0, |
| 1334 | resno, |
| 1335 | colType, |
| 1336 | colTypmod, |
| 1337 | colColl, |
| 1338 | 0); |
| 1339 | tle = makeTargetEntry((Expr *) expr, |
| 1340 | (AttrNumber) resno++, |
| 1341 | pstrdup(reftle->resname), |
| 1342 | false); |
| 1343 | |
| 1344 | /* |
| 1345 | * By convention, all non-resjunk columns in a setop tree have |
| 1346 | * ressortgroupref equal to their resno. In some cases the ref isn't |
| 1347 | * needed, but this is a cleaner way than modifying the tlist later. |
| 1348 | */ |
| 1349 | tle->ressortgroupref = tle->resno; |
| 1350 | |
| 1351 | tlist = lappend(tlist, tle); |
| 1352 | } |
| 1353 | |
| 1354 | if (flag) |
| 1355 | { |
| 1356 | /* Add a resjunk flag column */ |
| 1357 | /* flag value is shown as copied up from subplan */ |
| 1358 | expr = (Node *) makeVar(0, |
| 1359 | resno, |
| 1360 | INT4OID, |
| 1361 | -1, |
| 1362 | InvalidOid, |
| 1363 | 0); |
| 1364 | tle = makeTargetEntry((Expr *) expr, |
| 1365 | (AttrNumber) resno++, |
| 1366 | pstrdup("flag" ), |
| 1367 | true); |
| 1368 | tlist = lappend(tlist, tle); |
| 1369 | } |
| 1370 | |
| 1371 | pfree(colTypmods); |
| 1372 | |
| 1373 | return tlist; |
| 1374 | } |
| 1375 | |
| 1376 | /* |
| 1377 | * generate_setop_grouplist |
| 1378 | * Build a SortGroupClause list defining the sort/grouping properties |
| 1379 | * of the setop's output columns. |
| 1380 | * |
| 1381 | * Parse analysis already determined the properties and built a suitable |
| 1382 | * list, except that the entries do not have sortgrouprefs set because |
| 1383 | * the parser output representation doesn't include a tlist for each |
| 1384 | * setop. So what we need to do here is copy that list and install |
| 1385 | * proper sortgrouprefs into it (copying those from the targetlist). |
| 1386 | */ |
| 1387 | static List * |
| 1388 | generate_setop_grouplist(SetOperationStmt *op, List *targetlist) |
| 1389 | { |
| 1390 | List *grouplist = copyObject(op->groupClauses); |
| 1391 | ListCell *lg; |
| 1392 | ListCell *lt; |
| 1393 | |
| 1394 | lg = list_head(grouplist); |
| 1395 | foreach(lt, targetlist) |
| 1396 | { |
| 1397 | TargetEntry *tle = (TargetEntry *) lfirst(lt); |
| 1398 | SortGroupClause *sgc; |
| 1399 | |
| 1400 | if (tle->resjunk) |
| 1401 | { |
| 1402 | /* resjunk columns should not have sortgrouprefs */ |
| 1403 | Assert(tle->ressortgroupref == 0); |
| 1404 | continue; /* ignore resjunk columns */ |
| 1405 | } |
| 1406 | |
| 1407 | /* non-resjunk columns should have sortgroupref = resno */ |
| 1408 | Assert(tle->ressortgroupref == tle->resno); |
| 1409 | |
| 1410 | /* non-resjunk columns should have grouping clauses */ |
| 1411 | Assert(lg != NULL); |
| 1412 | sgc = (SortGroupClause *) lfirst(lg); |
| 1413 | lg = lnext(lg); |
| 1414 | Assert(sgc->tleSortGroupRef == 0); |
| 1415 | |
| 1416 | sgc->tleSortGroupRef = tle->ressortgroupref; |
| 1417 | } |
| 1418 | Assert(lg == NULL); |
| 1419 | return grouplist; |
| 1420 | } |
| 1421 | |