1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * prepunion.c |
4 | * Routines to plan set-operation queries. The filename is a leftover |
5 | * from a time when only UNIONs were implemented. |
6 | * |
7 | * There are two code paths in the planner for set-operation queries. |
8 | * If a subquery consists entirely of simple UNION ALL operations, it |
9 | * is converted into an "append relation". Otherwise, it is handled |
10 | * by the general code in this module (plan_set_operations and its |
11 | * subroutines). There is some support code here for the append-relation |
12 | * case, but most of the heavy lifting for that is done elsewhere, |
13 | * notably in prepjointree.c and allpaths.c. |
14 | * |
15 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
16 | * Portions Copyright (c) 1994, Regents of the University of California |
17 | * |
18 | * |
19 | * IDENTIFICATION |
20 | * src/backend/optimizer/prep/prepunion.c |
21 | * |
22 | *------------------------------------------------------------------------- |
23 | */ |
24 | #include "postgres.h" |
25 | |
26 | #include "access/htup_details.h" |
27 | #include "access/sysattr.h" |
28 | #include "catalog/partition.h" |
29 | #include "catalog/pg_inherits.h" |
30 | #include "catalog/pg_type.h" |
31 | #include "miscadmin.h" |
32 | #include "nodes/makefuncs.h" |
33 | #include "nodes/nodeFuncs.h" |
34 | #include "optimizer/cost.h" |
35 | #include "optimizer/pathnode.h" |
36 | #include "optimizer/paths.h" |
37 | #include "optimizer/planmain.h" |
38 | #include "optimizer/planner.h" |
39 | #include "optimizer/prep.h" |
40 | #include "optimizer/tlist.h" |
41 | #include "parser/parse_coerce.h" |
42 | #include "parser/parsetree.h" |
43 | #include "utils/lsyscache.h" |
44 | #include "utils/rel.h" |
45 | #include "utils/selfuncs.h" |
46 | #include "utils/syscache.h" |
47 | |
48 | |
49 | static RelOptInfo *recurse_set_operations(Node *setOp, PlannerInfo *root, |
50 | List *colTypes, List *colCollations, |
51 | bool junkOK, |
52 | int flag, List *refnames_tlist, |
53 | List **pTargetList, |
54 | double *pNumGroups); |
55 | static RelOptInfo *generate_recursion_path(SetOperationStmt *setOp, |
56 | PlannerInfo *root, |
57 | List *refnames_tlist, |
58 | List **pTargetList); |
59 | static RelOptInfo *generate_union_paths(SetOperationStmt *op, PlannerInfo *root, |
60 | List *refnames_tlist, |
61 | List **pTargetList); |
62 | static RelOptInfo *generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, |
63 | List *refnames_tlist, |
64 | List **pTargetList); |
65 | static List *plan_union_children(PlannerInfo *root, |
66 | SetOperationStmt *top_union, |
67 | List *refnames_tlist, |
68 | List **tlist_list); |
69 | static Path *make_union_unique(SetOperationStmt *op, Path *path, List *tlist, |
70 | PlannerInfo *root); |
71 | static void postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel); |
72 | static bool choose_hashed_setop(PlannerInfo *root, List *groupClauses, |
73 | Path *input_path, |
74 | double dNumGroups, double dNumOutputRows, |
75 | const char *construct); |
76 | static List *generate_setop_tlist(List *colTypes, List *colCollations, |
77 | int flag, |
78 | Index varno, |
79 | bool hack_constants, |
80 | List *input_tlist, |
81 | List *refnames_tlist); |
82 | static List *generate_append_tlist(List *colTypes, List *colCollations, |
83 | bool flag, |
84 | List *input_tlists, |
85 | List *refnames_tlist); |
86 | static List *generate_setop_grouplist(SetOperationStmt *op, List *targetlist); |
87 | |
88 | |
89 | /* |
90 | * plan_set_operations |
91 | * |
92 | * Plans the queries for a tree of set operations (UNION/INTERSECT/EXCEPT) |
93 | * |
94 | * This routine only deals with the setOperations tree of the given query. |
95 | * Any top-level ORDER BY requested in root->parse->sortClause will be handled |
96 | * when we return to grouping_planner; likewise for LIMIT. |
97 | * |
98 | * What we return is an "upperrel" RelOptInfo containing at least one Path |
99 | * that implements the set-operation tree. In addition, root->processed_tlist |
100 | * receives a targetlist representing the output of the topmost setop node. |
101 | */ |
102 | RelOptInfo * |
103 | plan_set_operations(PlannerInfo *root) |
104 | { |
105 | Query *parse = root->parse; |
106 | SetOperationStmt *topop = castNode(SetOperationStmt, parse->setOperations); |
107 | Node *node; |
108 | RangeTblEntry *leftmostRTE; |
109 | Query *leftmostQuery; |
110 | RelOptInfo *setop_rel; |
111 | List *top_tlist; |
112 | |
113 | Assert(topop); |
114 | |
115 | /* check for unsupported stuff */ |
116 | Assert(parse->jointree->fromlist == NIL); |
117 | Assert(parse->jointree->quals == NULL); |
118 | Assert(parse->groupClause == NIL); |
119 | Assert(parse->havingQual == NULL); |
120 | Assert(parse->windowClause == NIL); |
121 | Assert(parse->distinctClause == NIL); |
122 | |
123 | /* |
124 | * We'll need to build RelOptInfos for each of the leaf subqueries, which |
125 | * are RTE_SUBQUERY rangetable entries in this Query. Prepare the index |
126 | * arrays for that. |
127 | */ |
128 | setup_simple_rel_arrays(root); |
129 | |
130 | /* |
131 | * Populate append_rel_array with each AppendRelInfo to allow direct |
132 | * lookups by child relid. |
133 | */ |
134 | setup_append_rel_array(root); |
135 | |
136 | /* |
137 | * Find the leftmost component Query. We need to use its column names for |
138 | * all generated tlists (else SELECT INTO won't work right). |
139 | */ |
140 | node = topop->larg; |
141 | while (node && IsA(node, SetOperationStmt)) |
142 | node = ((SetOperationStmt *) node)->larg; |
143 | Assert(node && IsA(node, RangeTblRef)); |
144 | leftmostRTE = root->simple_rte_array[((RangeTblRef *) node)->rtindex]; |
145 | leftmostQuery = leftmostRTE->subquery; |
146 | Assert(leftmostQuery != NULL); |
147 | |
148 | /* |
149 | * If the topmost node is a recursive union, it needs special processing. |
150 | */ |
151 | if (root->hasRecursion) |
152 | { |
153 | setop_rel = generate_recursion_path(topop, root, |
154 | leftmostQuery->targetList, |
155 | &top_tlist); |
156 | } |
157 | else |
158 | { |
159 | /* |
160 | * Recurse on setOperations tree to generate paths for set ops. The |
161 | * final output paths should have just the column types shown as the |
162 | * output from the top-level node, plus possibly resjunk working |
163 | * columns (we can rely on upper-level nodes to deal with that). |
164 | */ |
165 | setop_rel = recurse_set_operations((Node *) topop, root, |
166 | topop->colTypes, topop->colCollations, |
167 | true, -1, |
168 | leftmostQuery->targetList, |
169 | &top_tlist, |
170 | NULL); |
171 | } |
172 | |
173 | /* Must return the built tlist into root->processed_tlist. */ |
174 | root->processed_tlist = top_tlist; |
175 | |
176 | return setop_rel; |
177 | } |
178 | |
179 | /* |
180 | * recurse_set_operations |
181 | * Recursively handle one step in a tree of set operations |
182 | * |
183 | * colTypes: OID list of set-op's result column datatypes |
184 | * colCollations: OID list of set-op's result column collations |
185 | * junkOK: if true, child resjunk columns may be left in the result |
186 | * flag: if >= 0, add a resjunk output column indicating value of flag |
187 | * refnames_tlist: targetlist to take column names from |
188 | * |
189 | * Returns a RelOptInfo for the subtree, as well as these output parameters: |
190 | * *pTargetList: receives the fully-fledged tlist for the subtree's top plan |
191 | * *pNumGroups: if not NULL, we estimate the number of distinct groups |
192 | * in the result, and store it there |
193 | * |
194 | * The pTargetList output parameter is mostly redundant with the pathtarget |
195 | * of the returned RelOptInfo, but for the moment we need it because much of |
196 | * the logic in this file depends on flag columns being marked resjunk. |
197 | * Pending a redesign of how that works, this is the easy way out. |
198 | * |
199 | * We don't have to care about typmods here: the only allowed difference |
200 | * between set-op input and output typmods is input is a specific typmod |
201 | * and output is -1, and that does not require a coercion. |
202 | */ |
203 | static RelOptInfo * |
204 | recurse_set_operations(Node *setOp, PlannerInfo *root, |
205 | List *colTypes, List *colCollations, |
206 | bool junkOK, |
207 | int flag, List *refnames_tlist, |
208 | List **pTargetList, |
209 | double *pNumGroups) |
210 | { |
211 | RelOptInfo *rel = NULL; /* keep compiler quiet */ |
212 | |
213 | /* Guard against stack overflow due to overly complex setop nests */ |
214 | check_stack_depth(); |
215 | |
216 | if (IsA(setOp, RangeTblRef)) |
217 | { |
218 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
219 | RangeTblEntry *rte = root->simple_rte_array[rtr->rtindex]; |
220 | Query *subquery = rte->subquery; |
221 | PlannerInfo *subroot; |
222 | RelOptInfo *final_rel; |
223 | Path *subpath; |
224 | Path *path; |
225 | List *tlist; |
226 | |
227 | Assert(subquery != NULL); |
228 | |
229 | /* Build a RelOptInfo for this leaf subquery. */ |
230 | rel = build_simple_rel(root, rtr->rtindex, NULL); |
231 | |
232 | /* plan_params should not be in use in current query level */ |
233 | Assert(root->plan_params == NIL); |
234 | |
235 | /* Generate a subroot and Paths for the subquery */ |
236 | subroot = rel->subroot = subquery_planner(root->glob, subquery, |
237 | root, |
238 | false, |
239 | root->tuple_fraction); |
240 | |
241 | /* |
242 | * It should not be possible for the primitive query to contain any |
243 | * cross-references to other primitive queries in the setop tree. |
244 | */ |
245 | if (root->plan_params) |
246 | elog(ERROR, "unexpected outer reference in set operation subquery" ); |
247 | |
248 | /* Figure out the appropriate target list for this subquery. */ |
249 | tlist = generate_setop_tlist(colTypes, colCollations, |
250 | flag, |
251 | rtr->rtindex, |
252 | true, |
253 | subroot->processed_tlist, |
254 | refnames_tlist); |
255 | rel->reltarget = create_pathtarget(root, tlist); |
256 | |
257 | /* Return the fully-fledged tlist to caller, too */ |
258 | *pTargetList = tlist; |
259 | |
260 | /* |
261 | * Mark rel with estimated output rows, width, etc. Note that we have |
262 | * to do this before generating outer-query paths, else |
263 | * cost_subqueryscan is not happy. |
264 | */ |
265 | set_subquery_size_estimates(root, rel); |
266 | |
267 | /* |
268 | * Since we may want to add a partial path to this relation, we must |
269 | * set its consider_parallel flag correctly. |
270 | */ |
271 | final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL); |
272 | rel->consider_parallel = final_rel->consider_parallel; |
273 | |
274 | /* |
275 | * For the moment, we consider only a single Path for the subquery. |
276 | * This should change soon (make it look more like |
277 | * set_subquery_pathlist). |
278 | */ |
279 | subpath = get_cheapest_fractional_path(final_rel, |
280 | root->tuple_fraction); |
281 | |
282 | /* |
283 | * Stick a SubqueryScanPath atop that. |
284 | * |
285 | * We don't bother to determine the subquery's output ordering since |
286 | * it won't be reflected in the set-op result anyhow; so just label |
287 | * the SubqueryScanPath with nil pathkeys. (XXX that should change |
288 | * soon too, likely.) |
289 | */ |
290 | path = (Path *) create_subqueryscan_path(root, rel, subpath, |
291 | NIL, NULL); |
292 | |
293 | add_path(rel, path); |
294 | |
295 | /* |
296 | * If we have a partial path for the child relation, we can use that |
297 | * to build a partial path for this relation. But there's no point in |
298 | * considering any path but the cheapest. |
299 | */ |
300 | if (rel->consider_parallel && bms_is_empty(rel->lateral_relids) && |
301 | final_rel->partial_pathlist != NIL) |
302 | { |
303 | Path *partial_subpath; |
304 | Path *partial_path; |
305 | |
306 | partial_subpath = linitial(final_rel->partial_pathlist); |
307 | partial_path = (Path *) |
308 | create_subqueryscan_path(root, rel, partial_subpath, |
309 | NIL, NULL); |
310 | add_partial_path(rel, partial_path); |
311 | } |
312 | |
313 | /* |
314 | * Estimate number of groups if caller wants it. If the subquery used |
315 | * grouping or aggregation, its output is probably mostly unique |
316 | * anyway; otherwise do statistical estimation. |
317 | * |
318 | * XXX you don't really want to know about this: we do the estimation |
319 | * using the subquery's original targetlist expressions, not the |
320 | * subroot->processed_tlist which might seem more appropriate. The |
321 | * reason is that if the subquery is itself a setop, it may return a |
322 | * processed_tlist containing "varno 0" Vars generated by |
323 | * generate_append_tlist, and those would confuse estimate_num_groups |
324 | * mightily. We ought to get rid of the "varno 0" hack, but that |
325 | * requires a redesign of the parsetree representation of setops, so |
326 | * that there can be an RTE corresponding to each setop's output. |
327 | */ |
328 | if (pNumGroups) |
329 | { |
330 | if (subquery->groupClause || subquery->groupingSets || |
331 | subquery->distinctClause || |
332 | subroot->hasHavingQual || subquery->hasAggs) |
333 | *pNumGroups = subpath->rows; |
334 | else |
335 | *pNumGroups = estimate_num_groups(subroot, |
336 | get_tlist_exprs(subquery->targetList, false), |
337 | subpath->rows, |
338 | NULL); |
339 | } |
340 | } |
341 | else if (IsA(setOp, SetOperationStmt)) |
342 | { |
343 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
344 | |
345 | /* UNIONs are much different from INTERSECT/EXCEPT */ |
346 | if (op->op == SETOP_UNION) |
347 | rel = generate_union_paths(op, root, |
348 | refnames_tlist, |
349 | pTargetList); |
350 | else |
351 | rel = generate_nonunion_paths(op, root, |
352 | refnames_tlist, |
353 | pTargetList); |
354 | if (pNumGroups) |
355 | *pNumGroups = rel->rows; |
356 | |
357 | /* |
358 | * If necessary, add a Result node to project the caller-requested |
359 | * output columns. |
360 | * |
361 | * XXX you don't really want to know about this: setrefs.c will apply |
362 | * fix_upper_expr() to the Result node's tlist. This would fail if the |
363 | * Vars generated by generate_setop_tlist() were not exactly equal() |
364 | * to the corresponding tlist entries of the subplan. However, since |
365 | * the subplan was generated by generate_union_plan() or |
366 | * generate_nonunion_plan(), and hence its tlist was generated by |
367 | * generate_append_tlist(), this will work. We just tell |
368 | * generate_setop_tlist() to use varno 0. |
369 | */ |
370 | if (flag >= 0 || |
371 | !tlist_same_datatypes(*pTargetList, colTypes, junkOK) || |
372 | !tlist_same_collations(*pTargetList, colCollations, junkOK)) |
373 | { |
374 | PathTarget *target; |
375 | ListCell *lc; |
376 | |
377 | *pTargetList = generate_setop_tlist(colTypes, colCollations, |
378 | flag, |
379 | 0, |
380 | false, |
381 | *pTargetList, |
382 | refnames_tlist); |
383 | target = create_pathtarget(root, *pTargetList); |
384 | |
385 | /* Apply projection to each path */ |
386 | foreach(lc, rel->pathlist) |
387 | { |
388 | Path *subpath = (Path *) lfirst(lc); |
389 | Path *path; |
390 | |
391 | Assert(subpath->param_info == NULL); |
392 | path = apply_projection_to_path(root, subpath->parent, |
393 | subpath, target); |
394 | /* If we had to add a Result, path is different from subpath */ |
395 | if (path != subpath) |
396 | lfirst(lc) = path; |
397 | } |
398 | |
399 | /* Apply projection to each partial path */ |
400 | foreach(lc, rel->partial_pathlist) |
401 | { |
402 | Path *subpath = (Path *) lfirst(lc); |
403 | Path *path; |
404 | |
405 | Assert(subpath->param_info == NULL); |
406 | |
407 | /* avoid apply_projection_to_path, in case of multiple refs */ |
408 | path = (Path *) create_projection_path(root, subpath->parent, |
409 | subpath, target); |
410 | lfirst(lc) = path; |
411 | } |
412 | } |
413 | } |
414 | else |
415 | { |
416 | elog(ERROR, "unrecognized node type: %d" , |
417 | (int) nodeTag(setOp)); |
418 | *pTargetList = NIL; |
419 | } |
420 | |
421 | postprocess_setop_rel(root, rel); |
422 | |
423 | return rel; |
424 | } |
425 | |
426 | /* |
427 | * Generate paths for a recursive UNION node |
428 | */ |
429 | static RelOptInfo * |
430 | generate_recursion_path(SetOperationStmt *setOp, PlannerInfo *root, |
431 | List *refnames_tlist, |
432 | List **pTargetList) |
433 | { |
434 | RelOptInfo *result_rel; |
435 | Path *path; |
436 | RelOptInfo *lrel, |
437 | *rrel; |
438 | Path *lpath; |
439 | Path *rpath; |
440 | List *lpath_tlist; |
441 | List *rpath_tlist; |
442 | List *tlist; |
443 | List *groupList; |
444 | double dNumGroups; |
445 | |
446 | /* Parser should have rejected other cases */ |
447 | if (setOp->op != SETOP_UNION) |
448 | elog(ERROR, "only UNION queries can be recursive" ); |
449 | /* Worktable ID should be assigned */ |
450 | Assert(root->wt_param_id >= 0); |
451 | |
452 | /* |
453 | * Unlike a regular UNION node, process the left and right inputs |
454 | * separately without any intention of combining them into one Append. |
455 | */ |
456 | lrel = recurse_set_operations(setOp->larg, root, |
457 | setOp->colTypes, setOp->colCollations, |
458 | false, -1, |
459 | refnames_tlist, |
460 | &lpath_tlist, |
461 | NULL); |
462 | lpath = lrel->cheapest_total_path; |
463 | /* The right path will want to look at the left one ... */ |
464 | root->non_recursive_path = lpath; |
465 | rrel = recurse_set_operations(setOp->rarg, root, |
466 | setOp->colTypes, setOp->colCollations, |
467 | false, -1, |
468 | refnames_tlist, |
469 | &rpath_tlist, |
470 | NULL); |
471 | rpath = rrel->cheapest_total_path; |
472 | root->non_recursive_path = NULL; |
473 | |
474 | /* |
475 | * Generate tlist for RecursiveUnion path node --- same as in Append cases |
476 | */ |
477 | tlist = generate_append_tlist(setOp->colTypes, setOp->colCollations, false, |
478 | list_make2(lpath_tlist, rpath_tlist), |
479 | refnames_tlist); |
480 | |
481 | *pTargetList = tlist; |
482 | |
483 | /* Build result relation. */ |
484 | result_rel = fetch_upper_rel(root, UPPERREL_SETOP, |
485 | bms_union(lrel->relids, rrel->relids)); |
486 | result_rel->reltarget = create_pathtarget(root, tlist); |
487 | |
488 | /* |
489 | * If UNION, identify the grouping operators |
490 | */ |
491 | if (setOp->all) |
492 | { |
493 | groupList = NIL; |
494 | dNumGroups = 0; |
495 | } |
496 | else |
497 | { |
498 | /* Identify the grouping semantics */ |
499 | groupList = generate_setop_grouplist(setOp, tlist); |
500 | |
501 | /* We only support hashing here */ |
502 | if (!grouping_is_hashable(groupList)) |
503 | ereport(ERROR, |
504 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
505 | errmsg("could not implement recursive UNION" ), |
506 | errdetail("All column datatypes must be hashable." ))); |
507 | |
508 | /* |
509 | * For the moment, take the number of distinct groups as equal to the |
510 | * total input size, ie, the worst case. |
511 | */ |
512 | dNumGroups = lpath->rows + rpath->rows * 10; |
513 | } |
514 | |
515 | /* |
516 | * And make the path node. |
517 | */ |
518 | path = (Path *) create_recursiveunion_path(root, |
519 | result_rel, |
520 | lpath, |
521 | rpath, |
522 | result_rel->reltarget, |
523 | groupList, |
524 | root->wt_param_id, |
525 | dNumGroups); |
526 | |
527 | add_path(result_rel, path); |
528 | postprocess_setop_rel(root, result_rel); |
529 | return result_rel; |
530 | } |
531 | |
532 | /* |
533 | * Generate paths for a UNION or UNION ALL node |
534 | */ |
535 | static RelOptInfo * |
536 | generate_union_paths(SetOperationStmt *op, PlannerInfo *root, |
537 | List *refnames_tlist, |
538 | List **pTargetList) |
539 | { |
540 | Relids relids = NULL; |
541 | RelOptInfo *result_rel; |
542 | double save_fraction = root->tuple_fraction; |
543 | ListCell *lc; |
544 | List *pathlist = NIL; |
545 | List *partial_pathlist = NIL; |
546 | bool partial_paths_valid = true; |
547 | bool consider_parallel = true; |
548 | List *rellist; |
549 | List *tlist_list; |
550 | List *tlist; |
551 | Path *path; |
552 | |
553 | /* |
554 | * If plain UNION, tell children to fetch all tuples. |
555 | * |
556 | * Note: in UNION ALL, we pass the top-level tuple_fraction unmodified to |
557 | * each arm of the UNION ALL. One could make a case for reducing the |
558 | * tuple fraction for later arms (discounting by the expected size of the |
559 | * earlier arms' results) but it seems not worth the trouble. The normal |
560 | * case where tuple_fraction isn't already zero is a LIMIT at top level, |
561 | * and passing it down as-is is usually enough to get the desired result |
562 | * of preferring fast-start plans. |
563 | */ |
564 | if (!op->all) |
565 | root->tuple_fraction = 0.0; |
566 | |
567 | /* |
568 | * If any of my children are identical UNION nodes (same op, all-flag, and |
569 | * colTypes) then they can be merged into this node so that we generate |
570 | * only one Append and unique-ification for the lot. Recurse to find such |
571 | * nodes and compute their children's paths. |
572 | */ |
573 | rellist = plan_union_children(root, op, refnames_tlist, &tlist_list); |
574 | |
575 | /* |
576 | * Generate tlist for Append plan node. |
577 | * |
578 | * The tlist for an Append plan isn't important as far as the Append is |
579 | * concerned, but we must make it look real anyway for the benefit of the |
580 | * next plan level up. |
581 | */ |
582 | tlist = generate_append_tlist(op->colTypes, op->colCollations, false, |
583 | tlist_list, refnames_tlist); |
584 | |
585 | *pTargetList = tlist; |
586 | |
587 | /* Build path lists and relid set. */ |
588 | foreach(lc, rellist) |
589 | { |
590 | RelOptInfo *rel = lfirst(lc); |
591 | |
592 | pathlist = lappend(pathlist, rel->cheapest_total_path); |
593 | |
594 | if (consider_parallel) |
595 | { |
596 | if (!rel->consider_parallel) |
597 | { |
598 | consider_parallel = false; |
599 | partial_paths_valid = false; |
600 | } |
601 | else if (rel->partial_pathlist == NIL) |
602 | partial_paths_valid = false; |
603 | else |
604 | partial_pathlist = lappend(partial_pathlist, |
605 | linitial(rel->partial_pathlist)); |
606 | } |
607 | |
608 | relids = bms_union(relids, rel->relids); |
609 | } |
610 | |
611 | /* Build result relation. */ |
612 | result_rel = fetch_upper_rel(root, UPPERREL_SETOP, relids); |
613 | result_rel->reltarget = create_pathtarget(root, tlist); |
614 | result_rel->consider_parallel = consider_parallel; |
615 | |
616 | /* |
617 | * Append the child results together. |
618 | */ |
619 | path = (Path *) create_append_path(root, result_rel, pathlist, NIL, |
620 | NIL, NULL, 0, false, NIL, -1); |
621 | |
622 | /* |
623 | * For UNION ALL, we just need the Append path. For UNION, need to add |
624 | * node(s) to remove duplicates. |
625 | */ |
626 | if (!op->all) |
627 | path = make_union_unique(op, path, tlist, root); |
628 | |
629 | add_path(result_rel, path); |
630 | |
631 | /* |
632 | * Estimate number of groups. For now we just assume the output is unique |
633 | * --- this is certainly true for the UNION case, and we want worst-case |
634 | * estimates anyway. |
635 | */ |
636 | result_rel->rows = path->rows; |
637 | |
638 | /* |
639 | * Now consider doing the same thing using the partial paths plus Append |
640 | * plus Gather. |
641 | */ |
642 | if (partial_paths_valid) |
643 | { |
644 | Path *ppath; |
645 | ListCell *lc; |
646 | int parallel_workers = 0; |
647 | |
648 | /* Find the highest number of workers requested for any subpath. */ |
649 | foreach(lc, partial_pathlist) |
650 | { |
651 | Path *path = lfirst(lc); |
652 | |
653 | parallel_workers = Max(parallel_workers, path->parallel_workers); |
654 | } |
655 | Assert(parallel_workers > 0); |
656 | |
657 | /* |
658 | * If the use of parallel append is permitted, always request at least |
659 | * log2(# of children) paths. We assume it can be useful to have |
660 | * extra workers in this case because they will be spread out across |
661 | * the children. The precise formula is just a guess; see |
662 | * add_paths_to_append_rel. |
663 | */ |
664 | if (enable_parallel_append) |
665 | { |
666 | parallel_workers = Max(parallel_workers, |
667 | fls(list_length(partial_pathlist))); |
668 | parallel_workers = Min(parallel_workers, |
669 | max_parallel_workers_per_gather); |
670 | } |
671 | Assert(parallel_workers > 0); |
672 | |
673 | ppath = (Path *) |
674 | create_append_path(root, result_rel, NIL, partial_pathlist, |
675 | NIL, NULL, |
676 | parallel_workers, enable_parallel_append, |
677 | NIL, -1); |
678 | ppath = (Path *) |
679 | create_gather_path(root, result_rel, ppath, |
680 | result_rel->reltarget, NULL, NULL); |
681 | if (!op->all) |
682 | ppath = make_union_unique(op, ppath, tlist, root); |
683 | add_path(result_rel, ppath); |
684 | } |
685 | |
686 | /* Undo effects of possibly forcing tuple_fraction to 0 */ |
687 | root->tuple_fraction = save_fraction; |
688 | |
689 | return result_rel; |
690 | } |
691 | |
692 | /* |
693 | * Generate paths for an INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL node |
694 | */ |
695 | static RelOptInfo * |
696 | generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, |
697 | List *refnames_tlist, |
698 | List **pTargetList) |
699 | { |
700 | RelOptInfo *result_rel; |
701 | RelOptInfo *lrel, |
702 | *rrel; |
703 | double save_fraction = root->tuple_fraction; |
704 | Path *lpath, |
705 | *rpath, |
706 | *path; |
707 | List *lpath_tlist, |
708 | *rpath_tlist, |
709 | *tlist_list, |
710 | *tlist, |
711 | *groupList, |
712 | *pathlist; |
713 | double dLeftGroups, |
714 | dRightGroups, |
715 | dNumGroups, |
716 | dNumOutputRows; |
717 | bool use_hash; |
718 | SetOpCmd cmd; |
719 | int firstFlag; |
720 | |
721 | /* |
722 | * Tell children to fetch all tuples. |
723 | */ |
724 | root->tuple_fraction = 0.0; |
725 | |
726 | /* Recurse on children, ensuring their outputs are marked */ |
727 | lrel = recurse_set_operations(op->larg, root, |
728 | op->colTypes, op->colCollations, |
729 | false, 0, |
730 | refnames_tlist, |
731 | &lpath_tlist, |
732 | &dLeftGroups); |
733 | lpath = lrel->cheapest_total_path; |
734 | rrel = recurse_set_operations(op->rarg, root, |
735 | op->colTypes, op->colCollations, |
736 | false, 1, |
737 | refnames_tlist, |
738 | &rpath_tlist, |
739 | &dRightGroups); |
740 | rpath = rrel->cheapest_total_path; |
741 | |
742 | /* Undo effects of forcing tuple_fraction to 0 */ |
743 | root->tuple_fraction = save_fraction; |
744 | |
745 | /* |
746 | * For EXCEPT, we must put the left input first. For INTERSECT, either |
747 | * order should give the same results, and we prefer to put the smaller |
748 | * input first in order to minimize the size of the hash table in the |
749 | * hashing case. "Smaller" means the one with the fewer groups. |
750 | */ |
751 | if (op->op == SETOP_EXCEPT || dLeftGroups <= dRightGroups) |
752 | { |
753 | pathlist = list_make2(lpath, rpath); |
754 | tlist_list = list_make2(lpath_tlist, rpath_tlist); |
755 | firstFlag = 0; |
756 | } |
757 | else |
758 | { |
759 | pathlist = list_make2(rpath, lpath); |
760 | tlist_list = list_make2(rpath_tlist, lpath_tlist); |
761 | firstFlag = 1; |
762 | } |
763 | |
764 | /* |
765 | * Generate tlist for Append plan node. |
766 | * |
767 | * The tlist for an Append plan isn't important as far as the Append is |
768 | * concerned, but we must make it look real anyway for the benefit of the |
769 | * next plan level up. In fact, it has to be real enough that the flag |
770 | * column is shown as a variable not a constant, else setrefs.c will get |
771 | * confused. |
772 | */ |
773 | tlist = generate_append_tlist(op->colTypes, op->colCollations, true, |
774 | tlist_list, refnames_tlist); |
775 | |
776 | *pTargetList = tlist; |
777 | |
778 | /* Build result relation. */ |
779 | result_rel = fetch_upper_rel(root, UPPERREL_SETOP, |
780 | bms_union(lrel->relids, rrel->relids)); |
781 | result_rel->reltarget = create_pathtarget(root, tlist); |
782 | |
783 | /* |
784 | * Append the child results together. |
785 | */ |
786 | path = (Path *) create_append_path(root, result_rel, pathlist, NIL, |
787 | NIL, NULL, 0, false, NIL, -1); |
788 | |
789 | /* Identify the grouping semantics */ |
790 | groupList = generate_setop_grouplist(op, tlist); |
791 | |
792 | /* |
793 | * Estimate number of distinct groups that we'll need hashtable entries |
794 | * for; this is the size of the left-hand input for EXCEPT, or the smaller |
795 | * input for INTERSECT. Also estimate the number of eventual output rows. |
796 | * In non-ALL cases, we estimate each group produces one output row; in |
797 | * ALL cases use the relevant relation size. These are worst-case |
798 | * estimates, of course, but we need to be conservative. |
799 | */ |
800 | if (op->op == SETOP_EXCEPT) |
801 | { |
802 | dNumGroups = dLeftGroups; |
803 | dNumOutputRows = op->all ? lpath->rows : dNumGroups; |
804 | } |
805 | else |
806 | { |
807 | dNumGroups = Min(dLeftGroups, dRightGroups); |
808 | dNumOutputRows = op->all ? Min(lpath->rows, rpath->rows) : dNumGroups; |
809 | } |
810 | |
811 | /* |
812 | * Decide whether to hash or sort, and add a sort node if needed. |
813 | */ |
814 | use_hash = choose_hashed_setop(root, groupList, path, |
815 | dNumGroups, dNumOutputRows, |
816 | (op->op == SETOP_INTERSECT) ? "INTERSECT" : "EXCEPT" ); |
817 | |
818 | if (groupList && !use_hash) |
819 | path = (Path *) create_sort_path(root, |
820 | result_rel, |
821 | path, |
822 | make_pathkeys_for_sortclauses(root, |
823 | groupList, |
824 | tlist), |
825 | -1.0); |
826 | |
827 | /* |
828 | * Finally, add a SetOp path node to generate the correct output. |
829 | */ |
830 | switch (op->op) |
831 | { |
832 | case SETOP_INTERSECT: |
833 | cmd = op->all ? SETOPCMD_INTERSECT_ALL : SETOPCMD_INTERSECT; |
834 | break; |
835 | case SETOP_EXCEPT: |
836 | cmd = op->all ? SETOPCMD_EXCEPT_ALL : SETOPCMD_EXCEPT; |
837 | break; |
838 | default: |
839 | elog(ERROR, "unrecognized set op: %d" , (int) op->op); |
840 | cmd = SETOPCMD_INTERSECT; /* keep compiler quiet */ |
841 | break; |
842 | } |
843 | path = (Path *) create_setop_path(root, |
844 | result_rel, |
845 | path, |
846 | cmd, |
847 | use_hash ? SETOP_HASHED : SETOP_SORTED, |
848 | groupList, |
849 | list_length(op->colTypes) + 1, |
850 | use_hash ? firstFlag : -1, |
851 | dNumGroups, |
852 | dNumOutputRows); |
853 | |
854 | result_rel->rows = path->rows; |
855 | add_path(result_rel, path); |
856 | return result_rel; |
857 | } |
858 | |
859 | /* |
860 | * Pull up children of a UNION node that are identically-propertied UNIONs. |
861 | * |
862 | * NOTE: we can also pull a UNION ALL up into a UNION, since the distinct |
863 | * output rows will be lost anyway. |
864 | * |
865 | * NOTE: currently, we ignore collations while determining if a child has |
866 | * the same properties. This is semantically sound only so long as all |
867 | * collations have the same notion of equality. It is valid from an |
868 | * implementation standpoint because we don't care about the ordering of |
869 | * a UNION child's result: UNION ALL results are always unordered, and |
870 | * generate_union_paths will force a fresh sort if the top level is a UNION. |
871 | */ |
872 | static List * |
873 | plan_union_children(PlannerInfo *root, |
874 | SetOperationStmt *top_union, |
875 | List *refnames_tlist, |
876 | List **tlist_list) |
877 | { |
878 | List *pending_rels = list_make1(top_union); |
879 | List *result = NIL; |
880 | List *child_tlist; |
881 | |
882 | *tlist_list = NIL; |
883 | |
884 | while (pending_rels != NIL) |
885 | { |
886 | Node *setOp = linitial(pending_rels); |
887 | |
888 | pending_rels = list_delete_first(pending_rels); |
889 | |
890 | if (IsA(setOp, SetOperationStmt)) |
891 | { |
892 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
893 | |
894 | if (op->op == top_union->op && |
895 | (op->all == top_union->all || op->all) && |
896 | equal(op->colTypes, top_union->colTypes)) |
897 | { |
898 | /* Same UNION, so fold children into parent */ |
899 | pending_rels = lcons(op->rarg, pending_rels); |
900 | pending_rels = lcons(op->larg, pending_rels); |
901 | continue; |
902 | } |
903 | } |
904 | |
905 | /* |
906 | * Not same, so plan this child separately. |
907 | * |
908 | * Note we disallow any resjunk columns in child results. This is |
909 | * necessary since the Append node that implements the union won't do |
910 | * any projection, and upper levels will get confused if some of our |
911 | * output tuples have junk and some don't. This case only arises when |
912 | * we have an EXCEPT or INTERSECT as child, else there won't be |
913 | * resjunk anyway. |
914 | */ |
915 | result = lappend(result, recurse_set_operations(setOp, root, |
916 | top_union->colTypes, |
917 | top_union->colCollations, |
918 | false, -1, |
919 | refnames_tlist, |
920 | &child_tlist, |
921 | NULL)); |
922 | *tlist_list = lappend(*tlist_list, child_tlist); |
923 | } |
924 | |
925 | return result; |
926 | } |
927 | |
928 | /* |
929 | * Add nodes to the given path tree to unique-ify the result of a UNION. |
930 | */ |
931 | static Path * |
932 | make_union_unique(SetOperationStmt *op, Path *path, List *tlist, |
933 | PlannerInfo *root) |
934 | { |
935 | RelOptInfo *result_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL); |
936 | List *groupList; |
937 | double dNumGroups; |
938 | |
939 | /* Identify the grouping semantics */ |
940 | groupList = generate_setop_grouplist(op, tlist); |
941 | |
942 | /* |
943 | * XXX for the moment, take the number of distinct groups as equal to the |
944 | * total input size, ie, the worst case. This is too conservative, but we |
945 | * don't want to risk having the hashtable overrun memory; also, it's not |
946 | * clear how to get a decent estimate of the true size. One should note |
947 | * as well the propensity of novices to write UNION rather than UNION ALL |
948 | * even when they don't expect any duplicates... |
949 | */ |
950 | dNumGroups = path->rows; |
951 | |
952 | /* Decide whether to hash or sort */ |
953 | if (choose_hashed_setop(root, groupList, path, |
954 | dNumGroups, dNumGroups, |
955 | "UNION" )) |
956 | { |
957 | /* Hashed aggregate plan --- no sort needed */ |
958 | path = (Path *) create_agg_path(root, |
959 | result_rel, |
960 | path, |
961 | create_pathtarget(root, tlist), |
962 | AGG_HASHED, |
963 | AGGSPLIT_SIMPLE, |
964 | groupList, |
965 | NIL, |
966 | NULL, |
967 | dNumGroups); |
968 | } |
969 | else |
970 | { |
971 | /* Sort and Unique */ |
972 | if (groupList) |
973 | path = (Path *) |
974 | create_sort_path(root, |
975 | result_rel, |
976 | path, |
977 | make_pathkeys_for_sortclauses(root, |
978 | groupList, |
979 | tlist), |
980 | -1.0); |
981 | path = (Path *) create_upper_unique_path(root, |
982 | result_rel, |
983 | path, |
984 | list_length(path->pathkeys), |
985 | dNumGroups); |
986 | } |
987 | |
988 | return path; |
989 | } |
990 | |
991 | /* |
992 | * postprocess_setop_rel - perform steps required after adding paths |
993 | */ |
994 | static void |
995 | postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel) |
996 | { |
997 | /* |
998 | * We don't currently worry about allowing FDWs to contribute paths to |
999 | * this relation, but give extensions a chance. |
1000 | */ |
1001 | if (create_upper_paths_hook) |
1002 | (*create_upper_paths_hook) (root, UPPERREL_SETOP, |
1003 | NULL, rel, NULL); |
1004 | |
1005 | /* Select cheapest path */ |
1006 | set_cheapest(rel); |
1007 | } |
1008 | |
1009 | /* |
1010 | * choose_hashed_setop - should we use hashing for a set operation? |
1011 | */ |
1012 | static bool |
1013 | choose_hashed_setop(PlannerInfo *root, List *groupClauses, |
1014 | Path *input_path, |
1015 | double dNumGroups, double dNumOutputRows, |
1016 | const char *construct) |
1017 | { |
1018 | int numGroupCols = list_length(groupClauses); |
1019 | bool can_sort; |
1020 | bool can_hash; |
1021 | Size hashentrysize; |
1022 | Path hashed_p; |
1023 | Path sorted_p; |
1024 | double tuple_fraction; |
1025 | |
1026 | /* Check whether the operators support sorting or hashing */ |
1027 | can_sort = grouping_is_sortable(groupClauses); |
1028 | can_hash = grouping_is_hashable(groupClauses); |
1029 | if (can_hash && can_sort) |
1030 | { |
1031 | /* we have a meaningful choice to make, continue ... */ |
1032 | } |
1033 | else if (can_hash) |
1034 | return true; |
1035 | else if (can_sort) |
1036 | return false; |
1037 | else |
1038 | ereport(ERROR, |
1039 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1040 | /* translator: %s is UNION, INTERSECT, or EXCEPT */ |
1041 | errmsg("could not implement %s" , construct), |
1042 | errdetail("Some of the datatypes only support hashing, while others only support sorting." ))); |
1043 | |
1044 | /* Prefer sorting when enable_hashagg is off */ |
1045 | if (!enable_hashagg) |
1046 | return false; |
1047 | |
1048 | /* |
1049 | * Don't do it if it doesn't look like the hashtable will fit into |
1050 | * work_mem. |
1051 | */ |
1052 | hashentrysize = MAXALIGN(input_path->pathtarget->width) + MAXALIGN(SizeofMinimalTupleHeader); |
1053 | |
1054 | if (hashentrysize * dNumGroups > work_mem * 1024L) |
1055 | return false; |
1056 | |
1057 | /* |
1058 | * See if the estimated cost is no more than doing it the other way. |
1059 | * |
1060 | * We need to consider input_plan + hashagg versus input_plan + sort + |
1061 | * group. Note that the actual result plan might involve a SetOp or |
1062 | * Unique node, not Agg or Group, but the cost estimates for Agg and Group |
1063 | * should be close enough for our purposes here. |
1064 | * |
1065 | * These path variables are dummies that just hold cost fields; we don't |
1066 | * make actual Paths for these steps. |
1067 | */ |
1068 | cost_agg(&hashed_p, root, AGG_HASHED, NULL, |
1069 | numGroupCols, dNumGroups, |
1070 | NIL, |
1071 | input_path->startup_cost, input_path->total_cost, |
1072 | input_path->rows); |
1073 | |
1074 | /* |
1075 | * Now for the sorted case. Note that the input is *always* unsorted, |
1076 | * since it was made by appending unrelated sub-relations together. |
1077 | */ |
1078 | sorted_p.startup_cost = input_path->startup_cost; |
1079 | sorted_p.total_cost = input_path->total_cost; |
1080 | /* XXX cost_sort doesn't actually look at pathkeys, so just pass NIL */ |
1081 | cost_sort(&sorted_p, root, NIL, sorted_p.total_cost, |
1082 | input_path->rows, input_path->pathtarget->width, |
1083 | 0.0, work_mem, -1.0); |
1084 | cost_group(&sorted_p, root, numGroupCols, dNumGroups, |
1085 | NIL, |
1086 | sorted_p.startup_cost, sorted_p.total_cost, |
1087 | input_path->rows); |
1088 | |
1089 | /* |
1090 | * Now make the decision using the top-level tuple fraction. First we |
1091 | * have to convert an absolute count (LIMIT) into fractional form. |
1092 | */ |
1093 | tuple_fraction = root->tuple_fraction; |
1094 | if (tuple_fraction >= 1.0) |
1095 | tuple_fraction /= dNumOutputRows; |
1096 | |
1097 | if (compare_fractional_path_costs(&hashed_p, &sorted_p, |
1098 | tuple_fraction) < 0) |
1099 | { |
1100 | /* Hashed is cheaper, so use it */ |
1101 | return true; |
1102 | } |
1103 | return false; |
1104 | } |
1105 | |
1106 | /* |
1107 | * Generate targetlist for a set-operation plan node |
1108 | * |
1109 | * colTypes: OID list of set-op's result column datatypes |
1110 | * colCollations: OID list of set-op's result column collations |
1111 | * flag: -1 if no flag column needed, 0 or 1 to create a const flag column |
1112 | * varno: varno to use in generated Vars |
1113 | * hack_constants: true to copy up constants (see comments in code) |
1114 | * input_tlist: targetlist of this node's input node |
1115 | * refnames_tlist: targetlist to take column names from |
1116 | */ |
1117 | static List * |
1118 | generate_setop_tlist(List *colTypes, List *colCollations, |
1119 | int flag, |
1120 | Index varno, |
1121 | bool hack_constants, |
1122 | List *input_tlist, |
1123 | List *refnames_tlist) |
1124 | { |
1125 | List *tlist = NIL; |
1126 | int resno = 1; |
1127 | ListCell *ctlc, |
1128 | *cclc, |
1129 | *itlc, |
1130 | *rtlc; |
1131 | TargetEntry *tle; |
1132 | Node *expr; |
1133 | |
1134 | forfour(ctlc, colTypes, cclc, colCollations, |
1135 | itlc, input_tlist, rtlc, refnames_tlist) |
1136 | { |
1137 | Oid colType = lfirst_oid(ctlc); |
1138 | Oid colColl = lfirst_oid(cclc); |
1139 | TargetEntry *inputtle = (TargetEntry *) lfirst(itlc); |
1140 | TargetEntry *reftle = (TargetEntry *) lfirst(rtlc); |
1141 | |
1142 | Assert(inputtle->resno == resno); |
1143 | Assert(reftle->resno == resno); |
1144 | Assert(!inputtle->resjunk); |
1145 | Assert(!reftle->resjunk); |
1146 | |
1147 | /* |
1148 | * Generate columns referencing input columns and having appropriate |
1149 | * data types and column names. Insert datatype coercions where |
1150 | * necessary. |
1151 | * |
1152 | * HACK: constants in the input's targetlist are copied up as-is |
1153 | * rather than being referenced as subquery outputs. This is mainly |
1154 | * to ensure that when we try to coerce them to the output column's |
1155 | * datatype, the right things happen for UNKNOWN constants. But do |
1156 | * this only at the first level of subquery-scan plans; we don't want |
1157 | * phony constants appearing in the output tlists of upper-level |
1158 | * nodes! |
1159 | */ |
1160 | if (hack_constants && inputtle->expr && IsA(inputtle->expr, Const)) |
1161 | expr = (Node *) inputtle->expr; |
1162 | else |
1163 | expr = (Node *) makeVar(varno, |
1164 | inputtle->resno, |
1165 | exprType((Node *) inputtle->expr), |
1166 | exprTypmod((Node *) inputtle->expr), |
1167 | exprCollation((Node *) inputtle->expr), |
1168 | 0); |
1169 | |
1170 | if (exprType(expr) != colType) |
1171 | { |
1172 | /* |
1173 | * Note: it's not really cool to be applying coerce_to_common_type |
1174 | * here; one notable point is that assign_expr_collations never |
1175 | * gets run on any generated nodes. For the moment that's not a |
1176 | * problem because we force the correct exposed collation below. |
1177 | * It would likely be best to make the parser generate the correct |
1178 | * output tlist for every set-op to begin with, though. |
1179 | */ |
1180 | expr = coerce_to_common_type(NULL, /* no UNKNOWNs here */ |
1181 | expr, |
1182 | colType, |
1183 | "UNION/INTERSECT/EXCEPT" ); |
1184 | } |
1185 | |
1186 | /* |
1187 | * Ensure the tlist entry's exposed collation matches the set-op. This |
1188 | * is necessary because plan_set_operations() reports the result |
1189 | * ordering as a list of SortGroupClauses, which don't carry collation |
1190 | * themselves but just refer to tlist entries. If we don't show the |
1191 | * right collation then planner.c might do the wrong thing in |
1192 | * higher-level queries. |
1193 | * |
1194 | * Note we use RelabelType, not CollateExpr, since this expression |
1195 | * will reach the executor without any further processing. |
1196 | */ |
1197 | if (exprCollation(expr) != colColl) |
1198 | { |
1199 | expr = (Node *) makeRelabelType((Expr *) expr, |
1200 | exprType(expr), |
1201 | exprTypmod(expr), |
1202 | colColl, |
1203 | COERCE_IMPLICIT_CAST); |
1204 | } |
1205 | |
1206 | tle = makeTargetEntry((Expr *) expr, |
1207 | (AttrNumber) resno++, |
1208 | pstrdup(reftle->resname), |
1209 | false); |
1210 | |
1211 | /* |
1212 | * By convention, all non-resjunk columns in a setop tree have |
1213 | * ressortgroupref equal to their resno. In some cases the ref isn't |
1214 | * needed, but this is a cleaner way than modifying the tlist later. |
1215 | */ |
1216 | tle->ressortgroupref = tle->resno; |
1217 | |
1218 | tlist = lappend(tlist, tle); |
1219 | } |
1220 | |
1221 | if (flag >= 0) |
1222 | { |
1223 | /* Add a resjunk flag column */ |
1224 | /* flag value is the given constant */ |
1225 | expr = (Node *) makeConst(INT4OID, |
1226 | -1, |
1227 | InvalidOid, |
1228 | sizeof(int32), |
1229 | Int32GetDatum(flag), |
1230 | false, |
1231 | true); |
1232 | tle = makeTargetEntry((Expr *) expr, |
1233 | (AttrNumber) resno++, |
1234 | pstrdup("flag" ), |
1235 | true); |
1236 | tlist = lappend(tlist, tle); |
1237 | } |
1238 | |
1239 | return tlist; |
1240 | } |
1241 | |
1242 | /* |
1243 | * Generate targetlist for a set-operation Append node |
1244 | * |
1245 | * colTypes: OID list of set-op's result column datatypes |
1246 | * colCollations: OID list of set-op's result column collations |
1247 | * flag: true to create a flag column copied up from subplans |
1248 | * input_tlists: list of tlists for sub-plans of the Append |
1249 | * refnames_tlist: targetlist to take column names from |
1250 | * |
1251 | * The entries in the Append's targetlist should always be simple Vars; |
1252 | * we just have to make sure they have the right datatypes/typmods/collations. |
1253 | * The Vars are always generated with varno 0. |
1254 | * |
1255 | * XXX a problem with the varno-zero approach is that set_pathtarget_cost_width |
1256 | * cannot figure out a realistic width for the tlist we make here. But we |
1257 | * ought to refactor this code to produce a PathTarget directly, anyway. |
1258 | */ |
1259 | static List * |
1260 | generate_append_tlist(List *colTypes, List *colCollations, |
1261 | bool flag, |
1262 | List *input_tlists, |
1263 | List *refnames_tlist) |
1264 | { |
1265 | List *tlist = NIL; |
1266 | int resno = 1; |
1267 | ListCell *curColType; |
1268 | ListCell *curColCollation; |
1269 | ListCell *ref_tl_item; |
1270 | int colindex; |
1271 | TargetEntry *tle; |
1272 | Node *expr; |
1273 | ListCell *tlistl; |
1274 | int32 *colTypmods; |
1275 | |
1276 | /* |
1277 | * First extract typmods to use. |
1278 | * |
1279 | * If the inputs all agree on type and typmod of a particular column, use |
1280 | * that typmod; else use -1. |
1281 | */ |
1282 | colTypmods = (int32 *) palloc(list_length(colTypes) * sizeof(int32)); |
1283 | |
1284 | foreach(tlistl, input_tlists) |
1285 | { |
1286 | List *subtlist = (List *) lfirst(tlistl); |
1287 | ListCell *subtlistl; |
1288 | |
1289 | curColType = list_head(colTypes); |
1290 | colindex = 0; |
1291 | foreach(subtlistl, subtlist) |
1292 | { |
1293 | TargetEntry *subtle = (TargetEntry *) lfirst(subtlistl); |
1294 | |
1295 | if (subtle->resjunk) |
1296 | continue; |
1297 | Assert(curColType != NULL); |
1298 | if (exprType((Node *) subtle->expr) == lfirst_oid(curColType)) |
1299 | { |
1300 | /* If first subplan, copy the typmod; else compare */ |
1301 | int32 subtypmod = exprTypmod((Node *) subtle->expr); |
1302 | |
1303 | if (tlistl == list_head(input_tlists)) |
1304 | colTypmods[colindex] = subtypmod; |
1305 | else if (subtypmod != colTypmods[colindex]) |
1306 | colTypmods[colindex] = -1; |
1307 | } |
1308 | else |
1309 | { |
1310 | /* types disagree, so force typmod to -1 */ |
1311 | colTypmods[colindex] = -1; |
1312 | } |
1313 | curColType = lnext(curColType); |
1314 | colindex++; |
1315 | } |
1316 | Assert(curColType == NULL); |
1317 | } |
1318 | |
1319 | /* |
1320 | * Now we can build the tlist for the Append. |
1321 | */ |
1322 | colindex = 0; |
1323 | forthree(curColType, colTypes, curColCollation, colCollations, |
1324 | ref_tl_item, refnames_tlist) |
1325 | { |
1326 | Oid colType = lfirst_oid(curColType); |
1327 | int32 colTypmod = colTypmods[colindex++]; |
1328 | Oid colColl = lfirst_oid(curColCollation); |
1329 | TargetEntry *reftle = (TargetEntry *) lfirst(ref_tl_item); |
1330 | |
1331 | Assert(reftle->resno == resno); |
1332 | Assert(!reftle->resjunk); |
1333 | expr = (Node *) makeVar(0, |
1334 | resno, |
1335 | colType, |
1336 | colTypmod, |
1337 | colColl, |
1338 | 0); |
1339 | tle = makeTargetEntry((Expr *) expr, |
1340 | (AttrNumber) resno++, |
1341 | pstrdup(reftle->resname), |
1342 | false); |
1343 | |
1344 | /* |
1345 | * By convention, all non-resjunk columns in a setop tree have |
1346 | * ressortgroupref equal to their resno. In some cases the ref isn't |
1347 | * needed, but this is a cleaner way than modifying the tlist later. |
1348 | */ |
1349 | tle->ressortgroupref = tle->resno; |
1350 | |
1351 | tlist = lappend(tlist, tle); |
1352 | } |
1353 | |
1354 | if (flag) |
1355 | { |
1356 | /* Add a resjunk flag column */ |
1357 | /* flag value is shown as copied up from subplan */ |
1358 | expr = (Node *) makeVar(0, |
1359 | resno, |
1360 | INT4OID, |
1361 | -1, |
1362 | InvalidOid, |
1363 | 0); |
1364 | tle = makeTargetEntry((Expr *) expr, |
1365 | (AttrNumber) resno++, |
1366 | pstrdup("flag" ), |
1367 | true); |
1368 | tlist = lappend(tlist, tle); |
1369 | } |
1370 | |
1371 | pfree(colTypmods); |
1372 | |
1373 | return tlist; |
1374 | } |
1375 | |
1376 | /* |
1377 | * generate_setop_grouplist |
1378 | * Build a SortGroupClause list defining the sort/grouping properties |
1379 | * of the setop's output columns. |
1380 | * |
1381 | * Parse analysis already determined the properties and built a suitable |
1382 | * list, except that the entries do not have sortgrouprefs set because |
1383 | * the parser output representation doesn't include a tlist for each |
1384 | * setop. So what we need to do here is copy that list and install |
1385 | * proper sortgrouprefs into it (copying those from the targetlist). |
1386 | */ |
1387 | static List * |
1388 | generate_setop_grouplist(SetOperationStmt *op, List *targetlist) |
1389 | { |
1390 | List *grouplist = copyObject(op->groupClauses); |
1391 | ListCell *lg; |
1392 | ListCell *lt; |
1393 | |
1394 | lg = list_head(grouplist); |
1395 | foreach(lt, targetlist) |
1396 | { |
1397 | TargetEntry *tle = (TargetEntry *) lfirst(lt); |
1398 | SortGroupClause *sgc; |
1399 | |
1400 | if (tle->resjunk) |
1401 | { |
1402 | /* resjunk columns should not have sortgrouprefs */ |
1403 | Assert(tle->ressortgroupref == 0); |
1404 | continue; /* ignore resjunk columns */ |
1405 | } |
1406 | |
1407 | /* non-resjunk columns should have sortgroupref = resno */ |
1408 | Assert(tle->ressortgroupref == tle->resno); |
1409 | |
1410 | /* non-resjunk columns should have grouping clauses */ |
1411 | Assert(lg != NULL); |
1412 | sgc = (SortGroupClause *) lfirst(lg); |
1413 | lg = lnext(lg); |
1414 | Assert(sgc->tleSortGroupRef == 0); |
1415 | |
1416 | sgc->tleSortGroupRef = tle->ressortgroupref; |
1417 | } |
1418 | Assert(lg == NULL); |
1419 | return grouplist; |
1420 | } |
1421 | |