| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * parse_coerce.c |
| 4 | * handle type coercions/conversions for parser |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/parser/parse_coerce.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include "access/htup_details.h" |
| 18 | #include "catalog/pg_cast.h" |
| 19 | #include "catalog/pg_class.h" |
| 20 | #include "catalog/pg_inherits.h" |
| 21 | #include "catalog/pg_proc.h" |
| 22 | #include "catalog/pg_type.h" |
| 23 | #include "nodes/makefuncs.h" |
| 24 | #include "nodes/nodeFuncs.h" |
| 25 | #include "parser/parse_coerce.h" |
| 26 | #include "parser/parse_relation.h" |
| 27 | #include "parser/parse_type.h" |
| 28 | #include "utils/builtins.h" |
| 29 | #include "utils/datum.h" |
| 30 | #include "utils/lsyscache.h" |
| 31 | #include "utils/syscache.h" |
| 32 | #include "utils/typcache.h" |
| 33 | |
| 34 | |
| 35 | static Node *coerce_type_typmod(Node *node, |
| 36 | Oid targetTypeId, int32 targetTypMod, |
| 37 | CoercionContext ccontext, CoercionForm cformat, |
| 38 | int location, |
| 39 | bool hideInputCoercion); |
| 40 | static void hide_coercion_node(Node *node); |
| 41 | static Node *build_coercion_expression(Node *node, |
| 42 | CoercionPathType pathtype, |
| 43 | Oid funcId, |
| 44 | Oid targetTypeId, int32 targetTypMod, |
| 45 | CoercionContext ccontext, CoercionForm cformat, |
| 46 | int location); |
| 47 | static Node *coerce_record_to_complex(ParseState *pstate, Node *node, |
| 48 | Oid targetTypeId, |
| 49 | CoercionContext ccontext, |
| 50 | CoercionForm cformat, |
| 51 | int location); |
| 52 | static bool is_complex_array(Oid typid); |
| 53 | static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId); |
| 54 | |
| 55 | |
| 56 | /* |
| 57 | * coerce_to_target_type() |
| 58 | * Convert an expression to a target type and typmod. |
| 59 | * |
| 60 | * This is the general-purpose entry point for arbitrary type coercion |
| 61 | * operations. Direct use of the component operations can_coerce_type, |
| 62 | * coerce_type, and coerce_type_typmod should be restricted to special |
| 63 | * cases (eg, when the conversion is expected to succeed). |
| 64 | * |
| 65 | * Returns the possibly-transformed expression tree, or NULL if the type |
| 66 | * conversion is not possible. (We do this, rather than ereport'ing directly, |
| 67 | * so that callers can generate custom error messages indicating context.) |
| 68 | * |
| 69 | * pstate - parse state (can be NULL, see coerce_type) |
| 70 | * expr - input expression tree (already transformed by transformExpr) |
| 71 | * exprtype - result type of expr |
| 72 | * targettype - desired result type |
| 73 | * targettypmod - desired result typmod |
| 74 | * ccontext, cformat - context indicators to control coercions |
| 75 | * location - parse location of the coercion request, or -1 if unknown/implicit |
| 76 | */ |
| 77 | Node * |
| 78 | coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype, |
| 79 | Oid targettype, int32 targettypmod, |
| 80 | CoercionContext ccontext, |
| 81 | CoercionForm cformat, |
| 82 | int location) |
| 83 | { |
| 84 | Node *result; |
| 85 | Node *origexpr; |
| 86 | |
| 87 | if (!can_coerce_type(1, &exprtype, &targettype, ccontext)) |
| 88 | return NULL; |
| 89 | |
| 90 | /* |
| 91 | * If the input has a CollateExpr at the top, strip it off, perform the |
| 92 | * coercion, and put a new one back on. This is annoying since it |
| 93 | * duplicates logic in coerce_type, but if we don't do this then it's too |
| 94 | * hard to tell whether coerce_type actually changed anything, and we |
| 95 | * *must* know that to avoid possibly calling hide_coercion_node on |
| 96 | * something that wasn't generated by coerce_type. Note that if there are |
| 97 | * multiple stacked CollateExprs, we just discard all but the topmost. |
| 98 | */ |
| 99 | origexpr = expr; |
| 100 | while (expr && IsA(expr, CollateExpr)) |
| 101 | expr = (Node *) ((CollateExpr *) expr)->arg; |
| 102 | |
| 103 | result = coerce_type(pstate, expr, exprtype, |
| 104 | targettype, targettypmod, |
| 105 | ccontext, cformat, location); |
| 106 | |
| 107 | /* |
| 108 | * If the target is a fixed-length type, it may need a length coercion as |
| 109 | * well as a type coercion. If we find ourselves adding both, force the |
| 110 | * inner coercion node to implicit display form. |
| 111 | */ |
| 112 | result = coerce_type_typmod(result, |
| 113 | targettype, targettypmod, |
| 114 | ccontext, cformat, location, |
| 115 | (result != expr && !IsA(result, Const))); |
| 116 | |
| 117 | if (expr != origexpr) |
| 118 | { |
| 119 | /* Reinstall top CollateExpr */ |
| 120 | CollateExpr *coll = (CollateExpr *) origexpr; |
| 121 | CollateExpr *newcoll = makeNode(CollateExpr); |
| 122 | |
| 123 | newcoll->arg = (Expr *) result; |
| 124 | newcoll->collOid = coll->collOid; |
| 125 | newcoll->location = coll->location; |
| 126 | result = (Node *) newcoll; |
| 127 | } |
| 128 | |
| 129 | return result; |
| 130 | } |
| 131 | |
| 132 | |
| 133 | /* |
| 134 | * coerce_type() |
| 135 | * Convert an expression to a different type. |
| 136 | * |
| 137 | * The caller should already have determined that the coercion is possible; |
| 138 | * see can_coerce_type. |
| 139 | * |
| 140 | * Normally, no coercion to a typmod (length) is performed here. The caller |
| 141 | * must call coerce_type_typmod as well, if a typmod constraint is wanted. |
| 142 | * (But if the target type is a domain, it may internally contain a |
| 143 | * typmod constraint, which will be applied inside coerce_to_domain.) |
| 144 | * In some cases pg_cast specifies a type coercion function that also |
| 145 | * applies length conversion, and in those cases only, the result will |
| 146 | * already be properly coerced to the specified typmod. |
| 147 | * |
| 148 | * pstate is only used in the case that we are able to resolve the type of |
| 149 | * a previously UNKNOWN Param. It is okay to pass pstate = NULL if the |
| 150 | * caller does not want type information updated for Params. |
| 151 | * |
| 152 | * Note: this function must not modify the given expression tree, only add |
| 153 | * decoration on top of it. See transformSetOperationTree, for example. |
| 154 | */ |
| 155 | Node * |
| 156 | coerce_type(ParseState *pstate, Node *node, |
| 157 | Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod, |
| 158 | CoercionContext ccontext, CoercionForm cformat, int location) |
| 159 | { |
| 160 | Node *result; |
| 161 | CoercionPathType pathtype; |
| 162 | Oid funcId; |
| 163 | |
| 164 | if (targetTypeId == inputTypeId || |
| 165 | node == NULL) |
| 166 | { |
| 167 | /* no conversion needed */ |
| 168 | return node; |
| 169 | } |
| 170 | if (targetTypeId == ANYOID || |
| 171 | targetTypeId == ANYELEMENTOID || |
| 172 | targetTypeId == ANYNONARRAYOID) |
| 173 | { |
| 174 | /* |
| 175 | * Assume can_coerce_type verified that implicit coercion is okay. |
| 176 | * |
| 177 | * Note: by returning the unmodified node here, we are saying that |
| 178 | * it's OK to treat an UNKNOWN constant as a valid input for a |
| 179 | * function accepting ANY, ANYELEMENT, or ANYNONARRAY. This should be |
| 180 | * all right, since an UNKNOWN value is still a perfectly valid Datum. |
| 181 | * |
| 182 | * NB: we do NOT want a RelabelType here: the exposed type of the |
| 183 | * function argument must be its actual type, not the polymorphic |
| 184 | * pseudotype. |
| 185 | */ |
| 186 | return node; |
| 187 | } |
| 188 | if (targetTypeId == ANYARRAYOID || |
| 189 | targetTypeId == ANYENUMOID || |
| 190 | targetTypeId == ANYRANGEOID) |
| 191 | { |
| 192 | /* |
| 193 | * Assume can_coerce_type verified that implicit coercion is okay. |
| 194 | * |
| 195 | * These cases are unlike the ones above because the exposed type of |
| 196 | * the argument must be an actual array, enum, or range type. In |
| 197 | * particular the argument must *not* be an UNKNOWN constant. If it |
| 198 | * is, we just fall through; below, we'll call anyarray_in, |
| 199 | * anyenum_in, or anyrange_in, which will produce an error. Also, if |
| 200 | * what we have is a domain over array, enum, or range, we have to |
| 201 | * relabel it to its base type. |
| 202 | * |
| 203 | * Note: currently, we can't actually see a domain-over-enum here, |
| 204 | * since the other functions in this file will not match such a |
| 205 | * parameter to ANYENUM. But that should get changed eventually. |
| 206 | */ |
| 207 | if (inputTypeId != UNKNOWNOID) |
| 208 | { |
| 209 | Oid baseTypeId = getBaseType(inputTypeId); |
| 210 | |
| 211 | if (baseTypeId != inputTypeId) |
| 212 | { |
| 213 | RelabelType *r = makeRelabelType((Expr *) node, |
| 214 | baseTypeId, -1, |
| 215 | InvalidOid, |
| 216 | cformat); |
| 217 | |
| 218 | r->location = location; |
| 219 | return (Node *) r; |
| 220 | } |
| 221 | /* Not a domain type, so return it as-is */ |
| 222 | return node; |
| 223 | } |
| 224 | } |
| 225 | if (inputTypeId == UNKNOWNOID && IsA(node, Const)) |
| 226 | { |
| 227 | /* |
| 228 | * Input is a string constant with previously undetermined type. Apply |
| 229 | * the target type's typinput function to it to produce a constant of |
| 230 | * the target type. |
| 231 | * |
| 232 | * NOTE: this case cannot be folded together with the other |
| 233 | * constant-input case, since the typinput function does not |
| 234 | * necessarily behave the same as a type conversion function. For |
| 235 | * example, int4's typinput function will reject "1.2", whereas |
| 236 | * float-to-int type conversion will round to integer. |
| 237 | * |
| 238 | * XXX if the typinput function is not immutable, we really ought to |
| 239 | * postpone evaluation of the function call until runtime. But there |
| 240 | * is no way to represent a typinput function call as an expression |
| 241 | * tree, because C-string values are not Datums. (XXX This *is* |
| 242 | * possible as of 7.3, do we want to do it?) |
| 243 | */ |
| 244 | Const *con = (Const *) node; |
| 245 | Const *newcon = makeNode(Const); |
| 246 | Oid baseTypeId; |
| 247 | int32 baseTypeMod; |
| 248 | int32 inputTypeMod; |
| 249 | Type baseType; |
| 250 | ParseCallbackState pcbstate; |
| 251 | |
| 252 | /* |
| 253 | * If the target type is a domain, we want to call its base type's |
| 254 | * input routine, not domain_in(). This is to avoid premature failure |
| 255 | * when the domain applies a typmod: existing input routines follow |
| 256 | * implicit-coercion semantics for length checks, which is not always |
| 257 | * what we want here. The needed check will be applied properly |
| 258 | * inside coerce_to_domain(). |
| 259 | */ |
| 260 | baseTypeMod = targetTypeMod; |
| 261 | baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); |
| 262 | |
| 263 | /* |
| 264 | * For most types we pass typmod -1 to the input routine, because |
| 265 | * existing input routines follow implicit-coercion semantics for |
| 266 | * length checks, which is not always what we want here. Any length |
| 267 | * constraint will be applied later by our caller. An exception |
| 268 | * however is the INTERVAL type, for which we *must* pass the typmod |
| 269 | * or it won't be able to obey the bizarre SQL-spec input rules. (Ugly |
| 270 | * as sin, but so is this part of the spec...) |
| 271 | */ |
| 272 | if (baseTypeId == INTERVALOID) |
| 273 | inputTypeMod = baseTypeMod; |
| 274 | else |
| 275 | inputTypeMod = -1; |
| 276 | |
| 277 | baseType = typeidType(baseTypeId); |
| 278 | |
| 279 | newcon->consttype = baseTypeId; |
| 280 | newcon->consttypmod = inputTypeMod; |
| 281 | newcon->constcollid = typeTypeCollation(baseType); |
| 282 | newcon->constlen = typeLen(baseType); |
| 283 | newcon->constbyval = typeByVal(baseType); |
| 284 | newcon->constisnull = con->constisnull; |
| 285 | |
| 286 | /* |
| 287 | * We use the original literal's location regardless of the position |
| 288 | * of the coercion. This is a change from pre-9.2 behavior, meant to |
| 289 | * simplify life for pg_stat_statements. |
| 290 | */ |
| 291 | newcon->location = con->location; |
| 292 | |
| 293 | /* |
| 294 | * Set up to point at the constant's text if the input routine throws |
| 295 | * an error. |
| 296 | */ |
| 297 | setup_parser_errposition_callback(&pcbstate, pstate, con->location); |
| 298 | |
| 299 | /* |
| 300 | * We assume here that UNKNOWN's internal representation is the same |
| 301 | * as CSTRING. |
| 302 | */ |
| 303 | if (!con->constisnull) |
| 304 | newcon->constvalue = stringTypeDatum(baseType, |
| 305 | DatumGetCString(con->constvalue), |
| 306 | inputTypeMod); |
| 307 | else |
| 308 | newcon->constvalue = stringTypeDatum(baseType, |
| 309 | NULL, |
| 310 | inputTypeMod); |
| 311 | |
| 312 | /* |
| 313 | * If it's a varlena value, force it to be in non-expanded |
| 314 | * (non-toasted) format; this avoids any possible dependency on |
| 315 | * external values and improves consistency of representation. |
| 316 | */ |
| 317 | if (!con->constisnull && newcon->constlen == -1) |
| 318 | newcon->constvalue = |
| 319 | PointerGetDatum(PG_DETOAST_DATUM(newcon->constvalue)); |
| 320 | |
| 321 | #ifdef RANDOMIZE_ALLOCATED_MEMORY |
| 322 | |
| 323 | /* |
| 324 | * For pass-by-reference data types, repeat the conversion to see if |
| 325 | * the input function leaves any uninitialized bytes in the result. We |
| 326 | * can only detect that reliably if RANDOMIZE_ALLOCATED_MEMORY is |
| 327 | * enabled, so we don't bother testing otherwise. The reason we don't |
| 328 | * want any instability in the input function is that comparison of |
| 329 | * Const nodes relies on bytewise comparison of the datums, so if the |
| 330 | * input function leaves garbage then subexpressions that should be |
| 331 | * identical may not get recognized as such. See pgsql-hackers |
| 332 | * discussion of 2008-04-04. |
| 333 | */ |
| 334 | if (!con->constisnull && !newcon->constbyval) |
| 335 | { |
| 336 | Datum val2; |
| 337 | |
| 338 | val2 = stringTypeDatum(baseType, |
| 339 | DatumGetCString(con->constvalue), |
| 340 | inputTypeMod); |
| 341 | if (newcon->constlen == -1) |
| 342 | val2 = PointerGetDatum(PG_DETOAST_DATUM(val2)); |
| 343 | if (!datumIsEqual(newcon->constvalue, val2, false, newcon->constlen)) |
| 344 | elog(WARNING, "type %s has unstable input conversion for \"%s\"" , |
| 345 | typeTypeName(baseType), DatumGetCString(con->constvalue)); |
| 346 | } |
| 347 | #endif |
| 348 | |
| 349 | cancel_parser_errposition_callback(&pcbstate); |
| 350 | |
| 351 | result = (Node *) newcon; |
| 352 | |
| 353 | /* If target is a domain, apply constraints. */ |
| 354 | if (baseTypeId != targetTypeId) |
| 355 | result = coerce_to_domain(result, |
| 356 | baseTypeId, baseTypeMod, |
| 357 | targetTypeId, |
| 358 | ccontext, cformat, location, |
| 359 | false); |
| 360 | |
| 361 | ReleaseSysCache(baseType); |
| 362 | |
| 363 | return result; |
| 364 | } |
| 365 | if (IsA(node, Param) && |
| 366 | pstate != NULL && pstate->p_coerce_param_hook != NULL) |
| 367 | { |
| 368 | /* |
| 369 | * Allow the CoerceParamHook to decide what happens. It can return a |
| 370 | * transformed node (very possibly the same Param node), or return |
| 371 | * NULL to indicate we should proceed with normal coercion. |
| 372 | */ |
| 373 | result = pstate->p_coerce_param_hook(pstate, |
| 374 | (Param *) node, |
| 375 | targetTypeId, |
| 376 | targetTypeMod, |
| 377 | location); |
| 378 | if (result) |
| 379 | return result; |
| 380 | } |
| 381 | if (IsA(node, CollateExpr)) |
| 382 | { |
| 383 | /* |
| 384 | * If we have a COLLATE clause, we have to push the coercion |
| 385 | * underneath the COLLATE. This is really ugly, but there is little |
| 386 | * choice because the above hacks on Consts and Params wouldn't happen |
| 387 | * otherwise. This kluge has consequences in coerce_to_target_type. |
| 388 | */ |
| 389 | CollateExpr *coll = (CollateExpr *) node; |
| 390 | CollateExpr *newcoll = makeNode(CollateExpr); |
| 391 | |
| 392 | newcoll->arg = (Expr *) |
| 393 | coerce_type(pstate, (Node *) coll->arg, |
| 394 | inputTypeId, targetTypeId, targetTypeMod, |
| 395 | ccontext, cformat, location); |
| 396 | newcoll->collOid = coll->collOid; |
| 397 | newcoll->location = coll->location; |
| 398 | return (Node *) newcoll; |
| 399 | } |
| 400 | pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext, |
| 401 | &funcId); |
| 402 | if (pathtype != COERCION_PATH_NONE) |
| 403 | { |
| 404 | if (pathtype != COERCION_PATH_RELABELTYPE) |
| 405 | { |
| 406 | /* |
| 407 | * Generate an expression tree representing run-time application |
| 408 | * of the conversion function. If we are dealing with a domain |
| 409 | * target type, the conversion function will yield the base type, |
| 410 | * and we need to extract the correct typmod to use from the |
| 411 | * domain's typtypmod. |
| 412 | */ |
| 413 | Oid baseTypeId; |
| 414 | int32 baseTypeMod; |
| 415 | |
| 416 | baseTypeMod = targetTypeMod; |
| 417 | baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); |
| 418 | |
| 419 | result = build_coercion_expression(node, pathtype, funcId, |
| 420 | baseTypeId, baseTypeMod, |
| 421 | ccontext, cformat, location); |
| 422 | |
| 423 | /* |
| 424 | * If domain, coerce to the domain type and relabel with domain |
| 425 | * type ID, hiding the previous coercion node. |
| 426 | */ |
| 427 | if (targetTypeId != baseTypeId) |
| 428 | result = coerce_to_domain(result, baseTypeId, baseTypeMod, |
| 429 | targetTypeId, |
| 430 | ccontext, cformat, location, |
| 431 | true); |
| 432 | } |
| 433 | else |
| 434 | { |
| 435 | /* |
| 436 | * We don't need to do a physical conversion, but we do need to |
| 437 | * attach a RelabelType node so that the expression will be seen |
| 438 | * to have the intended type when inspected by higher-level code. |
| 439 | * |
| 440 | * Also, domains may have value restrictions beyond the base type |
| 441 | * that must be accounted for. If the destination is a domain |
| 442 | * then we won't need a RelabelType node. |
| 443 | */ |
| 444 | result = coerce_to_domain(node, InvalidOid, -1, targetTypeId, |
| 445 | ccontext, cformat, location, |
| 446 | false); |
| 447 | if (result == node) |
| 448 | { |
| 449 | /* |
| 450 | * XXX could we label result with exprTypmod(node) instead of |
| 451 | * default -1 typmod, to save a possible length-coercion |
| 452 | * later? Would work if both types have same interpretation of |
| 453 | * typmod, which is likely but not certain. |
| 454 | */ |
| 455 | RelabelType *r = makeRelabelType((Expr *) result, |
| 456 | targetTypeId, -1, |
| 457 | InvalidOid, |
| 458 | cformat); |
| 459 | |
| 460 | r->location = location; |
| 461 | result = (Node *) r; |
| 462 | } |
| 463 | } |
| 464 | return result; |
| 465 | } |
| 466 | if (inputTypeId == RECORDOID && |
| 467 | ISCOMPLEX(targetTypeId)) |
| 468 | { |
| 469 | /* Coerce a RECORD to a specific complex type */ |
| 470 | return coerce_record_to_complex(pstate, node, targetTypeId, |
| 471 | ccontext, cformat, location); |
| 472 | } |
| 473 | if (targetTypeId == RECORDOID && |
| 474 | ISCOMPLEX(inputTypeId)) |
| 475 | { |
| 476 | /* Coerce a specific complex type to RECORD */ |
| 477 | /* NB: we do NOT want a RelabelType here */ |
| 478 | return node; |
| 479 | } |
| 480 | #ifdef NOT_USED |
| 481 | if (inputTypeId == RECORDARRAYOID && |
| 482 | is_complex_array(targetTypeId)) |
| 483 | { |
| 484 | /* Coerce record[] to a specific complex array type */ |
| 485 | /* not implemented yet ... */ |
| 486 | } |
| 487 | #endif |
| 488 | if (targetTypeId == RECORDARRAYOID && |
| 489 | is_complex_array(inputTypeId)) |
| 490 | { |
| 491 | /* Coerce a specific complex array type to record[] */ |
| 492 | /* NB: we do NOT want a RelabelType here */ |
| 493 | return node; |
| 494 | } |
| 495 | if (typeInheritsFrom(inputTypeId, targetTypeId) |
| 496 | || typeIsOfTypedTable(inputTypeId, targetTypeId)) |
| 497 | { |
| 498 | /* |
| 499 | * Input class type is a subclass of target, so generate an |
| 500 | * appropriate runtime conversion (removing unneeded columns and |
| 501 | * possibly rearranging the ones that are wanted). |
| 502 | * |
| 503 | * We will also get here when the input is a domain over a subclass of |
| 504 | * the target type. To keep life simple for the executor, we define |
| 505 | * ConvertRowtypeExpr as only working between regular composite types; |
| 506 | * therefore, in such cases insert a RelabelType to smash the input |
| 507 | * expression down to its base type. |
| 508 | */ |
| 509 | Oid baseTypeId = getBaseType(inputTypeId); |
| 510 | ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr); |
| 511 | |
| 512 | if (baseTypeId != inputTypeId) |
| 513 | { |
| 514 | RelabelType *rt = makeRelabelType((Expr *) node, |
| 515 | baseTypeId, -1, |
| 516 | InvalidOid, |
| 517 | COERCE_IMPLICIT_CAST); |
| 518 | |
| 519 | rt->location = location; |
| 520 | node = (Node *) rt; |
| 521 | } |
| 522 | r->arg = (Expr *) node; |
| 523 | r->resulttype = targetTypeId; |
| 524 | r->convertformat = cformat; |
| 525 | r->location = location; |
| 526 | return (Node *) r; |
| 527 | } |
| 528 | /* If we get here, caller blew it */ |
| 529 | elog(ERROR, "failed to find conversion function from %s to %s" , |
| 530 | format_type_be(inputTypeId), format_type_be(targetTypeId)); |
| 531 | return NULL; /* keep compiler quiet */ |
| 532 | } |
| 533 | |
| 534 | |
| 535 | /* |
| 536 | * can_coerce_type() |
| 537 | * Can input_typeids be coerced to target_typeids? |
| 538 | * |
| 539 | * We must be told the context (CAST construct, assignment, implicit coercion) |
| 540 | * as this determines the set of available casts. |
| 541 | */ |
| 542 | bool |
| 543 | can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids, |
| 544 | CoercionContext ccontext) |
| 545 | { |
| 546 | bool have_generics = false; |
| 547 | int i; |
| 548 | |
| 549 | /* run through argument list... */ |
| 550 | for (i = 0; i < nargs; i++) |
| 551 | { |
| 552 | Oid inputTypeId = input_typeids[i]; |
| 553 | Oid targetTypeId = target_typeids[i]; |
| 554 | CoercionPathType pathtype; |
| 555 | Oid funcId; |
| 556 | |
| 557 | /* no problem if same type */ |
| 558 | if (inputTypeId == targetTypeId) |
| 559 | continue; |
| 560 | |
| 561 | /* accept if target is ANY */ |
| 562 | if (targetTypeId == ANYOID) |
| 563 | continue; |
| 564 | |
| 565 | /* accept if target is polymorphic, for now */ |
| 566 | if (IsPolymorphicType(targetTypeId)) |
| 567 | { |
| 568 | have_generics = true; /* do more checking later */ |
| 569 | continue; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * If input is an untyped string constant, assume we can convert it to |
| 574 | * anything. |
| 575 | */ |
| 576 | if (inputTypeId == UNKNOWNOID) |
| 577 | continue; |
| 578 | |
| 579 | /* |
| 580 | * If pg_cast shows that we can coerce, accept. This test now covers |
| 581 | * both binary-compatible and coercion-function cases. |
| 582 | */ |
| 583 | pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext, |
| 584 | &funcId); |
| 585 | if (pathtype != COERCION_PATH_NONE) |
| 586 | continue; |
| 587 | |
| 588 | /* |
| 589 | * If input is RECORD and target is a composite type, assume we can |
| 590 | * coerce (may need tighter checking here) |
| 591 | */ |
| 592 | if (inputTypeId == RECORDOID && |
| 593 | ISCOMPLEX(targetTypeId)) |
| 594 | continue; |
| 595 | |
| 596 | /* |
| 597 | * If input is a composite type and target is RECORD, accept |
| 598 | */ |
| 599 | if (targetTypeId == RECORDOID && |
| 600 | ISCOMPLEX(inputTypeId)) |
| 601 | continue; |
| 602 | |
| 603 | #ifdef NOT_USED /* not implemented yet */ |
| 604 | |
| 605 | /* |
| 606 | * If input is record[] and target is a composite array type, assume |
| 607 | * we can coerce (may need tighter checking here) |
| 608 | */ |
| 609 | if (inputTypeId == RECORDARRAYOID && |
| 610 | is_complex_array(targetTypeId)) |
| 611 | continue; |
| 612 | #endif |
| 613 | |
| 614 | /* |
| 615 | * If input is a composite array type and target is record[], accept |
| 616 | */ |
| 617 | if (targetTypeId == RECORDARRAYOID && |
| 618 | is_complex_array(inputTypeId)) |
| 619 | continue; |
| 620 | |
| 621 | /* |
| 622 | * If input is a class type that inherits from target, accept |
| 623 | */ |
| 624 | if (typeInheritsFrom(inputTypeId, targetTypeId) |
| 625 | || typeIsOfTypedTable(inputTypeId, targetTypeId)) |
| 626 | continue; |
| 627 | |
| 628 | /* |
| 629 | * Else, cannot coerce at this argument position |
| 630 | */ |
| 631 | return false; |
| 632 | } |
| 633 | |
| 634 | /* If we found any generic argument types, cross-check them */ |
| 635 | if (have_generics) |
| 636 | { |
| 637 | if (!check_generic_type_consistency(input_typeids, target_typeids, |
| 638 | nargs)) |
| 639 | return false; |
| 640 | } |
| 641 | |
| 642 | return true; |
| 643 | } |
| 644 | |
| 645 | |
| 646 | /* |
| 647 | * Create an expression tree to represent coercion to a domain type. |
| 648 | * |
| 649 | * 'arg': input expression |
| 650 | * 'baseTypeId': base type of domain, if known (pass InvalidOid if caller |
| 651 | * has not bothered to look this up) |
| 652 | * 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller |
| 653 | * has not bothered to look this up) |
| 654 | * 'typeId': target type to coerce to |
| 655 | * 'ccontext': context indicator to control coercions |
| 656 | * 'cformat': coercion display format |
| 657 | * 'location': coercion request location |
| 658 | * 'hideInputCoercion': if true, hide the input coercion under this one. |
| 659 | * |
| 660 | * If the target type isn't a domain, the given 'arg' is returned as-is. |
| 661 | */ |
| 662 | Node * |
| 663 | coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId, |
| 664 | CoercionContext ccontext, CoercionForm cformat, int location, |
| 665 | bool hideInputCoercion) |
| 666 | { |
| 667 | CoerceToDomain *result; |
| 668 | |
| 669 | /* Get the base type if it hasn't been supplied */ |
| 670 | if (baseTypeId == InvalidOid) |
| 671 | baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod); |
| 672 | |
| 673 | /* If it isn't a domain, return the node as it was passed in */ |
| 674 | if (baseTypeId == typeId) |
| 675 | return arg; |
| 676 | |
| 677 | /* Suppress display of nested coercion steps */ |
| 678 | if (hideInputCoercion) |
| 679 | hide_coercion_node(arg); |
| 680 | |
| 681 | /* |
| 682 | * If the domain applies a typmod to its base type, build the appropriate |
| 683 | * coercion step. Mark it implicit for display purposes, because we don't |
| 684 | * want it shown separately by ruleutils.c; but the isExplicit flag passed |
| 685 | * to the conversion function depends on the manner in which the domain |
| 686 | * coercion is invoked, so that the semantics of implicit and explicit |
| 687 | * coercion differ. (Is that really the behavior we want?) |
| 688 | * |
| 689 | * NOTE: because we apply this as part of the fixed expression structure, |
| 690 | * ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that |
| 691 | * would be safe to do anyway, without lots of knowledge about what the |
| 692 | * base type thinks the typmod means. |
| 693 | */ |
| 694 | arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod, |
| 695 | ccontext, COERCE_IMPLICIT_CAST, location, |
| 696 | false); |
| 697 | |
| 698 | /* |
| 699 | * Now build the domain coercion node. This represents run-time checking |
| 700 | * of any constraints currently attached to the domain. This also ensures |
| 701 | * that the expression is properly labeled as to result type. |
| 702 | */ |
| 703 | result = makeNode(CoerceToDomain); |
| 704 | result->arg = (Expr *) arg; |
| 705 | result->resulttype = typeId; |
| 706 | result->resulttypmod = -1; /* currently, always -1 for domains */ |
| 707 | /* resultcollid will be set by parse_collate.c */ |
| 708 | result->coercionformat = cformat; |
| 709 | result->location = location; |
| 710 | |
| 711 | return (Node *) result; |
| 712 | } |
| 713 | |
| 714 | |
| 715 | /* |
| 716 | * coerce_type_typmod() |
| 717 | * Force a value to a particular typmod, if meaningful and possible. |
| 718 | * |
| 719 | * This is applied to values that are going to be stored in a relation |
| 720 | * (where we have an atttypmod for the column) as well as values being |
| 721 | * explicitly CASTed (where the typmod comes from the target type spec). |
| 722 | * |
| 723 | * The caller must have already ensured that the value is of the correct |
| 724 | * type, typically by applying coerce_type. |
| 725 | * |
| 726 | * ccontext may affect semantics, depending on whether the length coercion |
| 727 | * function pays attention to the isExplicit flag it's passed. |
| 728 | * |
| 729 | * cformat determines the display properties of the generated node (if any). |
| 730 | * |
| 731 | * If hideInputCoercion is true *and* we generate a node, the input node is |
| 732 | * forced to IMPLICIT display form, so that only the typmod coercion node will |
| 733 | * be visible when displaying the expression. |
| 734 | * |
| 735 | * NOTE: this does not need to work on domain types, because any typmod |
| 736 | * coercion for a domain is considered to be part of the type coercion |
| 737 | * needed to produce the domain value in the first place. So, no getBaseType. |
| 738 | */ |
| 739 | static Node * |
| 740 | coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod, |
| 741 | CoercionContext ccontext, CoercionForm cformat, |
| 742 | int location, |
| 743 | bool hideInputCoercion) |
| 744 | { |
| 745 | CoercionPathType pathtype; |
| 746 | Oid funcId; |
| 747 | |
| 748 | /* |
| 749 | * A negative typmod is assumed to mean that no coercion is wanted. Also, |
| 750 | * skip coercion if already done. |
| 751 | */ |
| 752 | if (targetTypMod < 0 || targetTypMod == exprTypmod(node)) |
| 753 | return node; |
| 754 | |
| 755 | pathtype = find_typmod_coercion_function(targetTypeId, &funcId); |
| 756 | |
| 757 | if (pathtype != COERCION_PATH_NONE) |
| 758 | { |
| 759 | /* Suppress display of nested coercion steps */ |
| 760 | if (hideInputCoercion) |
| 761 | hide_coercion_node(node); |
| 762 | |
| 763 | node = build_coercion_expression(node, pathtype, funcId, |
| 764 | targetTypeId, targetTypMod, |
| 765 | ccontext, cformat, location); |
| 766 | } |
| 767 | |
| 768 | return node; |
| 769 | } |
| 770 | |
| 771 | /* |
| 772 | * Mark a coercion node as IMPLICIT so it will never be displayed by |
| 773 | * ruleutils.c. We use this when we generate a nest of coercion nodes |
| 774 | * to implement what is logically one conversion; the inner nodes are |
| 775 | * forced to IMPLICIT_CAST format. This does not change their semantics, |
| 776 | * only display behavior. |
| 777 | * |
| 778 | * It is caller error to call this on something that doesn't have a |
| 779 | * CoercionForm field. |
| 780 | */ |
| 781 | static void |
| 782 | hide_coercion_node(Node *node) |
| 783 | { |
| 784 | if (IsA(node, FuncExpr)) |
| 785 | ((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST; |
| 786 | else if (IsA(node, RelabelType)) |
| 787 | ((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST; |
| 788 | else if (IsA(node, CoerceViaIO)) |
| 789 | ((CoerceViaIO *) node)->coerceformat = COERCE_IMPLICIT_CAST; |
| 790 | else if (IsA(node, ArrayCoerceExpr)) |
| 791 | ((ArrayCoerceExpr *) node)->coerceformat = COERCE_IMPLICIT_CAST; |
| 792 | else if (IsA(node, ConvertRowtypeExpr)) |
| 793 | ((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST; |
| 794 | else if (IsA(node, RowExpr)) |
| 795 | ((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST; |
| 796 | else if (IsA(node, CoerceToDomain)) |
| 797 | ((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST; |
| 798 | else |
| 799 | elog(ERROR, "unsupported node type: %d" , (int) nodeTag(node)); |
| 800 | } |
| 801 | |
| 802 | /* |
| 803 | * build_coercion_expression() |
| 804 | * Construct an expression tree for applying a pg_cast entry. |
| 805 | * |
| 806 | * This is used for both type-coercion and length-coercion operations, |
| 807 | * since there is no difference in terms of the calling convention. |
| 808 | */ |
| 809 | static Node * |
| 810 | build_coercion_expression(Node *node, |
| 811 | CoercionPathType pathtype, |
| 812 | Oid funcId, |
| 813 | Oid targetTypeId, int32 targetTypMod, |
| 814 | CoercionContext ccontext, CoercionForm cformat, |
| 815 | int location) |
| 816 | { |
| 817 | int nargs = 0; |
| 818 | |
| 819 | if (OidIsValid(funcId)) |
| 820 | { |
| 821 | HeapTuple tp; |
| 822 | Form_pg_proc procstruct; |
| 823 | |
| 824 | tp = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcId)); |
| 825 | if (!HeapTupleIsValid(tp)) |
| 826 | elog(ERROR, "cache lookup failed for function %u" , funcId); |
| 827 | procstruct = (Form_pg_proc) GETSTRUCT(tp); |
| 828 | |
| 829 | /* |
| 830 | * These Asserts essentially check that function is a legal coercion |
| 831 | * function. We can't make the seemingly obvious tests on prorettype |
| 832 | * and proargtypes[0], even in the COERCION_PATH_FUNC case, because of |
| 833 | * various binary-compatibility cases. |
| 834 | */ |
| 835 | /* Assert(targetTypeId == procstruct->prorettype); */ |
| 836 | Assert(!procstruct->proretset); |
| 837 | Assert(procstruct->prokind == PROKIND_FUNCTION); |
| 838 | nargs = procstruct->pronargs; |
| 839 | Assert(nargs >= 1 && nargs <= 3); |
| 840 | /* Assert(procstruct->proargtypes.values[0] == exprType(node)); */ |
| 841 | Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID); |
| 842 | Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID); |
| 843 | |
| 844 | ReleaseSysCache(tp); |
| 845 | } |
| 846 | |
| 847 | if (pathtype == COERCION_PATH_FUNC) |
| 848 | { |
| 849 | /* We build an ordinary FuncExpr with special arguments */ |
| 850 | FuncExpr *fexpr; |
| 851 | List *args; |
| 852 | Const *cons; |
| 853 | |
| 854 | Assert(OidIsValid(funcId)); |
| 855 | |
| 856 | args = list_make1(node); |
| 857 | |
| 858 | if (nargs >= 2) |
| 859 | { |
| 860 | /* Pass target typmod as an int4 constant */ |
| 861 | cons = makeConst(INT4OID, |
| 862 | -1, |
| 863 | InvalidOid, |
| 864 | sizeof(int32), |
| 865 | Int32GetDatum(targetTypMod), |
| 866 | false, |
| 867 | true); |
| 868 | |
| 869 | args = lappend(args, cons); |
| 870 | } |
| 871 | |
| 872 | if (nargs == 3) |
| 873 | { |
| 874 | /* Pass it a boolean isExplicit parameter, too */ |
| 875 | cons = makeConst(BOOLOID, |
| 876 | -1, |
| 877 | InvalidOid, |
| 878 | sizeof(bool), |
| 879 | BoolGetDatum(ccontext == COERCION_EXPLICIT), |
| 880 | false, |
| 881 | true); |
| 882 | |
| 883 | args = lappend(args, cons); |
| 884 | } |
| 885 | |
| 886 | fexpr = makeFuncExpr(funcId, targetTypeId, args, |
| 887 | InvalidOid, InvalidOid, cformat); |
| 888 | fexpr->location = location; |
| 889 | return (Node *) fexpr; |
| 890 | } |
| 891 | else if (pathtype == COERCION_PATH_ARRAYCOERCE) |
| 892 | { |
| 893 | /* We need to build an ArrayCoerceExpr */ |
| 894 | ArrayCoerceExpr *acoerce = makeNode(ArrayCoerceExpr); |
| 895 | CaseTestExpr *ctest = makeNode(CaseTestExpr); |
| 896 | Oid sourceBaseTypeId; |
| 897 | int32 sourceBaseTypeMod; |
| 898 | Oid targetElementType; |
| 899 | Node *elemexpr; |
| 900 | |
| 901 | /* |
| 902 | * Look through any domain over the source array type. Note we don't |
| 903 | * expect that the target type is a domain; it must be a plain array. |
| 904 | * (To get to a domain target type, we'll do coerce_to_domain later.) |
| 905 | */ |
| 906 | sourceBaseTypeMod = exprTypmod(node); |
| 907 | sourceBaseTypeId = getBaseTypeAndTypmod(exprType(node), |
| 908 | &sourceBaseTypeMod); |
| 909 | |
| 910 | /* |
| 911 | * Set up a CaseTestExpr representing one element of the source array. |
| 912 | * This is an abuse of CaseTestExpr, but it's OK as long as there |
| 913 | * can't be any CaseExpr or ArrayCoerceExpr within the completed |
| 914 | * elemexpr. |
| 915 | */ |
| 916 | ctest->typeId = get_element_type(sourceBaseTypeId); |
| 917 | Assert(OidIsValid(ctest->typeId)); |
| 918 | ctest->typeMod = sourceBaseTypeMod; |
| 919 | ctest->collation = InvalidOid; /* Assume coercions don't care */ |
| 920 | |
| 921 | /* And coerce it to the target element type */ |
| 922 | targetElementType = get_element_type(targetTypeId); |
| 923 | Assert(OidIsValid(targetElementType)); |
| 924 | |
| 925 | elemexpr = coerce_to_target_type(NULL, |
| 926 | (Node *) ctest, |
| 927 | ctest->typeId, |
| 928 | targetElementType, |
| 929 | targetTypMod, |
| 930 | ccontext, |
| 931 | cformat, |
| 932 | location); |
| 933 | if (elemexpr == NULL) /* shouldn't happen */ |
| 934 | elog(ERROR, "failed to coerce array element type as expected" ); |
| 935 | |
| 936 | acoerce->arg = (Expr *) node; |
| 937 | acoerce->elemexpr = (Expr *) elemexpr; |
| 938 | acoerce->resulttype = targetTypeId; |
| 939 | |
| 940 | /* |
| 941 | * Label the output as having a particular element typmod only if we |
| 942 | * ended up with a per-element expression that is labeled that way. |
| 943 | */ |
| 944 | acoerce->resulttypmod = exprTypmod(elemexpr); |
| 945 | /* resultcollid will be set by parse_collate.c */ |
| 946 | acoerce->coerceformat = cformat; |
| 947 | acoerce->location = location; |
| 948 | |
| 949 | return (Node *) acoerce; |
| 950 | } |
| 951 | else if (pathtype == COERCION_PATH_COERCEVIAIO) |
| 952 | { |
| 953 | /* We need to build a CoerceViaIO node */ |
| 954 | CoerceViaIO *iocoerce = makeNode(CoerceViaIO); |
| 955 | |
| 956 | Assert(!OidIsValid(funcId)); |
| 957 | |
| 958 | iocoerce->arg = (Expr *) node; |
| 959 | iocoerce->resulttype = targetTypeId; |
| 960 | /* resultcollid will be set by parse_collate.c */ |
| 961 | iocoerce->coerceformat = cformat; |
| 962 | iocoerce->location = location; |
| 963 | |
| 964 | return (Node *) iocoerce; |
| 965 | } |
| 966 | else |
| 967 | { |
| 968 | elog(ERROR, "unsupported pathtype %d in build_coercion_expression" , |
| 969 | (int) pathtype); |
| 970 | return NULL; /* keep compiler quiet */ |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | |
| 975 | /* |
| 976 | * coerce_record_to_complex |
| 977 | * Coerce a RECORD to a specific composite type. |
| 978 | * |
| 979 | * Currently we only support this for inputs that are RowExprs or whole-row |
| 980 | * Vars. |
| 981 | */ |
| 982 | static Node * |
| 983 | coerce_record_to_complex(ParseState *pstate, Node *node, |
| 984 | Oid targetTypeId, |
| 985 | CoercionContext ccontext, |
| 986 | CoercionForm cformat, |
| 987 | int location) |
| 988 | { |
| 989 | RowExpr *rowexpr; |
| 990 | Oid baseTypeId; |
| 991 | int32 baseTypeMod = -1; |
| 992 | TupleDesc tupdesc; |
| 993 | List *args = NIL; |
| 994 | List *newargs; |
| 995 | int i; |
| 996 | int ucolno; |
| 997 | ListCell *arg; |
| 998 | |
| 999 | if (node && IsA(node, RowExpr)) |
| 1000 | { |
| 1001 | /* |
| 1002 | * Since the RowExpr must be of type RECORD, we needn't worry about it |
| 1003 | * containing any dropped columns. |
| 1004 | */ |
| 1005 | args = ((RowExpr *) node)->args; |
| 1006 | } |
| 1007 | else if (node && IsA(node, Var) && |
| 1008 | ((Var *) node)->varattno == InvalidAttrNumber) |
| 1009 | { |
| 1010 | int rtindex = ((Var *) node)->varno; |
| 1011 | int sublevels_up = ((Var *) node)->varlevelsup; |
| 1012 | int vlocation = ((Var *) node)->location; |
| 1013 | RangeTblEntry *rte; |
| 1014 | |
| 1015 | rte = GetRTEByRangeTablePosn(pstate, rtindex, sublevels_up); |
| 1016 | expandRTE(rte, rtindex, sublevels_up, vlocation, false, |
| 1017 | NULL, &args); |
| 1018 | } |
| 1019 | else |
| 1020 | ereport(ERROR, |
| 1021 | (errcode(ERRCODE_CANNOT_COERCE), |
| 1022 | errmsg("cannot cast type %s to %s" , |
| 1023 | format_type_be(RECORDOID), |
| 1024 | format_type_be(targetTypeId)), |
| 1025 | parser_coercion_errposition(pstate, location, node))); |
| 1026 | |
| 1027 | /* |
| 1028 | * Look up the composite type, accounting for possibility that what we are |
| 1029 | * given is a domain over composite. |
| 1030 | */ |
| 1031 | baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); |
| 1032 | tupdesc = lookup_rowtype_tupdesc(baseTypeId, baseTypeMod); |
| 1033 | |
| 1034 | /* Process the fields */ |
| 1035 | newargs = NIL; |
| 1036 | ucolno = 1; |
| 1037 | arg = list_head(args); |
| 1038 | for (i = 0; i < tupdesc->natts; i++) |
| 1039 | { |
| 1040 | Node *expr; |
| 1041 | Node *cexpr; |
| 1042 | Oid exprtype; |
| 1043 | Form_pg_attribute attr = TupleDescAttr(tupdesc, i); |
| 1044 | |
| 1045 | /* Fill in NULLs for dropped columns in rowtype */ |
| 1046 | if (attr->attisdropped) |
| 1047 | { |
| 1048 | /* |
| 1049 | * can't use atttypid here, but it doesn't really matter what type |
| 1050 | * the Const claims to be. |
| 1051 | */ |
| 1052 | newargs = lappend(newargs, |
| 1053 | makeNullConst(INT4OID, -1, InvalidOid)); |
| 1054 | continue; |
| 1055 | } |
| 1056 | |
| 1057 | if (arg == NULL) |
| 1058 | ereport(ERROR, |
| 1059 | (errcode(ERRCODE_CANNOT_COERCE), |
| 1060 | errmsg("cannot cast type %s to %s" , |
| 1061 | format_type_be(RECORDOID), |
| 1062 | format_type_be(targetTypeId)), |
| 1063 | errdetail("Input has too few columns." ), |
| 1064 | parser_coercion_errposition(pstate, location, node))); |
| 1065 | expr = (Node *) lfirst(arg); |
| 1066 | exprtype = exprType(expr); |
| 1067 | |
| 1068 | cexpr = coerce_to_target_type(pstate, |
| 1069 | expr, exprtype, |
| 1070 | attr->atttypid, |
| 1071 | attr->atttypmod, |
| 1072 | ccontext, |
| 1073 | COERCE_IMPLICIT_CAST, |
| 1074 | -1); |
| 1075 | if (cexpr == NULL) |
| 1076 | ereport(ERROR, |
| 1077 | (errcode(ERRCODE_CANNOT_COERCE), |
| 1078 | errmsg("cannot cast type %s to %s" , |
| 1079 | format_type_be(RECORDOID), |
| 1080 | format_type_be(targetTypeId)), |
| 1081 | errdetail("Cannot cast type %s to %s in column %d." , |
| 1082 | format_type_be(exprtype), |
| 1083 | format_type_be(attr->atttypid), |
| 1084 | ucolno), |
| 1085 | parser_coercion_errposition(pstate, location, expr))); |
| 1086 | newargs = lappend(newargs, cexpr); |
| 1087 | ucolno++; |
| 1088 | arg = lnext(arg); |
| 1089 | } |
| 1090 | if (arg != NULL) |
| 1091 | ereport(ERROR, |
| 1092 | (errcode(ERRCODE_CANNOT_COERCE), |
| 1093 | errmsg("cannot cast type %s to %s" , |
| 1094 | format_type_be(RECORDOID), |
| 1095 | format_type_be(targetTypeId)), |
| 1096 | errdetail("Input has too many columns." ), |
| 1097 | parser_coercion_errposition(pstate, location, node))); |
| 1098 | |
| 1099 | ReleaseTupleDesc(tupdesc); |
| 1100 | |
| 1101 | rowexpr = makeNode(RowExpr); |
| 1102 | rowexpr->args = newargs; |
| 1103 | rowexpr->row_typeid = baseTypeId; |
| 1104 | rowexpr->row_format = cformat; |
| 1105 | rowexpr->colnames = NIL; /* not needed for named target type */ |
| 1106 | rowexpr->location = location; |
| 1107 | |
| 1108 | /* If target is a domain, apply constraints */ |
| 1109 | if (baseTypeId != targetTypeId) |
| 1110 | { |
| 1111 | rowexpr->row_format = COERCE_IMPLICIT_CAST; |
| 1112 | return coerce_to_domain((Node *) rowexpr, |
| 1113 | baseTypeId, baseTypeMod, |
| 1114 | targetTypeId, |
| 1115 | ccontext, cformat, location, |
| 1116 | false); |
| 1117 | } |
| 1118 | |
| 1119 | return (Node *) rowexpr; |
| 1120 | } |
| 1121 | |
| 1122 | /* |
| 1123 | * coerce_to_boolean() |
| 1124 | * Coerce an argument of a construct that requires boolean input |
| 1125 | * (AND, OR, NOT, etc). Also check that input is not a set. |
| 1126 | * |
| 1127 | * Returns the possibly-transformed node tree. |
| 1128 | * |
| 1129 | * As with coerce_type, pstate may be NULL if no special unknown-Param |
| 1130 | * processing is wanted. |
| 1131 | */ |
| 1132 | Node * |
| 1133 | coerce_to_boolean(ParseState *pstate, Node *node, |
| 1134 | const char *constructName) |
| 1135 | { |
| 1136 | Oid inputTypeId = exprType(node); |
| 1137 | |
| 1138 | if (inputTypeId != BOOLOID) |
| 1139 | { |
| 1140 | Node *newnode; |
| 1141 | |
| 1142 | newnode = coerce_to_target_type(pstate, node, inputTypeId, |
| 1143 | BOOLOID, -1, |
| 1144 | COERCION_ASSIGNMENT, |
| 1145 | COERCE_IMPLICIT_CAST, |
| 1146 | -1); |
| 1147 | if (newnode == NULL) |
| 1148 | ereport(ERROR, |
| 1149 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1150 | /* translator: first %s is name of a SQL construct, eg WHERE */ |
| 1151 | errmsg("argument of %s must be type %s, not type %s" , |
| 1152 | constructName, "boolean" , |
| 1153 | format_type_be(inputTypeId)), |
| 1154 | parser_errposition(pstate, exprLocation(node)))); |
| 1155 | node = newnode; |
| 1156 | } |
| 1157 | |
| 1158 | if (expression_returns_set(node)) |
| 1159 | ereport(ERROR, |
| 1160 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1161 | /* translator: %s is name of a SQL construct, eg WHERE */ |
| 1162 | errmsg("argument of %s must not return a set" , |
| 1163 | constructName), |
| 1164 | parser_errposition(pstate, exprLocation(node)))); |
| 1165 | |
| 1166 | return node; |
| 1167 | } |
| 1168 | |
| 1169 | /* |
| 1170 | * coerce_to_specific_type_typmod() |
| 1171 | * Coerce an argument of a construct that requires a specific data type, |
| 1172 | * with a specific typmod. Also check that input is not a set. |
| 1173 | * |
| 1174 | * Returns the possibly-transformed node tree. |
| 1175 | * |
| 1176 | * As with coerce_type, pstate may be NULL if no special unknown-Param |
| 1177 | * processing is wanted. |
| 1178 | */ |
| 1179 | Node * |
| 1180 | coerce_to_specific_type_typmod(ParseState *pstate, Node *node, |
| 1181 | Oid targetTypeId, int32 targetTypmod, |
| 1182 | const char *constructName) |
| 1183 | { |
| 1184 | Oid inputTypeId = exprType(node); |
| 1185 | |
| 1186 | if (inputTypeId != targetTypeId) |
| 1187 | { |
| 1188 | Node *newnode; |
| 1189 | |
| 1190 | newnode = coerce_to_target_type(pstate, node, inputTypeId, |
| 1191 | targetTypeId, targetTypmod, |
| 1192 | COERCION_ASSIGNMENT, |
| 1193 | COERCE_IMPLICIT_CAST, |
| 1194 | -1); |
| 1195 | if (newnode == NULL) |
| 1196 | ereport(ERROR, |
| 1197 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1198 | /* translator: first %s is name of a SQL construct, eg LIMIT */ |
| 1199 | errmsg("argument of %s must be type %s, not type %s" , |
| 1200 | constructName, |
| 1201 | format_type_be(targetTypeId), |
| 1202 | format_type_be(inputTypeId)), |
| 1203 | parser_errposition(pstate, exprLocation(node)))); |
| 1204 | node = newnode; |
| 1205 | } |
| 1206 | |
| 1207 | if (expression_returns_set(node)) |
| 1208 | ereport(ERROR, |
| 1209 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1210 | /* translator: %s is name of a SQL construct, eg LIMIT */ |
| 1211 | errmsg("argument of %s must not return a set" , |
| 1212 | constructName), |
| 1213 | parser_errposition(pstate, exprLocation(node)))); |
| 1214 | |
| 1215 | return node; |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * coerce_to_specific_type() |
| 1220 | * Coerce an argument of a construct that requires a specific data type. |
| 1221 | * Also check that input is not a set. |
| 1222 | * |
| 1223 | * Returns the possibly-transformed node tree. |
| 1224 | * |
| 1225 | * As with coerce_type, pstate may be NULL if no special unknown-Param |
| 1226 | * processing is wanted. |
| 1227 | */ |
| 1228 | Node * |
| 1229 | coerce_to_specific_type(ParseState *pstate, Node *node, |
| 1230 | Oid targetTypeId, |
| 1231 | const char *constructName) |
| 1232 | { |
| 1233 | return coerce_to_specific_type_typmod(pstate, node, |
| 1234 | targetTypeId, -1, |
| 1235 | constructName); |
| 1236 | } |
| 1237 | |
| 1238 | /* |
| 1239 | * parser_coercion_errposition - report coercion error location, if possible |
| 1240 | * |
| 1241 | * We prefer to point at the coercion request (CAST, ::, etc) if possible; |
| 1242 | * but there may be no such location in the case of an implicit coercion. |
| 1243 | * In that case point at the input expression. |
| 1244 | * |
| 1245 | * XXX possibly this is more generally useful than coercion errors; |
| 1246 | * if so, should rename and place with parser_errposition. |
| 1247 | */ |
| 1248 | int |
| 1249 | parser_coercion_errposition(ParseState *pstate, |
| 1250 | int coerce_location, |
| 1251 | Node *input_expr) |
| 1252 | { |
| 1253 | if (coerce_location >= 0) |
| 1254 | return parser_errposition(pstate, coerce_location); |
| 1255 | else |
| 1256 | return parser_errposition(pstate, exprLocation(input_expr)); |
| 1257 | } |
| 1258 | |
| 1259 | |
| 1260 | /* |
| 1261 | * select_common_type() |
| 1262 | * Determine the common supertype of a list of input expressions. |
| 1263 | * This is used for determining the output type of CASE, UNION, |
| 1264 | * and similar constructs. |
| 1265 | * |
| 1266 | * 'exprs' is a *nonempty* list of expressions. Note that earlier items |
| 1267 | * in the list will be preferred if there is doubt. |
| 1268 | * 'context' is a phrase to use in the error message if we fail to select |
| 1269 | * a usable type. Pass NULL to have the routine return InvalidOid |
| 1270 | * rather than throwing an error on failure. |
| 1271 | * 'which_expr': if not NULL, receives a pointer to the particular input |
| 1272 | * expression from which the result type was taken. |
| 1273 | */ |
| 1274 | Oid |
| 1275 | select_common_type(ParseState *pstate, List *exprs, const char *context, |
| 1276 | Node **which_expr) |
| 1277 | { |
| 1278 | Node *pexpr; |
| 1279 | Oid ptype; |
| 1280 | TYPCATEGORY pcategory; |
| 1281 | bool pispreferred; |
| 1282 | ListCell *lc; |
| 1283 | |
| 1284 | Assert(exprs != NIL); |
| 1285 | pexpr = (Node *) linitial(exprs); |
| 1286 | lc = lnext(list_head(exprs)); |
| 1287 | ptype = exprType(pexpr); |
| 1288 | |
| 1289 | /* |
| 1290 | * If all input types are valid and exactly the same, just pick that type. |
| 1291 | * This is the only way that we will resolve the result as being a domain |
| 1292 | * type; otherwise domains are smashed to their base types for comparison. |
| 1293 | */ |
| 1294 | if (ptype != UNKNOWNOID) |
| 1295 | { |
| 1296 | for_each_cell(lc, lc) |
| 1297 | { |
| 1298 | Node *nexpr = (Node *) lfirst(lc); |
| 1299 | Oid ntype = exprType(nexpr); |
| 1300 | |
| 1301 | if (ntype != ptype) |
| 1302 | break; |
| 1303 | } |
| 1304 | if (lc == NULL) /* got to the end of the list? */ |
| 1305 | { |
| 1306 | if (which_expr) |
| 1307 | *which_expr = pexpr; |
| 1308 | return ptype; |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | /* |
| 1313 | * Nope, so set up for the full algorithm. Note that at this point, lc |
| 1314 | * points to the first list item with type different from pexpr's; we need |
| 1315 | * not re-examine any items the previous loop advanced over. |
| 1316 | */ |
| 1317 | ptype = getBaseType(ptype); |
| 1318 | get_type_category_preferred(ptype, &pcategory, &pispreferred); |
| 1319 | |
| 1320 | for_each_cell(lc, lc) |
| 1321 | { |
| 1322 | Node *nexpr = (Node *) lfirst(lc); |
| 1323 | Oid ntype = getBaseType(exprType(nexpr)); |
| 1324 | |
| 1325 | /* move on to next one if no new information... */ |
| 1326 | if (ntype != UNKNOWNOID && ntype != ptype) |
| 1327 | { |
| 1328 | TYPCATEGORY ncategory; |
| 1329 | bool nispreferred; |
| 1330 | |
| 1331 | get_type_category_preferred(ntype, &ncategory, &nispreferred); |
| 1332 | if (ptype == UNKNOWNOID) |
| 1333 | { |
| 1334 | /* so far, only unknowns so take anything... */ |
| 1335 | pexpr = nexpr; |
| 1336 | ptype = ntype; |
| 1337 | pcategory = ncategory; |
| 1338 | pispreferred = nispreferred; |
| 1339 | } |
| 1340 | else if (ncategory != pcategory) |
| 1341 | { |
| 1342 | /* |
| 1343 | * both types in different categories? then not much hope... |
| 1344 | */ |
| 1345 | if (context == NULL) |
| 1346 | return InvalidOid; |
| 1347 | ereport(ERROR, |
| 1348 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1349 | /*------ |
| 1350 | translator: first %s is name of a SQL construct, eg CASE */ |
| 1351 | errmsg("%s types %s and %s cannot be matched" , |
| 1352 | context, |
| 1353 | format_type_be(ptype), |
| 1354 | format_type_be(ntype)), |
| 1355 | parser_errposition(pstate, exprLocation(nexpr)))); |
| 1356 | } |
| 1357 | else if (!pispreferred && |
| 1358 | can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) && |
| 1359 | !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT)) |
| 1360 | { |
| 1361 | /* |
| 1362 | * take new type if can coerce to it implicitly but not the |
| 1363 | * other way; but if we have a preferred type, stay on it. |
| 1364 | */ |
| 1365 | pexpr = nexpr; |
| 1366 | ptype = ntype; |
| 1367 | pcategory = ncategory; |
| 1368 | pispreferred = nispreferred; |
| 1369 | } |
| 1370 | } |
| 1371 | } |
| 1372 | |
| 1373 | /* |
| 1374 | * If all the inputs were UNKNOWN type --- ie, unknown-type literals --- |
| 1375 | * then resolve as type TEXT. This situation comes up with constructs |
| 1376 | * like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo' |
| 1377 | * UNION SELECT 'bar'; It might seem desirable to leave the construct's |
| 1378 | * output type as UNKNOWN, but that really doesn't work, because we'd |
| 1379 | * probably end up needing a runtime coercion from UNKNOWN to something |
| 1380 | * else, and we usually won't have it. We need to coerce the unknown |
| 1381 | * literals while they are still literals, so a decision has to be made |
| 1382 | * now. |
| 1383 | */ |
| 1384 | if (ptype == UNKNOWNOID) |
| 1385 | ptype = TEXTOID; |
| 1386 | |
| 1387 | if (which_expr) |
| 1388 | *which_expr = pexpr; |
| 1389 | return ptype; |
| 1390 | } |
| 1391 | |
| 1392 | /* |
| 1393 | * coerce_to_common_type() |
| 1394 | * Coerce an expression to the given type. |
| 1395 | * |
| 1396 | * This is used following select_common_type() to coerce the individual |
| 1397 | * expressions to the desired type. 'context' is a phrase to use in the |
| 1398 | * error message if we fail to coerce. |
| 1399 | * |
| 1400 | * As with coerce_type, pstate may be NULL if no special unknown-Param |
| 1401 | * processing is wanted. |
| 1402 | */ |
| 1403 | Node * |
| 1404 | coerce_to_common_type(ParseState *pstate, Node *node, |
| 1405 | Oid targetTypeId, const char *context) |
| 1406 | { |
| 1407 | Oid inputTypeId = exprType(node); |
| 1408 | |
| 1409 | if (inputTypeId == targetTypeId) |
| 1410 | return node; /* no work */ |
| 1411 | if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT)) |
| 1412 | node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1, |
| 1413 | COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); |
| 1414 | else |
| 1415 | ereport(ERROR, |
| 1416 | (errcode(ERRCODE_CANNOT_COERCE), |
| 1417 | /* translator: first %s is name of a SQL construct, eg CASE */ |
| 1418 | errmsg("%s could not convert type %s to %s" , |
| 1419 | context, |
| 1420 | format_type_be(inputTypeId), |
| 1421 | format_type_be(targetTypeId)), |
| 1422 | parser_errposition(pstate, exprLocation(node)))); |
| 1423 | return node; |
| 1424 | } |
| 1425 | |
| 1426 | /* |
| 1427 | * check_generic_type_consistency() |
| 1428 | * Are the actual arguments potentially compatible with a |
| 1429 | * polymorphic function? |
| 1430 | * |
| 1431 | * The argument consistency rules are: |
| 1432 | * |
| 1433 | * 1) All arguments declared ANYELEMENT must have the same datatype. |
| 1434 | * 2) All arguments declared ANYARRAY must have the same datatype, |
| 1435 | * which must be a varlena array type. |
| 1436 | * 3) All arguments declared ANYRANGE must have the same datatype, |
| 1437 | * which must be a range type. |
| 1438 | * 4) If there are arguments of both ANYELEMENT and ANYARRAY, make sure the |
| 1439 | * actual ANYELEMENT datatype is in fact the element type for the actual |
| 1440 | * ANYARRAY datatype. |
| 1441 | * 5) Similarly, if there are arguments of both ANYELEMENT and ANYRANGE, |
| 1442 | * make sure the actual ANYELEMENT datatype is in fact the subtype for |
| 1443 | * the actual ANYRANGE type. |
| 1444 | * 6) ANYENUM is treated the same as ANYELEMENT except that if it is used |
| 1445 | * (alone or in combination with plain ANYELEMENT), we add the extra |
| 1446 | * condition that the ANYELEMENT type must be an enum. |
| 1447 | * 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used, |
| 1448 | * we add the extra condition that the ANYELEMENT type must not be an array. |
| 1449 | * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but |
| 1450 | * is an extra restriction if not.) |
| 1451 | * |
| 1452 | * Domains over arrays match ANYARRAY, and are immediately flattened to their |
| 1453 | * base type. (Thus, for example, we will consider it a match if one ANYARRAY |
| 1454 | * argument is a domain over int4[] while another one is just int4[].) Also |
| 1455 | * notice that such a domain does *not* match ANYNONARRAY. |
| 1456 | * |
| 1457 | * Similarly, domains over ranges match ANYRANGE, and are immediately |
| 1458 | * flattened to their base type. |
| 1459 | * |
| 1460 | * Note that domains aren't currently considered to match ANYENUM, |
| 1461 | * even if their base type would match. |
| 1462 | * |
| 1463 | * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic |
| 1464 | * argument, assume it is okay. |
| 1465 | * |
| 1466 | * If an input is of type ANYARRAY (ie, we know it's an array, but not |
| 1467 | * what element type), we will accept it as a match to an argument declared |
| 1468 | * ANYARRAY, so long as we don't have to determine an element type --- |
| 1469 | * that is, so long as there is no use of ANYELEMENT. This is mostly for |
| 1470 | * backwards compatibility with the pre-7.4 behavior of ANYARRAY. |
| 1471 | * |
| 1472 | * We do not ereport here, but just return false if a rule is violated. |
| 1473 | */ |
| 1474 | bool |
| 1475 | check_generic_type_consistency(const Oid *actual_arg_types, |
| 1476 | const Oid *declared_arg_types, |
| 1477 | int nargs) |
| 1478 | { |
| 1479 | int j; |
| 1480 | Oid elem_typeid = InvalidOid; |
| 1481 | Oid array_typeid = InvalidOid; |
| 1482 | Oid array_typelem; |
| 1483 | Oid range_typeid = InvalidOid; |
| 1484 | Oid range_typelem; |
| 1485 | bool have_anyelement = false; |
| 1486 | bool have_anynonarray = false; |
| 1487 | bool have_anyenum = false; |
| 1488 | |
| 1489 | /* |
| 1490 | * Loop through the arguments to see if we have any that are polymorphic. |
| 1491 | * If so, require the actual types to be consistent. |
| 1492 | */ |
| 1493 | for (j = 0; j < nargs; j++) |
| 1494 | { |
| 1495 | Oid decl_type = declared_arg_types[j]; |
| 1496 | Oid actual_type = actual_arg_types[j]; |
| 1497 | |
| 1498 | if (decl_type == ANYELEMENTOID || |
| 1499 | decl_type == ANYNONARRAYOID || |
| 1500 | decl_type == ANYENUMOID) |
| 1501 | { |
| 1502 | have_anyelement = true; |
| 1503 | if (decl_type == ANYNONARRAYOID) |
| 1504 | have_anynonarray = true; |
| 1505 | else if (decl_type == ANYENUMOID) |
| 1506 | have_anyenum = true; |
| 1507 | if (actual_type == UNKNOWNOID) |
| 1508 | continue; |
| 1509 | if (OidIsValid(elem_typeid) && actual_type != elem_typeid) |
| 1510 | return false; |
| 1511 | elem_typeid = actual_type; |
| 1512 | } |
| 1513 | else if (decl_type == ANYARRAYOID) |
| 1514 | { |
| 1515 | if (actual_type == UNKNOWNOID) |
| 1516 | continue; |
| 1517 | actual_type = getBaseType(actual_type); /* flatten domains */ |
| 1518 | if (OidIsValid(array_typeid) && actual_type != array_typeid) |
| 1519 | return false; |
| 1520 | array_typeid = actual_type; |
| 1521 | } |
| 1522 | else if (decl_type == ANYRANGEOID) |
| 1523 | { |
| 1524 | if (actual_type == UNKNOWNOID) |
| 1525 | continue; |
| 1526 | actual_type = getBaseType(actual_type); /* flatten domains */ |
| 1527 | if (OidIsValid(range_typeid) && actual_type != range_typeid) |
| 1528 | return false; |
| 1529 | range_typeid = actual_type; |
| 1530 | } |
| 1531 | } |
| 1532 | |
| 1533 | /* Get the element type based on the array type, if we have one */ |
| 1534 | if (OidIsValid(array_typeid)) |
| 1535 | { |
| 1536 | if (array_typeid == ANYARRAYOID) |
| 1537 | { |
| 1538 | /* Special case for ANYARRAY input: okay iff no ANYELEMENT */ |
| 1539 | if (have_anyelement) |
| 1540 | return false; |
| 1541 | return true; |
| 1542 | } |
| 1543 | |
| 1544 | array_typelem = get_element_type(array_typeid); |
| 1545 | if (!OidIsValid(array_typelem)) |
| 1546 | return false; /* should be an array, but isn't */ |
| 1547 | |
| 1548 | if (!OidIsValid(elem_typeid)) |
| 1549 | { |
| 1550 | /* |
| 1551 | * if we don't have an element type yet, use the one we just got |
| 1552 | */ |
| 1553 | elem_typeid = array_typelem; |
| 1554 | } |
| 1555 | else if (array_typelem != elem_typeid) |
| 1556 | { |
| 1557 | /* otherwise, they better match */ |
| 1558 | return false; |
| 1559 | } |
| 1560 | } |
| 1561 | |
| 1562 | /* Get the element type based on the range type, if we have one */ |
| 1563 | if (OidIsValid(range_typeid)) |
| 1564 | { |
| 1565 | range_typelem = get_range_subtype(range_typeid); |
| 1566 | if (!OidIsValid(range_typelem)) |
| 1567 | return false; /* should be a range, but isn't */ |
| 1568 | |
| 1569 | if (!OidIsValid(elem_typeid)) |
| 1570 | { |
| 1571 | /* |
| 1572 | * if we don't have an element type yet, use the one we just got |
| 1573 | */ |
| 1574 | elem_typeid = range_typelem; |
| 1575 | } |
| 1576 | else if (range_typelem != elem_typeid) |
| 1577 | { |
| 1578 | /* otherwise, they better match */ |
| 1579 | return false; |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | if (have_anynonarray) |
| 1584 | { |
| 1585 | /* require the element type to not be an array or domain over array */ |
| 1586 | if (type_is_array_domain(elem_typeid)) |
| 1587 | return false; |
| 1588 | } |
| 1589 | |
| 1590 | if (have_anyenum) |
| 1591 | { |
| 1592 | /* require the element type to be an enum */ |
| 1593 | if (!type_is_enum(elem_typeid)) |
| 1594 | return false; |
| 1595 | } |
| 1596 | |
| 1597 | /* Looks valid */ |
| 1598 | return true; |
| 1599 | } |
| 1600 | |
| 1601 | /* |
| 1602 | * enforce_generic_type_consistency() |
| 1603 | * Make sure a polymorphic function is legally callable, and |
| 1604 | * deduce actual argument and result types. |
| 1605 | * |
| 1606 | * If any polymorphic pseudotype is used in a function's arguments or |
| 1607 | * return type, we make sure the actual data types are consistent with |
| 1608 | * each other. The argument consistency rules are shown above for |
| 1609 | * check_generic_type_consistency(). |
| 1610 | * |
| 1611 | * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic |
| 1612 | * argument, we attempt to deduce the actual type it should have. If |
| 1613 | * successful, we alter that position of declared_arg_types[] so that |
| 1614 | * make_fn_arguments will coerce the literal to the right thing. |
| 1615 | * |
| 1616 | * Rules are applied to the function's return type (possibly altering it) |
| 1617 | * if it is declared as a polymorphic type: |
| 1618 | * |
| 1619 | * 1) If return type is ANYARRAY, and any argument is ANYARRAY, use the |
| 1620 | * argument's actual type as the function's return type. |
| 1621 | * 2) Similarly, if return type is ANYRANGE, and any argument is ANYRANGE, |
| 1622 | * use the argument's actual type as the function's return type. |
| 1623 | * 3) If return type is ANYARRAY, no argument is ANYARRAY, but any argument is |
| 1624 | * ANYELEMENT, use the actual type of the argument to determine the |
| 1625 | * function's return type, i.e. the element type's corresponding array |
| 1626 | * type. (Note: similar behavior does not exist for ANYRANGE, because it's |
| 1627 | * impossible to determine the range type from the subtype alone.) |
| 1628 | * 4) If return type is ANYARRAY, but no argument is ANYARRAY or ANYELEMENT, |
| 1629 | * generate an error. Similarly, if return type is ANYRANGE, but no |
| 1630 | * argument is ANYRANGE, generate an error. (These conditions are |
| 1631 | * prevented by CREATE FUNCTION and therefore are not expected here.) |
| 1632 | * 5) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the |
| 1633 | * argument's actual type as the function's return type. |
| 1634 | * 6) If return type is ANYELEMENT, no argument is ANYELEMENT, but any argument |
| 1635 | * is ANYARRAY or ANYRANGE, use the actual type of the argument to determine |
| 1636 | * the function's return type, i.e. the array type's corresponding element |
| 1637 | * type or the range type's corresponding subtype (or both, in which case |
| 1638 | * they must match). |
| 1639 | * 7) If return type is ANYELEMENT, no argument is ANYELEMENT, ANYARRAY, or |
| 1640 | * ANYRANGE, generate an error. (This condition is prevented by CREATE |
| 1641 | * FUNCTION and therefore is not expected here.) |
| 1642 | * 8) ANYENUM is treated the same as ANYELEMENT except that if it is used |
| 1643 | * (alone or in combination with plain ANYELEMENT), we add the extra |
| 1644 | * condition that the ANYELEMENT type must be an enum. |
| 1645 | * 9) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used, |
| 1646 | * we add the extra condition that the ANYELEMENT type must not be an array. |
| 1647 | * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but |
| 1648 | * is an extra restriction if not.) |
| 1649 | * |
| 1650 | * Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments, |
| 1651 | * respectively, and are immediately flattened to their base type. (In |
| 1652 | * particular, if the return type is also ANYARRAY or ANYRANGE, we'll set it |
| 1653 | * to the base type not the domain type.) |
| 1654 | * |
| 1655 | * When allow_poly is false, we are not expecting any of the actual_arg_types |
| 1656 | * to be polymorphic, and we should not return a polymorphic result type |
| 1657 | * either. When allow_poly is true, it is okay to have polymorphic "actual" |
| 1658 | * arg types, and we can return ANYARRAY, ANYRANGE, or ANYELEMENT as the |
| 1659 | * result. (This case is currently used only to check compatibility of an |
| 1660 | * aggregate's declaration with the underlying transfn.) |
| 1661 | * |
| 1662 | * A special case is that we could see ANYARRAY as an actual_arg_type even |
| 1663 | * when allow_poly is false (this is possible only because pg_statistic has |
| 1664 | * columns shown as anyarray in the catalogs). We allow this to match a |
| 1665 | * declared ANYARRAY argument, but only if there is no ANYELEMENT argument |
| 1666 | * or result (since we can't determine a specific element type to match to |
| 1667 | * ANYELEMENT). Note this means that functions taking ANYARRAY had better |
| 1668 | * behave sanely if applied to the pg_statistic columns; they can't just |
| 1669 | * assume that successive inputs are of the same actual element type. |
| 1670 | */ |
| 1671 | Oid |
| 1672 | enforce_generic_type_consistency(const Oid *actual_arg_types, |
| 1673 | Oid *declared_arg_types, |
| 1674 | int nargs, |
| 1675 | Oid rettype, |
| 1676 | bool allow_poly) |
| 1677 | { |
| 1678 | int j; |
| 1679 | bool have_generics = false; |
| 1680 | bool have_unknowns = false; |
| 1681 | Oid elem_typeid = InvalidOid; |
| 1682 | Oid array_typeid = InvalidOid; |
| 1683 | Oid range_typeid = InvalidOid; |
| 1684 | Oid array_typelem; |
| 1685 | Oid range_typelem; |
| 1686 | bool have_anyelement = (rettype == ANYELEMENTOID || |
| 1687 | rettype == ANYNONARRAYOID || |
| 1688 | rettype == ANYENUMOID); |
| 1689 | bool have_anynonarray = (rettype == ANYNONARRAYOID); |
| 1690 | bool have_anyenum = (rettype == ANYENUMOID); |
| 1691 | |
| 1692 | /* |
| 1693 | * Loop through the arguments to see if we have any that are polymorphic. |
| 1694 | * If so, require the actual types to be consistent. |
| 1695 | */ |
| 1696 | for (j = 0; j < nargs; j++) |
| 1697 | { |
| 1698 | Oid decl_type = declared_arg_types[j]; |
| 1699 | Oid actual_type = actual_arg_types[j]; |
| 1700 | |
| 1701 | if (decl_type == ANYELEMENTOID || |
| 1702 | decl_type == ANYNONARRAYOID || |
| 1703 | decl_type == ANYENUMOID) |
| 1704 | { |
| 1705 | have_generics = have_anyelement = true; |
| 1706 | if (decl_type == ANYNONARRAYOID) |
| 1707 | have_anynonarray = true; |
| 1708 | else if (decl_type == ANYENUMOID) |
| 1709 | have_anyenum = true; |
| 1710 | if (actual_type == UNKNOWNOID) |
| 1711 | { |
| 1712 | have_unknowns = true; |
| 1713 | continue; |
| 1714 | } |
| 1715 | if (allow_poly && decl_type == actual_type) |
| 1716 | continue; /* no new information here */ |
| 1717 | if (OidIsValid(elem_typeid) && actual_type != elem_typeid) |
| 1718 | ereport(ERROR, |
| 1719 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1720 | errmsg("arguments declared \"anyelement\" are not all alike" ), |
| 1721 | errdetail("%s versus %s" , |
| 1722 | format_type_be(elem_typeid), |
| 1723 | format_type_be(actual_type)))); |
| 1724 | elem_typeid = actual_type; |
| 1725 | } |
| 1726 | else if (decl_type == ANYARRAYOID) |
| 1727 | { |
| 1728 | have_generics = true; |
| 1729 | if (actual_type == UNKNOWNOID) |
| 1730 | { |
| 1731 | have_unknowns = true; |
| 1732 | continue; |
| 1733 | } |
| 1734 | if (allow_poly && decl_type == actual_type) |
| 1735 | continue; /* no new information here */ |
| 1736 | actual_type = getBaseType(actual_type); /* flatten domains */ |
| 1737 | if (OidIsValid(array_typeid) && actual_type != array_typeid) |
| 1738 | ereport(ERROR, |
| 1739 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1740 | errmsg("arguments declared \"anyarray\" are not all alike" ), |
| 1741 | errdetail("%s versus %s" , |
| 1742 | format_type_be(array_typeid), |
| 1743 | format_type_be(actual_type)))); |
| 1744 | array_typeid = actual_type; |
| 1745 | } |
| 1746 | else if (decl_type == ANYRANGEOID) |
| 1747 | { |
| 1748 | have_generics = true; |
| 1749 | if (actual_type == UNKNOWNOID) |
| 1750 | { |
| 1751 | have_unknowns = true; |
| 1752 | continue; |
| 1753 | } |
| 1754 | if (allow_poly && decl_type == actual_type) |
| 1755 | continue; /* no new information here */ |
| 1756 | actual_type = getBaseType(actual_type); /* flatten domains */ |
| 1757 | if (OidIsValid(range_typeid) && actual_type != range_typeid) |
| 1758 | ereport(ERROR, |
| 1759 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1760 | errmsg("arguments declared \"anyrange\" are not all alike" ), |
| 1761 | errdetail("%s versus %s" , |
| 1762 | format_type_be(range_typeid), |
| 1763 | format_type_be(actual_type)))); |
| 1764 | range_typeid = actual_type; |
| 1765 | } |
| 1766 | } |
| 1767 | |
| 1768 | /* |
| 1769 | * Fast Track: if none of the arguments are polymorphic, return the |
| 1770 | * unmodified rettype. We assume it can't be polymorphic either. |
| 1771 | */ |
| 1772 | if (!have_generics) |
| 1773 | return rettype; |
| 1774 | |
| 1775 | /* Get the element type based on the array type, if we have one */ |
| 1776 | if (OidIsValid(array_typeid)) |
| 1777 | { |
| 1778 | if (array_typeid == ANYARRAYOID && !have_anyelement) |
| 1779 | { |
| 1780 | /* Special case for ANYARRAY input: okay iff no ANYELEMENT */ |
| 1781 | array_typelem = ANYELEMENTOID; |
| 1782 | } |
| 1783 | else |
| 1784 | { |
| 1785 | array_typelem = get_element_type(array_typeid); |
| 1786 | if (!OidIsValid(array_typelem)) |
| 1787 | ereport(ERROR, |
| 1788 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1789 | errmsg("argument declared %s is not an array but type %s" , |
| 1790 | "anyarray" , format_type_be(array_typeid)))); |
| 1791 | } |
| 1792 | |
| 1793 | if (!OidIsValid(elem_typeid)) |
| 1794 | { |
| 1795 | /* |
| 1796 | * if we don't have an element type yet, use the one we just got |
| 1797 | */ |
| 1798 | elem_typeid = array_typelem; |
| 1799 | } |
| 1800 | else if (array_typelem != elem_typeid) |
| 1801 | { |
| 1802 | /* otherwise, they better match */ |
| 1803 | ereport(ERROR, |
| 1804 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1805 | errmsg("argument declared %s is not consistent with argument declared %s" , |
| 1806 | "anyarray" , "anyelement" ), |
| 1807 | errdetail("%s versus %s" , |
| 1808 | format_type_be(array_typeid), |
| 1809 | format_type_be(elem_typeid)))); |
| 1810 | } |
| 1811 | } |
| 1812 | |
| 1813 | /* Get the element type based on the range type, if we have one */ |
| 1814 | if (OidIsValid(range_typeid)) |
| 1815 | { |
| 1816 | if (range_typeid == ANYRANGEOID && !have_anyelement) |
| 1817 | { |
| 1818 | /* Special case for ANYRANGE input: okay iff no ANYELEMENT */ |
| 1819 | range_typelem = ANYELEMENTOID; |
| 1820 | } |
| 1821 | else |
| 1822 | { |
| 1823 | range_typelem = get_range_subtype(range_typeid); |
| 1824 | if (!OidIsValid(range_typelem)) |
| 1825 | ereport(ERROR, |
| 1826 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1827 | errmsg("argument declared %s is not a range type but type %s" , |
| 1828 | "anyrange" , |
| 1829 | format_type_be(range_typeid)))); |
| 1830 | } |
| 1831 | |
| 1832 | if (!OidIsValid(elem_typeid)) |
| 1833 | { |
| 1834 | /* |
| 1835 | * if we don't have an element type yet, use the one we just got |
| 1836 | */ |
| 1837 | elem_typeid = range_typelem; |
| 1838 | } |
| 1839 | else if (range_typelem != elem_typeid) |
| 1840 | { |
| 1841 | /* otherwise, they better match */ |
| 1842 | ereport(ERROR, |
| 1843 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1844 | errmsg("argument declared %s is not consistent with argument declared %s" , |
| 1845 | "anyrange" , "anyelement" ), |
| 1846 | errdetail("%s versus %s" , |
| 1847 | format_type_be(range_typeid), |
| 1848 | format_type_be(elem_typeid)))); |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | if (!OidIsValid(elem_typeid)) |
| 1853 | { |
| 1854 | if (allow_poly) |
| 1855 | { |
| 1856 | elem_typeid = ANYELEMENTOID; |
| 1857 | array_typeid = ANYARRAYOID; |
| 1858 | range_typeid = ANYRANGEOID; |
| 1859 | } |
| 1860 | else |
| 1861 | { |
| 1862 | /* Only way to get here is if all the generic args are UNKNOWN */ |
| 1863 | ereport(ERROR, |
| 1864 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1865 | errmsg("could not determine polymorphic type because input has type %s" , |
| 1866 | "unknown" ))); |
| 1867 | } |
| 1868 | } |
| 1869 | |
| 1870 | if (have_anynonarray && elem_typeid != ANYELEMENTOID) |
| 1871 | { |
| 1872 | /* require the element type to not be an array or domain over array */ |
| 1873 | if (type_is_array_domain(elem_typeid)) |
| 1874 | ereport(ERROR, |
| 1875 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1876 | errmsg("type matched to anynonarray is an array type: %s" , |
| 1877 | format_type_be(elem_typeid)))); |
| 1878 | } |
| 1879 | |
| 1880 | if (have_anyenum && elem_typeid != ANYELEMENTOID) |
| 1881 | { |
| 1882 | /* require the element type to be an enum */ |
| 1883 | if (!type_is_enum(elem_typeid)) |
| 1884 | ereport(ERROR, |
| 1885 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1886 | errmsg("type matched to anyenum is not an enum type: %s" , |
| 1887 | format_type_be(elem_typeid)))); |
| 1888 | } |
| 1889 | |
| 1890 | /* |
| 1891 | * If we had any unknown inputs, re-scan to assign correct types |
| 1892 | */ |
| 1893 | if (have_unknowns) |
| 1894 | { |
| 1895 | for (j = 0; j < nargs; j++) |
| 1896 | { |
| 1897 | Oid decl_type = declared_arg_types[j]; |
| 1898 | Oid actual_type = actual_arg_types[j]; |
| 1899 | |
| 1900 | if (actual_type != UNKNOWNOID) |
| 1901 | continue; |
| 1902 | |
| 1903 | if (decl_type == ANYELEMENTOID || |
| 1904 | decl_type == ANYNONARRAYOID || |
| 1905 | decl_type == ANYENUMOID) |
| 1906 | declared_arg_types[j] = elem_typeid; |
| 1907 | else if (decl_type == ANYARRAYOID) |
| 1908 | { |
| 1909 | if (!OidIsValid(array_typeid)) |
| 1910 | { |
| 1911 | array_typeid = get_array_type(elem_typeid); |
| 1912 | if (!OidIsValid(array_typeid)) |
| 1913 | ereport(ERROR, |
| 1914 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 1915 | errmsg("could not find array type for data type %s" , |
| 1916 | format_type_be(elem_typeid)))); |
| 1917 | } |
| 1918 | declared_arg_types[j] = array_typeid; |
| 1919 | } |
| 1920 | else if (decl_type == ANYRANGEOID) |
| 1921 | { |
| 1922 | if (!OidIsValid(range_typeid)) |
| 1923 | { |
| 1924 | ereport(ERROR, |
| 1925 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 1926 | errmsg("could not find range type for data type %s" , |
| 1927 | format_type_be(elem_typeid)))); |
| 1928 | } |
| 1929 | declared_arg_types[j] = range_typeid; |
| 1930 | } |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | /* if we return ANYARRAY use the appropriate argument type */ |
| 1935 | if (rettype == ANYARRAYOID) |
| 1936 | { |
| 1937 | if (!OidIsValid(array_typeid)) |
| 1938 | { |
| 1939 | array_typeid = get_array_type(elem_typeid); |
| 1940 | if (!OidIsValid(array_typeid)) |
| 1941 | ereport(ERROR, |
| 1942 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 1943 | errmsg("could not find array type for data type %s" , |
| 1944 | format_type_be(elem_typeid)))); |
| 1945 | } |
| 1946 | return array_typeid; |
| 1947 | } |
| 1948 | |
| 1949 | /* if we return ANYRANGE use the appropriate argument type */ |
| 1950 | if (rettype == ANYRANGEOID) |
| 1951 | { |
| 1952 | if (!OidIsValid(range_typeid)) |
| 1953 | { |
| 1954 | ereport(ERROR, |
| 1955 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 1956 | errmsg("could not find range type for data type %s" , |
| 1957 | format_type_be(elem_typeid)))); |
| 1958 | } |
| 1959 | return range_typeid; |
| 1960 | } |
| 1961 | |
| 1962 | /* if we return ANYELEMENT use the appropriate argument type */ |
| 1963 | if (rettype == ANYELEMENTOID || |
| 1964 | rettype == ANYNONARRAYOID || |
| 1965 | rettype == ANYENUMOID) |
| 1966 | return elem_typeid; |
| 1967 | |
| 1968 | /* we don't return a generic type; send back the original return type */ |
| 1969 | return rettype; |
| 1970 | } |
| 1971 | |
| 1972 | /* |
| 1973 | * resolve_generic_type() |
| 1974 | * Deduce an individual actual datatype on the assumption that |
| 1975 | * the rules for polymorphic types are being followed. |
| 1976 | * |
| 1977 | * declared_type is the declared datatype we want to resolve. |
| 1978 | * context_actual_type is the actual input datatype to some argument |
| 1979 | * that has declared datatype context_declared_type. |
| 1980 | * |
| 1981 | * If declared_type isn't polymorphic, we just return it. Otherwise, |
| 1982 | * context_declared_type must be polymorphic, and we deduce the correct |
| 1983 | * return type based on the relationship of the two polymorphic types. |
| 1984 | */ |
| 1985 | Oid |
| 1986 | resolve_generic_type(Oid declared_type, |
| 1987 | Oid context_actual_type, |
| 1988 | Oid context_declared_type) |
| 1989 | { |
| 1990 | if (declared_type == ANYARRAYOID) |
| 1991 | { |
| 1992 | if (context_declared_type == ANYARRAYOID) |
| 1993 | { |
| 1994 | /* |
| 1995 | * Use actual type, but it must be an array; or if it's a domain |
| 1996 | * over array, use the base array type. |
| 1997 | */ |
| 1998 | Oid context_base_type = getBaseType(context_actual_type); |
| 1999 | Oid array_typelem = get_element_type(context_base_type); |
| 2000 | |
| 2001 | if (!OidIsValid(array_typelem)) |
| 2002 | ereport(ERROR, |
| 2003 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2004 | errmsg("argument declared %s is not an array but type %s" , |
| 2005 | "anyarray" , format_type_be(context_base_type)))); |
| 2006 | return context_base_type; |
| 2007 | } |
| 2008 | else if (context_declared_type == ANYELEMENTOID || |
| 2009 | context_declared_type == ANYNONARRAYOID || |
| 2010 | context_declared_type == ANYENUMOID || |
| 2011 | context_declared_type == ANYRANGEOID) |
| 2012 | { |
| 2013 | /* Use the array type corresponding to actual type */ |
| 2014 | Oid array_typeid = get_array_type(context_actual_type); |
| 2015 | |
| 2016 | if (!OidIsValid(array_typeid)) |
| 2017 | ereport(ERROR, |
| 2018 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 2019 | errmsg("could not find array type for data type %s" , |
| 2020 | format_type_be(context_actual_type)))); |
| 2021 | return array_typeid; |
| 2022 | } |
| 2023 | } |
| 2024 | else if (declared_type == ANYELEMENTOID || |
| 2025 | declared_type == ANYNONARRAYOID || |
| 2026 | declared_type == ANYENUMOID || |
| 2027 | declared_type == ANYRANGEOID) |
| 2028 | { |
| 2029 | if (context_declared_type == ANYARRAYOID) |
| 2030 | { |
| 2031 | /* Use the element type corresponding to actual type */ |
| 2032 | Oid context_base_type = getBaseType(context_actual_type); |
| 2033 | Oid array_typelem = get_element_type(context_base_type); |
| 2034 | |
| 2035 | if (!OidIsValid(array_typelem)) |
| 2036 | ereport(ERROR, |
| 2037 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2038 | errmsg("argument declared %s is not an array but type %s" , |
| 2039 | "anyarray" , format_type_be(context_base_type)))); |
| 2040 | return array_typelem; |
| 2041 | } |
| 2042 | else if (context_declared_type == ANYRANGEOID) |
| 2043 | { |
| 2044 | /* Use the element type corresponding to actual type */ |
| 2045 | Oid context_base_type = getBaseType(context_actual_type); |
| 2046 | Oid range_typelem = get_range_subtype(context_base_type); |
| 2047 | |
| 2048 | if (!OidIsValid(range_typelem)) |
| 2049 | ereport(ERROR, |
| 2050 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 2051 | errmsg("argument declared %s is not a range type but type %s" , |
| 2052 | "anyrange" , format_type_be(context_base_type)))); |
| 2053 | return range_typelem; |
| 2054 | } |
| 2055 | else if (context_declared_type == ANYELEMENTOID || |
| 2056 | context_declared_type == ANYNONARRAYOID || |
| 2057 | context_declared_type == ANYENUMOID) |
| 2058 | { |
| 2059 | /* Use the actual type; it doesn't matter if array or not */ |
| 2060 | return context_actual_type; |
| 2061 | } |
| 2062 | } |
| 2063 | else |
| 2064 | { |
| 2065 | /* declared_type isn't polymorphic, so return it as-is */ |
| 2066 | return declared_type; |
| 2067 | } |
| 2068 | /* If we get here, declared_type is polymorphic and context isn't */ |
| 2069 | /* NB: this is a calling-code logic error, not a user error */ |
| 2070 | elog(ERROR, "could not determine polymorphic type because context isn't polymorphic" ); |
| 2071 | return InvalidOid; /* keep compiler quiet */ |
| 2072 | } |
| 2073 | |
| 2074 | |
| 2075 | /* TypeCategory() |
| 2076 | * Assign a category to the specified type OID. |
| 2077 | * |
| 2078 | * NB: this must not return TYPCATEGORY_INVALID. |
| 2079 | */ |
| 2080 | TYPCATEGORY |
| 2081 | TypeCategory(Oid type) |
| 2082 | { |
| 2083 | char typcategory; |
| 2084 | bool typispreferred; |
| 2085 | |
| 2086 | get_type_category_preferred(type, &typcategory, &typispreferred); |
| 2087 | Assert(typcategory != TYPCATEGORY_INVALID); |
| 2088 | return (TYPCATEGORY) typcategory; |
| 2089 | } |
| 2090 | |
| 2091 | |
| 2092 | /* IsPreferredType() |
| 2093 | * Check if this type is a preferred type for the given category. |
| 2094 | * |
| 2095 | * If category is TYPCATEGORY_INVALID, then we'll return true for preferred |
| 2096 | * types of any category; otherwise, only for preferred types of that |
| 2097 | * category. |
| 2098 | */ |
| 2099 | bool |
| 2100 | IsPreferredType(TYPCATEGORY category, Oid type) |
| 2101 | { |
| 2102 | char typcategory; |
| 2103 | bool typispreferred; |
| 2104 | |
| 2105 | get_type_category_preferred(type, &typcategory, &typispreferred); |
| 2106 | if (category == typcategory || category == TYPCATEGORY_INVALID) |
| 2107 | return typispreferred; |
| 2108 | else |
| 2109 | return false; |
| 2110 | } |
| 2111 | |
| 2112 | |
| 2113 | /* IsBinaryCoercible() |
| 2114 | * Check if srctype is binary-coercible to targettype. |
| 2115 | * |
| 2116 | * This notion allows us to cheat and directly exchange values without |
| 2117 | * going through the trouble of calling a conversion function. Note that |
| 2118 | * in general, this should only be an implementation shortcut. Before 7.4, |
| 2119 | * this was also used as a heuristic for resolving overloaded functions and |
| 2120 | * operators, but that's basically a bad idea. |
| 2121 | * |
| 2122 | * As of 7.3, binary coercibility isn't hardwired into the code anymore. |
| 2123 | * We consider two types binary-coercible if there is an implicitly |
| 2124 | * invokable, no-function-needed pg_cast entry. Also, a domain is always |
| 2125 | * binary-coercible to its base type, though *not* vice versa (in the other |
| 2126 | * direction, one must apply domain constraint checks before accepting the |
| 2127 | * value as legitimate). We also need to special-case various polymorphic |
| 2128 | * types. |
| 2129 | * |
| 2130 | * This function replaces IsBinaryCompatible(), which was an inherently |
| 2131 | * symmetric test. Since the pg_cast entries aren't necessarily symmetric, |
| 2132 | * the order of the operands is now significant. |
| 2133 | */ |
| 2134 | bool |
| 2135 | IsBinaryCoercible(Oid srctype, Oid targettype) |
| 2136 | { |
| 2137 | HeapTuple tuple; |
| 2138 | Form_pg_cast castForm; |
| 2139 | bool result; |
| 2140 | |
| 2141 | /* Fast path if same type */ |
| 2142 | if (srctype == targettype) |
| 2143 | return true; |
| 2144 | |
| 2145 | /* Anything is coercible to ANY or ANYELEMENT */ |
| 2146 | if (targettype == ANYOID || targettype == ANYELEMENTOID) |
| 2147 | return true; |
| 2148 | |
| 2149 | /* If srctype is a domain, reduce to its base type */ |
| 2150 | if (OidIsValid(srctype)) |
| 2151 | srctype = getBaseType(srctype); |
| 2152 | |
| 2153 | /* Somewhat-fast path for domain -> base type case */ |
| 2154 | if (srctype == targettype) |
| 2155 | return true; |
| 2156 | |
| 2157 | /* Also accept any array type as coercible to ANYARRAY */ |
| 2158 | if (targettype == ANYARRAYOID) |
| 2159 | if (type_is_array(srctype)) |
| 2160 | return true; |
| 2161 | |
| 2162 | /* Also accept any non-array type as coercible to ANYNONARRAY */ |
| 2163 | if (targettype == ANYNONARRAYOID) |
| 2164 | if (!type_is_array(srctype)) |
| 2165 | return true; |
| 2166 | |
| 2167 | /* Also accept any enum type as coercible to ANYENUM */ |
| 2168 | if (targettype == ANYENUMOID) |
| 2169 | if (type_is_enum(srctype)) |
| 2170 | return true; |
| 2171 | |
| 2172 | /* Also accept any range type as coercible to ANYRANGE */ |
| 2173 | if (targettype == ANYRANGEOID) |
| 2174 | if (type_is_range(srctype)) |
| 2175 | return true; |
| 2176 | |
| 2177 | /* Also accept any composite type as coercible to RECORD */ |
| 2178 | if (targettype == RECORDOID) |
| 2179 | if (ISCOMPLEX(srctype)) |
| 2180 | return true; |
| 2181 | |
| 2182 | /* Also accept any composite array type as coercible to RECORD[] */ |
| 2183 | if (targettype == RECORDARRAYOID) |
| 2184 | if (is_complex_array(srctype)) |
| 2185 | return true; |
| 2186 | |
| 2187 | /* Else look in pg_cast */ |
| 2188 | tuple = SearchSysCache2(CASTSOURCETARGET, |
| 2189 | ObjectIdGetDatum(srctype), |
| 2190 | ObjectIdGetDatum(targettype)); |
| 2191 | if (!HeapTupleIsValid(tuple)) |
| 2192 | return false; /* no cast */ |
| 2193 | castForm = (Form_pg_cast) GETSTRUCT(tuple); |
| 2194 | |
| 2195 | result = (castForm->castmethod == COERCION_METHOD_BINARY && |
| 2196 | castForm->castcontext == COERCION_CODE_IMPLICIT); |
| 2197 | |
| 2198 | ReleaseSysCache(tuple); |
| 2199 | |
| 2200 | return result; |
| 2201 | } |
| 2202 | |
| 2203 | |
| 2204 | /* |
| 2205 | * find_coercion_pathway |
| 2206 | * Look for a coercion pathway between two types. |
| 2207 | * |
| 2208 | * Currently, this deals only with scalar-type cases; it does not consider |
| 2209 | * polymorphic types nor casts between composite types. (Perhaps fold |
| 2210 | * those in someday?) |
| 2211 | * |
| 2212 | * ccontext determines the set of available casts. |
| 2213 | * |
| 2214 | * The possible result codes are: |
| 2215 | * COERCION_PATH_NONE: failed to find any coercion pathway |
| 2216 | * *funcid is set to InvalidOid |
| 2217 | * COERCION_PATH_FUNC: apply the coercion function returned in *funcid |
| 2218 | * COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed |
| 2219 | * *funcid is set to InvalidOid |
| 2220 | * COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node |
| 2221 | * *funcid is set to InvalidOid |
| 2222 | * COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node |
| 2223 | * *funcid is set to InvalidOid |
| 2224 | * |
| 2225 | * Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is |
| 2226 | * needed to do the coercion; if the target is a domain then we may need to |
| 2227 | * apply domain constraint checking. If you want to check for a zero-effort |
| 2228 | * conversion then use IsBinaryCoercible(). |
| 2229 | */ |
| 2230 | CoercionPathType |
| 2231 | find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, |
| 2232 | CoercionContext ccontext, |
| 2233 | Oid *funcid) |
| 2234 | { |
| 2235 | CoercionPathType result = COERCION_PATH_NONE; |
| 2236 | HeapTuple tuple; |
| 2237 | |
| 2238 | *funcid = InvalidOid; |
| 2239 | |
| 2240 | /* Perhaps the types are domains; if so, look at their base types */ |
| 2241 | if (OidIsValid(sourceTypeId)) |
| 2242 | sourceTypeId = getBaseType(sourceTypeId); |
| 2243 | if (OidIsValid(targetTypeId)) |
| 2244 | targetTypeId = getBaseType(targetTypeId); |
| 2245 | |
| 2246 | /* Domains are always coercible to and from their base type */ |
| 2247 | if (sourceTypeId == targetTypeId) |
| 2248 | return COERCION_PATH_RELABELTYPE; |
| 2249 | |
| 2250 | /* Look in pg_cast */ |
| 2251 | tuple = SearchSysCache2(CASTSOURCETARGET, |
| 2252 | ObjectIdGetDatum(sourceTypeId), |
| 2253 | ObjectIdGetDatum(targetTypeId)); |
| 2254 | |
| 2255 | if (HeapTupleIsValid(tuple)) |
| 2256 | { |
| 2257 | Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple); |
| 2258 | CoercionContext castcontext; |
| 2259 | |
| 2260 | /* convert char value for castcontext to CoercionContext enum */ |
| 2261 | switch (castForm->castcontext) |
| 2262 | { |
| 2263 | case COERCION_CODE_IMPLICIT: |
| 2264 | castcontext = COERCION_IMPLICIT; |
| 2265 | break; |
| 2266 | case COERCION_CODE_ASSIGNMENT: |
| 2267 | castcontext = COERCION_ASSIGNMENT; |
| 2268 | break; |
| 2269 | case COERCION_CODE_EXPLICIT: |
| 2270 | castcontext = COERCION_EXPLICIT; |
| 2271 | break; |
| 2272 | default: |
| 2273 | elog(ERROR, "unrecognized castcontext: %d" , |
| 2274 | (int) castForm->castcontext); |
| 2275 | castcontext = 0; /* keep compiler quiet */ |
| 2276 | break; |
| 2277 | } |
| 2278 | |
| 2279 | /* Rely on ordering of enum for correct behavior here */ |
| 2280 | if (ccontext >= castcontext) |
| 2281 | { |
| 2282 | switch (castForm->castmethod) |
| 2283 | { |
| 2284 | case COERCION_METHOD_FUNCTION: |
| 2285 | result = COERCION_PATH_FUNC; |
| 2286 | *funcid = castForm->castfunc; |
| 2287 | break; |
| 2288 | case COERCION_METHOD_INOUT: |
| 2289 | result = COERCION_PATH_COERCEVIAIO; |
| 2290 | break; |
| 2291 | case COERCION_METHOD_BINARY: |
| 2292 | result = COERCION_PATH_RELABELTYPE; |
| 2293 | break; |
| 2294 | default: |
| 2295 | elog(ERROR, "unrecognized castmethod: %d" , |
| 2296 | (int) castForm->castmethod); |
| 2297 | break; |
| 2298 | } |
| 2299 | } |
| 2300 | |
| 2301 | ReleaseSysCache(tuple); |
| 2302 | } |
| 2303 | else |
| 2304 | { |
| 2305 | /* |
| 2306 | * If there's no pg_cast entry, perhaps we are dealing with a pair of |
| 2307 | * array types. If so, and if their element types have a conversion |
| 2308 | * pathway, report that we can coerce with an ArrayCoerceExpr. |
| 2309 | * |
| 2310 | * Hack: disallow coercions to oidvector and int2vector, which |
| 2311 | * otherwise tend to capture coercions that should go to "real" array |
| 2312 | * types. We want those types to be considered "real" arrays for many |
| 2313 | * purposes, but not this one. (Also, ArrayCoerceExpr isn't |
| 2314 | * guaranteed to produce an output that meets the restrictions of |
| 2315 | * these datatypes, such as being 1-dimensional.) |
| 2316 | */ |
| 2317 | if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID) |
| 2318 | { |
| 2319 | Oid targetElem; |
| 2320 | Oid sourceElem; |
| 2321 | |
| 2322 | if ((targetElem = get_element_type(targetTypeId)) != InvalidOid && |
| 2323 | (sourceElem = get_element_type(sourceTypeId)) != InvalidOid) |
| 2324 | { |
| 2325 | CoercionPathType elempathtype; |
| 2326 | Oid elemfuncid; |
| 2327 | |
| 2328 | elempathtype = find_coercion_pathway(targetElem, |
| 2329 | sourceElem, |
| 2330 | ccontext, |
| 2331 | &elemfuncid); |
| 2332 | if (elempathtype != COERCION_PATH_NONE) |
| 2333 | { |
| 2334 | result = COERCION_PATH_ARRAYCOERCE; |
| 2335 | } |
| 2336 | } |
| 2337 | } |
| 2338 | |
| 2339 | /* |
| 2340 | * If we still haven't found a possibility, consider automatic casting |
| 2341 | * using I/O functions. We allow assignment casts to string types and |
| 2342 | * explicit casts from string types to be handled this way. (The |
| 2343 | * CoerceViaIO mechanism is a lot more general than that, but this is |
| 2344 | * all we want to allow in the absence of a pg_cast entry.) It would |
| 2345 | * probably be better to insist on explicit casts in both directions, |
| 2346 | * but this is a compromise to preserve something of the pre-8.3 |
| 2347 | * behavior that many types had implicit (yipes!) casts to text. |
| 2348 | */ |
| 2349 | if (result == COERCION_PATH_NONE) |
| 2350 | { |
| 2351 | if (ccontext >= COERCION_ASSIGNMENT && |
| 2352 | TypeCategory(targetTypeId) == TYPCATEGORY_STRING) |
| 2353 | result = COERCION_PATH_COERCEVIAIO; |
| 2354 | else if (ccontext >= COERCION_EXPLICIT && |
| 2355 | TypeCategory(sourceTypeId) == TYPCATEGORY_STRING) |
| 2356 | result = COERCION_PATH_COERCEVIAIO; |
| 2357 | } |
| 2358 | } |
| 2359 | |
| 2360 | return result; |
| 2361 | } |
| 2362 | |
| 2363 | |
| 2364 | /* |
| 2365 | * find_typmod_coercion_function -- does the given type need length coercion? |
| 2366 | * |
| 2367 | * If the target type possesses a pg_cast function from itself to itself, |
| 2368 | * it must need length coercion. |
| 2369 | * |
| 2370 | * "bpchar" (ie, char(N)) and "numeric" are examples of such types. |
| 2371 | * |
| 2372 | * If the given type is a varlena array type, we do not look for a coercion |
| 2373 | * function associated directly with the array type, but instead look for |
| 2374 | * one associated with the element type. An ArrayCoerceExpr node must be |
| 2375 | * used to apply such a function. (Note: currently, it's pointless to |
| 2376 | * return the funcid in this case, because it'll just get looked up again |
| 2377 | * in the recursive construction of the ArrayCoerceExpr's elemexpr.) |
| 2378 | * |
| 2379 | * We use the same result enum as find_coercion_pathway, but the only possible |
| 2380 | * result codes are: |
| 2381 | * COERCION_PATH_NONE: no length coercion needed |
| 2382 | * COERCION_PATH_FUNC: apply the function returned in *funcid |
| 2383 | * COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr |
| 2384 | */ |
| 2385 | CoercionPathType |
| 2386 | find_typmod_coercion_function(Oid typeId, |
| 2387 | Oid *funcid) |
| 2388 | { |
| 2389 | CoercionPathType result; |
| 2390 | Type targetType; |
| 2391 | Form_pg_type typeForm; |
| 2392 | HeapTuple tuple; |
| 2393 | |
| 2394 | *funcid = InvalidOid; |
| 2395 | result = COERCION_PATH_FUNC; |
| 2396 | |
| 2397 | targetType = typeidType(typeId); |
| 2398 | typeForm = (Form_pg_type) GETSTRUCT(targetType); |
| 2399 | |
| 2400 | /* Check for a varlena array type */ |
| 2401 | if (typeForm->typelem != InvalidOid && typeForm->typlen == -1) |
| 2402 | { |
| 2403 | /* Yes, switch our attention to the element type */ |
| 2404 | typeId = typeForm->typelem; |
| 2405 | result = COERCION_PATH_ARRAYCOERCE; |
| 2406 | } |
| 2407 | ReleaseSysCache(targetType); |
| 2408 | |
| 2409 | /* Look in pg_cast */ |
| 2410 | tuple = SearchSysCache2(CASTSOURCETARGET, |
| 2411 | ObjectIdGetDatum(typeId), |
| 2412 | ObjectIdGetDatum(typeId)); |
| 2413 | |
| 2414 | if (HeapTupleIsValid(tuple)) |
| 2415 | { |
| 2416 | Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple); |
| 2417 | |
| 2418 | *funcid = castForm->castfunc; |
| 2419 | ReleaseSysCache(tuple); |
| 2420 | } |
| 2421 | |
| 2422 | if (!OidIsValid(*funcid)) |
| 2423 | result = COERCION_PATH_NONE; |
| 2424 | |
| 2425 | return result; |
| 2426 | } |
| 2427 | |
| 2428 | /* |
| 2429 | * is_complex_array |
| 2430 | * Is this type an array of composite? |
| 2431 | * |
| 2432 | * Note: this will not return true for record[]; check for RECORDARRAYOID |
| 2433 | * separately if needed. |
| 2434 | */ |
| 2435 | static bool |
| 2436 | is_complex_array(Oid typid) |
| 2437 | { |
| 2438 | Oid elemtype = get_element_type(typid); |
| 2439 | |
| 2440 | return (OidIsValid(elemtype) && ISCOMPLEX(elemtype)); |
| 2441 | } |
| 2442 | |
| 2443 | |
| 2444 | /* |
| 2445 | * Check whether reltypeId is the row type of a typed table of type |
| 2446 | * reloftypeId, or is a domain over such a row type. (This is conceptually |
| 2447 | * similar to the subtype relationship checked by typeInheritsFrom().) |
| 2448 | */ |
| 2449 | static bool |
| 2450 | typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId) |
| 2451 | { |
| 2452 | Oid relid = typeOrDomainTypeRelid(reltypeId); |
| 2453 | bool result = false; |
| 2454 | |
| 2455 | if (relid) |
| 2456 | { |
| 2457 | HeapTuple tp; |
| 2458 | Form_pg_class reltup; |
| 2459 | |
| 2460 | tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
| 2461 | if (!HeapTupleIsValid(tp)) |
| 2462 | elog(ERROR, "cache lookup failed for relation %u" , relid); |
| 2463 | |
| 2464 | reltup = (Form_pg_class) GETSTRUCT(tp); |
| 2465 | if (reltup->reloftype == reloftypeId) |
| 2466 | result = true; |
| 2467 | |
| 2468 | ReleaseSysCache(tp); |
| 2469 | } |
| 2470 | |
| 2471 | return result; |
| 2472 | } |
| 2473 | |