| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * parse_func.c |
| 4 | * handle function calls in parser |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/parser/parse_func.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include "access/htup_details.h" |
| 18 | #include "catalog/pg_aggregate.h" |
| 19 | #include "catalog/pg_proc.h" |
| 20 | #include "catalog/pg_type.h" |
| 21 | #include "funcapi.h" |
| 22 | #include "lib/stringinfo.h" |
| 23 | #include "nodes/makefuncs.h" |
| 24 | #include "nodes/nodeFuncs.h" |
| 25 | #include "parser/parse_agg.h" |
| 26 | #include "parser/parse_clause.h" |
| 27 | #include "parser/parse_coerce.h" |
| 28 | #include "parser/parse_expr.h" |
| 29 | #include "parser/parse_func.h" |
| 30 | #include "parser/parse_relation.h" |
| 31 | #include "parser/parse_target.h" |
| 32 | #include "parser/parse_type.h" |
| 33 | #include "utils/builtins.h" |
| 34 | #include "utils/lsyscache.h" |
| 35 | #include "utils/syscache.h" |
| 36 | |
| 37 | |
| 38 | /* Possible error codes from LookupFuncNameInternal */ |
| 39 | typedef enum |
| 40 | { |
| 41 | FUNCLOOKUP_NOSUCHFUNC, |
| 42 | FUNCLOOKUP_AMBIGUOUS |
| 43 | } FuncLookupError; |
| 44 | |
| 45 | static void unify_hypothetical_args(ParseState *pstate, |
| 46 | List *fargs, int numAggregatedArgs, |
| 47 | Oid *actual_arg_types, Oid *declared_arg_types); |
| 48 | static Oid FuncNameAsType(List *funcname); |
| 49 | static Node *ParseComplexProjection(ParseState *pstate, const char *funcname, |
| 50 | Node *first_arg, int location); |
| 51 | static Oid LookupFuncNameInternal(List *funcname, int nargs, |
| 52 | const Oid *argtypes, |
| 53 | bool missing_ok, FuncLookupError *lookupError); |
| 54 | |
| 55 | |
| 56 | /* |
| 57 | * Parse a function call |
| 58 | * |
| 59 | * For historical reasons, Postgres tries to treat the notations tab.col |
| 60 | * and col(tab) as equivalent: if a single-argument function call has an |
| 61 | * argument of complex type and the (unqualified) function name matches |
| 62 | * any attribute of the type, we can interpret it as a column projection. |
| 63 | * Conversely a function of a single complex-type argument can be written |
| 64 | * like a column reference, allowing functions to act like computed columns. |
| 65 | * |
| 66 | * If both interpretations are possible, we prefer the one matching the |
| 67 | * syntactic form, but otherwise the form does not matter. |
| 68 | * |
| 69 | * Hence, both cases come through here. If fn is null, we're dealing with |
| 70 | * column syntax not function syntax. In the function-syntax case, |
| 71 | * the FuncCall struct is needed to carry various decoration that applies |
| 72 | * to aggregate and window functions. |
| 73 | * |
| 74 | * Also, when fn is null, we return NULL on failure rather than |
| 75 | * reporting a no-such-function error. |
| 76 | * |
| 77 | * The argument expressions (in fargs) must have been transformed |
| 78 | * already. However, nothing in *fn has been transformed. |
| 79 | * |
| 80 | * last_srf should be a copy of pstate->p_last_srf from just before we |
| 81 | * started transforming fargs. If the caller knows that fargs couldn't |
| 82 | * contain any SRF calls, last_srf can just be pstate->p_last_srf. |
| 83 | * |
| 84 | * proc_call is true if we are considering a CALL statement, so that the |
| 85 | * name must resolve to a procedure name, not anything else. |
| 86 | */ |
| 87 | Node * |
| 88 | ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs, |
| 89 | Node *last_srf, FuncCall *fn, bool proc_call, int location) |
| 90 | { |
| 91 | bool is_column = (fn == NULL); |
| 92 | List *agg_order = (fn ? fn->agg_order : NIL); |
| 93 | Expr *agg_filter = NULL; |
| 94 | bool agg_within_group = (fn ? fn->agg_within_group : false); |
| 95 | bool agg_star = (fn ? fn->agg_star : false); |
| 96 | bool agg_distinct = (fn ? fn->agg_distinct : false); |
| 97 | bool func_variadic = (fn ? fn->func_variadic : false); |
| 98 | WindowDef *over = (fn ? fn->over : NULL); |
| 99 | bool could_be_projection; |
| 100 | Oid rettype; |
| 101 | Oid funcid; |
| 102 | ListCell *l; |
| 103 | ListCell *nextl; |
| 104 | Node *first_arg = NULL; |
| 105 | int nargs; |
| 106 | int nargsplusdefs; |
| 107 | Oid actual_arg_types[FUNC_MAX_ARGS]; |
| 108 | Oid *declared_arg_types; |
| 109 | List *argnames; |
| 110 | List *argdefaults; |
| 111 | Node *retval; |
| 112 | bool retset; |
| 113 | int nvargs; |
| 114 | Oid vatype; |
| 115 | FuncDetailCode fdresult; |
| 116 | char aggkind = 0; |
| 117 | ParseCallbackState pcbstate; |
| 118 | |
| 119 | /* |
| 120 | * If there's an aggregate filter, transform it using transformWhereClause |
| 121 | */ |
| 122 | if (fn && fn->agg_filter != NULL) |
| 123 | agg_filter = (Expr *) transformWhereClause(pstate, fn->agg_filter, |
| 124 | EXPR_KIND_FILTER, |
| 125 | "FILTER" ); |
| 126 | |
| 127 | /* |
| 128 | * Most of the rest of the parser just assumes that functions do not have |
| 129 | * more than FUNC_MAX_ARGS parameters. We have to test here to protect |
| 130 | * against array overruns, etc. Of course, this may not be a function, |
| 131 | * but the test doesn't hurt. |
| 132 | */ |
| 133 | if (list_length(fargs) > FUNC_MAX_ARGS) |
| 134 | ereport(ERROR, |
| 135 | (errcode(ERRCODE_TOO_MANY_ARGUMENTS), |
| 136 | errmsg_plural("cannot pass more than %d argument to a function" , |
| 137 | "cannot pass more than %d arguments to a function" , |
| 138 | FUNC_MAX_ARGS, |
| 139 | FUNC_MAX_ARGS), |
| 140 | parser_errposition(pstate, location))); |
| 141 | |
| 142 | /* |
| 143 | * Extract arg type info in preparation for function lookup. |
| 144 | * |
| 145 | * If any arguments are Param markers of type VOID, we discard them from |
| 146 | * the parameter list. This is a hack to allow the JDBC driver to not have |
| 147 | * to distinguish "input" and "output" parameter symbols while parsing |
| 148 | * function-call constructs. Don't do this if dealing with column syntax, |
| 149 | * nor if we had WITHIN GROUP (because in that case it's critical to keep |
| 150 | * the argument count unchanged). We can't use foreach() because we may |
| 151 | * modify the list ... |
| 152 | */ |
| 153 | nargs = 0; |
| 154 | for (l = list_head(fargs); l != NULL; l = nextl) |
| 155 | { |
| 156 | Node *arg = lfirst(l); |
| 157 | Oid argtype = exprType(arg); |
| 158 | |
| 159 | nextl = lnext(l); |
| 160 | |
| 161 | if (argtype == VOIDOID && IsA(arg, Param) && |
| 162 | !is_column && !agg_within_group) |
| 163 | { |
| 164 | fargs = list_delete_ptr(fargs, arg); |
| 165 | continue; |
| 166 | } |
| 167 | |
| 168 | actual_arg_types[nargs++] = argtype; |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * Check for named arguments; if there are any, build a list of names. |
| 173 | * |
| 174 | * We allow mixed notation (some named and some not), but only with all |
| 175 | * the named parameters after all the unnamed ones. So the name list |
| 176 | * corresponds to the last N actual parameters and we don't need any extra |
| 177 | * bookkeeping to match things up. |
| 178 | */ |
| 179 | argnames = NIL; |
| 180 | foreach(l, fargs) |
| 181 | { |
| 182 | Node *arg = lfirst(l); |
| 183 | |
| 184 | if (IsA(arg, NamedArgExpr)) |
| 185 | { |
| 186 | NamedArgExpr *na = (NamedArgExpr *) arg; |
| 187 | ListCell *lc; |
| 188 | |
| 189 | /* Reject duplicate arg names */ |
| 190 | foreach(lc, argnames) |
| 191 | { |
| 192 | if (strcmp(na->name, (char *) lfirst(lc)) == 0) |
| 193 | ereport(ERROR, |
| 194 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 195 | errmsg("argument name \"%s\" used more than once" , |
| 196 | na->name), |
| 197 | parser_errposition(pstate, na->location))); |
| 198 | } |
| 199 | argnames = lappend(argnames, na->name); |
| 200 | } |
| 201 | else |
| 202 | { |
| 203 | if (argnames != NIL) |
| 204 | ereport(ERROR, |
| 205 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 206 | errmsg("positional argument cannot follow named argument" ), |
| 207 | parser_errposition(pstate, exprLocation(arg)))); |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | if (fargs) |
| 212 | { |
| 213 | first_arg = linitial(fargs); |
| 214 | Assert(first_arg != NULL); |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Decide whether it's legitimate to consider the construct to be a column |
| 219 | * projection. For that, there has to be a single argument of complex |
| 220 | * type, the function name must not be qualified, and there cannot be any |
| 221 | * syntactic decoration that'd require it to be a function (such as |
| 222 | * aggregate or variadic decoration, or named arguments). |
| 223 | */ |
| 224 | could_be_projection = (nargs == 1 && !proc_call && |
| 225 | agg_order == NIL && agg_filter == NULL && |
| 226 | !agg_star && !agg_distinct && over == NULL && |
| 227 | !func_variadic && argnames == NIL && |
| 228 | list_length(funcname) == 1 && |
| 229 | (actual_arg_types[0] == RECORDOID || |
| 230 | ISCOMPLEX(actual_arg_types[0]))); |
| 231 | |
| 232 | /* |
| 233 | * If it's column syntax, check for column projection case first. |
| 234 | */ |
| 235 | if (could_be_projection && is_column) |
| 236 | { |
| 237 | retval = ParseComplexProjection(pstate, |
| 238 | strVal(linitial(funcname)), |
| 239 | first_arg, |
| 240 | location); |
| 241 | if (retval) |
| 242 | return retval; |
| 243 | |
| 244 | /* |
| 245 | * If ParseComplexProjection doesn't recognize it as a projection, |
| 246 | * just press on. |
| 247 | */ |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * func_get_detail looks up the function in the catalogs, does |
| 252 | * disambiguation for polymorphic functions, handles inheritance, and |
| 253 | * returns the funcid and type and set or singleton status of the |
| 254 | * function's return value. It also returns the true argument types to |
| 255 | * the function. |
| 256 | * |
| 257 | * Note: for a named-notation or variadic function call, the reported |
| 258 | * "true" types aren't really what is in pg_proc: the types are reordered |
| 259 | * to match the given argument order of named arguments, and a variadic |
| 260 | * argument is replaced by a suitable number of copies of its element |
| 261 | * type. We'll fix up the variadic case below. We may also have to deal |
| 262 | * with default arguments. |
| 263 | */ |
| 264 | |
| 265 | setup_parser_errposition_callback(&pcbstate, pstate, location); |
| 266 | |
| 267 | fdresult = func_get_detail(funcname, fargs, argnames, nargs, |
| 268 | actual_arg_types, |
| 269 | !func_variadic, true, |
| 270 | &funcid, &rettype, &retset, |
| 271 | &nvargs, &vatype, |
| 272 | &declared_arg_types, &argdefaults); |
| 273 | |
| 274 | cancel_parser_errposition_callback(&pcbstate); |
| 275 | |
| 276 | /* |
| 277 | * Check for various wrong-kind-of-routine cases. |
| 278 | */ |
| 279 | |
| 280 | /* If this is a CALL, reject things that aren't procedures */ |
| 281 | if (proc_call && |
| 282 | (fdresult == FUNCDETAIL_NORMAL || |
| 283 | fdresult == FUNCDETAIL_AGGREGATE || |
| 284 | fdresult == FUNCDETAIL_WINDOWFUNC || |
| 285 | fdresult == FUNCDETAIL_COERCION)) |
| 286 | ereport(ERROR, |
| 287 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 288 | errmsg("%s is not a procedure" , |
| 289 | func_signature_string(funcname, nargs, |
| 290 | argnames, |
| 291 | actual_arg_types)), |
| 292 | errhint("To call a function, use SELECT." ), |
| 293 | parser_errposition(pstate, location))); |
| 294 | /* Conversely, if not a CALL, reject procedures */ |
| 295 | if (fdresult == FUNCDETAIL_PROCEDURE && !proc_call) |
| 296 | ereport(ERROR, |
| 297 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 298 | errmsg("%s is a procedure" , |
| 299 | func_signature_string(funcname, nargs, |
| 300 | argnames, |
| 301 | actual_arg_types)), |
| 302 | errhint("To call a procedure, use CALL." ), |
| 303 | parser_errposition(pstate, location))); |
| 304 | |
| 305 | if (fdresult == FUNCDETAIL_NORMAL || |
| 306 | fdresult == FUNCDETAIL_PROCEDURE || |
| 307 | fdresult == FUNCDETAIL_COERCION) |
| 308 | { |
| 309 | /* |
| 310 | * In these cases, complain if there was anything indicating it must |
| 311 | * be an aggregate or window function. |
| 312 | */ |
| 313 | if (agg_star) |
| 314 | ereport(ERROR, |
| 315 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 316 | errmsg("%s(*) specified, but %s is not an aggregate function" , |
| 317 | NameListToString(funcname), |
| 318 | NameListToString(funcname)), |
| 319 | parser_errposition(pstate, location))); |
| 320 | if (agg_distinct) |
| 321 | ereport(ERROR, |
| 322 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 323 | errmsg("DISTINCT specified, but %s is not an aggregate function" , |
| 324 | NameListToString(funcname)), |
| 325 | parser_errposition(pstate, location))); |
| 326 | if (agg_within_group) |
| 327 | ereport(ERROR, |
| 328 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 329 | errmsg("WITHIN GROUP specified, but %s is not an aggregate function" , |
| 330 | NameListToString(funcname)), |
| 331 | parser_errposition(pstate, location))); |
| 332 | if (agg_order != NIL) |
| 333 | ereport(ERROR, |
| 334 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 335 | errmsg("ORDER BY specified, but %s is not an aggregate function" , |
| 336 | NameListToString(funcname)), |
| 337 | parser_errposition(pstate, location))); |
| 338 | if (agg_filter) |
| 339 | ereport(ERROR, |
| 340 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 341 | errmsg("FILTER specified, but %s is not an aggregate function" , |
| 342 | NameListToString(funcname)), |
| 343 | parser_errposition(pstate, location))); |
| 344 | if (over) |
| 345 | ereport(ERROR, |
| 346 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 347 | errmsg("OVER specified, but %s is not a window function nor an aggregate function" , |
| 348 | NameListToString(funcname)), |
| 349 | parser_errposition(pstate, location))); |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * So far so good, so do some fdresult-type-specific processing. |
| 354 | */ |
| 355 | if (fdresult == FUNCDETAIL_NORMAL || fdresult == FUNCDETAIL_PROCEDURE) |
| 356 | { |
| 357 | /* Nothing special to do for these cases. */ |
| 358 | } |
| 359 | else if (fdresult == FUNCDETAIL_AGGREGATE) |
| 360 | { |
| 361 | /* |
| 362 | * It's an aggregate; fetch needed info from the pg_aggregate entry. |
| 363 | */ |
| 364 | HeapTuple tup; |
| 365 | Form_pg_aggregate classForm; |
| 366 | int catDirectArgs; |
| 367 | |
| 368 | tup = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(funcid)); |
| 369 | if (!HeapTupleIsValid(tup)) /* should not happen */ |
| 370 | elog(ERROR, "cache lookup failed for aggregate %u" , funcid); |
| 371 | classForm = (Form_pg_aggregate) GETSTRUCT(tup); |
| 372 | aggkind = classForm->aggkind; |
| 373 | catDirectArgs = classForm->aggnumdirectargs; |
| 374 | ReleaseSysCache(tup); |
| 375 | |
| 376 | /* Now check various disallowed cases. */ |
| 377 | if (AGGKIND_IS_ORDERED_SET(aggkind)) |
| 378 | { |
| 379 | int numAggregatedArgs; |
| 380 | int numDirectArgs; |
| 381 | |
| 382 | if (!agg_within_group) |
| 383 | ereport(ERROR, |
| 384 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 385 | errmsg("WITHIN GROUP is required for ordered-set aggregate %s" , |
| 386 | NameListToString(funcname)), |
| 387 | parser_errposition(pstate, location))); |
| 388 | if (over) |
| 389 | ereport(ERROR, |
| 390 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 391 | errmsg("OVER is not supported for ordered-set aggregate %s" , |
| 392 | NameListToString(funcname)), |
| 393 | parser_errposition(pstate, location))); |
| 394 | /* gram.y rejects DISTINCT + WITHIN GROUP */ |
| 395 | Assert(!agg_distinct); |
| 396 | /* gram.y rejects VARIADIC + WITHIN GROUP */ |
| 397 | Assert(!func_variadic); |
| 398 | |
| 399 | /* |
| 400 | * Since func_get_detail was working with an undifferentiated list |
| 401 | * of arguments, it might have selected an aggregate that doesn't |
| 402 | * really match because it requires a different division of direct |
| 403 | * and aggregated arguments. Check that the number of direct |
| 404 | * arguments is actually OK; if not, throw an "undefined function" |
| 405 | * error, similarly to the case where a misplaced ORDER BY is used |
| 406 | * in a regular aggregate call. |
| 407 | */ |
| 408 | numAggregatedArgs = list_length(agg_order); |
| 409 | numDirectArgs = nargs - numAggregatedArgs; |
| 410 | Assert(numDirectArgs >= 0); |
| 411 | |
| 412 | if (!OidIsValid(vatype)) |
| 413 | { |
| 414 | /* Test is simple if aggregate isn't variadic */ |
| 415 | if (numDirectArgs != catDirectArgs) |
| 416 | ereport(ERROR, |
| 417 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 418 | errmsg("function %s does not exist" , |
| 419 | func_signature_string(funcname, nargs, |
| 420 | argnames, |
| 421 | actual_arg_types)), |
| 422 | errhint("There is an ordered-set aggregate %s, but it requires %d direct arguments, not %d." , |
| 423 | NameListToString(funcname), |
| 424 | catDirectArgs, numDirectArgs), |
| 425 | parser_errposition(pstate, location))); |
| 426 | } |
| 427 | else |
| 428 | { |
| 429 | /* |
| 430 | * If it's variadic, we have two cases depending on whether |
| 431 | * the agg was "... ORDER BY VARIADIC" or "..., VARIADIC ORDER |
| 432 | * BY VARIADIC". It's the latter if catDirectArgs equals |
| 433 | * pronargs; to save a catalog lookup, we reverse-engineer |
| 434 | * pronargs from the info we got from func_get_detail. |
| 435 | */ |
| 436 | int pronargs; |
| 437 | |
| 438 | pronargs = nargs; |
| 439 | if (nvargs > 1) |
| 440 | pronargs -= nvargs - 1; |
| 441 | if (catDirectArgs < pronargs) |
| 442 | { |
| 443 | /* VARIADIC isn't part of direct args, so still easy */ |
| 444 | if (numDirectArgs != catDirectArgs) |
| 445 | ereport(ERROR, |
| 446 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 447 | errmsg("function %s does not exist" , |
| 448 | func_signature_string(funcname, nargs, |
| 449 | argnames, |
| 450 | actual_arg_types)), |
| 451 | errhint("There is an ordered-set aggregate %s, but it requires %d direct arguments, not %d." , |
| 452 | NameListToString(funcname), |
| 453 | catDirectArgs, numDirectArgs), |
| 454 | parser_errposition(pstate, location))); |
| 455 | } |
| 456 | else |
| 457 | { |
| 458 | /* |
| 459 | * Both direct and aggregated args were declared variadic. |
| 460 | * For a standard ordered-set aggregate, it's okay as long |
| 461 | * as there aren't too few direct args. For a |
| 462 | * hypothetical-set aggregate, we assume that the |
| 463 | * hypothetical arguments are those that matched the |
| 464 | * variadic parameter; there must be just as many of them |
| 465 | * as there are aggregated arguments. |
| 466 | */ |
| 467 | if (aggkind == AGGKIND_HYPOTHETICAL) |
| 468 | { |
| 469 | if (nvargs != 2 * numAggregatedArgs) |
| 470 | ereport(ERROR, |
| 471 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 472 | errmsg("function %s does not exist" , |
| 473 | func_signature_string(funcname, nargs, |
| 474 | argnames, |
| 475 | actual_arg_types)), |
| 476 | errhint("To use the hypothetical-set aggregate %s, the number of hypothetical direct arguments (here %d) must match the number of ordering columns (here %d)." , |
| 477 | NameListToString(funcname), |
| 478 | nvargs - numAggregatedArgs, numAggregatedArgs), |
| 479 | parser_errposition(pstate, location))); |
| 480 | } |
| 481 | else |
| 482 | { |
| 483 | if (nvargs <= numAggregatedArgs) |
| 484 | ereport(ERROR, |
| 485 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 486 | errmsg("function %s does not exist" , |
| 487 | func_signature_string(funcname, nargs, |
| 488 | argnames, |
| 489 | actual_arg_types)), |
| 490 | errhint("There is an ordered-set aggregate %s, but it requires at least %d direct arguments." , |
| 491 | NameListToString(funcname), |
| 492 | catDirectArgs), |
| 493 | parser_errposition(pstate, location))); |
| 494 | } |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | /* Check type matching of hypothetical arguments */ |
| 499 | if (aggkind == AGGKIND_HYPOTHETICAL) |
| 500 | unify_hypothetical_args(pstate, fargs, numAggregatedArgs, |
| 501 | actual_arg_types, declared_arg_types); |
| 502 | } |
| 503 | else |
| 504 | { |
| 505 | /* Normal aggregate, so it can't have WITHIN GROUP */ |
| 506 | if (agg_within_group) |
| 507 | ereport(ERROR, |
| 508 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 509 | errmsg("%s is not an ordered-set aggregate, so it cannot have WITHIN GROUP" , |
| 510 | NameListToString(funcname)), |
| 511 | parser_errposition(pstate, location))); |
| 512 | } |
| 513 | } |
| 514 | else if (fdresult == FUNCDETAIL_WINDOWFUNC) |
| 515 | { |
| 516 | /* |
| 517 | * True window functions must be called with a window definition. |
| 518 | */ |
| 519 | if (!over) |
| 520 | ereport(ERROR, |
| 521 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 522 | errmsg("window function %s requires an OVER clause" , |
| 523 | NameListToString(funcname)), |
| 524 | parser_errposition(pstate, location))); |
| 525 | /* And, per spec, WITHIN GROUP isn't allowed */ |
| 526 | if (agg_within_group) |
| 527 | ereport(ERROR, |
| 528 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 529 | errmsg("window function %s cannot have WITHIN GROUP" , |
| 530 | NameListToString(funcname)), |
| 531 | parser_errposition(pstate, location))); |
| 532 | } |
| 533 | else if (fdresult == FUNCDETAIL_COERCION) |
| 534 | { |
| 535 | /* |
| 536 | * We interpreted it as a type coercion. coerce_type can handle these |
| 537 | * cases, so why duplicate code... |
| 538 | */ |
| 539 | return coerce_type(pstate, linitial(fargs), |
| 540 | actual_arg_types[0], rettype, -1, |
| 541 | COERCION_EXPLICIT, COERCE_EXPLICIT_CALL, location); |
| 542 | } |
| 543 | else if (fdresult == FUNCDETAIL_MULTIPLE) |
| 544 | { |
| 545 | /* |
| 546 | * We found multiple possible functional matches. If we are dealing |
| 547 | * with attribute notation, return failure, letting the caller report |
| 548 | * "no such column" (we already determined there wasn't one). If |
| 549 | * dealing with function notation, report "ambiguous function", |
| 550 | * regardless of whether there's also a column by this name. |
| 551 | */ |
| 552 | if (is_column) |
| 553 | return NULL; |
| 554 | |
| 555 | if (proc_call) |
| 556 | ereport(ERROR, |
| 557 | (errcode(ERRCODE_AMBIGUOUS_FUNCTION), |
| 558 | errmsg("procedure %s is not unique" , |
| 559 | func_signature_string(funcname, nargs, argnames, |
| 560 | actual_arg_types)), |
| 561 | errhint("Could not choose a best candidate procedure. " |
| 562 | "You might need to add explicit type casts." ), |
| 563 | parser_errposition(pstate, location))); |
| 564 | else |
| 565 | ereport(ERROR, |
| 566 | (errcode(ERRCODE_AMBIGUOUS_FUNCTION), |
| 567 | errmsg("function %s is not unique" , |
| 568 | func_signature_string(funcname, nargs, argnames, |
| 569 | actual_arg_types)), |
| 570 | errhint("Could not choose a best candidate function. " |
| 571 | "You might need to add explicit type casts." ), |
| 572 | parser_errposition(pstate, location))); |
| 573 | } |
| 574 | else |
| 575 | { |
| 576 | /* |
| 577 | * Not found as a function. If we are dealing with attribute |
| 578 | * notation, return failure, letting the caller report "no such |
| 579 | * column" (we already determined there wasn't one). |
| 580 | */ |
| 581 | if (is_column) |
| 582 | return NULL; |
| 583 | |
| 584 | /* |
| 585 | * Check for column projection interpretation, since we didn't before. |
| 586 | */ |
| 587 | if (could_be_projection) |
| 588 | { |
| 589 | retval = ParseComplexProjection(pstate, |
| 590 | strVal(linitial(funcname)), |
| 591 | first_arg, |
| 592 | location); |
| 593 | if (retval) |
| 594 | return retval; |
| 595 | } |
| 596 | |
| 597 | /* |
| 598 | * No function, and no column either. Since we're dealing with |
| 599 | * function notation, report "function does not exist". |
| 600 | */ |
| 601 | if (list_length(agg_order) > 1 && !agg_within_group) |
| 602 | { |
| 603 | /* It's agg(x, ORDER BY y,z) ... perhaps misplaced ORDER BY */ |
| 604 | ereport(ERROR, |
| 605 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 606 | errmsg("function %s does not exist" , |
| 607 | func_signature_string(funcname, nargs, argnames, |
| 608 | actual_arg_types)), |
| 609 | errhint("No aggregate function matches the given name and argument types. " |
| 610 | "Perhaps you misplaced ORDER BY; ORDER BY must appear " |
| 611 | "after all regular arguments of the aggregate." ), |
| 612 | parser_errposition(pstate, location))); |
| 613 | } |
| 614 | else if (proc_call) |
| 615 | ereport(ERROR, |
| 616 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 617 | errmsg("procedure %s does not exist" , |
| 618 | func_signature_string(funcname, nargs, argnames, |
| 619 | actual_arg_types)), |
| 620 | errhint("No procedure matches the given name and argument types. " |
| 621 | "You might need to add explicit type casts." ), |
| 622 | parser_errposition(pstate, location))); |
| 623 | else |
| 624 | ereport(ERROR, |
| 625 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 626 | errmsg("function %s does not exist" , |
| 627 | func_signature_string(funcname, nargs, argnames, |
| 628 | actual_arg_types)), |
| 629 | errhint("No function matches the given name and argument types. " |
| 630 | "You might need to add explicit type casts." ), |
| 631 | parser_errposition(pstate, location))); |
| 632 | } |
| 633 | |
| 634 | /* |
| 635 | * If there are default arguments, we have to include their types in |
| 636 | * actual_arg_types for the purpose of checking generic type consistency. |
| 637 | * However, we do NOT put them into the generated parse node, because |
| 638 | * their actual values might change before the query gets run. The |
| 639 | * planner has to insert the up-to-date values at plan time. |
| 640 | */ |
| 641 | nargsplusdefs = nargs; |
| 642 | foreach(l, argdefaults) |
| 643 | { |
| 644 | Node *expr = (Node *) lfirst(l); |
| 645 | |
| 646 | /* probably shouldn't happen ... */ |
| 647 | if (nargsplusdefs >= FUNC_MAX_ARGS) |
| 648 | ereport(ERROR, |
| 649 | (errcode(ERRCODE_TOO_MANY_ARGUMENTS), |
| 650 | errmsg_plural("cannot pass more than %d argument to a function" , |
| 651 | "cannot pass more than %d arguments to a function" , |
| 652 | FUNC_MAX_ARGS, |
| 653 | FUNC_MAX_ARGS), |
| 654 | parser_errposition(pstate, location))); |
| 655 | |
| 656 | actual_arg_types[nargsplusdefs++] = exprType(expr); |
| 657 | } |
| 658 | |
| 659 | /* |
| 660 | * enforce consistency with polymorphic argument and return types, |
| 661 | * possibly adjusting return type or declared_arg_types (which will be |
| 662 | * used as the cast destination by make_fn_arguments) |
| 663 | */ |
| 664 | rettype = enforce_generic_type_consistency(actual_arg_types, |
| 665 | declared_arg_types, |
| 666 | nargsplusdefs, |
| 667 | rettype, |
| 668 | false); |
| 669 | |
| 670 | /* perform the necessary typecasting of arguments */ |
| 671 | make_fn_arguments(pstate, fargs, actual_arg_types, declared_arg_types); |
| 672 | |
| 673 | /* |
| 674 | * If the function isn't actually variadic, forget any VARIADIC decoration |
| 675 | * on the call. (Perhaps we should throw an error instead, but |
| 676 | * historically we've allowed people to write that.) |
| 677 | */ |
| 678 | if (!OidIsValid(vatype)) |
| 679 | { |
| 680 | Assert(nvargs == 0); |
| 681 | func_variadic = false; |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * If it's a variadic function call, transform the last nvargs arguments |
| 686 | * into an array --- unless it's an "any" variadic. |
| 687 | */ |
| 688 | if (nvargs > 0 && vatype != ANYOID) |
| 689 | { |
| 690 | ArrayExpr *newa = makeNode(ArrayExpr); |
| 691 | int non_var_args = nargs - nvargs; |
| 692 | List *vargs; |
| 693 | |
| 694 | Assert(non_var_args >= 0); |
| 695 | vargs = list_copy_tail(fargs, non_var_args); |
| 696 | fargs = list_truncate(fargs, non_var_args); |
| 697 | |
| 698 | newa->elements = vargs; |
| 699 | /* assume all the variadic arguments were coerced to the same type */ |
| 700 | newa->element_typeid = exprType((Node *) linitial(vargs)); |
| 701 | newa->array_typeid = get_array_type(newa->element_typeid); |
| 702 | if (!OidIsValid(newa->array_typeid)) |
| 703 | ereport(ERROR, |
| 704 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 705 | errmsg("could not find array type for data type %s" , |
| 706 | format_type_be(newa->element_typeid)), |
| 707 | parser_errposition(pstate, exprLocation((Node *) vargs)))); |
| 708 | /* array_collid will be set by parse_collate.c */ |
| 709 | newa->multidims = false; |
| 710 | newa->location = exprLocation((Node *) vargs); |
| 711 | |
| 712 | fargs = lappend(fargs, newa); |
| 713 | |
| 714 | /* We could not have had VARIADIC marking before ... */ |
| 715 | Assert(!func_variadic); |
| 716 | /* ... but now, it's a VARIADIC call */ |
| 717 | func_variadic = true; |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * If an "any" variadic is called with explicit VARIADIC marking, insist |
| 722 | * that the variadic parameter be of some array type. |
| 723 | */ |
| 724 | if (nargs > 0 && vatype == ANYOID && func_variadic) |
| 725 | { |
| 726 | Oid va_arr_typid = actual_arg_types[nargs - 1]; |
| 727 | |
| 728 | if (!OidIsValid(get_base_element_type(va_arr_typid))) |
| 729 | ereport(ERROR, |
| 730 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 731 | errmsg("VARIADIC argument must be an array" ), |
| 732 | parser_errposition(pstate, |
| 733 | exprLocation((Node *) llast(fargs))))); |
| 734 | } |
| 735 | |
| 736 | /* if it returns a set, check that's OK */ |
| 737 | if (retset) |
| 738 | check_srf_call_placement(pstate, last_srf, location); |
| 739 | |
| 740 | /* build the appropriate output structure */ |
| 741 | if (fdresult == FUNCDETAIL_NORMAL || fdresult == FUNCDETAIL_PROCEDURE) |
| 742 | { |
| 743 | FuncExpr *funcexpr = makeNode(FuncExpr); |
| 744 | |
| 745 | funcexpr->funcid = funcid; |
| 746 | funcexpr->funcresulttype = rettype; |
| 747 | funcexpr->funcretset = retset; |
| 748 | funcexpr->funcvariadic = func_variadic; |
| 749 | funcexpr->funcformat = COERCE_EXPLICIT_CALL; |
| 750 | /* funccollid and inputcollid will be set by parse_collate.c */ |
| 751 | funcexpr->args = fargs; |
| 752 | funcexpr->location = location; |
| 753 | |
| 754 | retval = (Node *) funcexpr; |
| 755 | } |
| 756 | else if (fdresult == FUNCDETAIL_AGGREGATE && !over) |
| 757 | { |
| 758 | /* aggregate function */ |
| 759 | Aggref *aggref = makeNode(Aggref); |
| 760 | |
| 761 | aggref->aggfnoid = funcid; |
| 762 | aggref->aggtype = rettype; |
| 763 | /* aggcollid and inputcollid will be set by parse_collate.c */ |
| 764 | aggref->aggtranstype = InvalidOid; /* will be set by planner */ |
| 765 | /* aggargtypes will be set by transformAggregateCall */ |
| 766 | /* aggdirectargs and args will be set by transformAggregateCall */ |
| 767 | /* aggorder and aggdistinct will be set by transformAggregateCall */ |
| 768 | aggref->aggfilter = agg_filter; |
| 769 | aggref->aggstar = agg_star; |
| 770 | aggref->aggvariadic = func_variadic; |
| 771 | aggref->aggkind = aggkind; |
| 772 | /* agglevelsup will be set by transformAggregateCall */ |
| 773 | aggref->aggsplit = AGGSPLIT_SIMPLE; /* planner might change this */ |
| 774 | aggref->location = location; |
| 775 | |
| 776 | /* |
| 777 | * Reject attempt to call a parameterless aggregate without (*) |
| 778 | * syntax. This is mere pedantry but some folks insisted ... |
| 779 | */ |
| 780 | if (fargs == NIL && !agg_star && !agg_within_group) |
| 781 | ereport(ERROR, |
| 782 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 783 | errmsg("%s(*) must be used to call a parameterless aggregate function" , |
| 784 | NameListToString(funcname)), |
| 785 | parser_errposition(pstate, location))); |
| 786 | |
| 787 | if (retset) |
| 788 | ereport(ERROR, |
| 789 | (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), |
| 790 | errmsg("aggregates cannot return sets" ), |
| 791 | parser_errposition(pstate, location))); |
| 792 | |
| 793 | /* |
| 794 | * We might want to support named arguments later, but disallow it for |
| 795 | * now. We'd need to figure out the parsed representation (should the |
| 796 | * NamedArgExprs go above or below the TargetEntry nodes?) and then |
| 797 | * teach the planner to reorder the list properly. Or maybe we could |
| 798 | * make transformAggregateCall do that? However, if you'd also like |
| 799 | * to allow default arguments for aggregates, we'd need to do it in |
| 800 | * planning to avoid semantic problems. |
| 801 | */ |
| 802 | if (argnames != NIL) |
| 803 | ereport(ERROR, |
| 804 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 805 | errmsg("aggregates cannot use named arguments" ), |
| 806 | parser_errposition(pstate, location))); |
| 807 | |
| 808 | /* parse_agg.c does additional aggregate-specific processing */ |
| 809 | transformAggregateCall(pstate, aggref, fargs, agg_order, agg_distinct); |
| 810 | |
| 811 | retval = (Node *) aggref; |
| 812 | } |
| 813 | else |
| 814 | { |
| 815 | /* window function */ |
| 816 | WindowFunc *wfunc = makeNode(WindowFunc); |
| 817 | |
| 818 | Assert(over); /* lack of this was checked above */ |
| 819 | Assert(!agg_within_group); /* also checked above */ |
| 820 | |
| 821 | wfunc->winfnoid = funcid; |
| 822 | wfunc->wintype = rettype; |
| 823 | /* wincollid and inputcollid will be set by parse_collate.c */ |
| 824 | wfunc->args = fargs; |
| 825 | /* winref will be set by transformWindowFuncCall */ |
| 826 | wfunc->winstar = agg_star; |
| 827 | wfunc->winagg = (fdresult == FUNCDETAIL_AGGREGATE); |
| 828 | wfunc->aggfilter = agg_filter; |
| 829 | wfunc->location = location; |
| 830 | |
| 831 | /* |
| 832 | * agg_star is allowed for aggregate functions but distinct isn't |
| 833 | */ |
| 834 | if (agg_distinct) |
| 835 | ereport(ERROR, |
| 836 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 837 | errmsg("DISTINCT is not implemented for window functions" ), |
| 838 | parser_errposition(pstate, location))); |
| 839 | |
| 840 | /* |
| 841 | * Reject attempt to call a parameterless aggregate without (*) |
| 842 | * syntax. This is mere pedantry but some folks insisted ... |
| 843 | */ |
| 844 | if (wfunc->winagg && fargs == NIL && !agg_star) |
| 845 | ereport(ERROR, |
| 846 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 847 | errmsg("%s(*) must be used to call a parameterless aggregate function" , |
| 848 | NameListToString(funcname)), |
| 849 | parser_errposition(pstate, location))); |
| 850 | |
| 851 | /* |
| 852 | * ordered aggs not allowed in windows yet |
| 853 | */ |
| 854 | if (agg_order != NIL) |
| 855 | ereport(ERROR, |
| 856 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 857 | errmsg("aggregate ORDER BY is not implemented for window functions" ), |
| 858 | parser_errposition(pstate, location))); |
| 859 | |
| 860 | /* |
| 861 | * FILTER is not yet supported with true window functions |
| 862 | */ |
| 863 | if (!wfunc->winagg && agg_filter) |
| 864 | ereport(ERROR, |
| 865 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 866 | errmsg("FILTER is not implemented for non-aggregate window functions" ), |
| 867 | parser_errposition(pstate, location))); |
| 868 | |
| 869 | /* |
| 870 | * Window functions can't either take or return sets |
| 871 | */ |
| 872 | if (pstate->p_last_srf != last_srf) |
| 873 | ereport(ERROR, |
| 874 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 875 | errmsg("window function calls cannot contain set-returning function calls" ), |
| 876 | errhint("You might be able to move the set-returning function into a LATERAL FROM item." ), |
| 877 | parser_errposition(pstate, |
| 878 | exprLocation(pstate->p_last_srf)))); |
| 879 | |
| 880 | if (retset) |
| 881 | ereport(ERROR, |
| 882 | (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), |
| 883 | errmsg("window functions cannot return sets" ), |
| 884 | parser_errposition(pstate, location))); |
| 885 | |
| 886 | /* parse_agg.c does additional window-func-specific processing */ |
| 887 | transformWindowFuncCall(pstate, wfunc, over); |
| 888 | |
| 889 | retval = (Node *) wfunc; |
| 890 | } |
| 891 | |
| 892 | /* if it returns a set, remember it for error checks at higher levels */ |
| 893 | if (retset) |
| 894 | pstate->p_last_srf = retval; |
| 895 | |
| 896 | return retval; |
| 897 | } |
| 898 | |
| 899 | |
| 900 | /* func_match_argtypes() |
| 901 | * |
| 902 | * Given a list of candidate functions (having the right name and number |
| 903 | * of arguments) and an array of input datatype OIDs, produce a shortlist of |
| 904 | * those candidates that actually accept the input datatypes (either exactly |
| 905 | * or by coercion), and return the number of such candidates. |
| 906 | * |
| 907 | * Note that can_coerce_type will assume that UNKNOWN inputs are coercible to |
| 908 | * anything, so candidates will not be eliminated on that basis. |
| 909 | * |
| 910 | * NB: okay to modify input list structure, as long as we find at least |
| 911 | * one match. If no match at all, the list must remain unmodified. |
| 912 | */ |
| 913 | int |
| 914 | func_match_argtypes(int nargs, |
| 915 | Oid *input_typeids, |
| 916 | FuncCandidateList raw_candidates, |
| 917 | FuncCandidateList *candidates) /* return value */ |
| 918 | { |
| 919 | FuncCandidateList current_candidate; |
| 920 | FuncCandidateList next_candidate; |
| 921 | int ncandidates = 0; |
| 922 | |
| 923 | *candidates = NULL; |
| 924 | |
| 925 | for (current_candidate = raw_candidates; |
| 926 | current_candidate != NULL; |
| 927 | current_candidate = next_candidate) |
| 928 | { |
| 929 | next_candidate = current_candidate->next; |
| 930 | if (can_coerce_type(nargs, input_typeids, current_candidate->args, |
| 931 | COERCION_IMPLICIT)) |
| 932 | { |
| 933 | current_candidate->next = *candidates; |
| 934 | *candidates = current_candidate; |
| 935 | ncandidates++; |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | return ncandidates; |
| 940 | } /* func_match_argtypes() */ |
| 941 | |
| 942 | |
| 943 | /* func_select_candidate() |
| 944 | * Given the input argtype array and more than one candidate |
| 945 | * for the function, attempt to resolve the conflict. |
| 946 | * |
| 947 | * Returns the selected candidate if the conflict can be resolved, |
| 948 | * otherwise returns NULL. |
| 949 | * |
| 950 | * Note that the caller has already determined that there is no candidate |
| 951 | * exactly matching the input argtypes, and has pruned away any "candidates" |
| 952 | * that aren't actually coercion-compatible with the input types. |
| 953 | * |
| 954 | * This is also used for resolving ambiguous operator references. Formerly |
| 955 | * parse_oper.c had its own, essentially duplicate code for the purpose. |
| 956 | * The following comments (formerly in parse_oper.c) are kept to record some |
| 957 | * of the history of these heuristics. |
| 958 | * |
| 959 | * OLD COMMENTS: |
| 960 | * |
| 961 | * This routine is new code, replacing binary_oper_select_candidate() |
| 962 | * which dates from v4.2/v1.0.x days. It tries very hard to match up |
| 963 | * operators with types, including allowing type coercions if necessary. |
| 964 | * The important thing is that the code do as much as possible, |
| 965 | * while _never_ doing the wrong thing, where "the wrong thing" would |
| 966 | * be returning an operator when other better choices are available, |
| 967 | * or returning an operator which is a non-intuitive possibility. |
| 968 | * - thomas 1998-05-21 |
| 969 | * |
| 970 | * The comments below came from binary_oper_select_candidate(), and |
| 971 | * illustrate the issues and choices which are possible: |
| 972 | * - thomas 1998-05-20 |
| 973 | * |
| 974 | * current wisdom holds that the default operator should be one in which |
| 975 | * both operands have the same type (there will only be one such |
| 976 | * operator) |
| 977 | * |
| 978 | * 7.27.93 - I have decided not to do this; it's too hard to justify, and |
| 979 | * it's easy enough to typecast explicitly - avi |
| 980 | * [the rest of this routine was commented out since then - ay] |
| 981 | * |
| 982 | * 6/23/95 - I don't complete agree with avi. In particular, casting |
| 983 | * floats is a pain for users. Whatever the rationale behind not doing |
| 984 | * this is, I need the following special case to work. |
| 985 | * |
| 986 | * In the WHERE clause of a query, if a float is specified without |
| 987 | * quotes, we treat it as float8. I added the float48* operators so |
| 988 | * that we can operate on float4 and float8. But now we have more than |
| 989 | * one matching operator if the right arg is unknown (eg. float |
| 990 | * specified with quotes). This break some stuff in the regression |
| 991 | * test where there are floats in quotes not properly casted. Below is |
| 992 | * the solution. In addition to requiring the operator operates on the |
| 993 | * same type for both operands [as in the code Avi originally |
| 994 | * commented out], we also require that the operators be equivalent in |
| 995 | * some sense. (see equivalentOpersAfterPromotion for details.) |
| 996 | * - ay 6/95 |
| 997 | */ |
| 998 | FuncCandidateList |
| 999 | func_select_candidate(int nargs, |
| 1000 | Oid *input_typeids, |
| 1001 | FuncCandidateList candidates) |
| 1002 | { |
| 1003 | FuncCandidateList current_candidate, |
| 1004 | first_candidate, |
| 1005 | last_candidate; |
| 1006 | Oid *current_typeids; |
| 1007 | Oid current_type; |
| 1008 | int i; |
| 1009 | int ncandidates; |
| 1010 | int nbestMatch, |
| 1011 | nmatch, |
| 1012 | nunknowns; |
| 1013 | Oid input_base_typeids[FUNC_MAX_ARGS]; |
| 1014 | TYPCATEGORY slot_category[FUNC_MAX_ARGS], |
| 1015 | current_category; |
| 1016 | bool current_is_preferred; |
| 1017 | bool slot_has_preferred_type[FUNC_MAX_ARGS]; |
| 1018 | bool resolved_unknowns; |
| 1019 | |
| 1020 | /* protect local fixed-size arrays */ |
| 1021 | if (nargs > FUNC_MAX_ARGS) |
| 1022 | ereport(ERROR, |
| 1023 | (errcode(ERRCODE_TOO_MANY_ARGUMENTS), |
| 1024 | errmsg_plural("cannot pass more than %d argument to a function" , |
| 1025 | "cannot pass more than %d arguments to a function" , |
| 1026 | FUNC_MAX_ARGS, |
| 1027 | FUNC_MAX_ARGS))); |
| 1028 | |
| 1029 | /* |
| 1030 | * If any input types are domains, reduce them to their base types. This |
| 1031 | * ensures that we will consider functions on the base type to be "exact |
| 1032 | * matches" in the exact-match heuristic; it also makes it possible to do |
| 1033 | * something useful with the type-category heuristics. Note that this |
| 1034 | * makes it difficult, but not impossible, to use functions declared to |
| 1035 | * take a domain as an input datatype. Such a function will be selected |
| 1036 | * over the base-type function only if it is an exact match at all |
| 1037 | * argument positions, and so was already chosen by our caller. |
| 1038 | * |
| 1039 | * While we're at it, count the number of unknown-type arguments for use |
| 1040 | * later. |
| 1041 | */ |
| 1042 | nunknowns = 0; |
| 1043 | for (i = 0; i < nargs; i++) |
| 1044 | { |
| 1045 | if (input_typeids[i] != UNKNOWNOID) |
| 1046 | input_base_typeids[i] = getBaseType(input_typeids[i]); |
| 1047 | else |
| 1048 | { |
| 1049 | /* no need to call getBaseType on UNKNOWNOID */ |
| 1050 | input_base_typeids[i] = UNKNOWNOID; |
| 1051 | nunknowns++; |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | /* |
| 1056 | * Run through all candidates and keep those with the most matches on |
| 1057 | * exact types. Keep all candidates if none match. |
| 1058 | */ |
| 1059 | ncandidates = 0; |
| 1060 | nbestMatch = 0; |
| 1061 | last_candidate = NULL; |
| 1062 | for (current_candidate = candidates; |
| 1063 | current_candidate != NULL; |
| 1064 | current_candidate = current_candidate->next) |
| 1065 | { |
| 1066 | current_typeids = current_candidate->args; |
| 1067 | nmatch = 0; |
| 1068 | for (i = 0; i < nargs; i++) |
| 1069 | { |
| 1070 | if (input_base_typeids[i] != UNKNOWNOID && |
| 1071 | current_typeids[i] == input_base_typeids[i]) |
| 1072 | nmatch++; |
| 1073 | } |
| 1074 | |
| 1075 | /* take this one as the best choice so far? */ |
| 1076 | if ((nmatch > nbestMatch) || (last_candidate == NULL)) |
| 1077 | { |
| 1078 | nbestMatch = nmatch; |
| 1079 | candidates = current_candidate; |
| 1080 | last_candidate = current_candidate; |
| 1081 | ncandidates = 1; |
| 1082 | } |
| 1083 | /* no worse than the last choice, so keep this one too? */ |
| 1084 | else if (nmatch == nbestMatch) |
| 1085 | { |
| 1086 | last_candidate->next = current_candidate; |
| 1087 | last_candidate = current_candidate; |
| 1088 | ncandidates++; |
| 1089 | } |
| 1090 | /* otherwise, don't bother keeping this one... */ |
| 1091 | } |
| 1092 | |
| 1093 | if (last_candidate) /* terminate rebuilt list */ |
| 1094 | last_candidate->next = NULL; |
| 1095 | |
| 1096 | if (ncandidates == 1) |
| 1097 | return candidates; |
| 1098 | |
| 1099 | /* |
| 1100 | * Still too many candidates? Now look for candidates which have either |
| 1101 | * exact matches or preferred types at the args that will require |
| 1102 | * coercion. (Restriction added in 7.4: preferred type must be of same |
| 1103 | * category as input type; give no preference to cross-category |
| 1104 | * conversions to preferred types.) Keep all candidates if none match. |
| 1105 | */ |
| 1106 | for (i = 0; i < nargs; i++) /* avoid multiple lookups */ |
| 1107 | slot_category[i] = TypeCategory(input_base_typeids[i]); |
| 1108 | ncandidates = 0; |
| 1109 | nbestMatch = 0; |
| 1110 | last_candidate = NULL; |
| 1111 | for (current_candidate = candidates; |
| 1112 | current_candidate != NULL; |
| 1113 | current_candidate = current_candidate->next) |
| 1114 | { |
| 1115 | current_typeids = current_candidate->args; |
| 1116 | nmatch = 0; |
| 1117 | for (i = 0; i < nargs; i++) |
| 1118 | { |
| 1119 | if (input_base_typeids[i] != UNKNOWNOID) |
| 1120 | { |
| 1121 | if (current_typeids[i] == input_base_typeids[i] || |
| 1122 | IsPreferredType(slot_category[i], current_typeids[i])) |
| 1123 | nmatch++; |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | if ((nmatch > nbestMatch) || (last_candidate == NULL)) |
| 1128 | { |
| 1129 | nbestMatch = nmatch; |
| 1130 | candidates = current_candidate; |
| 1131 | last_candidate = current_candidate; |
| 1132 | ncandidates = 1; |
| 1133 | } |
| 1134 | else if (nmatch == nbestMatch) |
| 1135 | { |
| 1136 | last_candidate->next = current_candidate; |
| 1137 | last_candidate = current_candidate; |
| 1138 | ncandidates++; |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | if (last_candidate) /* terminate rebuilt list */ |
| 1143 | last_candidate->next = NULL; |
| 1144 | |
| 1145 | if (ncandidates == 1) |
| 1146 | return candidates; |
| 1147 | |
| 1148 | /* |
| 1149 | * Still too many candidates? Try assigning types for the unknown inputs. |
| 1150 | * |
| 1151 | * If there are no unknown inputs, we have no more heuristics that apply, |
| 1152 | * and must fail. |
| 1153 | */ |
| 1154 | if (nunknowns == 0) |
| 1155 | return NULL; /* failed to select a best candidate */ |
| 1156 | |
| 1157 | /* |
| 1158 | * The next step examines each unknown argument position to see if we can |
| 1159 | * determine a "type category" for it. If any candidate has an input |
| 1160 | * datatype of STRING category, use STRING category (this bias towards |
| 1161 | * STRING is appropriate since unknown-type literals look like strings). |
| 1162 | * Otherwise, if all the candidates agree on the type category of this |
| 1163 | * argument position, use that category. Otherwise, fail because we |
| 1164 | * cannot determine a category. |
| 1165 | * |
| 1166 | * If we are able to determine a type category, also notice whether any of |
| 1167 | * the candidates takes a preferred datatype within the category. |
| 1168 | * |
| 1169 | * Having completed this examination, remove candidates that accept the |
| 1170 | * wrong category at any unknown position. Also, if at least one |
| 1171 | * candidate accepted a preferred type at a position, remove candidates |
| 1172 | * that accept non-preferred types. If just one candidate remains, return |
| 1173 | * that one. However, if this rule turns out to reject all candidates, |
| 1174 | * keep them all instead. |
| 1175 | */ |
| 1176 | resolved_unknowns = false; |
| 1177 | for (i = 0; i < nargs; i++) |
| 1178 | { |
| 1179 | bool have_conflict; |
| 1180 | |
| 1181 | if (input_base_typeids[i] != UNKNOWNOID) |
| 1182 | continue; |
| 1183 | resolved_unknowns = true; /* assume we can do it */ |
| 1184 | slot_category[i] = TYPCATEGORY_INVALID; |
| 1185 | slot_has_preferred_type[i] = false; |
| 1186 | have_conflict = false; |
| 1187 | for (current_candidate = candidates; |
| 1188 | current_candidate != NULL; |
| 1189 | current_candidate = current_candidate->next) |
| 1190 | { |
| 1191 | current_typeids = current_candidate->args; |
| 1192 | current_type = current_typeids[i]; |
| 1193 | get_type_category_preferred(current_type, |
| 1194 | ¤t_category, |
| 1195 | ¤t_is_preferred); |
| 1196 | if (slot_category[i] == TYPCATEGORY_INVALID) |
| 1197 | { |
| 1198 | /* first candidate */ |
| 1199 | slot_category[i] = current_category; |
| 1200 | slot_has_preferred_type[i] = current_is_preferred; |
| 1201 | } |
| 1202 | else if (current_category == slot_category[i]) |
| 1203 | { |
| 1204 | /* more candidates in same category */ |
| 1205 | slot_has_preferred_type[i] |= current_is_preferred; |
| 1206 | } |
| 1207 | else |
| 1208 | { |
| 1209 | /* category conflict! */ |
| 1210 | if (current_category == TYPCATEGORY_STRING) |
| 1211 | { |
| 1212 | /* STRING always wins if available */ |
| 1213 | slot_category[i] = current_category; |
| 1214 | slot_has_preferred_type[i] = current_is_preferred; |
| 1215 | } |
| 1216 | else |
| 1217 | { |
| 1218 | /* |
| 1219 | * Remember conflict, but keep going (might find STRING) |
| 1220 | */ |
| 1221 | have_conflict = true; |
| 1222 | } |
| 1223 | } |
| 1224 | } |
| 1225 | if (have_conflict && slot_category[i] != TYPCATEGORY_STRING) |
| 1226 | { |
| 1227 | /* Failed to resolve category conflict at this position */ |
| 1228 | resolved_unknowns = false; |
| 1229 | break; |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | if (resolved_unknowns) |
| 1234 | { |
| 1235 | /* Strip non-matching candidates */ |
| 1236 | ncandidates = 0; |
| 1237 | first_candidate = candidates; |
| 1238 | last_candidate = NULL; |
| 1239 | for (current_candidate = candidates; |
| 1240 | current_candidate != NULL; |
| 1241 | current_candidate = current_candidate->next) |
| 1242 | { |
| 1243 | bool keepit = true; |
| 1244 | |
| 1245 | current_typeids = current_candidate->args; |
| 1246 | for (i = 0; i < nargs; i++) |
| 1247 | { |
| 1248 | if (input_base_typeids[i] != UNKNOWNOID) |
| 1249 | continue; |
| 1250 | current_type = current_typeids[i]; |
| 1251 | get_type_category_preferred(current_type, |
| 1252 | ¤t_category, |
| 1253 | ¤t_is_preferred); |
| 1254 | if (current_category != slot_category[i]) |
| 1255 | { |
| 1256 | keepit = false; |
| 1257 | break; |
| 1258 | } |
| 1259 | if (slot_has_preferred_type[i] && !current_is_preferred) |
| 1260 | { |
| 1261 | keepit = false; |
| 1262 | break; |
| 1263 | } |
| 1264 | } |
| 1265 | if (keepit) |
| 1266 | { |
| 1267 | /* keep this candidate */ |
| 1268 | last_candidate = current_candidate; |
| 1269 | ncandidates++; |
| 1270 | } |
| 1271 | else |
| 1272 | { |
| 1273 | /* forget this candidate */ |
| 1274 | if (last_candidate) |
| 1275 | last_candidate->next = current_candidate->next; |
| 1276 | else |
| 1277 | first_candidate = current_candidate->next; |
| 1278 | } |
| 1279 | } |
| 1280 | |
| 1281 | /* if we found any matches, restrict our attention to those */ |
| 1282 | if (last_candidate) |
| 1283 | { |
| 1284 | candidates = first_candidate; |
| 1285 | /* terminate rebuilt list */ |
| 1286 | last_candidate->next = NULL; |
| 1287 | } |
| 1288 | |
| 1289 | if (ncandidates == 1) |
| 1290 | return candidates; |
| 1291 | } |
| 1292 | |
| 1293 | /* |
| 1294 | * Last gasp: if there are both known- and unknown-type inputs, and all |
| 1295 | * the known types are the same, assume the unknown inputs are also that |
| 1296 | * type, and see if that gives us a unique match. If so, use that match. |
| 1297 | * |
| 1298 | * NOTE: for a binary operator with one unknown and one non-unknown input, |
| 1299 | * we already tried this heuristic in binary_oper_exact(). However, that |
| 1300 | * code only finds exact matches, whereas here we will handle matches that |
| 1301 | * involve coercion, polymorphic type resolution, etc. |
| 1302 | */ |
| 1303 | if (nunknowns < nargs) |
| 1304 | { |
| 1305 | Oid known_type = UNKNOWNOID; |
| 1306 | |
| 1307 | for (i = 0; i < nargs; i++) |
| 1308 | { |
| 1309 | if (input_base_typeids[i] == UNKNOWNOID) |
| 1310 | continue; |
| 1311 | if (known_type == UNKNOWNOID) /* first known arg? */ |
| 1312 | known_type = input_base_typeids[i]; |
| 1313 | else if (known_type != input_base_typeids[i]) |
| 1314 | { |
| 1315 | /* oops, not all match */ |
| 1316 | known_type = UNKNOWNOID; |
| 1317 | break; |
| 1318 | } |
| 1319 | } |
| 1320 | |
| 1321 | if (known_type != UNKNOWNOID) |
| 1322 | { |
| 1323 | /* okay, just one known type, apply the heuristic */ |
| 1324 | for (i = 0; i < nargs; i++) |
| 1325 | input_base_typeids[i] = known_type; |
| 1326 | ncandidates = 0; |
| 1327 | last_candidate = NULL; |
| 1328 | for (current_candidate = candidates; |
| 1329 | current_candidate != NULL; |
| 1330 | current_candidate = current_candidate->next) |
| 1331 | { |
| 1332 | current_typeids = current_candidate->args; |
| 1333 | if (can_coerce_type(nargs, input_base_typeids, current_typeids, |
| 1334 | COERCION_IMPLICIT)) |
| 1335 | { |
| 1336 | if (++ncandidates > 1) |
| 1337 | break; /* not unique, give up */ |
| 1338 | last_candidate = current_candidate; |
| 1339 | } |
| 1340 | } |
| 1341 | if (ncandidates == 1) |
| 1342 | { |
| 1343 | /* successfully identified a unique match */ |
| 1344 | last_candidate->next = NULL; |
| 1345 | return last_candidate; |
| 1346 | } |
| 1347 | } |
| 1348 | } |
| 1349 | |
| 1350 | return NULL; /* failed to select a best candidate */ |
| 1351 | } /* func_select_candidate() */ |
| 1352 | |
| 1353 | |
| 1354 | /* func_get_detail() |
| 1355 | * |
| 1356 | * Find the named function in the system catalogs. |
| 1357 | * |
| 1358 | * Attempt to find the named function in the system catalogs with |
| 1359 | * arguments exactly as specified, so that the normal case (exact match) |
| 1360 | * is as quick as possible. |
| 1361 | * |
| 1362 | * If an exact match isn't found: |
| 1363 | * 1) check for possible interpretation as a type coercion request |
| 1364 | * 2) apply the ambiguous-function resolution rules |
| 1365 | * |
| 1366 | * Return values *funcid through *true_typeids receive info about the function. |
| 1367 | * If argdefaults isn't NULL, *argdefaults receives a list of any default |
| 1368 | * argument expressions that need to be added to the given arguments. |
| 1369 | * |
| 1370 | * When processing a named- or mixed-notation call (ie, fargnames isn't NIL), |
| 1371 | * the returned true_typeids and argdefaults are ordered according to the |
| 1372 | * call's argument ordering: first any positional arguments, then the named |
| 1373 | * arguments, then defaulted arguments (if needed and allowed by |
| 1374 | * expand_defaults). Some care is needed if this information is to be compared |
| 1375 | * to the function's pg_proc entry, but in practice the caller can usually |
| 1376 | * just work with the call's argument ordering. |
| 1377 | * |
| 1378 | * We rely primarily on fargnames/nargs/argtypes as the argument description. |
| 1379 | * The actual expression node list is passed in fargs so that we can check |
| 1380 | * for type coercion of a constant. Some callers pass fargs == NIL indicating |
| 1381 | * they don't need that check made. Note also that when fargnames isn't NIL, |
| 1382 | * the fargs list must be passed if the caller wants actual argument position |
| 1383 | * information to be returned into the NamedArgExpr nodes. |
| 1384 | */ |
| 1385 | FuncDetailCode |
| 1386 | func_get_detail(List *funcname, |
| 1387 | List *fargs, |
| 1388 | List *fargnames, |
| 1389 | int nargs, |
| 1390 | Oid *argtypes, |
| 1391 | bool expand_variadic, |
| 1392 | bool expand_defaults, |
| 1393 | Oid *funcid, /* return value */ |
| 1394 | Oid *rettype, /* return value */ |
| 1395 | bool *retset, /* return value */ |
| 1396 | int *nvargs, /* return value */ |
| 1397 | Oid *vatype, /* return value */ |
| 1398 | Oid **true_typeids, /* return value */ |
| 1399 | List **argdefaults) /* optional return value */ |
| 1400 | { |
| 1401 | FuncCandidateList raw_candidates; |
| 1402 | FuncCandidateList best_candidate; |
| 1403 | |
| 1404 | /* Passing NULL for argtypes is no longer allowed */ |
| 1405 | Assert(argtypes); |
| 1406 | |
| 1407 | /* initialize output arguments to silence compiler warnings */ |
| 1408 | *funcid = InvalidOid; |
| 1409 | *rettype = InvalidOid; |
| 1410 | *retset = false; |
| 1411 | *nvargs = 0; |
| 1412 | *vatype = InvalidOid; |
| 1413 | *true_typeids = NULL; |
| 1414 | if (argdefaults) |
| 1415 | *argdefaults = NIL; |
| 1416 | |
| 1417 | /* Get list of possible candidates from namespace search */ |
| 1418 | raw_candidates = FuncnameGetCandidates(funcname, nargs, fargnames, |
| 1419 | expand_variadic, expand_defaults, |
| 1420 | false); |
| 1421 | |
| 1422 | /* |
| 1423 | * Quickly check if there is an exact match to the input datatypes (there |
| 1424 | * can be only one) |
| 1425 | */ |
| 1426 | for (best_candidate = raw_candidates; |
| 1427 | best_candidate != NULL; |
| 1428 | best_candidate = best_candidate->next) |
| 1429 | { |
| 1430 | if (memcmp(argtypes, best_candidate->args, nargs * sizeof(Oid)) == 0) |
| 1431 | break; |
| 1432 | } |
| 1433 | |
| 1434 | if (best_candidate == NULL) |
| 1435 | { |
| 1436 | /* |
| 1437 | * If we didn't find an exact match, next consider the possibility |
| 1438 | * that this is really a type-coercion request: a single-argument |
| 1439 | * function call where the function name is a type name. If so, and |
| 1440 | * if the coercion path is RELABELTYPE or COERCEVIAIO, then go ahead |
| 1441 | * and treat the "function call" as a coercion. |
| 1442 | * |
| 1443 | * This interpretation needs to be given higher priority than |
| 1444 | * interpretations involving a type coercion followed by a function |
| 1445 | * call, otherwise we can produce surprising results. For example, we |
| 1446 | * want "text(varchar)" to be interpreted as a simple coercion, not as |
| 1447 | * "text(name(varchar))" which the code below this point is entirely |
| 1448 | * capable of selecting. |
| 1449 | * |
| 1450 | * We also treat a coercion of a previously-unknown-type literal |
| 1451 | * constant to a specific type this way. |
| 1452 | * |
| 1453 | * The reason we reject COERCION_PATH_FUNC here is that we expect the |
| 1454 | * cast implementation function to be named after the target type. |
| 1455 | * Thus the function will be found by normal lookup if appropriate. |
| 1456 | * |
| 1457 | * The reason we reject COERCION_PATH_ARRAYCOERCE is mainly that you |
| 1458 | * can't write "foo[] (something)" as a function call. In theory |
| 1459 | * someone might want to invoke it as "_foo (something)" but we have |
| 1460 | * never supported that historically, so we can insist that people |
| 1461 | * write it as a normal cast instead. |
| 1462 | * |
| 1463 | * We also reject the specific case of COERCEVIAIO for a composite |
| 1464 | * source type and a string-category target type. This is a case that |
| 1465 | * find_coercion_pathway() allows by default, but experience has shown |
| 1466 | * that it's too commonly invoked by mistake. So, again, insist that |
| 1467 | * people use cast syntax if they want to do that. |
| 1468 | * |
| 1469 | * NB: it's important that this code does not exceed what coerce_type |
| 1470 | * can do, because the caller will try to apply coerce_type if we |
| 1471 | * return FUNCDETAIL_COERCION. If we return that result for something |
| 1472 | * coerce_type can't handle, we'll cause infinite recursion between |
| 1473 | * this module and coerce_type! |
| 1474 | */ |
| 1475 | if (nargs == 1 && fargs != NIL && fargnames == NIL) |
| 1476 | { |
| 1477 | Oid targetType = FuncNameAsType(funcname); |
| 1478 | |
| 1479 | if (OidIsValid(targetType)) |
| 1480 | { |
| 1481 | Oid sourceType = argtypes[0]; |
| 1482 | Node *arg1 = linitial(fargs); |
| 1483 | bool iscoercion; |
| 1484 | |
| 1485 | if (sourceType == UNKNOWNOID && IsA(arg1, Const)) |
| 1486 | { |
| 1487 | /* always treat typename('literal') as coercion */ |
| 1488 | iscoercion = true; |
| 1489 | } |
| 1490 | else |
| 1491 | { |
| 1492 | CoercionPathType cpathtype; |
| 1493 | Oid cfuncid; |
| 1494 | |
| 1495 | cpathtype = find_coercion_pathway(targetType, sourceType, |
| 1496 | COERCION_EXPLICIT, |
| 1497 | &cfuncid); |
| 1498 | switch (cpathtype) |
| 1499 | { |
| 1500 | case COERCION_PATH_RELABELTYPE: |
| 1501 | iscoercion = true; |
| 1502 | break; |
| 1503 | case COERCION_PATH_COERCEVIAIO: |
| 1504 | if ((sourceType == RECORDOID || |
| 1505 | ISCOMPLEX(sourceType)) && |
| 1506 | TypeCategory(targetType) == TYPCATEGORY_STRING) |
| 1507 | iscoercion = false; |
| 1508 | else |
| 1509 | iscoercion = true; |
| 1510 | break; |
| 1511 | default: |
| 1512 | iscoercion = false; |
| 1513 | break; |
| 1514 | } |
| 1515 | } |
| 1516 | |
| 1517 | if (iscoercion) |
| 1518 | { |
| 1519 | /* Treat it as a type coercion */ |
| 1520 | *funcid = InvalidOid; |
| 1521 | *rettype = targetType; |
| 1522 | *retset = false; |
| 1523 | *nvargs = 0; |
| 1524 | *vatype = InvalidOid; |
| 1525 | *true_typeids = argtypes; |
| 1526 | return FUNCDETAIL_COERCION; |
| 1527 | } |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * didn't find an exact match, so now try to match up candidates... |
| 1533 | */ |
| 1534 | if (raw_candidates != NULL) |
| 1535 | { |
| 1536 | FuncCandidateList current_candidates; |
| 1537 | int ncandidates; |
| 1538 | |
| 1539 | ncandidates = func_match_argtypes(nargs, |
| 1540 | argtypes, |
| 1541 | raw_candidates, |
| 1542 | ¤t_candidates); |
| 1543 | |
| 1544 | /* one match only? then run with it... */ |
| 1545 | if (ncandidates == 1) |
| 1546 | best_candidate = current_candidates; |
| 1547 | |
| 1548 | /* |
| 1549 | * multiple candidates? then better decide or throw an error... |
| 1550 | */ |
| 1551 | else if (ncandidates > 1) |
| 1552 | { |
| 1553 | best_candidate = func_select_candidate(nargs, |
| 1554 | argtypes, |
| 1555 | current_candidates); |
| 1556 | |
| 1557 | /* |
| 1558 | * If we were able to choose a best candidate, we're done. |
| 1559 | * Otherwise, ambiguous function call. |
| 1560 | */ |
| 1561 | if (!best_candidate) |
| 1562 | return FUNCDETAIL_MULTIPLE; |
| 1563 | } |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | if (best_candidate) |
| 1568 | { |
| 1569 | HeapTuple ftup; |
| 1570 | Form_pg_proc pform; |
| 1571 | FuncDetailCode result; |
| 1572 | |
| 1573 | /* |
| 1574 | * If processing named args or expanding variadics or defaults, the |
| 1575 | * "best candidate" might represent multiple equivalently good |
| 1576 | * functions; treat this case as ambiguous. |
| 1577 | */ |
| 1578 | if (!OidIsValid(best_candidate->oid)) |
| 1579 | return FUNCDETAIL_MULTIPLE; |
| 1580 | |
| 1581 | /* |
| 1582 | * We disallow VARIADIC with named arguments unless the last argument |
| 1583 | * (the one with VARIADIC attached) actually matched the variadic |
| 1584 | * parameter. This is mere pedantry, really, but some folks insisted. |
| 1585 | */ |
| 1586 | if (fargnames != NIL && !expand_variadic && nargs > 0 && |
| 1587 | best_candidate->argnumbers[nargs - 1] != nargs - 1) |
| 1588 | return FUNCDETAIL_NOTFOUND; |
| 1589 | |
| 1590 | *funcid = best_candidate->oid; |
| 1591 | *nvargs = best_candidate->nvargs; |
| 1592 | *true_typeids = best_candidate->args; |
| 1593 | |
| 1594 | /* |
| 1595 | * If processing named args, return actual argument positions into |
| 1596 | * NamedArgExpr nodes in the fargs list. This is a bit ugly but not |
| 1597 | * worth the extra notation needed to do it differently. |
| 1598 | */ |
| 1599 | if (best_candidate->argnumbers != NULL) |
| 1600 | { |
| 1601 | int i = 0; |
| 1602 | ListCell *lc; |
| 1603 | |
| 1604 | foreach(lc, fargs) |
| 1605 | { |
| 1606 | NamedArgExpr *na = (NamedArgExpr *) lfirst(lc); |
| 1607 | |
| 1608 | if (IsA(na, NamedArgExpr)) |
| 1609 | na->argnumber = best_candidate->argnumbers[i]; |
| 1610 | i++; |
| 1611 | } |
| 1612 | } |
| 1613 | |
| 1614 | ftup = SearchSysCache1(PROCOID, |
| 1615 | ObjectIdGetDatum(best_candidate->oid)); |
| 1616 | if (!HeapTupleIsValid(ftup)) /* should not happen */ |
| 1617 | elog(ERROR, "cache lookup failed for function %u" , |
| 1618 | best_candidate->oid); |
| 1619 | pform = (Form_pg_proc) GETSTRUCT(ftup); |
| 1620 | *rettype = pform->prorettype; |
| 1621 | *retset = pform->proretset; |
| 1622 | *vatype = pform->provariadic; |
| 1623 | /* fetch default args if caller wants 'em */ |
| 1624 | if (argdefaults && best_candidate->ndargs > 0) |
| 1625 | { |
| 1626 | Datum proargdefaults; |
| 1627 | bool isnull; |
| 1628 | char *str; |
| 1629 | List *defaults; |
| 1630 | |
| 1631 | /* shouldn't happen, FuncnameGetCandidates messed up */ |
| 1632 | if (best_candidate->ndargs > pform->pronargdefaults) |
| 1633 | elog(ERROR, "not enough default arguments" ); |
| 1634 | |
| 1635 | proargdefaults = SysCacheGetAttr(PROCOID, ftup, |
| 1636 | Anum_pg_proc_proargdefaults, |
| 1637 | &isnull); |
| 1638 | Assert(!isnull); |
| 1639 | str = TextDatumGetCString(proargdefaults); |
| 1640 | defaults = castNode(List, stringToNode(str)); |
| 1641 | pfree(str); |
| 1642 | |
| 1643 | /* Delete any unused defaults from the returned list */ |
| 1644 | if (best_candidate->argnumbers != NULL) |
| 1645 | { |
| 1646 | /* |
| 1647 | * This is a bit tricky in named notation, since the supplied |
| 1648 | * arguments could replace any subset of the defaults. We |
| 1649 | * work by making a bitmapset of the argnumbers of defaulted |
| 1650 | * arguments, then scanning the defaults list and selecting |
| 1651 | * the needed items. (This assumes that defaulted arguments |
| 1652 | * should be supplied in their positional order.) |
| 1653 | */ |
| 1654 | Bitmapset *defargnumbers; |
| 1655 | int *firstdefarg; |
| 1656 | List *newdefaults; |
| 1657 | ListCell *lc; |
| 1658 | int i; |
| 1659 | |
| 1660 | defargnumbers = NULL; |
| 1661 | firstdefarg = &best_candidate->argnumbers[best_candidate->nargs - best_candidate->ndargs]; |
| 1662 | for (i = 0; i < best_candidate->ndargs; i++) |
| 1663 | defargnumbers = bms_add_member(defargnumbers, |
| 1664 | firstdefarg[i]); |
| 1665 | newdefaults = NIL; |
| 1666 | i = pform->pronargs - pform->pronargdefaults; |
| 1667 | foreach(lc, defaults) |
| 1668 | { |
| 1669 | if (bms_is_member(i, defargnumbers)) |
| 1670 | newdefaults = lappend(newdefaults, lfirst(lc)); |
| 1671 | i++; |
| 1672 | } |
| 1673 | Assert(list_length(newdefaults) == best_candidate->ndargs); |
| 1674 | bms_free(defargnumbers); |
| 1675 | *argdefaults = newdefaults; |
| 1676 | } |
| 1677 | else |
| 1678 | { |
| 1679 | /* |
| 1680 | * Defaults for positional notation are lots easier; just |
| 1681 | * remove any unwanted ones from the front. |
| 1682 | */ |
| 1683 | int ndelete; |
| 1684 | |
| 1685 | ndelete = list_length(defaults) - best_candidate->ndargs; |
| 1686 | while (ndelete-- > 0) |
| 1687 | defaults = list_delete_first(defaults); |
| 1688 | *argdefaults = defaults; |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | switch (pform->prokind) |
| 1693 | { |
| 1694 | case PROKIND_AGGREGATE: |
| 1695 | result = FUNCDETAIL_AGGREGATE; |
| 1696 | break; |
| 1697 | case PROKIND_FUNCTION: |
| 1698 | result = FUNCDETAIL_NORMAL; |
| 1699 | break; |
| 1700 | case PROKIND_PROCEDURE: |
| 1701 | result = FUNCDETAIL_PROCEDURE; |
| 1702 | break; |
| 1703 | case PROKIND_WINDOW: |
| 1704 | result = FUNCDETAIL_WINDOWFUNC; |
| 1705 | break; |
| 1706 | default: |
| 1707 | elog(ERROR, "unrecognized prokind: %c" , pform->prokind); |
| 1708 | result = FUNCDETAIL_NORMAL; /* keep compiler quiet */ |
| 1709 | break; |
| 1710 | } |
| 1711 | |
| 1712 | ReleaseSysCache(ftup); |
| 1713 | return result; |
| 1714 | } |
| 1715 | |
| 1716 | return FUNCDETAIL_NOTFOUND; |
| 1717 | } |
| 1718 | |
| 1719 | |
| 1720 | /* |
| 1721 | * unify_hypothetical_args() |
| 1722 | * |
| 1723 | * Ensure that each hypothetical direct argument of a hypothetical-set |
| 1724 | * aggregate has the same type as the corresponding aggregated argument. |
| 1725 | * Modify the expressions in the fargs list, if necessary, and update |
| 1726 | * actual_arg_types[]. |
| 1727 | * |
| 1728 | * If the agg declared its args non-ANY (even ANYELEMENT), we need only a |
| 1729 | * sanity check that the declared types match; make_fn_arguments will coerce |
| 1730 | * the actual arguments to match the declared ones. But if the declaration |
| 1731 | * is ANY, nothing will happen in make_fn_arguments, so we need to fix any |
| 1732 | * mismatch here. We use the same type resolution logic as UNION etc. |
| 1733 | */ |
| 1734 | static void |
| 1735 | unify_hypothetical_args(ParseState *pstate, |
| 1736 | List *fargs, |
| 1737 | int numAggregatedArgs, |
| 1738 | Oid *actual_arg_types, |
| 1739 | Oid *declared_arg_types) |
| 1740 | { |
| 1741 | Node *args[FUNC_MAX_ARGS]; |
| 1742 | int numDirectArgs, |
| 1743 | numNonHypotheticalArgs; |
| 1744 | int i; |
| 1745 | ListCell *lc; |
| 1746 | |
| 1747 | numDirectArgs = list_length(fargs) - numAggregatedArgs; |
| 1748 | numNonHypotheticalArgs = numDirectArgs - numAggregatedArgs; |
| 1749 | /* safety check (should only trigger with a misdeclared agg) */ |
| 1750 | if (numNonHypotheticalArgs < 0) |
| 1751 | elog(ERROR, "incorrect number of arguments to hypothetical-set aggregate" ); |
| 1752 | |
| 1753 | /* Deconstruct fargs into an array for ease of subscripting */ |
| 1754 | i = 0; |
| 1755 | foreach(lc, fargs) |
| 1756 | { |
| 1757 | args[i++] = (Node *) lfirst(lc); |
| 1758 | } |
| 1759 | |
| 1760 | /* Check each hypothetical arg and corresponding aggregated arg */ |
| 1761 | for (i = numNonHypotheticalArgs; i < numDirectArgs; i++) |
| 1762 | { |
| 1763 | int aargpos = numDirectArgs + (i - numNonHypotheticalArgs); |
| 1764 | Oid commontype; |
| 1765 | |
| 1766 | /* A mismatch means AggregateCreate didn't check properly ... */ |
| 1767 | if (declared_arg_types[i] != declared_arg_types[aargpos]) |
| 1768 | elog(ERROR, "hypothetical-set aggregate has inconsistent declared argument types" ); |
| 1769 | |
| 1770 | /* No need to unify if make_fn_arguments will coerce */ |
| 1771 | if (declared_arg_types[i] != ANYOID) |
| 1772 | continue; |
| 1773 | |
| 1774 | /* |
| 1775 | * Select common type, giving preference to the aggregated argument's |
| 1776 | * type (we'd rather coerce the direct argument once than coerce all |
| 1777 | * the aggregated values). |
| 1778 | */ |
| 1779 | commontype = select_common_type(pstate, |
| 1780 | list_make2(args[aargpos], args[i]), |
| 1781 | "WITHIN GROUP" , |
| 1782 | NULL); |
| 1783 | |
| 1784 | /* |
| 1785 | * Perform the coercions. We don't need to worry about NamedArgExprs |
| 1786 | * here because they aren't supported with aggregates. |
| 1787 | */ |
| 1788 | args[i] = coerce_type(pstate, |
| 1789 | args[i], |
| 1790 | actual_arg_types[i], |
| 1791 | commontype, -1, |
| 1792 | COERCION_IMPLICIT, |
| 1793 | COERCE_IMPLICIT_CAST, |
| 1794 | -1); |
| 1795 | actual_arg_types[i] = commontype; |
| 1796 | args[aargpos] = coerce_type(pstate, |
| 1797 | args[aargpos], |
| 1798 | actual_arg_types[aargpos], |
| 1799 | commontype, -1, |
| 1800 | COERCION_IMPLICIT, |
| 1801 | COERCE_IMPLICIT_CAST, |
| 1802 | -1); |
| 1803 | actual_arg_types[aargpos] = commontype; |
| 1804 | } |
| 1805 | |
| 1806 | /* Reconstruct fargs from array */ |
| 1807 | i = 0; |
| 1808 | foreach(lc, fargs) |
| 1809 | { |
| 1810 | lfirst(lc) = args[i++]; |
| 1811 | } |
| 1812 | } |
| 1813 | |
| 1814 | |
| 1815 | /* |
| 1816 | * make_fn_arguments() |
| 1817 | * |
| 1818 | * Given the actual argument expressions for a function, and the desired |
| 1819 | * input types for the function, add any necessary typecasting to the |
| 1820 | * expression tree. Caller should already have verified that casting is |
| 1821 | * allowed. |
| 1822 | * |
| 1823 | * Caution: given argument list is modified in-place. |
| 1824 | * |
| 1825 | * As with coerce_type, pstate may be NULL if no special unknown-Param |
| 1826 | * processing is wanted. |
| 1827 | */ |
| 1828 | void |
| 1829 | make_fn_arguments(ParseState *pstate, |
| 1830 | List *fargs, |
| 1831 | Oid *actual_arg_types, |
| 1832 | Oid *declared_arg_types) |
| 1833 | { |
| 1834 | ListCell *current_fargs; |
| 1835 | int i = 0; |
| 1836 | |
| 1837 | foreach(current_fargs, fargs) |
| 1838 | { |
| 1839 | /* types don't match? then force coercion using a function call... */ |
| 1840 | if (actual_arg_types[i] != declared_arg_types[i]) |
| 1841 | { |
| 1842 | Node *node = (Node *) lfirst(current_fargs); |
| 1843 | |
| 1844 | /* |
| 1845 | * If arg is a NamedArgExpr, coerce its input expr instead --- we |
| 1846 | * want the NamedArgExpr to stay at the top level of the list. |
| 1847 | */ |
| 1848 | if (IsA(node, NamedArgExpr)) |
| 1849 | { |
| 1850 | NamedArgExpr *na = (NamedArgExpr *) node; |
| 1851 | |
| 1852 | node = coerce_type(pstate, |
| 1853 | (Node *) na->arg, |
| 1854 | actual_arg_types[i], |
| 1855 | declared_arg_types[i], -1, |
| 1856 | COERCION_IMPLICIT, |
| 1857 | COERCE_IMPLICIT_CAST, |
| 1858 | -1); |
| 1859 | na->arg = (Expr *) node; |
| 1860 | } |
| 1861 | else |
| 1862 | { |
| 1863 | node = coerce_type(pstate, |
| 1864 | node, |
| 1865 | actual_arg_types[i], |
| 1866 | declared_arg_types[i], -1, |
| 1867 | COERCION_IMPLICIT, |
| 1868 | COERCE_IMPLICIT_CAST, |
| 1869 | -1); |
| 1870 | lfirst(current_fargs) = node; |
| 1871 | } |
| 1872 | } |
| 1873 | i++; |
| 1874 | } |
| 1875 | } |
| 1876 | |
| 1877 | /* |
| 1878 | * FuncNameAsType - |
| 1879 | * convenience routine to see if a function name matches a type name |
| 1880 | * |
| 1881 | * Returns the OID of the matching type, or InvalidOid if none. We ignore |
| 1882 | * shell types and complex types. |
| 1883 | */ |
| 1884 | static Oid |
| 1885 | FuncNameAsType(List *funcname) |
| 1886 | { |
| 1887 | Oid result; |
| 1888 | Type typtup; |
| 1889 | |
| 1890 | /* |
| 1891 | * temp_ok=false protects the <refsect1 id="sql-createfunction-security"> |
| 1892 | * contract for writing SECURITY DEFINER functions safely. |
| 1893 | */ |
| 1894 | typtup = LookupTypeNameExtended(NULL, makeTypeNameFromNameList(funcname), |
| 1895 | NULL, false, false); |
| 1896 | if (typtup == NULL) |
| 1897 | return InvalidOid; |
| 1898 | |
| 1899 | if (((Form_pg_type) GETSTRUCT(typtup))->typisdefined && |
| 1900 | !OidIsValid(typeTypeRelid(typtup))) |
| 1901 | result = typeTypeId(typtup); |
| 1902 | else |
| 1903 | result = InvalidOid; |
| 1904 | |
| 1905 | ReleaseSysCache(typtup); |
| 1906 | return result; |
| 1907 | } |
| 1908 | |
| 1909 | /* |
| 1910 | * ParseComplexProjection - |
| 1911 | * handles function calls with a single argument that is of complex type. |
| 1912 | * If the function call is actually a column projection, return a suitably |
| 1913 | * transformed expression tree. If not, return NULL. |
| 1914 | */ |
| 1915 | static Node * |
| 1916 | ParseComplexProjection(ParseState *pstate, const char *funcname, Node *first_arg, |
| 1917 | int location) |
| 1918 | { |
| 1919 | TupleDesc tupdesc; |
| 1920 | int i; |
| 1921 | |
| 1922 | /* |
| 1923 | * Special case for whole-row Vars so that we can resolve (foo.*).bar even |
| 1924 | * when foo is a reference to a subselect, join, or RECORD function. A |
| 1925 | * bonus is that we avoid generating an unnecessary FieldSelect; our |
| 1926 | * result can omit the whole-row Var and just be a Var for the selected |
| 1927 | * field. |
| 1928 | * |
| 1929 | * This case could be handled by expandRecordVariable, but it's more |
| 1930 | * efficient to do it this way when possible. |
| 1931 | */ |
| 1932 | if (IsA(first_arg, Var) && |
| 1933 | ((Var *) first_arg)->varattno == InvalidAttrNumber) |
| 1934 | { |
| 1935 | RangeTblEntry *rte; |
| 1936 | |
| 1937 | rte = GetRTEByRangeTablePosn(pstate, |
| 1938 | ((Var *) first_arg)->varno, |
| 1939 | ((Var *) first_arg)->varlevelsup); |
| 1940 | /* Return a Var if funcname matches a column, else NULL */ |
| 1941 | return scanRTEForColumn(pstate, rte, funcname, location, 0, NULL); |
| 1942 | } |
| 1943 | |
| 1944 | /* |
| 1945 | * Else do it the hard way with get_expr_result_tupdesc(). |
| 1946 | * |
| 1947 | * If it's a Var of type RECORD, we have to work even harder: we have to |
| 1948 | * find what the Var refers to, and pass that to get_expr_result_tupdesc. |
| 1949 | * That task is handled by expandRecordVariable(). |
| 1950 | */ |
| 1951 | if (IsA(first_arg, Var) && |
| 1952 | ((Var *) first_arg)->vartype == RECORDOID) |
| 1953 | tupdesc = expandRecordVariable(pstate, (Var *) first_arg, 0); |
| 1954 | else |
| 1955 | tupdesc = get_expr_result_tupdesc(first_arg, true); |
| 1956 | if (!tupdesc) |
| 1957 | return NULL; /* unresolvable RECORD type */ |
| 1958 | |
| 1959 | for (i = 0; i < tupdesc->natts; i++) |
| 1960 | { |
| 1961 | Form_pg_attribute att = TupleDescAttr(tupdesc, i); |
| 1962 | |
| 1963 | if (strcmp(funcname, NameStr(att->attname)) == 0 && |
| 1964 | !att->attisdropped) |
| 1965 | { |
| 1966 | /* Success, so generate a FieldSelect expression */ |
| 1967 | FieldSelect *fselect = makeNode(FieldSelect); |
| 1968 | |
| 1969 | fselect->arg = (Expr *) first_arg; |
| 1970 | fselect->fieldnum = i + 1; |
| 1971 | fselect->resulttype = att->atttypid; |
| 1972 | fselect->resulttypmod = att->atttypmod; |
| 1973 | /* save attribute's collation for parse_collate.c */ |
| 1974 | fselect->resultcollid = att->attcollation; |
| 1975 | return (Node *) fselect; |
| 1976 | } |
| 1977 | } |
| 1978 | |
| 1979 | return NULL; /* funcname does not match any column */ |
| 1980 | } |
| 1981 | |
| 1982 | /* |
| 1983 | * funcname_signature_string |
| 1984 | * Build a string representing a function name, including arg types. |
| 1985 | * The result is something like "foo(integer)". |
| 1986 | * |
| 1987 | * If argnames isn't NIL, it is a list of C strings representing the actual |
| 1988 | * arg names for the last N arguments. This must be considered part of the |
| 1989 | * function signature too, when dealing with named-notation function calls. |
| 1990 | * |
| 1991 | * This is typically used in the construction of function-not-found error |
| 1992 | * messages. |
| 1993 | */ |
| 1994 | const char * |
| 1995 | funcname_signature_string(const char *funcname, int nargs, |
| 1996 | List *argnames, const Oid *argtypes) |
| 1997 | { |
| 1998 | StringInfoData argbuf; |
| 1999 | int numposargs; |
| 2000 | ListCell *lc; |
| 2001 | int i; |
| 2002 | |
| 2003 | initStringInfo(&argbuf); |
| 2004 | |
| 2005 | appendStringInfo(&argbuf, "%s(" , funcname); |
| 2006 | |
| 2007 | numposargs = nargs - list_length(argnames); |
| 2008 | lc = list_head(argnames); |
| 2009 | |
| 2010 | for (i = 0; i < nargs; i++) |
| 2011 | { |
| 2012 | if (i) |
| 2013 | appendStringInfoString(&argbuf, ", " ); |
| 2014 | if (i >= numposargs) |
| 2015 | { |
| 2016 | appendStringInfo(&argbuf, "%s => " , (char *) lfirst(lc)); |
| 2017 | lc = lnext(lc); |
| 2018 | } |
| 2019 | appendStringInfoString(&argbuf, format_type_be(argtypes[i])); |
| 2020 | } |
| 2021 | |
| 2022 | appendStringInfoChar(&argbuf, ')'); |
| 2023 | |
| 2024 | return argbuf.data; /* return palloc'd string buffer */ |
| 2025 | } |
| 2026 | |
| 2027 | /* |
| 2028 | * func_signature_string |
| 2029 | * As above, but function name is passed as a qualified name list. |
| 2030 | */ |
| 2031 | const char * |
| 2032 | func_signature_string(List *funcname, int nargs, |
| 2033 | List *argnames, const Oid *argtypes) |
| 2034 | { |
| 2035 | return funcname_signature_string(NameListToString(funcname), |
| 2036 | nargs, argnames, argtypes); |
| 2037 | } |
| 2038 | |
| 2039 | /* |
| 2040 | * LookupFuncNameInternal |
| 2041 | * Workhorse for LookupFuncName/LookupFuncWithArgs |
| 2042 | * |
| 2043 | * In an error situation, e.g. can't find the function, then we return |
| 2044 | * InvalidOid and set *lookupError to indicate what went wrong. |
| 2045 | * |
| 2046 | * Possible errors: |
| 2047 | * FUNCLOOKUP_NOSUCHFUNC: we can't find a function of this name. |
| 2048 | * FUNCLOOKUP_AMBIGUOUS: nargs == -1 and more than one function matches. |
| 2049 | */ |
| 2050 | static Oid |
| 2051 | LookupFuncNameInternal(List *funcname, int nargs, const Oid *argtypes, |
| 2052 | bool missing_ok, FuncLookupError *lookupError) |
| 2053 | { |
| 2054 | FuncCandidateList clist; |
| 2055 | |
| 2056 | /* Passing NULL for argtypes is no longer allowed */ |
| 2057 | Assert(argtypes); |
| 2058 | |
| 2059 | /* Always set *lookupError, to forestall uninitialized-variable warnings */ |
| 2060 | *lookupError = FUNCLOOKUP_NOSUCHFUNC; |
| 2061 | |
| 2062 | clist = FuncnameGetCandidates(funcname, nargs, NIL, false, false, |
| 2063 | missing_ok); |
| 2064 | |
| 2065 | /* |
| 2066 | * If no arguments were specified, the name must yield a unique candidate. |
| 2067 | */ |
| 2068 | if (nargs < 0) |
| 2069 | { |
| 2070 | if (clist) |
| 2071 | { |
| 2072 | /* If there is a second match then it's ambiguous */ |
| 2073 | if (clist->next) |
| 2074 | { |
| 2075 | *lookupError = FUNCLOOKUP_AMBIGUOUS; |
| 2076 | return InvalidOid; |
| 2077 | } |
| 2078 | /* Otherwise return the match */ |
| 2079 | return clist->oid; |
| 2080 | } |
| 2081 | else |
| 2082 | return InvalidOid; |
| 2083 | } |
| 2084 | |
| 2085 | /* |
| 2086 | * Otherwise, look for a match to the arg types. FuncnameGetCandidates |
| 2087 | * has ensured that there's at most one match in the returned list. |
| 2088 | */ |
| 2089 | while (clist) |
| 2090 | { |
| 2091 | if (memcmp(argtypes, clist->args, nargs * sizeof(Oid)) == 0) |
| 2092 | return clist->oid; |
| 2093 | clist = clist->next; |
| 2094 | } |
| 2095 | |
| 2096 | return InvalidOid; |
| 2097 | } |
| 2098 | |
| 2099 | /* |
| 2100 | * LookupFuncName |
| 2101 | * |
| 2102 | * Given a possibly-qualified function name and optionally a set of argument |
| 2103 | * types, look up the function. Pass nargs == -1 to indicate that the number |
| 2104 | * and types of the arguments are unspecified (this is NOT the same as |
| 2105 | * specifying that there are no arguments). |
| 2106 | * |
| 2107 | * If the function name is not schema-qualified, it is sought in the current |
| 2108 | * namespace search path. |
| 2109 | * |
| 2110 | * If the function is not found, we return InvalidOid if missing_ok is true, |
| 2111 | * else raise an error. |
| 2112 | * |
| 2113 | * If nargs == -1 and multiple functions are found matching this function name |
| 2114 | * we will raise an ambiguous-function error, regardless of what missing_ok is |
| 2115 | * set to. |
| 2116 | */ |
| 2117 | Oid |
| 2118 | LookupFuncName(List *funcname, int nargs, const Oid *argtypes, bool missing_ok) |
| 2119 | { |
| 2120 | Oid funcoid; |
| 2121 | FuncLookupError lookupError; |
| 2122 | |
| 2123 | funcoid = LookupFuncNameInternal(funcname, nargs, argtypes, missing_ok, |
| 2124 | &lookupError); |
| 2125 | |
| 2126 | if (OidIsValid(funcoid)) |
| 2127 | return funcoid; |
| 2128 | |
| 2129 | switch (lookupError) |
| 2130 | { |
| 2131 | case FUNCLOOKUP_NOSUCHFUNC: |
| 2132 | /* Let the caller deal with it when missing_ok is true */ |
| 2133 | if (missing_ok) |
| 2134 | return InvalidOid; |
| 2135 | |
| 2136 | if (nargs < 0) |
| 2137 | ereport(ERROR, |
| 2138 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2139 | errmsg("could not find a function named \"%s\"" , |
| 2140 | NameListToString(funcname)))); |
| 2141 | else |
| 2142 | ereport(ERROR, |
| 2143 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2144 | errmsg("function %s does not exist" , |
| 2145 | func_signature_string(funcname, nargs, |
| 2146 | NIL, argtypes)))); |
| 2147 | break; |
| 2148 | |
| 2149 | case FUNCLOOKUP_AMBIGUOUS: |
| 2150 | /* Raise an error regardless of missing_ok */ |
| 2151 | ereport(ERROR, |
| 2152 | (errcode(ERRCODE_AMBIGUOUS_FUNCTION), |
| 2153 | errmsg("function name \"%s\" is not unique" , |
| 2154 | NameListToString(funcname)), |
| 2155 | errhint("Specify the argument list to select the function unambiguously." ))); |
| 2156 | break; |
| 2157 | } |
| 2158 | |
| 2159 | return InvalidOid; /* Keep compiler quiet */ |
| 2160 | } |
| 2161 | |
| 2162 | /* |
| 2163 | * LookupFuncWithArgs |
| 2164 | * |
| 2165 | * Like LookupFuncName, but the argument types are specified by an |
| 2166 | * ObjectWithArgs node. Also, this function can check whether the result is a |
| 2167 | * function, procedure, or aggregate, based on the objtype argument. Pass |
| 2168 | * OBJECT_ROUTINE to accept any of them. |
| 2169 | * |
| 2170 | * For historical reasons, we also accept aggregates when looking for a |
| 2171 | * function. |
| 2172 | * |
| 2173 | * When missing_ok is true we don't generate any error for missing objects and |
| 2174 | * return InvalidOid. Other types of errors can still be raised, regardless |
| 2175 | * of the value of missing_ok. |
| 2176 | */ |
| 2177 | Oid |
| 2178 | LookupFuncWithArgs(ObjectType objtype, ObjectWithArgs *func, bool missing_ok) |
| 2179 | { |
| 2180 | Oid argoids[FUNC_MAX_ARGS]; |
| 2181 | int argcount; |
| 2182 | int nargs; |
| 2183 | int i; |
| 2184 | ListCell *args_item; |
| 2185 | Oid oid; |
| 2186 | FuncLookupError lookupError; |
| 2187 | |
| 2188 | Assert(objtype == OBJECT_AGGREGATE || |
| 2189 | objtype == OBJECT_FUNCTION || |
| 2190 | objtype == OBJECT_PROCEDURE || |
| 2191 | objtype == OBJECT_ROUTINE); |
| 2192 | |
| 2193 | argcount = list_length(func->objargs); |
| 2194 | if (argcount > FUNC_MAX_ARGS) |
| 2195 | { |
| 2196 | if (objtype == OBJECT_PROCEDURE) |
| 2197 | ereport(ERROR, |
| 2198 | (errcode(ERRCODE_TOO_MANY_ARGUMENTS), |
| 2199 | errmsg_plural("procedures cannot have more than %d argument" , |
| 2200 | "procedures cannot have more than %d arguments" , |
| 2201 | FUNC_MAX_ARGS, |
| 2202 | FUNC_MAX_ARGS))); |
| 2203 | else |
| 2204 | ereport(ERROR, |
| 2205 | (errcode(ERRCODE_TOO_MANY_ARGUMENTS), |
| 2206 | errmsg_plural("functions cannot have more than %d argument" , |
| 2207 | "functions cannot have more than %d arguments" , |
| 2208 | FUNC_MAX_ARGS, |
| 2209 | FUNC_MAX_ARGS))); |
| 2210 | } |
| 2211 | |
| 2212 | i = 0; |
| 2213 | foreach(args_item, func->objargs) |
| 2214 | { |
| 2215 | TypeName *t = (TypeName *) lfirst(args_item); |
| 2216 | |
| 2217 | argoids[i] = LookupTypeNameOid(NULL, t, missing_ok); |
| 2218 | if (!OidIsValid(argoids[i])) |
| 2219 | return InvalidOid; /* missing_ok must be true */ |
| 2220 | i++; |
| 2221 | } |
| 2222 | |
| 2223 | /* |
| 2224 | * Set nargs for LookupFuncNameInternal. It expects -1 to mean no args |
| 2225 | * were specified. |
| 2226 | */ |
| 2227 | nargs = func->args_unspecified ? -1 : argcount; |
| 2228 | |
| 2229 | oid = LookupFuncNameInternal(func->objname, nargs, argoids, missing_ok, |
| 2230 | &lookupError); |
| 2231 | |
| 2232 | if (OidIsValid(oid)) |
| 2233 | { |
| 2234 | /* |
| 2235 | * Even if we found the function, perform validation that the objtype |
| 2236 | * matches the prokind of the found function. For historical reasons |
| 2237 | * we allow the objtype of FUNCTION to include aggregates and window |
| 2238 | * functions; but we draw the line if the object is a procedure. That |
| 2239 | * is a new enough feature that this historical rule does not apply. |
| 2240 | */ |
| 2241 | switch (objtype) |
| 2242 | { |
| 2243 | case OBJECT_FUNCTION: |
| 2244 | /* Only complain if it's a procedure. */ |
| 2245 | if (get_func_prokind(oid) == PROKIND_PROCEDURE) |
| 2246 | ereport(ERROR, |
| 2247 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 2248 | errmsg("%s is not a function" , |
| 2249 | func_signature_string(func->objname, argcount, |
| 2250 | NIL, argoids)))); |
| 2251 | break; |
| 2252 | |
| 2253 | case OBJECT_PROCEDURE: |
| 2254 | /* Reject if found object is not a procedure. */ |
| 2255 | if (get_func_prokind(oid) != PROKIND_PROCEDURE) |
| 2256 | ereport(ERROR, |
| 2257 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 2258 | errmsg("%s is not a procedure" , |
| 2259 | func_signature_string(func->objname, argcount, |
| 2260 | NIL, argoids)))); |
| 2261 | break; |
| 2262 | |
| 2263 | case OBJECT_AGGREGATE: |
| 2264 | /* Reject if found object is not an aggregate. */ |
| 2265 | if (get_func_prokind(oid) != PROKIND_AGGREGATE) |
| 2266 | ereport(ERROR, |
| 2267 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 2268 | errmsg("function %s is not an aggregate" , |
| 2269 | func_signature_string(func->objname, argcount, |
| 2270 | NIL, argoids)))); |
| 2271 | break; |
| 2272 | |
| 2273 | default: |
| 2274 | /* OBJECT_ROUTINE accepts anything. */ |
| 2275 | break; |
| 2276 | } |
| 2277 | |
| 2278 | return oid; /* All good */ |
| 2279 | } |
| 2280 | else |
| 2281 | { |
| 2282 | /* Deal with cases where the lookup failed */ |
| 2283 | switch (lookupError) |
| 2284 | { |
| 2285 | case FUNCLOOKUP_NOSUCHFUNC: |
| 2286 | /* Suppress no-such-func errors when missing_ok is true */ |
| 2287 | if (missing_ok) |
| 2288 | break; |
| 2289 | |
| 2290 | switch (objtype) |
| 2291 | { |
| 2292 | case OBJECT_PROCEDURE: |
| 2293 | if (func->args_unspecified) |
| 2294 | ereport(ERROR, |
| 2295 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2296 | errmsg("could not find a procedure named \"%s\"" , |
| 2297 | NameListToString(func->objname)))); |
| 2298 | else |
| 2299 | ereport(ERROR, |
| 2300 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2301 | errmsg("procedure %s does not exist" , |
| 2302 | func_signature_string(func->objname, argcount, |
| 2303 | NIL, argoids)))); |
| 2304 | break; |
| 2305 | |
| 2306 | case OBJECT_AGGREGATE: |
| 2307 | if (func->args_unspecified) |
| 2308 | ereport(ERROR, |
| 2309 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2310 | errmsg("could not find an aggregate named \"%s\"" , |
| 2311 | NameListToString(func->objname)))); |
| 2312 | else if (argcount == 0) |
| 2313 | ereport(ERROR, |
| 2314 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2315 | errmsg("aggregate %s(*) does not exist" , |
| 2316 | NameListToString(func->objname)))); |
| 2317 | else |
| 2318 | ereport(ERROR, |
| 2319 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2320 | errmsg("aggregate %s does not exist" , |
| 2321 | func_signature_string(func->objname, argcount, |
| 2322 | NIL, argoids)))); |
| 2323 | break; |
| 2324 | |
| 2325 | default: |
| 2326 | /* FUNCTION and ROUTINE */ |
| 2327 | if (func->args_unspecified) |
| 2328 | ereport(ERROR, |
| 2329 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2330 | errmsg("could not find a function named \"%s\"" , |
| 2331 | NameListToString(func->objname)))); |
| 2332 | else |
| 2333 | ereport(ERROR, |
| 2334 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 2335 | errmsg("function %s does not exist" , |
| 2336 | func_signature_string(func->objname, argcount, |
| 2337 | NIL, argoids)))); |
| 2338 | break; |
| 2339 | } |
| 2340 | break; |
| 2341 | |
| 2342 | case FUNCLOOKUP_AMBIGUOUS: |
| 2343 | switch (objtype) |
| 2344 | { |
| 2345 | case OBJECT_FUNCTION: |
| 2346 | ereport(ERROR, |
| 2347 | (errcode(ERRCODE_AMBIGUOUS_FUNCTION), |
| 2348 | errmsg("function name \"%s\" is not unique" , |
| 2349 | NameListToString(func->objname)), |
| 2350 | errhint("Specify the argument list to select the function unambiguously." ))); |
| 2351 | break; |
| 2352 | case OBJECT_PROCEDURE: |
| 2353 | ereport(ERROR, |
| 2354 | (errcode(ERRCODE_AMBIGUOUS_FUNCTION), |
| 2355 | errmsg("procedure name \"%s\" is not unique" , |
| 2356 | NameListToString(func->objname)), |
| 2357 | errhint("Specify the argument list to select the procedure unambiguously." ))); |
| 2358 | break; |
| 2359 | case OBJECT_AGGREGATE: |
| 2360 | ereport(ERROR, |
| 2361 | (errcode(ERRCODE_AMBIGUOUS_FUNCTION), |
| 2362 | errmsg("aggregate name \"%s\" is not unique" , |
| 2363 | NameListToString(func->objname)), |
| 2364 | errhint("Specify the argument list to select the aggregate unambiguously." ))); |
| 2365 | break; |
| 2366 | case OBJECT_ROUTINE: |
| 2367 | ereport(ERROR, |
| 2368 | (errcode(ERRCODE_AMBIGUOUS_FUNCTION), |
| 2369 | errmsg("routine name \"%s\" is not unique" , |
| 2370 | NameListToString(func->objname)), |
| 2371 | errhint("Specify the argument list to select the routine unambiguously." ))); |
| 2372 | break; |
| 2373 | |
| 2374 | default: |
| 2375 | Assert(false); /* Disallowed by Assert above */ |
| 2376 | break; |
| 2377 | } |
| 2378 | break; |
| 2379 | } |
| 2380 | |
| 2381 | return InvalidOid; |
| 2382 | } |
| 2383 | } |
| 2384 | |
| 2385 | /* |
| 2386 | * check_srf_call_placement |
| 2387 | * Verify that a set-returning function is called in a valid place, |
| 2388 | * and throw a nice error if not. |
| 2389 | * |
| 2390 | * A side-effect is to set pstate->p_hasTargetSRFs true if appropriate. |
| 2391 | * |
| 2392 | * last_srf should be a copy of pstate->p_last_srf from just before we |
| 2393 | * started transforming the function's arguments. This allows detection |
| 2394 | * of whether the SRF's arguments contain any SRFs. |
| 2395 | */ |
| 2396 | void |
| 2397 | check_srf_call_placement(ParseState *pstate, Node *last_srf, int location) |
| 2398 | { |
| 2399 | const char *err; |
| 2400 | bool errkind; |
| 2401 | |
| 2402 | /* |
| 2403 | * Check to see if the set-returning function is in an invalid place |
| 2404 | * within the query. Basically, we don't allow SRFs anywhere except in |
| 2405 | * the targetlist (which includes GROUP BY/ORDER BY expressions), VALUES, |
| 2406 | * and functions in FROM. |
| 2407 | * |
| 2408 | * For brevity we support two schemes for reporting an error here: set |
| 2409 | * "err" to a custom message, or set "errkind" true if the error context |
| 2410 | * is sufficiently identified by what ParseExprKindName will return, *and* |
| 2411 | * what it will return is just a SQL keyword. (Otherwise, use a custom |
| 2412 | * message to avoid creating translation problems.) |
| 2413 | */ |
| 2414 | err = NULL; |
| 2415 | errkind = false; |
| 2416 | switch (pstate->p_expr_kind) |
| 2417 | { |
| 2418 | case EXPR_KIND_NONE: |
| 2419 | Assert(false); /* can't happen */ |
| 2420 | break; |
| 2421 | case EXPR_KIND_OTHER: |
| 2422 | /* Accept SRF here; caller must throw error if wanted */ |
| 2423 | break; |
| 2424 | case EXPR_KIND_JOIN_ON: |
| 2425 | case EXPR_KIND_JOIN_USING: |
| 2426 | err = _("set-returning functions are not allowed in JOIN conditions" ); |
| 2427 | break; |
| 2428 | case EXPR_KIND_FROM_SUBSELECT: |
| 2429 | /* can't get here, but just in case, throw an error */ |
| 2430 | errkind = true; |
| 2431 | break; |
| 2432 | case EXPR_KIND_FROM_FUNCTION: |
| 2433 | /* okay, but we don't allow nested SRFs here */ |
| 2434 | /* errmsg is chosen to match transformRangeFunction() */ |
| 2435 | /* errposition should point to the inner SRF */ |
| 2436 | if (pstate->p_last_srf != last_srf) |
| 2437 | ereport(ERROR, |
| 2438 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2439 | errmsg("set-returning functions must appear at top level of FROM" ), |
| 2440 | parser_errposition(pstate, |
| 2441 | exprLocation(pstate->p_last_srf)))); |
| 2442 | break; |
| 2443 | case EXPR_KIND_WHERE: |
| 2444 | errkind = true; |
| 2445 | break; |
| 2446 | case EXPR_KIND_POLICY: |
| 2447 | err = _("set-returning functions are not allowed in policy expressions" ); |
| 2448 | break; |
| 2449 | case EXPR_KIND_HAVING: |
| 2450 | errkind = true; |
| 2451 | break; |
| 2452 | case EXPR_KIND_FILTER: |
| 2453 | errkind = true; |
| 2454 | break; |
| 2455 | case EXPR_KIND_WINDOW_PARTITION: |
| 2456 | case EXPR_KIND_WINDOW_ORDER: |
| 2457 | /* okay, these are effectively GROUP BY/ORDER BY */ |
| 2458 | pstate->p_hasTargetSRFs = true; |
| 2459 | break; |
| 2460 | case EXPR_KIND_WINDOW_FRAME_RANGE: |
| 2461 | case EXPR_KIND_WINDOW_FRAME_ROWS: |
| 2462 | case EXPR_KIND_WINDOW_FRAME_GROUPS: |
| 2463 | err = _("set-returning functions are not allowed in window definitions" ); |
| 2464 | break; |
| 2465 | case EXPR_KIND_SELECT_TARGET: |
| 2466 | case EXPR_KIND_INSERT_TARGET: |
| 2467 | /* okay */ |
| 2468 | pstate->p_hasTargetSRFs = true; |
| 2469 | break; |
| 2470 | case EXPR_KIND_UPDATE_SOURCE: |
| 2471 | case EXPR_KIND_UPDATE_TARGET: |
| 2472 | /* disallowed because it would be ambiguous what to do */ |
| 2473 | errkind = true; |
| 2474 | break; |
| 2475 | case EXPR_KIND_GROUP_BY: |
| 2476 | case EXPR_KIND_ORDER_BY: |
| 2477 | /* okay */ |
| 2478 | pstate->p_hasTargetSRFs = true; |
| 2479 | break; |
| 2480 | case EXPR_KIND_DISTINCT_ON: |
| 2481 | /* okay */ |
| 2482 | pstate->p_hasTargetSRFs = true; |
| 2483 | break; |
| 2484 | case EXPR_KIND_LIMIT: |
| 2485 | case EXPR_KIND_OFFSET: |
| 2486 | errkind = true; |
| 2487 | break; |
| 2488 | case EXPR_KIND_RETURNING: |
| 2489 | errkind = true; |
| 2490 | break; |
| 2491 | case EXPR_KIND_VALUES: |
| 2492 | /* SRFs are presently not supported by nodeValuesscan.c */ |
| 2493 | errkind = true; |
| 2494 | break; |
| 2495 | case EXPR_KIND_VALUES_SINGLE: |
| 2496 | /* okay, since we process this like a SELECT tlist */ |
| 2497 | pstate->p_hasTargetSRFs = true; |
| 2498 | break; |
| 2499 | case EXPR_KIND_CHECK_CONSTRAINT: |
| 2500 | case EXPR_KIND_DOMAIN_CHECK: |
| 2501 | err = _("set-returning functions are not allowed in check constraints" ); |
| 2502 | break; |
| 2503 | case EXPR_KIND_COLUMN_DEFAULT: |
| 2504 | case EXPR_KIND_FUNCTION_DEFAULT: |
| 2505 | err = _("set-returning functions are not allowed in DEFAULT expressions" ); |
| 2506 | break; |
| 2507 | case EXPR_KIND_INDEX_EXPRESSION: |
| 2508 | err = _("set-returning functions are not allowed in index expressions" ); |
| 2509 | break; |
| 2510 | case EXPR_KIND_INDEX_PREDICATE: |
| 2511 | err = _("set-returning functions are not allowed in index predicates" ); |
| 2512 | break; |
| 2513 | case EXPR_KIND_ALTER_COL_TRANSFORM: |
| 2514 | err = _("set-returning functions are not allowed in transform expressions" ); |
| 2515 | break; |
| 2516 | case EXPR_KIND_EXECUTE_PARAMETER: |
| 2517 | err = _("set-returning functions are not allowed in EXECUTE parameters" ); |
| 2518 | break; |
| 2519 | case EXPR_KIND_TRIGGER_WHEN: |
| 2520 | err = _("set-returning functions are not allowed in trigger WHEN conditions" ); |
| 2521 | break; |
| 2522 | case EXPR_KIND_PARTITION_BOUND: |
| 2523 | err = _("set-returning functions are not allowed in partition bound" ); |
| 2524 | break; |
| 2525 | case EXPR_KIND_PARTITION_EXPRESSION: |
| 2526 | err = _("set-returning functions are not allowed in partition key expressions" ); |
| 2527 | break; |
| 2528 | case EXPR_KIND_CALL_ARGUMENT: |
| 2529 | err = _("set-returning functions are not allowed in CALL arguments" ); |
| 2530 | break; |
| 2531 | case EXPR_KIND_COPY_WHERE: |
| 2532 | err = _("set-returning functions are not allowed in COPY FROM WHERE conditions" ); |
| 2533 | break; |
| 2534 | case EXPR_KIND_GENERATED_COLUMN: |
| 2535 | err = _("set-returning functions are not allowed in column generation expressions" ); |
| 2536 | break; |
| 2537 | |
| 2538 | /* |
| 2539 | * There is intentionally no default: case here, so that the |
| 2540 | * compiler will warn if we add a new ParseExprKind without |
| 2541 | * extending this switch. If we do see an unrecognized value at |
| 2542 | * runtime, the behavior will be the same as for EXPR_KIND_OTHER, |
| 2543 | * which is sane anyway. |
| 2544 | */ |
| 2545 | } |
| 2546 | if (err) |
| 2547 | ereport(ERROR, |
| 2548 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2549 | errmsg_internal("%s" , err), |
| 2550 | parser_errposition(pstate, location))); |
| 2551 | if (errkind) |
| 2552 | ereport(ERROR, |
| 2553 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2554 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
| 2555 | errmsg("set-returning functions are not allowed in %s" , |
| 2556 | ParseExprKindName(pstate->p_expr_kind)), |
| 2557 | parser_errposition(pstate, location))); |
| 2558 | } |
| 2559 | |