| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * partprune.c |
| 4 | * Support for partition pruning during query planning and execution |
| 5 | * |
| 6 | * This module implements partition pruning using the information contained in |
| 7 | * a table's partition descriptor, query clauses, and run-time parameters. |
| 8 | * |
| 9 | * During planning, clauses that can be matched to the table's partition key |
| 10 | * are turned into a set of "pruning steps", which are then executed to |
| 11 | * identify a set of partitions (as indexes in the RelOptInfo->part_rels |
| 12 | * array) that satisfy the constraints in the step. Partitions not in the set |
| 13 | * are said to have been pruned. |
| 14 | * |
| 15 | * A base pruning step may involve expressions whose values are only known |
| 16 | * during execution, such as Params, in which case pruning cannot occur |
| 17 | * entirely during planning. In that case, such steps are included alongside |
| 18 | * the plan, so that they can be used by the executor for further pruning. |
| 19 | * |
| 20 | * There are two kinds of pruning steps. A "base" pruning step represents |
| 21 | * tests on partition key column(s), typically comparisons to expressions. |
| 22 | * A "combine" pruning step represents a Boolean connector (AND/OR), and |
| 23 | * combines the outputs of some previous steps using the appropriate |
| 24 | * combination method. |
| 25 | * |
| 26 | * See gen_partprune_steps_internal() for more details on step generation. |
| 27 | * |
| 28 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 29 | * Portions Copyright (c) 1994, Regents of the University of California |
| 30 | * |
| 31 | * IDENTIFICATION |
| 32 | * src/backend/partitioning/partprune.c |
| 33 | * |
| 34 | *------------------------------------------------------------------------- |
| 35 | */ |
| 36 | #include "postgres.h" |
| 37 | |
| 38 | #include "access/hash.h" |
| 39 | #include "access/nbtree.h" |
| 40 | #include "catalog/pg_operator.h" |
| 41 | #include "catalog/pg_opfamily.h" |
| 42 | #include "catalog/pg_proc.h" |
| 43 | #include "catalog/pg_type.h" |
| 44 | #include "executor/executor.h" |
| 45 | #include "miscadmin.h" |
| 46 | #include "nodes/makefuncs.h" |
| 47 | #include "nodes/nodeFuncs.h" |
| 48 | #include "optimizer/appendinfo.h" |
| 49 | #include "optimizer/cost.h" |
| 50 | #include "optimizer/optimizer.h" |
| 51 | #include "optimizer/pathnode.h" |
| 52 | #include "parser/parsetree.h" |
| 53 | #include "partitioning/partbounds.h" |
| 54 | #include "partitioning/partprune.h" |
| 55 | #include "rewrite/rewriteManip.h" |
| 56 | #include "utils/lsyscache.h" |
| 57 | |
| 58 | |
| 59 | /* |
| 60 | * Information about a clause matched with a partition key. |
| 61 | */ |
| 62 | typedef struct PartClauseInfo |
| 63 | { |
| 64 | int keyno; /* Partition key number (0 to partnatts - 1) */ |
| 65 | Oid opno; /* operator used to compare partkey to expr */ |
| 66 | bool op_is_ne; /* is clause's original operator <> ? */ |
| 67 | Expr *expr; /* expr the partition key is compared to */ |
| 68 | Oid cmpfn; /* Oid of function to compare 'expr' to the |
| 69 | * partition key */ |
| 70 | int op_strategy; /* btree strategy identifying the operator */ |
| 71 | } PartClauseInfo; |
| 72 | |
| 73 | /* |
| 74 | * PartClauseMatchStatus |
| 75 | * Describes the result of match_clause_to_partition_key() |
| 76 | */ |
| 77 | typedef enum PartClauseMatchStatus |
| 78 | { |
| 79 | PARTCLAUSE_NOMATCH, |
| 80 | PARTCLAUSE_MATCH_CLAUSE, |
| 81 | PARTCLAUSE_MATCH_NULLNESS, |
| 82 | PARTCLAUSE_MATCH_STEPS, |
| 83 | PARTCLAUSE_MATCH_CONTRADICT, |
| 84 | PARTCLAUSE_UNSUPPORTED |
| 85 | } PartClauseMatchStatus; |
| 86 | |
| 87 | /* |
| 88 | * PartClauseTarget |
| 89 | * Identifies which qual clauses we can use for generating pruning steps |
| 90 | */ |
| 91 | typedef enum PartClauseTarget |
| 92 | { |
| 93 | PARTTARGET_PLANNER, /* want to prune during planning */ |
| 94 | PARTTARGET_INITIAL, /* want to prune during executor startup */ |
| 95 | PARTTARGET_EXEC /* want to prune during each plan node scan */ |
| 96 | } PartClauseTarget; |
| 97 | |
| 98 | /* |
| 99 | * GeneratePruningStepsContext |
| 100 | * Information about the current state of generation of "pruning steps" |
| 101 | * for a given set of clauses |
| 102 | * |
| 103 | * gen_partprune_steps() initializes and returns an instance of this struct. |
| 104 | * |
| 105 | * Note that has_mutable_op, has_mutable_arg, and has_exec_param are set if |
| 106 | * we found any potentially-useful-for-pruning clause having those properties, |
| 107 | * whether or not we actually used the clause in the steps list. This |
| 108 | * definition allows us to skip the PARTTARGET_EXEC pass in some cases. |
| 109 | */ |
| 110 | typedef struct GeneratePruningStepsContext |
| 111 | { |
| 112 | /* Copies of input arguments for gen_partprune_steps: */ |
| 113 | RelOptInfo *rel; /* the partitioned relation */ |
| 114 | PartClauseTarget target; /* use-case we're generating steps for */ |
| 115 | /* Result data: */ |
| 116 | List *steps; /* list of PartitionPruneSteps */ |
| 117 | bool has_mutable_op; /* clauses include any stable operators */ |
| 118 | bool has_mutable_arg; /* clauses include any mutable comparison |
| 119 | * values, *other than* exec params */ |
| 120 | bool has_exec_param; /* clauses include any PARAM_EXEC params */ |
| 121 | bool contradictory; /* clauses were proven self-contradictory */ |
| 122 | /* Working state: */ |
| 123 | int next_step_id; |
| 124 | } GeneratePruningStepsContext; |
| 125 | |
| 126 | /* The result of performing one PartitionPruneStep */ |
| 127 | typedef struct PruneStepResult |
| 128 | { |
| 129 | /* |
| 130 | * The offsets of bounds (in a table's boundinfo) whose partition is |
| 131 | * selected by the pruning step. |
| 132 | */ |
| 133 | Bitmapset *bound_offsets; |
| 134 | |
| 135 | bool scan_default; /* Scan the default partition? */ |
| 136 | bool scan_null; /* Scan the partition for NULL values? */ |
| 137 | } PruneStepResult; |
| 138 | |
| 139 | |
| 140 | static List *make_partitionedrel_pruneinfo(PlannerInfo *root, |
| 141 | RelOptInfo *parentrel, |
| 142 | int *relid_subplan_map, |
| 143 | List *partitioned_rels, List *prunequal, |
| 144 | Bitmapset **matchedsubplans); |
| 145 | static void gen_partprune_steps(RelOptInfo *rel, List *clauses, |
| 146 | PartClauseTarget target, |
| 147 | GeneratePruningStepsContext *context); |
| 148 | static List *gen_partprune_steps_internal(GeneratePruningStepsContext *context, |
| 149 | List *clauses); |
| 150 | static PartitionPruneStep *gen_prune_step_op(GeneratePruningStepsContext *context, |
| 151 | StrategyNumber opstrategy, bool op_is_ne, |
| 152 | List *exprs, List *cmpfns, Bitmapset *nullkeys); |
| 153 | static PartitionPruneStep *gen_prune_step_combine(GeneratePruningStepsContext *context, |
| 154 | List *source_stepids, |
| 155 | PartitionPruneCombineOp combineOp); |
| 156 | static PartitionPruneStep *gen_prune_steps_from_opexps(GeneratePruningStepsContext *context, |
| 157 | List **keyclauses, Bitmapset *nullkeys); |
| 158 | static PartClauseMatchStatus match_clause_to_partition_key(GeneratePruningStepsContext *context, |
| 159 | Expr *clause, Expr *partkey, int partkeyidx, |
| 160 | bool *clause_is_not_null, |
| 161 | PartClauseInfo **pc, List **clause_steps); |
| 162 | static List *get_steps_using_prefix(GeneratePruningStepsContext *context, |
| 163 | StrategyNumber step_opstrategy, |
| 164 | bool step_op_is_ne, |
| 165 | Expr *step_lastexpr, |
| 166 | Oid step_lastcmpfn, |
| 167 | int step_lastkeyno, |
| 168 | Bitmapset *step_nullkeys, |
| 169 | List *prefix); |
| 170 | static List *get_steps_using_prefix_recurse(GeneratePruningStepsContext *context, |
| 171 | StrategyNumber step_opstrategy, |
| 172 | bool step_op_is_ne, |
| 173 | Expr *step_lastexpr, |
| 174 | Oid step_lastcmpfn, |
| 175 | int step_lastkeyno, |
| 176 | Bitmapset *step_nullkeys, |
| 177 | ListCell *start, |
| 178 | List *step_exprs, |
| 179 | List *step_cmpfns); |
| 180 | static PruneStepResult *get_matching_hash_bounds(PartitionPruneContext *context, |
| 181 | StrategyNumber opstrategy, Datum *values, int nvalues, |
| 182 | FmgrInfo *partsupfunc, Bitmapset *nullkeys); |
| 183 | static PruneStepResult *get_matching_list_bounds(PartitionPruneContext *context, |
| 184 | StrategyNumber opstrategy, Datum value, int nvalues, |
| 185 | FmgrInfo *partsupfunc, Bitmapset *nullkeys); |
| 186 | static PruneStepResult *get_matching_range_bounds(PartitionPruneContext *context, |
| 187 | StrategyNumber opstrategy, Datum *values, int nvalues, |
| 188 | FmgrInfo *partsupfunc, Bitmapset *nullkeys); |
| 189 | static Bitmapset *pull_exec_paramids(Expr *expr); |
| 190 | static bool pull_exec_paramids_walker(Node *node, Bitmapset **context); |
| 191 | static Bitmapset *get_partkey_exec_paramids(List *steps); |
| 192 | static PruneStepResult *perform_pruning_base_step(PartitionPruneContext *context, |
| 193 | PartitionPruneStepOp *opstep); |
| 194 | static PruneStepResult *perform_pruning_combine_step(PartitionPruneContext *context, |
| 195 | PartitionPruneStepCombine *cstep, |
| 196 | PruneStepResult **step_results); |
| 197 | static PartClauseMatchStatus match_boolean_partition_clause(Oid partopfamily, |
| 198 | Expr *clause, |
| 199 | Expr *partkey, |
| 200 | Expr **outconst); |
| 201 | static void partkey_datum_from_expr(PartitionPruneContext *context, |
| 202 | Expr *expr, int stateidx, |
| 203 | Datum *value, bool *isnull); |
| 204 | |
| 205 | |
| 206 | /* |
| 207 | * make_partition_pruneinfo |
| 208 | * Builds a PartitionPruneInfo which can be used in the executor to allow |
| 209 | * additional partition pruning to take place. Returns NULL when |
| 210 | * partition pruning would be useless. |
| 211 | * |
| 212 | * 'parentrel' is the RelOptInfo for an appendrel, and 'subpaths' is the list |
| 213 | * of scan paths for its child rels. |
| 214 | * |
| 215 | * 'partitioned_rels' is a List containing Lists of relids of partitioned |
| 216 | * tables (a/k/a non-leaf partitions) that are parents of some of the child |
| 217 | * rels. Here we attempt to populate the PartitionPruneInfo by adding a |
| 218 | * 'prune_infos' item for each sublist in the 'partitioned_rels' list. |
| 219 | * However, some of the sets of partitioned relations may not require any |
| 220 | * run-time pruning. In these cases we'll simply not include a 'prune_infos' |
| 221 | * item for that set and instead we'll add all the subplans which belong to |
| 222 | * that set into the PartitionPruneInfo's 'other_subplans' field. Callers |
| 223 | * will likely never want to prune subplans which are mentioned in this field. |
| 224 | * |
| 225 | * 'prunequal' is a list of potential pruning quals. |
| 226 | */ |
| 227 | PartitionPruneInfo * |
| 228 | make_partition_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel, |
| 229 | List *subpaths, List *partitioned_rels, |
| 230 | List *prunequal) |
| 231 | { |
| 232 | PartitionPruneInfo *pruneinfo; |
| 233 | Bitmapset *allmatchedsubplans = NULL; |
| 234 | int *relid_subplan_map; |
| 235 | ListCell *lc; |
| 236 | List *prunerelinfos; |
| 237 | int i; |
| 238 | |
| 239 | /* |
| 240 | * Construct a temporary array to map from planner relids to subplan |
| 241 | * indexes. For convenience, we use 1-based indexes here, so that zero |
| 242 | * can represent an un-filled array entry. |
| 243 | */ |
| 244 | relid_subplan_map = palloc0(sizeof(int) * root->simple_rel_array_size); |
| 245 | |
| 246 | /* |
| 247 | * relid_subplan_map maps relid of a leaf partition to the index in |
| 248 | * 'subpaths' of the scan plan for that partition. |
| 249 | */ |
| 250 | i = 1; |
| 251 | foreach(lc, subpaths) |
| 252 | { |
| 253 | Path *path = (Path *) lfirst(lc); |
| 254 | RelOptInfo *pathrel = path->parent; |
| 255 | |
| 256 | Assert(IS_SIMPLE_REL(pathrel)); |
| 257 | Assert(pathrel->relid < root->simple_rel_array_size); |
| 258 | /* No duplicates please */ |
| 259 | Assert(relid_subplan_map[pathrel->relid] == 0); |
| 260 | |
| 261 | relid_subplan_map[pathrel->relid] = i++; |
| 262 | } |
| 263 | |
| 264 | /* We now build a PartitionedRelPruneInfo for each partitioned rel. */ |
| 265 | prunerelinfos = NIL; |
| 266 | foreach(lc, partitioned_rels) |
| 267 | { |
| 268 | List *rels = (List *) lfirst(lc); |
| 269 | List *pinfolist; |
| 270 | Bitmapset *matchedsubplans = NULL; |
| 271 | |
| 272 | pinfolist = make_partitionedrel_pruneinfo(root, parentrel, |
| 273 | relid_subplan_map, |
| 274 | rels, prunequal, |
| 275 | &matchedsubplans); |
| 276 | |
| 277 | /* When pruning is possible, record the matched subplans */ |
| 278 | if (pinfolist != NIL) |
| 279 | { |
| 280 | prunerelinfos = lappend(prunerelinfos, pinfolist); |
| 281 | allmatchedsubplans = bms_join(matchedsubplans, |
| 282 | allmatchedsubplans); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | pfree(relid_subplan_map); |
| 287 | |
| 288 | /* |
| 289 | * If none of the partition hierarchies had any useful run-time pruning |
| 290 | * quals, then we can just not bother with run-time pruning. |
| 291 | */ |
| 292 | if (prunerelinfos == NIL) |
| 293 | return NULL; |
| 294 | |
| 295 | /* Else build the result data structure */ |
| 296 | pruneinfo = makeNode(PartitionPruneInfo); |
| 297 | pruneinfo->prune_infos = prunerelinfos; |
| 298 | |
| 299 | /* |
| 300 | * Some subplans may not belong to any of the listed partitioned rels. |
| 301 | * This can happen for UNION ALL queries which include a non-partitioned |
| 302 | * table, or when some of the hierarchies aren't run-time prunable. Build |
| 303 | * a bitmapset of the indexes of all such subplans, so that the executor |
| 304 | * can identify which subplans should never be pruned. |
| 305 | */ |
| 306 | if (bms_num_members(allmatchedsubplans) < list_length(subpaths)) |
| 307 | { |
| 308 | Bitmapset *other_subplans; |
| 309 | |
| 310 | /* Create the complement of allmatchedsubplans */ |
| 311 | other_subplans = bms_add_range(NULL, 0, list_length(subpaths) - 1); |
| 312 | other_subplans = bms_del_members(other_subplans, allmatchedsubplans); |
| 313 | |
| 314 | pruneinfo->other_subplans = other_subplans; |
| 315 | } |
| 316 | else |
| 317 | pruneinfo->other_subplans = NULL; |
| 318 | |
| 319 | return pruneinfo; |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * make_partitionedrel_pruneinfo |
| 324 | * Build a List of PartitionedRelPruneInfos, one for each partitioned |
| 325 | * rel. These can be used in the executor to allow additional partition |
| 326 | * pruning to take place. |
| 327 | * |
| 328 | * Here we generate partition pruning steps for 'prunequal' and also build a |
| 329 | * data structure which allows mapping of partition indexes into 'subpaths' |
| 330 | * indexes. |
| 331 | * |
| 332 | * If no non-Const expressions are being compared to the partition key in any |
| 333 | * of the 'partitioned_rels', then we return NIL to indicate no run-time |
| 334 | * pruning should be performed. Run-time pruning would be useless since the |
| 335 | * pruning done during planning will have pruned everything that can be. |
| 336 | * |
| 337 | * On non-NIL return, 'matchedsubplans' is set to the subplan indexes which |
| 338 | * were matched to this partition hierarchy. |
| 339 | */ |
| 340 | static List * |
| 341 | make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel, |
| 342 | int *relid_subplan_map, |
| 343 | List *partitioned_rels, List *prunequal, |
| 344 | Bitmapset **matchedsubplans) |
| 345 | { |
| 346 | RelOptInfo *targetpart = NULL; |
| 347 | List *pinfolist = NIL; |
| 348 | bool doruntimeprune = false; |
| 349 | int *relid_subpart_map; |
| 350 | Bitmapset *subplansfound = NULL; |
| 351 | ListCell *lc; |
| 352 | int i; |
| 353 | |
| 354 | /* |
| 355 | * Examine each partitioned rel, constructing a temporary array to map |
| 356 | * from planner relids to index of the partitioned rel, and building a |
| 357 | * PartitionedRelPruneInfo for each partitioned rel. |
| 358 | * |
| 359 | * In this phase we discover whether runtime pruning is needed at all; if |
| 360 | * not, we can avoid doing further work. |
| 361 | */ |
| 362 | relid_subpart_map = palloc0(sizeof(int) * root->simple_rel_array_size); |
| 363 | |
| 364 | i = 1; |
| 365 | foreach(lc, partitioned_rels) |
| 366 | { |
| 367 | Index rti = lfirst_int(lc); |
| 368 | RelOptInfo *subpart = find_base_rel(root, rti); |
| 369 | PartitionedRelPruneInfo *pinfo; |
| 370 | List *partprunequal; |
| 371 | List *initial_pruning_steps; |
| 372 | List *exec_pruning_steps; |
| 373 | Bitmapset *execparamids; |
| 374 | GeneratePruningStepsContext context; |
| 375 | |
| 376 | /* |
| 377 | * Fill the mapping array. |
| 378 | * |
| 379 | * relid_subpart_map maps relid of a non-leaf partition to the index |
| 380 | * in 'partitioned_rels' of that rel (which will also be the index in |
| 381 | * the returned PartitionedRelPruneInfo list of the info for that |
| 382 | * partition). We use 1-based indexes here, so that zero can |
| 383 | * represent an un-filled array entry. |
| 384 | */ |
| 385 | Assert(rti < root->simple_rel_array_size); |
| 386 | /* No duplicates please */ |
| 387 | Assert(relid_subpart_map[rti] == 0); |
| 388 | relid_subpart_map[rti] = i++; |
| 389 | |
| 390 | /* |
| 391 | * Translate pruning qual, if necessary, for this partition. |
| 392 | * |
| 393 | * The first item in the list is the target partitioned relation. |
| 394 | */ |
| 395 | if (!targetpart) |
| 396 | { |
| 397 | targetpart = subpart; |
| 398 | |
| 399 | /* |
| 400 | * The prunequal is presented to us as a qual for 'parentrel'. |
| 401 | * Frequently this rel is the same as targetpart, so we can skip |
| 402 | * an adjust_appendrel_attrs step. But it might not be, and then |
| 403 | * we have to translate. We update the prunequal parameter here, |
| 404 | * because in later iterations of the loop for child partitions, |
| 405 | * we want to translate from parent to child variables. |
| 406 | */ |
| 407 | if (!bms_equal(parentrel->relids, subpart->relids)) |
| 408 | { |
| 409 | int nappinfos; |
| 410 | AppendRelInfo **appinfos = find_appinfos_by_relids(root, |
| 411 | subpart->relids, |
| 412 | &nappinfos); |
| 413 | |
| 414 | prunequal = (List *) adjust_appendrel_attrs(root, (Node *) |
| 415 | prunequal, |
| 416 | nappinfos, |
| 417 | appinfos); |
| 418 | |
| 419 | pfree(appinfos); |
| 420 | } |
| 421 | |
| 422 | partprunequal = prunequal; |
| 423 | } |
| 424 | else |
| 425 | { |
| 426 | /* |
| 427 | * For sub-partitioned tables the columns may not be in the same |
| 428 | * order as the parent, so we must translate the prunequal to make |
| 429 | * it compatible with this relation. |
| 430 | */ |
| 431 | partprunequal = (List *) |
| 432 | adjust_appendrel_attrs_multilevel(root, |
| 433 | (Node *) prunequal, |
| 434 | subpart->relids, |
| 435 | targetpart->relids); |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * Convert pruning qual to pruning steps. We may need to do this |
| 440 | * twice, once to obtain executor startup pruning steps, and once for |
| 441 | * executor per-scan pruning steps. This first pass creates startup |
| 442 | * pruning steps and detects whether there's any possibly-useful quals |
| 443 | * that would require per-scan pruning. |
| 444 | */ |
| 445 | gen_partprune_steps(subpart, partprunequal, PARTTARGET_INITIAL, |
| 446 | &context); |
| 447 | |
| 448 | if (context.contradictory) |
| 449 | { |
| 450 | /* |
| 451 | * This shouldn't happen as the planner should have detected this |
| 452 | * earlier. However, we do use additional quals from parameterized |
| 453 | * paths here. These do only compare Params to the partition key, |
| 454 | * so this shouldn't cause the discovery of any new qual |
| 455 | * contradictions that were not previously discovered as the Param |
| 456 | * values are unknown during planning. Anyway, we'd better do |
| 457 | * something sane here, so let's just disable run-time pruning. |
| 458 | */ |
| 459 | return NIL; |
| 460 | } |
| 461 | |
| 462 | /* |
| 463 | * If no mutable operators or expressions appear in usable pruning |
| 464 | * clauses, then there's no point in running startup pruning, because |
| 465 | * plan-time pruning should have pruned everything prunable. |
| 466 | */ |
| 467 | if (context.has_mutable_op || context.has_mutable_arg) |
| 468 | initial_pruning_steps = context.steps; |
| 469 | else |
| 470 | initial_pruning_steps = NIL; |
| 471 | |
| 472 | /* |
| 473 | * If no exec Params appear in potentially-usable pruning clauses, |
| 474 | * then there's no point in even thinking about per-scan pruning. |
| 475 | */ |
| 476 | if (context.has_exec_param) |
| 477 | { |
| 478 | /* ... OK, we'd better think about it */ |
| 479 | gen_partprune_steps(subpart, partprunequal, PARTTARGET_EXEC, |
| 480 | &context); |
| 481 | |
| 482 | if (context.contradictory) |
| 483 | { |
| 484 | /* As above, skip run-time pruning if anything fishy happens */ |
| 485 | return NIL; |
| 486 | } |
| 487 | |
| 488 | exec_pruning_steps = context.steps; |
| 489 | |
| 490 | /* |
| 491 | * Detect which exec Params actually got used; the fact that some |
| 492 | * were in available clauses doesn't mean we actually used them. |
| 493 | * Skip per-scan pruning if there are none. |
| 494 | */ |
| 495 | execparamids = get_partkey_exec_paramids(exec_pruning_steps); |
| 496 | |
| 497 | if (bms_is_empty(execparamids)) |
| 498 | exec_pruning_steps = NIL; |
| 499 | } |
| 500 | else |
| 501 | { |
| 502 | /* No exec Params anywhere, so forget about scan-time pruning */ |
| 503 | exec_pruning_steps = NIL; |
| 504 | execparamids = NULL; |
| 505 | } |
| 506 | |
| 507 | if (initial_pruning_steps || exec_pruning_steps) |
| 508 | doruntimeprune = true; |
| 509 | |
| 510 | /* Begin constructing the PartitionedRelPruneInfo for this rel */ |
| 511 | pinfo = makeNode(PartitionedRelPruneInfo); |
| 512 | pinfo->rtindex = rti; |
| 513 | pinfo->initial_pruning_steps = initial_pruning_steps; |
| 514 | pinfo->exec_pruning_steps = exec_pruning_steps; |
| 515 | pinfo->execparamids = execparamids; |
| 516 | /* Remaining fields will be filled in the next loop */ |
| 517 | |
| 518 | pinfolist = lappend(pinfolist, pinfo); |
| 519 | } |
| 520 | |
| 521 | if (!doruntimeprune) |
| 522 | { |
| 523 | /* No run-time pruning required. */ |
| 524 | pfree(relid_subpart_map); |
| 525 | return NIL; |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Run-time pruning will be required, so initialize other information. |
| 530 | * That includes two maps -- one needed to convert partition indexes of |
| 531 | * leaf partitions to the indexes of their subplans in the subplan list, |
| 532 | * another needed to convert partition indexes of sub-partitioned |
| 533 | * partitions to the indexes of their PartitionedRelPruneInfo in the |
| 534 | * PartitionedRelPruneInfo list. |
| 535 | */ |
| 536 | foreach(lc, pinfolist) |
| 537 | { |
| 538 | PartitionedRelPruneInfo *pinfo = lfirst(lc); |
| 539 | RelOptInfo *subpart = find_base_rel(root, pinfo->rtindex); |
| 540 | Bitmapset *present_parts; |
| 541 | int nparts = subpart->nparts; |
| 542 | int *subplan_map; |
| 543 | int *subpart_map; |
| 544 | Oid *relid_map; |
| 545 | |
| 546 | /* |
| 547 | * Construct the subplan and subpart maps for this partitioning level. |
| 548 | * Here we convert to zero-based indexes, with -1 for empty entries. |
| 549 | * Also construct a Bitmapset of all partitions that are present (that |
| 550 | * is, not pruned already). |
| 551 | */ |
| 552 | subplan_map = (int *) palloc(nparts * sizeof(int)); |
| 553 | memset(subplan_map, -1, nparts * sizeof(int)); |
| 554 | subpart_map = (int *) palloc(nparts * sizeof(int)); |
| 555 | memset(subpart_map, -1, nparts * sizeof(int)); |
| 556 | relid_map = (Oid *) palloc0(nparts * sizeof(Oid)); |
| 557 | present_parts = NULL; |
| 558 | |
| 559 | for (i = 0; i < nparts; i++) |
| 560 | { |
| 561 | RelOptInfo *partrel = subpart->part_rels[i]; |
| 562 | int subplanidx; |
| 563 | int subpartidx; |
| 564 | |
| 565 | /* Skip processing pruned partitions. */ |
| 566 | if (partrel == NULL) |
| 567 | continue; |
| 568 | |
| 569 | subplan_map[i] = subplanidx = relid_subplan_map[partrel->relid] - 1; |
| 570 | subpart_map[i] = subpartidx = relid_subpart_map[partrel->relid] - 1; |
| 571 | relid_map[i] = planner_rt_fetch(partrel->relid, root)->relid; |
| 572 | if (subplanidx >= 0) |
| 573 | { |
| 574 | present_parts = bms_add_member(present_parts, i); |
| 575 | |
| 576 | /* Record finding this subplan */ |
| 577 | subplansfound = bms_add_member(subplansfound, subplanidx); |
| 578 | } |
| 579 | else if (subpartidx >= 0) |
| 580 | present_parts = bms_add_member(present_parts, i); |
| 581 | } |
| 582 | |
| 583 | /* Record the maps and other information. */ |
| 584 | pinfo->present_parts = present_parts; |
| 585 | pinfo->nparts = nparts; |
| 586 | pinfo->subplan_map = subplan_map; |
| 587 | pinfo->subpart_map = subpart_map; |
| 588 | pinfo->relid_map = relid_map; |
| 589 | } |
| 590 | |
| 591 | pfree(relid_subpart_map); |
| 592 | |
| 593 | *matchedsubplans = subplansfound; |
| 594 | |
| 595 | return pinfolist; |
| 596 | } |
| 597 | |
| 598 | /* |
| 599 | * gen_partprune_steps |
| 600 | * Process 'clauses' (typically a rel's baserestrictinfo list of clauses) |
| 601 | * and create a list of "partition pruning steps". |
| 602 | * |
| 603 | * 'target' tells whether to generate pruning steps for planning (use |
| 604 | * immutable clauses only), or for executor startup (use any allowable |
| 605 | * clause except ones containing PARAM_EXEC Params), or for executor |
| 606 | * per-scan pruning (use any allowable clause). |
| 607 | * |
| 608 | * 'context' is an output argument that receives the steps list as well as |
| 609 | * some subsidiary flags; see the GeneratePruningStepsContext typedef. |
| 610 | */ |
| 611 | static void |
| 612 | gen_partprune_steps(RelOptInfo *rel, List *clauses, PartClauseTarget target, |
| 613 | GeneratePruningStepsContext *context) |
| 614 | { |
| 615 | /* Initialize all output values to zero/false/NULL */ |
| 616 | memset(context, 0, sizeof(GeneratePruningStepsContext)); |
| 617 | context->rel = rel; |
| 618 | context->target = target; |
| 619 | |
| 620 | /* |
| 621 | * For sub-partitioned tables there's a corner case where if the |
| 622 | * sub-partitioned table shares any partition keys with its parent, then |
| 623 | * it's possible that the partitioning hierarchy allows the parent |
| 624 | * partition to only contain a narrower range of values than the |
| 625 | * sub-partitioned table does. In this case it is possible that we'd |
| 626 | * include partitions that could not possibly have any tuples matching |
| 627 | * 'clauses'. The possibility of such a partition arrangement is perhaps |
| 628 | * unlikely for non-default partitions, but it may be more likely in the |
| 629 | * case of default partitions, so we'll add the parent partition table's |
| 630 | * partition qual to the clause list in this case only. This may result |
| 631 | * in the default partition being eliminated. |
| 632 | */ |
| 633 | if (partition_bound_has_default(rel->boundinfo) && |
| 634 | rel->partition_qual != NIL) |
| 635 | { |
| 636 | List *partqual = rel->partition_qual; |
| 637 | |
| 638 | partqual = (List *) expression_planner((Expr *) partqual); |
| 639 | |
| 640 | /* Fix Vars to have the desired varno */ |
| 641 | if (rel->relid != 1) |
| 642 | ChangeVarNodes((Node *) partqual, 1, rel->relid, 0); |
| 643 | |
| 644 | /* Use list_copy to avoid modifying the passed-in List */ |
| 645 | clauses = list_concat(list_copy(clauses), partqual); |
| 646 | } |
| 647 | |
| 648 | /* Down into the rabbit-hole. */ |
| 649 | (void) gen_partprune_steps_internal(context, clauses); |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * prune_append_rel_partitions |
| 654 | * Process rel's baserestrictinfo and make use of quals which can be |
| 655 | * evaluated during query planning in order to determine the minimum set |
| 656 | * of partitions which must be scanned to satisfy these quals. Returns |
| 657 | * the matching partitions in the form of a Bitmapset containing the |
| 658 | * partitions' indexes in the rel's part_rels array. |
| 659 | * |
| 660 | * Callers must ensure that 'rel' is a partitioned table. |
| 661 | */ |
| 662 | Bitmapset * |
| 663 | prune_append_rel_partitions(RelOptInfo *rel) |
| 664 | { |
| 665 | List *clauses = rel->baserestrictinfo; |
| 666 | List *pruning_steps; |
| 667 | GeneratePruningStepsContext gcontext; |
| 668 | PartitionPruneContext context; |
| 669 | |
| 670 | Assert(rel->part_scheme != NULL); |
| 671 | |
| 672 | /* If there are no partitions, return the empty set */ |
| 673 | if (rel->nparts == 0) |
| 674 | return NULL; |
| 675 | |
| 676 | /* |
| 677 | * If pruning is disabled or if there are no clauses to prune with, return |
| 678 | * all partitions. |
| 679 | */ |
| 680 | if (!enable_partition_pruning || clauses == NIL) |
| 681 | return bms_add_range(NULL, 0, rel->nparts - 1); |
| 682 | |
| 683 | /* |
| 684 | * Process clauses to extract pruning steps that are usable at plan time. |
| 685 | * If the clauses are found to be contradictory, we can return the empty |
| 686 | * set. |
| 687 | */ |
| 688 | gen_partprune_steps(rel, clauses, PARTTARGET_PLANNER, |
| 689 | &gcontext); |
| 690 | if (gcontext.contradictory) |
| 691 | return NULL; |
| 692 | pruning_steps = gcontext.steps; |
| 693 | |
| 694 | /* If there's nothing usable, return all partitions */ |
| 695 | if (pruning_steps == NIL) |
| 696 | return bms_add_range(NULL, 0, rel->nparts - 1); |
| 697 | |
| 698 | /* Set up PartitionPruneContext */ |
| 699 | context.strategy = rel->part_scheme->strategy; |
| 700 | context.partnatts = rel->part_scheme->partnatts; |
| 701 | context.nparts = rel->nparts; |
| 702 | context.boundinfo = rel->boundinfo; |
| 703 | context.partcollation = rel->part_scheme->partcollation; |
| 704 | context.partsupfunc = rel->part_scheme->partsupfunc; |
| 705 | context.stepcmpfuncs = (FmgrInfo *) palloc0(sizeof(FmgrInfo) * |
| 706 | context.partnatts * |
| 707 | list_length(pruning_steps)); |
| 708 | context.ppccontext = CurrentMemoryContext; |
| 709 | |
| 710 | /* These are not valid when being called from the planner */ |
| 711 | context.planstate = NULL; |
| 712 | context.exprstates = NULL; |
| 713 | |
| 714 | /* Actual pruning happens here. */ |
| 715 | return get_matching_partitions(&context, pruning_steps); |
| 716 | } |
| 717 | |
| 718 | /* |
| 719 | * get_matching_partitions |
| 720 | * Determine partitions that survive partition pruning |
| 721 | * |
| 722 | * Note: context->planstate must be set to a valid PlanState when the |
| 723 | * pruning_steps were generated with a target other than PARTTARGET_PLANNER. |
| 724 | * |
| 725 | * Returns a Bitmapset of the RelOptInfo->part_rels indexes of the surviving |
| 726 | * partitions. |
| 727 | */ |
| 728 | Bitmapset * |
| 729 | get_matching_partitions(PartitionPruneContext *context, List *pruning_steps) |
| 730 | { |
| 731 | Bitmapset *result; |
| 732 | int num_steps = list_length(pruning_steps), |
| 733 | i; |
| 734 | PruneStepResult **results, |
| 735 | *final_result; |
| 736 | ListCell *lc; |
| 737 | bool scan_default; |
| 738 | |
| 739 | /* If there are no pruning steps then all partitions match. */ |
| 740 | if (num_steps == 0) |
| 741 | { |
| 742 | Assert(context->nparts > 0); |
| 743 | return bms_add_range(NULL, 0, context->nparts - 1); |
| 744 | } |
| 745 | |
| 746 | /* |
| 747 | * Allocate space for individual pruning steps to store its result. Each |
| 748 | * slot will hold a PruneStepResult after performing a given pruning step. |
| 749 | * Later steps may use the result of one or more earlier steps. The |
| 750 | * result of applying all pruning steps is the value contained in the slot |
| 751 | * of the last pruning step. |
| 752 | */ |
| 753 | results = (PruneStepResult **) |
| 754 | palloc0(num_steps * sizeof(PruneStepResult *)); |
| 755 | foreach(lc, pruning_steps) |
| 756 | { |
| 757 | PartitionPruneStep *step = lfirst(lc); |
| 758 | |
| 759 | switch (nodeTag(step)) |
| 760 | { |
| 761 | case T_PartitionPruneStepOp: |
| 762 | results[step->step_id] = |
| 763 | perform_pruning_base_step(context, |
| 764 | (PartitionPruneStepOp *) step); |
| 765 | break; |
| 766 | |
| 767 | case T_PartitionPruneStepCombine: |
| 768 | results[step->step_id] = |
| 769 | perform_pruning_combine_step(context, |
| 770 | (PartitionPruneStepCombine *) step, |
| 771 | results); |
| 772 | break; |
| 773 | |
| 774 | default: |
| 775 | elog(ERROR, "invalid pruning step type: %d" , |
| 776 | (int) nodeTag(step)); |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | /* |
| 781 | * At this point we know the offsets of all the datums whose corresponding |
| 782 | * partitions need to be in the result, including special null-accepting |
| 783 | * and default partitions. Collect the actual partition indexes now. |
| 784 | */ |
| 785 | final_result = results[num_steps - 1]; |
| 786 | Assert(final_result != NULL); |
| 787 | i = -1; |
| 788 | result = NULL; |
| 789 | scan_default = final_result->scan_default; |
| 790 | while ((i = bms_next_member(final_result->bound_offsets, i)) >= 0) |
| 791 | { |
| 792 | int partindex = context->boundinfo->indexes[i]; |
| 793 | |
| 794 | if (partindex < 0) |
| 795 | { |
| 796 | /* |
| 797 | * In range partitioning cases, if a partition index is -1 it |
| 798 | * means that the bound at the offset is the upper bound for a |
| 799 | * range not covered by any partition (other than a possible |
| 800 | * default partition). In hash partitioning, the same means no |
| 801 | * partition has been defined for the corresponding remainder |
| 802 | * value. |
| 803 | * |
| 804 | * In either case, the value is still part of the queried range of |
| 805 | * values, so mark to scan the default partition if one exists. |
| 806 | */ |
| 807 | scan_default |= partition_bound_has_default(context->boundinfo); |
| 808 | continue; |
| 809 | } |
| 810 | |
| 811 | result = bms_add_member(result, partindex); |
| 812 | } |
| 813 | |
| 814 | /* Add the null and/or default partition if needed and present. */ |
| 815 | if (final_result->scan_null) |
| 816 | { |
| 817 | Assert(context->strategy == PARTITION_STRATEGY_LIST); |
| 818 | Assert(partition_bound_accepts_nulls(context->boundinfo)); |
| 819 | result = bms_add_member(result, context->boundinfo->null_index); |
| 820 | } |
| 821 | if (scan_default) |
| 822 | { |
| 823 | Assert(context->strategy == PARTITION_STRATEGY_LIST || |
| 824 | context->strategy == PARTITION_STRATEGY_RANGE); |
| 825 | Assert(partition_bound_has_default(context->boundinfo)); |
| 826 | result = bms_add_member(result, context->boundinfo->default_index); |
| 827 | } |
| 828 | |
| 829 | return result; |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * gen_partprune_steps_internal |
| 834 | * Processes 'clauses' to generate partition pruning steps. |
| 835 | * |
| 836 | * From OpExpr clauses that are mutually AND'd, we find combinations of those |
| 837 | * that match to the partition key columns and for every such combination, |
| 838 | * we emit a PartitionPruneStepOp containing a vector of expressions whose |
| 839 | * values are used as a look up key to search partitions by comparing the |
| 840 | * values with partition bounds. Relevant details of the operator and a |
| 841 | * vector of (possibly cross-type) comparison functions is also included with |
| 842 | * each step. |
| 843 | * |
| 844 | * For BoolExpr clauses, we recursively generate steps for each argument, and |
| 845 | * return a PartitionPruneStepCombine of their results. |
| 846 | * |
| 847 | * The return value is a list of the steps generated, which are also added to |
| 848 | * the context's steps list. Each step is assigned a step identifier, unique |
| 849 | * even across recursive calls. |
| 850 | * |
| 851 | * If we find clauses that are mutually contradictory, or a pseudoconstant |
| 852 | * clause that contains false, we set context->contradictory to true and |
| 853 | * return NIL (that is, no pruning steps). Caller should consider all |
| 854 | * partitions as pruned in that case. |
| 855 | */ |
| 856 | static List * |
| 857 | gen_partprune_steps_internal(GeneratePruningStepsContext *context, |
| 858 | List *clauses) |
| 859 | { |
| 860 | PartitionScheme part_scheme = context->rel->part_scheme; |
| 861 | List *keyclauses[PARTITION_MAX_KEYS]; |
| 862 | Bitmapset *nullkeys = NULL, |
| 863 | *notnullkeys = NULL; |
| 864 | bool generate_opsteps = false; |
| 865 | List *result = NIL; |
| 866 | ListCell *lc; |
| 867 | |
| 868 | memset(keyclauses, 0, sizeof(keyclauses)); |
| 869 | foreach(lc, clauses) |
| 870 | { |
| 871 | Expr *clause = (Expr *) lfirst(lc); |
| 872 | int i; |
| 873 | |
| 874 | /* Look through RestrictInfo, if any */ |
| 875 | if (IsA(clause, RestrictInfo)) |
| 876 | clause = ((RestrictInfo *) clause)->clause; |
| 877 | |
| 878 | /* Constant-false-or-null is contradictory */ |
| 879 | if (IsA(clause, Const) && |
| 880 | (((Const *) clause)->constisnull || |
| 881 | !DatumGetBool(((Const *) clause)->constvalue))) |
| 882 | { |
| 883 | context->contradictory = true; |
| 884 | return NIL; |
| 885 | } |
| 886 | |
| 887 | /* Get the BoolExpr's out of the way. */ |
| 888 | if (IsA(clause, BoolExpr)) |
| 889 | { |
| 890 | /* |
| 891 | * Generate steps for arguments. |
| 892 | * |
| 893 | * While steps generated for the arguments themselves will be |
| 894 | * added to context->steps during recursion and will be evaluated |
| 895 | * independently, collect their step IDs to be stored in the |
| 896 | * combine step we'll be creating. |
| 897 | */ |
| 898 | if (is_orclause(clause)) |
| 899 | { |
| 900 | List *arg_stepids = NIL; |
| 901 | bool all_args_contradictory = true; |
| 902 | ListCell *lc1; |
| 903 | |
| 904 | /* |
| 905 | * We can share the outer context area with the recursive |
| 906 | * call, but contradictory had better not be true yet. |
| 907 | */ |
| 908 | Assert(!context->contradictory); |
| 909 | |
| 910 | /* |
| 911 | * Get pruning step for each arg. If we get contradictory for |
| 912 | * all args, it means the OR expression is false as a whole. |
| 913 | */ |
| 914 | foreach(lc1, ((BoolExpr *) clause)->args) |
| 915 | { |
| 916 | Expr *arg = lfirst(lc1); |
| 917 | bool arg_contradictory; |
| 918 | List *argsteps; |
| 919 | |
| 920 | argsteps = gen_partprune_steps_internal(context, |
| 921 | list_make1(arg)); |
| 922 | arg_contradictory = context->contradictory; |
| 923 | /* Keep context->contradictory clear till we're done */ |
| 924 | context->contradictory = false; |
| 925 | |
| 926 | if (arg_contradictory) |
| 927 | { |
| 928 | /* Just ignore self-contradictory arguments. */ |
| 929 | continue; |
| 930 | } |
| 931 | else |
| 932 | all_args_contradictory = false; |
| 933 | |
| 934 | if (argsteps != NIL) |
| 935 | { |
| 936 | PartitionPruneStep *step; |
| 937 | |
| 938 | Assert(list_length(argsteps) == 1); |
| 939 | step = (PartitionPruneStep *) linitial(argsteps); |
| 940 | arg_stepids = lappend_int(arg_stepids, step->step_id); |
| 941 | } |
| 942 | else |
| 943 | { |
| 944 | /* |
| 945 | * The arg didn't contain a clause matching this |
| 946 | * partition key. We cannot prune using such an arg. |
| 947 | * To indicate that to the pruning code, we must |
| 948 | * construct a dummy PartitionPruneStepCombine whose |
| 949 | * source_stepids is set to an empty List. |
| 950 | * |
| 951 | * However, if we can prove using constraint exclusion |
| 952 | * that the clause refutes the table's partition |
| 953 | * constraint (if it's sub-partitioned), we need not |
| 954 | * bother with that. That is, we effectively ignore |
| 955 | * this OR arm. |
| 956 | */ |
| 957 | List *partconstr = context->rel->partition_qual; |
| 958 | PartitionPruneStep *orstep; |
| 959 | |
| 960 | if (partconstr) |
| 961 | { |
| 962 | partconstr = (List *) |
| 963 | expression_planner((Expr *) partconstr); |
| 964 | if (context->rel->relid != 1) |
| 965 | ChangeVarNodes((Node *) partconstr, 1, |
| 966 | context->rel->relid, 0); |
| 967 | if (predicate_refuted_by(partconstr, |
| 968 | list_make1(arg), |
| 969 | false)) |
| 970 | continue; |
| 971 | } |
| 972 | |
| 973 | orstep = gen_prune_step_combine(context, NIL, |
| 974 | PARTPRUNE_COMBINE_UNION); |
| 975 | arg_stepids = lappend_int(arg_stepids, orstep->step_id); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | /* If all the OR arms are contradictory, we can stop */ |
| 980 | if (all_args_contradictory) |
| 981 | { |
| 982 | context->contradictory = true; |
| 983 | return NIL; |
| 984 | } |
| 985 | |
| 986 | if (arg_stepids != NIL) |
| 987 | { |
| 988 | PartitionPruneStep *step; |
| 989 | |
| 990 | step = gen_prune_step_combine(context, arg_stepids, |
| 991 | PARTPRUNE_COMBINE_UNION); |
| 992 | result = lappend(result, step); |
| 993 | } |
| 994 | continue; |
| 995 | } |
| 996 | else if (is_andclause(clause)) |
| 997 | { |
| 998 | List *args = ((BoolExpr *) clause)->args; |
| 999 | List *argsteps, |
| 1000 | *arg_stepids = NIL; |
| 1001 | ListCell *lc1; |
| 1002 | |
| 1003 | /* |
| 1004 | * args may itself contain clauses of arbitrary type, so just |
| 1005 | * recurse and later combine the component partitions sets |
| 1006 | * using a combine step. |
| 1007 | */ |
| 1008 | argsteps = gen_partprune_steps_internal(context, args); |
| 1009 | |
| 1010 | /* If any AND arm is contradictory, we can stop immediately */ |
| 1011 | if (context->contradictory) |
| 1012 | return NIL; |
| 1013 | |
| 1014 | foreach(lc1, argsteps) |
| 1015 | { |
| 1016 | PartitionPruneStep *step = lfirst(lc1); |
| 1017 | |
| 1018 | arg_stepids = lappend_int(arg_stepids, step->step_id); |
| 1019 | } |
| 1020 | |
| 1021 | if (arg_stepids != NIL) |
| 1022 | { |
| 1023 | PartitionPruneStep *step; |
| 1024 | |
| 1025 | step = gen_prune_step_combine(context, arg_stepids, |
| 1026 | PARTPRUNE_COMBINE_INTERSECT); |
| 1027 | result = lappend(result, step); |
| 1028 | } |
| 1029 | continue; |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * Fall-through for a NOT clause, which if it's a Boolean clause, |
| 1034 | * will be handled in match_clause_to_partition_key(). We |
| 1035 | * currently don't perform any pruning for more complex NOT |
| 1036 | * clauses. |
| 1037 | */ |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * See if we can match this clause to any of the partition keys. |
| 1042 | */ |
| 1043 | for (i = 0; i < part_scheme->partnatts; i++) |
| 1044 | { |
| 1045 | Expr *partkey = linitial(context->rel->partexprs[i]); |
| 1046 | bool clause_is_not_null = false; |
| 1047 | PartClauseInfo *pc = NULL; |
| 1048 | List *clause_steps = NIL; |
| 1049 | |
| 1050 | switch (match_clause_to_partition_key(context, |
| 1051 | clause, partkey, i, |
| 1052 | &clause_is_not_null, |
| 1053 | &pc, &clause_steps)) |
| 1054 | { |
| 1055 | case PARTCLAUSE_MATCH_CLAUSE: |
| 1056 | Assert(pc != NULL); |
| 1057 | |
| 1058 | /* |
| 1059 | * Since we only allow strict operators, check for any |
| 1060 | * contradicting IS NULL. |
| 1061 | */ |
| 1062 | if (bms_is_member(i, nullkeys)) |
| 1063 | { |
| 1064 | context->contradictory = true; |
| 1065 | return NIL; |
| 1066 | } |
| 1067 | generate_opsteps = true; |
| 1068 | keyclauses[i] = lappend(keyclauses[i], pc); |
| 1069 | break; |
| 1070 | |
| 1071 | case PARTCLAUSE_MATCH_NULLNESS: |
| 1072 | if (!clause_is_not_null) |
| 1073 | { |
| 1074 | /* check for conflicting IS NOT NULL */ |
| 1075 | if (bms_is_member(i, notnullkeys)) |
| 1076 | { |
| 1077 | context->contradictory = true; |
| 1078 | return NIL; |
| 1079 | } |
| 1080 | nullkeys = bms_add_member(nullkeys, i); |
| 1081 | } |
| 1082 | else |
| 1083 | { |
| 1084 | /* check for conflicting IS NULL */ |
| 1085 | if (bms_is_member(i, nullkeys)) |
| 1086 | { |
| 1087 | context->contradictory = true; |
| 1088 | return NIL; |
| 1089 | } |
| 1090 | notnullkeys = bms_add_member(notnullkeys, i); |
| 1091 | } |
| 1092 | break; |
| 1093 | |
| 1094 | case PARTCLAUSE_MATCH_STEPS: |
| 1095 | Assert(clause_steps != NIL); |
| 1096 | result = list_concat(result, clause_steps); |
| 1097 | break; |
| 1098 | |
| 1099 | case PARTCLAUSE_MATCH_CONTRADICT: |
| 1100 | /* We've nothing more to do if a contradiction was found. */ |
| 1101 | context->contradictory = true; |
| 1102 | return NIL; |
| 1103 | |
| 1104 | case PARTCLAUSE_NOMATCH: |
| 1105 | |
| 1106 | /* |
| 1107 | * Clause didn't match this key, but it might match the |
| 1108 | * next one. |
| 1109 | */ |
| 1110 | continue; |
| 1111 | |
| 1112 | case PARTCLAUSE_UNSUPPORTED: |
| 1113 | /* This clause cannot be used for pruning. */ |
| 1114 | break; |
| 1115 | } |
| 1116 | |
| 1117 | /* done; go check the next clause. */ |
| 1118 | break; |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | /*----------- |
| 1123 | * Now generate some (more) pruning steps. We have three strategies: |
| 1124 | * |
| 1125 | * 1) Generate pruning steps based on IS NULL clauses: |
| 1126 | * a) For list partitioning, null partition keys can only be found in |
| 1127 | * the designated null-accepting partition, so if there are IS NULL |
| 1128 | * clauses containing partition keys we should generate a pruning |
| 1129 | * step that gets rid of all partitions but that one. We can |
| 1130 | * disregard any OpExpr we may have found. |
| 1131 | * b) For range partitioning, only the default partition can contain |
| 1132 | * NULL values, so the same rationale applies. |
| 1133 | * c) For hash partitioning, we only apply this strategy if we have |
| 1134 | * IS NULL clauses for all the keys. Strategy 2 below will take |
| 1135 | * care of the case where some keys have OpExprs and others have |
| 1136 | * IS NULL clauses. |
| 1137 | * |
| 1138 | * 2) If not, generate steps based on OpExprs we have (if any). |
| 1139 | * |
| 1140 | * 3) If this doesn't work either, we may be able to generate steps to |
| 1141 | * prune just the null-accepting partition (if one exists), if we have |
| 1142 | * IS NOT NULL clauses for all partition keys. |
| 1143 | */ |
| 1144 | if (!bms_is_empty(nullkeys) && |
| 1145 | (part_scheme->strategy == PARTITION_STRATEGY_LIST || |
| 1146 | part_scheme->strategy == PARTITION_STRATEGY_RANGE || |
| 1147 | (part_scheme->strategy == PARTITION_STRATEGY_HASH && |
| 1148 | bms_num_members(nullkeys) == part_scheme->partnatts))) |
| 1149 | { |
| 1150 | PartitionPruneStep *step; |
| 1151 | |
| 1152 | /* Strategy 1 */ |
| 1153 | step = gen_prune_step_op(context, InvalidStrategy, |
| 1154 | false, NIL, NIL, nullkeys); |
| 1155 | result = lappend(result, step); |
| 1156 | } |
| 1157 | else if (generate_opsteps) |
| 1158 | { |
| 1159 | PartitionPruneStep *step; |
| 1160 | |
| 1161 | /* Strategy 2 */ |
| 1162 | step = gen_prune_steps_from_opexps(context, keyclauses, nullkeys); |
| 1163 | if (step != NULL) |
| 1164 | result = lappend(result, step); |
| 1165 | } |
| 1166 | else if (bms_num_members(notnullkeys) == part_scheme->partnatts) |
| 1167 | { |
| 1168 | PartitionPruneStep *step; |
| 1169 | |
| 1170 | /* Strategy 3 */ |
| 1171 | step = gen_prune_step_op(context, InvalidStrategy, |
| 1172 | false, NIL, NIL, NULL); |
| 1173 | result = lappend(result, step); |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | * Finally, results from all entries appearing in result should be |
| 1178 | * combined using an INTERSECT combine step, if more than one. |
| 1179 | */ |
| 1180 | if (list_length(result) > 1) |
| 1181 | { |
| 1182 | List *step_ids = NIL; |
| 1183 | |
| 1184 | foreach(lc, result) |
| 1185 | { |
| 1186 | PartitionPruneStep *step = lfirst(lc); |
| 1187 | |
| 1188 | step_ids = lappend_int(step_ids, step->step_id); |
| 1189 | } |
| 1190 | |
| 1191 | if (step_ids != NIL) |
| 1192 | { |
| 1193 | PartitionPruneStep *step; |
| 1194 | |
| 1195 | step = gen_prune_step_combine(context, step_ids, |
| 1196 | PARTPRUNE_COMBINE_INTERSECT); |
| 1197 | result = lappend(result, step); |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | return result; |
| 1202 | } |
| 1203 | |
| 1204 | /* |
| 1205 | * gen_prune_step_op |
| 1206 | * Generate a pruning step for a specific operator |
| 1207 | * |
| 1208 | * The step is assigned a unique step identifier and added to context's 'steps' |
| 1209 | * list. |
| 1210 | */ |
| 1211 | static PartitionPruneStep * |
| 1212 | gen_prune_step_op(GeneratePruningStepsContext *context, |
| 1213 | StrategyNumber opstrategy, bool op_is_ne, |
| 1214 | List *exprs, List *cmpfns, |
| 1215 | Bitmapset *nullkeys) |
| 1216 | { |
| 1217 | PartitionPruneStepOp *opstep = makeNode(PartitionPruneStepOp); |
| 1218 | |
| 1219 | opstep->step.step_id = context->next_step_id++; |
| 1220 | |
| 1221 | /* |
| 1222 | * For clauses that contain an <> operator, set opstrategy to |
| 1223 | * InvalidStrategy to signal get_matching_list_bounds to do the right |
| 1224 | * thing. |
| 1225 | */ |
| 1226 | opstep->opstrategy = op_is_ne ? InvalidStrategy : opstrategy; |
| 1227 | Assert(list_length(exprs) == list_length(cmpfns)); |
| 1228 | opstep->exprs = exprs; |
| 1229 | opstep->cmpfns = cmpfns; |
| 1230 | opstep->nullkeys = nullkeys; |
| 1231 | |
| 1232 | context->steps = lappend(context->steps, opstep); |
| 1233 | |
| 1234 | return (PartitionPruneStep *) opstep; |
| 1235 | } |
| 1236 | |
| 1237 | /* |
| 1238 | * gen_prune_step_combine |
| 1239 | * Generate a pruning step for a combination of several other steps |
| 1240 | * |
| 1241 | * The step is assigned a unique step identifier and added to context's |
| 1242 | * 'steps' list. |
| 1243 | */ |
| 1244 | static PartitionPruneStep * |
| 1245 | gen_prune_step_combine(GeneratePruningStepsContext *context, |
| 1246 | List *source_stepids, |
| 1247 | PartitionPruneCombineOp combineOp) |
| 1248 | { |
| 1249 | PartitionPruneStepCombine *cstep = makeNode(PartitionPruneStepCombine); |
| 1250 | |
| 1251 | cstep->step.step_id = context->next_step_id++; |
| 1252 | cstep->combineOp = combineOp; |
| 1253 | cstep->source_stepids = source_stepids; |
| 1254 | |
| 1255 | context->steps = lappend(context->steps, cstep); |
| 1256 | |
| 1257 | return (PartitionPruneStep *) cstep; |
| 1258 | } |
| 1259 | |
| 1260 | /* |
| 1261 | * gen_prune_steps_from_opexps |
| 1262 | * Generate pruning steps based on clauses for partition keys |
| 1263 | * |
| 1264 | * 'keyclauses' contains one list of clauses per partition key. We check here |
| 1265 | * if we have found clauses for a valid subset of the partition key. In some |
| 1266 | * cases, (depending on the type of partitioning being used) if we didn't |
| 1267 | * find clauses for a given key, we discard clauses that may have been |
| 1268 | * found for any subsequent keys; see specific notes below. |
| 1269 | */ |
| 1270 | static PartitionPruneStep * |
| 1271 | gen_prune_steps_from_opexps(GeneratePruningStepsContext *context, |
| 1272 | List **keyclauses, Bitmapset *nullkeys) |
| 1273 | { |
| 1274 | PartitionScheme part_scheme = context->rel->part_scheme; |
| 1275 | List *opsteps = NIL; |
| 1276 | List *btree_clauses[BTMaxStrategyNumber + 1], |
| 1277 | *hash_clauses[HTMaxStrategyNumber + 1]; |
| 1278 | int i; |
| 1279 | ListCell *lc; |
| 1280 | |
| 1281 | memset(btree_clauses, 0, sizeof(btree_clauses)); |
| 1282 | memset(hash_clauses, 0, sizeof(hash_clauses)); |
| 1283 | for (i = 0; i < part_scheme->partnatts; i++) |
| 1284 | { |
| 1285 | List *clauselist = keyclauses[i]; |
| 1286 | bool consider_next_key = true; |
| 1287 | |
| 1288 | /* |
| 1289 | * For range partitioning, if we have no clauses for the current key, |
| 1290 | * we can't consider any later keys either, so we can stop here. |
| 1291 | */ |
| 1292 | if (part_scheme->strategy == PARTITION_STRATEGY_RANGE && |
| 1293 | clauselist == NIL) |
| 1294 | break; |
| 1295 | |
| 1296 | /* |
| 1297 | * For hash partitioning, if a column doesn't have the necessary |
| 1298 | * equality clause, there should be an IS NULL clause, otherwise |
| 1299 | * pruning is not possible. |
| 1300 | */ |
| 1301 | if (part_scheme->strategy == PARTITION_STRATEGY_HASH && |
| 1302 | clauselist == NIL && !bms_is_member(i, nullkeys)) |
| 1303 | return NULL; |
| 1304 | |
| 1305 | foreach(lc, clauselist) |
| 1306 | { |
| 1307 | PartClauseInfo *pc = (PartClauseInfo *) lfirst(lc); |
| 1308 | Oid lefttype, |
| 1309 | righttype; |
| 1310 | |
| 1311 | /* Look up the operator's btree/hash strategy number. */ |
| 1312 | if (pc->op_strategy == InvalidStrategy) |
| 1313 | get_op_opfamily_properties(pc->opno, |
| 1314 | part_scheme->partopfamily[i], |
| 1315 | false, |
| 1316 | &pc->op_strategy, |
| 1317 | &lefttype, |
| 1318 | &righttype); |
| 1319 | |
| 1320 | switch (part_scheme->strategy) |
| 1321 | { |
| 1322 | case PARTITION_STRATEGY_LIST: |
| 1323 | case PARTITION_STRATEGY_RANGE: |
| 1324 | { |
| 1325 | PartClauseInfo *last = NULL; |
| 1326 | |
| 1327 | /* |
| 1328 | * Add this clause to the list of clauses to be used |
| 1329 | * for pruning if this is the first such key for this |
| 1330 | * operator strategy or if it is consecutively next to |
| 1331 | * the last column for which a clause with this |
| 1332 | * operator strategy was matched. |
| 1333 | */ |
| 1334 | if (btree_clauses[pc->op_strategy] != NIL) |
| 1335 | last = llast(btree_clauses[pc->op_strategy]); |
| 1336 | |
| 1337 | if (last == NULL || |
| 1338 | i == last->keyno || i == last->keyno + 1) |
| 1339 | btree_clauses[pc->op_strategy] = |
| 1340 | lappend(btree_clauses[pc->op_strategy], pc); |
| 1341 | |
| 1342 | /* |
| 1343 | * We can't consider subsequent partition keys if the |
| 1344 | * clause for the current key contains a non-inclusive |
| 1345 | * operator. |
| 1346 | */ |
| 1347 | if (pc->op_strategy == BTLessStrategyNumber || |
| 1348 | pc->op_strategy == BTGreaterStrategyNumber) |
| 1349 | consider_next_key = false; |
| 1350 | break; |
| 1351 | } |
| 1352 | |
| 1353 | case PARTITION_STRATEGY_HASH: |
| 1354 | if (pc->op_strategy != HTEqualStrategyNumber) |
| 1355 | elog(ERROR, "invalid clause for hash partitioning" ); |
| 1356 | hash_clauses[pc->op_strategy] = |
| 1357 | lappend(hash_clauses[pc->op_strategy], pc); |
| 1358 | break; |
| 1359 | |
| 1360 | default: |
| 1361 | elog(ERROR, "invalid partition strategy: %c" , |
| 1362 | part_scheme->strategy); |
| 1363 | break; |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | /* |
| 1368 | * If we've decided that clauses for subsequent partition keys |
| 1369 | * wouldn't be useful for pruning, don't search any further. |
| 1370 | */ |
| 1371 | if (!consider_next_key) |
| 1372 | break; |
| 1373 | } |
| 1374 | |
| 1375 | /* |
| 1376 | * Now, we have divided clauses according to their operator strategies. |
| 1377 | * Check for each strategy if we can generate pruning step(s) by |
| 1378 | * collecting a list of expressions whose values will constitute a vector |
| 1379 | * that can be used as a lookup key by a partition bound searching |
| 1380 | * function. |
| 1381 | */ |
| 1382 | switch (part_scheme->strategy) |
| 1383 | { |
| 1384 | case PARTITION_STRATEGY_LIST: |
| 1385 | case PARTITION_STRATEGY_RANGE: |
| 1386 | { |
| 1387 | List *eq_clauses = btree_clauses[BTEqualStrategyNumber]; |
| 1388 | List *le_clauses = btree_clauses[BTLessEqualStrategyNumber]; |
| 1389 | List *ge_clauses = btree_clauses[BTGreaterEqualStrategyNumber]; |
| 1390 | int strat; |
| 1391 | |
| 1392 | /* |
| 1393 | * For each clause under consideration for a given strategy, |
| 1394 | * we collect expressions from clauses for earlier keys, whose |
| 1395 | * operator strategy is inclusive, into a list called |
| 1396 | * 'prefix'. By appending the clause's own expression to the |
| 1397 | * 'prefix', we'll generate one step using the so generated |
| 1398 | * vector and assign the current strategy to it. Actually, |
| 1399 | * 'prefix' might contain multiple clauses for the same key, |
| 1400 | * in which case, we must generate steps for various |
| 1401 | * combinations of expressions of different keys, which |
| 1402 | * get_steps_using_prefix takes care of for us. |
| 1403 | */ |
| 1404 | for (strat = 1; strat <= BTMaxStrategyNumber; strat++) |
| 1405 | { |
| 1406 | foreach(lc, btree_clauses[strat]) |
| 1407 | { |
| 1408 | PartClauseInfo *pc = lfirst(lc); |
| 1409 | ListCell *lc1; |
| 1410 | List *prefix = NIL; |
| 1411 | List *pc_steps; |
| 1412 | |
| 1413 | /* |
| 1414 | * Expressions from = clauses can always be in the |
| 1415 | * prefix, provided they're from an earlier key. |
| 1416 | */ |
| 1417 | foreach(lc1, eq_clauses) |
| 1418 | { |
| 1419 | PartClauseInfo *eqpc = lfirst(lc1); |
| 1420 | |
| 1421 | if (eqpc->keyno == pc->keyno) |
| 1422 | break; |
| 1423 | if (eqpc->keyno < pc->keyno) |
| 1424 | prefix = lappend(prefix, eqpc); |
| 1425 | } |
| 1426 | |
| 1427 | /* |
| 1428 | * If we're generating steps for </<= strategy, we can |
| 1429 | * add other <= clauses to the prefix, provided |
| 1430 | * they're from an earlier key. |
| 1431 | */ |
| 1432 | if (strat == BTLessStrategyNumber || |
| 1433 | strat == BTLessEqualStrategyNumber) |
| 1434 | { |
| 1435 | foreach(lc1, le_clauses) |
| 1436 | { |
| 1437 | PartClauseInfo *lepc = lfirst(lc1); |
| 1438 | |
| 1439 | if (lepc->keyno == pc->keyno) |
| 1440 | break; |
| 1441 | if (lepc->keyno < pc->keyno) |
| 1442 | prefix = lappend(prefix, lepc); |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | /* |
| 1447 | * If we're generating steps for >/>= strategy, we can |
| 1448 | * add other >= clauses to the prefix, provided |
| 1449 | * they're from an earlier key. |
| 1450 | */ |
| 1451 | if (strat == BTGreaterStrategyNumber || |
| 1452 | strat == BTGreaterEqualStrategyNumber) |
| 1453 | { |
| 1454 | foreach(lc1, ge_clauses) |
| 1455 | { |
| 1456 | PartClauseInfo *gepc = lfirst(lc1); |
| 1457 | |
| 1458 | if (gepc->keyno == pc->keyno) |
| 1459 | break; |
| 1460 | if (gepc->keyno < pc->keyno) |
| 1461 | prefix = lappend(prefix, gepc); |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | /* |
| 1466 | * As mentioned above, if 'prefix' contains multiple |
| 1467 | * expressions for the same key, the following will |
| 1468 | * generate multiple steps, one for each combination |
| 1469 | * of the expressions for different keys. |
| 1470 | * |
| 1471 | * Note that we pass NULL for step_nullkeys, because |
| 1472 | * we don't search list/range partition bounds where |
| 1473 | * some keys are NULL. |
| 1474 | */ |
| 1475 | Assert(pc->op_strategy == strat); |
| 1476 | pc_steps = get_steps_using_prefix(context, strat, |
| 1477 | pc->op_is_ne, |
| 1478 | pc->expr, |
| 1479 | pc->cmpfn, |
| 1480 | pc->keyno, |
| 1481 | NULL, |
| 1482 | prefix); |
| 1483 | opsteps = list_concat(opsteps, list_copy(pc_steps)); |
| 1484 | } |
| 1485 | } |
| 1486 | break; |
| 1487 | } |
| 1488 | |
| 1489 | case PARTITION_STRATEGY_HASH: |
| 1490 | { |
| 1491 | List *eq_clauses = hash_clauses[HTEqualStrategyNumber]; |
| 1492 | |
| 1493 | /* For hash partitioning, we have just the = strategy. */ |
| 1494 | if (eq_clauses != NIL) |
| 1495 | { |
| 1496 | PartClauseInfo *pc; |
| 1497 | List *pc_steps; |
| 1498 | List *prefix = NIL; |
| 1499 | int last_keyno; |
| 1500 | ListCell *lc1; |
| 1501 | |
| 1502 | /* |
| 1503 | * Locate the clause for the greatest column. This may |
| 1504 | * not belong to the last partition key, but it is the |
| 1505 | * clause belonging to the last partition key we found a |
| 1506 | * clause for above. |
| 1507 | */ |
| 1508 | pc = llast(eq_clauses); |
| 1509 | |
| 1510 | /* |
| 1511 | * There might be multiple clauses which matched to that |
| 1512 | * partition key; find the first such clause. While at |
| 1513 | * it, add all the clauses before that one to 'prefix'. |
| 1514 | */ |
| 1515 | last_keyno = pc->keyno; |
| 1516 | foreach(lc, eq_clauses) |
| 1517 | { |
| 1518 | pc = lfirst(lc); |
| 1519 | if (pc->keyno == last_keyno) |
| 1520 | break; |
| 1521 | prefix = lappend(prefix, pc); |
| 1522 | } |
| 1523 | |
| 1524 | /* |
| 1525 | * For each clause for the "last" column, after appending |
| 1526 | * the clause's own expression to the 'prefix', we'll |
| 1527 | * generate one step using the so generated vector and |
| 1528 | * assign = as its strategy. Actually, 'prefix' might |
| 1529 | * contain multiple clauses for the same key, in which |
| 1530 | * case, we must generate steps for various combinations |
| 1531 | * of expressions of different keys, which |
| 1532 | * get_steps_using_prefix will take care of for us. |
| 1533 | */ |
| 1534 | for_each_cell(lc1, lc) |
| 1535 | { |
| 1536 | pc = lfirst(lc1); |
| 1537 | |
| 1538 | /* |
| 1539 | * Note that we pass nullkeys for step_nullkeys, |
| 1540 | * because we need to tell hash partition bound search |
| 1541 | * function which of the keys we found IS NULL clauses |
| 1542 | * for. |
| 1543 | */ |
| 1544 | Assert(pc->op_strategy == HTEqualStrategyNumber); |
| 1545 | pc_steps = |
| 1546 | get_steps_using_prefix(context, |
| 1547 | HTEqualStrategyNumber, |
| 1548 | false, |
| 1549 | pc->expr, |
| 1550 | pc->cmpfn, |
| 1551 | pc->keyno, |
| 1552 | nullkeys, |
| 1553 | prefix); |
| 1554 | opsteps = list_concat(opsteps, list_copy(pc_steps)); |
| 1555 | } |
| 1556 | } |
| 1557 | break; |
| 1558 | } |
| 1559 | |
| 1560 | default: |
| 1561 | elog(ERROR, "invalid partition strategy: %c" , |
| 1562 | part_scheme->strategy); |
| 1563 | break; |
| 1564 | } |
| 1565 | |
| 1566 | /* Lastly, add a combine step to mutually AND these op steps, if needed */ |
| 1567 | if (list_length(opsteps) > 1) |
| 1568 | { |
| 1569 | List *opstep_ids = NIL; |
| 1570 | |
| 1571 | foreach(lc, opsteps) |
| 1572 | { |
| 1573 | PartitionPruneStep *step = lfirst(lc); |
| 1574 | |
| 1575 | opstep_ids = lappend_int(opstep_ids, step->step_id); |
| 1576 | } |
| 1577 | |
| 1578 | if (opstep_ids != NIL) |
| 1579 | return gen_prune_step_combine(context, opstep_ids, |
| 1580 | PARTPRUNE_COMBINE_INTERSECT); |
| 1581 | return NULL; |
| 1582 | } |
| 1583 | else if (opsteps != NIL) |
| 1584 | return linitial(opsteps); |
| 1585 | |
| 1586 | return NULL; |
| 1587 | } |
| 1588 | |
| 1589 | /* |
| 1590 | * If the partition key has a collation, then the clause must have the same |
| 1591 | * input collation. If the partition key is non-collatable, we assume the |
| 1592 | * collation doesn't matter, because while collation wasn't considered when |
| 1593 | * performing partitioning, the clause still may have a collation assigned |
| 1594 | * due to the other input being of a collatable type. |
| 1595 | * |
| 1596 | * See also IndexCollMatchesExprColl. |
| 1597 | */ |
| 1598 | #define PartCollMatchesExprColl(partcoll, exprcoll) \ |
| 1599 | ((partcoll) == InvalidOid || (partcoll) == (exprcoll)) |
| 1600 | |
| 1601 | /* |
| 1602 | * match_clause_to_partition_key |
| 1603 | * Attempt to match the given 'clause' with the specified partition key. |
| 1604 | * |
| 1605 | * Return value is: |
| 1606 | * * PARTCLAUSE_NOMATCH if the clause doesn't match this partition key (but |
| 1607 | * caller should keep trying, because it might match a subsequent key). |
| 1608 | * Output arguments: none set. |
| 1609 | * |
| 1610 | * * PARTCLAUSE_MATCH_CLAUSE if there is a match. |
| 1611 | * Output arguments: *pc is set to a PartClauseInfo constructed for the |
| 1612 | * matched clause. |
| 1613 | * |
| 1614 | * * PARTCLAUSE_MATCH_NULLNESS if there is a match, and the matched clause was |
| 1615 | * either a "a IS NULL" or "a IS NOT NULL" clause. |
| 1616 | * Output arguments: *clause_is_not_null is set to false in the former case |
| 1617 | * true otherwise. |
| 1618 | * |
| 1619 | * * PARTCLAUSE_MATCH_STEPS if there is a match. |
| 1620 | * Output arguments: *clause_steps is set to a list of PartitionPruneStep |
| 1621 | * generated for the clause. |
| 1622 | * |
| 1623 | * * PARTCLAUSE_MATCH_CONTRADICT if the clause is self-contradictory, ie |
| 1624 | * it provably returns FALSE or NULL. |
| 1625 | * Output arguments: none set. |
| 1626 | * |
| 1627 | * * PARTCLAUSE_UNSUPPORTED if the clause doesn't match this partition key |
| 1628 | * and couldn't possibly match any other one either, due to its form or |
| 1629 | * properties (such as containing a volatile function). |
| 1630 | * Output arguments: none set. |
| 1631 | */ |
| 1632 | static PartClauseMatchStatus |
| 1633 | match_clause_to_partition_key(GeneratePruningStepsContext *context, |
| 1634 | Expr *clause, Expr *partkey, int partkeyidx, |
| 1635 | bool *clause_is_not_null, PartClauseInfo **pc, |
| 1636 | List **clause_steps) |
| 1637 | { |
| 1638 | PartClauseMatchStatus boolmatchstatus; |
| 1639 | PartitionScheme part_scheme = context->rel->part_scheme; |
| 1640 | Oid partopfamily = part_scheme->partopfamily[partkeyidx], |
| 1641 | partcoll = part_scheme->partcollation[partkeyidx]; |
| 1642 | Expr *expr; |
| 1643 | |
| 1644 | /* |
| 1645 | * Recognize specially shaped clauses that match a Boolean partition key. |
| 1646 | */ |
| 1647 | boolmatchstatus = match_boolean_partition_clause(partopfamily, clause, |
| 1648 | partkey, &expr); |
| 1649 | |
| 1650 | if (boolmatchstatus == PARTCLAUSE_MATCH_CLAUSE) |
| 1651 | { |
| 1652 | PartClauseInfo *partclause; |
| 1653 | |
| 1654 | partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo)); |
| 1655 | partclause->keyno = partkeyidx; |
| 1656 | /* Do pruning with the Boolean equality operator. */ |
| 1657 | partclause->opno = BooleanEqualOperator; |
| 1658 | partclause->op_is_ne = false; |
| 1659 | partclause->expr = expr; |
| 1660 | /* We know that expr is of Boolean type. */ |
| 1661 | partclause->cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid; |
| 1662 | partclause->op_strategy = InvalidStrategy; |
| 1663 | |
| 1664 | *pc = partclause; |
| 1665 | |
| 1666 | return PARTCLAUSE_MATCH_CLAUSE; |
| 1667 | } |
| 1668 | else if (IsA(clause, OpExpr) && |
| 1669 | list_length(((OpExpr *) clause)->args) == 2) |
| 1670 | { |
| 1671 | OpExpr *opclause = (OpExpr *) clause; |
| 1672 | Expr *leftop, |
| 1673 | *rightop; |
| 1674 | Oid opno, |
| 1675 | op_lefttype, |
| 1676 | op_righttype, |
| 1677 | negator = InvalidOid; |
| 1678 | Oid cmpfn; |
| 1679 | int op_strategy; |
| 1680 | bool is_opne_listp = false; |
| 1681 | PartClauseInfo *partclause; |
| 1682 | |
| 1683 | leftop = (Expr *) get_leftop(clause); |
| 1684 | if (IsA(leftop, RelabelType)) |
| 1685 | leftop = ((RelabelType *) leftop)->arg; |
| 1686 | rightop = (Expr *) get_rightop(clause); |
| 1687 | if (IsA(rightop, RelabelType)) |
| 1688 | rightop = ((RelabelType *) rightop)->arg; |
| 1689 | opno = opclause->opno; |
| 1690 | |
| 1691 | /* check if the clause matches this partition key */ |
| 1692 | if (equal(leftop, partkey)) |
| 1693 | expr = rightop; |
| 1694 | else if (equal(rightop, partkey)) |
| 1695 | { |
| 1696 | /* |
| 1697 | * It's only useful if we can commute the operator to put the |
| 1698 | * partkey on the left. If we can't, the clause can be deemed |
| 1699 | * UNSUPPORTED. Even if its leftop matches some later partkey, we |
| 1700 | * now know it has Vars on the right, so it's no use. |
| 1701 | */ |
| 1702 | opno = get_commutator(opno); |
| 1703 | if (!OidIsValid(opno)) |
| 1704 | return PARTCLAUSE_UNSUPPORTED; |
| 1705 | expr = leftop; |
| 1706 | } |
| 1707 | else |
| 1708 | /* clause does not match this partition key, but perhaps next. */ |
| 1709 | return PARTCLAUSE_NOMATCH; |
| 1710 | |
| 1711 | /* |
| 1712 | * Partition key match also requires collation match. There may be |
| 1713 | * multiple partkeys with the same expression but different |
| 1714 | * collations, so failure is NOMATCH. |
| 1715 | */ |
| 1716 | if (!PartCollMatchesExprColl(partcoll, opclause->inputcollid)) |
| 1717 | return PARTCLAUSE_NOMATCH; |
| 1718 | |
| 1719 | /* |
| 1720 | * See if the operator is relevant to the partitioning opfamily. |
| 1721 | * |
| 1722 | * Normally we only care about operators that are listed as being part |
| 1723 | * of the partitioning operator family. But there is one exception: |
| 1724 | * the not-equals operators are not listed in any operator family |
| 1725 | * whatsoever, but their negators (equality) are. We can use one of |
| 1726 | * those if we find it, but only for list partitioning. |
| 1727 | * |
| 1728 | * Note: we report NOMATCH on failure, in case a later partkey has the |
| 1729 | * same expression but different opfamily. That's unlikely, but not |
| 1730 | * much more so than duplicate expressions with different collations. |
| 1731 | */ |
| 1732 | if (op_in_opfamily(opno, partopfamily)) |
| 1733 | { |
| 1734 | get_op_opfamily_properties(opno, partopfamily, false, |
| 1735 | &op_strategy, &op_lefttype, |
| 1736 | &op_righttype); |
| 1737 | } |
| 1738 | else |
| 1739 | { |
| 1740 | if (part_scheme->strategy != PARTITION_STRATEGY_LIST) |
| 1741 | return PARTCLAUSE_NOMATCH; |
| 1742 | |
| 1743 | /* See if the negator is equality */ |
| 1744 | negator = get_negator(opno); |
| 1745 | if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily)) |
| 1746 | { |
| 1747 | get_op_opfamily_properties(negator, partopfamily, false, |
| 1748 | &op_strategy, &op_lefttype, |
| 1749 | &op_righttype); |
| 1750 | if (op_strategy == BTEqualStrategyNumber) |
| 1751 | is_opne_listp = true; /* bingo */ |
| 1752 | } |
| 1753 | |
| 1754 | /* Nope, it's not <> either. */ |
| 1755 | if (!is_opne_listp) |
| 1756 | return PARTCLAUSE_NOMATCH; |
| 1757 | } |
| 1758 | |
| 1759 | /* |
| 1760 | * Only allow strict operators. This will guarantee nulls are |
| 1761 | * filtered. (This test is likely useless, since btree and hash |
| 1762 | * comparison operators are generally strict.) |
| 1763 | */ |
| 1764 | if (!op_strict(opno)) |
| 1765 | return PARTCLAUSE_UNSUPPORTED; |
| 1766 | |
| 1767 | /* |
| 1768 | * OK, we have a match to the partition key and a suitable operator. |
| 1769 | * Examine the other argument to see if it's usable for pruning. |
| 1770 | * |
| 1771 | * In most of these cases, we can return UNSUPPORTED because the same |
| 1772 | * failure would occur no matter which partkey it's matched to. (In |
| 1773 | * particular, now that we've successfully matched one side of the |
| 1774 | * opclause to a partkey, there is no chance that matching the other |
| 1775 | * side to another partkey will produce a usable result, since that'd |
| 1776 | * mean there are Vars on both sides.) |
| 1777 | * |
| 1778 | * Also, if we reject an argument for a target-dependent reason, set |
| 1779 | * appropriate fields of *context to report that. We postpone these |
| 1780 | * tests until after matching the partkey and the operator, so as to |
| 1781 | * reduce the odds of setting the context fields for clauses that do |
| 1782 | * not end up contributing to pruning steps. |
| 1783 | * |
| 1784 | * First, check for non-Const argument. (We assume that any immutable |
| 1785 | * subexpression will have been folded to a Const already.) |
| 1786 | */ |
| 1787 | if (!IsA(expr, Const)) |
| 1788 | { |
| 1789 | Bitmapset *paramids; |
| 1790 | |
| 1791 | /* |
| 1792 | * When pruning in the planner, we only support pruning using |
| 1793 | * comparisons to constants. We cannot prune on the basis of |
| 1794 | * anything that's not immutable. (Note that has_mutable_arg and |
| 1795 | * has_exec_param do not get set for this target value.) |
| 1796 | */ |
| 1797 | if (context->target == PARTTARGET_PLANNER) |
| 1798 | return PARTCLAUSE_UNSUPPORTED; |
| 1799 | |
| 1800 | /* |
| 1801 | * We can never prune using an expression that contains Vars. |
| 1802 | */ |
| 1803 | if (contain_var_clause((Node *) expr)) |
| 1804 | return PARTCLAUSE_UNSUPPORTED; |
| 1805 | |
| 1806 | /* |
| 1807 | * And we must reject anything containing a volatile function. |
| 1808 | * Stable functions are OK though. |
| 1809 | */ |
| 1810 | if (contain_volatile_functions((Node *) expr)) |
| 1811 | return PARTCLAUSE_UNSUPPORTED; |
| 1812 | |
| 1813 | /* |
| 1814 | * See if there are any exec Params. If so, we can only use this |
| 1815 | * expression during per-scan pruning. |
| 1816 | */ |
| 1817 | paramids = pull_exec_paramids(expr); |
| 1818 | if (!bms_is_empty(paramids)) |
| 1819 | { |
| 1820 | context->has_exec_param = true; |
| 1821 | if (context->target != PARTTARGET_EXEC) |
| 1822 | return PARTCLAUSE_UNSUPPORTED; |
| 1823 | } |
| 1824 | else |
| 1825 | { |
| 1826 | /* It's potentially usable, but mutable */ |
| 1827 | context->has_mutable_arg = true; |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | /* |
| 1832 | * Check whether the comparison operator itself is immutable. (We |
| 1833 | * assume anything that's in a btree or hash opclass is at least |
| 1834 | * stable, but we need to check for immutability.) |
| 1835 | */ |
| 1836 | if (op_volatile(opno) != PROVOLATILE_IMMUTABLE) |
| 1837 | { |
| 1838 | context->has_mutable_op = true; |
| 1839 | |
| 1840 | /* |
| 1841 | * When pruning in the planner, we cannot prune with mutable |
| 1842 | * operators. |
| 1843 | */ |
| 1844 | if (context->target == PARTTARGET_PLANNER) |
| 1845 | return PARTCLAUSE_UNSUPPORTED; |
| 1846 | } |
| 1847 | |
| 1848 | /* |
| 1849 | * Now find the procedure to use, based on the types. If the clause's |
| 1850 | * other argument is of the same type as the partitioning opclass's |
| 1851 | * declared input type, we can use the procedure cached in |
| 1852 | * PartitionKey. If not, search for a cross-type one in the same |
| 1853 | * opfamily; if one doesn't exist, report no match. |
| 1854 | */ |
| 1855 | if (op_righttype == part_scheme->partopcintype[partkeyidx]) |
| 1856 | cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid; |
| 1857 | else |
| 1858 | { |
| 1859 | switch (part_scheme->strategy) |
| 1860 | { |
| 1861 | /* |
| 1862 | * For range and list partitioning, we need the ordering |
| 1863 | * procedure with lefttype being the partition key's type, |
| 1864 | * and righttype the clause's operator's right type. |
| 1865 | */ |
| 1866 | case PARTITION_STRATEGY_LIST: |
| 1867 | case PARTITION_STRATEGY_RANGE: |
| 1868 | cmpfn = |
| 1869 | get_opfamily_proc(part_scheme->partopfamily[partkeyidx], |
| 1870 | part_scheme->partopcintype[partkeyidx], |
| 1871 | op_righttype, BTORDER_PROC); |
| 1872 | break; |
| 1873 | |
| 1874 | /* |
| 1875 | * For hash partitioning, we need the hashing procedure |
| 1876 | * for the clause's type. |
| 1877 | */ |
| 1878 | case PARTITION_STRATEGY_HASH: |
| 1879 | cmpfn = |
| 1880 | get_opfamily_proc(part_scheme->partopfamily[partkeyidx], |
| 1881 | op_righttype, op_righttype, |
| 1882 | HASHEXTENDED_PROC); |
| 1883 | break; |
| 1884 | |
| 1885 | default: |
| 1886 | elog(ERROR, "invalid partition strategy: %c" , |
| 1887 | part_scheme->strategy); |
| 1888 | cmpfn = InvalidOid; /* keep compiler quiet */ |
| 1889 | break; |
| 1890 | } |
| 1891 | |
| 1892 | if (!OidIsValid(cmpfn)) |
| 1893 | return PARTCLAUSE_NOMATCH; |
| 1894 | } |
| 1895 | |
| 1896 | /* |
| 1897 | * Build the clause, passing the negator if applicable. |
| 1898 | */ |
| 1899 | partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo)); |
| 1900 | partclause->keyno = partkeyidx; |
| 1901 | if (is_opne_listp) |
| 1902 | { |
| 1903 | Assert(OidIsValid(negator)); |
| 1904 | partclause->opno = negator; |
| 1905 | partclause->op_is_ne = true; |
| 1906 | partclause->op_strategy = InvalidStrategy; |
| 1907 | } |
| 1908 | else |
| 1909 | { |
| 1910 | partclause->opno = opno; |
| 1911 | partclause->op_is_ne = false; |
| 1912 | partclause->op_strategy = op_strategy; |
| 1913 | } |
| 1914 | partclause->expr = expr; |
| 1915 | partclause->cmpfn = cmpfn; |
| 1916 | |
| 1917 | *pc = partclause; |
| 1918 | |
| 1919 | return PARTCLAUSE_MATCH_CLAUSE; |
| 1920 | } |
| 1921 | else if (IsA(clause, ScalarArrayOpExpr)) |
| 1922 | { |
| 1923 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| 1924 | Oid saop_op = saop->opno; |
| 1925 | Oid saop_coll = saop->inputcollid; |
| 1926 | Expr *leftop = (Expr *) linitial(saop->args), |
| 1927 | *rightop = (Expr *) lsecond(saop->args); |
| 1928 | List *elem_exprs, |
| 1929 | *elem_clauses; |
| 1930 | ListCell *lc1; |
| 1931 | |
| 1932 | if (IsA(leftop, RelabelType)) |
| 1933 | leftop = ((RelabelType *) leftop)->arg; |
| 1934 | |
| 1935 | /* check if the LHS matches this partition key */ |
| 1936 | if (!equal(leftop, partkey) || |
| 1937 | !PartCollMatchesExprColl(partcoll, saop->inputcollid)) |
| 1938 | return PARTCLAUSE_NOMATCH; |
| 1939 | |
| 1940 | /* |
| 1941 | * See if the operator is relevant to the partitioning opfamily. |
| 1942 | * |
| 1943 | * In case of NOT IN (..), we get a '<>', which we handle if list |
| 1944 | * partitioning is in use and we're able to confirm that it's negator |
| 1945 | * is a btree equality operator belonging to the partitioning operator |
| 1946 | * family. As above, report NOMATCH for non-matching operator. |
| 1947 | */ |
| 1948 | if (!op_in_opfamily(saop_op, partopfamily)) |
| 1949 | { |
| 1950 | Oid negator; |
| 1951 | |
| 1952 | if (part_scheme->strategy != PARTITION_STRATEGY_LIST) |
| 1953 | return PARTCLAUSE_NOMATCH; |
| 1954 | |
| 1955 | negator = get_negator(saop_op); |
| 1956 | if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily)) |
| 1957 | { |
| 1958 | int strategy; |
| 1959 | Oid lefttype, |
| 1960 | righttype; |
| 1961 | |
| 1962 | get_op_opfamily_properties(negator, partopfamily, |
| 1963 | false, &strategy, |
| 1964 | &lefttype, &righttype); |
| 1965 | if (strategy != BTEqualStrategyNumber) |
| 1966 | return PARTCLAUSE_NOMATCH; |
| 1967 | } |
| 1968 | else |
| 1969 | return PARTCLAUSE_NOMATCH; /* no useful negator */ |
| 1970 | } |
| 1971 | |
| 1972 | /* |
| 1973 | * Only allow strict operators. This will guarantee nulls are |
| 1974 | * filtered. (This test is likely useless, since btree and hash |
| 1975 | * comparison operators are generally strict.) |
| 1976 | */ |
| 1977 | if (!op_strict(saop_op)) |
| 1978 | return PARTCLAUSE_UNSUPPORTED; |
| 1979 | |
| 1980 | /* |
| 1981 | * OK, we have a match to the partition key and a suitable operator. |
| 1982 | * Examine the array argument to see if it's usable for pruning. This |
| 1983 | * is identical to the logic for a plain OpExpr. |
| 1984 | */ |
| 1985 | if (!IsA(rightop, Const)) |
| 1986 | { |
| 1987 | Bitmapset *paramids; |
| 1988 | |
| 1989 | /* |
| 1990 | * When pruning in the planner, we only support pruning using |
| 1991 | * comparisons to constants. We cannot prune on the basis of |
| 1992 | * anything that's not immutable. (Note that has_mutable_arg and |
| 1993 | * has_exec_param do not get set for this target value.) |
| 1994 | */ |
| 1995 | if (context->target == PARTTARGET_PLANNER) |
| 1996 | return PARTCLAUSE_UNSUPPORTED; |
| 1997 | |
| 1998 | /* |
| 1999 | * We can never prune using an expression that contains Vars. |
| 2000 | */ |
| 2001 | if (contain_var_clause((Node *) rightop)) |
| 2002 | return PARTCLAUSE_UNSUPPORTED; |
| 2003 | |
| 2004 | /* |
| 2005 | * And we must reject anything containing a volatile function. |
| 2006 | * Stable functions are OK though. |
| 2007 | */ |
| 2008 | if (contain_volatile_functions((Node *) rightop)) |
| 2009 | return PARTCLAUSE_UNSUPPORTED; |
| 2010 | |
| 2011 | /* |
| 2012 | * See if there are any exec Params. If so, we can only use this |
| 2013 | * expression during per-scan pruning. |
| 2014 | */ |
| 2015 | paramids = pull_exec_paramids(rightop); |
| 2016 | if (!bms_is_empty(paramids)) |
| 2017 | { |
| 2018 | context->has_exec_param = true; |
| 2019 | if (context->target != PARTTARGET_EXEC) |
| 2020 | return PARTCLAUSE_UNSUPPORTED; |
| 2021 | } |
| 2022 | else |
| 2023 | { |
| 2024 | /* It's potentially usable, but mutable */ |
| 2025 | context->has_mutable_arg = true; |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | /* |
| 2030 | * Check whether the comparison operator itself is immutable. (We |
| 2031 | * assume anything that's in a btree or hash opclass is at least |
| 2032 | * stable, but we need to check for immutability.) |
| 2033 | */ |
| 2034 | if (op_volatile(saop_op) != PROVOLATILE_IMMUTABLE) |
| 2035 | { |
| 2036 | context->has_mutable_op = true; |
| 2037 | |
| 2038 | /* |
| 2039 | * When pruning in the planner, we cannot prune with mutable |
| 2040 | * operators. |
| 2041 | */ |
| 2042 | if (context->target == PARTTARGET_PLANNER) |
| 2043 | return PARTCLAUSE_UNSUPPORTED; |
| 2044 | } |
| 2045 | |
| 2046 | /* |
| 2047 | * Examine the contents of the array argument. |
| 2048 | */ |
| 2049 | elem_exprs = NIL; |
| 2050 | if (IsA(rightop, Const)) |
| 2051 | { |
| 2052 | /* |
| 2053 | * For a constant array, convert the elements to a list of Const |
| 2054 | * nodes, one for each array element (excepting nulls). |
| 2055 | */ |
| 2056 | Const *arr = (Const *) rightop; |
| 2057 | ArrayType *arrval; |
| 2058 | int16 elemlen; |
| 2059 | bool elembyval; |
| 2060 | char elemalign; |
| 2061 | Datum *elem_values; |
| 2062 | bool *elem_nulls; |
| 2063 | int num_elems, |
| 2064 | i; |
| 2065 | |
| 2066 | /* If the array itself is null, the saop returns null */ |
| 2067 | if (arr->constisnull) |
| 2068 | return PARTCLAUSE_MATCH_CONTRADICT; |
| 2069 | |
| 2070 | arrval = DatumGetArrayTypeP(arr->constvalue); |
| 2071 | get_typlenbyvalalign(ARR_ELEMTYPE(arrval), |
| 2072 | &elemlen, &elembyval, &elemalign); |
| 2073 | deconstruct_array(arrval, |
| 2074 | ARR_ELEMTYPE(arrval), |
| 2075 | elemlen, elembyval, elemalign, |
| 2076 | &elem_values, &elem_nulls, |
| 2077 | &num_elems); |
| 2078 | for (i = 0; i < num_elems; i++) |
| 2079 | { |
| 2080 | Const *elem_expr; |
| 2081 | |
| 2082 | /* |
| 2083 | * A null array element must lead to a null comparison result, |
| 2084 | * since saop_op is known strict. We can ignore it in the |
| 2085 | * useOr case, but otherwise it implies self-contradiction. |
| 2086 | */ |
| 2087 | if (elem_nulls[i]) |
| 2088 | { |
| 2089 | if (saop->useOr) |
| 2090 | continue; |
| 2091 | return PARTCLAUSE_MATCH_CONTRADICT; |
| 2092 | } |
| 2093 | |
| 2094 | elem_expr = makeConst(ARR_ELEMTYPE(arrval), -1, |
| 2095 | arr->constcollid, elemlen, |
| 2096 | elem_values[i], false, elembyval); |
| 2097 | elem_exprs = lappend(elem_exprs, elem_expr); |
| 2098 | } |
| 2099 | } |
| 2100 | else if (IsA(rightop, ArrayExpr)) |
| 2101 | { |
| 2102 | ArrayExpr *arrexpr = castNode(ArrayExpr, rightop); |
| 2103 | |
| 2104 | /* |
| 2105 | * For a nested ArrayExpr, we don't know how to get the actual |
| 2106 | * scalar values out into a flat list, so we give up doing |
| 2107 | * anything with this ScalarArrayOpExpr. |
| 2108 | */ |
| 2109 | if (arrexpr->multidims) |
| 2110 | return PARTCLAUSE_UNSUPPORTED; |
| 2111 | |
| 2112 | /* |
| 2113 | * Otherwise, we can just use the list of element values. |
| 2114 | */ |
| 2115 | elem_exprs = arrexpr->elements; |
| 2116 | } |
| 2117 | else |
| 2118 | { |
| 2119 | /* Give up on any other clause types. */ |
| 2120 | return PARTCLAUSE_UNSUPPORTED; |
| 2121 | } |
| 2122 | |
| 2123 | /* |
| 2124 | * Now generate a list of clauses, one for each array element, of the |
| 2125 | * form saop_leftop saop_op elem_expr |
| 2126 | */ |
| 2127 | elem_clauses = NIL; |
| 2128 | foreach(lc1, elem_exprs) |
| 2129 | { |
| 2130 | Expr *rightop = (Expr *) lfirst(lc1), |
| 2131 | *elem_clause; |
| 2132 | |
| 2133 | elem_clause = make_opclause(saop_op, BOOLOID, false, |
| 2134 | leftop, rightop, |
| 2135 | InvalidOid, saop_coll); |
| 2136 | elem_clauses = lappend(elem_clauses, elem_clause); |
| 2137 | } |
| 2138 | |
| 2139 | /* |
| 2140 | * If we have an ANY clause and multiple elements, now turn the list |
| 2141 | * of clauses into an OR expression. |
| 2142 | */ |
| 2143 | if (saop->useOr && list_length(elem_clauses) > 1) |
| 2144 | elem_clauses = list_make1(makeBoolExpr(OR_EXPR, elem_clauses, -1)); |
| 2145 | |
| 2146 | /* Finally, generate steps */ |
| 2147 | *clause_steps = gen_partprune_steps_internal(context, elem_clauses); |
| 2148 | if (context->contradictory) |
| 2149 | return PARTCLAUSE_MATCH_CONTRADICT; |
| 2150 | else if (*clause_steps == NIL) |
| 2151 | return PARTCLAUSE_UNSUPPORTED; /* step generation failed */ |
| 2152 | return PARTCLAUSE_MATCH_STEPS; |
| 2153 | } |
| 2154 | else if (IsA(clause, NullTest)) |
| 2155 | { |
| 2156 | NullTest *nulltest = (NullTest *) clause; |
| 2157 | Expr *arg = nulltest->arg; |
| 2158 | |
| 2159 | if (IsA(arg, RelabelType)) |
| 2160 | arg = ((RelabelType *) arg)->arg; |
| 2161 | |
| 2162 | /* Does arg match with this partition key column? */ |
| 2163 | if (!equal(arg, partkey)) |
| 2164 | return PARTCLAUSE_NOMATCH; |
| 2165 | |
| 2166 | *clause_is_not_null = (nulltest->nulltesttype == IS_NOT_NULL); |
| 2167 | |
| 2168 | return PARTCLAUSE_MATCH_NULLNESS; |
| 2169 | } |
| 2170 | |
| 2171 | /* |
| 2172 | * If we get here then the return value depends on the result of the |
| 2173 | * match_boolean_partition_clause call above. If the call returned |
| 2174 | * PARTCLAUSE_UNSUPPORTED then we're either not dealing with a bool qual |
| 2175 | * or the bool qual is not suitable for pruning. Since the qual didn't |
| 2176 | * match up to any of the other qual types supported here, then trying to |
| 2177 | * match it against any other partition key is a waste of time, so just |
| 2178 | * return PARTCLAUSE_UNSUPPORTED. If the qual just couldn't be matched to |
| 2179 | * this partition key, then it may match another, so return |
| 2180 | * PARTCLAUSE_NOMATCH. The only other value that |
| 2181 | * match_boolean_partition_clause can return is PARTCLAUSE_MATCH_CLAUSE, |
| 2182 | * and since that value was already dealt with above, then we can just |
| 2183 | * return boolmatchstatus. |
| 2184 | */ |
| 2185 | return boolmatchstatus; |
| 2186 | } |
| 2187 | |
| 2188 | /* |
| 2189 | * get_steps_using_prefix |
| 2190 | * Generate list of PartitionPruneStepOp steps each consisting of given |
| 2191 | * opstrategy |
| 2192 | * |
| 2193 | * To generate steps, step_lastexpr and step_lastcmpfn are appended to |
| 2194 | * expressions and cmpfns, respectively, extracted from the clauses in |
| 2195 | * 'prefix'. Actually, since 'prefix' may contain multiple clauses for the |
| 2196 | * same partition key column, we must generate steps for various combinations |
| 2197 | * of the clauses of different keys. |
| 2198 | */ |
| 2199 | static List * |
| 2200 | get_steps_using_prefix(GeneratePruningStepsContext *context, |
| 2201 | StrategyNumber step_opstrategy, |
| 2202 | bool step_op_is_ne, |
| 2203 | Expr *step_lastexpr, |
| 2204 | Oid step_lastcmpfn, |
| 2205 | int step_lastkeyno, |
| 2206 | Bitmapset *step_nullkeys, |
| 2207 | List *prefix) |
| 2208 | { |
| 2209 | /* Quick exit if there are no values to prefix with. */ |
| 2210 | if (list_length(prefix) == 0) |
| 2211 | { |
| 2212 | PartitionPruneStep *step; |
| 2213 | |
| 2214 | step = gen_prune_step_op(context, |
| 2215 | step_opstrategy, |
| 2216 | step_op_is_ne, |
| 2217 | list_make1(step_lastexpr), |
| 2218 | list_make1_oid(step_lastcmpfn), |
| 2219 | step_nullkeys); |
| 2220 | return list_make1(step); |
| 2221 | } |
| 2222 | |
| 2223 | /* Recurse to generate steps for various combinations. */ |
| 2224 | return get_steps_using_prefix_recurse(context, |
| 2225 | step_opstrategy, |
| 2226 | step_op_is_ne, |
| 2227 | step_lastexpr, |
| 2228 | step_lastcmpfn, |
| 2229 | step_lastkeyno, |
| 2230 | step_nullkeys, |
| 2231 | list_head(prefix), |
| 2232 | NIL, NIL); |
| 2233 | } |
| 2234 | |
| 2235 | /* |
| 2236 | * get_steps_using_prefix_recurse |
| 2237 | * Recursively generate combinations of clauses for different partition |
| 2238 | * keys and start generating steps upon reaching clauses for the greatest |
| 2239 | * column that is less than the one for which we're currently generating |
| 2240 | * steps (that is, step_lastkeyno) |
| 2241 | * |
| 2242 | * 'start' is where we should start iterating for the current invocation. |
| 2243 | * 'step_exprs' and 'step_cmpfns' each contains the expressions and cmpfns |
| 2244 | * we've generated so far from the clauses for the previous part keys. |
| 2245 | */ |
| 2246 | static List * |
| 2247 | get_steps_using_prefix_recurse(GeneratePruningStepsContext *context, |
| 2248 | StrategyNumber step_opstrategy, |
| 2249 | bool step_op_is_ne, |
| 2250 | Expr *step_lastexpr, |
| 2251 | Oid step_lastcmpfn, |
| 2252 | int step_lastkeyno, |
| 2253 | Bitmapset *step_nullkeys, |
| 2254 | ListCell *start, |
| 2255 | List *step_exprs, |
| 2256 | List *step_cmpfns) |
| 2257 | { |
| 2258 | List *result = NIL; |
| 2259 | ListCell *lc; |
| 2260 | int cur_keyno; |
| 2261 | |
| 2262 | /* Actually, recursion would be limited by PARTITION_MAX_KEYS. */ |
| 2263 | check_stack_depth(); |
| 2264 | |
| 2265 | /* Check if we need to recurse. */ |
| 2266 | Assert(start != NULL); |
| 2267 | cur_keyno = ((PartClauseInfo *) lfirst(start))->keyno; |
| 2268 | if (cur_keyno < step_lastkeyno - 1) |
| 2269 | { |
| 2270 | PartClauseInfo *pc; |
| 2271 | ListCell *next_start; |
| 2272 | |
| 2273 | /* |
| 2274 | * For each clause with cur_keyno, adds its expr and cmpfn to |
| 2275 | * step_exprs and step_cmpfns, respectively, and recurse after setting |
| 2276 | * next_start to the ListCell of the first clause for the next |
| 2277 | * partition key. |
| 2278 | */ |
| 2279 | for_each_cell(lc, start) |
| 2280 | { |
| 2281 | pc = lfirst(lc); |
| 2282 | |
| 2283 | if (pc->keyno > cur_keyno) |
| 2284 | break; |
| 2285 | } |
| 2286 | next_start = lc; |
| 2287 | |
| 2288 | for_each_cell(lc, start) |
| 2289 | { |
| 2290 | List *moresteps; |
| 2291 | |
| 2292 | pc = lfirst(lc); |
| 2293 | if (pc->keyno == cur_keyno) |
| 2294 | { |
| 2295 | /* clean up before starting a new recursion cycle. */ |
| 2296 | if (cur_keyno == 0) |
| 2297 | { |
| 2298 | list_free(step_exprs); |
| 2299 | list_free(step_cmpfns); |
| 2300 | step_exprs = list_make1(pc->expr); |
| 2301 | step_cmpfns = list_make1_oid(pc->cmpfn); |
| 2302 | } |
| 2303 | else |
| 2304 | { |
| 2305 | step_exprs = lappend(step_exprs, pc->expr); |
| 2306 | step_cmpfns = lappend_oid(step_cmpfns, pc->cmpfn); |
| 2307 | } |
| 2308 | } |
| 2309 | else |
| 2310 | { |
| 2311 | Assert(pc->keyno > cur_keyno); |
| 2312 | break; |
| 2313 | } |
| 2314 | |
| 2315 | moresteps = get_steps_using_prefix_recurse(context, |
| 2316 | step_opstrategy, |
| 2317 | step_op_is_ne, |
| 2318 | step_lastexpr, |
| 2319 | step_lastcmpfn, |
| 2320 | step_lastkeyno, |
| 2321 | step_nullkeys, |
| 2322 | next_start, |
| 2323 | step_exprs, |
| 2324 | step_cmpfns); |
| 2325 | result = list_concat(result, moresteps); |
| 2326 | } |
| 2327 | } |
| 2328 | else |
| 2329 | { |
| 2330 | /* |
| 2331 | * End the current recursion cycle and start generating steps, one for |
| 2332 | * each clause with cur_keyno, which is all clauses from here onward |
| 2333 | * till the end of the list. |
| 2334 | */ |
| 2335 | Assert(list_length(step_exprs) == cur_keyno); |
| 2336 | for_each_cell(lc, start) |
| 2337 | { |
| 2338 | PartClauseInfo *pc = lfirst(lc); |
| 2339 | PartitionPruneStep *step; |
| 2340 | List *step_exprs1, |
| 2341 | *step_cmpfns1; |
| 2342 | |
| 2343 | Assert(pc->keyno == cur_keyno); |
| 2344 | |
| 2345 | /* Leave the original step_exprs unmodified. */ |
| 2346 | step_exprs1 = list_copy(step_exprs); |
| 2347 | step_exprs1 = lappend(step_exprs1, pc->expr); |
| 2348 | step_exprs1 = lappend(step_exprs1, step_lastexpr); |
| 2349 | |
| 2350 | /* Leave the original step_cmpfns unmodified. */ |
| 2351 | step_cmpfns1 = list_copy(step_cmpfns); |
| 2352 | step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn); |
| 2353 | step_cmpfns1 = lappend_oid(step_cmpfns1, step_lastcmpfn); |
| 2354 | |
| 2355 | step = gen_prune_step_op(context, |
| 2356 | step_opstrategy, step_op_is_ne, |
| 2357 | step_exprs1, step_cmpfns1, |
| 2358 | step_nullkeys); |
| 2359 | result = lappend(result, step); |
| 2360 | } |
| 2361 | } |
| 2362 | |
| 2363 | return result; |
| 2364 | } |
| 2365 | |
| 2366 | /* |
| 2367 | * get_matching_hash_bounds |
| 2368 | * Determine offset of the hash bound matching the specified values, |
| 2369 | * considering that all the non-null values come from clauses containing |
| 2370 | * a compatible hash equality operator and any keys that are null come |
| 2371 | * from an IS NULL clause. |
| 2372 | * |
| 2373 | * Generally this function will return a single matching bound offset, |
| 2374 | * although if a partition has not been setup for a given modulus then we may |
| 2375 | * return no matches. If the number of clauses found don't cover the entire |
| 2376 | * partition key, then we'll need to return all offsets. |
| 2377 | * |
| 2378 | * 'opstrategy' if non-zero must be HTEqualStrategyNumber. |
| 2379 | * |
| 2380 | * 'values' contains Datums indexed by the partition key to use for pruning. |
| 2381 | * |
| 2382 | * 'nvalues', the number of Datums in the 'values' array. |
| 2383 | * |
| 2384 | * 'partsupfunc' contains partition hashing functions that can produce correct |
| 2385 | * hash for the type of the values contained in 'values'. |
| 2386 | * |
| 2387 | * 'nullkeys' is the set of partition keys that are null. |
| 2388 | */ |
| 2389 | static PruneStepResult * |
| 2390 | get_matching_hash_bounds(PartitionPruneContext *context, |
| 2391 | StrategyNumber opstrategy, Datum *values, int nvalues, |
| 2392 | FmgrInfo *partsupfunc, Bitmapset *nullkeys) |
| 2393 | { |
| 2394 | PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult)); |
| 2395 | PartitionBoundInfo boundinfo = context->boundinfo; |
| 2396 | int *partindices = boundinfo->indexes; |
| 2397 | int partnatts = context->partnatts; |
| 2398 | bool isnull[PARTITION_MAX_KEYS]; |
| 2399 | int i; |
| 2400 | uint64 rowHash; |
| 2401 | int greatest_modulus; |
| 2402 | Oid *partcollation = context->partcollation; |
| 2403 | |
| 2404 | Assert(context->strategy == PARTITION_STRATEGY_HASH); |
| 2405 | |
| 2406 | /* |
| 2407 | * For hash partitioning we can only perform pruning based on equality |
| 2408 | * clauses to the partition key or IS NULL clauses. We also can only |
| 2409 | * prune if we got values for all keys. |
| 2410 | */ |
| 2411 | if (nvalues + bms_num_members(nullkeys) == partnatts) |
| 2412 | { |
| 2413 | /* |
| 2414 | * If there are any values, they must have come from clauses |
| 2415 | * containing an equality operator compatible with hash partitioning. |
| 2416 | */ |
| 2417 | Assert(opstrategy == HTEqualStrategyNumber || nvalues == 0); |
| 2418 | |
| 2419 | for (i = 0; i < partnatts; i++) |
| 2420 | isnull[i] = bms_is_member(i, nullkeys); |
| 2421 | |
| 2422 | greatest_modulus = get_hash_partition_greatest_modulus(boundinfo); |
| 2423 | rowHash = compute_partition_hash_value(partnatts, partsupfunc, partcollation, |
| 2424 | values, isnull); |
| 2425 | |
| 2426 | if (partindices[rowHash % greatest_modulus] >= 0) |
| 2427 | result->bound_offsets = |
| 2428 | bms_make_singleton(rowHash % greatest_modulus); |
| 2429 | } |
| 2430 | else |
| 2431 | { |
| 2432 | /* Getting here means at least one hash partition exists. */ |
| 2433 | Assert(boundinfo->ndatums > 0); |
| 2434 | result->bound_offsets = bms_add_range(NULL, 0, |
| 2435 | boundinfo->ndatums - 1); |
| 2436 | } |
| 2437 | |
| 2438 | /* |
| 2439 | * There is neither a special hash null partition or the default hash |
| 2440 | * partition. |
| 2441 | */ |
| 2442 | result->scan_null = result->scan_default = false; |
| 2443 | |
| 2444 | return result; |
| 2445 | } |
| 2446 | |
| 2447 | /* |
| 2448 | * get_matching_list_bounds |
| 2449 | * Determine the offsets of list bounds matching the specified value, |
| 2450 | * according to the semantics of the given operator strategy |
| 2451 | * |
| 2452 | * scan_default will be set in the returned struct, if the default partition |
| 2453 | * needs to be scanned, provided one exists at all. scan_null will be set if |
| 2454 | * the special null-accepting partition needs to be scanned. |
| 2455 | * |
| 2456 | * 'opstrategy' if non-zero must be a btree strategy number. |
| 2457 | * |
| 2458 | * 'value' contains the value to use for pruning. |
| 2459 | * |
| 2460 | * 'nvalues', if non-zero, should be exactly 1, because of list partitioning. |
| 2461 | * |
| 2462 | * 'partsupfunc' contains the list partitioning comparison function to be used |
| 2463 | * to perform partition_list_bsearch |
| 2464 | * |
| 2465 | * 'nullkeys' is the set of partition keys that are null. |
| 2466 | */ |
| 2467 | static PruneStepResult * |
| 2468 | get_matching_list_bounds(PartitionPruneContext *context, |
| 2469 | StrategyNumber opstrategy, Datum value, int nvalues, |
| 2470 | FmgrInfo *partsupfunc, Bitmapset *nullkeys) |
| 2471 | { |
| 2472 | PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult)); |
| 2473 | PartitionBoundInfo boundinfo = context->boundinfo; |
| 2474 | int off, |
| 2475 | minoff, |
| 2476 | maxoff; |
| 2477 | bool is_equal; |
| 2478 | bool inclusive = false; |
| 2479 | Oid *partcollation = context->partcollation; |
| 2480 | |
| 2481 | Assert(context->strategy == PARTITION_STRATEGY_LIST); |
| 2482 | Assert(context->partnatts == 1); |
| 2483 | |
| 2484 | result->scan_null = result->scan_default = false; |
| 2485 | |
| 2486 | if (!bms_is_empty(nullkeys)) |
| 2487 | { |
| 2488 | /* |
| 2489 | * Nulls may exist in only one partition - the partition whose |
| 2490 | * accepted set of values includes null or the default partition if |
| 2491 | * the former doesn't exist. |
| 2492 | */ |
| 2493 | if (partition_bound_accepts_nulls(boundinfo)) |
| 2494 | result->scan_null = true; |
| 2495 | else |
| 2496 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2497 | return result; |
| 2498 | } |
| 2499 | |
| 2500 | /* |
| 2501 | * If there are no datums to compare keys with, but there are partitions, |
| 2502 | * just return the default partition if one exists. |
| 2503 | */ |
| 2504 | if (boundinfo->ndatums == 0) |
| 2505 | { |
| 2506 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2507 | return result; |
| 2508 | } |
| 2509 | |
| 2510 | minoff = 0; |
| 2511 | maxoff = boundinfo->ndatums - 1; |
| 2512 | |
| 2513 | /* |
| 2514 | * If there are no values to compare with the datums in boundinfo, it |
| 2515 | * means the caller asked for partitions for all non-null datums. Add |
| 2516 | * indexes of *all* partitions, including the default if any. |
| 2517 | */ |
| 2518 | if (nvalues == 0) |
| 2519 | { |
| 2520 | Assert(boundinfo->ndatums > 0); |
| 2521 | result->bound_offsets = bms_add_range(NULL, 0, |
| 2522 | boundinfo->ndatums - 1); |
| 2523 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2524 | return result; |
| 2525 | } |
| 2526 | |
| 2527 | /* Special case handling of values coming from a <> operator clause. */ |
| 2528 | if (opstrategy == InvalidStrategy) |
| 2529 | { |
| 2530 | /* |
| 2531 | * First match to all bounds. We'll remove any matching datums below. |
| 2532 | */ |
| 2533 | Assert(boundinfo->ndatums > 0); |
| 2534 | result->bound_offsets = bms_add_range(NULL, 0, |
| 2535 | boundinfo->ndatums - 1); |
| 2536 | |
| 2537 | off = partition_list_bsearch(partsupfunc, partcollation, boundinfo, |
| 2538 | value, &is_equal); |
| 2539 | if (off >= 0 && is_equal) |
| 2540 | { |
| 2541 | |
| 2542 | /* We have a match. Remove from the result. */ |
| 2543 | Assert(boundinfo->indexes[off] >= 0); |
| 2544 | result->bound_offsets = bms_del_member(result->bound_offsets, |
| 2545 | off); |
| 2546 | } |
| 2547 | |
| 2548 | /* Always include the default partition if any. */ |
| 2549 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2550 | |
| 2551 | return result; |
| 2552 | } |
| 2553 | |
| 2554 | /* |
| 2555 | * With range queries, always include the default list partition, because |
| 2556 | * list partitions divide the key space in a discontinuous manner, not all |
| 2557 | * values in the given range will have a partition assigned. This may not |
| 2558 | * technically be true for some data types (e.g. integer types), however, |
| 2559 | * we currently lack any sort of infrastructure to provide us with proofs |
| 2560 | * that would allow us to do anything smarter here. |
| 2561 | */ |
| 2562 | if (opstrategy != BTEqualStrategyNumber) |
| 2563 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2564 | |
| 2565 | switch (opstrategy) |
| 2566 | { |
| 2567 | case BTEqualStrategyNumber: |
| 2568 | off = partition_list_bsearch(partsupfunc, |
| 2569 | partcollation, |
| 2570 | boundinfo, value, |
| 2571 | &is_equal); |
| 2572 | if (off >= 0 && is_equal) |
| 2573 | { |
| 2574 | Assert(boundinfo->indexes[off] >= 0); |
| 2575 | result->bound_offsets = bms_make_singleton(off); |
| 2576 | } |
| 2577 | else |
| 2578 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2579 | return result; |
| 2580 | |
| 2581 | case BTGreaterEqualStrategyNumber: |
| 2582 | inclusive = true; |
| 2583 | /* fall through */ |
| 2584 | case BTGreaterStrategyNumber: |
| 2585 | off = partition_list_bsearch(partsupfunc, |
| 2586 | partcollation, |
| 2587 | boundinfo, value, |
| 2588 | &is_equal); |
| 2589 | if (off >= 0) |
| 2590 | { |
| 2591 | /* We don't want the matched datum to be in the result. */ |
| 2592 | if (!is_equal || !inclusive) |
| 2593 | off++; |
| 2594 | } |
| 2595 | else |
| 2596 | { |
| 2597 | /* |
| 2598 | * This case means all partition bounds are greater, which in |
| 2599 | * turn means that all partitions satisfy this key. |
| 2600 | */ |
| 2601 | off = 0; |
| 2602 | } |
| 2603 | |
| 2604 | /* |
| 2605 | * off is greater than the numbers of datums we have partitions |
| 2606 | * for. The only possible partition that could contain a match is |
| 2607 | * the default partition, but we must've set context->scan_default |
| 2608 | * above anyway if one exists. |
| 2609 | */ |
| 2610 | if (off > boundinfo->ndatums - 1) |
| 2611 | return result; |
| 2612 | |
| 2613 | minoff = off; |
| 2614 | break; |
| 2615 | |
| 2616 | case BTLessEqualStrategyNumber: |
| 2617 | inclusive = true; |
| 2618 | /* fall through */ |
| 2619 | case BTLessStrategyNumber: |
| 2620 | off = partition_list_bsearch(partsupfunc, |
| 2621 | partcollation, |
| 2622 | boundinfo, value, |
| 2623 | &is_equal); |
| 2624 | if (off >= 0 && is_equal && !inclusive) |
| 2625 | off--; |
| 2626 | |
| 2627 | /* |
| 2628 | * off is smaller than the datums of all non-default partitions. |
| 2629 | * The only possible partition that could contain a match is the |
| 2630 | * default partition, but we must've set context->scan_default |
| 2631 | * above anyway if one exists. |
| 2632 | */ |
| 2633 | if (off < 0) |
| 2634 | return result; |
| 2635 | |
| 2636 | maxoff = off; |
| 2637 | break; |
| 2638 | |
| 2639 | default: |
| 2640 | elog(ERROR, "invalid strategy number %d" , opstrategy); |
| 2641 | break; |
| 2642 | } |
| 2643 | |
| 2644 | Assert(minoff >= 0 && maxoff >= 0); |
| 2645 | result->bound_offsets = bms_add_range(NULL, minoff, maxoff); |
| 2646 | return result; |
| 2647 | } |
| 2648 | |
| 2649 | |
| 2650 | /* |
| 2651 | * get_matching_range_bounds |
| 2652 | * Determine the offsets of range bounds matching the specified values, |
| 2653 | * according to the semantics of the given operator strategy |
| 2654 | * |
| 2655 | * Each datum whose offset is in result is to be treated as the upper bound of |
| 2656 | * the partition that will contain the desired values. |
| 2657 | * |
| 2658 | * scan_default is set in the returned struct if a default partition exists |
| 2659 | * and we're absolutely certain that it needs to be scanned. We do *not* set |
| 2660 | * it just because values match portions of the key space uncovered by |
| 2661 | * partitions other than default (space which we normally assume to belong to |
| 2662 | * the default partition): the final set of bounds obtained after combining |
| 2663 | * multiple pruning steps might exclude it, so we infer its inclusion |
| 2664 | * elsewhere. |
| 2665 | * |
| 2666 | * 'opstrategy' if non-zero must be a btree strategy number. |
| 2667 | * |
| 2668 | * 'values' contains Datums indexed by the partition key to use for pruning. |
| 2669 | * |
| 2670 | * 'nvalues', number of Datums in 'values' array. Must be <= context->partnatts. |
| 2671 | * |
| 2672 | * 'partsupfunc' contains the range partitioning comparison functions to be |
| 2673 | * used to perform partition_range_datum_bsearch or partition_rbound_datum_cmp |
| 2674 | * using. |
| 2675 | * |
| 2676 | * 'nullkeys' is the set of partition keys that are null. |
| 2677 | */ |
| 2678 | static PruneStepResult * |
| 2679 | get_matching_range_bounds(PartitionPruneContext *context, |
| 2680 | StrategyNumber opstrategy, Datum *values, int nvalues, |
| 2681 | FmgrInfo *partsupfunc, Bitmapset *nullkeys) |
| 2682 | { |
| 2683 | PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult)); |
| 2684 | PartitionBoundInfo boundinfo = context->boundinfo; |
| 2685 | Oid *partcollation = context->partcollation; |
| 2686 | int partnatts = context->partnatts; |
| 2687 | int *partindices = boundinfo->indexes; |
| 2688 | int off, |
| 2689 | minoff, |
| 2690 | maxoff; |
| 2691 | bool is_equal; |
| 2692 | bool inclusive = false; |
| 2693 | |
| 2694 | Assert(context->strategy == PARTITION_STRATEGY_RANGE); |
| 2695 | Assert(nvalues <= partnatts); |
| 2696 | |
| 2697 | result->scan_null = result->scan_default = false; |
| 2698 | |
| 2699 | /* |
| 2700 | * If there are no datums to compare keys with, or if we got an IS NULL |
| 2701 | * clause just return the default partition, if it exists. |
| 2702 | */ |
| 2703 | if (boundinfo->ndatums == 0 || !bms_is_empty(nullkeys)) |
| 2704 | { |
| 2705 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2706 | return result; |
| 2707 | } |
| 2708 | |
| 2709 | minoff = 0; |
| 2710 | maxoff = boundinfo->ndatums; |
| 2711 | |
| 2712 | /* |
| 2713 | * If there are no values to compare with the datums in boundinfo, it |
| 2714 | * means the caller asked for partitions for all non-null datums. Add |
| 2715 | * indexes of *all* partitions, including the default partition if one |
| 2716 | * exists. |
| 2717 | */ |
| 2718 | if (nvalues == 0) |
| 2719 | { |
| 2720 | /* ignore key space not covered by any partitions */ |
| 2721 | if (partindices[minoff] < 0) |
| 2722 | minoff++; |
| 2723 | if (partindices[maxoff] < 0) |
| 2724 | maxoff--; |
| 2725 | |
| 2726 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2727 | Assert(partindices[minoff] >= 0 && |
| 2728 | partindices[maxoff] >= 0); |
| 2729 | result->bound_offsets = bms_add_range(NULL, minoff, maxoff); |
| 2730 | |
| 2731 | return result; |
| 2732 | } |
| 2733 | |
| 2734 | /* |
| 2735 | * If the query does not constrain all key columns, we'll need to scan the |
| 2736 | * default partition, if any. |
| 2737 | */ |
| 2738 | if (nvalues < partnatts) |
| 2739 | result->scan_default = partition_bound_has_default(boundinfo); |
| 2740 | |
| 2741 | switch (opstrategy) |
| 2742 | { |
| 2743 | case BTEqualStrategyNumber: |
| 2744 | /* Look for the smallest bound that is = lookup value. */ |
| 2745 | off = partition_range_datum_bsearch(partsupfunc, |
| 2746 | partcollation, |
| 2747 | boundinfo, |
| 2748 | nvalues, values, |
| 2749 | &is_equal); |
| 2750 | |
| 2751 | if (off >= 0 && is_equal) |
| 2752 | { |
| 2753 | if (nvalues == partnatts) |
| 2754 | { |
| 2755 | /* There can only be zero or one matching partition. */ |
| 2756 | result->bound_offsets = bms_make_singleton(off + 1); |
| 2757 | return result; |
| 2758 | } |
| 2759 | else |
| 2760 | { |
| 2761 | int saved_off = off; |
| 2762 | |
| 2763 | /* |
| 2764 | * Since the lookup value contains only a prefix of keys, |
| 2765 | * we must find other bounds that may also match the |
| 2766 | * prefix. partition_range_datum_bsearch() returns the |
| 2767 | * offset of one of them, find others by checking adjacent |
| 2768 | * bounds. |
| 2769 | */ |
| 2770 | |
| 2771 | /* |
| 2772 | * First find greatest bound that's smaller than the |
| 2773 | * lookup value. |
| 2774 | */ |
| 2775 | while (off >= 1) |
| 2776 | { |
| 2777 | int32 cmpval; |
| 2778 | |
| 2779 | cmpval = |
| 2780 | partition_rbound_datum_cmp(partsupfunc, |
| 2781 | partcollation, |
| 2782 | boundinfo->datums[off - 1], |
| 2783 | boundinfo->kind[off - 1], |
| 2784 | values, nvalues); |
| 2785 | if (cmpval != 0) |
| 2786 | break; |
| 2787 | off--; |
| 2788 | } |
| 2789 | |
| 2790 | Assert(0 == |
| 2791 | partition_rbound_datum_cmp(partsupfunc, |
| 2792 | partcollation, |
| 2793 | boundinfo->datums[off], |
| 2794 | boundinfo->kind[off], |
| 2795 | values, nvalues)); |
| 2796 | |
| 2797 | /* |
| 2798 | * We can treat 'off' as the offset of the smallest bound |
| 2799 | * to be included in the result, if we know it is the |
| 2800 | * upper bound of the partition in which the lookup value |
| 2801 | * could possibly exist. One case it couldn't is if the |
| 2802 | * bound, or precisely the matched portion of its prefix, |
| 2803 | * is not inclusive. |
| 2804 | */ |
| 2805 | if (boundinfo->kind[off][nvalues] == |
| 2806 | PARTITION_RANGE_DATUM_MINVALUE) |
| 2807 | off++; |
| 2808 | |
| 2809 | minoff = off; |
| 2810 | |
| 2811 | /* |
| 2812 | * Now find smallest bound that's greater than the lookup |
| 2813 | * value. |
| 2814 | */ |
| 2815 | off = saved_off; |
| 2816 | while (off < boundinfo->ndatums - 1) |
| 2817 | { |
| 2818 | int32 cmpval; |
| 2819 | |
| 2820 | cmpval = partition_rbound_datum_cmp(partsupfunc, |
| 2821 | partcollation, |
| 2822 | boundinfo->datums[off + 1], |
| 2823 | boundinfo->kind[off + 1], |
| 2824 | values, nvalues); |
| 2825 | if (cmpval != 0) |
| 2826 | break; |
| 2827 | off++; |
| 2828 | } |
| 2829 | |
| 2830 | Assert(0 == |
| 2831 | partition_rbound_datum_cmp(partsupfunc, |
| 2832 | partcollation, |
| 2833 | boundinfo->datums[off], |
| 2834 | boundinfo->kind[off], |
| 2835 | values, nvalues)); |
| 2836 | |
| 2837 | /* |
| 2838 | * off + 1, then would be the offset of the greatest bound |
| 2839 | * to be included in the result. |
| 2840 | */ |
| 2841 | maxoff = off + 1; |
| 2842 | } |
| 2843 | |
| 2844 | Assert(minoff >= 0 && maxoff >= 0); |
| 2845 | result->bound_offsets = bms_add_range(NULL, minoff, maxoff); |
| 2846 | } |
| 2847 | else |
| 2848 | { |
| 2849 | /* |
| 2850 | * The lookup value falls in the range between some bounds in |
| 2851 | * boundinfo. 'off' would be the offset of the greatest bound |
| 2852 | * that is <= lookup value, so add off + 1 to the result |
| 2853 | * instead as the offset of the upper bound of the only |
| 2854 | * partition that may contain the lookup value. If 'off' is |
| 2855 | * -1 indicating that all bounds are greater, then we simply |
| 2856 | * end up adding the first bound's offset, that is, 0. |
| 2857 | */ |
| 2858 | result->bound_offsets = bms_make_singleton(off + 1); |
| 2859 | } |
| 2860 | |
| 2861 | return result; |
| 2862 | |
| 2863 | case BTGreaterEqualStrategyNumber: |
| 2864 | inclusive = true; |
| 2865 | /* fall through */ |
| 2866 | case BTGreaterStrategyNumber: |
| 2867 | |
| 2868 | /* |
| 2869 | * Look for the smallest bound that is > or >= lookup value and |
| 2870 | * set minoff to its offset. |
| 2871 | */ |
| 2872 | off = partition_range_datum_bsearch(partsupfunc, |
| 2873 | partcollation, |
| 2874 | boundinfo, |
| 2875 | nvalues, values, |
| 2876 | &is_equal); |
| 2877 | if (off < 0) |
| 2878 | { |
| 2879 | /* |
| 2880 | * All bounds are greater than the lookup value, so include |
| 2881 | * all of them in the result. |
| 2882 | */ |
| 2883 | minoff = 0; |
| 2884 | } |
| 2885 | else |
| 2886 | { |
| 2887 | if (is_equal && nvalues < partnatts) |
| 2888 | { |
| 2889 | /* |
| 2890 | * Since the lookup value contains only a prefix of keys, |
| 2891 | * we must find other bounds that may also match the |
| 2892 | * prefix. partition_range_datum_bsearch() returns the |
| 2893 | * offset of one of them, find others by checking adjacent |
| 2894 | * bounds. |
| 2895 | * |
| 2896 | * Based on whether the lookup values are inclusive or |
| 2897 | * not, we must either include the indexes of all such |
| 2898 | * bounds in the result (that is, set minoff to the index |
| 2899 | * of smallest such bound) or find the smallest one that's |
| 2900 | * greater than the lookup values and set minoff to that. |
| 2901 | */ |
| 2902 | while (off >= 1 && off < boundinfo->ndatums - 1) |
| 2903 | { |
| 2904 | int32 cmpval; |
| 2905 | int nextoff; |
| 2906 | |
| 2907 | nextoff = inclusive ? off - 1 : off + 1; |
| 2908 | cmpval = |
| 2909 | partition_rbound_datum_cmp(partsupfunc, |
| 2910 | partcollation, |
| 2911 | boundinfo->datums[nextoff], |
| 2912 | boundinfo->kind[nextoff], |
| 2913 | values, nvalues); |
| 2914 | if (cmpval != 0) |
| 2915 | break; |
| 2916 | |
| 2917 | off = nextoff; |
| 2918 | } |
| 2919 | |
| 2920 | Assert(0 == |
| 2921 | partition_rbound_datum_cmp(partsupfunc, |
| 2922 | partcollation, |
| 2923 | boundinfo->datums[off], |
| 2924 | boundinfo->kind[off], |
| 2925 | values, nvalues)); |
| 2926 | |
| 2927 | minoff = inclusive ? off : off + 1; |
| 2928 | } |
| 2929 | else |
| 2930 | { |
| 2931 | |
| 2932 | /* |
| 2933 | * lookup value falls in the range between some bounds in |
| 2934 | * boundinfo. off would be the offset of the greatest |
| 2935 | * bound that is <= lookup value, so add off + 1 to the |
| 2936 | * result instead as the offset of the upper bound of the |
| 2937 | * smallest partition that may contain the lookup value. |
| 2938 | */ |
| 2939 | minoff = off + 1; |
| 2940 | } |
| 2941 | } |
| 2942 | break; |
| 2943 | |
| 2944 | case BTLessEqualStrategyNumber: |
| 2945 | inclusive = true; |
| 2946 | /* fall through */ |
| 2947 | case BTLessStrategyNumber: |
| 2948 | |
| 2949 | /* |
| 2950 | * Look for the greatest bound that is < or <= lookup value and |
| 2951 | * set maxoff to its offset. |
| 2952 | */ |
| 2953 | off = partition_range_datum_bsearch(partsupfunc, |
| 2954 | partcollation, |
| 2955 | boundinfo, |
| 2956 | nvalues, values, |
| 2957 | &is_equal); |
| 2958 | if (off >= 0) |
| 2959 | { |
| 2960 | /* |
| 2961 | * See the comment above. |
| 2962 | */ |
| 2963 | if (is_equal && nvalues < partnatts) |
| 2964 | { |
| 2965 | while (off >= 1 && off < boundinfo->ndatums - 1) |
| 2966 | { |
| 2967 | int32 cmpval; |
| 2968 | int nextoff; |
| 2969 | |
| 2970 | nextoff = inclusive ? off + 1 : off - 1; |
| 2971 | cmpval = partition_rbound_datum_cmp(partsupfunc, |
| 2972 | partcollation, |
| 2973 | boundinfo->datums[nextoff], |
| 2974 | boundinfo->kind[nextoff], |
| 2975 | values, nvalues); |
| 2976 | if (cmpval != 0) |
| 2977 | break; |
| 2978 | |
| 2979 | off = nextoff; |
| 2980 | } |
| 2981 | |
| 2982 | Assert(0 == |
| 2983 | partition_rbound_datum_cmp(partsupfunc, |
| 2984 | partcollation, |
| 2985 | boundinfo->datums[off], |
| 2986 | boundinfo->kind[off], |
| 2987 | values, nvalues)); |
| 2988 | |
| 2989 | maxoff = inclusive ? off + 1 : off; |
| 2990 | } |
| 2991 | |
| 2992 | /* |
| 2993 | * The lookup value falls in the range between some bounds in |
| 2994 | * boundinfo. 'off' would be the offset of the greatest bound |
| 2995 | * that is <= lookup value, so add off + 1 to the result |
| 2996 | * instead as the offset of the upper bound of the greatest |
| 2997 | * partition that may contain lookup value. If the lookup |
| 2998 | * value had exactly matched the bound, but it isn't |
| 2999 | * inclusive, no need add the adjacent partition. |
| 3000 | */ |
| 3001 | else if (!is_equal || inclusive) |
| 3002 | maxoff = off + 1; |
| 3003 | else |
| 3004 | maxoff = off; |
| 3005 | } |
| 3006 | else |
| 3007 | { |
| 3008 | /* |
| 3009 | * 'off' is -1 indicating that all bounds are greater, so just |
| 3010 | * set the first bound's offset as maxoff. |
| 3011 | */ |
| 3012 | maxoff = off + 1; |
| 3013 | } |
| 3014 | break; |
| 3015 | |
| 3016 | default: |
| 3017 | elog(ERROR, "invalid strategy number %d" , opstrategy); |
| 3018 | break; |
| 3019 | } |
| 3020 | |
| 3021 | Assert(minoff >= 0 && minoff <= boundinfo->ndatums); |
| 3022 | Assert(maxoff >= 0 && maxoff <= boundinfo->ndatums); |
| 3023 | |
| 3024 | /* |
| 3025 | * If the smallest partition to return has MINVALUE (negative infinity) as |
| 3026 | * its lower bound, increment it to point to the next finite bound |
| 3027 | * (supposedly its upper bound), so that we don't advertently end up |
| 3028 | * scanning the default partition. |
| 3029 | */ |
| 3030 | if (minoff < boundinfo->ndatums && partindices[minoff] < 0) |
| 3031 | { |
| 3032 | int lastkey = nvalues - 1; |
| 3033 | |
| 3034 | if (boundinfo->kind[minoff][lastkey] == |
| 3035 | PARTITION_RANGE_DATUM_MINVALUE) |
| 3036 | { |
| 3037 | minoff++; |
| 3038 | Assert(boundinfo->indexes[minoff] >= 0); |
| 3039 | } |
| 3040 | } |
| 3041 | |
| 3042 | /* |
| 3043 | * If the previous greatest partition has MAXVALUE (positive infinity) as |
| 3044 | * its upper bound (something only possible to do with multi-column range |
| 3045 | * partitioning), we scan switch to it as the greatest partition to |
| 3046 | * return. Again, so that we don't advertently end up scanning the |
| 3047 | * default partition. |
| 3048 | */ |
| 3049 | if (maxoff >= 1 && partindices[maxoff] < 0) |
| 3050 | { |
| 3051 | int lastkey = nvalues - 1; |
| 3052 | |
| 3053 | if (boundinfo->kind[maxoff - 1][lastkey] == |
| 3054 | PARTITION_RANGE_DATUM_MAXVALUE) |
| 3055 | { |
| 3056 | maxoff--; |
| 3057 | Assert(boundinfo->indexes[maxoff] >= 0); |
| 3058 | } |
| 3059 | } |
| 3060 | |
| 3061 | Assert(minoff >= 0 && maxoff >= 0); |
| 3062 | if (minoff <= maxoff) |
| 3063 | result->bound_offsets = bms_add_range(NULL, minoff, maxoff); |
| 3064 | |
| 3065 | return result; |
| 3066 | } |
| 3067 | |
| 3068 | /* |
| 3069 | * pull_exec_paramids |
| 3070 | * Returns a Bitmapset containing the paramids of all Params with |
| 3071 | * paramkind = PARAM_EXEC in 'expr'. |
| 3072 | */ |
| 3073 | static Bitmapset * |
| 3074 | pull_exec_paramids(Expr *expr) |
| 3075 | { |
| 3076 | Bitmapset *result = NULL; |
| 3077 | |
| 3078 | (void) pull_exec_paramids_walker((Node *) expr, &result); |
| 3079 | |
| 3080 | return result; |
| 3081 | } |
| 3082 | |
| 3083 | static bool |
| 3084 | pull_exec_paramids_walker(Node *node, Bitmapset **context) |
| 3085 | { |
| 3086 | if (node == NULL) |
| 3087 | return false; |
| 3088 | if (IsA(node, Param)) |
| 3089 | { |
| 3090 | Param *param = (Param *) node; |
| 3091 | |
| 3092 | if (param->paramkind == PARAM_EXEC) |
| 3093 | *context = bms_add_member(*context, param->paramid); |
| 3094 | return false; |
| 3095 | } |
| 3096 | return expression_tree_walker(node, pull_exec_paramids_walker, |
| 3097 | (void *) context); |
| 3098 | } |
| 3099 | |
| 3100 | /* |
| 3101 | * get_partkey_exec_paramids |
| 3102 | * Loop through given pruning steps and find out which exec Params |
| 3103 | * are used. |
| 3104 | * |
| 3105 | * Returns a Bitmapset of Param IDs. |
| 3106 | */ |
| 3107 | static Bitmapset * |
| 3108 | get_partkey_exec_paramids(List *steps) |
| 3109 | { |
| 3110 | Bitmapset *execparamids = NULL; |
| 3111 | ListCell *lc; |
| 3112 | |
| 3113 | foreach(lc, steps) |
| 3114 | { |
| 3115 | PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc); |
| 3116 | ListCell *lc2; |
| 3117 | |
| 3118 | if (!IsA(step, PartitionPruneStepOp)) |
| 3119 | continue; |
| 3120 | |
| 3121 | foreach(lc2, step->exprs) |
| 3122 | { |
| 3123 | Expr *expr = lfirst(lc2); |
| 3124 | |
| 3125 | /* We can be quick for plain Consts */ |
| 3126 | if (!IsA(expr, Const)) |
| 3127 | execparamids = bms_join(execparamids, |
| 3128 | pull_exec_paramids(expr)); |
| 3129 | } |
| 3130 | } |
| 3131 | |
| 3132 | return execparamids; |
| 3133 | } |
| 3134 | |
| 3135 | /* |
| 3136 | * perform_pruning_base_step |
| 3137 | * Determines the indexes of datums that satisfy conditions specified in |
| 3138 | * 'opstep'. |
| 3139 | * |
| 3140 | * Result also contains whether special null-accepting and/or default |
| 3141 | * partition need to be scanned. |
| 3142 | */ |
| 3143 | static PruneStepResult * |
| 3144 | perform_pruning_base_step(PartitionPruneContext *context, |
| 3145 | PartitionPruneStepOp *opstep) |
| 3146 | { |
| 3147 | ListCell *lc1, |
| 3148 | *lc2; |
| 3149 | int keyno, |
| 3150 | nvalues; |
| 3151 | Datum values[PARTITION_MAX_KEYS]; |
| 3152 | FmgrInfo *partsupfunc; |
| 3153 | int stateidx; |
| 3154 | |
| 3155 | /* |
| 3156 | * There better be the same number of expressions and compare functions. |
| 3157 | */ |
| 3158 | Assert(list_length(opstep->exprs) == list_length(opstep->cmpfns)); |
| 3159 | |
| 3160 | nvalues = 0; |
| 3161 | lc1 = list_head(opstep->exprs); |
| 3162 | lc2 = list_head(opstep->cmpfns); |
| 3163 | |
| 3164 | /* |
| 3165 | * Generate the partition lookup key that will be used by one of the |
| 3166 | * get_matching_*_bounds functions called below. |
| 3167 | */ |
| 3168 | for (keyno = 0; keyno < context->partnatts; keyno++) |
| 3169 | { |
| 3170 | /* |
| 3171 | * For hash partitioning, it is possible that values of some keys are |
| 3172 | * not provided in operator clauses, but instead the planner found |
| 3173 | * that they appeared in a IS NULL clause. |
| 3174 | */ |
| 3175 | if (bms_is_member(keyno, opstep->nullkeys)) |
| 3176 | continue; |
| 3177 | |
| 3178 | /* |
| 3179 | * For range partitioning, we must only perform pruning with values |
| 3180 | * for either all partition keys or a prefix thereof. |
| 3181 | */ |
| 3182 | if (keyno > nvalues && context->strategy == PARTITION_STRATEGY_RANGE) |
| 3183 | break; |
| 3184 | |
| 3185 | if (lc1 != NULL) |
| 3186 | { |
| 3187 | Expr *expr; |
| 3188 | Datum datum; |
| 3189 | bool isnull; |
| 3190 | Oid cmpfn; |
| 3191 | |
| 3192 | expr = lfirst(lc1); |
| 3193 | stateidx = PruneCxtStateIdx(context->partnatts, |
| 3194 | opstep->step.step_id, keyno); |
| 3195 | partkey_datum_from_expr(context, expr, stateidx, |
| 3196 | &datum, &isnull); |
| 3197 | |
| 3198 | /* |
| 3199 | * Since we only allow strict operators in pruning steps, any |
| 3200 | * null-valued comparison value must cause the comparison to fail, |
| 3201 | * so that no partitions could match. |
| 3202 | */ |
| 3203 | if (isnull) |
| 3204 | { |
| 3205 | PruneStepResult *result; |
| 3206 | |
| 3207 | result = (PruneStepResult *) palloc(sizeof(PruneStepResult)); |
| 3208 | result->bound_offsets = NULL; |
| 3209 | result->scan_default = false; |
| 3210 | result->scan_null = false; |
| 3211 | |
| 3212 | return result; |
| 3213 | } |
| 3214 | |
| 3215 | /* Set up the stepcmpfuncs entry, unless we already did */ |
| 3216 | cmpfn = lfirst_oid(lc2); |
| 3217 | Assert(OidIsValid(cmpfn)); |
| 3218 | if (cmpfn != context->stepcmpfuncs[stateidx].fn_oid) |
| 3219 | { |
| 3220 | /* |
| 3221 | * If the needed support function is the same one cached in |
| 3222 | * the relation's partition key, copy the cached FmgrInfo. |
| 3223 | * Otherwise (i.e., when we have a cross-type comparison), an |
| 3224 | * actual lookup is required. |
| 3225 | */ |
| 3226 | if (cmpfn == context->partsupfunc[keyno].fn_oid) |
| 3227 | fmgr_info_copy(&context->stepcmpfuncs[stateidx], |
| 3228 | &context->partsupfunc[keyno], |
| 3229 | context->ppccontext); |
| 3230 | else |
| 3231 | fmgr_info_cxt(cmpfn, &context->stepcmpfuncs[stateidx], |
| 3232 | context->ppccontext); |
| 3233 | } |
| 3234 | |
| 3235 | values[keyno] = datum; |
| 3236 | nvalues++; |
| 3237 | |
| 3238 | lc1 = lnext(lc1); |
| 3239 | lc2 = lnext(lc2); |
| 3240 | } |
| 3241 | } |
| 3242 | |
| 3243 | /* |
| 3244 | * Point partsupfunc to the entry for the 0th key of this step; the |
| 3245 | * additional support functions, if any, follow consecutively. |
| 3246 | */ |
| 3247 | stateidx = PruneCxtStateIdx(context->partnatts, opstep->step.step_id, 0); |
| 3248 | partsupfunc = &context->stepcmpfuncs[stateidx]; |
| 3249 | |
| 3250 | switch (context->strategy) |
| 3251 | { |
| 3252 | case PARTITION_STRATEGY_HASH: |
| 3253 | return get_matching_hash_bounds(context, |
| 3254 | opstep->opstrategy, |
| 3255 | values, nvalues, |
| 3256 | partsupfunc, |
| 3257 | opstep->nullkeys); |
| 3258 | |
| 3259 | case PARTITION_STRATEGY_LIST: |
| 3260 | return get_matching_list_bounds(context, |
| 3261 | opstep->opstrategy, |
| 3262 | values[0], nvalues, |
| 3263 | &partsupfunc[0], |
| 3264 | opstep->nullkeys); |
| 3265 | |
| 3266 | case PARTITION_STRATEGY_RANGE: |
| 3267 | return get_matching_range_bounds(context, |
| 3268 | opstep->opstrategy, |
| 3269 | values, nvalues, |
| 3270 | partsupfunc, |
| 3271 | opstep->nullkeys); |
| 3272 | |
| 3273 | default: |
| 3274 | elog(ERROR, "unexpected partition strategy: %d" , |
| 3275 | (int) context->strategy); |
| 3276 | break; |
| 3277 | } |
| 3278 | |
| 3279 | return NULL; |
| 3280 | } |
| 3281 | |
| 3282 | /* |
| 3283 | * perform_pruning_combine_step |
| 3284 | * Determines the indexes of datums obtained by combining those given |
| 3285 | * by the steps identified by cstep->source_stepids using the specified |
| 3286 | * combination method |
| 3287 | * |
| 3288 | * Since cstep may refer to the result of earlier steps, we also receive |
| 3289 | * step_results here. |
| 3290 | */ |
| 3291 | static PruneStepResult * |
| 3292 | perform_pruning_combine_step(PartitionPruneContext *context, |
| 3293 | PartitionPruneStepCombine *cstep, |
| 3294 | PruneStepResult **step_results) |
| 3295 | { |
| 3296 | ListCell *lc1; |
| 3297 | PruneStepResult *result = NULL; |
| 3298 | bool firststep; |
| 3299 | |
| 3300 | /* |
| 3301 | * A combine step without any source steps is an indication to not perform |
| 3302 | * any partition pruning. Return all datum indexes in that case. |
| 3303 | */ |
| 3304 | result = (PruneStepResult *) palloc0(sizeof(PruneStepResult)); |
| 3305 | if (list_length(cstep->source_stepids) == 0) |
| 3306 | { |
| 3307 | PartitionBoundInfo boundinfo = context->boundinfo; |
| 3308 | int rangemax; |
| 3309 | |
| 3310 | /* |
| 3311 | * Add all valid offsets into the boundinfo->indexes array. For range |
| 3312 | * partitioning, boundinfo->indexes contains (boundinfo->ndatums + 1) |
| 3313 | * valid entries; otherwise there are boundinfo->ndatums. |
| 3314 | */ |
| 3315 | rangemax = context->strategy == PARTITION_STRATEGY_RANGE ? |
| 3316 | boundinfo->ndatums : boundinfo->ndatums - 1; |
| 3317 | |
| 3318 | result->bound_offsets = |
| 3319 | bms_add_range(result->bound_offsets, 0, rangemax); |
| 3320 | result->scan_default = partition_bound_has_default(boundinfo); |
| 3321 | result->scan_null = partition_bound_accepts_nulls(boundinfo); |
| 3322 | return result; |
| 3323 | } |
| 3324 | |
| 3325 | switch (cstep->combineOp) |
| 3326 | { |
| 3327 | case PARTPRUNE_COMBINE_UNION: |
| 3328 | foreach(lc1, cstep->source_stepids) |
| 3329 | { |
| 3330 | int step_id = lfirst_int(lc1); |
| 3331 | PruneStepResult *step_result; |
| 3332 | |
| 3333 | /* |
| 3334 | * step_results[step_id] must contain a valid result, which is |
| 3335 | * confirmed by the fact that cstep's step_id is greater than |
| 3336 | * step_id and the fact that results of the individual steps |
| 3337 | * are evaluated in sequence of their step_ids. |
| 3338 | */ |
| 3339 | if (step_id >= cstep->step.step_id) |
| 3340 | elog(ERROR, "invalid pruning combine step argument" ); |
| 3341 | step_result = step_results[step_id]; |
| 3342 | Assert(step_result != NULL); |
| 3343 | |
| 3344 | /* Record any additional datum indexes from this step */ |
| 3345 | result->bound_offsets = bms_add_members(result->bound_offsets, |
| 3346 | step_result->bound_offsets); |
| 3347 | |
| 3348 | /* Update whether to scan null and default partitions. */ |
| 3349 | if (!result->scan_null) |
| 3350 | result->scan_null = step_result->scan_null; |
| 3351 | if (!result->scan_default) |
| 3352 | result->scan_default = step_result->scan_default; |
| 3353 | } |
| 3354 | break; |
| 3355 | |
| 3356 | case PARTPRUNE_COMBINE_INTERSECT: |
| 3357 | firststep = true; |
| 3358 | foreach(lc1, cstep->source_stepids) |
| 3359 | { |
| 3360 | int step_id = lfirst_int(lc1); |
| 3361 | PruneStepResult *step_result; |
| 3362 | |
| 3363 | if (step_id >= cstep->step.step_id) |
| 3364 | elog(ERROR, "invalid pruning combine step argument" ); |
| 3365 | step_result = step_results[step_id]; |
| 3366 | Assert(step_result != NULL); |
| 3367 | |
| 3368 | if (firststep) |
| 3369 | { |
| 3370 | /* Copy step's result the first time. */ |
| 3371 | result->bound_offsets = |
| 3372 | bms_copy(step_result->bound_offsets); |
| 3373 | result->scan_null = step_result->scan_null; |
| 3374 | result->scan_default = step_result->scan_default; |
| 3375 | firststep = false; |
| 3376 | } |
| 3377 | else |
| 3378 | { |
| 3379 | /* Record datum indexes common to both steps */ |
| 3380 | result->bound_offsets = |
| 3381 | bms_int_members(result->bound_offsets, |
| 3382 | step_result->bound_offsets); |
| 3383 | |
| 3384 | /* Update whether to scan null and default partitions. */ |
| 3385 | if (result->scan_null) |
| 3386 | result->scan_null = step_result->scan_null; |
| 3387 | if (result->scan_default) |
| 3388 | result->scan_default = step_result->scan_default; |
| 3389 | } |
| 3390 | } |
| 3391 | break; |
| 3392 | } |
| 3393 | |
| 3394 | return result; |
| 3395 | } |
| 3396 | |
| 3397 | /* |
| 3398 | * match_boolean_partition_clause |
| 3399 | * |
| 3400 | * If we're able to match the clause to the partition key as specially-shaped |
| 3401 | * boolean clause, set *outconst to a Const containing a true or false value |
| 3402 | * and return PARTCLAUSE_MATCH_CLAUSE. Returns PARTCLAUSE_UNSUPPORTED if the |
| 3403 | * clause is not a boolean clause or if the boolean clause is unsuitable for |
| 3404 | * partition pruning. Returns PARTCLAUSE_NOMATCH if it's a bool quals but |
| 3405 | * just does not match this partition key. *outconst is set to NULL in the |
| 3406 | * latter two cases. |
| 3407 | */ |
| 3408 | static PartClauseMatchStatus |
| 3409 | match_boolean_partition_clause(Oid partopfamily, Expr *clause, Expr *partkey, |
| 3410 | Expr **outconst) |
| 3411 | { |
| 3412 | Expr *leftop; |
| 3413 | |
| 3414 | *outconst = NULL; |
| 3415 | |
| 3416 | if (!IsBooleanOpfamily(partopfamily)) |
| 3417 | return PARTCLAUSE_UNSUPPORTED; |
| 3418 | |
| 3419 | if (IsA(clause, BooleanTest)) |
| 3420 | { |
| 3421 | BooleanTest *btest = (BooleanTest *) clause; |
| 3422 | |
| 3423 | /* Only IS [NOT] TRUE/FALSE are any good to us */ |
| 3424 | if (btest->booltesttype == IS_UNKNOWN || |
| 3425 | btest->booltesttype == IS_NOT_UNKNOWN) |
| 3426 | return PARTCLAUSE_UNSUPPORTED; |
| 3427 | |
| 3428 | leftop = btest->arg; |
| 3429 | if (IsA(leftop, RelabelType)) |
| 3430 | leftop = ((RelabelType *) leftop)->arg; |
| 3431 | |
| 3432 | if (equal(leftop, partkey)) |
| 3433 | *outconst = (btest->booltesttype == IS_TRUE || |
| 3434 | btest->booltesttype == IS_NOT_FALSE) |
| 3435 | ? (Expr *) makeBoolConst(true, false) |
| 3436 | : (Expr *) makeBoolConst(false, false); |
| 3437 | |
| 3438 | if (*outconst) |
| 3439 | return PARTCLAUSE_MATCH_CLAUSE; |
| 3440 | } |
| 3441 | else |
| 3442 | { |
| 3443 | bool is_not_clause = is_notclause(clause); |
| 3444 | |
| 3445 | leftop = is_not_clause ? get_notclausearg(clause) : clause; |
| 3446 | |
| 3447 | if (IsA(leftop, RelabelType)) |
| 3448 | leftop = ((RelabelType *) leftop)->arg; |
| 3449 | |
| 3450 | /* Compare to the partition key, and make up a clause ... */ |
| 3451 | if (equal(leftop, partkey)) |
| 3452 | *outconst = is_not_clause ? |
| 3453 | (Expr *) makeBoolConst(false, false) : |
| 3454 | (Expr *) makeBoolConst(true, false); |
| 3455 | else if (equal(negate_clause((Node *) leftop), partkey)) |
| 3456 | *outconst = (Expr *) makeBoolConst(false, false); |
| 3457 | |
| 3458 | if (*outconst) |
| 3459 | return PARTCLAUSE_MATCH_CLAUSE; |
| 3460 | } |
| 3461 | |
| 3462 | return PARTCLAUSE_NOMATCH; |
| 3463 | } |
| 3464 | |
| 3465 | /* |
| 3466 | * partkey_datum_from_expr |
| 3467 | * Evaluate expression for potential partition pruning |
| 3468 | * |
| 3469 | * Evaluate 'expr'; set *value and *isnull to the resulting Datum and nullflag. |
| 3470 | * |
| 3471 | * If expr isn't a Const, its ExprState is in stateidx of the context |
| 3472 | * exprstate array. |
| 3473 | * |
| 3474 | * Note that the evaluated result may be in the per-tuple memory context of |
| 3475 | * context->planstate->ps_ExprContext, and we may have leaked other memory |
| 3476 | * there too. This memory must be recovered by resetting that ExprContext |
| 3477 | * after we're done with the pruning operation (see execPartition.c). |
| 3478 | */ |
| 3479 | static void |
| 3480 | partkey_datum_from_expr(PartitionPruneContext *context, |
| 3481 | Expr *expr, int stateidx, |
| 3482 | Datum *value, bool *isnull) |
| 3483 | { |
| 3484 | if (IsA(expr, Const)) |
| 3485 | { |
| 3486 | /* We can always determine the value of a constant */ |
| 3487 | Const *con = (Const *) expr; |
| 3488 | |
| 3489 | *value = con->constvalue; |
| 3490 | *isnull = con->constisnull; |
| 3491 | } |
| 3492 | else |
| 3493 | { |
| 3494 | ExprState *exprstate; |
| 3495 | ExprContext *ectx; |
| 3496 | |
| 3497 | /* |
| 3498 | * We should never see a non-Const in a step unless we're running in |
| 3499 | * the executor. |
| 3500 | */ |
| 3501 | Assert(context->planstate != NULL); |
| 3502 | |
| 3503 | exprstate = context->exprstates[stateidx]; |
| 3504 | ectx = context->planstate->ps_ExprContext; |
| 3505 | *value = ExecEvalExprSwitchContext(exprstate, ectx, isnull); |
| 3506 | } |
| 3507 | } |
| 3508 | |