1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * walsender.c |
4 | * |
5 | * The WAL sender process (walsender) is new as of Postgres 9.0. It takes |
6 | * care of sending XLOG from the primary server to a single recipient. |
7 | * (Note that there can be more than one walsender process concurrently.) |
8 | * It is started by the postmaster when the walreceiver of a standby server |
9 | * connects to the primary server and requests XLOG streaming replication. |
10 | * |
11 | * A walsender is similar to a regular backend, ie. there is a one-to-one |
12 | * relationship between a connection and a walsender process, but instead |
13 | * of processing SQL queries, it understands a small set of special |
14 | * replication-mode commands. The START_REPLICATION command begins streaming |
15 | * WAL to the client. While streaming, the walsender keeps reading XLOG |
16 | * records from the disk and sends them to the standby server over the |
17 | * COPY protocol, until either side ends the replication by exiting COPY |
18 | * mode (or until the connection is closed). |
19 | * |
20 | * Normal termination is by SIGTERM, which instructs the walsender to |
21 | * close the connection and exit(0) at the next convenient moment. Emergency |
22 | * termination is by SIGQUIT; like any backend, the walsender will simply |
23 | * abort and exit on SIGQUIT. A close of the connection and a FATAL error |
24 | * are treated as not a crash but approximately normal termination; |
25 | * the walsender will exit quickly without sending any more XLOG records. |
26 | * |
27 | * If the server is shut down, checkpointer sends us |
28 | * PROCSIG_WALSND_INIT_STOPPING after all regular backends have exited. If |
29 | * the backend is idle or runs an SQL query this causes the backend to |
30 | * shutdown, if logical replication is in progress all existing WAL records |
31 | * are processed followed by a shutdown. Otherwise this causes the walsender |
32 | * to switch to the "stopping" state. In this state, the walsender will reject |
33 | * any further replication commands. The checkpointer begins the shutdown |
34 | * checkpoint once all walsenders are confirmed as stopping. When the shutdown |
35 | * checkpoint finishes, the postmaster sends us SIGUSR2. This instructs |
36 | * walsender to send any outstanding WAL, including the shutdown checkpoint |
37 | * record, wait for it to be replicated to the standby, and then exit. |
38 | * |
39 | * |
40 | * Portions Copyright (c) 2010-2019, PostgreSQL Global Development Group |
41 | * |
42 | * IDENTIFICATION |
43 | * src/backend/replication/walsender.c |
44 | * |
45 | *------------------------------------------------------------------------- |
46 | */ |
47 | #include "postgres.h" |
48 | |
49 | #include <signal.h> |
50 | #include <unistd.h> |
51 | |
52 | #include "access/printtup.h" |
53 | #include "access/timeline.h" |
54 | #include "access/transam.h" |
55 | #include "access/xact.h" |
56 | #include "access/xlog_internal.h" |
57 | #include "access/xlogutils.h" |
58 | |
59 | #include "catalog/pg_authid.h" |
60 | #include "catalog/pg_type.h" |
61 | #include "commands/dbcommands.h" |
62 | #include "commands/defrem.h" |
63 | #include "funcapi.h" |
64 | #include "libpq/libpq.h" |
65 | #include "libpq/pqformat.h" |
66 | #include "miscadmin.h" |
67 | #include "nodes/replnodes.h" |
68 | #include "pgstat.h" |
69 | #include "replication/basebackup.h" |
70 | #include "replication/decode.h" |
71 | #include "replication/logical.h" |
72 | #include "replication/logicalfuncs.h" |
73 | #include "replication/slot.h" |
74 | #include "replication/snapbuild.h" |
75 | #include "replication/syncrep.h" |
76 | #include "replication/walreceiver.h" |
77 | #include "replication/walsender.h" |
78 | #include "replication/walsender_private.h" |
79 | #include "storage/condition_variable.h" |
80 | #include "storage/fd.h" |
81 | #include "storage/ipc.h" |
82 | #include "storage/pmsignal.h" |
83 | #include "storage/proc.h" |
84 | #include "storage/procarray.h" |
85 | #include "tcop/dest.h" |
86 | #include "tcop/tcopprot.h" |
87 | #include "utils/builtins.h" |
88 | #include "utils/guc.h" |
89 | #include "utils/memutils.h" |
90 | #include "utils/pg_lsn.h" |
91 | #include "utils/portal.h" |
92 | #include "utils/ps_status.h" |
93 | #include "utils/timeout.h" |
94 | #include "utils/timestamp.h" |
95 | |
96 | /* |
97 | * Maximum data payload in a WAL data message. Must be >= XLOG_BLCKSZ. |
98 | * |
99 | * We don't have a good idea of what a good value would be; there's some |
100 | * overhead per message in both walsender and walreceiver, but on the other |
101 | * hand sending large batches makes walsender less responsive to signals |
102 | * because signals are checked only between messages. 128kB (with |
103 | * default 8k blocks) seems like a reasonable guess for now. |
104 | */ |
105 | #define MAX_SEND_SIZE (XLOG_BLCKSZ * 16) |
106 | |
107 | /* Array of WalSnds in shared memory */ |
108 | WalSndCtlData *WalSndCtl = NULL; |
109 | |
110 | /* My slot in the shared memory array */ |
111 | WalSnd *MyWalSnd = NULL; |
112 | |
113 | /* Global state */ |
114 | bool am_walsender = false; /* Am I a walsender process? */ |
115 | bool am_cascading_walsender = false; /* Am I cascading WAL to another |
116 | * standby? */ |
117 | bool am_db_walsender = false; /* Connected to a database? */ |
118 | |
119 | /* User-settable parameters for walsender */ |
120 | int max_wal_senders = 0; /* the maximum number of concurrent |
121 | * walsenders */ |
122 | int wal_sender_timeout = 60 * 1000; /* maximum time to send one WAL |
123 | * data message */ |
124 | bool log_replication_commands = false; |
125 | |
126 | /* |
127 | * State for WalSndWakeupRequest |
128 | */ |
129 | bool wake_wal_senders = false; |
130 | |
131 | /* |
132 | * These variables are used similarly to openLogFile/SegNo/Off, |
133 | * but for walsender to read the XLOG. |
134 | */ |
135 | static int sendFile = -1; |
136 | static XLogSegNo sendSegNo = 0; |
137 | static uint32 sendOff = 0; |
138 | |
139 | /* Timeline ID of the currently open file */ |
140 | static TimeLineID curFileTimeLine = 0; |
141 | |
142 | /* |
143 | * These variables keep track of the state of the timeline we're currently |
144 | * sending. sendTimeLine identifies the timeline. If sendTimeLineIsHistoric, |
145 | * the timeline is not the latest timeline on this server, and the server's |
146 | * history forked off from that timeline at sendTimeLineValidUpto. |
147 | */ |
148 | static TimeLineID sendTimeLine = 0; |
149 | static TimeLineID sendTimeLineNextTLI = 0; |
150 | static bool sendTimeLineIsHistoric = false; |
151 | static XLogRecPtr sendTimeLineValidUpto = InvalidXLogRecPtr; |
152 | |
153 | /* |
154 | * How far have we sent WAL already? This is also advertised in |
155 | * MyWalSnd->sentPtr. (Actually, this is the next WAL location to send.) |
156 | */ |
157 | static XLogRecPtr sentPtr = 0; |
158 | |
159 | /* Buffers for constructing outgoing messages and processing reply messages. */ |
160 | static StringInfoData output_message; |
161 | static StringInfoData reply_message; |
162 | static StringInfoData tmpbuf; |
163 | |
164 | /* Timestamp of last ProcessRepliesIfAny(). */ |
165 | static TimestampTz last_processing = 0; |
166 | |
167 | /* |
168 | * Timestamp of last ProcessRepliesIfAny() that saw a reply from the |
169 | * standby. Set to 0 if wal_sender_timeout doesn't need to be active. |
170 | */ |
171 | static TimestampTz last_reply_timestamp = 0; |
172 | |
173 | /* Have we sent a heartbeat message asking for reply, since last reply? */ |
174 | static bool waiting_for_ping_response = false; |
175 | |
176 | /* |
177 | * While streaming WAL in Copy mode, streamingDoneSending is set to true |
178 | * after we have sent CopyDone. We should not send any more CopyData messages |
179 | * after that. streamingDoneReceiving is set to true when we receive CopyDone |
180 | * from the other end. When both become true, it's time to exit Copy mode. |
181 | */ |
182 | static bool streamingDoneSending; |
183 | static bool streamingDoneReceiving; |
184 | |
185 | /* Are we there yet? */ |
186 | static bool WalSndCaughtUp = false; |
187 | |
188 | /* Flags set by signal handlers for later service in main loop */ |
189 | static volatile sig_atomic_t got_SIGUSR2 = false; |
190 | static volatile sig_atomic_t got_STOPPING = false; |
191 | |
192 | /* |
193 | * This is set while we are streaming. When not set |
194 | * PROCSIG_WALSND_INIT_STOPPING signal will be handled like SIGTERM. When set, |
195 | * the main loop is responsible for checking got_STOPPING and terminating when |
196 | * it's set (after streaming any remaining WAL). |
197 | */ |
198 | static volatile sig_atomic_t replication_active = false; |
199 | |
200 | static LogicalDecodingContext *logical_decoding_ctx = NULL; |
201 | static XLogRecPtr logical_startptr = InvalidXLogRecPtr; |
202 | |
203 | /* A sample associating a WAL location with the time it was written. */ |
204 | typedef struct |
205 | { |
206 | XLogRecPtr lsn; |
207 | TimestampTz time; |
208 | } WalTimeSample; |
209 | |
210 | /* The size of our buffer of time samples. */ |
211 | #define LAG_TRACKER_BUFFER_SIZE 8192 |
212 | |
213 | /* A mechanism for tracking replication lag. */ |
214 | typedef struct |
215 | { |
216 | XLogRecPtr last_lsn; |
217 | WalTimeSample buffer[LAG_TRACKER_BUFFER_SIZE]; |
218 | int write_head; |
219 | int read_heads[NUM_SYNC_REP_WAIT_MODE]; |
220 | WalTimeSample last_read[NUM_SYNC_REP_WAIT_MODE]; |
221 | } LagTracker; |
222 | |
223 | static LagTracker *lag_tracker; |
224 | |
225 | /* Signal handlers */ |
226 | static void WalSndLastCycleHandler(SIGNAL_ARGS); |
227 | |
228 | /* Prototypes for private functions */ |
229 | typedef void (*WalSndSendDataCallback) (void); |
230 | static void WalSndLoop(WalSndSendDataCallback send_data); |
231 | static void InitWalSenderSlot(void); |
232 | static void WalSndKill(int code, Datum arg); |
233 | static void WalSndShutdown(void) pg_attribute_noreturn(); |
234 | static void XLogSendPhysical(void); |
235 | static void XLogSendLogical(void); |
236 | static void WalSndDone(WalSndSendDataCallback send_data); |
237 | static XLogRecPtr GetStandbyFlushRecPtr(void); |
238 | static void IdentifySystem(void); |
239 | static void CreateReplicationSlot(CreateReplicationSlotCmd *cmd); |
240 | static void DropReplicationSlot(DropReplicationSlotCmd *cmd); |
241 | static void StartReplication(StartReplicationCmd *cmd); |
242 | static void StartLogicalReplication(StartReplicationCmd *cmd); |
243 | static void ProcessStandbyMessage(void); |
244 | static void ProcessStandbyReplyMessage(void); |
245 | static void ProcessStandbyHSFeedbackMessage(void); |
246 | static void ProcessRepliesIfAny(void); |
247 | static void WalSndKeepalive(bool requestReply); |
248 | static void WalSndKeepaliveIfNecessary(void); |
249 | static void WalSndCheckTimeOut(void); |
250 | static long WalSndComputeSleeptime(TimestampTz now); |
251 | static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write); |
252 | static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write); |
253 | static void WalSndUpdateProgress(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid); |
254 | static XLogRecPtr WalSndWaitForWal(XLogRecPtr loc); |
255 | static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time); |
256 | static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now); |
257 | static bool TransactionIdInRecentPast(TransactionId xid, uint32 epoch); |
258 | |
259 | static void XLogRead(char *buf, XLogRecPtr startptr, Size count); |
260 | |
261 | |
262 | /* Initialize walsender process before entering the main command loop */ |
263 | void |
264 | InitWalSender(void) |
265 | { |
266 | am_cascading_walsender = RecoveryInProgress(); |
267 | |
268 | /* Create a per-walsender data structure in shared memory */ |
269 | InitWalSenderSlot(); |
270 | |
271 | /* |
272 | * We don't currently need any ResourceOwner in a walsender process, but |
273 | * if we did, we could call CreateAuxProcessResourceOwner here. |
274 | */ |
275 | |
276 | /* |
277 | * Let postmaster know that we're a WAL sender. Once we've declared us as |
278 | * a WAL sender process, postmaster will let us outlive the bgwriter and |
279 | * kill us last in the shutdown sequence, so we get a chance to stream all |
280 | * remaining WAL at shutdown, including the shutdown checkpoint. Note that |
281 | * there's no going back, and we mustn't write any WAL records after this. |
282 | */ |
283 | MarkPostmasterChildWalSender(); |
284 | SendPostmasterSignal(PMSIGNAL_ADVANCE_STATE_MACHINE); |
285 | |
286 | /* Initialize empty timestamp buffer for lag tracking. */ |
287 | lag_tracker = MemoryContextAllocZero(TopMemoryContext, sizeof(LagTracker)); |
288 | } |
289 | |
290 | /* |
291 | * Clean up after an error. |
292 | * |
293 | * WAL sender processes don't use transactions like regular backends do. |
294 | * This function does any cleanup required after an error in a WAL sender |
295 | * process, similar to what transaction abort does in a regular backend. |
296 | */ |
297 | void |
298 | WalSndErrorCleanup(void) |
299 | { |
300 | LWLockReleaseAll(); |
301 | ConditionVariableCancelSleep(); |
302 | pgstat_report_wait_end(); |
303 | |
304 | if (sendFile >= 0) |
305 | { |
306 | close(sendFile); |
307 | sendFile = -1; |
308 | } |
309 | |
310 | if (MyReplicationSlot != NULL) |
311 | ReplicationSlotRelease(); |
312 | |
313 | ReplicationSlotCleanup(); |
314 | |
315 | replication_active = false; |
316 | |
317 | if (got_STOPPING || got_SIGUSR2) |
318 | proc_exit(0); |
319 | |
320 | /* Revert back to startup state */ |
321 | WalSndSetState(WALSNDSTATE_STARTUP); |
322 | } |
323 | |
324 | /* |
325 | * Handle a client's connection abort in an orderly manner. |
326 | */ |
327 | static void |
328 | WalSndShutdown(void) |
329 | { |
330 | /* |
331 | * Reset whereToSendOutput to prevent ereport from attempting to send any |
332 | * more messages to the standby. |
333 | */ |
334 | if (whereToSendOutput == DestRemote) |
335 | whereToSendOutput = DestNone; |
336 | |
337 | proc_exit(0); |
338 | abort(); /* keep the compiler quiet */ |
339 | } |
340 | |
341 | /* |
342 | * Handle the IDENTIFY_SYSTEM command. |
343 | */ |
344 | static void |
345 | IdentifySystem(void) |
346 | { |
347 | char sysid[32]; |
348 | char xloc[MAXFNAMELEN]; |
349 | XLogRecPtr logptr; |
350 | char *dbname = NULL; |
351 | DestReceiver *dest; |
352 | TupOutputState *tstate; |
353 | TupleDesc tupdesc; |
354 | Datum values[4]; |
355 | bool nulls[4]; |
356 | |
357 | /* |
358 | * Reply with a result set with one row, four columns. First col is system |
359 | * ID, second is timeline ID, third is current xlog location and the |
360 | * fourth contains the database name if we are connected to one. |
361 | */ |
362 | |
363 | snprintf(sysid, sizeof(sysid), UINT64_FORMAT, |
364 | GetSystemIdentifier()); |
365 | |
366 | am_cascading_walsender = RecoveryInProgress(); |
367 | if (am_cascading_walsender) |
368 | { |
369 | /* this also updates ThisTimeLineID */ |
370 | logptr = GetStandbyFlushRecPtr(); |
371 | } |
372 | else |
373 | logptr = GetFlushRecPtr(); |
374 | |
375 | snprintf(xloc, sizeof(xloc), "%X/%X" , (uint32) (logptr >> 32), (uint32) logptr); |
376 | |
377 | if (MyDatabaseId != InvalidOid) |
378 | { |
379 | MemoryContext cur = CurrentMemoryContext; |
380 | |
381 | /* syscache access needs a transaction env. */ |
382 | StartTransactionCommand(); |
383 | /* make dbname live outside TX context */ |
384 | MemoryContextSwitchTo(cur); |
385 | dbname = get_database_name(MyDatabaseId); |
386 | CommitTransactionCommand(); |
387 | /* CommitTransactionCommand switches to TopMemoryContext */ |
388 | MemoryContextSwitchTo(cur); |
389 | } |
390 | |
391 | dest = CreateDestReceiver(DestRemoteSimple); |
392 | MemSet(nulls, false, sizeof(nulls)); |
393 | |
394 | /* need a tuple descriptor representing four columns */ |
395 | tupdesc = CreateTemplateTupleDesc(4); |
396 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "systemid" , |
397 | TEXTOID, -1, 0); |
398 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "timeline" , |
399 | INT4OID, -1, 0); |
400 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "xlogpos" , |
401 | TEXTOID, -1, 0); |
402 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "dbname" , |
403 | TEXTOID, -1, 0); |
404 | |
405 | /* prepare for projection of tuples */ |
406 | tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual); |
407 | |
408 | /* column 1: system identifier */ |
409 | values[0] = CStringGetTextDatum(sysid); |
410 | |
411 | /* column 2: timeline */ |
412 | values[1] = Int32GetDatum(ThisTimeLineID); |
413 | |
414 | /* column 3: wal location */ |
415 | values[2] = CStringGetTextDatum(xloc); |
416 | |
417 | /* column 4: database name, or NULL if none */ |
418 | if (dbname) |
419 | values[3] = CStringGetTextDatum(dbname); |
420 | else |
421 | nulls[3] = true; |
422 | |
423 | /* send it to dest */ |
424 | do_tup_output(tstate, values, nulls); |
425 | |
426 | end_tup_output(tstate); |
427 | } |
428 | |
429 | |
430 | /* |
431 | * Handle TIMELINE_HISTORY command. |
432 | */ |
433 | static void |
434 | SendTimeLineHistory(TimeLineHistoryCmd *cmd) |
435 | { |
436 | StringInfoData buf; |
437 | char histfname[MAXFNAMELEN]; |
438 | char path[MAXPGPATH]; |
439 | int fd; |
440 | off_t histfilelen; |
441 | off_t bytesleft; |
442 | Size len; |
443 | |
444 | /* |
445 | * Reply with a result set with one row, and two columns. The first col is |
446 | * the name of the history file, 2nd is the contents. |
447 | */ |
448 | |
449 | TLHistoryFileName(histfname, cmd->timeline); |
450 | TLHistoryFilePath(path, cmd->timeline); |
451 | |
452 | /* Send a RowDescription message */ |
453 | pq_beginmessage(&buf, 'T'); |
454 | pq_sendint16(&buf, 2); /* 2 fields */ |
455 | |
456 | /* first field */ |
457 | pq_sendstring(&buf, "filename" ); /* col name */ |
458 | pq_sendint32(&buf, 0); /* table oid */ |
459 | pq_sendint16(&buf, 0); /* attnum */ |
460 | pq_sendint32(&buf, TEXTOID); /* type oid */ |
461 | pq_sendint16(&buf, -1); /* typlen */ |
462 | pq_sendint32(&buf, 0); /* typmod */ |
463 | pq_sendint16(&buf, 0); /* format code */ |
464 | |
465 | /* second field */ |
466 | pq_sendstring(&buf, "content" ); /* col name */ |
467 | pq_sendint32(&buf, 0); /* table oid */ |
468 | pq_sendint16(&buf, 0); /* attnum */ |
469 | pq_sendint32(&buf, BYTEAOID); /* type oid */ |
470 | pq_sendint16(&buf, -1); /* typlen */ |
471 | pq_sendint32(&buf, 0); /* typmod */ |
472 | pq_sendint16(&buf, 0); /* format code */ |
473 | pq_endmessage(&buf); |
474 | |
475 | /* Send a DataRow message */ |
476 | pq_beginmessage(&buf, 'D'); |
477 | pq_sendint16(&buf, 2); /* # of columns */ |
478 | len = strlen(histfname); |
479 | pq_sendint32(&buf, len); /* col1 len */ |
480 | pq_sendbytes(&buf, histfname, len); |
481 | |
482 | fd = OpenTransientFile(path, O_RDONLY | PG_BINARY); |
483 | if (fd < 0) |
484 | ereport(ERROR, |
485 | (errcode_for_file_access(), |
486 | errmsg("could not open file \"%s\": %m" , path))); |
487 | |
488 | /* Determine file length and send it to client */ |
489 | histfilelen = lseek(fd, 0, SEEK_END); |
490 | if (histfilelen < 0) |
491 | ereport(ERROR, |
492 | (errcode_for_file_access(), |
493 | errmsg("could not seek to end of file \"%s\": %m" , path))); |
494 | if (lseek(fd, 0, SEEK_SET) != 0) |
495 | ereport(ERROR, |
496 | (errcode_for_file_access(), |
497 | errmsg("could not seek to beginning of file \"%s\": %m" , path))); |
498 | |
499 | pq_sendint32(&buf, histfilelen); /* col2 len */ |
500 | |
501 | bytesleft = histfilelen; |
502 | while (bytesleft > 0) |
503 | { |
504 | PGAlignedBlock rbuf; |
505 | int nread; |
506 | |
507 | pgstat_report_wait_start(WAIT_EVENT_WALSENDER_TIMELINE_HISTORY_READ); |
508 | nread = read(fd, rbuf.data, sizeof(rbuf)); |
509 | pgstat_report_wait_end(); |
510 | if (nread < 0) |
511 | ereport(ERROR, |
512 | (errcode_for_file_access(), |
513 | errmsg("could not read file \"%s\": %m" , |
514 | path))); |
515 | else if (nread == 0) |
516 | ereport(ERROR, |
517 | (errcode(ERRCODE_DATA_CORRUPTED), |
518 | errmsg("could not read file \"%s\": read %d of %zu" , |
519 | path, nread, (Size) bytesleft))); |
520 | |
521 | pq_sendbytes(&buf, rbuf.data, nread); |
522 | bytesleft -= nread; |
523 | } |
524 | |
525 | if (CloseTransientFile(fd)) |
526 | ereport(ERROR, |
527 | (errcode_for_file_access(), |
528 | errmsg("could not close file \"%s\": %m" , path))); |
529 | |
530 | pq_endmessage(&buf); |
531 | } |
532 | |
533 | /* |
534 | * Handle START_REPLICATION command. |
535 | * |
536 | * At the moment, this never returns, but an ereport(ERROR) will take us back |
537 | * to the main loop. |
538 | */ |
539 | static void |
540 | StartReplication(StartReplicationCmd *cmd) |
541 | { |
542 | StringInfoData buf; |
543 | XLogRecPtr FlushPtr; |
544 | |
545 | if (ThisTimeLineID == 0) |
546 | ereport(ERROR, |
547 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
548 | errmsg("IDENTIFY_SYSTEM has not been run before START_REPLICATION" ))); |
549 | |
550 | /* |
551 | * We assume here that we're logging enough information in the WAL for |
552 | * log-shipping, since this is checked in PostmasterMain(). |
553 | * |
554 | * NOTE: wal_level can only change at shutdown, so in most cases it is |
555 | * difficult for there to be WAL data that we can still see that was |
556 | * written at wal_level='minimal'. |
557 | */ |
558 | |
559 | if (cmd->slotname) |
560 | { |
561 | ReplicationSlotAcquire(cmd->slotname, true); |
562 | if (SlotIsLogical(MyReplicationSlot)) |
563 | ereport(ERROR, |
564 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
565 | (errmsg("cannot use a logical replication slot for physical replication" )))); |
566 | } |
567 | |
568 | /* |
569 | * Select the timeline. If it was given explicitly by the client, use |
570 | * that. Otherwise use the timeline of the last replayed record, which is |
571 | * kept in ThisTimeLineID. |
572 | */ |
573 | if (am_cascading_walsender) |
574 | { |
575 | /* this also updates ThisTimeLineID */ |
576 | FlushPtr = GetStandbyFlushRecPtr(); |
577 | } |
578 | else |
579 | FlushPtr = GetFlushRecPtr(); |
580 | |
581 | if (cmd->timeline != 0) |
582 | { |
583 | XLogRecPtr switchpoint; |
584 | |
585 | sendTimeLine = cmd->timeline; |
586 | if (sendTimeLine == ThisTimeLineID) |
587 | { |
588 | sendTimeLineIsHistoric = false; |
589 | sendTimeLineValidUpto = InvalidXLogRecPtr; |
590 | } |
591 | else |
592 | { |
593 | List *timeLineHistory; |
594 | |
595 | sendTimeLineIsHistoric = true; |
596 | |
597 | /* |
598 | * Check that the timeline the client requested exists, and the |
599 | * requested start location is on that timeline. |
600 | */ |
601 | timeLineHistory = readTimeLineHistory(ThisTimeLineID); |
602 | switchpoint = tliSwitchPoint(cmd->timeline, timeLineHistory, |
603 | &sendTimeLineNextTLI); |
604 | list_free_deep(timeLineHistory); |
605 | |
606 | /* |
607 | * Found the requested timeline in the history. Check that |
608 | * requested startpoint is on that timeline in our history. |
609 | * |
610 | * This is quite loose on purpose. We only check that we didn't |
611 | * fork off the requested timeline before the switchpoint. We |
612 | * don't check that we switched *to* it before the requested |
613 | * starting point. This is because the client can legitimately |
614 | * request to start replication from the beginning of the WAL |
615 | * segment that contains switchpoint, but on the new timeline, so |
616 | * that it doesn't end up with a partial segment. If you ask for |
617 | * too old a starting point, you'll get an error later when we |
618 | * fail to find the requested WAL segment in pg_wal. |
619 | * |
620 | * XXX: we could be more strict here and only allow a startpoint |
621 | * that's older than the switchpoint, if it's still in the same |
622 | * WAL segment. |
623 | */ |
624 | if (!XLogRecPtrIsInvalid(switchpoint) && |
625 | switchpoint < cmd->startpoint) |
626 | { |
627 | ereport(ERROR, |
628 | (errmsg("requested starting point %X/%X on timeline %u is not in this server's history" , |
629 | (uint32) (cmd->startpoint >> 32), |
630 | (uint32) (cmd->startpoint), |
631 | cmd->timeline), |
632 | errdetail("This server's history forked from timeline %u at %X/%X." , |
633 | cmd->timeline, |
634 | (uint32) (switchpoint >> 32), |
635 | (uint32) (switchpoint)))); |
636 | } |
637 | sendTimeLineValidUpto = switchpoint; |
638 | } |
639 | } |
640 | else |
641 | { |
642 | sendTimeLine = ThisTimeLineID; |
643 | sendTimeLineValidUpto = InvalidXLogRecPtr; |
644 | sendTimeLineIsHistoric = false; |
645 | } |
646 | |
647 | streamingDoneSending = streamingDoneReceiving = false; |
648 | |
649 | /* If there is nothing to stream, don't even enter COPY mode */ |
650 | if (!sendTimeLineIsHistoric || cmd->startpoint < sendTimeLineValidUpto) |
651 | { |
652 | /* |
653 | * When we first start replication the standby will be behind the |
654 | * primary. For some applications, for example synchronous |
655 | * replication, it is important to have a clear state for this initial |
656 | * catchup mode, so we can trigger actions when we change streaming |
657 | * state later. We may stay in this state for a long time, which is |
658 | * exactly why we want to be able to monitor whether or not we are |
659 | * still here. |
660 | */ |
661 | WalSndSetState(WALSNDSTATE_CATCHUP); |
662 | |
663 | /* Send a CopyBothResponse message, and start streaming */ |
664 | pq_beginmessage(&buf, 'W'); |
665 | pq_sendbyte(&buf, 0); |
666 | pq_sendint16(&buf, 0); |
667 | pq_endmessage(&buf); |
668 | pq_flush(); |
669 | |
670 | /* |
671 | * Don't allow a request to stream from a future point in WAL that |
672 | * hasn't been flushed to disk in this server yet. |
673 | */ |
674 | if (FlushPtr < cmd->startpoint) |
675 | { |
676 | ereport(ERROR, |
677 | (errmsg("requested starting point %X/%X is ahead of the WAL flush position of this server %X/%X" , |
678 | (uint32) (cmd->startpoint >> 32), |
679 | (uint32) (cmd->startpoint), |
680 | (uint32) (FlushPtr >> 32), |
681 | (uint32) (FlushPtr)))); |
682 | } |
683 | |
684 | /* Start streaming from the requested point */ |
685 | sentPtr = cmd->startpoint; |
686 | |
687 | /* Initialize shared memory status, too */ |
688 | SpinLockAcquire(&MyWalSnd->mutex); |
689 | MyWalSnd->sentPtr = sentPtr; |
690 | SpinLockRelease(&MyWalSnd->mutex); |
691 | |
692 | SyncRepInitConfig(); |
693 | |
694 | /* Main loop of walsender */ |
695 | replication_active = true; |
696 | |
697 | WalSndLoop(XLogSendPhysical); |
698 | |
699 | replication_active = false; |
700 | if (got_STOPPING) |
701 | proc_exit(0); |
702 | WalSndSetState(WALSNDSTATE_STARTUP); |
703 | |
704 | Assert(streamingDoneSending && streamingDoneReceiving); |
705 | } |
706 | |
707 | if (cmd->slotname) |
708 | ReplicationSlotRelease(); |
709 | |
710 | /* |
711 | * Copy is finished now. Send a single-row result set indicating the next |
712 | * timeline. |
713 | */ |
714 | if (sendTimeLineIsHistoric) |
715 | { |
716 | char startpos_str[8 + 1 + 8 + 1]; |
717 | DestReceiver *dest; |
718 | TupOutputState *tstate; |
719 | TupleDesc tupdesc; |
720 | Datum values[2]; |
721 | bool nulls[2]; |
722 | |
723 | snprintf(startpos_str, sizeof(startpos_str), "%X/%X" , |
724 | (uint32) (sendTimeLineValidUpto >> 32), |
725 | (uint32) sendTimeLineValidUpto); |
726 | |
727 | dest = CreateDestReceiver(DestRemoteSimple); |
728 | MemSet(nulls, false, sizeof(nulls)); |
729 | |
730 | /* |
731 | * Need a tuple descriptor representing two columns. int8 may seem |
732 | * like a surprising data type for this, but in theory int4 would not |
733 | * be wide enough for this, as TimeLineID is unsigned. |
734 | */ |
735 | tupdesc = CreateTemplateTupleDesc(2); |
736 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "next_tli" , |
737 | INT8OID, -1, 0); |
738 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "next_tli_startpos" , |
739 | TEXTOID, -1, 0); |
740 | |
741 | /* prepare for projection of tuple */ |
742 | tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual); |
743 | |
744 | values[0] = Int64GetDatum((int64) sendTimeLineNextTLI); |
745 | values[1] = CStringGetTextDatum(startpos_str); |
746 | |
747 | /* send it to dest */ |
748 | do_tup_output(tstate, values, nulls); |
749 | |
750 | end_tup_output(tstate); |
751 | } |
752 | |
753 | /* Send CommandComplete message */ |
754 | pq_puttextmessage('C', "START_STREAMING" ); |
755 | } |
756 | |
757 | /* |
758 | * read_page callback for logical decoding contexts, as a walsender process. |
759 | * |
760 | * Inside the walsender we can do better than logical_read_local_xlog_page, |
761 | * which has to do a plain sleep/busy loop, because the walsender's latch gets |
762 | * set every time WAL is flushed. |
763 | */ |
764 | static int |
765 | logical_read_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr, int reqLen, |
766 | XLogRecPtr targetRecPtr, char *cur_page, TimeLineID *pageTLI) |
767 | { |
768 | XLogRecPtr flushptr; |
769 | int count; |
770 | |
771 | XLogReadDetermineTimeline(state, targetPagePtr, reqLen); |
772 | sendTimeLineIsHistoric = (state->currTLI != ThisTimeLineID); |
773 | sendTimeLine = state->currTLI; |
774 | sendTimeLineValidUpto = state->currTLIValidUntil; |
775 | sendTimeLineNextTLI = state->nextTLI; |
776 | |
777 | /* make sure we have enough WAL available */ |
778 | flushptr = WalSndWaitForWal(targetPagePtr + reqLen); |
779 | |
780 | /* fail if not (implies we are going to shut down) */ |
781 | if (flushptr < targetPagePtr + reqLen) |
782 | return -1; |
783 | |
784 | if (targetPagePtr + XLOG_BLCKSZ <= flushptr) |
785 | count = XLOG_BLCKSZ; /* more than one block available */ |
786 | else |
787 | count = flushptr - targetPagePtr; /* part of the page available */ |
788 | |
789 | /* now actually read the data, we know it's there */ |
790 | XLogRead(cur_page, targetPagePtr, XLOG_BLCKSZ); |
791 | |
792 | return count; |
793 | } |
794 | |
795 | /* |
796 | * Process extra options given to CREATE_REPLICATION_SLOT. |
797 | */ |
798 | static void |
799 | parseCreateReplSlotOptions(CreateReplicationSlotCmd *cmd, |
800 | bool *reserve_wal, |
801 | CRSSnapshotAction *snapshot_action) |
802 | { |
803 | ListCell *lc; |
804 | bool snapshot_action_given = false; |
805 | bool reserve_wal_given = false; |
806 | |
807 | /* Parse options */ |
808 | foreach(lc, cmd->options) |
809 | { |
810 | DefElem *defel = (DefElem *) lfirst(lc); |
811 | |
812 | if (strcmp(defel->defname, "export_snapshot" ) == 0) |
813 | { |
814 | if (snapshot_action_given || cmd->kind != REPLICATION_KIND_LOGICAL) |
815 | ereport(ERROR, |
816 | (errcode(ERRCODE_SYNTAX_ERROR), |
817 | errmsg("conflicting or redundant options" ))); |
818 | |
819 | snapshot_action_given = true; |
820 | *snapshot_action = defGetBoolean(defel) ? CRS_EXPORT_SNAPSHOT : |
821 | CRS_NOEXPORT_SNAPSHOT; |
822 | } |
823 | else if (strcmp(defel->defname, "use_snapshot" ) == 0) |
824 | { |
825 | if (snapshot_action_given || cmd->kind != REPLICATION_KIND_LOGICAL) |
826 | ereport(ERROR, |
827 | (errcode(ERRCODE_SYNTAX_ERROR), |
828 | errmsg("conflicting or redundant options" ))); |
829 | |
830 | snapshot_action_given = true; |
831 | *snapshot_action = CRS_USE_SNAPSHOT; |
832 | } |
833 | else if (strcmp(defel->defname, "reserve_wal" ) == 0) |
834 | { |
835 | if (reserve_wal_given || cmd->kind != REPLICATION_KIND_PHYSICAL) |
836 | ereport(ERROR, |
837 | (errcode(ERRCODE_SYNTAX_ERROR), |
838 | errmsg("conflicting or redundant options" ))); |
839 | |
840 | reserve_wal_given = true; |
841 | *reserve_wal = true; |
842 | } |
843 | else |
844 | elog(ERROR, "unrecognized option: %s" , defel->defname); |
845 | } |
846 | } |
847 | |
848 | /* |
849 | * Create a new replication slot. |
850 | */ |
851 | static void |
852 | CreateReplicationSlot(CreateReplicationSlotCmd *cmd) |
853 | { |
854 | const char *snapshot_name = NULL; |
855 | char xloc[MAXFNAMELEN]; |
856 | char *slot_name; |
857 | bool reserve_wal = false; |
858 | CRSSnapshotAction snapshot_action = CRS_EXPORT_SNAPSHOT; |
859 | DestReceiver *dest; |
860 | TupOutputState *tstate; |
861 | TupleDesc tupdesc; |
862 | Datum values[4]; |
863 | bool nulls[4]; |
864 | |
865 | Assert(!MyReplicationSlot); |
866 | |
867 | parseCreateReplSlotOptions(cmd, &reserve_wal, &snapshot_action); |
868 | |
869 | /* setup state for XLogReadPage */ |
870 | sendTimeLineIsHistoric = false; |
871 | sendTimeLine = ThisTimeLineID; |
872 | |
873 | if (cmd->kind == REPLICATION_KIND_PHYSICAL) |
874 | { |
875 | ReplicationSlotCreate(cmd->slotname, false, |
876 | cmd->temporary ? RS_TEMPORARY : RS_PERSISTENT); |
877 | } |
878 | else |
879 | { |
880 | CheckLogicalDecodingRequirements(); |
881 | |
882 | /* |
883 | * Initially create persistent slot as ephemeral - that allows us to |
884 | * nicely handle errors during initialization because it'll get |
885 | * dropped if this transaction fails. We'll make it persistent at the |
886 | * end. Temporary slots can be created as temporary from beginning as |
887 | * they get dropped on error as well. |
888 | */ |
889 | ReplicationSlotCreate(cmd->slotname, true, |
890 | cmd->temporary ? RS_TEMPORARY : RS_EPHEMERAL); |
891 | } |
892 | |
893 | if (cmd->kind == REPLICATION_KIND_LOGICAL) |
894 | { |
895 | LogicalDecodingContext *ctx; |
896 | bool need_full_snapshot = false; |
897 | |
898 | /* |
899 | * Do options check early so that we can bail before calling the |
900 | * DecodingContextFindStartpoint which can take long time. |
901 | */ |
902 | if (snapshot_action == CRS_EXPORT_SNAPSHOT) |
903 | { |
904 | if (IsTransactionBlock()) |
905 | ereport(ERROR, |
906 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
907 | (errmsg("%s must not be called inside a transaction" , |
908 | "CREATE_REPLICATION_SLOT ... EXPORT_SNAPSHOT" ))); |
909 | |
910 | need_full_snapshot = true; |
911 | } |
912 | else if (snapshot_action == CRS_USE_SNAPSHOT) |
913 | { |
914 | if (!IsTransactionBlock()) |
915 | ereport(ERROR, |
916 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
917 | (errmsg("%s must be called inside a transaction" , |
918 | "CREATE_REPLICATION_SLOT ... USE_SNAPSHOT" ))); |
919 | |
920 | if (XactIsoLevel != XACT_REPEATABLE_READ) |
921 | ereport(ERROR, |
922 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
923 | (errmsg("%s must be called in REPEATABLE READ isolation mode transaction" , |
924 | "CREATE_REPLICATION_SLOT ... USE_SNAPSHOT" ))); |
925 | |
926 | if (FirstSnapshotSet) |
927 | ereport(ERROR, |
928 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
929 | (errmsg("%s must be called before any query" , |
930 | "CREATE_REPLICATION_SLOT ... USE_SNAPSHOT" ))); |
931 | |
932 | if (IsSubTransaction()) |
933 | ereport(ERROR, |
934 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
935 | (errmsg("%s must not be called in a subtransaction" , |
936 | "CREATE_REPLICATION_SLOT ... USE_SNAPSHOT" ))); |
937 | |
938 | need_full_snapshot = true; |
939 | } |
940 | |
941 | ctx = CreateInitDecodingContext(cmd->plugin, NIL, need_full_snapshot, |
942 | InvalidXLogRecPtr, |
943 | logical_read_xlog_page, |
944 | WalSndPrepareWrite, WalSndWriteData, |
945 | WalSndUpdateProgress); |
946 | |
947 | /* |
948 | * Signal that we don't need the timeout mechanism. We're just |
949 | * creating the replication slot and don't yet accept feedback |
950 | * messages or send keepalives. As we possibly need to wait for |
951 | * further WAL the walsender would otherwise possibly be killed too |
952 | * soon. |
953 | */ |
954 | last_reply_timestamp = 0; |
955 | |
956 | /* build initial snapshot, might take a while */ |
957 | DecodingContextFindStartpoint(ctx); |
958 | |
959 | /* |
960 | * Export or use the snapshot if we've been asked to do so. |
961 | * |
962 | * NB. We will convert the snapbuild.c kind of snapshot to normal |
963 | * snapshot when doing this. |
964 | */ |
965 | if (snapshot_action == CRS_EXPORT_SNAPSHOT) |
966 | { |
967 | snapshot_name = SnapBuildExportSnapshot(ctx->snapshot_builder); |
968 | } |
969 | else if (snapshot_action == CRS_USE_SNAPSHOT) |
970 | { |
971 | Snapshot snap; |
972 | |
973 | snap = SnapBuildInitialSnapshot(ctx->snapshot_builder); |
974 | RestoreTransactionSnapshot(snap, MyProc); |
975 | } |
976 | |
977 | /* don't need the decoding context anymore */ |
978 | FreeDecodingContext(ctx); |
979 | |
980 | if (!cmd->temporary) |
981 | ReplicationSlotPersist(); |
982 | } |
983 | else if (cmd->kind == REPLICATION_KIND_PHYSICAL && reserve_wal) |
984 | { |
985 | ReplicationSlotReserveWal(); |
986 | |
987 | ReplicationSlotMarkDirty(); |
988 | |
989 | /* Write this slot to disk if it's a permanent one. */ |
990 | if (!cmd->temporary) |
991 | ReplicationSlotSave(); |
992 | } |
993 | |
994 | snprintf(xloc, sizeof(xloc), "%X/%X" , |
995 | (uint32) (MyReplicationSlot->data.confirmed_flush >> 32), |
996 | (uint32) MyReplicationSlot->data.confirmed_flush); |
997 | |
998 | dest = CreateDestReceiver(DestRemoteSimple); |
999 | MemSet(nulls, false, sizeof(nulls)); |
1000 | |
1001 | /*---------- |
1002 | * Need a tuple descriptor representing four columns: |
1003 | * - first field: the slot name |
1004 | * - second field: LSN at which we became consistent |
1005 | * - third field: exported snapshot's name |
1006 | * - fourth field: output plugin |
1007 | *---------- |
1008 | */ |
1009 | tupdesc = CreateTemplateTupleDesc(4); |
1010 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_name" , |
1011 | TEXTOID, -1, 0); |
1012 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "consistent_point" , |
1013 | TEXTOID, -1, 0); |
1014 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "snapshot_name" , |
1015 | TEXTOID, -1, 0); |
1016 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "output_plugin" , |
1017 | TEXTOID, -1, 0); |
1018 | |
1019 | /* prepare for projection of tuples */ |
1020 | tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual); |
1021 | |
1022 | /* slot_name */ |
1023 | slot_name = NameStr(MyReplicationSlot->data.name); |
1024 | values[0] = CStringGetTextDatum(slot_name); |
1025 | |
1026 | /* consistent wal location */ |
1027 | values[1] = CStringGetTextDatum(xloc); |
1028 | |
1029 | /* snapshot name, or NULL if none */ |
1030 | if (snapshot_name != NULL) |
1031 | values[2] = CStringGetTextDatum(snapshot_name); |
1032 | else |
1033 | nulls[2] = true; |
1034 | |
1035 | /* plugin, or NULL if none */ |
1036 | if (cmd->plugin != NULL) |
1037 | values[3] = CStringGetTextDatum(cmd->plugin); |
1038 | else |
1039 | nulls[3] = true; |
1040 | |
1041 | /* send it to dest */ |
1042 | do_tup_output(tstate, values, nulls); |
1043 | end_tup_output(tstate); |
1044 | |
1045 | ReplicationSlotRelease(); |
1046 | } |
1047 | |
1048 | /* |
1049 | * Get rid of a replication slot that is no longer wanted. |
1050 | */ |
1051 | static void |
1052 | DropReplicationSlot(DropReplicationSlotCmd *cmd) |
1053 | { |
1054 | ReplicationSlotDrop(cmd->slotname, !cmd->wait); |
1055 | EndCommand("DROP_REPLICATION_SLOT" , DestRemote); |
1056 | } |
1057 | |
1058 | /* |
1059 | * Load previously initiated logical slot and prepare for sending data (via |
1060 | * WalSndLoop). |
1061 | */ |
1062 | static void |
1063 | StartLogicalReplication(StartReplicationCmd *cmd) |
1064 | { |
1065 | StringInfoData buf; |
1066 | |
1067 | /* make sure that our requirements are still fulfilled */ |
1068 | CheckLogicalDecodingRequirements(); |
1069 | |
1070 | Assert(!MyReplicationSlot); |
1071 | |
1072 | ReplicationSlotAcquire(cmd->slotname, true); |
1073 | |
1074 | /* |
1075 | * Force a disconnect, so that the decoding code doesn't need to care |
1076 | * about an eventual switch from running in recovery, to running in a |
1077 | * normal environment. Client code is expected to handle reconnects. |
1078 | */ |
1079 | if (am_cascading_walsender && !RecoveryInProgress()) |
1080 | { |
1081 | ereport(LOG, |
1082 | (errmsg("terminating walsender process after promotion" ))); |
1083 | got_STOPPING = true; |
1084 | } |
1085 | |
1086 | /* |
1087 | * Create our decoding context, making it start at the previously ack'ed |
1088 | * position. |
1089 | * |
1090 | * Do this before sending a CopyBothResponse message, so that any errors |
1091 | * are reported early. |
1092 | */ |
1093 | logical_decoding_ctx = |
1094 | CreateDecodingContext(cmd->startpoint, cmd->options, false, |
1095 | logical_read_xlog_page, |
1096 | WalSndPrepareWrite, WalSndWriteData, |
1097 | WalSndUpdateProgress); |
1098 | |
1099 | |
1100 | WalSndSetState(WALSNDSTATE_CATCHUP); |
1101 | |
1102 | /* Send a CopyBothResponse message, and start streaming */ |
1103 | pq_beginmessage(&buf, 'W'); |
1104 | pq_sendbyte(&buf, 0); |
1105 | pq_sendint16(&buf, 0); |
1106 | pq_endmessage(&buf); |
1107 | pq_flush(); |
1108 | |
1109 | |
1110 | /* Start reading WAL from the oldest required WAL. */ |
1111 | logical_startptr = MyReplicationSlot->data.restart_lsn; |
1112 | |
1113 | /* |
1114 | * Report the location after which we'll send out further commits as the |
1115 | * current sentPtr. |
1116 | */ |
1117 | sentPtr = MyReplicationSlot->data.confirmed_flush; |
1118 | |
1119 | /* Also update the sent position status in shared memory */ |
1120 | SpinLockAcquire(&MyWalSnd->mutex); |
1121 | MyWalSnd->sentPtr = MyReplicationSlot->data.restart_lsn; |
1122 | SpinLockRelease(&MyWalSnd->mutex); |
1123 | |
1124 | replication_active = true; |
1125 | |
1126 | SyncRepInitConfig(); |
1127 | |
1128 | /* Main loop of walsender */ |
1129 | WalSndLoop(XLogSendLogical); |
1130 | |
1131 | FreeDecodingContext(logical_decoding_ctx); |
1132 | ReplicationSlotRelease(); |
1133 | |
1134 | replication_active = false; |
1135 | if (got_STOPPING) |
1136 | proc_exit(0); |
1137 | WalSndSetState(WALSNDSTATE_STARTUP); |
1138 | |
1139 | /* Get out of COPY mode (CommandComplete). */ |
1140 | EndCommand("COPY 0" , DestRemote); |
1141 | } |
1142 | |
1143 | /* |
1144 | * LogicalDecodingContext 'prepare_write' callback. |
1145 | * |
1146 | * Prepare a write into a StringInfo. |
1147 | * |
1148 | * Don't do anything lasting in here, it's quite possible that nothing will be done |
1149 | * with the data. |
1150 | */ |
1151 | static void |
1152 | WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write) |
1153 | { |
1154 | /* can't have sync rep confused by sending the same LSN several times */ |
1155 | if (!last_write) |
1156 | lsn = InvalidXLogRecPtr; |
1157 | |
1158 | resetStringInfo(ctx->out); |
1159 | |
1160 | pq_sendbyte(ctx->out, 'w'); |
1161 | pq_sendint64(ctx->out, lsn); /* dataStart */ |
1162 | pq_sendint64(ctx->out, lsn); /* walEnd */ |
1163 | |
1164 | /* |
1165 | * Fill out the sendtime later, just as it's done in XLogSendPhysical, but |
1166 | * reserve space here. |
1167 | */ |
1168 | pq_sendint64(ctx->out, 0); /* sendtime */ |
1169 | } |
1170 | |
1171 | /* |
1172 | * LogicalDecodingContext 'write' callback. |
1173 | * |
1174 | * Actually write out data previously prepared by WalSndPrepareWrite out to |
1175 | * the network. Take as long as needed, but process replies from the other |
1176 | * side and check timeouts during that. |
1177 | */ |
1178 | static void |
1179 | WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, |
1180 | bool last_write) |
1181 | { |
1182 | TimestampTz now; |
1183 | |
1184 | /* output previously gathered data in a CopyData packet */ |
1185 | pq_putmessage_noblock('d', ctx->out->data, ctx->out->len); |
1186 | |
1187 | /* |
1188 | * Fill the send timestamp last, so that it is taken as late as possible. |
1189 | * This is somewhat ugly, but the protocol is set as it's already used for |
1190 | * several releases by streaming physical replication. |
1191 | */ |
1192 | resetStringInfo(&tmpbuf); |
1193 | now = GetCurrentTimestamp(); |
1194 | pq_sendint64(&tmpbuf, now); |
1195 | memcpy(&ctx->out->data[1 + sizeof(int64) + sizeof(int64)], |
1196 | tmpbuf.data, sizeof(int64)); |
1197 | |
1198 | CHECK_FOR_INTERRUPTS(); |
1199 | |
1200 | /* Try to flush pending output to the client */ |
1201 | if (pq_flush_if_writable() != 0) |
1202 | WalSndShutdown(); |
1203 | |
1204 | /* Try taking fast path unless we get too close to walsender timeout. */ |
1205 | if (now < TimestampTzPlusMilliseconds(last_reply_timestamp, |
1206 | wal_sender_timeout / 2) && |
1207 | !pq_is_send_pending()) |
1208 | { |
1209 | return; |
1210 | } |
1211 | |
1212 | /* If we have pending write here, go to slow path */ |
1213 | for (;;) |
1214 | { |
1215 | int wakeEvents; |
1216 | long sleeptime; |
1217 | |
1218 | /* Check for input from the client */ |
1219 | ProcessRepliesIfAny(); |
1220 | |
1221 | /* die if timeout was reached */ |
1222 | WalSndCheckTimeOut(); |
1223 | |
1224 | /* Send keepalive if the time has come */ |
1225 | WalSndKeepaliveIfNecessary(); |
1226 | |
1227 | if (!pq_is_send_pending()) |
1228 | break; |
1229 | |
1230 | sleeptime = WalSndComputeSleeptime(GetCurrentTimestamp()); |
1231 | |
1232 | wakeEvents = WL_LATCH_SET | WL_EXIT_ON_PM_DEATH | |
1233 | WL_SOCKET_WRITEABLE | WL_SOCKET_READABLE | WL_TIMEOUT; |
1234 | |
1235 | /* Sleep until something happens or we time out */ |
1236 | (void) WaitLatchOrSocket(MyLatch, wakeEvents, |
1237 | MyProcPort->sock, sleeptime, |
1238 | WAIT_EVENT_WAL_SENDER_WRITE_DATA); |
1239 | |
1240 | /* Clear any already-pending wakeups */ |
1241 | ResetLatch(MyLatch); |
1242 | |
1243 | CHECK_FOR_INTERRUPTS(); |
1244 | |
1245 | /* Process any requests or signals received recently */ |
1246 | if (ConfigReloadPending) |
1247 | { |
1248 | ConfigReloadPending = false; |
1249 | ProcessConfigFile(PGC_SIGHUP); |
1250 | SyncRepInitConfig(); |
1251 | } |
1252 | |
1253 | /* Try to flush pending output to the client */ |
1254 | if (pq_flush_if_writable() != 0) |
1255 | WalSndShutdown(); |
1256 | } |
1257 | |
1258 | /* reactivate latch so WalSndLoop knows to continue */ |
1259 | SetLatch(MyLatch); |
1260 | } |
1261 | |
1262 | /* |
1263 | * LogicalDecodingContext 'update_progress' callback. |
1264 | * |
1265 | * Write the current position to the lag tracker (see XLogSendPhysical). |
1266 | */ |
1267 | static void |
1268 | WalSndUpdateProgress(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid) |
1269 | { |
1270 | static TimestampTz sendTime = 0; |
1271 | TimestampTz now = GetCurrentTimestamp(); |
1272 | |
1273 | /* |
1274 | * Track lag no more than once per WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS to |
1275 | * avoid flooding the lag tracker when we commit frequently. |
1276 | */ |
1277 | #define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS 1000 |
1278 | if (!TimestampDifferenceExceeds(sendTime, now, |
1279 | WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS)) |
1280 | return; |
1281 | |
1282 | LagTrackerWrite(lsn, now); |
1283 | sendTime = now; |
1284 | } |
1285 | |
1286 | /* |
1287 | * Wait till WAL < loc is flushed to disk so it can be safely sent to client. |
1288 | * |
1289 | * Returns end LSN of flushed WAL. Normally this will be >= loc, but |
1290 | * if we detect a shutdown request (either from postmaster or client) |
1291 | * we will return early, so caller must always check. |
1292 | */ |
1293 | static XLogRecPtr |
1294 | WalSndWaitForWal(XLogRecPtr loc) |
1295 | { |
1296 | int wakeEvents; |
1297 | static XLogRecPtr RecentFlushPtr = InvalidXLogRecPtr; |
1298 | |
1299 | |
1300 | /* |
1301 | * Fast path to avoid acquiring the spinlock in case we already know we |
1302 | * have enough WAL available. This is particularly interesting if we're |
1303 | * far behind. |
1304 | */ |
1305 | if (RecentFlushPtr != InvalidXLogRecPtr && |
1306 | loc <= RecentFlushPtr) |
1307 | return RecentFlushPtr; |
1308 | |
1309 | /* Get a more recent flush pointer. */ |
1310 | if (!RecoveryInProgress()) |
1311 | RecentFlushPtr = GetFlushRecPtr(); |
1312 | else |
1313 | RecentFlushPtr = GetXLogReplayRecPtr(NULL); |
1314 | |
1315 | for (;;) |
1316 | { |
1317 | long sleeptime; |
1318 | |
1319 | /* Clear any already-pending wakeups */ |
1320 | ResetLatch(MyLatch); |
1321 | |
1322 | CHECK_FOR_INTERRUPTS(); |
1323 | |
1324 | /* Process any requests or signals received recently */ |
1325 | if (ConfigReloadPending) |
1326 | { |
1327 | ConfigReloadPending = false; |
1328 | ProcessConfigFile(PGC_SIGHUP); |
1329 | SyncRepInitConfig(); |
1330 | } |
1331 | |
1332 | /* Check for input from the client */ |
1333 | ProcessRepliesIfAny(); |
1334 | |
1335 | /* |
1336 | * If we're shutting down, trigger pending WAL to be written out, |
1337 | * otherwise we'd possibly end up waiting for WAL that never gets |
1338 | * written, because walwriter has shut down already. |
1339 | */ |
1340 | if (got_STOPPING) |
1341 | XLogBackgroundFlush(); |
1342 | |
1343 | /* Update our idea of the currently flushed position. */ |
1344 | if (!RecoveryInProgress()) |
1345 | RecentFlushPtr = GetFlushRecPtr(); |
1346 | else |
1347 | RecentFlushPtr = GetXLogReplayRecPtr(NULL); |
1348 | |
1349 | /* |
1350 | * If postmaster asked us to stop, don't wait anymore. |
1351 | * |
1352 | * It's important to do this check after the recomputation of |
1353 | * RecentFlushPtr, so we can send all remaining data before shutting |
1354 | * down. |
1355 | */ |
1356 | if (got_STOPPING) |
1357 | break; |
1358 | |
1359 | /* |
1360 | * We only send regular messages to the client for full decoded |
1361 | * transactions, but a synchronous replication and walsender shutdown |
1362 | * possibly are waiting for a later location. So we send pings |
1363 | * containing the flush location every now and then. |
1364 | */ |
1365 | if (MyWalSnd->flush < sentPtr && |
1366 | MyWalSnd->write < sentPtr && |
1367 | !waiting_for_ping_response) |
1368 | { |
1369 | WalSndKeepalive(false); |
1370 | waiting_for_ping_response = true; |
1371 | } |
1372 | |
1373 | /* check whether we're done */ |
1374 | if (loc <= RecentFlushPtr) |
1375 | break; |
1376 | |
1377 | /* Waiting for new WAL. Since we need to wait, we're now caught up. */ |
1378 | WalSndCaughtUp = true; |
1379 | |
1380 | /* |
1381 | * Try to flush any pending output to the client. |
1382 | */ |
1383 | if (pq_flush_if_writable() != 0) |
1384 | WalSndShutdown(); |
1385 | |
1386 | /* |
1387 | * If we have received CopyDone from the client, sent CopyDone |
1388 | * ourselves, and the output buffer is empty, it's time to exit |
1389 | * streaming, so fail the current WAL fetch request. |
1390 | */ |
1391 | if (streamingDoneReceiving && streamingDoneSending && |
1392 | !pq_is_send_pending()) |
1393 | break; |
1394 | |
1395 | /* die if timeout was reached */ |
1396 | WalSndCheckTimeOut(); |
1397 | |
1398 | /* Send keepalive if the time has come */ |
1399 | WalSndKeepaliveIfNecessary(); |
1400 | |
1401 | /* |
1402 | * Sleep until something happens or we time out. Also wait for the |
1403 | * socket becoming writable, if there's still pending output. |
1404 | * Otherwise we might sit on sendable output data while waiting for |
1405 | * new WAL to be generated. (But if we have nothing to send, we don't |
1406 | * want to wake on socket-writable.) |
1407 | */ |
1408 | sleeptime = WalSndComputeSleeptime(GetCurrentTimestamp()); |
1409 | |
1410 | wakeEvents = WL_LATCH_SET | WL_EXIT_ON_PM_DEATH | |
1411 | WL_SOCKET_READABLE | WL_TIMEOUT; |
1412 | |
1413 | if (pq_is_send_pending()) |
1414 | wakeEvents |= WL_SOCKET_WRITEABLE; |
1415 | |
1416 | (void) WaitLatchOrSocket(MyLatch, wakeEvents, |
1417 | MyProcPort->sock, sleeptime, |
1418 | WAIT_EVENT_WAL_SENDER_WAIT_WAL); |
1419 | } |
1420 | |
1421 | /* reactivate latch so WalSndLoop knows to continue */ |
1422 | SetLatch(MyLatch); |
1423 | return RecentFlushPtr; |
1424 | } |
1425 | |
1426 | /* |
1427 | * Execute an incoming replication command. |
1428 | * |
1429 | * Returns true if the cmd_string was recognized as WalSender command, false |
1430 | * if not. |
1431 | */ |
1432 | bool |
1433 | exec_replication_command(const char *cmd_string) |
1434 | { |
1435 | int parse_rc; |
1436 | Node *cmd_node; |
1437 | MemoryContext cmd_context; |
1438 | MemoryContext old_context; |
1439 | |
1440 | /* |
1441 | * If WAL sender has been told that shutdown is getting close, switch its |
1442 | * status accordingly to handle the next replication commands correctly. |
1443 | */ |
1444 | if (got_STOPPING) |
1445 | WalSndSetState(WALSNDSTATE_STOPPING); |
1446 | |
1447 | /* |
1448 | * Throw error if in stopping mode. We need prevent commands that could |
1449 | * generate WAL while the shutdown checkpoint is being written. To be |
1450 | * safe, we just prohibit all new commands. |
1451 | */ |
1452 | if (MyWalSnd->state == WALSNDSTATE_STOPPING) |
1453 | ereport(ERROR, |
1454 | (errmsg("cannot execute new commands while WAL sender is in stopping mode" ))); |
1455 | |
1456 | /* |
1457 | * CREATE_REPLICATION_SLOT ... LOGICAL exports a snapshot until the next |
1458 | * command arrives. Clean up the old stuff if there's anything. |
1459 | */ |
1460 | SnapBuildClearExportedSnapshot(); |
1461 | |
1462 | CHECK_FOR_INTERRUPTS(); |
1463 | |
1464 | cmd_context = AllocSetContextCreate(CurrentMemoryContext, |
1465 | "Replication command context" , |
1466 | ALLOCSET_DEFAULT_SIZES); |
1467 | old_context = MemoryContextSwitchTo(cmd_context); |
1468 | |
1469 | replication_scanner_init(cmd_string); |
1470 | parse_rc = replication_yyparse(); |
1471 | if (parse_rc != 0) |
1472 | ereport(ERROR, |
1473 | (errcode(ERRCODE_SYNTAX_ERROR), |
1474 | (errmsg_internal("replication command parser returned %d" , |
1475 | parse_rc)))); |
1476 | |
1477 | cmd_node = replication_parse_result; |
1478 | |
1479 | /* |
1480 | * Log replication command if log_replication_commands is enabled. Even |
1481 | * when it's disabled, log the command with DEBUG1 level for backward |
1482 | * compatibility. Note that SQL commands are not logged here, and will be |
1483 | * logged later if log_statement is enabled. |
1484 | */ |
1485 | if (cmd_node->type != T_SQLCmd) |
1486 | ereport(log_replication_commands ? LOG : DEBUG1, |
1487 | (errmsg("received replication command: %s" , cmd_string))); |
1488 | |
1489 | /* |
1490 | * CREATE_REPLICATION_SLOT ... LOGICAL exports a snapshot. If it was |
1491 | * called outside of transaction the snapshot should be cleared here. |
1492 | */ |
1493 | if (!IsTransactionBlock()) |
1494 | SnapBuildClearExportedSnapshot(); |
1495 | |
1496 | /* |
1497 | * For aborted transactions, don't allow anything except pure SQL, the |
1498 | * exec_simple_query() will handle it correctly. |
1499 | */ |
1500 | if (IsAbortedTransactionBlockState() && !IsA(cmd_node, SQLCmd)) |
1501 | ereport(ERROR, |
1502 | (errcode(ERRCODE_IN_FAILED_SQL_TRANSACTION), |
1503 | errmsg("current transaction is aborted, " |
1504 | "commands ignored until end of transaction block" ))); |
1505 | |
1506 | CHECK_FOR_INTERRUPTS(); |
1507 | |
1508 | /* |
1509 | * Allocate buffers that will be used for each outgoing and incoming |
1510 | * message. We do this just once per command to reduce palloc overhead. |
1511 | */ |
1512 | initStringInfo(&output_message); |
1513 | initStringInfo(&reply_message); |
1514 | initStringInfo(&tmpbuf); |
1515 | |
1516 | /* Report to pgstat that this process is running */ |
1517 | pgstat_report_activity(STATE_RUNNING, NULL); |
1518 | |
1519 | switch (cmd_node->type) |
1520 | { |
1521 | case T_IdentifySystemCmd: |
1522 | IdentifySystem(); |
1523 | break; |
1524 | |
1525 | case T_BaseBackupCmd: |
1526 | PreventInTransactionBlock(true, "BASE_BACKUP" ); |
1527 | SendBaseBackup((BaseBackupCmd *) cmd_node); |
1528 | break; |
1529 | |
1530 | case T_CreateReplicationSlotCmd: |
1531 | CreateReplicationSlot((CreateReplicationSlotCmd *) cmd_node); |
1532 | break; |
1533 | |
1534 | case T_DropReplicationSlotCmd: |
1535 | DropReplicationSlot((DropReplicationSlotCmd *) cmd_node); |
1536 | break; |
1537 | |
1538 | case T_StartReplicationCmd: |
1539 | { |
1540 | StartReplicationCmd *cmd = (StartReplicationCmd *) cmd_node; |
1541 | |
1542 | PreventInTransactionBlock(true, "START_REPLICATION" ); |
1543 | |
1544 | if (cmd->kind == REPLICATION_KIND_PHYSICAL) |
1545 | StartReplication(cmd); |
1546 | else |
1547 | StartLogicalReplication(cmd); |
1548 | break; |
1549 | } |
1550 | |
1551 | case T_TimeLineHistoryCmd: |
1552 | PreventInTransactionBlock(true, "TIMELINE_HISTORY" ); |
1553 | SendTimeLineHistory((TimeLineHistoryCmd *) cmd_node); |
1554 | break; |
1555 | |
1556 | case T_VariableShowStmt: |
1557 | { |
1558 | DestReceiver *dest = CreateDestReceiver(DestRemoteSimple); |
1559 | VariableShowStmt *n = (VariableShowStmt *) cmd_node; |
1560 | |
1561 | /* syscache access needs a transaction environment */ |
1562 | StartTransactionCommand(); |
1563 | GetPGVariable(n->name, dest); |
1564 | CommitTransactionCommand(); |
1565 | } |
1566 | break; |
1567 | |
1568 | case T_SQLCmd: |
1569 | if (MyDatabaseId == InvalidOid) |
1570 | ereport(ERROR, |
1571 | (errmsg("cannot execute SQL commands in WAL sender for physical replication" ))); |
1572 | |
1573 | /* Report to pgstat that this process is now idle */ |
1574 | pgstat_report_activity(STATE_IDLE, NULL); |
1575 | |
1576 | /* Tell the caller that this wasn't a WalSender command. */ |
1577 | return false; |
1578 | |
1579 | default: |
1580 | elog(ERROR, "unrecognized replication command node tag: %u" , |
1581 | cmd_node->type); |
1582 | } |
1583 | |
1584 | /* done */ |
1585 | MemoryContextSwitchTo(old_context); |
1586 | MemoryContextDelete(cmd_context); |
1587 | |
1588 | /* Send CommandComplete message */ |
1589 | EndCommand("SELECT" , DestRemote); |
1590 | |
1591 | /* Report to pgstat that this process is now idle */ |
1592 | pgstat_report_activity(STATE_IDLE, NULL); |
1593 | |
1594 | return true; |
1595 | } |
1596 | |
1597 | /* |
1598 | * Process any incoming messages while streaming. Also checks if the remote |
1599 | * end has closed the connection. |
1600 | */ |
1601 | static void |
1602 | ProcessRepliesIfAny(void) |
1603 | { |
1604 | unsigned char firstchar; |
1605 | int r; |
1606 | bool received = false; |
1607 | |
1608 | last_processing = GetCurrentTimestamp(); |
1609 | |
1610 | for (;;) |
1611 | { |
1612 | pq_startmsgread(); |
1613 | r = pq_getbyte_if_available(&firstchar); |
1614 | if (r < 0) |
1615 | { |
1616 | /* unexpected error or EOF */ |
1617 | ereport(COMMERROR, |
1618 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
1619 | errmsg("unexpected EOF on standby connection" ))); |
1620 | proc_exit(0); |
1621 | } |
1622 | if (r == 0) |
1623 | { |
1624 | /* no data available without blocking */ |
1625 | pq_endmsgread(); |
1626 | break; |
1627 | } |
1628 | |
1629 | /* Read the message contents */ |
1630 | resetStringInfo(&reply_message); |
1631 | if (pq_getmessage(&reply_message, 0)) |
1632 | { |
1633 | ereport(COMMERROR, |
1634 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
1635 | errmsg("unexpected EOF on standby connection" ))); |
1636 | proc_exit(0); |
1637 | } |
1638 | |
1639 | /* |
1640 | * If we already received a CopyDone from the frontend, the frontend |
1641 | * should not send us anything until we've closed our end of the COPY. |
1642 | * XXX: In theory, the frontend could already send the next command |
1643 | * before receiving the CopyDone, but libpq doesn't currently allow |
1644 | * that. |
1645 | */ |
1646 | if (streamingDoneReceiving && firstchar != 'X') |
1647 | ereport(FATAL, |
1648 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
1649 | errmsg("unexpected standby message type \"%c\", after receiving CopyDone" , |
1650 | firstchar))); |
1651 | |
1652 | /* Handle the very limited subset of commands expected in this phase */ |
1653 | switch (firstchar) |
1654 | { |
1655 | /* |
1656 | * 'd' means a standby reply wrapped in a CopyData packet. |
1657 | */ |
1658 | case 'd': |
1659 | ProcessStandbyMessage(); |
1660 | received = true; |
1661 | break; |
1662 | |
1663 | /* |
1664 | * CopyDone means the standby requested to finish streaming. |
1665 | * Reply with CopyDone, if we had not sent that already. |
1666 | */ |
1667 | case 'c': |
1668 | if (!streamingDoneSending) |
1669 | { |
1670 | pq_putmessage_noblock('c', NULL, 0); |
1671 | streamingDoneSending = true; |
1672 | } |
1673 | |
1674 | streamingDoneReceiving = true; |
1675 | received = true; |
1676 | break; |
1677 | |
1678 | /* |
1679 | * 'X' means that the standby is closing down the socket. |
1680 | */ |
1681 | case 'X': |
1682 | proc_exit(0); |
1683 | |
1684 | default: |
1685 | ereport(FATAL, |
1686 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
1687 | errmsg("invalid standby message type \"%c\"" , |
1688 | firstchar))); |
1689 | } |
1690 | } |
1691 | |
1692 | /* |
1693 | * Save the last reply timestamp if we've received at least one reply. |
1694 | */ |
1695 | if (received) |
1696 | { |
1697 | last_reply_timestamp = last_processing; |
1698 | waiting_for_ping_response = false; |
1699 | } |
1700 | } |
1701 | |
1702 | /* |
1703 | * Process a status update message received from standby. |
1704 | */ |
1705 | static void |
1706 | ProcessStandbyMessage(void) |
1707 | { |
1708 | char msgtype; |
1709 | |
1710 | /* |
1711 | * Check message type from the first byte. |
1712 | */ |
1713 | msgtype = pq_getmsgbyte(&reply_message); |
1714 | |
1715 | switch (msgtype) |
1716 | { |
1717 | case 'r': |
1718 | ProcessStandbyReplyMessage(); |
1719 | break; |
1720 | |
1721 | case 'h': |
1722 | ProcessStandbyHSFeedbackMessage(); |
1723 | break; |
1724 | |
1725 | default: |
1726 | ereport(COMMERROR, |
1727 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
1728 | errmsg("unexpected message type \"%c\"" , msgtype))); |
1729 | proc_exit(0); |
1730 | } |
1731 | } |
1732 | |
1733 | /* |
1734 | * Remember that a walreceiver just confirmed receipt of lsn `lsn`. |
1735 | */ |
1736 | static void |
1737 | PhysicalConfirmReceivedLocation(XLogRecPtr lsn) |
1738 | { |
1739 | bool changed = false; |
1740 | ReplicationSlot *slot = MyReplicationSlot; |
1741 | |
1742 | Assert(lsn != InvalidXLogRecPtr); |
1743 | SpinLockAcquire(&slot->mutex); |
1744 | if (slot->data.restart_lsn != lsn) |
1745 | { |
1746 | changed = true; |
1747 | slot->data.restart_lsn = lsn; |
1748 | } |
1749 | SpinLockRelease(&slot->mutex); |
1750 | |
1751 | if (changed) |
1752 | { |
1753 | ReplicationSlotMarkDirty(); |
1754 | ReplicationSlotsComputeRequiredLSN(); |
1755 | } |
1756 | |
1757 | /* |
1758 | * One could argue that the slot should be saved to disk now, but that'd |
1759 | * be energy wasted - the worst lost information can do here is give us |
1760 | * wrong information in a statistics view - we'll just potentially be more |
1761 | * conservative in removing files. |
1762 | */ |
1763 | } |
1764 | |
1765 | /* |
1766 | * Regular reply from standby advising of WAL locations on standby server. |
1767 | */ |
1768 | static void |
1769 | ProcessStandbyReplyMessage(void) |
1770 | { |
1771 | XLogRecPtr writePtr, |
1772 | flushPtr, |
1773 | applyPtr; |
1774 | bool replyRequested; |
1775 | TimeOffset writeLag, |
1776 | flushLag, |
1777 | applyLag; |
1778 | bool clearLagTimes; |
1779 | TimestampTz now; |
1780 | TimestampTz replyTime; |
1781 | |
1782 | static bool fullyAppliedLastTime = false; |
1783 | |
1784 | /* the caller already consumed the msgtype byte */ |
1785 | writePtr = pq_getmsgint64(&reply_message); |
1786 | flushPtr = pq_getmsgint64(&reply_message); |
1787 | applyPtr = pq_getmsgint64(&reply_message); |
1788 | replyTime = pq_getmsgint64(&reply_message); |
1789 | replyRequested = pq_getmsgbyte(&reply_message); |
1790 | |
1791 | if (log_min_messages <= DEBUG2) |
1792 | { |
1793 | char *replyTimeStr; |
1794 | |
1795 | /* Copy because timestamptz_to_str returns a static buffer */ |
1796 | replyTimeStr = pstrdup(timestamptz_to_str(replyTime)); |
1797 | |
1798 | elog(DEBUG2, "write %X/%X flush %X/%X apply %X/%X%s reply_time %s" , |
1799 | (uint32) (writePtr >> 32), (uint32) writePtr, |
1800 | (uint32) (flushPtr >> 32), (uint32) flushPtr, |
1801 | (uint32) (applyPtr >> 32), (uint32) applyPtr, |
1802 | replyRequested ? " (reply requested)" : "" , |
1803 | replyTimeStr); |
1804 | |
1805 | pfree(replyTimeStr); |
1806 | } |
1807 | |
1808 | /* See if we can compute the round-trip lag for these positions. */ |
1809 | now = GetCurrentTimestamp(); |
1810 | writeLag = LagTrackerRead(SYNC_REP_WAIT_WRITE, writePtr, now); |
1811 | flushLag = LagTrackerRead(SYNC_REP_WAIT_FLUSH, flushPtr, now); |
1812 | applyLag = LagTrackerRead(SYNC_REP_WAIT_APPLY, applyPtr, now); |
1813 | |
1814 | /* |
1815 | * If the standby reports that it has fully replayed the WAL in two |
1816 | * consecutive reply messages, then the second such message must result |
1817 | * from wal_receiver_status_interval expiring on the standby. This is a |
1818 | * convenient time to forget the lag times measured when it last |
1819 | * wrote/flushed/applied a WAL record, to avoid displaying stale lag data |
1820 | * until more WAL traffic arrives. |
1821 | */ |
1822 | clearLagTimes = false; |
1823 | if (applyPtr == sentPtr) |
1824 | { |
1825 | if (fullyAppliedLastTime) |
1826 | clearLagTimes = true; |
1827 | fullyAppliedLastTime = true; |
1828 | } |
1829 | else |
1830 | fullyAppliedLastTime = false; |
1831 | |
1832 | /* Send a reply if the standby requested one. */ |
1833 | if (replyRequested) |
1834 | WalSndKeepalive(false); |
1835 | |
1836 | /* |
1837 | * Update shared state for this WalSender process based on reply data from |
1838 | * standby. |
1839 | */ |
1840 | { |
1841 | WalSnd *walsnd = MyWalSnd; |
1842 | |
1843 | SpinLockAcquire(&walsnd->mutex); |
1844 | walsnd->write = writePtr; |
1845 | walsnd->flush = flushPtr; |
1846 | walsnd->apply = applyPtr; |
1847 | if (writeLag != -1 || clearLagTimes) |
1848 | walsnd->writeLag = writeLag; |
1849 | if (flushLag != -1 || clearLagTimes) |
1850 | walsnd->flushLag = flushLag; |
1851 | if (applyLag != -1 || clearLagTimes) |
1852 | walsnd->applyLag = applyLag; |
1853 | walsnd->replyTime = replyTime; |
1854 | SpinLockRelease(&walsnd->mutex); |
1855 | } |
1856 | |
1857 | if (!am_cascading_walsender) |
1858 | SyncRepReleaseWaiters(); |
1859 | |
1860 | /* |
1861 | * Advance our local xmin horizon when the client confirmed a flush. |
1862 | */ |
1863 | if (MyReplicationSlot && flushPtr != InvalidXLogRecPtr) |
1864 | { |
1865 | if (SlotIsLogical(MyReplicationSlot)) |
1866 | LogicalConfirmReceivedLocation(flushPtr); |
1867 | else |
1868 | PhysicalConfirmReceivedLocation(flushPtr); |
1869 | } |
1870 | } |
1871 | |
1872 | /* compute new replication slot xmin horizon if needed */ |
1873 | static void |
1874 | PhysicalReplicationSlotNewXmin(TransactionId feedbackXmin, TransactionId feedbackCatalogXmin) |
1875 | { |
1876 | bool changed = false; |
1877 | ReplicationSlot *slot = MyReplicationSlot; |
1878 | |
1879 | SpinLockAcquire(&slot->mutex); |
1880 | MyPgXact->xmin = InvalidTransactionId; |
1881 | |
1882 | /* |
1883 | * For physical replication we don't need the interlock provided by xmin |
1884 | * and effective_xmin since the consequences of a missed increase are |
1885 | * limited to query cancellations, so set both at once. |
1886 | */ |
1887 | if (!TransactionIdIsNormal(slot->data.xmin) || |
1888 | !TransactionIdIsNormal(feedbackXmin) || |
1889 | TransactionIdPrecedes(slot->data.xmin, feedbackXmin)) |
1890 | { |
1891 | changed = true; |
1892 | slot->data.xmin = feedbackXmin; |
1893 | slot->effective_xmin = feedbackXmin; |
1894 | } |
1895 | if (!TransactionIdIsNormal(slot->data.catalog_xmin) || |
1896 | !TransactionIdIsNormal(feedbackCatalogXmin) || |
1897 | TransactionIdPrecedes(slot->data.catalog_xmin, feedbackCatalogXmin)) |
1898 | { |
1899 | changed = true; |
1900 | slot->data.catalog_xmin = feedbackCatalogXmin; |
1901 | slot->effective_catalog_xmin = feedbackCatalogXmin; |
1902 | } |
1903 | SpinLockRelease(&slot->mutex); |
1904 | |
1905 | if (changed) |
1906 | { |
1907 | ReplicationSlotMarkDirty(); |
1908 | ReplicationSlotsComputeRequiredXmin(false); |
1909 | } |
1910 | } |
1911 | |
1912 | /* |
1913 | * Check that the provided xmin/epoch are sane, that is, not in the future |
1914 | * and not so far back as to be already wrapped around. |
1915 | * |
1916 | * Epoch of nextXid should be same as standby, or if the counter has |
1917 | * wrapped, then one greater than standby. |
1918 | * |
1919 | * This check doesn't care about whether clog exists for these xids |
1920 | * at all. |
1921 | */ |
1922 | static bool |
1923 | TransactionIdInRecentPast(TransactionId xid, uint32 epoch) |
1924 | { |
1925 | FullTransactionId nextFullXid; |
1926 | TransactionId nextXid; |
1927 | uint32 nextEpoch; |
1928 | |
1929 | nextFullXid = ReadNextFullTransactionId(); |
1930 | nextXid = XidFromFullTransactionId(nextFullXid); |
1931 | nextEpoch = EpochFromFullTransactionId(nextFullXid); |
1932 | |
1933 | if (xid <= nextXid) |
1934 | { |
1935 | if (epoch != nextEpoch) |
1936 | return false; |
1937 | } |
1938 | else |
1939 | { |
1940 | if (epoch + 1 != nextEpoch) |
1941 | return false; |
1942 | } |
1943 | |
1944 | if (!TransactionIdPrecedesOrEquals(xid, nextXid)) |
1945 | return false; /* epoch OK, but it's wrapped around */ |
1946 | |
1947 | return true; |
1948 | } |
1949 | |
1950 | /* |
1951 | * Hot Standby feedback |
1952 | */ |
1953 | static void |
1954 | ProcessStandbyHSFeedbackMessage(void) |
1955 | { |
1956 | TransactionId feedbackXmin; |
1957 | uint32 feedbackEpoch; |
1958 | TransactionId feedbackCatalogXmin; |
1959 | uint32 feedbackCatalogEpoch; |
1960 | TimestampTz replyTime; |
1961 | |
1962 | /* |
1963 | * Decipher the reply message. The caller already consumed the msgtype |
1964 | * byte. See XLogWalRcvSendHSFeedback() in walreceiver.c for the creation |
1965 | * of this message. |
1966 | */ |
1967 | replyTime = pq_getmsgint64(&reply_message); |
1968 | feedbackXmin = pq_getmsgint(&reply_message, 4); |
1969 | feedbackEpoch = pq_getmsgint(&reply_message, 4); |
1970 | feedbackCatalogXmin = pq_getmsgint(&reply_message, 4); |
1971 | feedbackCatalogEpoch = pq_getmsgint(&reply_message, 4); |
1972 | |
1973 | if (log_min_messages <= DEBUG2) |
1974 | { |
1975 | char *replyTimeStr; |
1976 | |
1977 | /* Copy because timestamptz_to_str returns a static buffer */ |
1978 | replyTimeStr = pstrdup(timestamptz_to_str(replyTime)); |
1979 | |
1980 | elog(DEBUG2, "hot standby feedback xmin %u epoch %u, catalog_xmin %u epoch %u reply_time %s" , |
1981 | feedbackXmin, |
1982 | feedbackEpoch, |
1983 | feedbackCatalogXmin, |
1984 | feedbackCatalogEpoch, |
1985 | replyTimeStr); |
1986 | |
1987 | pfree(replyTimeStr); |
1988 | } |
1989 | |
1990 | /* |
1991 | * Update shared state for this WalSender process based on reply data from |
1992 | * standby. |
1993 | */ |
1994 | { |
1995 | WalSnd *walsnd = MyWalSnd; |
1996 | |
1997 | SpinLockAcquire(&walsnd->mutex); |
1998 | walsnd->replyTime = replyTime; |
1999 | SpinLockRelease(&walsnd->mutex); |
2000 | } |
2001 | |
2002 | /* |
2003 | * Unset WalSender's xmins if the feedback message values are invalid. |
2004 | * This happens when the downstream turned hot_standby_feedback off. |
2005 | */ |
2006 | if (!TransactionIdIsNormal(feedbackXmin) |
2007 | && !TransactionIdIsNormal(feedbackCatalogXmin)) |
2008 | { |
2009 | MyPgXact->xmin = InvalidTransactionId; |
2010 | if (MyReplicationSlot != NULL) |
2011 | PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin); |
2012 | return; |
2013 | } |
2014 | |
2015 | /* |
2016 | * Check that the provided xmin/epoch are sane, that is, not in the future |
2017 | * and not so far back as to be already wrapped around. Ignore if not. |
2018 | */ |
2019 | if (TransactionIdIsNormal(feedbackXmin) && |
2020 | !TransactionIdInRecentPast(feedbackXmin, feedbackEpoch)) |
2021 | return; |
2022 | |
2023 | if (TransactionIdIsNormal(feedbackCatalogXmin) && |
2024 | !TransactionIdInRecentPast(feedbackCatalogXmin, feedbackCatalogEpoch)) |
2025 | return; |
2026 | |
2027 | /* |
2028 | * Set the WalSender's xmin equal to the standby's requested xmin, so that |
2029 | * the xmin will be taken into account by GetOldestXmin. This will hold |
2030 | * back the removal of dead rows and thereby prevent the generation of |
2031 | * cleanup conflicts on the standby server. |
2032 | * |
2033 | * There is a small window for a race condition here: although we just |
2034 | * checked that feedbackXmin precedes nextXid, the nextXid could have |
2035 | * gotten advanced between our fetching it and applying the xmin below, |
2036 | * perhaps far enough to make feedbackXmin wrap around. In that case the |
2037 | * xmin we set here would be "in the future" and have no effect. No point |
2038 | * in worrying about this since it's too late to save the desired data |
2039 | * anyway. Assuming that the standby sends us an increasing sequence of |
2040 | * xmins, this could only happen during the first reply cycle, else our |
2041 | * own xmin would prevent nextXid from advancing so far. |
2042 | * |
2043 | * We don't bother taking the ProcArrayLock here. Setting the xmin field |
2044 | * is assumed atomic, and there's no real need to prevent a concurrent |
2045 | * GetOldestXmin. (If we're moving our xmin forward, this is obviously |
2046 | * safe, and if we're moving it backwards, well, the data is at risk |
2047 | * already since a VACUUM could have just finished calling GetOldestXmin.) |
2048 | * |
2049 | * If we're using a replication slot we reserve the xmin via that, |
2050 | * otherwise via the walsender's PGXACT entry. We can only track the |
2051 | * catalog xmin separately when using a slot, so we store the least of the |
2052 | * two provided when not using a slot. |
2053 | * |
2054 | * XXX: It might make sense to generalize the ephemeral slot concept and |
2055 | * always use the slot mechanism to handle the feedback xmin. |
2056 | */ |
2057 | if (MyReplicationSlot != NULL) /* XXX: persistency configurable? */ |
2058 | PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin); |
2059 | else |
2060 | { |
2061 | if (TransactionIdIsNormal(feedbackCatalogXmin) |
2062 | && TransactionIdPrecedes(feedbackCatalogXmin, feedbackXmin)) |
2063 | MyPgXact->xmin = feedbackCatalogXmin; |
2064 | else |
2065 | MyPgXact->xmin = feedbackXmin; |
2066 | } |
2067 | } |
2068 | |
2069 | /* |
2070 | * Compute how long send/receive loops should sleep. |
2071 | * |
2072 | * If wal_sender_timeout is enabled we want to wake up in time to send |
2073 | * keepalives and to abort the connection if wal_sender_timeout has been |
2074 | * reached. |
2075 | */ |
2076 | static long |
2077 | WalSndComputeSleeptime(TimestampTz now) |
2078 | { |
2079 | long sleeptime = 10000; /* 10 s */ |
2080 | |
2081 | if (wal_sender_timeout > 0 && last_reply_timestamp > 0) |
2082 | { |
2083 | TimestampTz wakeup_time; |
2084 | long sec_to_timeout; |
2085 | int microsec_to_timeout; |
2086 | |
2087 | /* |
2088 | * At the latest stop sleeping once wal_sender_timeout has been |
2089 | * reached. |
2090 | */ |
2091 | wakeup_time = TimestampTzPlusMilliseconds(last_reply_timestamp, |
2092 | wal_sender_timeout); |
2093 | |
2094 | /* |
2095 | * If no ping has been sent yet, wakeup when it's time to do so. |
2096 | * WalSndKeepaliveIfNecessary() wants to send a keepalive once half of |
2097 | * the timeout passed without a response. |
2098 | */ |
2099 | if (!waiting_for_ping_response) |
2100 | wakeup_time = TimestampTzPlusMilliseconds(last_reply_timestamp, |
2101 | wal_sender_timeout / 2); |
2102 | |
2103 | /* Compute relative time until wakeup. */ |
2104 | TimestampDifference(now, wakeup_time, |
2105 | &sec_to_timeout, µsec_to_timeout); |
2106 | |
2107 | sleeptime = sec_to_timeout * 1000 + |
2108 | microsec_to_timeout / 1000; |
2109 | } |
2110 | |
2111 | return sleeptime; |
2112 | } |
2113 | |
2114 | /* |
2115 | * Check whether there have been responses by the client within |
2116 | * wal_sender_timeout and shutdown if not. Using last_processing as the |
2117 | * reference point avoids counting server-side stalls against the client. |
2118 | * However, a long server-side stall can make WalSndKeepaliveIfNecessary() |
2119 | * postdate last_processing by more than wal_sender_timeout. If that happens, |
2120 | * the client must reply almost immediately to avoid a timeout. This rarely |
2121 | * affects the default configuration, under which clients spontaneously send a |
2122 | * message every standby_message_timeout = wal_sender_timeout/6 = 10s. We |
2123 | * could eliminate that problem by recognizing timeout expiration at |
2124 | * wal_sender_timeout/2 after the keepalive. |
2125 | */ |
2126 | static void |
2127 | WalSndCheckTimeOut(void) |
2128 | { |
2129 | TimestampTz timeout; |
2130 | |
2131 | /* don't bail out if we're doing something that doesn't require timeouts */ |
2132 | if (last_reply_timestamp <= 0) |
2133 | return; |
2134 | |
2135 | timeout = TimestampTzPlusMilliseconds(last_reply_timestamp, |
2136 | wal_sender_timeout); |
2137 | |
2138 | if (wal_sender_timeout > 0 && last_processing >= timeout) |
2139 | { |
2140 | /* |
2141 | * Since typically expiration of replication timeout means |
2142 | * communication problem, we don't send the error message to the |
2143 | * standby. |
2144 | */ |
2145 | ereport(COMMERROR, |
2146 | (errmsg("terminating walsender process due to replication timeout" ))); |
2147 | |
2148 | WalSndShutdown(); |
2149 | } |
2150 | } |
2151 | |
2152 | /* Main loop of walsender process that streams the WAL over Copy messages. */ |
2153 | static void |
2154 | WalSndLoop(WalSndSendDataCallback send_data) |
2155 | { |
2156 | /* |
2157 | * Initialize the last reply timestamp. That enables timeout processing |
2158 | * from hereon. |
2159 | */ |
2160 | last_reply_timestamp = GetCurrentTimestamp(); |
2161 | waiting_for_ping_response = false; |
2162 | |
2163 | /* |
2164 | * Loop until we reach the end of this timeline or the client requests to |
2165 | * stop streaming. |
2166 | */ |
2167 | for (;;) |
2168 | { |
2169 | /* Clear any already-pending wakeups */ |
2170 | ResetLatch(MyLatch); |
2171 | |
2172 | CHECK_FOR_INTERRUPTS(); |
2173 | |
2174 | /* Process any requests or signals received recently */ |
2175 | if (ConfigReloadPending) |
2176 | { |
2177 | ConfigReloadPending = false; |
2178 | ProcessConfigFile(PGC_SIGHUP); |
2179 | SyncRepInitConfig(); |
2180 | } |
2181 | |
2182 | /* Check for input from the client */ |
2183 | ProcessRepliesIfAny(); |
2184 | |
2185 | /* |
2186 | * If we have received CopyDone from the client, sent CopyDone |
2187 | * ourselves, and the output buffer is empty, it's time to exit |
2188 | * streaming. |
2189 | */ |
2190 | if (streamingDoneReceiving && streamingDoneSending && |
2191 | !pq_is_send_pending()) |
2192 | break; |
2193 | |
2194 | /* |
2195 | * If we don't have any pending data in the output buffer, try to send |
2196 | * some more. If there is some, we don't bother to call send_data |
2197 | * again until we've flushed it ... but we'd better assume we are not |
2198 | * caught up. |
2199 | */ |
2200 | if (!pq_is_send_pending()) |
2201 | send_data(); |
2202 | else |
2203 | WalSndCaughtUp = false; |
2204 | |
2205 | /* Try to flush pending output to the client */ |
2206 | if (pq_flush_if_writable() != 0) |
2207 | WalSndShutdown(); |
2208 | |
2209 | /* If nothing remains to be sent right now ... */ |
2210 | if (WalSndCaughtUp && !pq_is_send_pending()) |
2211 | { |
2212 | /* |
2213 | * If we're in catchup state, move to streaming. This is an |
2214 | * important state change for users to know about, since before |
2215 | * this point data loss might occur if the primary dies and we |
2216 | * need to failover to the standby. The state change is also |
2217 | * important for synchronous replication, since commits that |
2218 | * started to wait at that point might wait for some time. |
2219 | */ |
2220 | if (MyWalSnd->state == WALSNDSTATE_CATCHUP) |
2221 | { |
2222 | ereport(DEBUG1, |
2223 | (errmsg("\"%s\" has now caught up with upstream server" , |
2224 | application_name))); |
2225 | WalSndSetState(WALSNDSTATE_STREAMING); |
2226 | } |
2227 | |
2228 | /* |
2229 | * When SIGUSR2 arrives, we send any outstanding logs up to the |
2230 | * shutdown checkpoint record (i.e., the latest record), wait for |
2231 | * them to be replicated to the standby, and exit. This may be a |
2232 | * normal termination at shutdown, or a promotion, the walsender |
2233 | * is not sure which. |
2234 | */ |
2235 | if (got_SIGUSR2) |
2236 | WalSndDone(send_data); |
2237 | } |
2238 | |
2239 | /* Check for replication timeout. */ |
2240 | WalSndCheckTimeOut(); |
2241 | |
2242 | /* Send keepalive if the time has come */ |
2243 | WalSndKeepaliveIfNecessary(); |
2244 | |
2245 | /* |
2246 | * We don't block if not caught up, unless there is unsent data |
2247 | * pending in which case we'd better block until the socket is |
2248 | * write-ready. This test is only needed for the case where the |
2249 | * send_data callback handled a subset of the available data but then |
2250 | * pq_flush_if_writable flushed it all --- we should immediately try |
2251 | * to send more. |
2252 | */ |
2253 | if ((WalSndCaughtUp && !streamingDoneSending) || pq_is_send_pending()) |
2254 | { |
2255 | long sleeptime; |
2256 | int wakeEvents; |
2257 | |
2258 | wakeEvents = WL_LATCH_SET | WL_EXIT_ON_PM_DEATH | WL_TIMEOUT | |
2259 | WL_SOCKET_READABLE; |
2260 | |
2261 | /* |
2262 | * Use fresh timestamp, not last_processed, to reduce the chance |
2263 | * of reaching wal_sender_timeout before sending a keepalive. |
2264 | */ |
2265 | sleeptime = WalSndComputeSleeptime(GetCurrentTimestamp()); |
2266 | |
2267 | if (pq_is_send_pending()) |
2268 | wakeEvents |= WL_SOCKET_WRITEABLE; |
2269 | |
2270 | /* Sleep until something happens or we time out */ |
2271 | (void) WaitLatchOrSocket(MyLatch, wakeEvents, |
2272 | MyProcPort->sock, sleeptime, |
2273 | WAIT_EVENT_WAL_SENDER_MAIN); |
2274 | } |
2275 | } |
2276 | return; |
2277 | } |
2278 | |
2279 | /* Initialize a per-walsender data structure for this walsender process */ |
2280 | static void |
2281 | InitWalSenderSlot(void) |
2282 | { |
2283 | int i; |
2284 | |
2285 | /* |
2286 | * WalSndCtl should be set up already (we inherit this by fork() or |
2287 | * EXEC_BACKEND mechanism from the postmaster). |
2288 | */ |
2289 | Assert(WalSndCtl != NULL); |
2290 | Assert(MyWalSnd == NULL); |
2291 | |
2292 | /* |
2293 | * Find a free walsender slot and reserve it. This must not fail due to |
2294 | * the prior check for free WAL senders in InitProcess(). |
2295 | */ |
2296 | for (i = 0; i < max_wal_senders; i++) |
2297 | { |
2298 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
2299 | |
2300 | SpinLockAcquire(&walsnd->mutex); |
2301 | |
2302 | if (walsnd->pid != 0) |
2303 | { |
2304 | SpinLockRelease(&walsnd->mutex); |
2305 | continue; |
2306 | } |
2307 | else |
2308 | { |
2309 | /* |
2310 | * Found a free slot. Reserve it for us. |
2311 | */ |
2312 | walsnd->pid = MyProcPid; |
2313 | walsnd->sentPtr = InvalidXLogRecPtr; |
2314 | walsnd->write = InvalidXLogRecPtr; |
2315 | walsnd->flush = InvalidXLogRecPtr; |
2316 | walsnd->apply = InvalidXLogRecPtr; |
2317 | walsnd->writeLag = -1; |
2318 | walsnd->flushLag = -1; |
2319 | walsnd->applyLag = -1; |
2320 | walsnd->state = WALSNDSTATE_STARTUP; |
2321 | walsnd->latch = &MyProc->procLatch; |
2322 | walsnd->replyTime = 0; |
2323 | SpinLockRelease(&walsnd->mutex); |
2324 | /* don't need the lock anymore */ |
2325 | MyWalSnd = (WalSnd *) walsnd; |
2326 | |
2327 | break; |
2328 | } |
2329 | } |
2330 | |
2331 | Assert(MyWalSnd != NULL); |
2332 | |
2333 | /* Arrange to clean up at walsender exit */ |
2334 | on_shmem_exit(WalSndKill, 0); |
2335 | } |
2336 | |
2337 | /* Destroy the per-walsender data structure for this walsender process */ |
2338 | static void |
2339 | WalSndKill(int code, Datum arg) |
2340 | { |
2341 | WalSnd *walsnd = MyWalSnd; |
2342 | |
2343 | Assert(walsnd != NULL); |
2344 | |
2345 | MyWalSnd = NULL; |
2346 | |
2347 | SpinLockAcquire(&walsnd->mutex); |
2348 | /* clear latch while holding the spinlock, so it can safely be read */ |
2349 | walsnd->latch = NULL; |
2350 | /* Mark WalSnd struct as no longer being in use. */ |
2351 | walsnd->pid = 0; |
2352 | SpinLockRelease(&walsnd->mutex); |
2353 | } |
2354 | |
2355 | /* |
2356 | * Read 'count' bytes from WAL into 'buf', starting at location 'startptr' |
2357 | * |
2358 | * XXX probably this should be improved to suck data directly from the |
2359 | * WAL buffers when possible. |
2360 | * |
2361 | * Will open, and keep open, one WAL segment stored in the global file |
2362 | * descriptor sendFile. This means if XLogRead is used once, there will |
2363 | * always be one descriptor left open until the process ends, but never |
2364 | * more than one. |
2365 | */ |
2366 | static void |
2367 | XLogRead(char *buf, XLogRecPtr startptr, Size count) |
2368 | { |
2369 | char *p; |
2370 | XLogRecPtr recptr; |
2371 | Size nbytes; |
2372 | XLogSegNo segno; |
2373 | |
2374 | retry: |
2375 | p = buf; |
2376 | recptr = startptr; |
2377 | nbytes = count; |
2378 | |
2379 | while (nbytes > 0) |
2380 | { |
2381 | uint32 startoff; |
2382 | int segbytes; |
2383 | int readbytes; |
2384 | |
2385 | startoff = XLogSegmentOffset(recptr, wal_segment_size); |
2386 | |
2387 | if (sendFile < 0 || !XLByteInSeg(recptr, sendSegNo, wal_segment_size)) |
2388 | { |
2389 | char path[MAXPGPATH]; |
2390 | |
2391 | /* Switch to another logfile segment */ |
2392 | if (sendFile >= 0) |
2393 | close(sendFile); |
2394 | |
2395 | XLByteToSeg(recptr, sendSegNo, wal_segment_size); |
2396 | |
2397 | /*------- |
2398 | * When reading from a historic timeline, and there is a timeline |
2399 | * switch within this segment, read from the WAL segment belonging |
2400 | * to the new timeline. |
2401 | * |
2402 | * For example, imagine that this server is currently on timeline |
2403 | * 5, and we're streaming timeline 4. The switch from timeline 4 |
2404 | * to 5 happened at 0/13002088. In pg_wal, we have these files: |
2405 | * |
2406 | * ... |
2407 | * 000000040000000000000012 |
2408 | * 000000040000000000000013 |
2409 | * 000000050000000000000013 |
2410 | * 000000050000000000000014 |
2411 | * ... |
2412 | * |
2413 | * In this situation, when requested to send the WAL from |
2414 | * segment 0x13, on timeline 4, we read the WAL from file |
2415 | * 000000050000000000000013. Archive recovery prefers files from |
2416 | * newer timelines, so if the segment was restored from the |
2417 | * archive on this server, the file belonging to the old timeline, |
2418 | * 000000040000000000000013, might not exist. Their contents are |
2419 | * equal up to the switchpoint, because at a timeline switch, the |
2420 | * used portion of the old segment is copied to the new file. |
2421 | *------- |
2422 | */ |
2423 | curFileTimeLine = sendTimeLine; |
2424 | if (sendTimeLineIsHistoric) |
2425 | { |
2426 | XLogSegNo endSegNo; |
2427 | |
2428 | XLByteToSeg(sendTimeLineValidUpto, endSegNo, wal_segment_size); |
2429 | if (sendSegNo == endSegNo) |
2430 | curFileTimeLine = sendTimeLineNextTLI; |
2431 | } |
2432 | |
2433 | XLogFilePath(path, curFileTimeLine, sendSegNo, wal_segment_size); |
2434 | |
2435 | sendFile = BasicOpenFile(path, O_RDONLY | PG_BINARY); |
2436 | if (sendFile < 0) |
2437 | { |
2438 | /* |
2439 | * If the file is not found, assume it's because the standby |
2440 | * asked for a too old WAL segment that has already been |
2441 | * removed or recycled. |
2442 | */ |
2443 | if (errno == ENOENT) |
2444 | ereport(ERROR, |
2445 | (errcode_for_file_access(), |
2446 | errmsg("requested WAL segment %s has already been removed" , |
2447 | XLogFileNameP(curFileTimeLine, sendSegNo)))); |
2448 | else |
2449 | ereport(ERROR, |
2450 | (errcode_for_file_access(), |
2451 | errmsg("could not open file \"%s\": %m" , |
2452 | path))); |
2453 | } |
2454 | sendOff = 0; |
2455 | } |
2456 | |
2457 | /* Need to seek in the file? */ |
2458 | if (sendOff != startoff) |
2459 | { |
2460 | if (lseek(sendFile, (off_t) startoff, SEEK_SET) < 0) |
2461 | ereport(ERROR, |
2462 | (errcode_for_file_access(), |
2463 | errmsg("could not seek in log segment %s to offset %u: %m" , |
2464 | XLogFileNameP(curFileTimeLine, sendSegNo), |
2465 | startoff))); |
2466 | sendOff = startoff; |
2467 | } |
2468 | |
2469 | /* How many bytes are within this segment? */ |
2470 | if (nbytes > (wal_segment_size - startoff)) |
2471 | segbytes = wal_segment_size - startoff; |
2472 | else |
2473 | segbytes = nbytes; |
2474 | |
2475 | pgstat_report_wait_start(WAIT_EVENT_WAL_READ); |
2476 | readbytes = read(sendFile, p, segbytes); |
2477 | pgstat_report_wait_end(); |
2478 | if (readbytes < 0) |
2479 | { |
2480 | ereport(ERROR, |
2481 | (errcode_for_file_access(), |
2482 | errmsg("could not read from log segment %s, offset %u, length %zu: %m" , |
2483 | XLogFileNameP(curFileTimeLine, sendSegNo), |
2484 | sendOff, (Size) segbytes))); |
2485 | } |
2486 | else if (readbytes == 0) |
2487 | { |
2488 | ereport(ERROR, |
2489 | (errcode(ERRCODE_DATA_CORRUPTED), |
2490 | errmsg("could not read from log segment %s, offset %u: read %d of %zu" , |
2491 | XLogFileNameP(curFileTimeLine, sendSegNo), |
2492 | sendOff, readbytes, (Size) segbytes))); |
2493 | } |
2494 | |
2495 | /* Update state for read */ |
2496 | recptr += readbytes; |
2497 | |
2498 | sendOff += readbytes; |
2499 | nbytes -= readbytes; |
2500 | p += readbytes; |
2501 | } |
2502 | |
2503 | /* |
2504 | * After reading into the buffer, check that what we read was valid. We do |
2505 | * this after reading, because even though the segment was present when we |
2506 | * opened it, it might get recycled or removed while we read it. The |
2507 | * read() succeeds in that case, but the data we tried to read might |
2508 | * already have been overwritten with new WAL records. |
2509 | */ |
2510 | XLByteToSeg(startptr, segno, wal_segment_size); |
2511 | CheckXLogRemoved(segno, ThisTimeLineID); |
2512 | |
2513 | /* |
2514 | * During recovery, the currently-open WAL file might be replaced with the |
2515 | * file of the same name retrieved from archive. So we always need to |
2516 | * check what we read was valid after reading into the buffer. If it's |
2517 | * invalid, we try to open and read the file again. |
2518 | */ |
2519 | if (am_cascading_walsender) |
2520 | { |
2521 | WalSnd *walsnd = MyWalSnd; |
2522 | bool reload; |
2523 | |
2524 | SpinLockAcquire(&walsnd->mutex); |
2525 | reload = walsnd->needreload; |
2526 | walsnd->needreload = false; |
2527 | SpinLockRelease(&walsnd->mutex); |
2528 | |
2529 | if (reload && sendFile >= 0) |
2530 | { |
2531 | close(sendFile); |
2532 | sendFile = -1; |
2533 | |
2534 | goto retry; |
2535 | } |
2536 | } |
2537 | } |
2538 | |
2539 | /* |
2540 | * Send out the WAL in its normal physical/stored form. |
2541 | * |
2542 | * Read up to MAX_SEND_SIZE bytes of WAL that's been flushed to disk, |
2543 | * but not yet sent to the client, and buffer it in the libpq output |
2544 | * buffer. |
2545 | * |
2546 | * If there is no unsent WAL remaining, WalSndCaughtUp is set to true, |
2547 | * otherwise WalSndCaughtUp is set to false. |
2548 | */ |
2549 | static void |
2550 | XLogSendPhysical(void) |
2551 | { |
2552 | XLogRecPtr SendRqstPtr; |
2553 | XLogRecPtr startptr; |
2554 | XLogRecPtr endptr; |
2555 | Size nbytes; |
2556 | |
2557 | /* If requested switch the WAL sender to the stopping state. */ |
2558 | if (got_STOPPING) |
2559 | WalSndSetState(WALSNDSTATE_STOPPING); |
2560 | |
2561 | if (streamingDoneSending) |
2562 | { |
2563 | WalSndCaughtUp = true; |
2564 | return; |
2565 | } |
2566 | |
2567 | /* Figure out how far we can safely send the WAL. */ |
2568 | if (sendTimeLineIsHistoric) |
2569 | { |
2570 | /* |
2571 | * Streaming an old timeline that's in this server's history, but is |
2572 | * not the one we're currently inserting or replaying. It can be |
2573 | * streamed up to the point where we switched off that timeline. |
2574 | */ |
2575 | SendRqstPtr = sendTimeLineValidUpto; |
2576 | } |
2577 | else if (am_cascading_walsender) |
2578 | { |
2579 | /* |
2580 | * Streaming the latest timeline on a standby. |
2581 | * |
2582 | * Attempt to send all WAL that has already been replayed, so that we |
2583 | * know it's valid. If we're receiving WAL through streaming |
2584 | * replication, it's also OK to send any WAL that has been received |
2585 | * but not replayed. |
2586 | * |
2587 | * The timeline we're recovering from can change, or we can be |
2588 | * promoted. In either case, the current timeline becomes historic. We |
2589 | * need to detect that so that we don't try to stream past the point |
2590 | * where we switched to another timeline. We check for promotion or |
2591 | * timeline switch after calculating FlushPtr, to avoid a race |
2592 | * condition: if the timeline becomes historic just after we checked |
2593 | * that it was still current, it's still be OK to stream it up to the |
2594 | * FlushPtr that was calculated before it became historic. |
2595 | */ |
2596 | bool becameHistoric = false; |
2597 | |
2598 | SendRqstPtr = GetStandbyFlushRecPtr(); |
2599 | |
2600 | if (!RecoveryInProgress()) |
2601 | { |
2602 | /* |
2603 | * We have been promoted. RecoveryInProgress() updated |
2604 | * ThisTimeLineID to the new current timeline. |
2605 | */ |
2606 | am_cascading_walsender = false; |
2607 | becameHistoric = true; |
2608 | } |
2609 | else |
2610 | { |
2611 | /* |
2612 | * Still a cascading standby. But is the timeline we're sending |
2613 | * still the one recovery is recovering from? ThisTimeLineID was |
2614 | * updated by the GetStandbyFlushRecPtr() call above. |
2615 | */ |
2616 | if (sendTimeLine != ThisTimeLineID) |
2617 | becameHistoric = true; |
2618 | } |
2619 | |
2620 | if (becameHistoric) |
2621 | { |
2622 | /* |
2623 | * The timeline we were sending has become historic. Read the |
2624 | * timeline history file of the new timeline to see where exactly |
2625 | * we forked off from the timeline we were sending. |
2626 | */ |
2627 | List *history; |
2628 | |
2629 | history = readTimeLineHistory(ThisTimeLineID); |
2630 | sendTimeLineValidUpto = tliSwitchPoint(sendTimeLine, history, &sendTimeLineNextTLI); |
2631 | |
2632 | Assert(sendTimeLine < sendTimeLineNextTLI); |
2633 | list_free_deep(history); |
2634 | |
2635 | sendTimeLineIsHistoric = true; |
2636 | |
2637 | SendRqstPtr = sendTimeLineValidUpto; |
2638 | } |
2639 | } |
2640 | else |
2641 | { |
2642 | /* |
2643 | * Streaming the current timeline on a master. |
2644 | * |
2645 | * Attempt to send all data that's already been written out and |
2646 | * fsync'd to disk. We cannot go further than what's been written out |
2647 | * given the current implementation of XLogRead(). And in any case |
2648 | * it's unsafe to send WAL that is not securely down to disk on the |
2649 | * master: if the master subsequently crashes and restarts, standbys |
2650 | * must not have applied any WAL that got lost on the master. |
2651 | */ |
2652 | SendRqstPtr = GetFlushRecPtr(); |
2653 | } |
2654 | |
2655 | /* |
2656 | * Record the current system time as an approximation of the time at which |
2657 | * this WAL location was written for the purposes of lag tracking. |
2658 | * |
2659 | * In theory we could make XLogFlush() record a time in shmem whenever WAL |
2660 | * is flushed and we could get that time as well as the LSN when we call |
2661 | * GetFlushRecPtr() above (and likewise for the cascading standby |
2662 | * equivalent), but rather than putting any new code into the hot WAL path |
2663 | * it seems good enough to capture the time here. We should reach this |
2664 | * after XLogFlush() runs WalSndWakeupProcessRequests(), and although that |
2665 | * may take some time, we read the WAL flush pointer and take the time |
2666 | * very close to together here so that we'll get a later position if it is |
2667 | * still moving. |
2668 | * |
2669 | * Because LagTrackerWriter ignores samples when the LSN hasn't advanced, |
2670 | * this gives us a cheap approximation for the WAL flush time for this |
2671 | * LSN. |
2672 | * |
2673 | * Note that the LSN is not necessarily the LSN for the data contained in |
2674 | * the present message; it's the end of the WAL, which might be further |
2675 | * ahead. All the lag tracking machinery cares about is finding out when |
2676 | * that arbitrary LSN is eventually reported as written, flushed and |
2677 | * applied, so that it can measure the elapsed time. |
2678 | */ |
2679 | LagTrackerWrite(SendRqstPtr, GetCurrentTimestamp()); |
2680 | |
2681 | /* |
2682 | * If this is a historic timeline and we've reached the point where we |
2683 | * forked to the next timeline, stop streaming. |
2684 | * |
2685 | * Note: We might already have sent WAL > sendTimeLineValidUpto. The |
2686 | * startup process will normally replay all WAL that has been received |
2687 | * from the master, before promoting, but if the WAL streaming is |
2688 | * terminated at a WAL page boundary, the valid portion of the timeline |
2689 | * might end in the middle of a WAL record. We might've already sent the |
2690 | * first half of that partial WAL record to the cascading standby, so that |
2691 | * sentPtr > sendTimeLineValidUpto. That's OK; the cascading standby can't |
2692 | * replay the partial WAL record either, so it can still follow our |
2693 | * timeline switch. |
2694 | */ |
2695 | if (sendTimeLineIsHistoric && sendTimeLineValidUpto <= sentPtr) |
2696 | { |
2697 | /* close the current file. */ |
2698 | if (sendFile >= 0) |
2699 | close(sendFile); |
2700 | sendFile = -1; |
2701 | |
2702 | /* Send CopyDone */ |
2703 | pq_putmessage_noblock('c', NULL, 0); |
2704 | streamingDoneSending = true; |
2705 | |
2706 | WalSndCaughtUp = true; |
2707 | |
2708 | elog(DEBUG1, "walsender reached end of timeline at %X/%X (sent up to %X/%X)" , |
2709 | (uint32) (sendTimeLineValidUpto >> 32), (uint32) sendTimeLineValidUpto, |
2710 | (uint32) (sentPtr >> 32), (uint32) sentPtr); |
2711 | return; |
2712 | } |
2713 | |
2714 | /* Do we have any work to do? */ |
2715 | Assert(sentPtr <= SendRqstPtr); |
2716 | if (SendRqstPtr <= sentPtr) |
2717 | { |
2718 | WalSndCaughtUp = true; |
2719 | return; |
2720 | } |
2721 | |
2722 | /* |
2723 | * Figure out how much to send in one message. If there's no more than |
2724 | * MAX_SEND_SIZE bytes to send, send everything. Otherwise send |
2725 | * MAX_SEND_SIZE bytes, but round back to logfile or page boundary. |
2726 | * |
2727 | * The rounding is not only for performance reasons. Walreceiver relies on |
2728 | * the fact that we never split a WAL record across two messages. Since a |
2729 | * long WAL record is split at page boundary into continuation records, |
2730 | * page boundary is always a safe cut-off point. We also assume that |
2731 | * SendRqstPtr never points to the middle of a WAL record. |
2732 | */ |
2733 | startptr = sentPtr; |
2734 | endptr = startptr; |
2735 | endptr += MAX_SEND_SIZE; |
2736 | |
2737 | /* if we went beyond SendRqstPtr, back off */ |
2738 | if (SendRqstPtr <= endptr) |
2739 | { |
2740 | endptr = SendRqstPtr; |
2741 | if (sendTimeLineIsHistoric) |
2742 | WalSndCaughtUp = false; |
2743 | else |
2744 | WalSndCaughtUp = true; |
2745 | } |
2746 | else |
2747 | { |
2748 | /* round down to page boundary. */ |
2749 | endptr -= (endptr % XLOG_BLCKSZ); |
2750 | WalSndCaughtUp = false; |
2751 | } |
2752 | |
2753 | nbytes = endptr - startptr; |
2754 | Assert(nbytes <= MAX_SEND_SIZE); |
2755 | |
2756 | /* |
2757 | * OK to read and send the slice. |
2758 | */ |
2759 | resetStringInfo(&output_message); |
2760 | pq_sendbyte(&output_message, 'w'); |
2761 | |
2762 | pq_sendint64(&output_message, startptr); /* dataStart */ |
2763 | pq_sendint64(&output_message, SendRqstPtr); /* walEnd */ |
2764 | pq_sendint64(&output_message, 0); /* sendtime, filled in last */ |
2765 | |
2766 | /* |
2767 | * Read the log directly into the output buffer to avoid extra memcpy |
2768 | * calls. |
2769 | */ |
2770 | enlargeStringInfo(&output_message, nbytes); |
2771 | XLogRead(&output_message.data[output_message.len], startptr, nbytes); |
2772 | output_message.len += nbytes; |
2773 | output_message.data[output_message.len] = '\0'; |
2774 | |
2775 | /* |
2776 | * Fill the send timestamp last, so that it is taken as late as possible. |
2777 | */ |
2778 | resetStringInfo(&tmpbuf); |
2779 | pq_sendint64(&tmpbuf, GetCurrentTimestamp()); |
2780 | memcpy(&output_message.data[1 + sizeof(int64) + sizeof(int64)], |
2781 | tmpbuf.data, sizeof(int64)); |
2782 | |
2783 | pq_putmessage_noblock('d', output_message.data, output_message.len); |
2784 | |
2785 | sentPtr = endptr; |
2786 | |
2787 | /* Update shared memory status */ |
2788 | { |
2789 | WalSnd *walsnd = MyWalSnd; |
2790 | |
2791 | SpinLockAcquire(&walsnd->mutex); |
2792 | walsnd->sentPtr = sentPtr; |
2793 | SpinLockRelease(&walsnd->mutex); |
2794 | } |
2795 | |
2796 | /* Report progress of XLOG streaming in PS display */ |
2797 | if (update_process_title) |
2798 | { |
2799 | char activitymsg[50]; |
2800 | |
2801 | snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X" , |
2802 | (uint32) (sentPtr >> 32), (uint32) sentPtr); |
2803 | set_ps_display(activitymsg, false); |
2804 | } |
2805 | |
2806 | return; |
2807 | } |
2808 | |
2809 | /* |
2810 | * Stream out logically decoded data. |
2811 | */ |
2812 | static void |
2813 | XLogSendLogical(void) |
2814 | { |
2815 | XLogRecord *record; |
2816 | char *errm; |
2817 | |
2818 | /* |
2819 | * Don't know whether we've caught up yet. We'll set WalSndCaughtUp to |
2820 | * true in WalSndWaitForWal, if we're actually waiting. We also set to |
2821 | * true if XLogReadRecord() had to stop reading but WalSndWaitForWal |
2822 | * didn't wait - i.e. when we're shutting down. |
2823 | */ |
2824 | WalSndCaughtUp = false; |
2825 | |
2826 | record = XLogReadRecord(logical_decoding_ctx->reader, logical_startptr, &errm); |
2827 | logical_startptr = InvalidXLogRecPtr; |
2828 | |
2829 | /* xlog record was invalid */ |
2830 | if (errm != NULL) |
2831 | elog(ERROR, "%s" , errm); |
2832 | |
2833 | if (record != NULL) |
2834 | { |
2835 | /* XXX: Note that logical decoding cannot be used while in recovery */ |
2836 | XLogRecPtr flushPtr = GetFlushRecPtr(); |
2837 | |
2838 | /* |
2839 | * Note the lack of any call to LagTrackerWrite() which is handled by |
2840 | * WalSndUpdateProgress which is called by output plugin through |
2841 | * logical decoding write api. |
2842 | */ |
2843 | LogicalDecodingProcessRecord(logical_decoding_ctx, logical_decoding_ctx->reader); |
2844 | |
2845 | sentPtr = logical_decoding_ctx->reader->EndRecPtr; |
2846 | |
2847 | /* |
2848 | * If we have sent a record that is at or beyond the flushed point, we |
2849 | * have caught up. |
2850 | */ |
2851 | if (sentPtr >= flushPtr) |
2852 | WalSndCaughtUp = true; |
2853 | } |
2854 | else |
2855 | { |
2856 | /* |
2857 | * If the record we just wanted read is at or beyond the flushed |
2858 | * point, then we're caught up. |
2859 | */ |
2860 | if (logical_decoding_ctx->reader->EndRecPtr >= GetFlushRecPtr()) |
2861 | { |
2862 | WalSndCaughtUp = true; |
2863 | |
2864 | /* |
2865 | * Have WalSndLoop() terminate the connection in an orderly |
2866 | * manner, after writing out all the pending data. |
2867 | */ |
2868 | if (got_STOPPING) |
2869 | got_SIGUSR2 = true; |
2870 | } |
2871 | } |
2872 | |
2873 | /* Update shared memory status */ |
2874 | { |
2875 | WalSnd *walsnd = MyWalSnd; |
2876 | |
2877 | SpinLockAcquire(&walsnd->mutex); |
2878 | walsnd->sentPtr = sentPtr; |
2879 | SpinLockRelease(&walsnd->mutex); |
2880 | } |
2881 | } |
2882 | |
2883 | /* |
2884 | * Shutdown if the sender is caught up. |
2885 | * |
2886 | * NB: This should only be called when the shutdown signal has been received |
2887 | * from postmaster. |
2888 | * |
2889 | * Note that if we determine that there's still more data to send, this |
2890 | * function will return control to the caller. |
2891 | */ |
2892 | static void |
2893 | WalSndDone(WalSndSendDataCallback send_data) |
2894 | { |
2895 | XLogRecPtr replicatedPtr; |
2896 | |
2897 | /* ... let's just be real sure we're caught up ... */ |
2898 | send_data(); |
2899 | |
2900 | /* |
2901 | * To figure out whether all WAL has successfully been replicated, check |
2902 | * flush location if valid, write otherwise. Tools like pg_receivewal will |
2903 | * usually (unless in synchronous mode) return an invalid flush location. |
2904 | */ |
2905 | replicatedPtr = XLogRecPtrIsInvalid(MyWalSnd->flush) ? |
2906 | MyWalSnd->write : MyWalSnd->flush; |
2907 | |
2908 | if (WalSndCaughtUp && sentPtr == replicatedPtr && |
2909 | !pq_is_send_pending()) |
2910 | { |
2911 | /* Inform the standby that XLOG streaming is done */ |
2912 | EndCommand("COPY 0" , DestRemote); |
2913 | pq_flush(); |
2914 | |
2915 | proc_exit(0); |
2916 | } |
2917 | if (!waiting_for_ping_response) |
2918 | { |
2919 | WalSndKeepalive(true); |
2920 | waiting_for_ping_response = true; |
2921 | } |
2922 | } |
2923 | |
2924 | /* |
2925 | * Returns the latest point in WAL that has been safely flushed to disk, and |
2926 | * can be sent to the standby. This should only be called when in recovery, |
2927 | * ie. we're streaming to a cascaded standby. |
2928 | * |
2929 | * As a side-effect, ThisTimeLineID is updated to the TLI of the last |
2930 | * replayed WAL record. |
2931 | */ |
2932 | static XLogRecPtr |
2933 | GetStandbyFlushRecPtr(void) |
2934 | { |
2935 | XLogRecPtr replayPtr; |
2936 | TimeLineID replayTLI; |
2937 | XLogRecPtr receivePtr; |
2938 | TimeLineID receiveTLI; |
2939 | XLogRecPtr result; |
2940 | |
2941 | /* |
2942 | * We can safely send what's already been replayed. Also, if walreceiver |
2943 | * is streaming WAL from the same timeline, we can send anything that it |
2944 | * has streamed, but hasn't been replayed yet. |
2945 | */ |
2946 | |
2947 | receivePtr = GetWalRcvWriteRecPtr(NULL, &receiveTLI); |
2948 | replayPtr = GetXLogReplayRecPtr(&replayTLI); |
2949 | |
2950 | ThisTimeLineID = replayTLI; |
2951 | |
2952 | result = replayPtr; |
2953 | if (receiveTLI == ThisTimeLineID && receivePtr > replayPtr) |
2954 | result = receivePtr; |
2955 | |
2956 | return result; |
2957 | } |
2958 | |
2959 | /* |
2960 | * Request walsenders to reload the currently-open WAL file |
2961 | */ |
2962 | void |
2963 | WalSndRqstFileReload(void) |
2964 | { |
2965 | int i; |
2966 | |
2967 | for (i = 0; i < max_wal_senders; i++) |
2968 | { |
2969 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
2970 | |
2971 | SpinLockAcquire(&walsnd->mutex); |
2972 | if (walsnd->pid == 0) |
2973 | { |
2974 | SpinLockRelease(&walsnd->mutex); |
2975 | continue; |
2976 | } |
2977 | walsnd->needreload = true; |
2978 | SpinLockRelease(&walsnd->mutex); |
2979 | } |
2980 | } |
2981 | |
2982 | /* |
2983 | * Handle PROCSIG_WALSND_INIT_STOPPING signal. |
2984 | */ |
2985 | void |
2986 | HandleWalSndInitStopping(void) |
2987 | { |
2988 | Assert(am_walsender); |
2989 | |
2990 | /* |
2991 | * If replication has not yet started, die like with SIGTERM. If |
2992 | * replication is active, only set a flag and wake up the main loop. It |
2993 | * will send any outstanding WAL, wait for it to be replicated to the |
2994 | * standby, and then exit gracefully. |
2995 | */ |
2996 | if (!replication_active) |
2997 | kill(MyProcPid, SIGTERM); |
2998 | else |
2999 | got_STOPPING = true; |
3000 | } |
3001 | |
3002 | /* |
3003 | * SIGUSR2: set flag to do a last cycle and shut down afterwards. The WAL |
3004 | * sender should already have been switched to WALSNDSTATE_STOPPING at |
3005 | * this point. |
3006 | */ |
3007 | static void |
3008 | WalSndLastCycleHandler(SIGNAL_ARGS) |
3009 | { |
3010 | int save_errno = errno; |
3011 | |
3012 | got_SIGUSR2 = true; |
3013 | SetLatch(MyLatch); |
3014 | |
3015 | errno = save_errno; |
3016 | } |
3017 | |
3018 | /* Set up signal handlers */ |
3019 | void |
3020 | WalSndSignals(void) |
3021 | { |
3022 | /* Set up signal handlers */ |
3023 | pqsignal(SIGHUP, PostgresSigHupHandler); /* set flag to read config |
3024 | * file */ |
3025 | pqsignal(SIGINT, StatementCancelHandler); /* query cancel */ |
3026 | pqsignal(SIGTERM, die); /* request shutdown */ |
3027 | pqsignal(SIGQUIT, quickdie); /* hard crash time */ |
3028 | InitializeTimeouts(); /* establishes SIGALRM handler */ |
3029 | pqsignal(SIGPIPE, SIG_IGN); |
3030 | pqsignal(SIGUSR1, procsignal_sigusr1_handler); |
3031 | pqsignal(SIGUSR2, WalSndLastCycleHandler); /* request a last cycle and |
3032 | * shutdown */ |
3033 | |
3034 | /* Reset some signals that are accepted by postmaster but not here */ |
3035 | pqsignal(SIGCHLD, SIG_DFL); |
3036 | } |
3037 | |
3038 | /* Report shared-memory space needed by WalSndShmemInit */ |
3039 | Size |
3040 | WalSndShmemSize(void) |
3041 | { |
3042 | Size size = 0; |
3043 | |
3044 | size = offsetof(WalSndCtlData, walsnds); |
3045 | size = add_size(size, mul_size(max_wal_senders, sizeof(WalSnd))); |
3046 | |
3047 | return size; |
3048 | } |
3049 | |
3050 | /* Allocate and initialize walsender-related shared memory */ |
3051 | void |
3052 | WalSndShmemInit(void) |
3053 | { |
3054 | bool found; |
3055 | int i; |
3056 | |
3057 | WalSndCtl = (WalSndCtlData *) |
3058 | ShmemInitStruct("Wal Sender Ctl" , WalSndShmemSize(), &found); |
3059 | |
3060 | if (!found) |
3061 | { |
3062 | /* First time through, so initialize */ |
3063 | MemSet(WalSndCtl, 0, WalSndShmemSize()); |
3064 | |
3065 | for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; i++) |
3066 | SHMQueueInit(&(WalSndCtl->SyncRepQueue[i])); |
3067 | |
3068 | for (i = 0; i < max_wal_senders; i++) |
3069 | { |
3070 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
3071 | |
3072 | SpinLockInit(&walsnd->mutex); |
3073 | } |
3074 | } |
3075 | } |
3076 | |
3077 | /* |
3078 | * Wake up all walsenders |
3079 | * |
3080 | * This will be called inside critical sections, so throwing an error is not |
3081 | * advisable. |
3082 | */ |
3083 | void |
3084 | WalSndWakeup(void) |
3085 | { |
3086 | int i; |
3087 | |
3088 | for (i = 0; i < max_wal_senders; i++) |
3089 | { |
3090 | Latch *latch; |
3091 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
3092 | |
3093 | /* |
3094 | * Get latch pointer with spinlock held, for the unlikely case that |
3095 | * pointer reads aren't atomic (as they're 8 bytes). |
3096 | */ |
3097 | SpinLockAcquire(&walsnd->mutex); |
3098 | latch = walsnd->latch; |
3099 | SpinLockRelease(&walsnd->mutex); |
3100 | |
3101 | if (latch != NULL) |
3102 | SetLatch(latch); |
3103 | } |
3104 | } |
3105 | |
3106 | /* |
3107 | * Signal all walsenders to move to stopping state. |
3108 | * |
3109 | * This will trigger walsenders to move to a state where no further WAL can be |
3110 | * generated. See this file's header for details. |
3111 | */ |
3112 | void |
3113 | WalSndInitStopping(void) |
3114 | { |
3115 | int i; |
3116 | |
3117 | for (i = 0; i < max_wal_senders; i++) |
3118 | { |
3119 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
3120 | pid_t pid; |
3121 | |
3122 | SpinLockAcquire(&walsnd->mutex); |
3123 | pid = walsnd->pid; |
3124 | SpinLockRelease(&walsnd->mutex); |
3125 | |
3126 | if (pid == 0) |
3127 | continue; |
3128 | |
3129 | SendProcSignal(pid, PROCSIG_WALSND_INIT_STOPPING, InvalidBackendId); |
3130 | } |
3131 | } |
3132 | |
3133 | /* |
3134 | * Wait that all the WAL senders have quit or reached the stopping state. This |
3135 | * is used by the checkpointer to control when the shutdown checkpoint can |
3136 | * safely be performed. |
3137 | */ |
3138 | void |
3139 | WalSndWaitStopping(void) |
3140 | { |
3141 | for (;;) |
3142 | { |
3143 | int i; |
3144 | bool all_stopped = true; |
3145 | |
3146 | for (i = 0; i < max_wal_senders; i++) |
3147 | { |
3148 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
3149 | |
3150 | SpinLockAcquire(&walsnd->mutex); |
3151 | |
3152 | if (walsnd->pid == 0) |
3153 | { |
3154 | SpinLockRelease(&walsnd->mutex); |
3155 | continue; |
3156 | } |
3157 | |
3158 | if (walsnd->state != WALSNDSTATE_STOPPING) |
3159 | { |
3160 | all_stopped = false; |
3161 | SpinLockRelease(&walsnd->mutex); |
3162 | break; |
3163 | } |
3164 | SpinLockRelease(&walsnd->mutex); |
3165 | } |
3166 | |
3167 | /* safe to leave if confirmation is done for all WAL senders */ |
3168 | if (all_stopped) |
3169 | return; |
3170 | |
3171 | pg_usleep(10000L); /* wait for 10 msec */ |
3172 | } |
3173 | } |
3174 | |
3175 | /* Set state for current walsender (only called in walsender) */ |
3176 | void |
3177 | WalSndSetState(WalSndState state) |
3178 | { |
3179 | WalSnd *walsnd = MyWalSnd; |
3180 | |
3181 | Assert(am_walsender); |
3182 | |
3183 | if (walsnd->state == state) |
3184 | return; |
3185 | |
3186 | SpinLockAcquire(&walsnd->mutex); |
3187 | walsnd->state = state; |
3188 | SpinLockRelease(&walsnd->mutex); |
3189 | } |
3190 | |
3191 | /* |
3192 | * Return a string constant representing the state. This is used |
3193 | * in system views, and should *not* be translated. |
3194 | */ |
3195 | static const char * |
3196 | WalSndGetStateString(WalSndState state) |
3197 | { |
3198 | switch (state) |
3199 | { |
3200 | case WALSNDSTATE_STARTUP: |
3201 | return "startup" ; |
3202 | case WALSNDSTATE_BACKUP: |
3203 | return "backup" ; |
3204 | case WALSNDSTATE_CATCHUP: |
3205 | return "catchup" ; |
3206 | case WALSNDSTATE_STREAMING: |
3207 | return "streaming" ; |
3208 | case WALSNDSTATE_STOPPING: |
3209 | return "stopping" ; |
3210 | } |
3211 | return "UNKNOWN" ; |
3212 | } |
3213 | |
3214 | static Interval * |
3215 | offset_to_interval(TimeOffset offset) |
3216 | { |
3217 | Interval *result = palloc(sizeof(Interval)); |
3218 | |
3219 | result->month = 0; |
3220 | result->day = 0; |
3221 | result->time = offset; |
3222 | |
3223 | return result; |
3224 | } |
3225 | |
3226 | /* |
3227 | * Returns activity of walsenders, including pids and xlog locations sent to |
3228 | * standby servers. |
3229 | */ |
3230 | Datum |
3231 | pg_stat_get_wal_senders(PG_FUNCTION_ARGS) |
3232 | { |
3233 | #define PG_STAT_GET_WAL_SENDERS_COLS 12 |
3234 | ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; |
3235 | TupleDesc tupdesc; |
3236 | Tuplestorestate *tupstore; |
3237 | MemoryContext per_query_ctx; |
3238 | MemoryContext oldcontext; |
3239 | List *sync_standbys; |
3240 | int i; |
3241 | |
3242 | /* check to see if caller supports us returning a tuplestore */ |
3243 | if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo)) |
3244 | ereport(ERROR, |
3245 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3246 | errmsg("set-valued function called in context that cannot accept a set" ))); |
3247 | if (!(rsinfo->allowedModes & SFRM_Materialize)) |
3248 | ereport(ERROR, |
3249 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3250 | errmsg("materialize mode required, but it is not " \ |
3251 | "allowed in this context" ))); |
3252 | |
3253 | /* Build a tuple descriptor for our result type */ |
3254 | if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) |
3255 | elog(ERROR, "return type must be a row type" ); |
3256 | |
3257 | per_query_ctx = rsinfo->econtext->ecxt_per_query_memory; |
3258 | oldcontext = MemoryContextSwitchTo(per_query_ctx); |
3259 | |
3260 | tupstore = tuplestore_begin_heap(true, false, work_mem); |
3261 | rsinfo->returnMode = SFRM_Materialize; |
3262 | rsinfo->setResult = tupstore; |
3263 | rsinfo->setDesc = tupdesc; |
3264 | |
3265 | MemoryContextSwitchTo(oldcontext); |
3266 | |
3267 | /* |
3268 | * Get the currently active synchronous standbys. |
3269 | */ |
3270 | LWLockAcquire(SyncRepLock, LW_SHARED); |
3271 | sync_standbys = SyncRepGetSyncStandbys(NULL); |
3272 | LWLockRelease(SyncRepLock); |
3273 | |
3274 | for (i = 0; i < max_wal_senders; i++) |
3275 | { |
3276 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
3277 | XLogRecPtr sentPtr; |
3278 | XLogRecPtr write; |
3279 | XLogRecPtr flush; |
3280 | XLogRecPtr apply; |
3281 | TimeOffset writeLag; |
3282 | TimeOffset flushLag; |
3283 | TimeOffset applyLag; |
3284 | int priority; |
3285 | int pid; |
3286 | WalSndState state; |
3287 | TimestampTz replyTime; |
3288 | Datum values[PG_STAT_GET_WAL_SENDERS_COLS]; |
3289 | bool nulls[PG_STAT_GET_WAL_SENDERS_COLS]; |
3290 | |
3291 | SpinLockAcquire(&walsnd->mutex); |
3292 | if (walsnd->pid == 0) |
3293 | { |
3294 | SpinLockRelease(&walsnd->mutex); |
3295 | continue; |
3296 | } |
3297 | pid = walsnd->pid; |
3298 | sentPtr = walsnd->sentPtr; |
3299 | state = walsnd->state; |
3300 | write = walsnd->write; |
3301 | flush = walsnd->flush; |
3302 | apply = walsnd->apply; |
3303 | writeLag = walsnd->writeLag; |
3304 | flushLag = walsnd->flushLag; |
3305 | applyLag = walsnd->applyLag; |
3306 | priority = walsnd->sync_standby_priority; |
3307 | replyTime = walsnd->replyTime; |
3308 | SpinLockRelease(&walsnd->mutex); |
3309 | |
3310 | memset(nulls, 0, sizeof(nulls)); |
3311 | values[0] = Int32GetDatum(pid); |
3312 | |
3313 | if (!is_member_of_role(GetUserId(), DEFAULT_ROLE_READ_ALL_STATS)) |
3314 | { |
3315 | /* |
3316 | * Only superusers and members of pg_read_all_stats can see |
3317 | * details. Other users only get the pid value to know it's a |
3318 | * walsender, but no details. |
3319 | */ |
3320 | MemSet(&nulls[1], true, PG_STAT_GET_WAL_SENDERS_COLS - 1); |
3321 | } |
3322 | else |
3323 | { |
3324 | values[1] = CStringGetTextDatum(WalSndGetStateString(state)); |
3325 | |
3326 | if (XLogRecPtrIsInvalid(sentPtr)) |
3327 | nulls[2] = true; |
3328 | values[2] = LSNGetDatum(sentPtr); |
3329 | |
3330 | if (XLogRecPtrIsInvalid(write)) |
3331 | nulls[3] = true; |
3332 | values[3] = LSNGetDatum(write); |
3333 | |
3334 | if (XLogRecPtrIsInvalid(flush)) |
3335 | nulls[4] = true; |
3336 | values[4] = LSNGetDatum(flush); |
3337 | |
3338 | if (XLogRecPtrIsInvalid(apply)) |
3339 | nulls[5] = true; |
3340 | values[5] = LSNGetDatum(apply); |
3341 | |
3342 | /* |
3343 | * Treat a standby such as a pg_basebackup background process |
3344 | * which always returns an invalid flush location, as an |
3345 | * asynchronous standby. |
3346 | */ |
3347 | priority = XLogRecPtrIsInvalid(flush) ? 0 : priority; |
3348 | |
3349 | if (writeLag < 0) |
3350 | nulls[6] = true; |
3351 | else |
3352 | values[6] = IntervalPGetDatum(offset_to_interval(writeLag)); |
3353 | |
3354 | if (flushLag < 0) |
3355 | nulls[7] = true; |
3356 | else |
3357 | values[7] = IntervalPGetDatum(offset_to_interval(flushLag)); |
3358 | |
3359 | if (applyLag < 0) |
3360 | nulls[8] = true; |
3361 | else |
3362 | values[8] = IntervalPGetDatum(offset_to_interval(applyLag)); |
3363 | |
3364 | values[9] = Int32GetDatum(priority); |
3365 | |
3366 | /* |
3367 | * More easily understood version of standby state. This is purely |
3368 | * informational. |
3369 | * |
3370 | * In quorum-based sync replication, the role of each standby |
3371 | * listed in synchronous_standby_names can be changing very |
3372 | * frequently. Any standbys considered as "sync" at one moment can |
3373 | * be switched to "potential" ones at the next moment. So, it's |
3374 | * basically useless to report "sync" or "potential" as their sync |
3375 | * states. We report just "quorum" for them. |
3376 | */ |
3377 | if (priority == 0) |
3378 | values[10] = CStringGetTextDatum("async" ); |
3379 | else if (list_member_int(sync_standbys, i)) |
3380 | values[10] = SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY ? |
3381 | CStringGetTextDatum("sync" ) : CStringGetTextDatum("quorum" ); |
3382 | else |
3383 | values[10] = CStringGetTextDatum("potential" ); |
3384 | |
3385 | if (replyTime == 0) |
3386 | nulls[11] = true; |
3387 | else |
3388 | values[11] = TimestampTzGetDatum(replyTime); |
3389 | } |
3390 | |
3391 | tuplestore_putvalues(tupstore, tupdesc, values, nulls); |
3392 | } |
3393 | |
3394 | /* clean up and return the tuplestore */ |
3395 | tuplestore_donestoring(tupstore); |
3396 | |
3397 | return (Datum) 0; |
3398 | } |
3399 | |
3400 | /* |
3401 | * This function is used to send a keepalive message to standby. |
3402 | * If requestReply is set, sets a flag in the message requesting the standby |
3403 | * to send a message back to us, for heartbeat purposes. |
3404 | */ |
3405 | static void |
3406 | WalSndKeepalive(bool requestReply) |
3407 | { |
3408 | elog(DEBUG2, "sending replication keepalive" ); |
3409 | |
3410 | /* construct the message... */ |
3411 | resetStringInfo(&output_message); |
3412 | pq_sendbyte(&output_message, 'k'); |
3413 | pq_sendint64(&output_message, sentPtr); |
3414 | pq_sendint64(&output_message, GetCurrentTimestamp()); |
3415 | pq_sendbyte(&output_message, requestReply ? 1 : 0); |
3416 | |
3417 | /* ... and send it wrapped in CopyData */ |
3418 | pq_putmessage_noblock('d', output_message.data, output_message.len); |
3419 | } |
3420 | |
3421 | /* |
3422 | * Send keepalive message if too much time has elapsed. |
3423 | */ |
3424 | static void |
3425 | WalSndKeepaliveIfNecessary(void) |
3426 | { |
3427 | TimestampTz ping_time; |
3428 | |
3429 | /* |
3430 | * Don't send keepalive messages if timeouts are globally disabled or |
3431 | * we're doing something not partaking in timeouts. |
3432 | */ |
3433 | if (wal_sender_timeout <= 0 || last_reply_timestamp <= 0) |
3434 | return; |
3435 | |
3436 | if (waiting_for_ping_response) |
3437 | return; |
3438 | |
3439 | /* |
3440 | * If half of wal_sender_timeout has lapsed without receiving any reply |
3441 | * from the standby, send a keep-alive message to the standby requesting |
3442 | * an immediate reply. |
3443 | */ |
3444 | ping_time = TimestampTzPlusMilliseconds(last_reply_timestamp, |
3445 | wal_sender_timeout / 2); |
3446 | if (last_processing >= ping_time) |
3447 | { |
3448 | WalSndKeepalive(true); |
3449 | waiting_for_ping_response = true; |
3450 | |
3451 | /* Try to flush pending output to the client */ |
3452 | if (pq_flush_if_writable() != 0) |
3453 | WalSndShutdown(); |
3454 | } |
3455 | } |
3456 | |
3457 | /* |
3458 | * Record the end of the WAL and the time it was flushed locally, so that |
3459 | * LagTrackerRead can compute the elapsed time (lag) when this WAL location is |
3460 | * eventually reported to have been written, flushed and applied by the |
3461 | * standby in a reply message. |
3462 | */ |
3463 | static void |
3464 | LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time) |
3465 | { |
3466 | bool buffer_full; |
3467 | int new_write_head; |
3468 | int i; |
3469 | |
3470 | if (!am_walsender) |
3471 | return; |
3472 | |
3473 | /* |
3474 | * If the lsn hasn't advanced since last time, then do nothing. This way |
3475 | * we only record a new sample when new WAL has been written. |
3476 | */ |
3477 | if (lag_tracker->last_lsn == lsn) |
3478 | return; |
3479 | lag_tracker->last_lsn = lsn; |
3480 | |
3481 | /* |
3482 | * If advancing the write head of the circular buffer would crash into any |
3483 | * of the read heads, then the buffer is full. In other words, the |
3484 | * slowest reader (presumably apply) is the one that controls the release |
3485 | * of space. |
3486 | */ |
3487 | new_write_head = (lag_tracker->write_head + 1) % LAG_TRACKER_BUFFER_SIZE; |
3488 | buffer_full = false; |
3489 | for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; ++i) |
3490 | { |
3491 | if (new_write_head == lag_tracker->read_heads[i]) |
3492 | buffer_full = true; |
3493 | } |
3494 | |
3495 | /* |
3496 | * If the buffer is full, for now we just rewind by one slot and overwrite |
3497 | * the last sample, as a simple (if somewhat uneven) way to lower the |
3498 | * sampling rate. There may be better adaptive compaction algorithms. |
3499 | */ |
3500 | if (buffer_full) |
3501 | { |
3502 | new_write_head = lag_tracker->write_head; |
3503 | if (lag_tracker->write_head > 0) |
3504 | lag_tracker->write_head--; |
3505 | else |
3506 | lag_tracker->write_head = LAG_TRACKER_BUFFER_SIZE - 1; |
3507 | } |
3508 | |
3509 | /* Store a sample at the current write head position. */ |
3510 | lag_tracker->buffer[lag_tracker->write_head].lsn = lsn; |
3511 | lag_tracker->buffer[lag_tracker->write_head].time = local_flush_time; |
3512 | lag_tracker->write_head = new_write_head; |
3513 | } |
3514 | |
3515 | /* |
3516 | * Find out how much time has elapsed between the moment WAL location 'lsn' |
3517 | * (or the highest known earlier LSN) was flushed locally and the time 'now'. |
3518 | * We have a separate read head for each of the reported LSN locations we |
3519 | * receive in replies from standby; 'head' controls which read head is |
3520 | * used. Whenever a read head crosses an LSN which was written into the |
3521 | * lag buffer with LagTrackerWrite, we can use the associated timestamp to |
3522 | * find out the time this LSN (or an earlier one) was flushed locally, and |
3523 | * therefore compute the lag. |
3524 | * |
3525 | * Return -1 if no new sample data is available, and otherwise the elapsed |
3526 | * time in microseconds. |
3527 | */ |
3528 | static TimeOffset |
3529 | LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now) |
3530 | { |
3531 | TimestampTz time = 0; |
3532 | |
3533 | /* Read all unread samples up to this LSN or end of buffer. */ |
3534 | while (lag_tracker->read_heads[head] != lag_tracker->write_head && |
3535 | lag_tracker->buffer[lag_tracker->read_heads[head]].lsn <= lsn) |
3536 | { |
3537 | time = lag_tracker->buffer[lag_tracker->read_heads[head]].time; |
3538 | lag_tracker->last_read[head] = |
3539 | lag_tracker->buffer[lag_tracker->read_heads[head]]; |
3540 | lag_tracker->read_heads[head] = |
3541 | (lag_tracker->read_heads[head] + 1) % LAG_TRACKER_BUFFER_SIZE; |
3542 | } |
3543 | |
3544 | /* |
3545 | * If the lag tracker is empty, that means the standby has processed |
3546 | * everything we've ever sent so we should now clear 'last_read'. If we |
3547 | * didn't do that, we'd risk using a stale and irrelevant sample for |
3548 | * interpolation at the beginning of the next burst of WAL after a period |
3549 | * of idleness. |
3550 | */ |
3551 | if (lag_tracker->read_heads[head] == lag_tracker->write_head) |
3552 | lag_tracker->last_read[head].time = 0; |
3553 | |
3554 | if (time > now) |
3555 | { |
3556 | /* If the clock somehow went backwards, treat as not found. */ |
3557 | return -1; |
3558 | } |
3559 | else if (time == 0) |
3560 | { |
3561 | /* |
3562 | * We didn't cross a time. If there is a future sample that we |
3563 | * haven't reached yet, and we've already reached at least one sample, |
3564 | * let's interpolate the local flushed time. This is mainly useful |
3565 | * for reporting a completely stuck apply position as having |
3566 | * increasing lag, since otherwise we'd have to wait for it to |
3567 | * eventually start moving again and cross one of our samples before |
3568 | * we can show the lag increasing. |
3569 | */ |
3570 | if (lag_tracker->read_heads[head] == lag_tracker->write_head) |
3571 | { |
3572 | /* There are no future samples, so we can't interpolate. */ |
3573 | return -1; |
3574 | } |
3575 | else if (lag_tracker->last_read[head].time != 0) |
3576 | { |
3577 | /* We can interpolate between last_read and the next sample. */ |
3578 | double fraction; |
3579 | WalTimeSample prev = lag_tracker->last_read[head]; |
3580 | WalTimeSample next = lag_tracker->buffer[lag_tracker->read_heads[head]]; |
3581 | |
3582 | if (lsn < prev.lsn) |
3583 | { |
3584 | /* |
3585 | * Reported LSNs shouldn't normally go backwards, but it's |
3586 | * possible when there is a timeline change. Treat as not |
3587 | * found. |
3588 | */ |
3589 | return -1; |
3590 | } |
3591 | |
3592 | Assert(prev.lsn < next.lsn); |
3593 | |
3594 | if (prev.time > next.time) |
3595 | { |
3596 | /* If the clock somehow went backwards, treat as not found. */ |
3597 | return -1; |
3598 | } |
3599 | |
3600 | /* See how far we are between the previous and next samples. */ |
3601 | fraction = |
3602 | (double) (lsn - prev.lsn) / (double) (next.lsn - prev.lsn); |
3603 | |
3604 | /* Scale the local flush time proportionally. */ |
3605 | time = (TimestampTz) |
3606 | ((double) prev.time + (next.time - prev.time) * fraction); |
3607 | } |
3608 | else |
3609 | { |
3610 | /* |
3611 | * We have only a future sample, implying that we were entirely |
3612 | * caught up but and now there is a new burst of WAL and the |
3613 | * standby hasn't processed the first sample yet. Until the |
3614 | * standby reaches the future sample the best we can do is report |
3615 | * the hypothetical lag if that sample were to be replayed now. |
3616 | */ |
3617 | time = lag_tracker->buffer[lag_tracker->read_heads[head]].time; |
3618 | } |
3619 | } |
3620 | |
3621 | /* Return the elapsed time since local flush time in microseconds. */ |
3622 | Assert(time != 0); |
3623 | return now - time; |
3624 | } |
3625 | |