| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * walsender.c |
| 4 | * |
| 5 | * The WAL sender process (walsender) is new as of Postgres 9.0. It takes |
| 6 | * care of sending XLOG from the primary server to a single recipient. |
| 7 | * (Note that there can be more than one walsender process concurrently.) |
| 8 | * It is started by the postmaster when the walreceiver of a standby server |
| 9 | * connects to the primary server and requests XLOG streaming replication. |
| 10 | * |
| 11 | * A walsender is similar to a regular backend, ie. there is a one-to-one |
| 12 | * relationship between a connection and a walsender process, but instead |
| 13 | * of processing SQL queries, it understands a small set of special |
| 14 | * replication-mode commands. The START_REPLICATION command begins streaming |
| 15 | * WAL to the client. While streaming, the walsender keeps reading XLOG |
| 16 | * records from the disk and sends them to the standby server over the |
| 17 | * COPY protocol, until either side ends the replication by exiting COPY |
| 18 | * mode (or until the connection is closed). |
| 19 | * |
| 20 | * Normal termination is by SIGTERM, which instructs the walsender to |
| 21 | * close the connection and exit(0) at the next convenient moment. Emergency |
| 22 | * termination is by SIGQUIT; like any backend, the walsender will simply |
| 23 | * abort and exit on SIGQUIT. A close of the connection and a FATAL error |
| 24 | * are treated as not a crash but approximately normal termination; |
| 25 | * the walsender will exit quickly without sending any more XLOG records. |
| 26 | * |
| 27 | * If the server is shut down, checkpointer sends us |
| 28 | * PROCSIG_WALSND_INIT_STOPPING after all regular backends have exited. If |
| 29 | * the backend is idle or runs an SQL query this causes the backend to |
| 30 | * shutdown, if logical replication is in progress all existing WAL records |
| 31 | * are processed followed by a shutdown. Otherwise this causes the walsender |
| 32 | * to switch to the "stopping" state. In this state, the walsender will reject |
| 33 | * any further replication commands. The checkpointer begins the shutdown |
| 34 | * checkpoint once all walsenders are confirmed as stopping. When the shutdown |
| 35 | * checkpoint finishes, the postmaster sends us SIGUSR2. This instructs |
| 36 | * walsender to send any outstanding WAL, including the shutdown checkpoint |
| 37 | * record, wait for it to be replicated to the standby, and then exit. |
| 38 | * |
| 39 | * |
| 40 | * Portions Copyright (c) 2010-2019, PostgreSQL Global Development Group |
| 41 | * |
| 42 | * IDENTIFICATION |
| 43 | * src/backend/replication/walsender.c |
| 44 | * |
| 45 | *------------------------------------------------------------------------- |
| 46 | */ |
| 47 | #include "postgres.h" |
| 48 | |
| 49 | #include <signal.h> |
| 50 | #include <unistd.h> |
| 51 | |
| 52 | #include "access/printtup.h" |
| 53 | #include "access/timeline.h" |
| 54 | #include "access/transam.h" |
| 55 | #include "access/xact.h" |
| 56 | #include "access/xlog_internal.h" |
| 57 | #include "access/xlogutils.h" |
| 58 | |
| 59 | #include "catalog/pg_authid.h" |
| 60 | #include "catalog/pg_type.h" |
| 61 | #include "commands/dbcommands.h" |
| 62 | #include "commands/defrem.h" |
| 63 | #include "funcapi.h" |
| 64 | #include "libpq/libpq.h" |
| 65 | #include "libpq/pqformat.h" |
| 66 | #include "miscadmin.h" |
| 67 | #include "nodes/replnodes.h" |
| 68 | #include "pgstat.h" |
| 69 | #include "replication/basebackup.h" |
| 70 | #include "replication/decode.h" |
| 71 | #include "replication/logical.h" |
| 72 | #include "replication/logicalfuncs.h" |
| 73 | #include "replication/slot.h" |
| 74 | #include "replication/snapbuild.h" |
| 75 | #include "replication/syncrep.h" |
| 76 | #include "replication/walreceiver.h" |
| 77 | #include "replication/walsender.h" |
| 78 | #include "replication/walsender_private.h" |
| 79 | #include "storage/condition_variable.h" |
| 80 | #include "storage/fd.h" |
| 81 | #include "storage/ipc.h" |
| 82 | #include "storage/pmsignal.h" |
| 83 | #include "storage/proc.h" |
| 84 | #include "storage/procarray.h" |
| 85 | #include "tcop/dest.h" |
| 86 | #include "tcop/tcopprot.h" |
| 87 | #include "utils/builtins.h" |
| 88 | #include "utils/guc.h" |
| 89 | #include "utils/memutils.h" |
| 90 | #include "utils/pg_lsn.h" |
| 91 | #include "utils/portal.h" |
| 92 | #include "utils/ps_status.h" |
| 93 | #include "utils/timeout.h" |
| 94 | #include "utils/timestamp.h" |
| 95 | |
| 96 | /* |
| 97 | * Maximum data payload in a WAL data message. Must be >= XLOG_BLCKSZ. |
| 98 | * |
| 99 | * We don't have a good idea of what a good value would be; there's some |
| 100 | * overhead per message in both walsender and walreceiver, but on the other |
| 101 | * hand sending large batches makes walsender less responsive to signals |
| 102 | * because signals are checked only between messages. 128kB (with |
| 103 | * default 8k blocks) seems like a reasonable guess for now. |
| 104 | */ |
| 105 | #define MAX_SEND_SIZE (XLOG_BLCKSZ * 16) |
| 106 | |
| 107 | /* Array of WalSnds in shared memory */ |
| 108 | WalSndCtlData *WalSndCtl = NULL; |
| 109 | |
| 110 | /* My slot in the shared memory array */ |
| 111 | WalSnd *MyWalSnd = NULL; |
| 112 | |
| 113 | /* Global state */ |
| 114 | bool am_walsender = false; /* Am I a walsender process? */ |
| 115 | bool am_cascading_walsender = false; /* Am I cascading WAL to another |
| 116 | * standby? */ |
| 117 | bool am_db_walsender = false; /* Connected to a database? */ |
| 118 | |
| 119 | /* User-settable parameters for walsender */ |
| 120 | int max_wal_senders = 0; /* the maximum number of concurrent |
| 121 | * walsenders */ |
| 122 | int wal_sender_timeout = 60 * 1000; /* maximum time to send one WAL |
| 123 | * data message */ |
| 124 | bool log_replication_commands = false; |
| 125 | |
| 126 | /* |
| 127 | * State for WalSndWakeupRequest |
| 128 | */ |
| 129 | bool wake_wal_senders = false; |
| 130 | |
| 131 | /* |
| 132 | * These variables are used similarly to openLogFile/SegNo/Off, |
| 133 | * but for walsender to read the XLOG. |
| 134 | */ |
| 135 | static int sendFile = -1; |
| 136 | static XLogSegNo sendSegNo = 0; |
| 137 | static uint32 sendOff = 0; |
| 138 | |
| 139 | /* Timeline ID of the currently open file */ |
| 140 | static TimeLineID curFileTimeLine = 0; |
| 141 | |
| 142 | /* |
| 143 | * These variables keep track of the state of the timeline we're currently |
| 144 | * sending. sendTimeLine identifies the timeline. If sendTimeLineIsHistoric, |
| 145 | * the timeline is not the latest timeline on this server, and the server's |
| 146 | * history forked off from that timeline at sendTimeLineValidUpto. |
| 147 | */ |
| 148 | static TimeLineID sendTimeLine = 0; |
| 149 | static TimeLineID sendTimeLineNextTLI = 0; |
| 150 | static bool sendTimeLineIsHistoric = false; |
| 151 | static XLogRecPtr sendTimeLineValidUpto = InvalidXLogRecPtr; |
| 152 | |
| 153 | /* |
| 154 | * How far have we sent WAL already? This is also advertised in |
| 155 | * MyWalSnd->sentPtr. (Actually, this is the next WAL location to send.) |
| 156 | */ |
| 157 | static XLogRecPtr sentPtr = 0; |
| 158 | |
| 159 | /* Buffers for constructing outgoing messages and processing reply messages. */ |
| 160 | static StringInfoData output_message; |
| 161 | static StringInfoData reply_message; |
| 162 | static StringInfoData tmpbuf; |
| 163 | |
| 164 | /* Timestamp of last ProcessRepliesIfAny(). */ |
| 165 | static TimestampTz last_processing = 0; |
| 166 | |
| 167 | /* |
| 168 | * Timestamp of last ProcessRepliesIfAny() that saw a reply from the |
| 169 | * standby. Set to 0 if wal_sender_timeout doesn't need to be active. |
| 170 | */ |
| 171 | static TimestampTz last_reply_timestamp = 0; |
| 172 | |
| 173 | /* Have we sent a heartbeat message asking for reply, since last reply? */ |
| 174 | static bool waiting_for_ping_response = false; |
| 175 | |
| 176 | /* |
| 177 | * While streaming WAL in Copy mode, streamingDoneSending is set to true |
| 178 | * after we have sent CopyDone. We should not send any more CopyData messages |
| 179 | * after that. streamingDoneReceiving is set to true when we receive CopyDone |
| 180 | * from the other end. When both become true, it's time to exit Copy mode. |
| 181 | */ |
| 182 | static bool streamingDoneSending; |
| 183 | static bool streamingDoneReceiving; |
| 184 | |
| 185 | /* Are we there yet? */ |
| 186 | static bool WalSndCaughtUp = false; |
| 187 | |
| 188 | /* Flags set by signal handlers for later service in main loop */ |
| 189 | static volatile sig_atomic_t got_SIGUSR2 = false; |
| 190 | static volatile sig_atomic_t got_STOPPING = false; |
| 191 | |
| 192 | /* |
| 193 | * This is set while we are streaming. When not set |
| 194 | * PROCSIG_WALSND_INIT_STOPPING signal will be handled like SIGTERM. When set, |
| 195 | * the main loop is responsible for checking got_STOPPING and terminating when |
| 196 | * it's set (after streaming any remaining WAL). |
| 197 | */ |
| 198 | static volatile sig_atomic_t replication_active = false; |
| 199 | |
| 200 | static LogicalDecodingContext *logical_decoding_ctx = NULL; |
| 201 | static XLogRecPtr logical_startptr = InvalidXLogRecPtr; |
| 202 | |
| 203 | /* A sample associating a WAL location with the time it was written. */ |
| 204 | typedef struct |
| 205 | { |
| 206 | XLogRecPtr lsn; |
| 207 | TimestampTz time; |
| 208 | } WalTimeSample; |
| 209 | |
| 210 | /* The size of our buffer of time samples. */ |
| 211 | #define LAG_TRACKER_BUFFER_SIZE 8192 |
| 212 | |
| 213 | /* A mechanism for tracking replication lag. */ |
| 214 | typedef struct |
| 215 | { |
| 216 | XLogRecPtr last_lsn; |
| 217 | WalTimeSample buffer[LAG_TRACKER_BUFFER_SIZE]; |
| 218 | int write_head; |
| 219 | int read_heads[NUM_SYNC_REP_WAIT_MODE]; |
| 220 | WalTimeSample last_read[NUM_SYNC_REP_WAIT_MODE]; |
| 221 | } LagTracker; |
| 222 | |
| 223 | static LagTracker *lag_tracker; |
| 224 | |
| 225 | /* Signal handlers */ |
| 226 | static void WalSndLastCycleHandler(SIGNAL_ARGS); |
| 227 | |
| 228 | /* Prototypes for private functions */ |
| 229 | typedef void (*WalSndSendDataCallback) (void); |
| 230 | static void WalSndLoop(WalSndSendDataCallback send_data); |
| 231 | static void InitWalSenderSlot(void); |
| 232 | static void WalSndKill(int code, Datum arg); |
| 233 | static void WalSndShutdown(void) pg_attribute_noreturn(); |
| 234 | static void XLogSendPhysical(void); |
| 235 | static void XLogSendLogical(void); |
| 236 | static void WalSndDone(WalSndSendDataCallback send_data); |
| 237 | static XLogRecPtr GetStandbyFlushRecPtr(void); |
| 238 | static void IdentifySystem(void); |
| 239 | static void CreateReplicationSlot(CreateReplicationSlotCmd *cmd); |
| 240 | static void DropReplicationSlot(DropReplicationSlotCmd *cmd); |
| 241 | static void StartReplication(StartReplicationCmd *cmd); |
| 242 | static void StartLogicalReplication(StartReplicationCmd *cmd); |
| 243 | static void ProcessStandbyMessage(void); |
| 244 | static void ProcessStandbyReplyMessage(void); |
| 245 | static void ProcessStandbyHSFeedbackMessage(void); |
| 246 | static void ProcessRepliesIfAny(void); |
| 247 | static void WalSndKeepalive(bool requestReply); |
| 248 | static void WalSndKeepaliveIfNecessary(void); |
| 249 | static void WalSndCheckTimeOut(void); |
| 250 | static long WalSndComputeSleeptime(TimestampTz now); |
| 251 | static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write); |
| 252 | static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write); |
| 253 | static void WalSndUpdateProgress(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid); |
| 254 | static XLogRecPtr WalSndWaitForWal(XLogRecPtr loc); |
| 255 | static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time); |
| 256 | static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now); |
| 257 | static bool TransactionIdInRecentPast(TransactionId xid, uint32 epoch); |
| 258 | |
| 259 | static void XLogRead(char *buf, XLogRecPtr startptr, Size count); |
| 260 | |
| 261 | |
| 262 | /* Initialize walsender process before entering the main command loop */ |
| 263 | void |
| 264 | InitWalSender(void) |
| 265 | { |
| 266 | am_cascading_walsender = RecoveryInProgress(); |
| 267 | |
| 268 | /* Create a per-walsender data structure in shared memory */ |
| 269 | InitWalSenderSlot(); |
| 270 | |
| 271 | /* |
| 272 | * We don't currently need any ResourceOwner in a walsender process, but |
| 273 | * if we did, we could call CreateAuxProcessResourceOwner here. |
| 274 | */ |
| 275 | |
| 276 | /* |
| 277 | * Let postmaster know that we're a WAL sender. Once we've declared us as |
| 278 | * a WAL sender process, postmaster will let us outlive the bgwriter and |
| 279 | * kill us last in the shutdown sequence, so we get a chance to stream all |
| 280 | * remaining WAL at shutdown, including the shutdown checkpoint. Note that |
| 281 | * there's no going back, and we mustn't write any WAL records after this. |
| 282 | */ |
| 283 | MarkPostmasterChildWalSender(); |
| 284 | SendPostmasterSignal(PMSIGNAL_ADVANCE_STATE_MACHINE); |
| 285 | |
| 286 | /* Initialize empty timestamp buffer for lag tracking. */ |
| 287 | lag_tracker = MemoryContextAllocZero(TopMemoryContext, sizeof(LagTracker)); |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * Clean up after an error. |
| 292 | * |
| 293 | * WAL sender processes don't use transactions like regular backends do. |
| 294 | * This function does any cleanup required after an error in a WAL sender |
| 295 | * process, similar to what transaction abort does in a regular backend. |
| 296 | */ |
| 297 | void |
| 298 | WalSndErrorCleanup(void) |
| 299 | { |
| 300 | LWLockReleaseAll(); |
| 301 | ConditionVariableCancelSleep(); |
| 302 | pgstat_report_wait_end(); |
| 303 | |
| 304 | if (sendFile >= 0) |
| 305 | { |
| 306 | close(sendFile); |
| 307 | sendFile = -1; |
| 308 | } |
| 309 | |
| 310 | if (MyReplicationSlot != NULL) |
| 311 | ReplicationSlotRelease(); |
| 312 | |
| 313 | ReplicationSlotCleanup(); |
| 314 | |
| 315 | replication_active = false; |
| 316 | |
| 317 | if (got_STOPPING || got_SIGUSR2) |
| 318 | proc_exit(0); |
| 319 | |
| 320 | /* Revert back to startup state */ |
| 321 | WalSndSetState(WALSNDSTATE_STARTUP); |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * Handle a client's connection abort in an orderly manner. |
| 326 | */ |
| 327 | static void |
| 328 | WalSndShutdown(void) |
| 329 | { |
| 330 | /* |
| 331 | * Reset whereToSendOutput to prevent ereport from attempting to send any |
| 332 | * more messages to the standby. |
| 333 | */ |
| 334 | if (whereToSendOutput == DestRemote) |
| 335 | whereToSendOutput = DestNone; |
| 336 | |
| 337 | proc_exit(0); |
| 338 | abort(); /* keep the compiler quiet */ |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * Handle the IDENTIFY_SYSTEM command. |
| 343 | */ |
| 344 | static void |
| 345 | IdentifySystem(void) |
| 346 | { |
| 347 | char sysid[32]; |
| 348 | char xloc[MAXFNAMELEN]; |
| 349 | XLogRecPtr logptr; |
| 350 | char *dbname = NULL; |
| 351 | DestReceiver *dest; |
| 352 | TupOutputState *tstate; |
| 353 | TupleDesc tupdesc; |
| 354 | Datum values[4]; |
| 355 | bool nulls[4]; |
| 356 | |
| 357 | /* |
| 358 | * Reply with a result set with one row, four columns. First col is system |
| 359 | * ID, second is timeline ID, third is current xlog location and the |
| 360 | * fourth contains the database name if we are connected to one. |
| 361 | */ |
| 362 | |
| 363 | snprintf(sysid, sizeof(sysid), UINT64_FORMAT, |
| 364 | GetSystemIdentifier()); |
| 365 | |
| 366 | am_cascading_walsender = RecoveryInProgress(); |
| 367 | if (am_cascading_walsender) |
| 368 | { |
| 369 | /* this also updates ThisTimeLineID */ |
| 370 | logptr = GetStandbyFlushRecPtr(); |
| 371 | } |
| 372 | else |
| 373 | logptr = GetFlushRecPtr(); |
| 374 | |
| 375 | snprintf(xloc, sizeof(xloc), "%X/%X" , (uint32) (logptr >> 32), (uint32) logptr); |
| 376 | |
| 377 | if (MyDatabaseId != InvalidOid) |
| 378 | { |
| 379 | MemoryContext cur = CurrentMemoryContext; |
| 380 | |
| 381 | /* syscache access needs a transaction env. */ |
| 382 | StartTransactionCommand(); |
| 383 | /* make dbname live outside TX context */ |
| 384 | MemoryContextSwitchTo(cur); |
| 385 | dbname = get_database_name(MyDatabaseId); |
| 386 | CommitTransactionCommand(); |
| 387 | /* CommitTransactionCommand switches to TopMemoryContext */ |
| 388 | MemoryContextSwitchTo(cur); |
| 389 | } |
| 390 | |
| 391 | dest = CreateDestReceiver(DestRemoteSimple); |
| 392 | MemSet(nulls, false, sizeof(nulls)); |
| 393 | |
| 394 | /* need a tuple descriptor representing four columns */ |
| 395 | tupdesc = CreateTemplateTupleDesc(4); |
| 396 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "systemid" , |
| 397 | TEXTOID, -1, 0); |
| 398 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "timeline" , |
| 399 | INT4OID, -1, 0); |
| 400 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "xlogpos" , |
| 401 | TEXTOID, -1, 0); |
| 402 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "dbname" , |
| 403 | TEXTOID, -1, 0); |
| 404 | |
| 405 | /* prepare for projection of tuples */ |
| 406 | tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual); |
| 407 | |
| 408 | /* column 1: system identifier */ |
| 409 | values[0] = CStringGetTextDatum(sysid); |
| 410 | |
| 411 | /* column 2: timeline */ |
| 412 | values[1] = Int32GetDatum(ThisTimeLineID); |
| 413 | |
| 414 | /* column 3: wal location */ |
| 415 | values[2] = CStringGetTextDatum(xloc); |
| 416 | |
| 417 | /* column 4: database name, or NULL if none */ |
| 418 | if (dbname) |
| 419 | values[3] = CStringGetTextDatum(dbname); |
| 420 | else |
| 421 | nulls[3] = true; |
| 422 | |
| 423 | /* send it to dest */ |
| 424 | do_tup_output(tstate, values, nulls); |
| 425 | |
| 426 | end_tup_output(tstate); |
| 427 | } |
| 428 | |
| 429 | |
| 430 | /* |
| 431 | * Handle TIMELINE_HISTORY command. |
| 432 | */ |
| 433 | static void |
| 434 | SendTimeLineHistory(TimeLineHistoryCmd *cmd) |
| 435 | { |
| 436 | StringInfoData buf; |
| 437 | char histfname[MAXFNAMELEN]; |
| 438 | char path[MAXPGPATH]; |
| 439 | int fd; |
| 440 | off_t histfilelen; |
| 441 | off_t bytesleft; |
| 442 | Size len; |
| 443 | |
| 444 | /* |
| 445 | * Reply with a result set with one row, and two columns. The first col is |
| 446 | * the name of the history file, 2nd is the contents. |
| 447 | */ |
| 448 | |
| 449 | TLHistoryFileName(histfname, cmd->timeline); |
| 450 | TLHistoryFilePath(path, cmd->timeline); |
| 451 | |
| 452 | /* Send a RowDescription message */ |
| 453 | pq_beginmessage(&buf, 'T'); |
| 454 | pq_sendint16(&buf, 2); /* 2 fields */ |
| 455 | |
| 456 | /* first field */ |
| 457 | pq_sendstring(&buf, "filename" ); /* col name */ |
| 458 | pq_sendint32(&buf, 0); /* table oid */ |
| 459 | pq_sendint16(&buf, 0); /* attnum */ |
| 460 | pq_sendint32(&buf, TEXTOID); /* type oid */ |
| 461 | pq_sendint16(&buf, -1); /* typlen */ |
| 462 | pq_sendint32(&buf, 0); /* typmod */ |
| 463 | pq_sendint16(&buf, 0); /* format code */ |
| 464 | |
| 465 | /* second field */ |
| 466 | pq_sendstring(&buf, "content" ); /* col name */ |
| 467 | pq_sendint32(&buf, 0); /* table oid */ |
| 468 | pq_sendint16(&buf, 0); /* attnum */ |
| 469 | pq_sendint32(&buf, BYTEAOID); /* type oid */ |
| 470 | pq_sendint16(&buf, -1); /* typlen */ |
| 471 | pq_sendint32(&buf, 0); /* typmod */ |
| 472 | pq_sendint16(&buf, 0); /* format code */ |
| 473 | pq_endmessage(&buf); |
| 474 | |
| 475 | /* Send a DataRow message */ |
| 476 | pq_beginmessage(&buf, 'D'); |
| 477 | pq_sendint16(&buf, 2); /* # of columns */ |
| 478 | len = strlen(histfname); |
| 479 | pq_sendint32(&buf, len); /* col1 len */ |
| 480 | pq_sendbytes(&buf, histfname, len); |
| 481 | |
| 482 | fd = OpenTransientFile(path, O_RDONLY | PG_BINARY); |
| 483 | if (fd < 0) |
| 484 | ereport(ERROR, |
| 485 | (errcode_for_file_access(), |
| 486 | errmsg("could not open file \"%s\": %m" , path))); |
| 487 | |
| 488 | /* Determine file length and send it to client */ |
| 489 | histfilelen = lseek(fd, 0, SEEK_END); |
| 490 | if (histfilelen < 0) |
| 491 | ereport(ERROR, |
| 492 | (errcode_for_file_access(), |
| 493 | errmsg("could not seek to end of file \"%s\": %m" , path))); |
| 494 | if (lseek(fd, 0, SEEK_SET) != 0) |
| 495 | ereport(ERROR, |
| 496 | (errcode_for_file_access(), |
| 497 | errmsg("could not seek to beginning of file \"%s\": %m" , path))); |
| 498 | |
| 499 | pq_sendint32(&buf, histfilelen); /* col2 len */ |
| 500 | |
| 501 | bytesleft = histfilelen; |
| 502 | while (bytesleft > 0) |
| 503 | { |
| 504 | PGAlignedBlock rbuf; |
| 505 | int nread; |
| 506 | |
| 507 | pgstat_report_wait_start(WAIT_EVENT_WALSENDER_TIMELINE_HISTORY_READ); |
| 508 | nread = read(fd, rbuf.data, sizeof(rbuf)); |
| 509 | pgstat_report_wait_end(); |
| 510 | if (nread < 0) |
| 511 | ereport(ERROR, |
| 512 | (errcode_for_file_access(), |
| 513 | errmsg("could not read file \"%s\": %m" , |
| 514 | path))); |
| 515 | else if (nread == 0) |
| 516 | ereport(ERROR, |
| 517 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 518 | errmsg("could not read file \"%s\": read %d of %zu" , |
| 519 | path, nread, (Size) bytesleft))); |
| 520 | |
| 521 | pq_sendbytes(&buf, rbuf.data, nread); |
| 522 | bytesleft -= nread; |
| 523 | } |
| 524 | |
| 525 | if (CloseTransientFile(fd)) |
| 526 | ereport(ERROR, |
| 527 | (errcode_for_file_access(), |
| 528 | errmsg("could not close file \"%s\": %m" , path))); |
| 529 | |
| 530 | pq_endmessage(&buf); |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * Handle START_REPLICATION command. |
| 535 | * |
| 536 | * At the moment, this never returns, but an ereport(ERROR) will take us back |
| 537 | * to the main loop. |
| 538 | */ |
| 539 | static void |
| 540 | StartReplication(StartReplicationCmd *cmd) |
| 541 | { |
| 542 | StringInfoData buf; |
| 543 | XLogRecPtr FlushPtr; |
| 544 | |
| 545 | if (ThisTimeLineID == 0) |
| 546 | ereport(ERROR, |
| 547 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 548 | errmsg("IDENTIFY_SYSTEM has not been run before START_REPLICATION" ))); |
| 549 | |
| 550 | /* |
| 551 | * We assume here that we're logging enough information in the WAL for |
| 552 | * log-shipping, since this is checked in PostmasterMain(). |
| 553 | * |
| 554 | * NOTE: wal_level can only change at shutdown, so in most cases it is |
| 555 | * difficult for there to be WAL data that we can still see that was |
| 556 | * written at wal_level='minimal'. |
| 557 | */ |
| 558 | |
| 559 | if (cmd->slotname) |
| 560 | { |
| 561 | ReplicationSlotAcquire(cmd->slotname, true); |
| 562 | if (SlotIsLogical(MyReplicationSlot)) |
| 563 | ereport(ERROR, |
| 564 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 565 | (errmsg("cannot use a logical replication slot for physical replication" )))); |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | * Select the timeline. If it was given explicitly by the client, use |
| 570 | * that. Otherwise use the timeline of the last replayed record, which is |
| 571 | * kept in ThisTimeLineID. |
| 572 | */ |
| 573 | if (am_cascading_walsender) |
| 574 | { |
| 575 | /* this also updates ThisTimeLineID */ |
| 576 | FlushPtr = GetStandbyFlushRecPtr(); |
| 577 | } |
| 578 | else |
| 579 | FlushPtr = GetFlushRecPtr(); |
| 580 | |
| 581 | if (cmd->timeline != 0) |
| 582 | { |
| 583 | XLogRecPtr switchpoint; |
| 584 | |
| 585 | sendTimeLine = cmd->timeline; |
| 586 | if (sendTimeLine == ThisTimeLineID) |
| 587 | { |
| 588 | sendTimeLineIsHistoric = false; |
| 589 | sendTimeLineValidUpto = InvalidXLogRecPtr; |
| 590 | } |
| 591 | else |
| 592 | { |
| 593 | List *timeLineHistory; |
| 594 | |
| 595 | sendTimeLineIsHistoric = true; |
| 596 | |
| 597 | /* |
| 598 | * Check that the timeline the client requested exists, and the |
| 599 | * requested start location is on that timeline. |
| 600 | */ |
| 601 | timeLineHistory = readTimeLineHistory(ThisTimeLineID); |
| 602 | switchpoint = tliSwitchPoint(cmd->timeline, timeLineHistory, |
| 603 | &sendTimeLineNextTLI); |
| 604 | list_free_deep(timeLineHistory); |
| 605 | |
| 606 | /* |
| 607 | * Found the requested timeline in the history. Check that |
| 608 | * requested startpoint is on that timeline in our history. |
| 609 | * |
| 610 | * This is quite loose on purpose. We only check that we didn't |
| 611 | * fork off the requested timeline before the switchpoint. We |
| 612 | * don't check that we switched *to* it before the requested |
| 613 | * starting point. This is because the client can legitimately |
| 614 | * request to start replication from the beginning of the WAL |
| 615 | * segment that contains switchpoint, but on the new timeline, so |
| 616 | * that it doesn't end up with a partial segment. If you ask for |
| 617 | * too old a starting point, you'll get an error later when we |
| 618 | * fail to find the requested WAL segment in pg_wal. |
| 619 | * |
| 620 | * XXX: we could be more strict here and only allow a startpoint |
| 621 | * that's older than the switchpoint, if it's still in the same |
| 622 | * WAL segment. |
| 623 | */ |
| 624 | if (!XLogRecPtrIsInvalid(switchpoint) && |
| 625 | switchpoint < cmd->startpoint) |
| 626 | { |
| 627 | ereport(ERROR, |
| 628 | (errmsg("requested starting point %X/%X on timeline %u is not in this server's history" , |
| 629 | (uint32) (cmd->startpoint >> 32), |
| 630 | (uint32) (cmd->startpoint), |
| 631 | cmd->timeline), |
| 632 | errdetail("This server's history forked from timeline %u at %X/%X." , |
| 633 | cmd->timeline, |
| 634 | (uint32) (switchpoint >> 32), |
| 635 | (uint32) (switchpoint)))); |
| 636 | } |
| 637 | sendTimeLineValidUpto = switchpoint; |
| 638 | } |
| 639 | } |
| 640 | else |
| 641 | { |
| 642 | sendTimeLine = ThisTimeLineID; |
| 643 | sendTimeLineValidUpto = InvalidXLogRecPtr; |
| 644 | sendTimeLineIsHistoric = false; |
| 645 | } |
| 646 | |
| 647 | streamingDoneSending = streamingDoneReceiving = false; |
| 648 | |
| 649 | /* If there is nothing to stream, don't even enter COPY mode */ |
| 650 | if (!sendTimeLineIsHistoric || cmd->startpoint < sendTimeLineValidUpto) |
| 651 | { |
| 652 | /* |
| 653 | * When we first start replication the standby will be behind the |
| 654 | * primary. For some applications, for example synchronous |
| 655 | * replication, it is important to have a clear state for this initial |
| 656 | * catchup mode, so we can trigger actions when we change streaming |
| 657 | * state later. We may stay in this state for a long time, which is |
| 658 | * exactly why we want to be able to monitor whether or not we are |
| 659 | * still here. |
| 660 | */ |
| 661 | WalSndSetState(WALSNDSTATE_CATCHUP); |
| 662 | |
| 663 | /* Send a CopyBothResponse message, and start streaming */ |
| 664 | pq_beginmessage(&buf, 'W'); |
| 665 | pq_sendbyte(&buf, 0); |
| 666 | pq_sendint16(&buf, 0); |
| 667 | pq_endmessage(&buf); |
| 668 | pq_flush(); |
| 669 | |
| 670 | /* |
| 671 | * Don't allow a request to stream from a future point in WAL that |
| 672 | * hasn't been flushed to disk in this server yet. |
| 673 | */ |
| 674 | if (FlushPtr < cmd->startpoint) |
| 675 | { |
| 676 | ereport(ERROR, |
| 677 | (errmsg("requested starting point %X/%X is ahead of the WAL flush position of this server %X/%X" , |
| 678 | (uint32) (cmd->startpoint >> 32), |
| 679 | (uint32) (cmd->startpoint), |
| 680 | (uint32) (FlushPtr >> 32), |
| 681 | (uint32) (FlushPtr)))); |
| 682 | } |
| 683 | |
| 684 | /* Start streaming from the requested point */ |
| 685 | sentPtr = cmd->startpoint; |
| 686 | |
| 687 | /* Initialize shared memory status, too */ |
| 688 | SpinLockAcquire(&MyWalSnd->mutex); |
| 689 | MyWalSnd->sentPtr = sentPtr; |
| 690 | SpinLockRelease(&MyWalSnd->mutex); |
| 691 | |
| 692 | SyncRepInitConfig(); |
| 693 | |
| 694 | /* Main loop of walsender */ |
| 695 | replication_active = true; |
| 696 | |
| 697 | WalSndLoop(XLogSendPhysical); |
| 698 | |
| 699 | replication_active = false; |
| 700 | if (got_STOPPING) |
| 701 | proc_exit(0); |
| 702 | WalSndSetState(WALSNDSTATE_STARTUP); |
| 703 | |
| 704 | Assert(streamingDoneSending && streamingDoneReceiving); |
| 705 | } |
| 706 | |
| 707 | if (cmd->slotname) |
| 708 | ReplicationSlotRelease(); |
| 709 | |
| 710 | /* |
| 711 | * Copy is finished now. Send a single-row result set indicating the next |
| 712 | * timeline. |
| 713 | */ |
| 714 | if (sendTimeLineIsHistoric) |
| 715 | { |
| 716 | char startpos_str[8 + 1 + 8 + 1]; |
| 717 | DestReceiver *dest; |
| 718 | TupOutputState *tstate; |
| 719 | TupleDesc tupdesc; |
| 720 | Datum values[2]; |
| 721 | bool nulls[2]; |
| 722 | |
| 723 | snprintf(startpos_str, sizeof(startpos_str), "%X/%X" , |
| 724 | (uint32) (sendTimeLineValidUpto >> 32), |
| 725 | (uint32) sendTimeLineValidUpto); |
| 726 | |
| 727 | dest = CreateDestReceiver(DestRemoteSimple); |
| 728 | MemSet(nulls, false, sizeof(nulls)); |
| 729 | |
| 730 | /* |
| 731 | * Need a tuple descriptor representing two columns. int8 may seem |
| 732 | * like a surprising data type for this, but in theory int4 would not |
| 733 | * be wide enough for this, as TimeLineID is unsigned. |
| 734 | */ |
| 735 | tupdesc = CreateTemplateTupleDesc(2); |
| 736 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "next_tli" , |
| 737 | INT8OID, -1, 0); |
| 738 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "next_tli_startpos" , |
| 739 | TEXTOID, -1, 0); |
| 740 | |
| 741 | /* prepare for projection of tuple */ |
| 742 | tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual); |
| 743 | |
| 744 | values[0] = Int64GetDatum((int64) sendTimeLineNextTLI); |
| 745 | values[1] = CStringGetTextDatum(startpos_str); |
| 746 | |
| 747 | /* send it to dest */ |
| 748 | do_tup_output(tstate, values, nulls); |
| 749 | |
| 750 | end_tup_output(tstate); |
| 751 | } |
| 752 | |
| 753 | /* Send CommandComplete message */ |
| 754 | pq_puttextmessage('C', "START_STREAMING" ); |
| 755 | } |
| 756 | |
| 757 | /* |
| 758 | * read_page callback for logical decoding contexts, as a walsender process. |
| 759 | * |
| 760 | * Inside the walsender we can do better than logical_read_local_xlog_page, |
| 761 | * which has to do a plain sleep/busy loop, because the walsender's latch gets |
| 762 | * set every time WAL is flushed. |
| 763 | */ |
| 764 | static int |
| 765 | logical_read_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr, int reqLen, |
| 766 | XLogRecPtr targetRecPtr, char *cur_page, TimeLineID *pageTLI) |
| 767 | { |
| 768 | XLogRecPtr flushptr; |
| 769 | int count; |
| 770 | |
| 771 | XLogReadDetermineTimeline(state, targetPagePtr, reqLen); |
| 772 | sendTimeLineIsHistoric = (state->currTLI != ThisTimeLineID); |
| 773 | sendTimeLine = state->currTLI; |
| 774 | sendTimeLineValidUpto = state->currTLIValidUntil; |
| 775 | sendTimeLineNextTLI = state->nextTLI; |
| 776 | |
| 777 | /* make sure we have enough WAL available */ |
| 778 | flushptr = WalSndWaitForWal(targetPagePtr + reqLen); |
| 779 | |
| 780 | /* fail if not (implies we are going to shut down) */ |
| 781 | if (flushptr < targetPagePtr + reqLen) |
| 782 | return -1; |
| 783 | |
| 784 | if (targetPagePtr + XLOG_BLCKSZ <= flushptr) |
| 785 | count = XLOG_BLCKSZ; /* more than one block available */ |
| 786 | else |
| 787 | count = flushptr - targetPagePtr; /* part of the page available */ |
| 788 | |
| 789 | /* now actually read the data, we know it's there */ |
| 790 | XLogRead(cur_page, targetPagePtr, XLOG_BLCKSZ); |
| 791 | |
| 792 | return count; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * Process extra options given to CREATE_REPLICATION_SLOT. |
| 797 | */ |
| 798 | static void |
| 799 | parseCreateReplSlotOptions(CreateReplicationSlotCmd *cmd, |
| 800 | bool *reserve_wal, |
| 801 | CRSSnapshotAction *snapshot_action) |
| 802 | { |
| 803 | ListCell *lc; |
| 804 | bool snapshot_action_given = false; |
| 805 | bool reserve_wal_given = false; |
| 806 | |
| 807 | /* Parse options */ |
| 808 | foreach(lc, cmd->options) |
| 809 | { |
| 810 | DefElem *defel = (DefElem *) lfirst(lc); |
| 811 | |
| 812 | if (strcmp(defel->defname, "export_snapshot" ) == 0) |
| 813 | { |
| 814 | if (snapshot_action_given || cmd->kind != REPLICATION_KIND_LOGICAL) |
| 815 | ereport(ERROR, |
| 816 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 817 | errmsg("conflicting or redundant options" ))); |
| 818 | |
| 819 | snapshot_action_given = true; |
| 820 | *snapshot_action = defGetBoolean(defel) ? CRS_EXPORT_SNAPSHOT : |
| 821 | CRS_NOEXPORT_SNAPSHOT; |
| 822 | } |
| 823 | else if (strcmp(defel->defname, "use_snapshot" ) == 0) |
| 824 | { |
| 825 | if (snapshot_action_given || cmd->kind != REPLICATION_KIND_LOGICAL) |
| 826 | ereport(ERROR, |
| 827 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 828 | errmsg("conflicting or redundant options" ))); |
| 829 | |
| 830 | snapshot_action_given = true; |
| 831 | *snapshot_action = CRS_USE_SNAPSHOT; |
| 832 | } |
| 833 | else if (strcmp(defel->defname, "reserve_wal" ) == 0) |
| 834 | { |
| 835 | if (reserve_wal_given || cmd->kind != REPLICATION_KIND_PHYSICAL) |
| 836 | ereport(ERROR, |
| 837 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 838 | errmsg("conflicting or redundant options" ))); |
| 839 | |
| 840 | reserve_wal_given = true; |
| 841 | *reserve_wal = true; |
| 842 | } |
| 843 | else |
| 844 | elog(ERROR, "unrecognized option: %s" , defel->defname); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | /* |
| 849 | * Create a new replication slot. |
| 850 | */ |
| 851 | static void |
| 852 | CreateReplicationSlot(CreateReplicationSlotCmd *cmd) |
| 853 | { |
| 854 | const char *snapshot_name = NULL; |
| 855 | char xloc[MAXFNAMELEN]; |
| 856 | char *slot_name; |
| 857 | bool reserve_wal = false; |
| 858 | CRSSnapshotAction snapshot_action = CRS_EXPORT_SNAPSHOT; |
| 859 | DestReceiver *dest; |
| 860 | TupOutputState *tstate; |
| 861 | TupleDesc tupdesc; |
| 862 | Datum values[4]; |
| 863 | bool nulls[4]; |
| 864 | |
| 865 | Assert(!MyReplicationSlot); |
| 866 | |
| 867 | parseCreateReplSlotOptions(cmd, &reserve_wal, &snapshot_action); |
| 868 | |
| 869 | /* setup state for XLogReadPage */ |
| 870 | sendTimeLineIsHistoric = false; |
| 871 | sendTimeLine = ThisTimeLineID; |
| 872 | |
| 873 | if (cmd->kind == REPLICATION_KIND_PHYSICAL) |
| 874 | { |
| 875 | ReplicationSlotCreate(cmd->slotname, false, |
| 876 | cmd->temporary ? RS_TEMPORARY : RS_PERSISTENT); |
| 877 | } |
| 878 | else |
| 879 | { |
| 880 | CheckLogicalDecodingRequirements(); |
| 881 | |
| 882 | /* |
| 883 | * Initially create persistent slot as ephemeral - that allows us to |
| 884 | * nicely handle errors during initialization because it'll get |
| 885 | * dropped if this transaction fails. We'll make it persistent at the |
| 886 | * end. Temporary slots can be created as temporary from beginning as |
| 887 | * they get dropped on error as well. |
| 888 | */ |
| 889 | ReplicationSlotCreate(cmd->slotname, true, |
| 890 | cmd->temporary ? RS_TEMPORARY : RS_EPHEMERAL); |
| 891 | } |
| 892 | |
| 893 | if (cmd->kind == REPLICATION_KIND_LOGICAL) |
| 894 | { |
| 895 | LogicalDecodingContext *ctx; |
| 896 | bool need_full_snapshot = false; |
| 897 | |
| 898 | /* |
| 899 | * Do options check early so that we can bail before calling the |
| 900 | * DecodingContextFindStartpoint which can take long time. |
| 901 | */ |
| 902 | if (snapshot_action == CRS_EXPORT_SNAPSHOT) |
| 903 | { |
| 904 | if (IsTransactionBlock()) |
| 905 | ereport(ERROR, |
| 906 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
| 907 | (errmsg("%s must not be called inside a transaction" , |
| 908 | "CREATE_REPLICATION_SLOT ... EXPORT_SNAPSHOT" ))); |
| 909 | |
| 910 | need_full_snapshot = true; |
| 911 | } |
| 912 | else if (snapshot_action == CRS_USE_SNAPSHOT) |
| 913 | { |
| 914 | if (!IsTransactionBlock()) |
| 915 | ereport(ERROR, |
| 916 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
| 917 | (errmsg("%s must be called inside a transaction" , |
| 918 | "CREATE_REPLICATION_SLOT ... USE_SNAPSHOT" ))); |
| 919 | |
| 920 | if (XactIsoLevel != XACT_REPEATABLE_READ) |
| 921 | ereport(ERROR, |
| 922 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
| 923 | (errmsg("%s must be called in REPEATABLE READ isolation mode transaction" , |
| 924 | "CREATE_REPLICATION_SLOT ... USE_SNAPSHOT" ))); |
| 925 | |
| 926 | if (FirstSnapshotSet) |
| 927 | ereport(ERROR, |
| 928 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
| 929 | (errmsg("%s must be called before any query" , |
| 930 | "CREATE_REPLICATION_SLOT ... USE_SNAPSHOT" ))); |
| 931 | |
| 932 | if (IsSubTransaction()) |
| 933 | ereport(ERROR, |
| 934 | /*- translator: %s is a CREATE_REPLICATION_SLOT statement */ |
| 935 | (errmsg("%s must not be called in a subtransaction" , |
| 936 | "CREATE_REPLICATION_SLOT ... USE_SNAPSHOT" ))); |
| 937 | |
| 938 | need_full_snapshot = true; |
| 939 | } |
| 940 | |
| 941 | ctx = CreateInitDecodingContext(cmd->plugin, NIL, need_full_snapshot, |
| 942 | InvalidXLogRecPtr, |
| 943 | logical_read_xlog_page, |
| 944 | WalSndPrepareWrite, WalSndWriteData, |
| 945 | WalSndUpdateProgress); |
| 946 | |
| 947 | /* |
| 948 | * Signal that we don't need the timeout mechanism. We're just |
| 949 | * creating the replication slot and don't yet accept feedback |
| 950 | * messages or send keepalives. As we possibly need to wait for |
| 951 | * further WAL the walsender would otherwise possibly be killed too |
| 952 | * soon. |
| 953 | */ |
| 954 | last_reply_timestamp = 0; |
| 955 | |
| 956 | /* build initial snapshot, might take a while */ |
| 957 | DecodingContextFindStartpoint(ctx); |
| 958 | |
| 959 | /* |
| 960 | * Export or use the snapshot if we've been asked to do so. |
| 961 | * |
| 962 | * NB. We will convert the snapbuild.c kind of snapshot to normal |
| 963 | * snapshot when doing this. |
| 964 | */ |
| 965 | if (snapshot_action == CRS_EXPORT_SNAPSHOT) |
| 966 | { |
| 967 | snapshot_name = SnapBuildExportSnapshot(ctx->snapshot_builder); |
| 968 | } |
| 969 | else if (snapshot_action == CRS_USE_SNAPSHOT) |
| 970 | { |
| 971 | Snapshot snap; |
| 972 | |
| 973 | snap = SnapBuildInitialSnapshot(ctx->snapshot_builder); |
| 974 | RestoreTransactionSnapshot(snap, MyProc); |
| 975 | } |
| 976 | |
| 977 | /* don't need the decoding context anymore */ |
| 978 | FreeDecodingContext(ctx); |
| 979 | |
| 980 | if (!cmd->temporary) |
| 981 | ReplicationSlotPersist(); |
| 982 | } |
| 983 | else if (cmd->kind == REPLICATION_KIND_PHYSICAL && reserve_wal) |
| 984 | { |
| 985 | ReplicationSlotReserveWal(); |
| 986 | |
| 987 | ReplicationSlotMarkDirty(); |
| 988 | |
| 989 | /* Write this slot to disk if it's a permanent one. */ |
| 990 | if (!cmd->temporary) |
| 991 | ReplicationSlotSave(); |
| 992 | } |
| 993 | |
| 994 | snprintf(xloc, sizeof(xloc), "%X/%X" , |
| 995 | (uint32) (MyReplicationSlot->data.confirmed_flush >> 32), |
| 996 | (uint32) MyReplicationSlot->data.confirmed_flush); |
| 997 | |
| 998 | dest = CreateDestReceiver(DestRemoteSimple); |
| 999 | MemSet(nulls, false, sizeof(nulls)); |
| 1000 | |
| 1001 | /*---------- |
| 1002 | * Need a tuple descriptor representing four columns: |
| 1003 | * - first field: the slot name |
| 1004 | * - second field: LSN at which we became consistent |
| 1005 | * - third field: exported snapshot's name |
| 1006 | * - fourth field: output plugin |
| 1007 | *---------- |
| 1008 | */ |
| 1009 | tupdesc = CreateTemplateTupleDesc(4); |
| 1010 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_name" , |
| 1011 | TEXTOID, -1, 0); |
| 1012 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "consistent_point" , |
| 1013 | TEXTOID, -1, 0); |
| 1014 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "snapshot_name" , |
| 1015 | TEXTOID, -1, 0); |
| 1016 | TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "output_plugin" , |
| 1017 | TEXTOID, -1, 0); |
| 1018 | |
| 1019 | /* prepare for projection of tuples */ |
| 1020 | tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual); |
| 1021 | |
| 1022 | /* slot_name */ |
| 1023 | slot_name = NameStr(MyReplicationSlot->data.name); |
| 1024 | values[0] = CStringGetTextDatum(slot_name); |
| 1025 | |
| 1026 | /* consistent wal location */ |
| 1027 | values[1] = CStringGetTextDatum(xloc); |
| 1028 | |
| 1029 | /* snapshot name, or NULL if none */ |
| 1030 | if (snapshot_name != NULL) |
| 1031 | values[2] = CStringGetTextDatum(snapshot_name); |
| 1032 | else |
| 1033 | nulls[2] = true; |
| 1034 | |
| 1035 | /* plugin, or NULL if none */ |
| 1036 | if (cmd->plugin != NULL) |
| 1037 | values[3] = CStringGetTextDatum(cmd->plugin); |
| 1038 | else |
| 1039 | nulls[3] = true; |
| 1040 | |
| 1041 | /* send it to dest */ |
| 1042 | do_tup_output(tstate, values, nulls); |
| 1043 | end_tup_output(tstate); |
| 1044 | |
| 1045 | ReplicationSlotRelease(); |
| 1046 | } |
| 1047 | |
| 1048 | /* |
| 1049 | * Get rid of a replication slot that is no longer wanted. |
| 1050 | */ |
| 1051 | static void |
| 1052 | DropReplicationSlot(DropReplicationSlotCmd *cmd) |
| 1053 | { |
| 1054 | ReplicationSlotDrop(cmd->slotname, !cmd->wait); |
| 1055 | EndCommand("DROP_REPLICATION_SLOT" , DestRemote); |
| 1056 | } |
| 1057 | |
| 1058 | /* |
| 1059 | * Load previously initiated logical slot and prepare for sending data (via |
| 1060 | * WalSndLoop). |
| 1061 | */ |
| 1062 | static void |
| 1063 | StartLogicalReplication(StartReplicationCmd *cmd) |
| 1064 | { |
| 1065 | StringInfoData buf; |
| 1066 | |
| 1067 | /* make sure that our requirements are still fulfilled */ |
| 1068 | CheckLogicalDecodingRequirements(); |
| 1069 | |
| 1070 | Assert(!MyReplicationSlot); |
| 1071 | |
| 1072 | ReplicationSlotAcquire(cmd->slotname, true); |
| 1073 | |
| 1074 | /* |
| 1075 | * Force a disconnect, so that the decoding code doesn't need to care |
| 1076 | * about an eventual switch from running in recovery, to running in a |
| 1077 | * normal environment. Client code is expected to handle reconnects. |
| 1078 | */ |
| 1079 | if (am_cascading_walsender && !RecoveryInProgress()) |
| 1080 | { |
| 1081 | ereport(LOG, |
| 1082 | (errmsg("terminating walsender process after promotion" ))); |
| 1083 | got_STOPPING = true; |
| 1084 | } |
| 1085 | |
| 1086 | /* |
| 1087 | * Create our decoding context, making it start at the previously ack'ed |
| 1088 | * position. |
| 1089 | * |
| 1090 | * Do this before sending a CopyBothResponse message, so that any errors |
| 1091 | * are reported early. |
| 1092 | */ |
| 1093 | logical_decoding_ctx = |
| 1094 | CreateDecodingContext(cmd->startpoint, cmd->options, false, |
| 1095 | logical_read_xlog_page, |
| 1096 | WalSndPrepareWrite, WalSndWriteData, |
| 1097 | WalSndUpdateProgress); |
| 1098 | |
| 1099 | |
| 1100 | WalSndSetState(WALSNDSTATE_CATCHUP); |
| 1101 | |
| 1102 | /* Send a CopyBothResponse message, and start streaming */ |
| 1103 | pq_beginmessage(&buf, 'W'); |
| 1104 | pq_sendbyte(&buf, 0); |
| 1105 | pq_sendint16(&buf, 0); |
| 1106 | pq_endmessage(&buf); |
| 1107 | pq_flush(); |
| 1108 | |
| 1109 | |
| 1110 | /* Start reading WAL from the oldest required WAL. */ |
| 1111 | logical_startptr = MyReplicationSlot->data.restart_lsn; |
| 1112 | |
| 1113 | /* |
| 1114 | * Report the location after which we'll send out further commits as the |
| 1115 | * current sentPtr. |
| 1116 | */ |
| 1117 | sentPtr = MyReplicationSlot->data.confirmed_flush; |
| 1118 | |
| 1119 | /* Also update the sent position status in shared memory */ |
| 1120 | SpinLockAcquire(&MyWalSnd->mutex); |
| 1121 | MyWalSnd->sentPtr = MyReplicationSlot->data.restart_lsn; |
| 1122 | SpinLockRelease(&MyWalSnd->mutex); |
| 1123 | |
| 1124 | replication_active = true; |
| 1125 | |
| 1126 | SyncRepInitConfig(); |
| 1127 | |
| 1128 | /* Main loop of walsender */ |
| 1129 | WalSndLoop(XLogSendLogical); |
| 1130 | |
| 1131 | FreeDecodingContext(logical_decoding_ctx); |
| 1132 | ReplicationSlotRelease(); |
| 1133 | |
| 1134 | replication_active = false; |
| 1135 | if (got_STOPPING) |
| 1136 | proc_exit(0); |
| 1137 | WalSndSetState(WALSNDSTATE_STARTUP); |
| 1138 | |
| 1139 | /* Get out of COPY mode (CommandComplete). */ |
| 1140 | EndCommand("COPY 0" , DestRemote); |
| 1141 | } |
| 1142 | |
| 1143 | /* |
| 1144 | * LogicalDecodingContext 'prepare_write' callback. |
| 1145 | * |
| 1146 | * Prepare a write into a StringInfo. |
| 1147 | * |
| 1148 | * Don't do anything lasting in here, it's quite possible that nothing will be done |
| 1149 | * with the data. |
| 1150 | */ |
| 1151 | static void |
| 1152 | WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write) |
| 1153 | { |
| 1154 | /* can't have sync rep confused by sending the same LSN several times */ |
| 1155 | if (!last_write) |
| 1156 | lsn = InvalidXLogRecPtr; |
| 1157 | |
| 1158 | resetStringInfo(ctx->out); |
| 1159 | |
| 1160 | pq_sendbyte(ctx->out, 'w'); |
| 1161 | pq_sendint64(ctx->out, lsn); /* dataStart */ |
| 1162 | pq_sendint64(ctx->out, lsn); /* walEnd */ |
| 1163 | |
| 1164 | /* |
| 1165 | * Fill out the sendtime later, just as it's done in XLogSendPhysical, but |
| 1166 | * reserve space here. |
| 1167 | */ |
| 1168 | pq_sendint64(ctx->out, 0); /* sendtime */ |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * LogicalDecodingContext 'write' callback. |
| 1173 | * |
| 1174 | * Actually write out data previously prepared by WalSndPrepareWrite out to |
| 1175 | * the network. Take as long as needed, but process replies from the other |
| 1176 | * side and check timeouts during that. |
| 1177 | */ |
| 1178 | static void |
| 1179 | WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, |
| 1180 | bool last_write) |
| 1181 | { |
| 1182 | TimestampTz now; |
| 1183 | |
| 1184 | /* output previously gathered data in a CopyData packet */ |
| 1185 | pq_putmessage_noblock('d', ctx->out->data, ctx->out->len); |
| 1186 | |
| 1187 | /* |
| 1188 | * Fill the send timestamp last, so that it is taken as late as possible. |
| 1189 | * This is somewhat ugly, but the protocol is set as it's already used for |
| 1190 | * several releases by streaming physical replication. |
| 1191 | */ |
| 1192 | resetStringInfo(&tmpbuf); |
| 1193 | now = GetCurrentTimestamp(); |
| 1194 | pq_sendint64(&tmpbuf, now); |
| 1195 | memcpy(&ctx->out->data[1 + sizeof(int64) + sizeof(int64)], |
| 1196 | tmpbuf.data, sizeof(int64)); |
| 1197 | |
| 1198 | CHECK_FOR_INTERRUPTS(); |
| 1199 | |
| 1200 | /* Try to flush pending output to the client */ |
| 1201 | if (pq_flush_if_writable() != 0) |
| 1202 | WalSndShutdown(); |
| 1203 | |
| 1204 | /* Try taking fast path unless we get too close to walsender timeout. */ |
| 1205 | if (now < TimestampTzPlusMilliseconds(last_reply_timestamp, |
| 1206 | wal_sender_timeout / 2) && |
| 1207 | !pq_is_send_pending()) |
| 1208 | { |
| 1209 | return; |
| 1210 | } |
| 1211 | |
| 1212 | /* If we have pending write here, go to slow path */ |
| 1213 | for (;;) |
| 1214 | { |
| 1215 | int wakeEvents; |
| 1216 | long sleeptime; |
| 1217 | |
| 1218 | /* Check for input from the client */ |
| 1219 | ProcessRepliesIfAny(); |
| 1220 | |
| 1221 | /* die if timeout was reached */ |
| 1222 | WalSndCheckTimeOut(); |
| 1223 | |
| 1224 | /* Send keepalive if the time has come */ |
| 1225 | WalSndKeepaliveIfNecessary(); |
| 1226 | |
| 1227 | if (!pq_is_send_pending()) |
| 1228 | break; |
| 1229 | |
| 1230 | sleeptime = WalSndComputeSleeptime(GetCurrentTimestamp()); |
| 1231 | |
| 1232 | wakeEvents = WL_LATCH_SET | WL_EXIT_ON_PM_DEATH | |
| 1233 | WL_SOCKET_WRITEABLE | WL_SOCKET_READABLE | WL_TIMEOUT; |
| 1234 | |
| 1235 | /* Sleep until something happens or we time out */ |
| 1236 | (void) WaitLatchOrSocket(MyLatch, wakeEvents, |
| 1237 | MyProcPort->sock, sleeptime, |
| 1238 | WAIT_EVENT_WAL_SENDER_WRITE_DATA); |
| 1239 | |
| 1240 | /* Clear any already-pending wakeups */ |
| 1241 | ResetLatch(MyLatch); |
| 1242 | |
| 1243 | CHECK_FOR_INTERRUPTS(); |
| 1244 | |
| 1245 | /* Process any requests or signals received recently */ |
| 1246 | if (ConfigReloadPending) |
| 1247 | { |
| 1248 | ConfigReloadPending = false; |
| 1249 | ProcessConfigFile(PGC_SIGHUP); |
| 1250 | SyncRepInitConfig(); |
| 1251 | } |
| 1252 | |
| 1253 | /* Try to flush pending output to the client */ |
| 1254 | if (pq_flush_if_writable() != 0) |
| 1255 | WalSndShutdown(); |
| 1256 | } |
| 1257 | |
| 1258 | /* reactivate latch so WalSndLoop knows to continue */ |
| 1259 | SetLatch(MyLatch); |
| 1260 | } |
| 1261 | |
| 1262 | /* |
| 1263 | * LogicalDecodingContext 'update_progress' callback. |
| 1264 | * |
| 1265 | * Write the current position to the lag tracker (see XLogSendPhysical). |
| 1266 | */ |
| 1267 | static void |
| 1268 | WalSndUpdateProgress(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid) |
| 1269 | { |
| 1270 | static TimestampTz sendTime = 0; |
| 1271 | TimestampTz now = GetCurrentTimestamp(); |
| 1272 | |
| 1273 | /* |
| 1274 | * Track lag no more than once per WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS to |
| 1275 | * avoid flooding the lag tracker when we commit frequently. |
| 1276 | */ |
| 1277 | #define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS 1000 |
| 1278 | if (!TimestampDifferenceExceeds(sendTime, now, |
| 1279 | WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS)) |
| 1280 | return; |
| 1281 | |
| 1282 | LagTrackerWrite(lsn, now); |
| 1283 | sendTime = now; |
| 1284 | } |
| 1285 | |
| 1286 | /* |
| 1287 | * Wait till WAL < loc is flushed to disk so it can be safely sent to client. |
| 1288 | * |
| 1289 | * Returns end LSN of flushed WAL. Normally this will be >= loc, but |
| 1290 | * if we detect a shutdown request (either from postmaster or client) |
| 1291 | * we will return early, so caller must always check. |
| 1292 | */ |
| 1293 | static XLogRecPtr |
| 1294 | WalSndWaitForWal(XLogRecPtr loc) |
| 1295 | { |
| 1296 | int wakeEvents; |
| 1297 | static XLogRecPtr RecentFlushPtr = InvalidXLogRecPtr; |
| 1298 | |
| 1299 | |
| 1300 | /* |
| 1301 | * Fast path to avoid acquiring the spinlock in case we already know we |
| 1302 | * have enough WAL available. This is particularly interesting if we're |
| 1303 | * far behind. |
| 1304 | */ |
| 1305 | if (RecentFlushPtr != InvalidXLogRecPtr && |
| 1306 | loc <= RecentFlushPtr) |
| 1307 | return RecentFlushPtr; |
| 1308 | |
| 1309 | /* Get a more recent flush pointer. */ |
| 1310 | if (!RecoveryInProgress()) |
| 1311 | RecentFlushPtr = GetFlushRecPtr(); |
| 1312 | else |
| 1313 | RecentFlushPtr = GetXLogReplayRecPtr(NULL); |
| 1314 | |
| 1315 | for (;;) |
| 1316 | { |
| 1317 | long sleeptime; |
| 1318 | |
| 1319 | /* Clear any already-pending wakeups */ |
| 1320 | ResetLatch(MyLatch); |
| 1321 | |
| 1322 | CHECK_FOR_INTERRUPTS(); |
| 1323 | |
| 1324 | /* Process any requests or signals received recently */ |
| 1325 | if (ConfigReloadPending) |
| 1326 | { |
| 1327 | ConfigReloadPending = false; |
| 1328 | ProcessConfigFile(PGC_SIGHUP); |
| 1329 | SyncRepInitConfig(); |
| 1330 | } |
| 1331 | |
| 1332 | /* Check for input from the client */ |
| 1333 | ProcessRepliesIfAny(); |
| 1334 | |
| 1335 | /* |
| 1336 | * If we're shutting down, trigger pending WAL to be written out, |
| 1337 | * otherwise we'd possibly end up waiting for WAL that never gets |
| 1338 | * written, because walwriter has shut down already. |
| 1339 | */ |
| 1340 | if (got_STOPPING) |
| 1341 | XLogBackgroundFlush(); |
| 1342 | |
| 1343 | /* Update our idea of the currently flushed position. */ |
| 1344 | if (!RecoveryInProgress()) |
| 1345 | RecentFlushPtr = GetFlushRecPtr(); |
| 1346 | else |
| 1347 | RecentFlushPtr = GetXLogReplayRecPtr(NULL); |
| 1348 | |
| 1349 | /* |
| 1350 | * If postmaster asked us to stop, don't wait anymore. |
| 1351 | * |
| 1352 | * It's important to do this check after the recomputation of |
| 1353 | * RecentFlushPtr, so we can send all remaining data before shutting |
| 1354 | * down. |
| 1355 | */ |
| 1356 | if (got_STOPPING) |
| 1357 | break; |
| 1358 | |
| 1359 | /* |
| 1360 | * We only send regular messages to the client for full decoded |
| 1361 | * transactions, but a synchronous replication and walsender shutdown |
| 1362 | * possibly are waiting for a later location. So we send pings |
| 1363 | * containing the flush location every now and then. |
| 1364 | */ |
| 1365 | if (MyWalSnd->flush < sentPtr && |
| 1366 | MyWalSnd->write < sentPtr && |
| 1367 | !waiting_for_ping_response) |
| 1368 | { |
| 1369 | WalSndKeepalive(false); |
| 1370 | waiting_for_ping_response = true; |
| 1371 | } |
| 1372 | |
| 1373 | /* check whether we're done */ |
| 1374 | if (loc <= RecentFlushPtr) |
| 1375 | break; |
| 1376 | |
| 1377 | /* Waiting for new WAL. Since we need to wait, we're now caught up. */ |
| 1378 | WalSndCaughtUp = true; |
| 1379 | |
| 1380 | /* |
| 1381 | * Try to flush any pending output to the client. |
| 1382 | */ |
| 1383 | if (pq_flush_if_writable() != 0) |
| 1384 | WalSndShutdown(); |
| 1385 | |
| 1386 | /* |
| 1387 | * If we have received CopyDone from the client, sent CopyDone |
| 1388 | * ourselves, and the output buffer is empty, it's time to exit |
| 1389 | * streaming, so fail the current WAL fetch request. |
| 1390 | */ |
| 1391 | if (streamingDoneReceiving && streamingDoneSending && |
| 1392 | !pq_is_send_pending()) |
| 1393 | break; |
| 1394 | |
| 1395 | /* die if timeout was reached */ |
| 1396 | WalSndCheckTimeOut(); |
| 1397 | |
| 1398 | /* Send keepalive if the time has come */ |
| 1399 | WalSndKeepaliveIfNecessary(); |
| 1400 | |
| 1401 | /* |
| 1402 | * Sleep until something happens or we time out. Also wait for the |
| 1403 | * socket becoming writable, if there's still pending output. |
| 1404 | * Otherwise we might sit on sendable output data while waiting for |
| 1405 | * new WAL to be generated. (But if we have nothing to send, we don't |
| 1406 | * want to wake on socket-writable.) |
| 1407 | */ |
| 1408 | sleeptime = WalSndComputeSleeptime(GetCurrentTimestamp()); |
| 1409 | |
| 1410 | wakeEvents = WL_LATCH_SET | WL_EXIT_ON_PM_DEATH | |
| 1411 | WL_SOCKET_READABLE | WL_TIMEOUT; |
| 1412 | |
| 1413 | if (pq_is_send_pending()) |
| 1414 | wakeEvents |= WL_SOCKET_WRITEABLE; |
| 1415 | |
| 1416 | (void) WaitLatchOrSocket(MyLatch, wakeEvents, |
| 1417 | MyProcPort->sock, sleeptime, |
| 1418 | WAIT_EVENT_WAL_SENDER_WAIT_WAL); |
| 1419 | } |
| 1420 | |
| 1421 | /* reactivate latch so WalSndLoop knows to continue */ |
| 1422 | SetLatch(MyLatch); |
| 1423 | return RecentFlushPtr; |
| 1424 | } |
| 1425 | |
| 1426 | /* |
| 1427 | * Execute an incoming replication command. |
| 1428 | * |
| 1429 | * Returns true if the cmd_string was recognized as WalSender command, false |
| 1430 | * if not. |
| 1431 | */ |
| 1432 | bool |
| 1433 | exec_replication_command(const char *cmd_string) |
| 1434 | { |
| 1435 | int parse_rc; |
| 1436 | Node *cmd_node; |
| 1437 | MemoryContext cmd_context; |
| 1438 | MemoryContext old_context; |
| 1439 | |
| 1440 | /* |
| 1441 | * If WAL sender has been told that shutdown is getting close, switch its |
| 1442 | * status accordingly to handle the next replication commands correctly. |
| 1443 | */ |
| 1444 | if (got_STOPPING) |
| 1445 | WalSndSetState(WALSNDSTATE_STOPPING); |
| 1446 | |
| 1447 | /* |
| 1448 | * Throw error if in stopping mode. We need prevent commands that could |
| 1449 | * generate WAL while the shutdown checkpoint is being written. To be |
| 1450 | * safe, we just prohibit all new commands. |
| 1451 | */ |
| 1452 | if (MyWalSnd->state == WALSNDSTATE_STOPPING) |
| 1453 | ereport(ERROR, |
| 1454 | (errmsg("cannot execute new commands while WAL sender is in stopping mode" ))); |
| 1455 | |
| 1456 | /* |
| 1457 | * CREATE_REPLICATION_SLOT ... LOGICAL exports a snapshot until the next |
| 1458 | * command arrives. Clean up the old stuff if there's anything. |
| 1459 | */ |
| 1460 | SnapBuildClearExportedSnapshot(); |
| 1461 | |
| 1462 | CHECK_FOR_INTERRUPTS(); |
| 1463 | |
| 1464 | cmd_context = AllocSetContextCreate(CurrentMemoryContext, |
| 1465 | "Replication command context" , |
| 1466 | ALLOCSET_DEFAULT_SIZES); |
| 1467 | old_context = MemoryContextSwitchTo(cmd_context); |
| 1468 | |
| 1469 | replication_scanner_init(cmd_string); |
| 1470 | parse_rc = replication_yyparse(); |
| 1471 | if (parse_rc != 0) |
| 1472 | ereport(ERROR, |
| 1473 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1474 | (errmsg_internal("replication command parser returned %d" , |
| 1475 | parse_rc)))); |
| 1476 | |
| 1477 | cmd_node = replication_parse_result; |
| 1478 | |
| 1479 | /* |
| 1480 | * Log replication command if log_replication_commands is enabled. Even |
| 1481 | * when it's disabled, log the command with DEBUG1 level for backward |
| 1482 | * compatibility. Note that SQL commands are not logged here, and will be |
| 1483 | * logged later if log_statement is enabled. |
| 1484 | */ |
| 1485 | if (cmd_node->type != T_SQLCmd) |
| 1486 | ereport(log_replication_commands ? LOG : DEBUG1, |
| 1487 | (errmsg("received replication command: %s" , cmd_string))); |
| 1488 | |
| 1489 | /* |
| 1490 | * CREATE_REPLICATION_SLOT ... LOGICAL exports a snapshot. If it was |
| 1491 | * called outside of transaction the snapshot should be cleared here. |
| 1492 | */ |
| 1493 | if (!IsTransactionBlock()) |
| 1494 | SnapBuildClearExportedSnapshot(); |
| 1495 | |
| 1496 | /* |
| 1497 | * For aborted transactions, don't allow anything except pure SQL, the |
| 1498 | * exec_simple_query() will handle it correctly. |
| 1499 | */ |
| 1500 | if (IsAbortedTransactionBlockState() && !IsA(cmd_node, SQLCmd)) |
| 1501 | ereport(ERROR, |
| 1502 | (errcode(ERRCODE_IN_FAILED_SQL_TRANSACTION), |
| 1503 | errmsg("current transaction is aborted, " |
| 1504 | "commands ignored until end of transaction block" ))); |
| 1505 | |
| 1506 | CHECK_FOR_INTERRUPTS(); |
| 1507 | |
| 1508 | /* |
| 1509 | * Allocate buffers that will be used for each outgoing and incoming |
| 1510 | * message. We do this just once per command to reduce palloc overhead. |
| 1511 | */ |
| 1512 | initStringInfo(&output_message); |
| 1513 | initStringInfo(&reply_message); |
| 1514 | initStringInfo(&tmpbuf); |
| 1515 | |
| 1516 | /* Report to pgstat that this process is running */ |
| 1517 | pgstat_report_activity(STATE_RUNNING, NULL); |
| 1518 | |
| 1519 | switch (cmd_node->type) |
| 1520 | { |
| 1521 | case T_IdentifySystemCmd: |
| 1522 | IdentifySystem(); |
| 1523 | break; |
| 1524 | |
| 1525 | case T_BaseBackupCmd: |
| 1526 | PreventInTransactionBlock(true, "BASE_BACKUP" ); |
| 1527 | SendBaseBackup((BaseBackupCmd *) cmd_node); |
| 1528 | break; |
| 1529 | |
| 1530 | case T_CreateReplicationSlotCmd: |
| 1531 | CreateReplicationSlot((CreateReplicationSlotCmd *) cmd_node); |
| 1532 | break; |
| 1533 | |
| 1534 | case T_DropReplicationSlotCmd: |
| 1535 | DropReplicationSlot((DropReplicationSlotCmd *) cmd_node); |
| 1536 | break; |
| 1537 | |
| 1538 | case T_StartReplicationCmd: |
| 1539 | { |
| 1540 | StartReplicationCmd *cmd = (StartReplicationCmd *) cmd_node; |
| 1541 | |
| 1542 | PreventInTransactionBlock(true, "START_REPLICATION" ); |
| 1543 | |
| 1544 | if (cmd->kind == REPLICATION_KIND_PHYSICAL) |
| 1545 | StartReplication(cmd); |
| 1546 | else |
| 1547 | StartLogicalReplication(cmd); |
| 1548 | break; |
| 1549 | } |
| 1550 | |
| 1551 | case T_TimeLineHistoryCmd: |
| 1552 | PreventInTransactionBlock(true, "TIMELINE_HISTORY" ); |
| 1553 | SendTimeLineHistory((TimeLineHistoryCmd *) cmd_node); |
| 1554 | break; |
| 1555 | |
| 1556 | case T_VariableShowStmt: |
| 1557 | { |
| 1558 | DestReceiver *dest = CreateDestReceiver(DestRemoteSimple); |
| 1559 | VariableShowStmt *n = (VariableShowStmt *) cmd_node; |
| 1560 | |
| 1561 | /* syscache access needs a transaction environment */ |
| 1562 | StartTransactionCommand(); |
| 1563 | GetPGVariable(n->name, dest); |
| 1564 | CommitTransactionCommand(); |
| 1565 | } |
| 1566 | break; |
| 1567 | |
| 1568 | case T_SQLCmd: |
| 1569 | if (MyDatabaseId == InvalidOid) |
| 1570 | ereport(ERROR, |
| 1571 | (errmsg("cannot execute SQL commands in WAL sender for physical replication" ))); |
| 1572 | |
| 1573 | /* Report to pgstat that this process is now idle */ |
| 1574 | pgstat_report_activity(STATE_IDLE, NULL); |
| 1575 | |
| 1576 | /* Tell the caller that this wasn't a WalSender command. */ |
| 1577 | return false; |
| 1578 | |
| 1579 | default: |
| 1580 | elog(ERROR, "unrecognized replication command node tag: %u" , |
| 1581 | cmd_node->type); |
| 1582 | } |
| 1583 | |
| 1584 | /* done */ |
| 1585 | MemoryContextSwitchTo(old_context); |
| 1586 | MemoryContextDelete(cmd_context); |
| 1587 | |
| 1588 | /* Send CommandComplete message */ |
| 1589 | EndCommand("SELECT" , DestRemote); |
| 1590 | |
| 1591 | /* Report to pgstat that this process is now idle */ |
| 1592 | pgstat_report_activity(STATE_IDLE, NULL); |
| 1593 | |
| 1594 | return true; |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * Process any incoming messages while streaming. Also checks if the remote |
| 1599 | * end has closed the connection. |
| 1600 | */ |
| 1601 | static void |
| 1602 | ProcessRepliesIfAny(void) |
| 1603 | { |
| 1604 | unsigned char firstchar; |
| 1605 | int r; |
| 1606 | bool received = false; |
| 1607 | |
| 1608 | last_processing = GetCurrentTimestamp(); |
| 1609 | |
| 1610 | for (;;) |
| 1611 | { |
| 1612 | pq_startmsgread(); |
| 1613 | r = pq_getbyte_if_available(&firstchar); |
| 1614 | if (r < 0) |
| 1615 | { |
| 1616 | /* unexpected error or EOF */ |
| 1617 | ereport(COMMERROR, |
| 1618 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1619 | errmsg("unexpected EOF on standby connection" ))); |
| 1620 | proc_exit(0); |
| 1621 | } |
| 1622 | if (r == 0) |
| 1623 | { |
| 1624 | /* no data available without blocking */ |
| 1625 | pq_endmsgread(); |
| 1626 | break; |
| 1627 | } |
| 1628 | |
| 1629 | /* Read the message contents */ |
| 1630 | resetStringInfo(&reply_message); |
| 1631 | if (pq_getmessage(&reply_message, 0)) |
| 1632 | { |
| 1633 | ereport(COMMERROR, |
| 1634 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1635 | errmsg("unexpected EOF on standby connection" ))); |
| 1636 | proc_exit(0); |
| 1637 | } |
| 1638 | |
| 1639 | /* |
| 1640 | * If we already received a CopyDone from the frontend, the frontend |
| 1641 | * should not send us anything until we've closed our end of the COPY. |
| 1642 | * XXX: In theory, the frontend could already send the next command |
| 1643 | * before receiving the CopyDone, but libpq doesn't currently allow |
| 1644 | * that. |
| 1645 | */ |
| 1646 | if (streamingDoneReceiving && firstchar != 'X') |
| 1647 | ereport(FATAL, |
| 1648 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1649 | errmsg("unexpected standby message type \"%c\", after receiving CopyDone" , |
| 1650 | firstchar))); |
| 1651 | |
| 1652 | /* Handle the very limited subset of commands expected in this phase */ |
| 1653 | switch (firstchar) |
| 1654 | { |
| 1655 | /* |
| 1656 | * 'd' means a standby reply wrapped in a CopyData packet. |
| 1657 | */ |
| 1658 | case 'd': |
| 1659 | ProcessStandbyMessage(); |
| 1660 | received = true; |
| 1661 | break; |
| 1662 | |
| 1663 | /* |
| 1664 | * CopyDone means the standby requested to finish streaming. |
| 1665 | * Reply with CopyDone, if we had not sent that already. |
| 1666 | */ |
| 1667 | case 'c': |
| 1668 | if (!streamingDoneSending) |
| 1669 | { |
| 1670 | pq_putmessage_noblock('c', NULL, 0); |
| 1671 | streamingDoneSending = true; |
| 1672 | } |
| 1673 | |
| 1674 | streamingDoneReceiving = true; |
| 1675 | received = true; |
| 1676 | break; |
| 1677 | |
| 1678 | /* |
| 1679 | * 'X' means that the standby is closing down the socket. |
| 1680 | */ |
| 1681 | case 'X': |
| 1682 | proc_exit(0); |
| 1683 | |
| 1684 | default: |
| 1685 | ereport(FATAL, |
| 1686 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1687 | errmsg("invalid standby message type \"%c\"" , |
| 1688 | firstchar))); |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | /* |
| 1693 | * Save the last reply timestamp if we've received at least one reply. |
| 1694 | */ |
| 1695 | if (received) |
| 1696 | { |
| 1697 | last_reply_timestamp = last_processing; |
| 1698 | waiting_for_ping_response = false; |
| 1699 | } |
| 1700 | } |
| 1701 | |
| 1702 | /* |
| 1703 | * Process a status update message received from standby. |
| 1704 | */ |
| 1705 | static void |
| 1706 | ProcessStandbyMessage(void) |
| 1707 | { |
| 1708 | char msgtype; |
| 1709 | |
| 1710 | /* |
| 1711 | * Check message type from the first byte. |
| 1712 | */ |
| 1713 | msgtype = pq_getmsgbyte(&reply_message); |
| 1714 | |
| 1715 | switch (msgtype) |
| 1716 | { |
| 1717 | case 'r': |
| 1718 | ProcessStandbyReplyMessage(); |
| 1719 | break; |
| 1720 | |
| 1721 | case 'h': |
| 1722 | ProcessStandbyHSFeedbackMessage(); |
| 1723 | break; |
| 1724 | |
| 1725 | default: |
| 1726 | ereport(COMMERROR, |
| 1727 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1728 | errmsg("unexpected message type \"%c\"" , msgtype))); |
| 1729 | proc_exit(0); |
| 1730 | } |
| 1731 | } |
| 1732 | |
| 1733 | /* |
| 1734 | * Remember that a walreceiver just confirmed receipt of lsn `lsn`. |
| 1735 | */ |
| 1736 | static void |
| 1737 | PhysicalConfirmReceivedLocation(XLogRecPtr lsn) |
| 1738 | { |
| 1739 | bool changed = false; |
| 1740 | ReplicationSlot *slot = MyReplicationSlot; |
| 1741 | |
| 1742 | Assert(lsn != InvalidXLogRecPtr); |
| 1743 | SpinLockAcquire(&slot->mutex); |
| 1744 | if (slot->data.restart_lsn != lsn) |
| 1745 | { |
| 1746 | changed = true; |
| 1747 | slot->data.restart_lsn = lsn; |
| 1748 | } |
| 1749 | SpinLockRelease(&slot->mutex); |
| 1750 | |
| 1751 | if (changed) |
| 1752 | { |
| 1753 | ReplicationSlotMarkDirty(); |
| 1754 | ReplicationSlotsComputeRequiredLSN(); |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * One could argue that the slot should be saved to disk now, but that'd |
| 1759 | * be energy wasted - the worst lost information can do here is give us |
| 1760 | * wrong information in a statistics view - we'll just potentially be more |
| 1761 | * conservative in removing files. |
| 1762 | */ |
| 1763 | } |
| 1764 | |
| 1765 | /* |
| 1766 | * Regular reply from standby advising of WAL locations on standby server. |
| 1767 | */ |
| 1768 | static void |
| 1769 | ProcessStandbyReplyMessage(void) |
| 1770 | { |
| 1771 | XLogRecPtr writePtr, |
| 1772 | flushPtr, |
| 1773 | applyPtr; |
| 1774 | bool replyRequested; |
| 1775 | TimeOffset writeLag, |
| 1776 | flushLag, |
| 1777 | applyLag; |
| 1778 | bool clearLagTimes; |
| 1779 | TimestampTz now; |
| 1780 | TimestampTz replyTime; |
| 1781 | |
| 1782 | static bool fullyAppliedLastTime = false; |
| 1783 | |
| 1784 | /* the caller already consumed the msgtype byte */ |
| 1785 | writePtr = pq_getmsgint64(&reply_message); |
| 1786 | flushPtr = pq_getmsgint64(&reply_message); |
| 1787 | applyPtr = pq_getmsgint64(&reply_message); |
| 1788 | replyTime = pq_getmsgint64(&reply_message); |
| 1789 | replyRequested = pq_getmsgbyte(&reply_message); |
| 1790 | |
| 1791 | if (log_min_messages <= DEBUG2) |
| 1792 | { |
| 1793 | char *replyTimeStr; |
| 1794 | |
| 1795 | /* Copy because timestamptz_to_str returns a static buffer */ |
| 1796 | replyTimeStr = pstrdup(timestamptz_to_str(replyTime)); |
| 1797 | |
| 1798 | elog(DEBUG2, "write %X/%X flush %X/%X apply %X/%X%s reply_time %s" , |
| 1799 | (uint32) (writePtr >> 32), (uint32) writePtr, |
| 1800 | (uint32) (flushPtr >> 32), (uint32) flushPtr, |
| 1801 | (uint32) (applyPtr >> 32), (uint32) applyPtr, |
| 1802 | replyRequested ? " (reply requested)" : "" , |
| 1803 | replyTimeStr); |
| 1804 | |
| 1805 | pfree(replyTimeStr); |
| 1806 | } |
| 1807 | |
| 1808 | /* See if we can compute the round-trip lag for these positions. */ |
| 1809 | now = GetCurrentTimestamp(); |
| 1810 | writeLag = LagTrackerRead(SYNC_REP_WAIT_WRITE, writePtr, now); |
| 1811 | flushLag = LagTrackerRead(SYNC_REP_WAIT_FLUSH, flushPtr, now); |
| 1812 | applyLag = LagTrackerRead(SYNC_REP_WAIT_APPLY, applyPtr, now); |
| 1813 | |
| 1814 | /* |
| 1815 | * If the standby reports that it has fully replayed the WAL in two |
| 1816 | * consecutive reply messages, then the second such message must result |
| 1817 | * from wal_receiver_status_interval expiring on the standby. This is a |
| 1818 | * convenient time to forget the lag times measured when it last |
| 1819 | * wrote/flushed/applied a WAL record, to avoid displaying stale lag data |
| 1820 | * until more WAL traffic arrives. |
| 1821 | */ |
| 1822 | clearLagTimes = false; |
| 1823 | if (applyPtr == sentPtr) |
| 1824 | { |
| 1825 | if (fullyAppliedLastTime) |
| 1826 | clearLagTimes = true; |
| 1827 | fullyAppliedLastTime = true; |
| 1828 | } |
| 1829 | else |
| 1830 | fullyAppliedLastTime = false; |
| 1831 | |
| 1832 | /* Send a reply if the standby requested one. */ |
| 1833 | if (replyRequested) |
| 1834 | WalSndKeepalive(false); |
| 1835 | |
| 1836 | /* |
| 1837 | * Update shared state for this WalSender process based on reply data from |
| 1838 | * standby. |
| 1839 | */ |
| 1840 | { |
| 1841 | WalSnd *walsnd = MyWalSnd; |
| 1842 | |
| 1843 | SpinLockAcquire(&walsnd->mutex); |
| 1844 | walsnd->write = writePtr; |
| 1845 | walsnd->flush = flushPtr; |
| 1846 | walsnd->apply = applyPtr; |
| 1847 | if (writeLag != -1 || clearLagTimes) |
| 1848 | walsnd->writeLag = writeLag; |
| 1849 | if (flushLag != -1 || clearLagTimes) |
| 1850 | walsnd->flushLag = flushLag; |
| 1851 | if (applyLag != -1 || clearLagTimes) |
| 1852 | walsnd->applyLag = applyLag; |
| 1853 | walsnd->replyTime = replyTime; |
| 1854 | SpinLockRelease(&walsnd->mutex); |
| 1855 | } |
| 1856 | |
| 1857 | if (!am_cascading_walsender) |
| 1858 | SyncRepReleaseWaiters(); |
| 1859 | |
| 1860 | /* |
| 1861 | * Advance our local xmin horizon when the client confirmed a flush. |
| 1862 | */ |
| 1863 | if (MyReplicationSlot && flushPtr != InvalidXLogRecPtr) |
| 1864 | { |
| 1865 | if (SlotIsLogical(MyReplicationSlot)) |
| 1866 | LogicalConfirmReceivedLocation(flushPtr); |
| 1867 | else |
| 1868 | PhysicalConfirmReceivedLocation(flushPtr); |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | /* compute new replication slot xmin horizon if needed */ |
| 1873 | static void |
| 1874 | PhysicalReplicationSlotNewXmin(TransactionId feedbackXmin, TransactionId feedbackCatalogXmin) |
| 1875 | { |
| 1876 | bool changed = false; |
| 1877 | ReplicationSlot *slot = MyReplicationSlot; |
| 1878 | |
| 1879 | SpinLockAcquire(&slot->mutex); |
| 1880 | MyPgXact->xmin = InvalidTransactionId; |
| 1881 | |
| 1882 | /* |
| 1883 | * For physical replication we don't need the interlock provided by xmin |
| 1884 | * and effective_xmin since the consequences of a missed increase are |
| 1885 | * limited to query cancellations, so set both at once. |
| 1886 | */ |
| 1887 | if (!TransactionIdIsNormal(slot->data.xmin) || |
| 1888 | !TransactionIdIsNormal(feedbackXmin) || |
| 1889 | TransactionIdPrecedes(slot->data.xmin, feedbackXmin)) |
| 1890 | { |
| 1891 | changed = true; |
| 1892 | slot->data.xmin = feedbackXmin; |
| 1893 | slot->effective_xmin = feedbackXmin; |
| 1894 | } |
| 1895 | if (!TransactionIdIsNormal(slot->data.catalog_xmin) || |
| 1896 | !TransactionIdIsNormal(feedbackCatalogXmin) || |
| 1897 | TransactionIdPrecedes(slot->data.catalog_xmin, feedbackCatalogXmin)) |
| 1898 | { |
| 1899 | changed = true; |
| 1900 | slot->data.catalog_xmin = feedbackCatalogXmin; |
| 1901 | slot->effective_catalog_xmin = feedbackCatalogXmin; |
| 1902 | } |
| 1903 | SpinLockRelease(&slot->mutex); |
| 1904 | |
| 1905 | if (changed) |
| 1906 | { |
| 1907 | ReplicationSlotMarkDirty(); |
| 1908 | ReplicationSlotsComputeRequiredXmin(false); |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | /* |
| 1913 | * Check that the provided xmin/epoch are sane, that is, not in the future |
| 1914 | * and not so far back as to be already wrapped around. |
| 1915 | * |
| 1916 | * Epoch of nextXid should be same as standby, or if the counter has |
| 1917 | * wrapped, then one greater than standby. |
| 1918 | * |
| 1919 | * This check doesn't care about whether clog exists for these xids |
| 1920 | * at all. |
| 1921 | */ |
| 1922 | static bool |
| 1923 | TransactionIdInRecentPast(TransactionId xid, uint32 epoch) |
| 1924 | { |
| 1925 | FullTransactionId nextFullXid; |
| 1926 | TransactionId nextXid; |
| 1927 | uint32 nextEpoch; |
| 1928 | |
| 1929 | nextFullXid = ReadNextFullTransactionId(); |
| 1930 | nextXid = XidFromFullTransactionId(nextFullXid); |
| 1931 | nextEpoch = EpochFromFullTransactionId(nextFullXid); |
| 1932 | |
| 1933 | if (xid <= nextXid) |
| 1934 | { |
| 1935 | if (epoch != nextEpoch) |
| 1936 | return false; |
| 1937 | } |
| 1938 | else |
| 1939 | { |
| 1940 | if (epoch + 1 != nextEpoch) |
| 1941 | return false; |
| 1942 | } |
| 1943 | |
| 1944 | if (!TransactionIdPrecedesOrEquals(xid, nextXid)) |
| 1945 | return false; /* epoch OK, but it's wrapped around */ |
| 1946 | |
| 1947 | return true; |
| 1948 | } |
| 1949 | |
| 1950 | /* |
| 1951 | * Hot Standby feedback |
| 1952 | */ |
| 1953 | static void |
| 1954 | ProcessStandbyHSFeedbackMessage(void) |
| 1955 | { |
| 1956 | TransactionId feedbackXmin; |
| 1957 | uint32 feedbackEpoch; |
| 1958 | TransactionId feedbackCatalogXmin; |
| 1959 | uint32 feedbackCatalogEpoch; |
| 1960 | TimestampTz replyTime; |
| 1961 | |
| 1962 | /* |
| 1963 | * Decipher the reply message. The caller already consumed the msgtype |
| 1964 | * byte. See XLogWalRcvSendHSFeedback() in walreceiver.c for the creation |
| 1965 | * of this message. |
| 1966 | */ |
| 1967 | replyTime = pq_getmsgint64(&reply_message); |
| 1968 | feedbackXmin = pq_getmsgint(&reply_message, 4); |
| 1969 | feedbackEpoch = pq_getmsgint(&reply_message, 4); |
| 1970 | feedbackCatalogXmin = pq_getmsgint(&reply_message, 4); |
| 1971 | feedbackCatalogEpoch = pq_getmsgint(&reply_message, 4); |
| 1972 | |
| 1973 | if (log_min_messages <= DEBUG2) |
| 1974 | { |
| 1975 | char *replyTimeStr; |
| 1976 | |
| 1977 | /* Copy because timestamptz_to_str returns a static buffer */ |
| 1978 | replyTimeStr = pstrdup(timestamptz_to_str(replyTime)); |
| 1979 | |
| 1980 | elog(DEBUG2, "hot standby feedback xmin %u epoch %u, catalog_xmin %u epoch %u reply_time %s" , |
| 1981 | feedbackXmin, |
| 1982 | feedbackEpoch, |
| 1983 | feedbackCatalogXmin, |
| 1984 | feedbackCatalogEpoch, |
| 1985 | replyTimeStr); |
| 1986 | |
| 1987 | pfree(replyTimeStr); |
| 1988 | } |
| 1989 | |
| 1990 | /* |
| 1991 | * Update shared state for this WalSender process based on reply data from |
| 1992 | * standby. |
| 1993 | */ |
| 1994 | { |
| 1995 | WalSnd *walsnd = MyWalSnd; |
| 1996 | |
| 1997 | SpinLockAcquire(&walsnd->mutex); |
| 1998 | walsnd->replyTime = replyTime; |
| 1999 | SpinLockRelease(&walsnd->mutex); |
| 2000 | } |
| 2001 | |
| 2002 | /* |
| 2003 | * Unset WalSender's xmins if the feedback message values are invalid. |
| 2004 | * This happens when the downstream turned hot_standby_feedback off. |
| 2005 | */ |
| 2006 | if (!TransactionIdIsNormal(feedbackXmin) |
| 2007 | && !TransactionIdIsNormal(feedbackCatalogXmin)) |
| 2008 | { |
| 2009 | MyPgXact->xmin = InvalidTransactionId; |
| 2010 | if (MyReplicationSlot != NULL) |
| 2011 | PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin); |
| 2012 | return; |
| 2013 | } |
| 2014 | |
| 2015 | /* |
| 2016 | * Check that the provided xmin/epoch are sane, that is, not in the future |
| 2017 | * and not so far back as to be already wrapped around. Ignore if not. |
| 2018 | */ |
| 2019 | if (TransactionIdIsNormal(feedbackXmin) && |
| 2020 | !TransactionIdInRecentPast(feedbackXmin, feedbackEpoch)) |
| 2021 | return; |
| 2022 | |
| 2023 | if (TransactionIdIsNormal(feedbackCatalogXmin) && |
| 2024 | !TransactionIdInRecentPast(feedbackCatalogXmin, feedbackCatalogEpoch)) |
| 2025 | return; |
| 2026 | |
| 2027 | /* |
| 2028 | * Set the WalSender's xmin equal to the standby's requested xmin, so that |
| 2029 | * the xmin will be taken into account by GetOldestXmin. This will hold |
| 2030 | * back the removal of dead rows and thereby prevent the generation of |
| 2031 | * cleanup conflicts on the standby server. |
| 2032 | * |
| 2033 | * There is a small window for a race condition here: although we just |
| 2034 | * checked that feedbackXmin precedes nextXid, the nextXid could have |
| 2035 | * gotten advanced between our fetching it and applying the xmin below, |
| 2036 | * perhaps far enough to make feedbackXmin wrap around. In that case the |
| 2037 | * xmin we set here would be "in the future" and have no effect. No point |
| 2038 | * in worrying about this since it's too late to save the desired data |
| 2039 | * anyway. Assuming that the standby sends us an increasing sequence of |
| 2040 | * xmins, this could only happen during the first reply cycle, else our |
| 2041 | * own xmin would prevent nextXid from advancing so far. |
| 2042 | * |
| 2043 | * We don't bother taking the ProcArrayLock here. Setting the xmin field |
| 2044 | * is assumed atomic, and there's no real need to prevent a concurrent |
| 2045 | * GetOldestXmin. (If we're moving our xmin forward, this is obviously |
| 2046 | * safe, and if we're moving it backwards, well, the data is at risk |
| 2047 | * already since a VACUUM could have just finished calling GetOldestXmin.) |
| 2048 | * |
| 2049 | * If we're using a replication slot we reserve the xmin via that, |
| 2050 | * otherwise via the walsender's PGXACT entry. We can only track the |
| 2051 | * catalog xmin separately when using a slot, so we store the least of the |
| 2052 | * two provided when not using a slot. |
| 2053 | * |
| 2054 | * XXX: It might make sense to generalize the ephemeral slot concept and |
| 2055 | * always use the slot mechanism to handle the feedback xmin. |
| 2056 | */ |
| 2057 | if (MyReplicationSlot != NULL) /* XXX: persistency configurable? */ |
| 2058 | PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin); |
| 2059 | else |
| 2060 | { |
| 2061 | if (TransactionIdIsNormal(feedbackCatalogXmin) |
| 2062 | && TransactionIdPrecedes(feedbackCatalogXmin, feedbackXmin)) |
| 2063 | MyPgXact->xmin = feedbackCatalogXmin; |
| 2064 | else |
| 2065 | MyPgXact->xmin = feedbackXmin; |
| 2066 | } |
| 2067 | } |
| 2068 | |
| 2069 | /* |
| 2070 | * Compute how long send/receive loops should sleep. |
| 2071 | * |
| 2072 | * If wal_sender_timeout is enabled we want to wake up in time to send |
| 2073 | * keepalives and to abort the connection if wal_sender_timeout has been |
| 2074 | * reached. |
| 2075 | */ |
| 2076 | static long |
| 2077 | WalSndComputeSleeptime(TimestampTz now) |
| 2078 | { |
| 2079 | long sleeptime = 10000; /* 10 s */ |
| 2080 | |
| 2081 | if (wal_sender_timeout > 0 && last_reply_timestamp > 0) |
| 2082 | { |
| 2083 | TimestampTz wakeup_time; |
| 2084 | long sec_to_timeout; |
| 2085 | int microsec_to_timeout; |
| 2086 | |
| 2087 | /* |
| 2088 | * At the latest stop sleeping once wal_sender_timeout has been |
| 2089 | * reached. |
| 2090 | */ |
| 2091 | wakeup_time = TimestampTzPlusMilliseconds(last_reply_timestamp, |
| 2092 | wal_sender_timeout); |
| 2093 | |
| 2094 | /* |
| 2095 | * If no ping has been sent yet, wakeup when it's time to do so. |
| 2096 | * WalSndKeepaliveIfNecessary() wants to send a keepalive once half of |
| 2097 | * the timeout passed without a response. |
| 2098 | */ |
| 2099 | if (!waiting_for_ping_response) |
| 2100 | wakeup_time = TimestampTzPlusMilliseconds(last_reply_timestamp, |
| 2101 | wal_sender_timeout / 2); |
| 2102 | |
| 2103 | /* Compute relative time until wakeup. */ |
| 2104 | TimestampDifference(now, wakeup_time, |
| 2105 | &sec_to_timeout, µsec_to_timeout); |
| 2106 | |
| 2107 | sleeptime = sec_to_timeout * 1000 + |
| 2108 | microsec_to_timeout / 1000; |
| 2109 | } |
| 2110 | |
| 2111 | return sleeptime; |
| 2112 | } |
| 2113 | |
| 2114 | /* |
| 2115 | * Check whether there have been responses by the client within |
| 2116 | * wal_sender_timeout and shutdown if not. Using last_processing as the |
| 2117 | * reference point avoids counting server-side stalls against the client. |
| 2118 | * However, a long server-side stall can make WalSndKeepaliveIfNecessary() |
| 2119 | * postdate last_processing by more than wal_sender_timeout. If that happens, |
| 2120 | * the client must reply almost immediately to avoid a timeout. This rarely |
| 2121 | * affects the default configuration, under which clients spontaneously send a |
| 2122 | * message every standby_message_timeout = wal_sender_timeout/6 = 10s. We |
| 2123 | * could eliminate that problem by recognizing timeout expiration at |
| 2124 | * wal_sender_timeout/2 after the keepalive. |
| 2125 | */ |
| 2126 | static void |
| 2127 | WalSndCheckTimeOut(void) |
| 2128 | { |
| 2129 | TimestampTz timeout; |
| 2130 | |
| 2131 | /* don't bail out if we're doing something that doesn't require timeouts */ |
| 2132 | if (last_reply_timestamp <= 0) |
| 2133 | return; |
| 2134 | |
| 2135 | timeout = TimestampTzPlusMilliseconds(last_reply_timestamp, |
| 2136 | wal_sender_timeout); |
| 2137 | |
| 2138 | if (wal_sender_timeout > 0 && last_processing >= timeout) |
| 2139 | { |
| 2140 | /* |
| 2141 | * Since typically expiration of replication timeout means |
| 2142 | * communication problem, we don't send the error message to the |
| 2143 | * standby. |
| 2144 | */ |
| 2145 | ereport(COMMERROR, |
| 2146 | (errmsg("terminating walsender process due to replication timeout" ))); |
| 2147 | |
| 2148 | WalSndShutdown(); |
| 2149 | } |
| 2150 | } |
| 2151 | |
| 2152 | /* Main loop of walsender process that streams the WAL over Copy messages. */ |
| 2153 | static void |
| 2154 | WalSndLoop(WalSndSendDataCallback send_data) |
| 2155 | { |
| 2156 | /* |
| 2157 | * Initialize the last reply timestamp. That enables timeout processing |
| 2158 | * from hereon. |
| 2159 | */ |
| 2160 | last_reply_timestamp = GetCurrentTimestamp(); |
| 2161 | waiting_for_ping_response = false; |
| 2162 | |
| 2163 | /* |
| 2164 | * Loop until we reach the end of this timeline or the client requests to |
| 2165 | * stop streaming. |
| 2166 | */ |
| 2167 | for (;;) |
| 2168 | { |
| 2169 | /* Clear any already-pending wakeups */ |
| 2170 | ResetLatch(MyLatch); |
| 2171 | |
| 2172 | CHECK_FOR_INTERRUPTS(); |
| 2173 | |
| 2174 | /* Process any requests or signals received recently */ |
| 2175 | if (ConfigReloadPending) |
| 2176 | { |
| 2177 | ConfigReloadPending = false; |
| 2178 | ProcessConfigFile(PGC_SIGHUP); |
| 2179 | SyncRepInitConfig(); |
| 2180 | } |
| 2181 | |
| 2182 | /* Check for input from the client */ |
| 2183 | ProcessRepliesIfAny(); |
| 2184 | |
| 2185 | /* |
| 2186 | * If we have received CopyDone from the client, sent CopyDone |
| 2187 | * ourselves, and the output buffer is empty, it's time to exit |
| 2188 | * streaming. |
| 2189 | */ |
| 2190 | if (streamingDoneReceiving && streamingDoneSending && |
| 2191 | !pq_is_send_pending()) |
| 2192 | break; |
| 2193 | |
| 2194 | /* |
| 2195 | * If we don't have any pending data in the output buffer, try to send |
| 2196 | * some more. If there is some, we don't bother to call send_data |
| 2197 | * again until we've flushed it ... but we'd better assume we are not |
| 2198 | * caught up. |
| 2199 | */ |
| 2200 | if (!pq_is_send_pending()) |
| 2201 | send_data(); |
| 2202 | else |
| 2203 | WalSndCaughtUp = false; |
| 2204 | |
| 2205 | /* Try to flush pending output to the client */ |
| 2206 | if (pq_flush_if_writable() != 0) |
| 2207 | WalSndShutdown(); |
| 2208 | |
| 2209 | /* If nothing remains to be sent right now ... */ |
| 2210 | if (WalSndCaughtUp && !pq_is_send_pending()) |
| 2211 | { |
| 2212 | /* |
| 2213 | * If we're in catchup state, move to streaming. This is an |
| 2214 | * important state change for users to know about, since before |
| 2215 | * this point data loss might occur if the primary dies and we |
| 2216 | * need to failover to the standby. The state change is also |
| 2217 | * important for synchronous replication, since commits that |
| 2218 | * started to wait at that point might wait for some time. |
| 2219 | */ |
| 2220 | if (MyWalSnd->state == WALSNDSTATE_CATCHUP) |
| 2221 | { |
| 2222 | ereport(DEBUG1, |
| 2223 | (errmsg("\"%s\" has now caught up with upstream server" , |
| 2224 | application_name))); |
| 2225 | WalSndSetState(WALSNDSTATE_STREAMING); |
| 2226 | } |
| 2227 | |
| 2228 | /* |
| 2229 | * When SIGUSR2 arrives, we send any outstanding logs up to the |
| 2230 | * shutdown checkpoint record (i.e., the latest record), wait for |
| 2231 | * them to be replicated to the standby, and exit. This may be a |
| 2232 | * normal termination at shutdown, or a promotion, the walsender |
| 2233 | * is not sure which. |
| 2234 | */ |
| 2235 | if (got_SIGUSR2) |
| 2236 | WalSndDone(send_data); |
| 2237 | } |
| 2238 | |
| 2239 | /* Check for replication timeout. */ |
| 2240 | WalSndCheckTimeOut(); |
| 2241 | |
| 2242 | /* Send keepalive if the time has come */ |
| 2243 | WalSndKeepaliveIfNecessary(); |
| 2244 | |
| 2245 | /* |
| 2246 | * We don't block if not caught up, unless there is unsent data |
| 2247 | * pending in which case we'd better block until the socket is |
| 2248 | * write-ready. This test is only needed for the case where the |
| 2249 | * send_data callback handled a subset of the available data but then |
| 2250 | * pq_flush_if_writable flushed it all --- we should immediately try |
| 2251 | * to send more. |
| 2252 | */ |
| 2253 | if ((WalSndCaughtUp && !streamingDoneSending) || pq_is_send_pending()) |
| 2254 | { |
| 2255 | long sleeptime; |
| 2256 | int wakeEvents; |
| 2257 | |
| 2258 | wakeEvents = WL_LATCH_SET | WL_EXIT_ON_PM_DEATH | WL_TIMEOUT | |
| 2259 | WL_SOCKET_READABLE; |
| 2260 | |
| 2261 | /* |
| 2262 | * Use fresh timestamp, not last_processed, to reduce the chance |
| 2263 | * of reaching wal_sender_timeout before sending a keepalive. |
| 2264 | */ |
| 2265 | sleeptime = WalSndComputeSleeptime(GetCurrentTimestamp()); |
| 2266 | |
| 2267 | if (pq_is_send_pending()) |
| 2268 | wakeEvents |= WL_SOCKET_WRITEABLE; |
| 2269 | |
| 2270 | /* Sleep until something happens or we time out */ |
| 2271 | (void) WaitLatchOrSocket(MyLatch, wakeEvents, |
| 2272 | MyProcPort->sock, sleeptime, |
| 2273 | WAIT_EVENT_WAL_SENDER_MAIN); |
| 2274 | } |
| 2275 | } |
| 2276 | return; |
| 2277 | } |
| 2278 | |
| 2279 | /* Initialize a per-walsender data structure for this walsender process */ |
| 2280 | static void |
| 2281 | InitWalSenderSlot(void) |
| 2282 | { |
| 2283 | int i; |
| 2284 | |
| 2285 | /* |
| 2286 | * WalSndCtl should be set up already (we inherit this by fork() or |
| 2287 | * EXEC_BACKEND mechanism from the postmaster). |
| 2288 | */ |
| 2289 | Assert(WalSndCtl != NULL); |
| 2290 | Assert(MyWalSnd == NULL); |
| 2291 | |
| 2292 | /* |
| 2293 | * Find a free walsender slot and reserve it. This must not fail due to |
| 2294 | * the prior check for free WAL senders in InitProcess(). |
| 2295 | */ |
| 2296 | for (i = 0; i < max_wal_senders; i++) |
| 2297 | { |
| 2298 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
| 2299 | |
| 2300 | SpinLockAcquire(&walsnd->mutex); |
| 2301 | |
| 2302 | if (walsnd->pid != 0) |
| 2303 | { |
| 2304 | SpinLockRelease(&walsnd->mutex); |
| 2305 | continue; |
| 2306 | } |
| 2307 | else |
| 2308 | { |
| 2309 | /* |
| 2310 | * Found a free slot. Reserve it for us. |
| 2311 | */ |
| 2312 | walsnd->pid = MyProcPid; |
| 2313 | walsnd->sentPtr = InvalidXLogRecPtr; |
| 2314 | walsnd->write = InvalidXLogRecPtr; |
| 2315 | walsnd->flush = InvalidXLogRecPtr; |
| 2316 | walsnd->apply = InvalidXLogRecPtr; |
| 2317 | walsnd->writeLag = -1; |
| 2318 | walsnd->flushLag = -1; |
| 2319 | walsnd->applyLag = -1; |
| 2320 | walsnd->state = WALSNDSTATE_STARTUP; |
| 2321 | walsnd->latch = &MyProc->procLatch; |
| 2322 | walsnd->replyTime = 0; |
| 2323 | SpinLockRelease(&walsnd->mutex); |
| 2324 | /* don't need the lock anymore */ |
| 2325 | MyWalSnd = (WalSnd *) walsnd; |
| 2326 | |
| 2327 | break; |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | Assert(MyWalSnd != NULL); |
| 2332 | |
| 2333 | /* Arrange to clean up at walsender exit */ |
| 2334 | on_shmem_exit(WalSndKill, 0); |
| 2335 | } |
| 2336 | |
| 2337 | /* Destroy the per-walsender data structure for this walsender process */ |
| 2338 | static void |
| 2339 | WalSndKill(int code, Datum arg) |
| 2340 | { |
| 2341 | WalSnd *walsnd = MyWalSnd; |
| 2342 | |
| 2343 | Assert(walsnd != NULL); |
| 2344 | |
| 2345 | MyWalSnd = NULL; |
| 2346 | |
| 2347 | SpinLockAcquire(&walsnd->mutex); |
| 2348 | /* clear latch while holding the spinlock, so it can safely be read */ |
| 2349 | walsnd->latch = NULL; |
| 2350 | /* Mark WalSnd struct as no longer being in use. */ |
| 2351 | walsnd->pid = 0; |
| 2352 | SpinLockRelease(&walsnd->mutex); |
| 2353 | } |
| 2354 | |
| 2355 | /* |
| 2356 | * Read 'count' bytes from WAL into 'buf', starting at location 'startptr' |
| 2357 | * |
| 2358 | * XXX probably this should be improved to suck data directly from the |
| 2359 | * WAL buffers when possible. |
| 2360 | * |
| 2361 | * Will open, and keep open, one WAL segment stored in the global file |
| 2362 | * descriptor sendFile. This means if XLogRead is used once, there will |
| 2363 | * always be one descriptor left open until the process ends, but never |
| 2364 | * more than one. |
| 2365 | */ |
| 2366 | static void |
| 2367 | XLogRead(char *buf, XLogRecPtr startptr, Size count) |
| 2368 | { |
| 2369 | char *p; |
| 2370 | XLogRecPtr recptr; |
| 2371 | Size nbytes; |
| 2372 | XLogSegNo segno; |
| 2373 | |
| 2374 | retry: |
| 2375 | p = buf; |
| 2376 | recptr = startptr; |
| 2377 | nbytes = count; |
| 2378 | |
| 2379 | while (nbytes > 0) |
| 2380 | { |
| 2381 | uint32 startoff; |
| 2382 | int segbytes; |
| 2383 | int readbytes; |
| 2384 | |
| 2385 | startoff = XLogSegmentOffset(recptr, wal_segment_size); |
| 2386 | |
| 2387 | if (sendFile < 0 || !XLByteInSeg(recptr, sendSegNo, wal_segment_size)) |
| 2388 | { |
| 2389 | char path[MAXPGPATH]; |
| 2390 | |
| 2391 | /* Switch to another logfile segment */ |
| 2392 | if (sendFile >= 0) |
| 2393 | close(sendFile); |
| 2394 | |
| 2395 | XLByteToSeg(recptr, sendSegNo, wal_segment_size); |
| 2396 | |
| 2397 | /*------- |
| 2398 | * When reading from a historic timeline, and there is a timeline |
| 2399 | * switch within this segment, read from the WAL segment belonging |
| 2400 | * to the new timeline. |
| 2401 | * |
| 2402 | * For example, imagine that this server is currently on timeline |
| 2403 | * 5, and we're streaming timeline 4. The switch from timeline 4 |
| 2404 | * to 5 happened at 0/13002088. In pg_wal, we have these files: |
| 2405 | * |
| 2406 | * ... |
| 2407 | * 000000040000000000000012 |
| 2408 | * 000000040000000000000013 |
| 2409 | * 000000050000000000000013 |
| 2410 | * 000000050000000000000014 |
| 2411 | * ... |
| 2412 | * |
| 2413 | * In this situation, when requested to send the WAL from |
| 2414 | * segment 0x13, on timeline 4, we read the WAL from file |
| 2415 | * 000000050000000000000013. Archive recovery prefers files from |
| 2416 | * newer timelines, so if the segment was restored from the |
| 2417 | * archive on this server, the file belonging to the old timeline, |
| 2418 | * 000000040000000000000013, might not exist. Their contents are |
| 2419 | * equal up to the switchpoint, because at a timeline switch, the |
| 2420 | * used portion of the old segment is copied to the new file. |
| 2421 | *------- |
| 2422 | */ |
| 2423 | curFileTimeLine = sendTimeLine; |
| 2424 | if (sendTimeLineIsHistoric) |
| 2425 | { |
| 2426 | XLogSegNo endSegNo; |
| 2427 | |
| 2428 | XLByteToSeg(sendTimeLineValidUpto, endSegNo, wal_segment_size); |
| 2429 | if (sendSegNo == endSegNo) |
| 2430 | curFileTimeLine = sendTimeLineNextTLI; |
| 2431 | } |
| 2432 | |
| 2433 | XLogFilePath(path, curFileTimeLine, sendSegNo, wal_segment_size); |
| 2434 | |
| 2435 | sendFile = BasicOpenFile(path, O_RDONLY | PG_BINARY); |
| 2436 | if (sendFile < 0) |
| 2437 | { |
| 2438 | /* |
| 2439 | * If the file is not found, assume it's because the standby |
| 2440 | * asked for a too old WAL segment that has already been |
| 2441 | * removed or recycled. |
| 2442 | */ |
| 2443 | if (errno == ENOENT) |
| 2444 | ereport(ERROR, |
| 2445 | (errcode_for_file_access(), |
| 2446 | errmsg("requested WAL segment %s has already been removed" , |
| 2447 | XLogFileNameP(curFileTimeLine, sendSegNo)))); |
| 2448 | else |
| 2449 | ereport(ERROR, |
| 2450 | (errcode_for_file_access(), |
| 2451 | errmsg("could not open file \"%s\": %m" , |
| 2452 | path))); |
| 2453 | } |
| 2454 | sendOff = 0; |
| 2455 | } |
| 2456 | |
| 2457 | /* Need to seek in the file? */ |
| 2458 | if (sendOff != startoff) |
| 2459 | { |
| 2460 | if (lseek(sendFile, (off_t) startoff, SEEK_SET) < 0) |
| 2461 | ereport(ERROR, |
| 2462 | (errcode_for_file_access(), |
| 2463 | errmsg("could not seek in log segment %s to offset %u: %m" , |
| 2464 | XLogFileNameP(curFileTimeLine, sendSegNo), |
| 2465 | startoff))); |
| 2466 | sendOff = startoff; |
| 2467 | } |
| 2468 | |
| 2469 | /* How many bytes are within this segment? */ |
| 2470 | if (nbytes > (wal_segment_size - startoff)) |
| 2471 | segbytes = wal_segment_size - startoff; |
| 2472 | else |
| 2473 | segbytes = nbytes; |
| 2474 | |
| 2475 | pgstat_report_wait_start(WAIT_EVENT_WAL_READ); |
| 2476 | readbytes = read(sendFile, p, segbytes); |
| 2477 | pgstat_report_wait_end(); |
| 2478 | if (readbytes < 0) |
| 2479 | { |
| 2480 | ereport(ERROR, |
| 2481 | (errcode_for_file_access(), |
| 2482 | errmsg("could not read from log segment %s, offset %u, length %zu: %m" , |
| 2483 | XLogFileNameP(curFileTimeLine, sendSegNo), |
| 2484 | sendOff, (Size) segbytes))); |
| 2485 | } |
| 2486 | else if (readbytes == 0) |
| 2487 | { |
| 2488 | ereport(ERROR, |
| 2489 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 2490 | errmsg("could not read from log segment %s, offset %u: read %d of %zu" , |
| 2491 | XLogFileNameP(curFileTimeLine, sendSegNo), |
| 2492 | sendOff, readbytes, (Size) segbytes))); |
| 2493 | } |
| 2494 | |
| 2495 | /* Update state for read */ |
| 2496 | recptr += readbytes; |
| 2497 | |
| 2498 | sendOff += readbytes; |
| 2499 | nbytes -= readbytes; |
| 2500 | p += readbytes; |
| 2501 | } |
| 2502 | |
| 2503 | /* |
| 2504 | * After reading into the buffer, check that what we read was valid. We do |
| 2505 | * this after reading, because even though the segment was present when we |
| 2506 | * opened it, it might get recycled or removed while we read it. The |
| 2507 | * read() succeeds in that case, but the data we tried to read might |
| 2508 | * already have been overwritten with new WAL records. |
| 2509 | */ |
| 2510 | XLByteToSeg(startptr, segno, wal_segment_size); |
| 2511 | CheckXLogRemoved(segno, ThisTimeLineID); |
| 2512 | |
| 2513 | /* |
| 2514 | * During recovery, the currently-open WAL file might be replaced with the |
| 2515 | * file of the same name retrieved from archive. So we always need to |
| 2516 | * check what we read was valid after reading into the buffer. If it's |
| 2517 | * invalid, we try to open and read the file again. |
| 2518 | */ |
| 2519 | if (am_cascading_walsender) |
| 2520 | { |
| 2521 | WalSnd *walsnd = MyWalSnd; |
| 2522 | bool reload; |
| 2523 | |
| 2524 | SpinLockAcquire(&walsnd->mutex); |
| 2525 | reload = walsnd->needreload; |
| 2526 | walsnd->needreload = false; |
| 2527 | SpinLockRelease(&walsnd->mutex); |
| 2528 | |
| 2529 | if (reload && sendFile >= 0) |
| 2530 | { |
| 2531 | close(sendFile); |
| 2532 | sendFile = -1; |
| 2533 | |
| 2534 | goto retry; |
| 2535 | } |
| 2536 | } |
| 2537 | } |
| 2538 | |
| 2539 | /* |
| 2540 | * Send out the WAL in its normal physical/stored form. |
| 2541 | * |
| 2542 | * Read up to MAX_SEND_SIZE bytes of WAL that's been flushed to disk, |
| 2543 | * but not yet sent to the client, and buffer it in the libpq output |
| 2544 | * buffer. |
| 2545 | * |
| 2546 | * If there is no unsent WAL remaining, WalSndCaughtUp is set to true, |
| 2547 | * otherwise WalSndCaughtUp is set to false. |
| 2548 | */ |
| 2549 | static void |
| 2550 | XLogSendPhysical(void) |
| 2551 | { |
| 2552 | XLogRecPtr SendRqstPtr; |
| 2553 | XLogRecPtr startptr; |
| 2554 | XLogRecPtr endptr; |
| 2555 | Size nbytes; |
| 2556 | |
| 2557 | /* If requested switch the WAL sender to the stopping state. */ |
| 2558 | if (got_STOPPING) |
| 2559 | WalSndSetState(WALSNDSTATE_STOPPING); |
| 2560 | |
| 2561 | if (streamingDoneSending) |
| 2562 | { |
| 2563 | WalSndCaughtUp = true; |
| 2564 | return; |
| 2565 | } |
| 2566 | |
| 2567 | /* Figure out how far we can safely send the WAL. */ |
| 2568 | if (sendTimeLineIsHistoric) |
| 2569 | { |
| 2570 | /* |
| 2571 | * Streaming an old timeline that's in this server's history, but is |
| 2572 | * not the one we're currently inserting or replaying. It can be |
| 2573 | * streamed up to the point where we switched off that timeline. |
| 2574 | */ |
| 2575 | SendRqstPtr = sendTimeLineValidUpto; |
| 2576 | } |
| 2577 | else if (am_cascading_walsender) |
| 2578 | { |
| 2579 | /* |
| 2580 | * Streaming the latest timeline on a standby. |
| 2581 | * |
| 2582 | * Attempt to send all WAL that has already been replayed, so that we |
| 2583 | * know it's valid. If we're receiving WAL through streaming |
| 2584 | * replication, it's also OK to send any WAL that has been received |
| 2585 | * but not replayed. |
| 2586 | * |
| 2587 | * The timeline we're recovering from can change, or we can be |
| 2588 | * promoted. In either case, the current timeline becomes historic. We |
| 2589 | * need to detect that so that we don't try to stream past the point |
| 2590 | * where we switched to another timeline. We check for promotion or |
| 2591 | * timeline switch after calculating FlushPtr, to avoid a race |
| 2592 | * condition: if the timeline becomes historic just after we checked |
| 2593 | * that it was still current, it's still be OK to stream it up to the |
| 2594 | * FlushPtr that was calculated before it became historic. |
| 2595 | */ |
| 2596 | bool becameHistoric = false; |
| 2597 | |
| 2598 | SendRqstPtr = GetStandbyFlushRecPtr(); |
| 2599 | |
| 2600 | if (!RecoveryInProgress()) |
| 2601 | { |
| 2602 | /* |
| 2603 | * We have been promoted. RecoveryInProgress() updated |
| 2604 | * ThisTimeLineID to the new current timeline. |
| 2605 | */ |
| 2606 | am_cascading_walsender = false; |
| 2607 | becameHistoric = true; |
| 2608 | } |
| 2609 | else |
| 2610 | { |
| 2611 | /* |
| 2612 | * Still a cascading standby. But is the timeline we're sending |
| 2613 | * still the one recovery is recovering from? ThisTimeLineID was |
| 2614 | * updated by the GetStandbyFlushRecPtr() call above. |
| 2615 | */ |
| 2616 | if (sendTimeLine != ThisTimeLineID) |
| 2617 | becameHistoric = true; |
| 2618 | } |
| 2619 | |
| 2620 | if (becameHistoric) |
| 2621 | { |
| 2622 | /* |
| 2623 | * The timeline we were sending has become historic. Read the |
| 2624 | * timeline history file of the new timeline to see where exactly |
| 2625 | * we forked off from the timeline we were sending. |
| 2626 | */ |
| 2627 | List *history; |
| 2628 | |
| 2629 | history = readTimeLineHistory(ThisTimeLineID); |
| 2630 | sendTimeLineValidUpto = tliSwitchPoint(sendTimeLine, history, &sendTimeLineNextTLI); |
| 2631 | |
| 2632 | Assert(sendTimeLine < sendTimeLineNextTLI); |
| 2633 | list_free_deep(history); |
| 2634 | |
| 2635 | sendTimeLineIsHistoric = true; |
| 2636 | |
| 2637 | SendRqstPtr = sendTimeLineValidUpto; |
| 2638 | } |
| 2639 | } |
| 2640 | else |
| 2641 | { |
| 2642 | /* |
| 2643 | * Streaming the current timeline on a master. |
| 2644 | * |
| 2645 | * Attempt to send all data that's already been written out and |
| 2646 | * fsync'd to disk. We cannot go further than what's been written out |
| 2647 | * given the current implementation of XLogRead(). And in any case |
| 2648 | * it's unsafe to send WAL that is not securely down to disk on the |
| 2649 | * master: if the master subsequently crashes and restarts, standbys |
| 2650 | * must not have applied any WAL that got lost on the master. |
| 2651 | */ |
| 2652 | SendRqstPtr = GetFlushRecPtr(); |
| 2653 | } |
| 2654 | |
| 2655 | /* |
| 2656 | * Record the current system time as an approximation of the time at which |
| 2657 | * this WAL location was written for the purposes of lag tracking. |
| 2658 | * |
| 2659 | * In theory we could make XLogFlush() record a time in shmem whenever WAL |
| 2660 | * is flushed and we could get that time as well as the LSN when we call |
| 2661 | * GetFlushRecPtr() above (and likewise for the cascading standby |
| 2662 | * equivalent), but rather than putting any new code into the hot WAL path |
| 2663 | * it seems good enough to capture the time here. We should reach this |
| 2664 | * after XLogFlush() runs WalSndWakeupProcessRequests(), and although that |
| 2665 | * may take some time, we read the WAL flush pointer and take the time |
| 2666 | * very close to together here so that we'll get a later position if it is |
| 2667 | * still moving. |
| 2668 | * |
| 2669 | * Because LagTrackerWriter ignores samples when the LSN hasn't advanced, |
| 2670 | * this gives us a cheap approximation for the WAL flush time for this |
| 2671 | * LSN. |
| 2672 | * |
| 2673 | * Note that the LSN is not necessarily the LSN for the data contained in |
| 2674 | * the present message; it's the end of the WAL, which might be further |
| 2675 | * ahead. All the lag tracking machinery cares about is finding out when |
| 2676 | * that arbitrary LSN is eventually reported as written, flushed and |
| 2677 | * applied, so that it can measure the elapsed time. |
| 2678 | */ |
| 2679 | LagTrackerWrite(SendRqstPtr, GetCurrentTimestamp()); |
| 2680 | |
| 2681 | /* |
| 2682 | * If this is a historic timeline and we've reached the point where we |
| 2683 | * forked to the next timeline, stop streaming. |
| 2684 | * |
| 2685 | * Note: We might already have sent WAL > sendTimeLineValidUpto. The |
| 2686 | * startup process will normally replay all WAL that has been received |
| 2687 | * from the master, before promoting, but if the WAL streaming is |
| 2688 | * terminated at a WAL page boundary, the valid portion of the timeline |
| 2689 | * might end in the middle of a WAL record. We might've already sent the |
| 2690 | * first half of that partial WAL record to the cascading standby, so that |
| 2691 | * sentPtr > sendTimeLineValidUpto. That's OK; the cascading standby can't |
| 2692 | * replay the partial WAL record either, so it can still follow our |
| 2693 | * timeline switch. |
| 2694 | */ |
| 2695 | if (sendTimeLineIsHistoric && sendTimeLineValidUpto <= sentPtr) |
| 2696 | { |
| 2697 | /* close the current file. */ |
| 2698 | if (sendFile >= 0) |
| 2699 | close(sendFile); |
| 2700 | sendFile = -1; |
| 2701 | |
| 2702 | /* Send CopyDone */ |
| 2703 | pq_putmessage_noblock('c', NULL, 0); |
| 2704 | streamingDoneSending = true; |
| 2705 | |
| 2706 | WalSndCaughtUp = true; |
| 2707 | |
| 2708 | elog(DEBUG1, "walsender reached end of timeline at %X/%X (sent up to %X/%X)" , |
| 2709 | (uint32) (sendTimeLineValidUpto >> 32), (uint32) sendTimeLineValidUpto, |
| 2710 | (uint32) (sentPtr >> 32), (uint32) sentPtr); |
| 2711 | return; |
| 2712 | } |
| 2713 | |
| 2714 | /* Do we have any work to do? */ |
| 2715 | Assert(sentPtr <= SendRqstPtr); |
| 2716 | if (SendRqstPtr <= sentPtr) |
| 2717 | { |
| 2718 | WalSndCaughtUp = true; |
| 2719 | return; |
| 2720 | } |
| 2721 | |
| 2722 | /* |
| 2723 | * Figure out how much to send in one message. If there's no more than |
| 2724 | * MAX_SEND_SIZE bytes to send, send everything. Otherwise send |
| 2725 | * MAX_SEND_SIZE bytes, but round back to logfile or page boundary. |
| 2726 | * |
| 2727 | * The rounding is not only for performance reasons. Walreceiver relies on |
| 2728 | * the fact that we never split a WAL record across two messages. Since a |
| 2729 | * long WAL record is split at page boundary into continuation records, |
| 2730 | * page boundary is always a safe cut-off point. We also assume that |
| 2731 | * SendRqstPtr never points to the middle of a WAL record. |
| 2732 | */ |
| 2733 | startptr = sentPtr; |
| 2734 | endptr = startptr; |
| 2735 | endptr += MAX_SEND_SIZE; |
| 2736 | |
| 2737 | /* if we went beyond SendRqstPtr, back off */ |
| 2738 | if (SendRqstPtr <= endptr) |
| 2739 | { |
| 2740 | endptr = SendRqstPtr; |
| 2741 | if (sendTimeLineIsHistoric) |
| 2742 | WalSndCaughtUp = false; |
| 2743 | else |
| 2744 | WalSndCaughtUp = true; |
| 2745 | } |
| 2746 | else |
| 2747 | { |
| 2748 | /* round down to page boundary. */ |
| 2749 | endptr -= (endptr % XLOG_BLCKSZ); |
| 2750 | WalSndCaughtUp = false; |
| 2751 | } |
| 2752 | |
| 2753 | nbytes = endptr - startptr; |
| 2754 | Assert(nbytes <= MAX_SEND_SIZE); |
| 2755 | |
| 2756 | /* |
| 2757 | * OK to read and send the slice. |
| 2758 | */ |
| 2759 | resetStringInfo(&output_message); |
| 2760 | pq_sendbyte(&output_message, 'w'); |
| 2761 | |
| 2762 | pq_sendint64(&output_message, startptr); /* dataStart */ |
| 2763 | pq_sendint64(&output_message, SendRqstPtr); /* walEnd */ |
| 2764 | pq_sendint64(&output_message, 0); /* sendtime, filled in last */ |
| 2765 | |
| 2766 | /* |
| 2767 | * Read the log directly into the output buffer to avoid extra memcpy |
| 2768 | * calls. |
| 2769 | */ |
| 2770 | enlargeStringInfo(&output_message, nbytes); |
| 2771 | XLogRead(&output_message.data[output_message.len], startptr, nbytes); |
| 2772 | output_message.len += nbytes; |
| 2773 | output_message.data[output_message.len] = '\0'; |
| 2774 | |
| 2775 | /* |
| 2776 | * Fill the send timestamp last, so that it is taken as late as possible. |
| 2777 | */ |
| 2778 | resetStringInfo(&tmpbuf); |
| 2779 | pq_sendint64(&tmpbuf, GetCurrentTimestamp()); |
| 2780 | memcpy(&output_message.data[1 + sizeof(int64) + sizeof(int64)], |
| 2781 | tmpbuf.data, sizeof(int64)); |
| 2782 | |
| 2783 | pq_putmessage_noblock('d', output_message.data, output_message.len); |
| 2784 | |
| 2785 | sentPtr = endptr; |
| 2786 | |
| 2787 | /* Update shared memory status */ |
| 2788 | { |
| 2789 | WalSnd *walsnd = MyWalSnd; |
| 2790 | |
| 2791 | SpinLockAcquire(&walsnd->mutex); |
| 2792 | walsnd->sentPtr = sentPtr; |
| 2793 | SpinLockRelease(&walsnd->mutex); |
| 2794 | } |
| 2795 | |
| 2796 | /* Report progress of XLOG streaming in PS display */ |
| 2797 | if (update_process_title) |
| 2798 | { |
| 2799 | char activitymsg[50]; |
| 2800 | |
| 2801 | snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X" , |
| 2802 | (uint32) (sentPtr >> 32), (uint32) sentPtr); |
| 2803 | set_ps_display(activitymsg, false); |
| 2804 | } |
| 2805 | |
| 2806 | return; |
| 2807 | } |
| 2808 | |
| 2809 | /* |
| 2810 | * Stream out logically decoded data. |
| 2811 | */ |
| 2812 | static void |
| 2813 | XLogSendLogical(void) |
| 2814 | { |
| 2815 | XLogRecord *record; |
| 2816 | char *errm; |
| 2817 | |
| 2818 | /* |
| 2819 | * Don't know whether we've caught up yet. We'll set WalSndCaughtUp to |
| 2820 | * true in WalSndWaitForWal, if we're actually waiting. We also set to |
| 2821 | * true if XLogReadRecord() had to stop reading but WalSndWaitForWal |
| 2822 | * didn't wait - i.e. when we're shutting down. |
| 2823 | */ |
| 2824 | WalSndCaughtUp = false; |
| 2825 | |
| 2826 | record = XLogReadRecord(logical_decoding_ctx->reader, logical_startptr, &errm); |
| 2827 | logical_startptr = InvalidXLogRecPtr; |
| 2828 | |
| 2829 | /* xlog record was invalid */ |
| 2830 | if (errm != NULL) |
| 2831 | elog(ERROR, "%s" , errm); |
| 2832 | |
| 2833 | if (record != NULL) |
| 2834 | { |
| 2835 | /* XXX: Note that logical decoding cannot be used while in recovery */ |
| 2836 | XLogRecPtr flushPtr = GetFlushRecPtr(); |
| 2837 | |
| 2838 | /* |
| 2839 | * Note the lack of any call to LagTrackerWrite() which is handled by |
| 2840 | * WalSndUpdateProgress which is called by output plugin through |
| 2841 | * logical decoding write api. |
| 2842 | */ |
| 2843 | LogicalDecodingProcessRecord(logical_decoding_ctx, logical_decoding_ctx->reader); |
| 2844 | |
| 2845 | sentPtr = logical_decoding_ctx->reader->EndRecPtr; |
| 2846 | |
| 2847 | /* |
| 2848 | * If we have sent a record that is at or beyond the flushed point, we |
| 2849 | * have caught up. |
| 2850 | */ |
| 2851 | if (sentPtr >= flushPtr) |
| 2852 | WalSndCaughtUp = true; |
| 2853 | } |
| 2854 | else |
| 2855 | { |
| 2856 | /* |
| 2857 | * If the record we just wanted read is at or beyond the flushed |
| 2858 | * point, then we're caught up. |
| 2859 | */ |
| 2860 | if (logical_decoding_ctx->reader->EndRecPtr >= GetFlushRecPtr()) |
| 2861 | { |
| 2862 | WalSndCaughtUp = true; |
| 2863 | |
| 2864 | /* |
| 2865 | * Have WalSndLoop() terminate the connection in an orderly |
| 2866 | * manner, after writing out all the pending data. |
| 2867 | */ |
| 2868 | if (got_STOPPING) |
| 2869 | got_SIGUSR2 = true; |
| 2870 | } |
| 2871 | } |
| 2872 | |
| 2873 | /* Update shared memory status */ |
| 2874 | { |
| 2875 | WalSnd *walsnd = MyWalSnd; |
| 2876 | |
| 2877 | SpinLockAcquire(&walsnd->mutex); |
| 2878 | walsnd->sentPtr = sentPtr; |
| 2879 | SpinLockRelease(&walsnd->mutex); |
| 2880 | } |
| 2881 | } |
| 2882 | |
| 2883 | /* |
| 2884 | * Shutdown if the sender is caught up. |
| 2885 | * |
| 2886 | * NB: This should only be called when the shutdown signal has been received |
| 2887 | * from postmaster. |
| 2888 | * |
| 2889 | * Note that if we determine that there's still more data to send, this |
| 2890 | * function will return control to the caller. |
| 2891 | */ |
| 2892 | static void |
| 2893 | WalSndDone(WalSndSendDataCallback send_data) |
| 2894 | { |
| 2895 | XLogRecPtr replicatedPtr; |
| 2896 | |
| 2897 | /* ... let's just be real sure we're caught up ... */ |
| 2898 | send_data(); |
| 2899 | |
| 2900 | /* |
| 2901 | * To figure out whether all WAL has successfully been replicated, check |
| 2902 | * flush location if valid, write otherwise. Tools like pg_receivewal will |
| 2903 | * usually (unless in synchronous mode) return an invalid flush location. |
| 2904 | */ |
| 2905 | replicatedPtr = XLogRecPtrIsInvalid(MyWalSnd->flush) ? |
| 2906 | MyWalSnd->write : MyWalSnd->flush; |
| 2907 | |
| 2908 | if (WalSndCaughtUp && sentPtr == replicatedPtr && |
| 2909 | !pq_is_send_pending()) |
| 2910 | { |
| 2911 | /* Inform the standby that XLOG streaming is done */ |
| 2912 | EndCommand("COPY 0" , DestRemote); |
| 2913 | pq_flush(); |
| 2914 | |
| 2915 | proc_exit(0); |
| 2916 | } |
| 2917 | if (!waiting_for_ping_response) |
| 2918 | { |
| 2919 | WalSndKeepalive(true); |
| 2920 | waiting_for_ping_response = true; |
| 2921 | } |
| 2922 | } |
| 2923 | |
| 2924 | /* |
| 2925 | * Returns the latest point in WAL that has been safely flushed to disk, and |
| 2926 | * can be sent to the standby. This should only be called when in recovery, |
| 2927 | * ie. we're streaming to a cascaded standby. |
| 2928 | * |
| 2929 | * As a side-effect, ThisTimeLineID is updated to the TLI of the last |
| 2930 | * replayed WAL record. |
| 2931 | */ |
| 2932 | static XLogRecPtr |
| 2933 | GetStandbyFlushRecPtr(void) |
| 2934 | { |
| 2935 | XLogRecPtr replayPtr; |
| 2936 | TimeLineID replayTLI; |
| 2937 | XLogRecPtr receivePtr; |
| 2938 | TimeLineID receiveTLI; |
| 2939 | XLogRecPtr result; |
| 2940 | |
| 2941 | /* |
| 2942 | * We can safely send what's already been replayed. Also, if walreceiver |
| 2943 | * is streaming WAL from the same timeline, we can send anything that it |
| 2944 | * has streamed, but hasn't been replayed yet. |
| 2945 | */ |
| 2946 | |
| 2947 | receivePtr = GetWalRcvWriteRecPtr(NULL, &receiveTLI); |
| 2948 | replayPtr = GetXLogReplayRecPtr(&replayTLI); |
| 2949 | |
| 2950 | ThisTimeLineID = replayTLI; |
| 2951 | |
| 2952 | result = replayPtr; |
| 2953 | if (receiveTLI == ThisTimeLineID && receivePtr > replayPtr) |
| 2954 | result = receivePtr; |
| 2955 | |
| 2956 | return result; |
| 2957 | } |
| 2958 | |
| 2959 | /* |
| 2960 | * Request walsenders to reload the currently-open WAL file |
| 2961 | */ |
| 2962 | void |
| 2963 | WalSndRqstFileReload(void) |
| 2964 | { |
| 2965 | int i; |
| 2966 | |
| 2967 | for (i = 0; i < max_wal_senders; i++) |
| 2968 | { |
| 2969 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
| 2970 | |
| 2971 | SpinLockAcquire(&walsnd->mutex); |
| 2972 | if (walsnd->pid == 0) |
| 2973 | { |
| 2974 | SpinLockRelease(&walsnd->mutex); |
| 2975 | continue; |
| 2976 | } |
| 2977 | walsnd->needreload = true; |
| 2978 | SpinLockRelease(&walsnd->mutex); |
| 2979 | } |
| 2980 | } |
| 2981 | |
| 2982 | /* |
| 2983 | * Handle PROCSIG_WALSND_INIT_STOPPING signal. |
| 2984 | */ |
| 2985 | void |
| 2986 | HandleWalSndInitStopping(void) |
| 2987 | { |
| 2988 | Assert(am_walsender); |
| 2989 | |
| 2990 | /* |
| 2991 | * If replication has not yet started, die like with SIGTERM. If |
| 2992 | * replication is active, only set a flag and wake up the main loop. It |
| 2993 | * will send any outstanding WAL, wait for it to be replicated to the |
| 2994 | * standby, and then exit gracefully. |
| 2995 | */ |
| 2996 | if (!replication_active) |
| 2997 | kill(MyProcPid, SIGTERM); |
| 2998 | else |
| 2999 | got_STOPPING = true; |
| 3000 | } |
| 3001 | |
| 3002 | /* |
| 3003 | * SIGUSR2: set flag to do a last cycle and shut down afterwards. The WAL |
| 3004 | * sender should already have been switched to WALSNDSTATE_STOPPING at |
| 3005 | * this point. |
| 3006 | */ |
| 3007 | static void |
| 3008 | WalSndLastCycleHandler(SIGNAL_ARGS) |
| 3009 | { |
| 3010 | int save_errno = errno; |
| 3011 | |
| 3012 | got_SIGUSR2 = true; |
| 3013 | SetLatch(MyLatch); |
| 3014 | |
| 3015 | errno = save_errno; |
| 3016 | } |
| 3017 | |
| 3018 | /* Set up signal handlers */ |
| 3019 | void |
| 3020 | WalSndSignals(void) |
| 3021 | { |
| 3022 | /* Set up signal handlers */ |
| 3023 | pqsignal(SIGHUP, PostgresSigHupHandler); /* set flag to read config |
| 3024 | * file */ |
| 3025 | pqsignal(SIGINT, StatementCancelHandler); /* query cancel */ |
| 3026 | pqsignal(SIGTERM, die); /* request shutdown */ |
| 3027 | pqsignal(SIGQUIT, quickdie); /* hard crash time */ |
| 3028 | InitializeTimeouts(); /* establishes SIGALRM handler */ |
| 3029 | pqsignal(SIGPIPE, SIG_IGN); |
| 3030 | pqsignal(SIGUSR1, procsignal_sigusr1_handler); |
| 3031 | pqsignal(SIGUSR2, WalSndLastCycleHandler); /* request a last cycle and |
| 3032 | * shutdown */ |
| 3033 | |
| 3034 | /* Reset some signals that are accepted by postmaster but not here */ |
| 3035 | pqsignal(SIGCHLD, SIG_DFL); |
| 3036 | } |
| 3037 | |
| 3038 | /* Report shared-memory space needed by WalSndShmemInit */ |
| 3039 | Size |
| 3040 | WalSndShmemSize(void) |
| 3041 | { |
| 3042 | Size size = 0; |
| 3043 | |
| 3044 | size = offsetof(WalSndCtlData, walsnds); |
| 3045 | size = add_size(size, mul_size(max_wal_senders, sizeof(WalSnd))); |
| 3046 | |
| 3047 | return size; |
| 3048 | } |
| 3049 | |
| 3050 | /* Allocate and initialize walsender-related shared memory */ |
| 3051 | void |
| 3052 | WalSndShmemInit(void) |
| 3053 | { |
| 3054 | bool found; |
| 3055 | int i; |
| 3056 | |
| 3057 | WalSndCtl = (WalSndCtlData *) |
| 3058 | ShmemInitStruct("Wal Sender Ctl" , WalSndShmemSize(), &found); |
| 3059 | |
| 3060 | if (!found) |
| 3061 | { |
| 3062 | /* First time through, so initialize */ |
| 3063 | MemSet(WalSndCtl, 0, WalSndShmemSize()); |
| 3064 | |
| 3065 | for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; i++) |
| 3066 | SHMQueueInit(&(WalSndCtl->SyncRepQueue[i])); |
| 3067 | |
| 3068 | for (i = 0; i < max_wal_senders; i++) |
| 3069 | { |
| 3070 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
| 3071 | |
| 3072 | SpinLockInit(&walsnd->mutex); |
| 3073 | } |
| 3074 | } |
| 3075 | } |
| 3076 | |
| 3077 | /* |
| 3078 | * Wake up all walsenders |
| 3079 | * |
| 3080 | * This will be called inside critical sections, so throwing an error is not |
| 3081 | * advisable. |
| 3082 | */ |
| 3083 | void |
| 3084 | WalSndWakeup(void) |
| 3085 | { |
| 3086 | int i; |
| 3087 | |
| 3088 | for (i = 0; i < max_wal_senders; i++) |
| 3089 | { |
| 3090 | Latch *latch; |
| 3091 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
| 3092 | |
| 3093 | /* |
| 3094 | * Get latch pointer with spinlock held, for the unlikely case that |
| 3095 | * pointer reads aren't atomic (as they're 8 bytes). |
| 3096 | */ |
| 3097 | SpinLockAcquire(&walsnd->mutex); |
| 3098 | latch = walsnd->latch; |
| 3099 | SpinLockRelease(&walsnd->mutex); |
| 3100 | |
| 3101 | if (latch != NULL) |
| 3102 | SetLatch(latch); |
| 3103 | } |
| 3104 | } |
| 3105 | |
| 3106 | /* |
| 3107 | * Signal all walsenders to move to stopping state. |
| 3108 | * |
| 3109 | * This will trigger walsenders to move to a state where no further WAL can be |
| 3110 | * generated. See this file's header for details. |
| 3111 | */ |
| 3112 | void |
| 3113 | WalSndInitStopping(void) |
| 3114 | { |
| 3115 | int i; |
| 3116 | |
| 3117 | for (i = 0; i < max_wal_senders; i++) |
| 3118 | { |
| 3119 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
| 3120 | pid_t pid; |
| 3121 | |
| 3122 | SpinLockAcquire(&walsnd->mutex); |
| 3123 | pid = walsnd->pid; |
| 3124 | SpinLockRelease(&walsnd->mutex); |
| 3125 | |
| 3126 | if (pid == 0) |
| 3127 | continue; |
| 3128 | |
| 3129 | SendProcSignal(pid, PROCSIG_WALSND_INIT_STOPPING, InvalidBackendId); |
| 3130 | } |
| 3131 | } |
| 3132 | |
| 3133 | /* |
| 3134 | * Wait that all the WAL senders have quit or reached the stopping state. This |
| 3135 | * is used by the checkpointer to control when the shutdown checkpoint can |
| 3136 | * safely be performed. |
| 3137 | */ |
| 3138 | void |
| 3139 | WalSndWaitStopping(void) |
| 3140 | { |
| 3141 | for (;;) |
| 3142 | { |
| 3143 | int i; |
| 3144 | bool all_stopped = true; |
| 3145 | |
| 3146 | for (i = 0; i < max_wal_senders; i++) |
| 3147 | { |
| 3148 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
| 3149 | |
| 3150 | SpinLockAcquire(&walsnd->mutex); |
| 3151 | |
| 3152 | if (walsnd->pid == 0) |
| 3153 | { |
| 3154 | SpinLockRelease(&walsnd->mutex); |
| 3155 | continue; |
| 3156 | } |
| 3157 | |
| 3158 | if (walsnd->state != WALSNDSTATE_STOPPING) |
| 3159 | { |
| 3160 | all_stopped = false; |
| 3161 | SpinLockRelease(&walsnd->mutex); |
| 3162 | break; |
| 3163 | } |
| 3164 | SpinLockRelease(&walsnd->mutex); |
| 3165 | } |
| 3166 | |
| 3167 | /* safe to leave if confirmation is done for all WAL senders */ |
| 3168 | if (all_stopped) |
| 3169 | return; |
| 3170 | |
| 3171 | pg_usleep(10000L); /* wait for 10 msec */ |
| 3172 | } |
| 3173 | } |
| 3174 | |
| 3175 | /* Set state for current walsender (only called in walsender) */ |
| 3176 | void |
| 3177 | WalSndSetState(WalSndState state) |
| 3178 | { |
| 3179 | WalSnd *walsnd = MyWalSnd; |
| 3180 | |
| 3181 | Assert(am_walsender); |
| 3182 | |
| 3183 | if (walsnd->state == state) |
| 3184 | return; |
| 3185 | |
| 3186 | SpinLockAcquire(&walsnd->mutex); |
| 3187 | walsnd->state = state; |
| 3188 | SpinLockRelease(&walsnd->mutex); |
| 3189 | } |
| 3190 | |
| 3191 | /* |
| 3192 | * Return a string constant representing the state. This is used |
| 3193 | * in system views, and should *not* be translated. |
| 3194 | */ |
| 3195 | static const char * |
| 3196 | WalSndGetStateString(WalSndState state) |
| 3197 | { |
| 3198 | switch (state) |
| 3199 | { |
| 3200 | case WALSNDSTATE_STARTUP: |
| 3201 | return "startup" ; |
| 3202 | case WALSNDSTATE_BACKUP: |
| 3203 | return "backup" ; |
| 3204 | case WALSNDSTATE_CATCHUP: |
| 3205 | return "catchup" ; |
| 3206 | case WALSNDSTATE_STREAMING: |
| 3207 | return "streaming" ; |
| 3208 | case WALSNDSTATE_STOPPING: |
| 3209 | return "stopping" ; |
| 3210 | } |
| 3211 | return "UNKNOWN" ; |
| 3212 | } |
| 3213 | |
| 3214 | static Interval * |
| 3215 | offset_to_interval(TimeOffset offset) |
| 3216 | { |
| 3217 | Interval *result = palloc(sizeof(Interval)); |
| 3218 | |
| 3219 | result->month = 0; |
| 3220 | result->day = 0; |
| 3221 | result->time = offset; |
| 3222 | |
| 3223 | return result; |
| 3224 | } |
| 3225 | |
| 3226 | /* |
| 3227 | * Returns activity of walsenders, including pids and xlog locations sent to |
| 3228 | * standby servers. |
| 3229 | */ |
| 3230 | Datum |
| 3231 | pg_stat_get_wal_senders(PG_FUNCTION_ARGS) |
| 3232 | { |
| 3233 | #define PG_STAT_GET_WAL_SENDERS_COLS 12 |
| 3234 | ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; |
| 3235 | TupleDesc tupdesc; |
| 3236 | Tuplestorestate *tupstore; |
| 3237 | MemoryContext per_query_ctx; |
| 3238 | MemoryContext oldcontext; |
| 3239 | List *sync_standbys; |
| 3240 | int i; |
| 3241 | |
| 3242 | /* check to see if caller supports us returning a tuplestore */ |
| 3243 | if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo)) |
| 3244 | ereport(ERROR, |
| 3245 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3246 | errmsg("set-valued function called in context that cannot accept a set" ))); |
| 3247 | if (!(rsinfo->allowedModes & SFRM_Materialize)) |
| 3248 | ereport(ERROR, |
| 3249 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3250 | errmsg("materialize mode required, but it is not " \ |
| 3251 | "allowed in this context" ))); |
| 3252 | |
| 3253 | /* Build a tuple descriptor for our result type */ |
| 3254 | if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) |
| 3255 | elog(ERROR, "return type must be a row type" ); |
| 3256 | |
| 3257 | per_query_ctx = rsinfo->econtext->ecxt_per_query_memory; |
| 3258 | oldcontext = MemoryContextSwitchTo(per_query_ctx); |
| 3259 | |
| 3260 | tupstore = tuplestore_begin_heap(true, false, work_mem); |
| 3261 | rsinfo->returnMode = SFRM_Materialize; |
| 3262 | rsinfo->setResult = tupstore; |
| 3263 | rsinfo->setDesc = tupdesc; |
| 3264 | |
| 3265 | MemoryContextSwitchTo(oldcontext); |
| 3266 | |
| 3267 | /* |
| 3268 | * Get the currently active synchronous standbys. |
| 3269 | */ |
| 3270 | LWLockAcquire(SyncRepLock, LW_SHARED); |
| 3271 | sync_standbys = SyncRepGetSyncStandbys(NULL); |
| 3272 | LWLockRelease(SyncRepLock); |
| 3273 | |
| 3274 | for (i = 0; i < max_wal_senders; i++) |
| 3275 | { |
| 3276 | WalSnd *walsnd = &WalSndCtl->walsnds[i]; |
| 3277 | XLogRecPtr sentPtr; |
| 3278 | XLogRecPtr write; |
| 3279 | XLogRecPtr flush; |
| 3280 | XLogRecPtr apply; |
| 3281 | TimeOffset writeLag; |
| 3282 | TimeOffset flushLag; |
| 3283 | TimeOffset applyLag; |
| 3284 | int priority; |
| 3285 | int pid; |
| 3286 | WalSndState state; |
| 3287 | TimestampTz replyTime; |
| 3288 | Datum values[PG_STAT_GET_WAL_SENDERS_COLS]; |
| 3289 | bool nulls[PG_STAT_GET_WAL_SENDERS_COLS]; |
| 3290 | |
| 3291 | SpinLockAcquire(&walsnd->mutex); |
| 3292 | if (walsnd->pid == 0) |
| 3293 | { |
| 3294 | SpinLockRelease(&walsnd->mutex); |
| 3295 | continue; |
| 3296 | } |
| 3297 | pid = walsnd->pid; |
| 3298 | sentPtr = walsnd->sentPtr; |
| 3299 | state = walsnd->state; |
| 3300 | write = walsnd->write; |
| 3301 | flush = walsnd->flush; |
| 3302 | apply = walsnd->apply; |
| 3303 | writeLag = walsnd->writeLag; |
| 3304 | flushLag = walsnd->flushLag; |
| 3305 | applyLag = walsnd->applyLag; |
| 3306 | priority = walsnd->sync_standby_priority; |
| 3307 | replyTime = walsnd->replyTime; |
| 3308 | SpinLockRelease(&walsnd->mutex); |
| 3309 | |
| 3310 | memset(nulls, 0, sizeof(nulls)); |
| 3311 | values[0] = Int32GetDatum(pid); |
| 3312 | |
| 3313 | if (!is_member_of_role(GetUserId(), DEFAULT_ROLE_READ_ALL_STATS)) |
| 3314 | { |
| 3315 | /* |
| 3316 | * Only superusers and members of pg_read_all_stats can see |
| 3317 | * details. Other users only get the pid value to know it's a |
| 3318 | * walsender, but no details. |
| 3319 | */ |
| 3320 | MemSet(&nulls[1], true, PG_STAT_GET_WAL_SENDERS_COLS - 1); |
| 3321 | } |
| 3322 | else |
| 3323 | { |
| 3324 | values[1] = CStringGetTextDatum(WalSndGetStateString(state)); |
| 3325 | |
| 3326 | if (XLogRecPtrIsInvalid(sentPtr)) |
| 3327 | nulls[2] = true; |
| 3328 | values[2] = LSNGetDatum(sentPtr); |
| 3329 | |
| 3330 | if (XLogRecPtrIsInvalid(write)) |
| 3331 | nulls[3] = true; |
| 3332 | values[3] = LSNGetDatum(write); |
| 3333 | |
| 3334 | if (XLogRecPtrIsInvalid(flush)) |
| 3335 | nulls[4] = true; |
| 3336 | values[4] = LSNGetDatum(flush); |
| 3337 | |
| 3338 | if (XLogRecPtrIsInvalid(apply)) |
| 3339 | nulls[5] = true; |
| 3340 | values[5] = LSNGetDatum(apply); |
| 3341 | |
| 3342 | /* |
| 3343 | * Treat a standby such as a pg_basebackup background process |
| 3344 | * which always returns an invalid flush location, as an |
| 3345 | * asynchronous standby. |
| 3346 | */ |
| 3347 | priority = XLogRecPtrIsInvalid(flush) ? 0 : priority; |
| 3348 | |
| 3349 | if (writeLag < 0) |
| 3350 | nulls[6] = true; |
| 3351 | else |
| 3352 | values[6] = IntervalPGetDatum(offset_to_interval(writeLag)); |
| 3353 | |
| 3354 | if (flushLag < 0) |
| 3355 | nulls[7] = true; |
| 3356 | else |
| 3357 | values[7] = IntervalPGetDatum(offset_to_interval(flushLag)); |
| 3358 | |
| 3359 | if (applyLag < 0) |
| 3360 | nulls[8] = true; |
| 3361 | else |
| 3362 | values[8] = IntervalPGetDatum(offset_to_interval(applyLag)); |
| 3363 | |
| 3364 | values[9] = Int32GetDatum(priority); |
| 3365 | |
| 3366 | /* |
| 3367 | * More easily understood version of standby state. This is purely |
| 3368 | * informational. |
| 3369 | * |
| 3370 | * In quorum-based sync replication, the role of each standby |
| 3371 | * listed in synchronous_standby_names can be changing very |
| 3372 | * frequently. Any standbys considered as "sync" at one moment can |
| 3373 | * be switched to "potential" ones at the next moment. So, it's |
| 3374 | * basically useless to report "sync" or "potential" as their sync |
| 3375 | * states. We report just "quorum" for them. |
| 3376 | */ |
| 3377 | if (priority == 0) |
| 3378 | values[10] = CStringGetTextDatum("async" ); |
| 3379 | else if (list_member_int(sync_standbys, i)) |
| 3380 | values[10] = SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY ? |
| 3381 | CStringGetTextDatum("sync" ) : CStringGetTextDatum("quorum" ); |
| 3382 | else |
| 3383 | values[10] = CStringGetTextDatum("potential" ); |
| 3384 | |
| 3385 | if (replyTime == 0) |
| 3386 | nulls[11] = true; |
| 3387 | else |
| 3388 | values[11] = TimestampTzGetDatum(replyTime); |
| 3389 | } |
| 3390 | |
| 3391 | tuplestore_putvalues(tupstore, tupdesc, values, nulls); |
| 3392 | } |
| 3393 | |
| 3394 | /* clean up and return the tuplestore */ |
| 3395 | tuplestore_donestoring(tupstore); |
| 3396 | |
| 3397 | return (Datum) 0; |
| 3398 | } |
| 3399 | |
| 3400 | /* |
| 3401 | * This function is used to send a keepalive message to standby. |
| 3402 | * If requestReply is set, sets a flag in the message requesting the standby |
| 3403 | * to send a message back to us, for heartbeat purposes. |
| 3404 | */ |
| 3405 | static void |
| 3406 | WalSndKeepalive(bool requestReply) |
| 3407 | { |
| 3408 | elog(DEBUG2, "sending replication keepalive" ); |
| 3409 | |
| 3410 | /* construct the message... */ |
| 3411 | resetStringInfo(&output_message); |
| 3412 | pq_sendbyte(&output_message, 'k'); |
| 3413 | pq_sendint64(&output_message, sentPtr); |
| 3414 | pq_sendint64(&output_message, GetCurrentTimestamp()); |
| 3415 | pq_sendbyte(&output_message, requestReply ? 1 : 0); |
| 3416 | |
| 3417 | /* ... and send it wrapped in CopyData */ |
| 3418 | pq_putmessage_noblock('d', output_message.data, output_message.len); |
| 3419 | } |
| 3420 | |
| 3421 | /* |
| 3422 | * Send keepalive message if too much time has elapsed. |
| 3423 | */ |
| 3424 | static void |
| 3425 | WalSndKeepaliveIfNecessary(void) |
| 3426 | { |
| 3427 | TimestampTz ping_time; |
| 3428 | |
| 3429 | /* |
| 3430 | * Don't send keepalive messages if timeouts are globally disabled or |
| 3431 | * we're doing something not partaking in timeouts. |
| 3432 | */ |
| 3433 | if (wal_sender_timeout <= 0 || last_reply_timestamp <= 0) |
| 3434 | return; |
| 3435 | |
| 3436 | if (waiting_for_ping_response) |
| 3437 | return; |
| 3438 | |
| 3439 | /* |
| 3440 | * If half of wal_sender_timeout has lapsed without receiving any reply |
| 3441 | * from the standby, send a keep-alive message to the standby requesting |
| 3442 | * an immediate reply. |
| 3443 | */ |
| 3444 | ping_time = TimestampTzPlusMilliseconds(last_reply_timestamp, |
| 3445 | wal_sender_timeout / 2); |
| 3446 | if (last_processing >= ping_time) |
| 3447 | { |
| 3448 | WalSndKeepalive(true); |
| 3449 | waiting_for_ping_response = true; |
| 3450 | |
| 3451 | /* Try to flush pending output to the client */ |
| 3452 | if (pq_flush_if_writable() != 0) |
| 3453 | WalSndShutdown(); |
| 3454 | } |
| 3455 | } |
| 3456 | |
| 3457 | /* |
| 3458 | * Record the end of the WAL and the time it was flushed locally, so that |
| 3459 | * LagTrackerRead can compute the elapsed time (lag) when this WAL location is |
| 3460 | * eventually reported to have been written, flushed and applied by the |
| 3461 | * standby in a reply message. |
| 3462 | */ |
| 3463 | static void |
| 3464 | LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time) |
| 3465 | { |
| 3466 | bool buffer_full; |
| 3467 | int new_write_head; |
| 3468 | int i; |
| 3469 | |
| 3470 | if (!am_walsender) |
| 3471 | return; |
| 3472 | |
| 3473 | /* |
| 3474 | * If the lsn hasn't advanced since last time, then do nothing. This way |
| 3475 | * we only record a new sample when new WAL has been written. |
| 3476 | */ |
| 3477 | if (lag_tracker->last_lsn == lsn) |
| 3478 | return; |
| 3479 | lag_tracker->last_lsn = lsn; |
| 3480 | |
| 3481 | /* |
| 3482 | * If advancing the write head of the circular buffer would crash into any |
| 3483 | * of the read heads, then the buffer is full. In other words, the |
| 3484 | * slowest reader (presumably apply) is the one that controls the release |
| 3485 | * of space. |
| 3486 | */ |
| 3487 | new_write_head = (lag_tracker->write_head + 1) % LAG_TRACKER_BUFFER_SIZE; |
| 3488 | buffer_full = false; |
| 3489 | for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; ++i) |
| 3490 | { |
| 3491 | if (new_write_head == lag_tracker->read_heads[i]) |
| 3492 | buffer_full = true; |
| 3493 | } |
| 3494 | |
| 3495 | /* |
| 3496 | * If the buffer is full, for now we just rewind by one slot and overwrite |
| 3497 | * the last sample, as a simple (if somewhat uneven) way to lower the |
| 3498 | * sampling rate. There may be better adaptive compaction algorithms. |
| 3499 | */ |
| 3500 | if (buffer_full) |
| 3501 | { |
| 3502 | new_write_head = lag_tracker->write_head; |
| 3503 | if (lag_tracker->write_head > 0) |
| 3504 | lag_tracker->write_head--; |
| 3505 | else |
| 3506 | lag_tracker->write_head = LAG_TRACKER_BUFFER_SIZE - 1; |
| 3507 | } |
| 3508 | |
| 3509 | /* Store a sample at the current write head position. */ |
| 3510 | lag_tracker->buffer[lag_tracker->write_head].lsn = lsn; |
| 3511 | lag_tracker->buffer[lag_tracker->write_head].time = local_flush_time; |
| 3512 | lag_tracker->write_head = new_write_head; |
| 3513 | } |
| 3514 | |
| 3515 | /* |
| 3516 | * Find out how much time has elapsed between the moment WAL location 'lsn' |
| 3517 | * (or the highest known earlier LSN) was flushed locally and the time 'now'. |
| 3518 | * We have a separate read head for each of the reported LSN locations we |
| 3519 | * receive in replies from standby; 'head' controls which read head is |
| 3520 | * used. Whenever a read head crosses an LSN which was written into the |
| 3521 | * lag buffer with LagTrackerWrite, we can use the associated timestamp to |
| 3522 | * find out the time this LSN (or an earlier one) was flushed locally, and |
| 3523 | * therefore compute the lag. |
| 3524 | * |
| 3525 | * Return -1 if no new sample data is available, and otherwise the elapsed |
| 3526 | * time in microseconds. |
| 3527 | */ |
| 3528 | static TimeOffset |
| 3529 | LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now) |
| 3530 | { |
| 3531 | TimestampTz time = 0; |
| 3532 | |
| 3533 | /* Read all unread samples up to this LSN or end of buffer. */ |
| 3534 | while (lag_tracker->read_heads[head] != lag_tracker->write_head && |
| 3535 | lag_tracker->buffer[lag_tracker->read_heads[head]].lsn <= lsn) |
| 3536 | { |
| 3537 | time = lag_tracker->buffer[lag_tracker->read_heads[head]].time; |
| 3538 | lag_tracker->last_read[head] = |
| 3539 | lag_tracker->buffer[lag_tracker->read_heads[head]]; |
| 3540 | lag_tracker->read_heads[head] = |
| 3541 | (lag_tracker->read_heads[head] + 1) % LAG_TRACKER_BUFFER_SIZE; |
| 3542 | } |
| 3543 | |
| 3544 | /* |
| 3545 | * If the lag tracker is empty, that means the standby has processed |
| 3546 | * everything we've ever sent so we should now clear 'last_read'. If we |
| 3547 | * didn't do that, we'd risk using a stale and irrelevant sample for |
| 3548 | * interpolation at the beginning of the next burst of WAL after a period |
| 3549 | * of idleness. |
| 3550 | */ |
| 3551 | if (lag_tracker->read_heads[head] == lag_tracker->write_head) |
| 3552 | lag_tracker->last_read[head].time = 0; |
| 3553 | |
| 3554 | if (time > now) |
| 3555 | { |
| 3556 | /* If the clock somehow went backwards, treat as not found. */ |
| 3557 | return -1; |
| 3558 | } |
| 3559 | else if (time == 0) |
| 3560 | { |
| 3561 | /* |
| 3562 | * We didn't cross a time. If there is a future sample that we |
| 3563 | * haven't reached yet, and we've already reached at least one sample, |
| 3564 | * let's interpolate the local flushed time. This is mainly useful |
| 3565 | * for reporting a completely stuck apply position as having |
| 3566 | * increasing lag, since otherwise we'd have to wait for it to |
| 3567 | * eventually start moving again and cross one of our samples before |
| 3568 | * we can show the lag increasing. |
| 3569 | */ |
| 3570 | if (lag_tracker->read_heads[head] == lag_tracker->write_head) |
| 3571 | { |
| 3572 | /* There are no future samples, so we can't interpolate. */ |
| 3573 | return -1; |
| 3574 | } |
| 3575 | else if (lag_tracker->last_read[head].time != 0) |
| 3576 | { |
| 3577 | /* We can interpolate between last_read and the next sample. */ |
| 3578 | double fraction; |
| 3579 | WalTimeSample prev = lag_tracker->last_read[head]; |
| 3580 | WalTimeSample next = lag_tracker->buffer[lag_tracker->read_heads[head]]; |
| 3581 | |
| 3582 | if (lsn < prev.lsn) |
| 3583 | { |
| 3584 | /* |
| 3585 | * Reported LSNs shouldn't normally go backwards, but it's |
| 3586 | * possible when there is a timeline change. Treat as not |
| 3587 | * found. |
| 3588 | */ |
| 3589 | return -1; |
| 3590 | } |
| 3591 | |
| 3592 | Assert(prev.lsn < next.lsn); |
| 3593 | |
| 3594 | if (prev.time > next.time) |
| 3595 | { |
| 3596 | /* If the clock somehow went backwards, treat as not found. */ |
| 3597 | return -1; |
| 3598 | } |
| 3599 | |
| 3600 | /* See how far we are between the previous and next samples. */ |
| 3601 | fraction = |
| 3602 | (double) (lsn - prev.lsn) / (double) (next.lsn - prev.lsn); |
| 3603 | |
| 3604 | /* Scale the local flush time proportionally. */ |
| 3605 | time = (TimestampTz) |
| 3606 | ((double) prev.time + (next.time - prev.time) * fraction); |
| 3607 | } |
| 3608 | else |
| 3609 | { |
| 3610 | /* |
| 3611 | * We have only a future sample, implying that we were entirely |
| 3612 | * caught up but and now there is a new burst of WAL and the |
| 3613 | * standby hasn't processed the first sample yet. Until the |
| 3614 | * standby reaches the future sample the best we can do is report |
| 3615 | * the hypothetical lag if that sample were to be replayed now. |
| 3616 | */ |
| 3617 | time = lag_tracker->buffer[lag_tracker->read_heads[head]].time; |
| 3618 | } |
| 3619 | } |
| 3620 | |
| 3621 | /* Return the elapsed time since local flush time in microseconds. */ |
| 3622 | Assert(time != 0); |
| 3623 | return now - time; |
| 3624 | } |
| 3625 | |