| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * extended_stats.c |
| 4 | * POSTGRES extended statistics |
| 5 | * |
| 6 | * Generic code supporting statistics objects created via CREATE STATISTICS. |
| 7 | * |
| 8 | * |
| 9 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 10 | * Portions Copyright (c) 1994, Regents of the University of California |
| 11 | * |
| 12 | * IDENTIFICATION |
| 13 | * src/backend/statistics/extended_stats.c |
| 14 | * |
| 15 | *------------------------------------------------------------------------- |
| 16 | */ |
| 17 | #include "postgres.h" |
| 18 | |
| 19 | #include "access/genam.h" |
| 20 | #include "access/htup_details.h" |
| 21 | #include "access/table.h" |
| 22 | #include "access/tuptoaster.h" |
| 23 | #include "catalog/indexing.h" |
| 24 | #include "catalog/pg_collation.h" |
| 25 | #include "catalog/pg_statistic_ext.h" |
| 26 | #include "catalog/pg_statistic_ext_data.h" |
| 27 | #include "miscadmin.h" |
| 28 | #include "nodes/nodeFuncs.h" |
| 29 | #include "optimizer/clauses.h" |
| 30 | #include "optimizer/optimizer.h" |
| 31 | #include "postmaster/autovacuum.h" |
| 32 | #include "statistics/extended_stats_internal.h" |
| 33 | #include "statistics/statistics.h" |
| 34 | #include "utils/builtins.h" |
| 35 | #include "utils/fmgroids.h" |
| 36 | #include "utils/lsyscache.h" |
| 37 | #include "utils/memutils.h" |
| 38 | #include "utils/rel.h" |
| 39 | #include "utils/selfuncs.h" |
| 40 | #include "utils/syscache.h" |
| 41 | |
| 42 | /* |
| 43 | * To avoid consuming too much memory during analysis and/or too much space |
| 44 | * in the resulting pg_statistic rows, we ignore varlena datums that are wider |
| 45 | * than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV |
| 46 | * and distinct-value calculations since a wide value is unlikely to be |
| 47 | * duplicated at all, much less be a most-common value. For the same reason, |
| 48 | * ignoring wide values will not affect our estimates of histogram bin |
| 49 | * boundaries very much. |
| 50 | */ |
| 51 | #define WIDTH_THRESHOLD 1024 |
| 52 | |
| 53 | /* |
| 54 | * Used internally to refer to an individual statistics object, i.e., |
| 55 | * a pg_statistic_ext entry. |
| 56 | */ |
| 57 | typedef struct StatExtEntry |
| 58 | { |
| 59 | Oid statOid; /* OID of pg_statistic_ext entry */ |
| 60 | char *schema; /* statistics object's schema */ |
| 61 | char *name; /* statistics object's name */ |
| 62 | Bitmapset *columns; /* attribute numbers covered by the object */ |
| 63 | List *types; /* 'char' list of enabled statistic kinds */ |
| 64 | } StatExtEntry; |
| 65 | |
| 66 | |
| 67 | static List *fetch_statentries_for_relation(Relation pg_statext, Oid relid); |
| 68 | static VacAttrStats **lookup_var_attr_stats(Relation rel, Bitmapset *attrs, |
| 69 | int nvacatts, VacAttrStats **vacatts); |
| 70 | static void statext_store(Oid relid, |
| 71 | MVNDistinct *ndistinct, MVDependencies *dependencies, |
| 72 | MCVList *mcv, VacAttrStats **stats); |
| 73 | |
| 74 | |
| 75 | /* |
| 76 | * Compute requested extended stats, using the rows sampled for the plain |
| 77 | * (single-column) stats. |
| 78 | * |
| 79 | * This fetches a list of stats types from pg_statistic_ext, computes the |
| 80 | * requested stats, and serializes them back into the catalog. |
| 81 | */ |
| 82 | void |
| 83 | BuildRelationExtStatistics(Relation onerel, double totalrows, |
| 84 | int numrows, HeapTuple *rows, |
| 85 | int natts, VacAttrStats **vacattrstats) |
| 86 | { |
| 87 | Relation pg_stext; |
| 88 | ListCell *lc; |
| 89 | List *stats; |
| 90 | MemoryContext cxt; |
| 91 | MemoryContext oldcxt; |
| 92 | |
| 93 | cxt = AllocSetContextCreate(CurrentMemoryContext, |
| 94 | "BuildRelationExtStatistics" , |
| 95 | ALLOCSET_DEFAULT_SIZES); |
| 96 | oldcxt = MemoryContextSwitchTo(cxt); |
| 97 | |
| 98 | pg_stext = table_open(StatisticExtRelationId, RowExclusiveLock); |
| 99 | stats = fetch_statentries_for_relation(pg_stext, RelationGetRelid(onerel)); |
| 100 | |
| 101 | foreach(lc, stats) |
| 102 | { |
| 103 | StatExtEntry *stat = (StatExtEntry *) lfirst(lc); |
| 104 | MVNDistinct *ndistinct = NULL; |
| 105 | MVDependencies *dependencies = NULL; |
| 106 | MCVList *mcv = NULL; |
| 107 | VacAttrStats **stats; |
| 108 | ListCell *lc2; |
| 109 | |
| 110 | /* |
| 111 | * Check if we can build these stats based on the column analyzed. If |
| 112 | * not, report this fact (except in autovacuum) and move on. |
| 113 | */ |
| 114 | stats = lookup_var_attr_stats(onerel, stat->columns, |
| 115 | natts, vacattrstats); |
| 116 | if (!stats) |
| 117 | { |
| 118 | if (!IsAutoVacuumWorkerProcess()) |
| 119 | ereport(WARNING, |
| 120 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
| 121 | errmsg("statistics object \"%s.%s\" could not be computed for relation \"%s.%s\"" , |
| 122 | stat->schema, stat->name, |
| 123 | get_namespace_name(onerel->rd_rel->relnamespace), |
| 124 | RelationGetRelationName(onerel)), |
| 125 | errtable(onerel))); |
| 126 | continue; |
| 127 | } |
| 128 | |
| 129 | /* check allowed number of dimensions */ |
| 130 | Assert(bms_num_members(stat->columns) >= 2 && |
| 131 | bms_num_members(stat->columns) <= STATS_MAX_DIMENSIONS); |
| 132 | |
| 133 | /* compute statistic of each requested type */ |
| 134 | foreach(lc2, stat->types) |
| 135 | { |
| 136 | char t = (char) lfirst_int(lc2); |
| 137 | |
| 138 | if (t == STATS_EXT_NDISTINCT) |
| 139 | ndistinct = statext_ndistinct_build(totalrows, numrows, rows, |
| 140 | stat->columns, stats); |
| 141 | else if (t == STATS_EXT_DEPENDENCIES) |
| 142 | dependencies = statext_dependencies_build(numrows, rows, |
| 143 | stat->columns, stats); |
| 144 | else if (t == STATS_EXT_MCV) |
| 145 | mcv = statext_mcv_build(numrows, rows, stat->columns, stats, |
| 146 | totalrows); |
| 147 | } |
| 148 | |
| 149 | /* store the statistics in the catalog */ |
| 150 | statext_store(stat->statOid, ndistinct, dependencies, mcv, stats); |
| 151 | } |
| 152 | |
| 153 | table_close(pg_stext, RowExclusiveLock); |
| 154 | |
| 155 | MemoryContextSwitchTo(oldcxt); |
| 156 | MemoryContextDelete(cxt); |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * statext_is_kind_built |
| 161 | * Is this stat kind built in the given pg_statistic_ext_data tuple? |
| 162 | */ |
| 163 | bool |
| 164 | statext_is_kind_built(HeapTuple htup, char type) |
| 165 | { |
| 166 | AttrNumber attnum; |
| 167 | |
| 168 | switch (type) |
| 169 | { |
| 170 | case STATS_EXT_NDISTINCT: |
| 171 | attnum = Anum_pg_statistic_ext_data_stxdndistinct; |
| 172 | break; |
| 173 | |
| 174 | case STATS_EXT_DEPENDENCIES: |
| 175 | attnum = Anum_pg_statistic_ext_data_stxddependencies; |
| 176 | break; |
| 177 | |
| 178 | case STATS_EXT_MCV: |
| 179 | attnum = Anum_pg_statistic_ext_data_stxdmcv; |
| 180 | break; |
| 181 | |
| 182 | default: |
| 183 | elog(ERROR, "unexpected statistics type requested: %d" , type); |
| 184 | } |
| 185 | |
| 186 | return !heap_attisnull(htup, attnum, NULL); |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * Return a list (of StatExtEntry) of statistics objects for the given relation. |
| 191 | */ |
| 192 | static List * |
| 193 | fetch_statentries_for_relation(Relation pg_statext, Oid relid) |
| 194 | { |
| 195 | SysScanDesc scan; |
| 196 | ScanKeyData skey; |
| 197 | HeapTuple htup; |
| 198 | List *result = NIL; |
| 199 | |
| 200 | /* |
| 201 | * Prepare to scan pg_statistic_ext for entries having stxrelid = this |
| 202 | * rel. |
| 203 | */ |
| 204 | ScanKeyInit(&skey, |
| 205 | Anum_pg_statistic_ext_stxrelid, |
| 206 | BTEqualStrategyNumber, F_OIDEQ, |
| 207 | ObjectIdGetDatum(relid)); |
| 208 | |
| 209 | scan = systable_beginscan(pg_statext, StatisticExtRelidIndexId, true, |
| 210 | NULL, 1, &skey); |
| 211 | |
| 212 | while (HeapTupleIsValid(htup = systable_getnext(scan))) |
| 213 | { |
| 214 | StatExtEntry *entry; |
| 215 | Datum datum; |
| 216 | bool isnull; |
| 217 | int i; |
| 218 | ArrayType *arr; |
| 219 | char *enabled; |
| 220 | Form_pg_statistic_ext staForm; |
| 221 | |
| 222 | entry = palloc0(sizeof(StatExtEntry)); |
| 223 | staForm = (Form_pg_statistic_ext) GETSTRUCT(htup); |
| 224 | entry->statOid = staForm->oid; |
| 225 | entry->schema = get_namespace_name(staForm->stxnamespace); |
| 226 | entry->name = pstrdup(NameStr(staForm->stxname)); |
| 227 | for (i = 0; i < staForm->stxkeys.dim1; i++) |
| 228 | { |
| 229 | entry->columns = bms_add_member(entry->columns, |
| 230 | staForm->stxkeys.values[i]); |
| 231 | } |
| 232 | |
| 233 | /* decode the stxkind char array into a list of chars */ |
| 234 | datum = SysCacheGetAttr(STATEXTOID, htup, |
| 235 | Anum_pg_statistic_ext_stxkind, &isnull); |
| 236 | Assert(!isnull); |
| 237 | arr = DatumGetArrayTypeP(datum); |
| 238 | if (ARR_NDIM(arr) != 1 || |
| 239 | ARR_HASNULL(arr) || |
| 240 | ARR_ELEMTYPE(arr) != CHAROID) |
| 241 | elog(ERROR, "stxkind is not a 1-D char array" ); |
| 242 | enabled = (char *) ARR_DATA_PTR(arr); |
| 243 | for (i = 0; i < ARR_DIMS(arr)[0]; i++) |
| 244 | { |
| 245 | Assert((enabled[i] == STATS_EXT_NDISTINCT) || |
| 246 | (enabled[i] == STATS_EXT_DEPENDENCIES) || |
| 247 | (enabled[i] == STATS_EXT_MCV)); |
| 248 | entry->types = lappend_int(entry->types, (int) enabled[i]); |
| 249 | } |
| 250 | |
| 251 | result = lappend(result, entry); |
| 252 | } |
| 253 | |
| 254 | systable_endscan(scan); |
| 255 | |
| 256 | return result; |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * Using 'vacatts' of size 'nvacatts' as input data, return a newly built |
| 261 | * VacAttrStats array which includes only the items corresponding to |
| 262 | * attributes indicated by 'stxkeys'. If we don't have all of the per column |
| 263 | * stats available to compute the extended stats, then we return NULL to indicate |
| 264 | * to the caller that the stats should not be built. |
| 265 | */ |
| 266 | static VacAttrStats ** |
| 267 | lookup_var_attr_stats(Relation rel, Bitmapset *attrs, |
| 268 | int nvacatts, VacAttrStats **vacatts) |
| 269 | { |
| 270 | int i = 0; |
| 271 | int x = -1; |
| 272 | VacAttrStats **stats; |
| 273 | |
| 274 | stats = (VacAttrStats **) |
| 275 | palloc(bms_num_members(attrs) * sizeof(VacAttrStats *)); |
| 276 | |
| 277 | /* lookup VacAttrStats info for the requested columns (same attnum) */ |
| 278 | while ((x = bms_next_member(attrs, x)) >= 0) |
| 279 | { |
| 280 | int j; |
| 281 | |
| 282 | stats[i] = NULL; |
| 283 | for (j = 0; j < nvacatts; j++) |
| 284 | { |
| 285 | if (x == vacatts[j]->tupattnum) |
| 286 | { |
| 287 | stats[i] = vacatts[j]; |
| 288 | break; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | if (!stats[i]) |
| 293 | { |
| 294 | /* |
| 295 | * Looks like stats were not gathered for one of the columns |
| 296 | * required. We'll be unable to build the extended stats without |
| 297 | * this column. |
| 298 | */ |
| 299 | pfree(stats); |
| 300 | return NULL; |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * Sanity check that the column is not dropped - stats should have |
| 305 | * been removed in this case. |
| 306 | */ |
| 307 | Assert(!stats[i]->attr->attisdropped); |
| 308 | |
| 309 | i++; |
| 310 | } |
| 311 | |
| 312 | return stats; |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * statext_store |
| 317 | * Serializes the statistics and stores them into the pg_statistic_ext_data |
| 318 | * tuple. |
| 319 | */ |
| 320 | static void |
| 321 | statext_store(Oid statOid, |
| 322 | MVNDistinct *ndistinct, MVDependencies *dependencies, |
| 323 | MCVList *mcv, VacAttrStats **stats) |
| 324 | { |
| 325 | HeapTuple stup, |
| 326 | oldtup; |
| 327 | Datum values[Natts_pg_statistic_ext_data]; |
| 328 | bool nulls[Natts_pg_statistic_ext_data]; |
| 329 | bool replaces[Natts_pg_statistic_ext_data]; |
| 330 | Relation pg_stextdata; |
| 331 | |
| 332 | memset(nulls, true, sizeof(nulls)); |
| 333 | memset(replaces, false, sizeof(replaces)); |
| 334 | memset(values, 0, sizeof(values)); |
| 335 | |
| 336 | /* |
| 337 | * Construct a new pg_statistic_ext_data tuple, replacing the calculated |
| 338 | * stats. |
| 339 | */ |
| 340 | if (ndistinct != NULL) |
| 341 | { |
| 342 | bytea *data = statext_ndistinct_serialize(ndistinct); |
| 343 | |
| 344 | nulls[Anum_pg_statistic_ext_data_stxdndistinct - 1] = (data == NULL); |
| 345 | values[Anum_pg_statistic_ext_data_stxdndistinct - 1] = PointerGetDatum(data); |
| 346 | } |
| 347 | |
| 348 | if (dependencies != NULL) |
| 349 | { |
| 350 | bytea *data = statext_dependencies_serialize(dependencies); |
| 351 | |
| 352 | nulls[Anum_pg_statistic_ext_data_stxddependencies - 1] = (data == NULL); |
| 353 | values[Anum_pg_statistic_ext_data_stxddependencies - 1] = PointerGetDatum(data); |
| 354 | } |
| 355 | if (mcv != NULL) |
| 356 | { |
| 357 | bytea *data = statext_mcv_serialize(mcv, stats); |
| 358 | |
| 359 | nulls[Anum_pg_statistic_ext_data_stxdmcv - 1] = (data == NULL); |
| 360 | values[Anum_pg_statistic_ext_data_stxdmcv - 1] = PointerGetDatum(data); |
| 361 | } |
| 362 | |
| 363 | /* always replace the value (either by bytea or NULL) */ |
| 364 | replaces[Anum_pg_statistic_ext_data_stxdndistinct - 1] = true; |
| 365 | replaces[Anum_pg_statistic_ext_data_stxddependencies - 1] = true; |
| 366 | replaces[Anum_pg_statistic_ext_data_stxdmcv - 1] = true; |
| 367 | |
| 368 | /* there should already be a pg_statistic_ext_data tuple */ |
| 369 | oldtup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(statOid)); |
| 370 | if (!HeapTupleIsValid(oldtup)) |
| 371 | elog(ERROR, "cache lookup failed for statistics object %u" , statOid); |
| 372 | |
| 373 | /* replace it */ |
| 374 | pg_stextdata = table_open(StatisticExtDataRelationId, RowExclusiveLock); |
| 375 | |
| 376 | stup = heap_modify_tuple(oldtup, |
| 377 | RelationGetDescr(pg_stextdata), |
| 378 | values, |
| 379 | nulls, |
| 380 | replaces); |
| 381 | ReleaseSysCache(oldtup); |
| 382 | CatalogTupleUpdate(pg_stextdata, &stup->t_self, stup); |
| 383 | |
| 384 | heap_freetuple(stup); |
| 385 | |
| 386 | table_close(pg_stextdata, RowExclusiveLock); |
| 387 | } |
| 388 | |
| 389 | /* initialize multi-dimensional sort */ |
| 390 | MultiSortSupport |
| 391 | multi_sort_init(int ndims) |
| 392 | { |
| 393 | MultiSortSupport mss; |
| 394 | |
| 395 | Assert(ndims >= 2); |
| 396 | |
| 397 | mss = (MultiSortSupport) palloc0(offsetof(MultiSortSupportData, ssup) |
| 398 | + sizeof(SortSupportData) * ndims); |
| 399 | |
| 400 | mss->ndims = ndims; |
| 401 | |
| 402 | return mss; |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Prepare sort support info using the given sort operator and collation |
| 407 | * at the position 'sortdim' |
| 408 | */ |
| 409 | void |
| 410 | multi_sort_add_dimension(MultiSortSupport mss, int sortdim, |
| 411 | Oid oper, Oid collation) |
| 412 | { |
| 413 | SortSupport ssup = &mss->ssup[sortdim]; |
| 414 | |
| 415 | ssup->ssup_cxt = CurrentMemoryContext; |
| 416 | ssup->ssup_collation = collation; |
| 417 | ssup->ssup_nulls_first = false; |
| 418 | |
| 419 | PrepareSortSupportFromOrderingOp(oper, ssup); |
| 420 | } |
| 421 | |
| 422 | /* compare all the dimensions in the selected order */ |
| 423 | int |
| 424 | multi_sort_compare(const void *a, const void *b, void *arg) |
| 425 | { |
| 426 | MultiSortSupport mss = (MultiSortSupport) arg; |
| 427 | SortItem *ia = (SortItem *) a; |
| 428 | SortItem *ib = (SortItem *) b; |
| 429 | int i; |
| 430 | |
| 431 | for (i = 0; i < mss->ndims; i++) |
| 432 | { |
| 433 | int compare; |
| 434 | |
| 435 | compare = ApplySortComparator(ia->values[i], ia->isnull[i], |
| 436 | ib->values[i], ib->isnull[i], |
| 437 | &mss->ssup[i]); |
| 438 | |
| 439 | if (compare != 0) |
| 440 | return compare; |
| 441 | } |
| 442 | |
| 443 | /* equal by default */ |
| 444 | return 0; |
| 445 | } |
| 446 | |
| 447 | /* compare selected dimension */ |
| 448 | int |
| 449 | multi_sort_compare_dim(int dim, const SortItem *a, const SortItem *b, |
| 450 | MultiSortSupport mss) |
| 451 | { |
| 452 | return ApplySortComparator(a->values[dim], a->isnull[dim], |
| 453 | b->values[dim], b->isnull[dim], |
| 454 | &mss->ssup[dim]); |
| 455 | } |
| 456 | |
| 457 | int |
| 458 | multi_sort_compare_dims(int start, int end, |
| 459 | const SortItem *a, const SortItem *b, |
| 460 | MultiSortSupport mss) |
| 461 | { |
| 462 | int dim; |
| 463 | |
| 464 | for (dim = start; dim <= end; dim++) |
| 465 | { |
| 466 | int r = ApplySortComparator(a->values[dim], a->isnull[dim], |
| 467 | b->values[dim], b->isnull[dim], |
| 468 | &mss->ssup[dim]); |
| 469 | |
| 470 | if (r != 0) |
| 471 | return r; |
| 472 | } |
| 473 | |
| 474 | return 0; |
| 475 | } |
| 476 | |
| 477 | int |
| 478 | compare_scalars_simple(const void *a, const void *b, void *arg) |
| 479 | { |
| 480 | return compare_datums_simple(*(Datum *) a, |
| 481 | *(Datum *) b, |
| 482 | (SortSupport) arg); |
| 483 | } |
| 484 | |
| 485 | int |
| 486 | compare_datums_simple(Datum a, Datum b, SortSupport ssup) |
| 487 | { |
| 488 | return ApplySortComparator(a, false, b, false, ssup); |
| 489 | } |
| 490 | |
| 491 | /* simple counterpart to qsort_arg */ |
| 492 | void * |
| 493 | bsearch_arg(const void *key, const void *base, size_t nmemb, size_t size, |
| 494 | int (*compar) (const void *, const void *, void *), |
| 495 | void *arg) |
| 496 | { |
| 497 | size_t l, |
| 498 | u, |
| 499 | idx; |
| 500 | const void *p; |
| 501 | int comparison; |
| 502 | |
| 503 | l = 0; |
| 504 | u = nmemb; |
| 505 | while (l < u) |
| 506 | { |
| 507 | idx = (l + u) / 2; |
| 508 | p = (void *) (((const char *) base) + (idx * size)); |
| 509 | comparison = (*compar) (key, p, arg); |
| 510 | |
| 511 | if (comparison < 0) |
| 512 | u = idx; |
| 513 | else if (comparison > 0) |
| 514 | l = idx + 1; |
| 515 | else |
| 516 | return (void *) p; |
| 517 | } |
| 518 | |
| 519 | return NULL; |
| 520 | } |
| 521 | |
| 522 | /* |
| 523 | * build_attnums_array |
| 524 | * Transforms a bitmap into an array of AttrNumber values. |
| 525 | * |
| 526 | * This is used for extended statistics only, so all the attribute must be |
| 527 | * user-defined. That means offsetting by FirstLowInvalidHeapAttributeNumber |
| 528 | * is not necessary here (and when querying the bitmap). |
| 529 | */ |
| 530 | AttrNumber * |
| 531 | build_attnums_array(Bitmapset *attrs, int *numattrs) |
| 532 | { |
| 533 | int i, |
| 534 | j; |
| 535 | AttrNumber *attnums; |
| 536 | int num = bms_num_members(attrs); |
| 537 | |
| 538 | if (numattrs) |
| 539 | *numattrs = num; |
| 540 | |
| 541 | /* build attnums from the bitmapset */ |
| 542 | attnums = (AttrNumber *) palloc(sizeof(AttrNumber) * num); |
| 543 | i = 0; |
| 544 | j = -1; |
| 545 | while ((j = bms_next_member(attrs, j)) >= 0) |
| 546 | { |
| 547 | /* |
| 548 | * Make sure the bitmap contains only user-defined attributes. As |
| 549 | * bitmaps can't contain negative values, this can be violated in two |
| 550 | * ways. Firstly, the bitmap might contain 0 as a member, and secondly |
| 551 | * the integer value might be larger than MaxAttrNumber. |
| 552 | */ |
| 553 | Assert(AttrNumberIsForUserDefinedAttr(j)); |
| 554 | Assert(j <= MaxAttrNumber); |
| 555 | |
| 556 | attnums[i++] = (AttrNumber) j; |
| 557 | |
| 558 | /* protect against overflows */ |
| 559 | Assert(i <= num); |
| 560 | } |
| 561 | |
| 562 | return attnums; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * build_sorted_items |
| 567 | * build a sorted array of SortItem with values from rows |
| 568 | * |
| 569 | * Note: All the memory is allocated in a single chunk, so that the caller |
| 570 | * can simply pfree the return value to release all of it. |
| 571 | */ |
| 572 | SortItem * |
| 573 | build_sorted_items(int numrows, int *nitems, HeapTuple *rows, TupleDesc tdesc, |
| 574 | MultiSortSupport mss, int numattrs, AttrNumber *attnums) |
| 575 | { |
| 576 | int i, |
| 577 | j, |
| 578 | len, |
| 579 | idx; |
| 580 | int nvalues = numrows * numattrs; |
| 581 | |
| 582 | SortItem *items; |
| 583 | Datum *values; |
| 584 | bool *isnull; |
| 585 | char *ptr; |
| 586 | |
| 587 | /* Compute the total amount of memory we need (both items and values). */ |
| 588 | len = numrows * sizeof(SortItem) + nvalues * (sizeof(Datum) + sizeof(bool)); |
| 589 | |
| 590 | /* Allocate the memory and split it into the pieces. */ |
| 591 | ptr = palloc0(len); |
| 592 | |
| 593 | /* items to sort */ |
| 594 | items = (SortItem *) ptr; |
| 595 | ptr += numrows * sizeof(SortItem); |
| 596 | |
| 597 | /* values and null flags */ |
| 598 | values = (Datum *) ptr; |
| 599 | ptr += nvalues * sizeof(Datum); |
| 600 | |
| 601 | isnull = (bool *) ptr; |
| 602 | ptr += nvalues * sizeof(bool); |
| 603 | |
| 604 | /* make sure we consumed the whole buffer exactly */ |
| 605 | Assert((ptr - (char *) items) == len); |
| 606 | |
| 607 | /* fix the pointers to Datum and bool arrays */ |
| 608 | idx = 0; |
| 609 | for (i = 0; i < numrows; i++) |
| 610 | { |
| 611 | bool toowide = false; |
| 612 | |
| 613 | items[idx].values = &values[idx * numattrs]; |
| 614 | items[idx].isnull = &isnull[idx * numattrs]; |
| 615 | |
| 616 | /* load the values/null flags from sample rows */ |
| 617 | for (j = 0; j < numattrs; j++) |
| 618 | { |
| 619 | Datum value; |
| 620 | bool isnull; |
| 621 | |
| 622 | value = heap_getattr(rows[i], attnums[j], tdesc, &isnull); |
| 623 | |
| 624 | /* |
| 625 | * If this is a varlena value, check if it's too wide and if yes |
| 626 | * then skip the whole item. Otherwise detoast the value. |
| 627 | * |
| 628 | * XXX It may happen that we've already detoasted some preceding |
| 629 | * values for the current item. We don't bother to cleanup those |
| 630 | * on the assumption that those are small (below WIDTH_THRESHOLD) |
| 631 | * and will be discarded at the end of analyze. |
| 632 | */ |
| 633 | if ((!isnull) && |
| 634 | (TupleDescAttr(tdesc, attnums[j] - 1)->attlen == -1)) |
| 635 | { |
| 636 | if (toast_raw_datum_size(value) > WIDTH_THRESHOLD) |
| 637 | { |
| 638 | toowide = true; |
| 639 | break; |
| 640 | } |
| 641 | |
| 642 | value = PointerGetDatum(PG_DETOAST_DATUM(value)); |
| 643 | } |
| 644 | |
| 645 | items[idx].values[j] = value; |
| 646 | items[idx].isnull[j] = isnull; |
| 647 | } |
| 648 | |
| 649 | if (toowide) |
| 650 | continue; |
| 651 | |
| 652 | idx++; |
| 653 | } |
| 654 | |
| 655 | /* store the actual number of items (ignoring the too-wide ones) */ |
| 656 | *nitems = idx; |
| 657 | |
| 658 | /* all items were too wide */ |
| 659 | if (idx == 0) |
| 660 | { |
| 661 | /* everything is allocated as a single chunk */ |
| 662 | pfree(items); |
| 663 | return NULL; |
| 664 | } |
| 665 | |
| 666 | /* do the sort, using the multi-sort */ |
| 667 | qsort_arg((void *) items, idx, sizeof(SortItem), |
| 668 | multi_sort_compare, mss); |
| 669 | |
| 670 | return items; |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * has_stats_of_kind |
| 675 | * Check whether the list contains statistic of a given kind |
| 676 | */ |
| 677 | bool |
| 678 | has_stats_of_kind(List *stats, char requiredkind) |
| 679 | { |
| 680 | ListCell *l; |
| 681 | |
| 682 | foreach(l, stats) |
| 683 | { |
| 684 | StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l); |
| 685 | |
| 686 | if (stat->kind == requiredkind) |
| 687 | return true; |
| 688 | } |
| 689 | |
| 690 | return false; |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * choose_best_statistics |
| 695 | * Look for and return statistics with the specified 'requiredkind' which |
| 696 | * have keys that match at least two of the given attnums. Return NULL if |
| 697 | * there's no match. |
| 698 | * |
| 699 | * The current selection criteria is very simple - we choose the statistics |
| 700 | * object referencing the most of the requested attributes, breaking ties |
| 701 | * in favor of objects with fewer keys overall. |
| 702 | * |
| 703 | * XXX If multiple statistics objects tie on both criteria, then which object |
| 704 | * is chosen depends on the order that they appear in the stats list. Perhaps |
| 705 | * further tiebreakers are needed. |
| 706 | */ |
| 707 | StatisticExtInfo * |
| 708 | choose_best_statistics(List *stats, Bitmapset *attnums, char requiredkind) |
| 709 | { |
| 710 | ListCell *lc; |
| 711 | StatisticExtInfo *best_match = NULL; |
| 712 | int best_num_matched = 2; /* goal #1: maximize */ |
| 713 | int best_match_keys = (STATS_MAX_DIMENSIONS + 1); /* goal #2: minimize */ |
| 714 | |
| 715 | foreach(lc, stats) |
| 716 | { |
| 717 | StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc); |
| 718 | int num_matched; |
| 719 | int numkeys; |
| 720 | Bitmapset *matched; |
| 721 | |
| 722 | /* skip statistics that are not of the correct type */ |
| 723 | if (info->kind != requiredkind) |
| 724 | continue; |
| 725 | |
| 726 | /* determine how many attributes of these stats can be matched to */ |
| 727 | matched = bms_intersect(attnums, info->keys); |
| 728 | num_matched = bms_num_members(matched); |
| 729 | bms_free(matched); |
| 730 | |
| 731 | /* |
| 732 | * save the actual number of keys in the stats so that we can choose |
| 733 | * the narrowest stats with the most matching keys. |
| 734 | */ |
| 735 | numkeys = bms_num_members(info->keys); |
| 736 | |
| 737 | /* |
| 738 | * Use this object when it increases the number of matched clauses or |
| 739 | * when it matches the same number of attributes but these stats have |
| 740 | * fewer keys than any previous match. |
| 741 | */ |
| 742 | if (num_matched > best_num_matched || |
| 743 | (num_matched == best_num_matched && numkeys < best_match_keys)) |
| 744 | { |
| 745 | best_match = info; |
| 746 | best_num_matched = num_matched; |
| 747 | best_match_keys = numkeys; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | return best_match; |
| 752 | } |
| 753 | |
| 754 | /* |
| 755 | * statext_is_compatible_clause_internal |
| 756 | * Determines if the clause is compatible with MCV lists. |
| 757 | * |
| 758 | * Does the heavy lifting of actually inspecting the clauses for |
| 759 | * statext_is_compatible_clause. It needs to be split like this because |
| 760 | * of recursion. The attnums bitmap is an input/output parameter collecting |
| 761 | * attribute numbers from all compatible clauses (recursively). |
| 762 | */ |
| 763 | static bool |
| 764 | statext_is_compatible_clause_internal(PlannerInfo *root, Node *clause, |
| 765 | Index relid, Bitmapset **attnums) |
| 766 | { |
| 767 | /* Look inside any binary-compatible relabeling (as in examine_variable) */ |
| 768 | if (IsA(clause, RelabelType)) |
| 769 | clause = (Node *) ((RelabelType *) clause)->arg; |
| 770 | |
| 771 | /* plain Var references (boolean Vars or recursive checks) */ |
| 772 | if (IsA(clause, Var)) |
| 773 | { |
| 774 | Var *var = (Var *) clause; |
| 775 | |
| 776 | /* Ensure var is from the correct relation */ |
| 777 | if (var->varno != relid) |
| 778 | return false; |
| 779 | |
| 780 | /* we also better ensure the Var is from the current level */ |
| 781 | if (var->varlevelsup > 0) |
| 782 | return false; |
| 783 | |
| 784 | /* Also skip system attributes (we don't allow stats on those). */ |
| 785 | if (!AttrNumberIsForUserDefinedAttr(var->varattno)) |
| 786 | return false; |
| 787 | |
| 788 | *attnums = bms_add_member(*attnums, var->varattno); |
| 789 | |
| 790 | return true; |
| 791 | } |
| 792 | |
| 793 | /* (Var op Const) or (Const op Var) */ |
| 794 | if (is_opclause(clause)) |
| 795 | { |
| 796 | RangeTblEntry *rte = root->simple_rte_array[relid]; |
| 797 | OpExpr *expr = (OpExpr *) clause; |
| 798 | Var *var; |
| 799 | |
| 800 | /* Only expressions with two arguments are considered compatible. */ |
| 801 | if (list_length(expr->args) != 2) |
| 802 | return false; |
| 803 | |
| 804 | /* Check if the expression the right shape (one Var, one Const) */ |
| 805 | if (!examine_opclause_expression(expr, &var, NULL, NULL)) |
| 806 | return false; |
| 807 | |
| 808 | /* |
| 809 | * If it's not one of the supported operators ("=", "<", ">", etc.), |
| 810 | * just ignore the clause, as it's not compatible with MCV lists. |
| 811 | * |
| 812 | * This uses the function for estimating selectivity, not the operator |
| 813 | * directly (a bit awkward, but well ...). |
| 814 | */ |
| 815 | switch (get_oprrest(expr->opno)) |
| 816 | { |
| 817 | case F_EQSEL: |
| 818 | case F_NEQSEL: |
| 819 | case F_SCALARLTSEL: |
| 820 | case F_SCALARLESEL: |
| 821 | case F_SCALARGTSEL: |
| 822 | case F_SCALARGESEL: |
| 823 | /* supported, will continue with inspection of the Var */ |
| 824 | break; |
| 825 | |
| 826 | default: |
| 827 | /* other estimators are considered unknown/unsupported */ |
| 828 | return false; |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * If there are any securityQuals on the RTE from security barrier |
| 833 | * views or RLS policies, then the user may not have access to all the |
| 834 | * table's data, and we must check that the operator is leak-proof. |
| 835 | * |
| 836 | * If the operator is leaky, then we must ignore this clause for the |
| 837 | * purposes of estimating with MCV lists, otherwise the operator might |
| 838 | * reveal values from the MCV list that the user doesn't have |
| 839 | * permission to see. |
| 840 | */ |
| 841 | if (rte->securityQuals != NIL && |
| 842 | !get_func_leakproof(get_opcode(expr->opno))) |
| 843 | return false; |
| 844 | |
| 845 | return statext_is_compatible_clause_internal(root, (Node *) var, |
| 846 | relid, attnums); |
| 847 | } |
| 848 | |
| 849 | /* AND/OR/NOT clause */ |
| 850 | if (is_andclause(clause) || |
| 851 | is_orclause(clause) || |
| 852 | is_notclause(clause)) |
| 853 | { |
| 854 | /* |
| 855 | * AND/OR/NOT-clauses are supported if all sub-clauses are supported |
| 856 | * |
| 857 | * Perhaps we could improve this by handling mixed cases, when some of |
| 858 | * the clauses are supported and some are not. Selectivity for the |
| 859 | * supported subclauses would be computed using extended statistics, |
| 860 | * and the remaining clauses would be estimated using the traditional |
| 861 | * algorithm (product of selectivities). |
| 862 | * |
| 863 | * It however seems overly complex, and in a way we already do that |
| 864 | * because if we reject the whole clause as unsupported here, it will |
| 865 | * be eventually passed to clauselist_selectivity() which does exactly |
| 866 | * this (split into supported/unsupported clauses etc). |
| 867 | */ |
| 868 | BoolExpr *expr = (BoolExpr *) clause; |
| 869 | ListCell *lc; |
| 870 | |
| 871 | foreach(lc, expr->args) |
| 872 | { |
| 873 | /* |
| 874 | * Had we found incompatible clause in the arguments, treat the |
| 875 | * whole clause as incompatible. |
| 876 | */ |
| 877 | if (!statext_is_compatible_clause_internal(root, |
| 878 | (Node *) lfirst(lc), |
| 879 | relid, attnums)) |
| 880 | return false; |
| 881 | } |
| 882 | |
| 883 | return true; |
| 884 | } |
| 885 | |
| 886 | /* Var IS NULL */ |
| 887 | if (IsA(clause, NullTest)) |
| 888 | { |
| 889 | NullTest *nt = (NullTest *) clause; |
| 890 | |
| 891 | /* |
| 892 | * Only simple (Var IS NULL) expressions supported for now. Maybe we |
| 893 | * could use examine_variable to fix this? |
| 894 | */ |
| 895 | if (!IsA(nt->arg, Var)) |
| 896 | return false; |
| 897 | |
| 898 | return statext_is_compatible_clause_internal(root, (Node *) (nt->arg), |
| 899 | relid, attnums); |
| 900 | } |
| 901 | |
| 902 | return false; |
| 903 | } |
| 904 | |
| 905 | /* |
| 906 | * statext_is_compatible_clause |
| 907 | * Determines if the clause is compatible with MCV lists. |
| 908 | * |
| 909 | * Currently, we only support three types of clauses: |
| 910 | * |
| 911 | * (a) OpExprs of the form (Var op Const), or (Const op Var), where the op |
| 912 | * is one of ("=", "<", ">", ">=", "<=") |
| 913 | * |
| 914 | * (b) (Var IS [NOT] NULL) |
| 915 | * |
| 916 | * (c) combinations using AND/OR/NOT |
| 917 | * |
| 918 | * In the future, the range of supported clauses may be expanded to more |
| 919 | * complex cases, for example (Var op Var). |
| 920 | */ |
| 921 | static bool |
| 922 | statext_is_compatible_clause(PlannerInfo *root, Node *clause, Index relid, |
| 923 | Bitmapset **attnums) |
| 924 | { |
| 925 | RangeTblEntry *rte = root->simple_rte_array[relid]; |
| 926 | RestrictInfo *rinfo = (RestrictInfo *) clause; |
| 927 | Oid userid; |
| 928 | |
| 929 | if (!IsA(rinfo, RestrictInfo)) |
| 930 | return false; |
| 931 | |
| 932 | /* Pseudoconstants are not really interesting here. */ |
| 933 | if (rinfo->pseudoconstant) |
| 934 | return false; |
| 935 | |
| 936 | /* clauses referencing multiple varnos are incompatible */ |
| 937 | if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON) |
| 938 | return false; |
| 939 | |
| 940 | /* Check the clause and determine what attributes it references. */ |
| 941 | if (!statext_is_compatible_clause_internal(root, (Node *) rinfo->clause, |
| 942 | relid, attnums)) |
| 943 | return false; |
| 944 | |
| 945 | /* |
| 946 | * Check that the user has permission to read all these attributes. Use |
| 947 | * checkAsUser if it's set, in case we're accessing the table via a view. |
| 948 | */ |
| 949 | userid = rte->checkAsUser ? rte->checkAsUser : GetUserId(); |
| 950 | |
| 951 | if (pg_class_aclcheck(rte->relid, userid, ACL_SELECT) != ACLCHECK_OK) |
| 952 | { |
| 953 | /* Don't have table privilege, must check individual columns */ |
| 954 | if (bms_is_member(InvalidAttrNumber, *attnums)) |
| 955 | { |
| 956 | /* Have a whole-row reference, must have access to all columns */ |
| 957 | if (pg_attribute_aclcheck_all(rte->relid, userid, ACL_SELECT, |
| 958 | ACLMASK_ALL) != ACLCHECK_OK) |
| 959 | return false; |
| 960 | } |
| 961 | else |
| 962 | { |
| 963 | /* Check the columns referenced by the clause */ |
| 964 | int attnum = -1; |
| 965 | |
| 966 | while ((attnum = bms_next_member(*attnums, attnum)) >= 0) |
| 967 | { |
| 968 | if (pg_attribute_aclcheck(rte->relid, attnum, userid, |
| 969 | ACL_SELECT) != ACLCHECK_OK) |
| 970 | return false; |
| 971 | } |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | /* If we reach here, the clause is OK */ |
| 976 | return true; |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | * statext_mcv_clauselist_selectivity |
| 981 | * Estimate clauses using the best multi-column statistics. |
| 982 | * |
| 983 | * Selects the best extended (multi-column) statistic on a table (measured by |
| 984 | * the number of attributes extracted from the clauses and covered by it), and |
| 985 | * computes the selectivity for the supplied clauses. |
| 986 | * |
| 987 | * One of the main challenges with using MCV lists is how to extrapolate the |
| 988 | * estimate to the data not covered by the MCV list. To do that, we compute |
| 989 | * not only the "MCV selectivity" (selectivities for MCV items matching the |
| 990 | * supplied clauses), but also a couple of derived selectivities: |
| 991 | * |
| 992 | * - simple selectivity: Computed without extended statistic, i.e. as if the |
| 993 | * columns/clauses were independent |
| 994 | * |
| 995 | * - base selectivity: Similar to simple selectivity, but is computed using |
| 996 | * the extended statistic by adding up the base frequencies (that we compute |
| 997 | * and store for each MCV item) of matching MCV items. |
| 998 | * |
| 999 | * - total selectivity: Selectivity covered by the whole MCV list. |
| 1000 | * |
| 1001 | * - other selectivity: A selectivity estimate for data not covered by the MCV |
| 1002 | * list (i.e. satisfying the clauses, but not common enough to make it into |
| 1003 | * the MCV list) |
| 1004 | * |
| 1005 | * Note: While simple and base selectivities are defined in a quite similar |
| 1006 | * way, the values are computed differently and are not therefore equal. The |
| 1007 | * simple selectivity is computed as a product of per-clause estimates, while |
| 1008 | * the base selectivity is computed by adding up base frequencies of matching |
| 1009 | * items of the multi-column MCV list. So the values may differ for two main |
| 1010 | * reasons - (a) the MCV list may not cover 100% of the data and (b) some of |
| 1011 | * the MCV items did not match the estimated clauses. |
| 1012 | * |
| 1013 | * As both (a) and (b) reduce the base selectivity value, it generally holds |
| 1014 | * that (simple_selectivity >= base_selectivity). If the MCV list covers all |
| 1015 | * the data, the values may be equal. |
| 1016 | * |
| 1017 | * So, (simple_selectivity - base_selectivity) is an estimate for the part |
| 1018 | * not covered by the MCV list, and (mcv_selectivity - base_selectivity) may |
| 1019 | * be seen as a correction for the part covered by the MCV list. Those two |
| 1020 | * statements are actually equivalent. |
| 1021 | * |
| 1022 | * Note: Due to rounding errors and minor differences in how the estimates |
| 1023 | * are computed, the inequality may not always hold. Which is why we clamp |
| 1024 | * the selectivities to prevent strange estimate (negative etc.). |
| 1025 | * |
| 1026 | * 'estimatedclauses' is an input/output parameter. We set bits for the |
| 1027 | * 0-based 'clauses' indexes we estimate for and also skip clause items that |
| 1028 | * already have a bit set. |
| 1029 | * |
| 1030 | * XXX If we were to use multiple statistics, this is where it would happen. |
| 1031 | * We would simply repeat this on a loop on the "remaining" clauses, possibly |
| 1032 | * using the already estimated clauses as conditions (and combining the values |
| 1033 | * using conditional probability formula). |
| 1034 | */ |
| 1035 | static Selectivity |
| 1036 | statext_mcv_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid, |
| 1037 | JoinType jointype, SpecialJoinInfo *sjinfo, |
| 1038 | RelOptInfo *rel, Bitmapset **estimatedclauses) |
| 1039 | { |
| 1040 | ListCell *l; |
| 1041 | Bitmapset *clauses_attnums = NULL; |
| 1042 | Bitmapset **list_attnums; |
| 1043 | int listidx; |
| 1044 | StatisticExtInfo *stat; |
| 1045 | List *stat_clauses; |
| 1046 | Selectivity simple_sel, |
| 1047 | mcv_sel, |
| 1048 | mcv_basesel, |
| 1049 | mcv_totalsel, |
| 1050 | other_sel, |
| 1051 | sel; |
| 1052 | |
| 1053 | /* check if there's any stats that might be useful for us. */ |
| 1054 | if (!has_stats_of_kind(rel->statlist, STATS_EXT_MCV)) |
| 1055 | return 1.0; |
| 1056 | |
| 1057 | list_attnums = (Bitmapset **) palloc(sizeof(Bitmapset *) * |
| 1058 | list_length(clauses)); |
| 1059 | |
| 1060 | /* |
| 1061 | * Pre-process the clauses list to extract the attnums seen in each item. |
| 1062 | * We need to determine if there's any clauses which will be useful for |
| 1063 | * selectivity estimations with extended stats. Along the way we'll record |
| 1064 | * all of the attnums for each clause in a list which we'll reference |
| 1065 | * later so we don't need to repeat the same work again. We'll also keep |
| 1066 | * track of all attnums seen. |
| 1067 | * |
| 1068 | * We also skip clauses that we already estimated using different types of |
| 1069 | * statistics (we treat them as incompatible). |
| 1070 | */ |
| 1071 | listidx = 0; |
| 1072 | foreach(l, clauses) |
| 1073 | { |
| 1074 | Node *clause = (Node *) lfirst(l); |
| 1075 | Bitmapset *attnums = NULL; |
| 1076 | |
| 1077 | if (!bms_is_member(listidx, *estimatedclauses) && |
| 1078 | statext_is_compatible_clause(root, clause, rel->relid, &attnums)) |
| 1079 | { |
| 1080 | list_attnums[listidx] = attnums; |
| 1081 | clauses_attnums = bms_add_members(clauses_attnums, attnums); |
| 1082 | } |
| 1083 | else |
| 1084 | list_attnums[listidx] = NULL; |
| 1085 | |
| 1086 | listidx++; |
| 1087 | } |
| 1088 | |
| 1089 | /* We need at least two attributes for multivariate statistics. */ |
| 1090 | if (bms_membership(clauses_attnums) != BMS_MULTIPLE) |
| 1091 | return 1.0; |
| 1092 | |
| 1093 | /* find the best suited statistics object for these attnums */ |
| 1094 | stat = choose_best_statistics(rel->statlist, clauses_attnums, STATS_EXT_MCV); |
| 1095 | |
| 1096 | /* if no matching stats could be found then we've nothing to do */ |
| 1097 | if (!stat) |
| 1098 | return 1.0; |
| 1099 | |
| 1100 | /* Ensure choose_best_statistics produced an expected stats type. */ |
| 1101 | Assert(stat->kind == STATS_EXT_MCV); |
| 1102 | |
| 1103 | /* now filter the clauses to be estimated using the selected MCV */ |
| 1104 | stat_clauses = NIL; |
| 1105 | |
| 1106 | listidx = 0; |
| 1107 | foreach(l, clauses) |
| 1108 | { |
| 1109 | /* |
| 1110 | * If the clause is compatible with the selected statistics, mark it |
| 1111 | * as estimated and add it to the list to estimate. |
| 1112 | */ |
| 1113 | if (list_attnums[listidx] != NULL && |
| 1114 | bms_is_subset(list_attnums[listidx], stat->keys)) |
| 1115 | { |
| 1116 | stat_clauses = lappend(stat_clauses, (Node *) lfirst(l)); |
| 1117 | *estimatedclauses = bms_add_member(*estimatedclauses, listidx); |
| 1118 | } |
| 1119 | |
| 1120 | listidx++; |
| 1121 | } |
| 1122 | |
| 1123 | /* |
| 1124 | * First compute "simple" selectivity, i.e. without the extended |
| 1125 | * statistics, and essentially assuming independence of the |
| 1126 | * columns/clauses. We'll then use the various selectivities computed from |
| 1127 | * MCV list to improve it. |
| 1128 | */ |
| 1129 | simple_sel = clauselist_selectivity_simple(root, stat_clauses, varRelid, |
| 1130 | jointype, sjinfo, NULL); |
| 1131 | |
| 1132 | /* |
| 1133 | * Now compute the multi-column estimate from the MCV list, along with the |
| 1134 | * other selectivities (base & total selectivity). |
| 1135 | */ |
| 1136 | mcv_sel = mcv_clauselist_selectivity(root, stat, stat_clauses, varRelid, |
| 1137 | jointype, sjinfo, rel, |
| 1138 | &mcv_basesel, &mcv_totalsel); |
| 1139 | |
| 1140 | /* Estimated selectivity of values not covered by MCV matches */ |
| 1141 | other_sel = simple_sel - mcv_basesel; |
| 1142 | CLAMP_PROBABILITY(other_sel); |
| 1143 | |
| 1144 | /* The non-MCV selectivity can't exceed the 1 - mcv_totalsel. */ |
| 1145 | if (other_sel > 1.0 - mcv_totalsel) |
| 1146 | other_sel = 1.0 - mcv_totalsel; |
| 1147 | |
| 1148 | /* Overall selectivity is the combination of MCV and non-MCV estimates. */ |
| 1149 | sel = mcv_sel + other_sel; |
| 1150 | CLAMP_PROBABILITY(sel); |
| 1151 | |
| 1152 | return sel; |
| 1153 | } |
| 1154 | |
| 1155 | /* |
| 1156 | * statext_clauselist_selectivity |
| 1157 | * Estimate clauses using the best multi-column statistics. |
| 1158 | */ |
| 1159 | Selectivity |
| 1160 | statext_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid, |
| 1161 | JoinType jointype, SpecialJoinInfo *sjinfo, |
| 1162 | RelOptInfo *rel, Bitmapset **estimatedclauses) |
| 1163 | { |
| 1164 | Selectivity sel; |
| 1165 | |
| 1166 | /* First, try estimating clauses using a multivariate MCV list. */ |
| 1167 | sel = statext_mcv_clauselist_selectivity(root, clauses, varRelid, jointype, |
| 1168 | sjinfo, rel, estimatedclauses); |
| 1169 | |
| 1170 | /* |
| 1171 | * Then, apply functional dependencies on the remaining clauses by calling |
| 1172 | * dependencies_clauselist_selectivity. Pass 'estimatedclauses' so the |
| 1173 | * function can properly skip clauses already estimated above. |
| 1174 | * |
| 1175 | * The reasoning for applying dependencies last is that the more complex |
| 1176 | * stats can track more complex correlations between the attributes, and |
| 1177 | * so may be considered more reliable. |
| 1178 | * |
| 1179 | * For example, MCV list can give us an exact selectivity for values in |
| 1180 | * two columns, while functional dependencies can only provide information |
| 1181 | * about the overall strength of the dependency. |
| 1182 | */ |
| 1183 | sel *= dependencies_clauselist_selectivity(root, clauses, varRelid, |
| 1184 | jointype, sjinfo, rel, |
| 1185 | estimatedclauses); |
| 1186 | |
| 1187 | return sel; |
| 1188 | } |
| 1189 | |
| 1190 | /* |
| 1191 | * examine_operator_expression |
| 1192 | * Split expression into Var and Const parts. |
| 1193 | * |
| 1194 | * Attempts to match the arguments to either (Var op Const) or (Const op Var), |
| 1195 | * possibly with a RelabelType on top. When the expression matches this form, |
| 1196 | * returns true, otherwise returns false. |
| 1197 | * |
| 1198 | * Optionally returns pointers to the extracted Var/Const nodes, when passed |
| 1199 | * non-null pointers (varp, cstp and varonleftp). The varonleftp flag specifies |
| 1200 | * on which side of the operator we found the Var node. |
| 1201 | */ |
| 1202 | bool |
| 1203 | examine_opclause_expression(OpExpr *expr, Var **varp, Const **cstp, bool *varonleftp) |
| 1204 | { |
| 1205 | Var *var; |
| 1206 | Const *cst; |
| 1207 | bool varonleft; |
| 1208 | Node *leftop, |
| 1209 | *rightop; |
| 1210 | |
| 1211 | /* enforced by statext_is_compatible_clause_internal */ |
| 1212 | Assert(list_length(expr->args) == 2); |
| 1213 | |
| 1214 | leftop = linitial(expr->args); |
| 1215 | rightop = lsecond(expr->args); |
| 1216 | |
| 1217 | /* strip RelabelType from either side of the expression */ |
| 1218 | if (IsA(leftop, RelabelType)) |
| 1219 | leftop = (Node *) ((RelabelType *) leftop)->arg; |
| 1220 | |
| 1221 | if (IsA(rightop, RelabelType)) |
| 1222 | rightop = (Node *) ((RelabelType *) rightop)->arg; |
| 1223 | |
| 1224 | if (IsA(leftop, Var) && IsA(rightop, Const)) |
| 1225 | { |
| 1226 | var = (Var *) leftop; |
| 1227 | cst = (Const *) rightop; |
| 1228 | varonleft = true; |
| 1229 | } |
| 1230 | else if (IsA(leftop, Const) && IsA(rightop, Var)) |
| 1231 | { |
| 1232 | var = (Var *) rightop; |
| 1233 | cst = (Const *) leftop; |
| 1234 | varonleft = false; |
| 1235 | } |
| 1236 | else |
| 1237 | return false; |
| 1238 | |
| 1239 | /* return pointers to the extracted parts if requested */ |
| 1240 | if (varp) |
| 1241 | *varp = var; |
| 1242 | |
| 1243 | if (cstp) |
| 1244 | *cstp = cst; |
| 1245 | |
| 1246 | if (varonleftp) |
| 1247 | *varonleftp = varonleft; |
| 1248 | |
| 1249 | return true; |
| 1250 | } |
| 1251 | |