| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * mcv.c |
| 4 | * POSTGRES multivariate MCV lists |
| 5 | * |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/statistics/mcv.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <math.h> |
| 18 | |
| 19 | #include "access/htup_details.h" |
| 20 | #include "catalog/pg_collation.h" |
| 21 | #include "catalog/pg_statistic_ext.h" |
| 22 | #include "catalog/pg_statistic_ext_data.h" |
| 23 | #include "fmgr.h" |
| 24 | #include "funcapi.h" |
| 25 | #include "nodes/nodeFuncs.h" |
| 26 | #include "optimizer/clauses.h" |
| 27 | #include "statistics/extended_stats_internal.h" |
| 28 | #include "statistics/statistics.h" |
| 29 | #include "utils/builtins.h" |
| 30 | #include "utils/bytea.h" |
| 31 | #include "utils/fmgroids.h" |
| 32 | #include "utils/fmgrprotos.h" |
| 33 | #include "utils/lsyscache.h" |
| 34 | #include "utils/syscache.h" |
| 35 | #include "utils/typcache.h" |
| 36 | |
| 37 | /* |
| 38 | * Computes size of a serialized MCV item, depending on the number of |
| 39 | * dimensions (columns) the statistic is defined on. The datum values are |
| 40 | * stored in a separate array (deduplicated, to minimize the size), and |
| 41 | * so the serialized items only store uint16 indexes into that array. |
| 42 | * |
| 43 | * Each serialized item stores (in this order): |
| 44 | * |
| 45 | * - indexes to values (ndim * sizeof(uint16)) |
| 46 | * - null flags (ndim * sizeof(bool)) |
| 47 | * - frequency (sizeof(double)) |
| 48 | * - base_frequency (sizeof(double)) |
| 49 | * |
| 50 | * There is no alignment padding within an MCV item. |
| 51 | * So in total each MCV item requires this many bytes: |
| 52 | * |
| 53 | * ndim * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double) |
| 54 | */ |
| 55 | #define ITEM_SIZE(ndims) \ |
| 56 | ((ndims) * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double)) |
| 57 | |
| 58 | /* |
| 59 | * Used to compute size of serialized MCV list representation. |
| 60 | */ |
| 61 | #define MinSizeOfMCVList \ |
| 62 | (VARHDRSZ + sizeof(uint32) * 3 + sizeof(AttrNumber)) |
| 63 | |
| 64 | /* |
| 65 | * Size of the serialized MCV list, excluding the space needed for |
| 66 | * deduplicated per-dimension values. The macro is meant to be used |
| 67 | * when it's not yet safe to access the serialized info about amount |
| 68 | * of data for each column. |
| 69 | */ |
| 70 | #define SizeOfMCVList(ndims,nitems) \ |
| 71 | ((MinSizeOfMCVList + sizeof(Oid) * (ndims)) + \ |
| 72 | ((ndims) * sizeof(DimensionInfo)) + \ |
| 73 | ((nitems) * ITEM_SIZE(ndims))) |
| 74 | |
| 75 | static MultiSortSupport build_mss(VacAttrStats **stats, int numattrs); |
| 76 | |
| 77 | static SortItem *build_distinct_groups(int numrows, SortItem *items, |
| 78 | MultiSortSupport mss, int *ndistinct); |
| 79 | |
| 80 | static SortItem **build_column_frequencies(SortItem *groups, int ngroups, |
| 81 | MultiSortSupport mss, int *ncounts); |
| 82 | |
| 83 | static int count_distinct_groups(int numrows, SortItem *items, |
| 84 | MultiSortSupport mss); |
| 85 | |
| 86 | /* |
| 87 | * Compute new value for bitmap item, considering whether it's used for |
| 88 | * clauses connected by AND/OR. |
| 89 | */ |
| 90 | #define RESULT_MERGE(value, is_or, match) \ |
| 91 | ((is_or) ? ((value) || (match)) : ((value) && (match))) |
| 92 | |
| 93 | /* |
| 94 | * When processing a list of clauses, the bitmap item may get set to a value |
| 95 | * such that additional clauses can't change it. For example, when processing |
| 96 | * a list of clauses connected to AND, as soon as the item gets set to 'false' |
| 97 | * then it'll remain like that. Similarly clauses connected by OR and 'true'. |
| 98 | * |
| 99 | * Returns true when the value in the bitmap can't change no matter how the |
| 100 | * remaining clauses are evaluated. |
| 101 | */ |
| 102 | #define RESULT_IS_FINAL(value, is_or) ((is_or) ? (value) : (!(value))) |
| 103 | |
| 104 | /* |
| 105 | * get_mincount_for_mcv_list |
| 106 | * Determine the minimum number of times a value needs to appear in |
| 107 | * the sample for it to be included in the MCV list. |
| 108 | * |
| 109 | * We want to keep only values that appear sufficiently often in the |
| 110 | * sample that it is reasonable to extrapolate their sample frequencies to |
| 111 | * the entire table. We do this by placing an upper bound on the relative |
| 112 | * standard error of the sample frequency, so that any estimates the |
| 113 | * planner generates from the MCV statistics can be expected to be |
| 114 | * reasonably accurate. |
| 115 | * |
| 116 | * Since we are sampling without replacement, the sample frequency of a |
| 117 | * particular value is described by a hypergeometric distribution. A |
| 118 | * common rule of thumb when estimating errors in this situation is to |
| 119 | * require at least 10 instances of the value in the sample, in which case |
| 120 | * the distribution can be approximated by a normal distribution, and |
| 121 | * standard error analysis techniques can be applied. Given a sample size |
| 122 | * of n, a population size of N, and a sample frequency of p=cnt/n, the |
| 123 | * standard error of the proportion p is given by |
| 124 | * SE = sqrt(p*(1-p)/n) * sqrt((N-n)/(N-1)) |
| 125 | * where the second term is the finite population correction. To get |
| 126 | * reasonably accurate planner estimates, we impose an upper bound on the |
| 127 | * relative standard error of 20% -- i.e., SE/p < 0.2. This 20% relative |
| 128 | * error bound is fairly arbitrary, but has been found empirically to work |
| 129 | * well. Rearranging this formula gives a lower bound on the number of |
| 130 | * instances of the value seen: |
| 131 | * cnt > n*(N-n) / (N-n+0.04*n*(N-1)) |
| 132 | * This bound is at most 25, and approaches 0 as n approaches 0 or N. The |
| 133 | * case where n approaches 0 cannot happen in practice, since the sample |
| 134 | * size is at least 300. The case where n approaches N corresponds to |
| 135 | * sampling the whole the table, in which case it is reasonable to keep |
| 136 | * the whole MCV list (have no lower bound), so it makes sense to apply |
| 137 | * this formula for all inputs, even though the above derivation is |
| 138 | * technically only valid when the right hand side is at least around 10. |
| 139 | * |
| 140 | * An alternative way to look at this formula is as follows -- assume that |
| 141 | * the number of instances of the value seen scales up to the entire |
| 142 | * table, so that the population count is K=N*cnt/n. Then the distribution |
| 143 | * in the sample is a hypergeometric distribution parameterised by N, n |
| 144 | * and K, and the bound above is mathematically equivalent to demanding |
| 145 | * that the standard deviation of that distribution is less than 20% of |
| 146 | * its mean. Thus the relative errors in any planner estimates produced |
| 147 | * from the MCV statistics are likely to be not too large. |
| 148 | */ |
| 149 | static double |
| 150 | get_mincount_for_mcv_list(int samplerows, double totalrows) |
| 151 | { |
| 152 | double n = samplerows; |
| 153 | double N = totalrows; |
| 154 | double numer, |
| 155 | denom; |
| 156 | |
| 157 | numer = n * (N - n); |
| 158 | denom = N - n + 0.04 * n * (N - 1); |
| 159 | |
| 160 | /* Guard against division by zero (possible if n = N = 1) */ |
| 161 | if (denom == 0.0) |
| 162 | return 0.0; |
| 163 | |
| 164 | return numer / denom; |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * Builds MCV list from the set of sampled rows. |
| 169 | * |
| 170 | * The algorithm is quite simple: |
| 171 | * |
| 172 | * (1) sort the data (default collation, '<' for the data type) |
| 173 | * |
| 174 | * (2) count distinct groups, decide how many to keep |
| 175 | * |
| 176 | * (3) build the MCV list using the threshold determined in (2) |
| 177 | * |
| 178 | * (4) remove rows represented by the MCV from the sample |
| 179 | * |
| 180 | */ |
| 181 | MCVList * |
| 182 | statext_mcv_build(int numrows, HeapTuple *rows, Bitmapset *attrs, |
| 183 | VacAttrStats **stats, double totalrows) |
| 184 | { |
| 185 | int i, |
| 186 | numattrs, |
| 187 | ngroups, |
| 188 | nitems; |
| 189 | AttrNumber *attnums; |
| 190 | double mincount; |
| 191 | SortItem *items; |
| 192 | SortItem *groups; |
| 193 | MCVList *mcvlist = NULL; |
| 194 | MultiSortSupport mss; |
| 195 | |
| 196 | attnums = build_attnums_array(attrs, &numattrs); |
| 197 | |
| 198 | /* comparator for all the columns */ |
| 199 | mss = build_mss(stats, numattrs); |
| 200 | |
| 201 | /* sort the rows */ |
| 202 | items = build_sorted_items(numrows, &nitems, rows, stats[0]->tupDesc, |
| 203 | mss, numattrs, attnums); |
| 204 | |
| 205 | if (!items) |
| 206 | return NULL; |
| 207 | |
| 208 | /* transform the sorted rows into groups (sorted by frequency) */ |
| 209 | groups = build_distinct_groups(nitems, items, mss, &ngroups); |
| 210 | |
| 211 | /* |
| 212 | * Maximum number of MCV items to store, based on the attribute with the |
| 213 | * largest stats target (and the number of groups we have available). |
| 214 | */ |
| 215 | nitems = stats[0]->attr->attstattarget; |
| 216 | for (i = 1; i < numattrs; i++) |
| 217 | { |
| 218 | if (stats[i]->attr->attstattarget > nitems) |
| 219 | nitems = stats[i]->attr->attstattarget; |
| 220 | } |
| 221 | if (nitems > ngroups) |
| 222 | nitems = ngroups; |
| 223 | |
| 224 | /* |
| 225 | * Decide how many items to keep in the MCV list. We can't use the same |
| 226 | * algorithm as per-column MCV lists, because that only considers the |
| 227 | * actual group frequency - but we're primarily interested in how the |
| 228 | * actual frequency differs from the base frequency (product of simple |
| 229 | * per-column frequencies, as if the columns were independent). |
| 230 | * |
| 231 | * Using the same algorithm might exclude items that are close to the |
| 232 | * "average" frequency of the sample. But that does not say whether the |
| 233 | * observed frequency is close to the base frequency or not. We also need |
| 234 | * to consider unexpectedly uncommon items (again, compared to the base |
| 235 | * frequency), and the single-column algorithm does not have to. |
| 236 | * |
| 237 | * We simply decide how many items to keep by computing minimum count |
| 238 | * using get_mincount_for_mcv_list() and then keep all items that seem to |
| 239 | * be more common than that. |
| 240 | */ |
| 241 | mincount = get_mincount_for_mcv_list(numrows, totalrows); |
| 242 | |
| 243 | /* |
| 244 | * Walk the groups until we find the first group with a count below the |
| 245 | * mincount threshold (the index of that group is the number of groups we |
| 246 | * want to keep). |
| 247 | */ |
| 248 | for (i = 0; i < nitems; i++) |
| 249 | { |
| 250 | if (groups[i].count < mincount) |
| 251 | { |
| 252 | nitems = i; |
| 253 | break; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * At this point we know the number of items for the MCV list. There might |
| 259 | * be none (for uniform distribution with many groups), and in that case |
| 260 | * there will be no MCV list. Otherwise construct the MCV list. |
| 261 | */ |
| 262 | if (nitems > 0) |
| 263 | { |
| 264 | int j; |
| 265 | SortItem key; |
| 266 | MultiSortSupport tmp; |
| 267 | |
| 268 | /* frequencies for values in each attribute */ |
| 269 | SortItem **freqs; |
| 270 | int *nfreqs; |
| 271 | |
| 272 | /* used to search values */ |
| 273 | tmp = (MultiSortSupport) palloc(offsetof(MultiSortSupportData, ssup) |
| 274 | + sizeof(SortSupportData)); |
| 275 | |
| 276 | /* compute frequencies for values in each column */ |
| 277 | nfreqs = (int *) palloc0(sizeof(int) * numattrs); |
| 278 | freqs = build_column_frequencies(groups, ngroups, mss, nfreqs); |
| 279 | |
| 280 | /* |
| 281 | * Allocate the MCV list structure, set the global parameters. |
| 282 | */ |
| 283 | mcvlist = (MCVList *) palloc0(offsetof(MCVList, items) + |
| 284 | sizeof(MCVItem) * nitems); |
| 285 | |
| 286 | mcvlist->magic = STATS_MCV_MAGIC; |
| 287 | mcvlist->type = STATS_MCV_TYPE_BASIC; |
| 288 | mcvlist->ndimensions = numattrs; |
| 289 | mcvlist->nitems = nitems; |
| 290 | |
| 291 | /* store info about data type OIDs */ |
| 292 | for (i = 0; i < numattrs; i++) |
| 293 | mcvlist->types[i] = stats[i]->attrtypid; |
| 294 | |
| 295 | /* Copy the first chunk of groups into the result. */ |
| 296 | for (i = 0; i < nitems; i++) |
| 297 | { |
| 298 | /* just pointer to the proper place in the list */ |
| 299 | MCVItem *item = &mcvlist->items[i]; |
| 300 | |
| 301 | item->values = (Datum *) palloc(sizeof(Datum) * numattrs); |
| 302 | item->isnull = (bool *) palloc(sizeof(bool) * numattrs); |
| 303 | |
| 304 | /* copy values for the group */ |
| 305 | memcpy(item->values, groups[i].values, sizeof(Datum) * numattrs); |
| 306 | memcpy(item->isnull, groups[i].isnull, sizeof(bool) * numattrs); |
| 307 | |
| 308 | /* groups should be sorted by frequency in descending order */ |
| 309 | Assert((i == 0) || (groups[i - 1].count >= groups[i].count)); |
| 310 | |
| 311 | /* group frequency */ |
| 312 | item->frequency = (double) groups[i].count / numrows; |
| 313 | |
| 314 | /* base frequency, if the attributes were independent */ |
| 315 | item->base_frequency = 1.0; |
| 316 | for (j = 0; j < numattrs; j++) |
| 317 | { |
| 318 | SortItem *freq; |
| 319 | |
| 320 | /* single dimension */ |
| 321 | tmp->ndims = 1; |
| 322 | tmp->ssup[0] = mss->ssup[j]; |
| 323 | |
| 324 | /* fill search key */ |
| 325 | key.values = &groups[i].values[j]; |
| 326 | key.isnull = &groups[i].isnull[j]; |
| 327 | |
| 328 | freq = (SortItem *) bsearch_arg(&key, freqs[j], nfreqs[j], |
| 329 | sizeof(SortItem), |
| 330 | multi_sort_compare, tmp); |
| 331 | |
| 332 | item->base_frequency *= ((double) freq->count) / numrows; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | pfree(nfreqs); |
| 337 | pfree(freqs); |
| 338 | } |
| 339 | |
| 340 | pfree(items); |
| 341 | pfree(groups); |
| 342 | |
| 343 | return mcvlist; |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * build_mss |
| 348 | * build MultiSortSupport for the attributes passed in attrs |
| 349 | */ |
| 350 | static MultiSortSupport |
| 351 | build_mss(VacAttrStats **stats, int numattrs) |
| 352 | { |
| 353 | int i; |
| 354 | |
| 355 | /* Sort by multiple columns (using array of SortSupport) */ |
| 356 | MultiSortSupport mss = multi_sort_init(numattrs); |
| 357 | |
| 358 | /* prepare the sort functions for all the attributes */ |
| 359 | for (i = 0; i < numattrs; i++) |
| 360 | { |
| 361 | VacAttrStats *colstat = stats[i]; |
| 362 | TypeCacheEntry *type; |
| 363 | |
| 364 | type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR); |
| 365 | if (type->lt_opr == InvalidOid) /* shouldn't happen */ |
| 366 | elog(ERROR, "cache lookup failed for ordering operator for type %u" , |
| 367 | colstat->attrtypid); |
| 368 | |
| 369 | multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid); |
| 370 | } |
| 371 | |
| 372 | return mss; |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * count_distinct_groups |
| 377 | * count distinct combinations of SortItems in the array |
| 378 | * |
| 379 | * The array is assumed to be sorted according to the MultiSortSupport. |
| 380 | */ |
| 381 | static int |
| 382 | count_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss) |
| 383 | { |
| 384 | int i; |
| 385 | int ndistinct; |
| 386 | |
| 387 | ndistinct = 1; |
| 388 | for (i = 1; i < numrows; i++) |
| 389 | { |
| 390 | /* make sure the array really is sorted */ |
| 391 | Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0); |
| 392 | |
| 393 | if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0) |
| 394 | ndistinct += 1; |
| 395 | } |
| 396 | |
| 397 | return ndistinct; |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * compare_sort_item_count |
| 402 | * comparator for sorting items by count (frequencies) in descending order |
| 403 | */ |
| 404 | static int |
| 405 | compare_sort_item_count(const void *a, const void *b) |
| 406 | { |
| 407 | SortItem *ia = (SortItem *) a; |
| 408 | SortItem *ib = (SortItem *) b; |
| 409 | |
| 410 | if (ia->count == ib->count) |
| 411 | return 0; |
| 412 | else if (ia->count > ib->count) |
| 413 | return -1; |
| 414 | |
| 415 | return 1; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * build_distinct_groups |
| 420 | * build an array of SortItems for distinct groups and counts matching items |
| 421 | * |
| 422 | * The input array is assumed to be sorted |
| 423 | */ |
| 424 | static SortItem * |
| 425 | build_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss, |
| 426 | int *ndistinct) |
| 427 | { |
| 428 | int i, |
| 429 | j; |
| 430 | int ngroups = count_distinct_groups(numrows, items, mss); |
| 431 | |
| 432 | SortItem *groups = (SortItem *) palloc(ngroups * sizeof(SortItem)); |
| 433 | |
| 434 | j = 0; |
| 435 | groups[0] = items[0]; |
| 436 | groups[0].count = 1; |
| 437 | |
| 438 | for (i = 1; i < numrows; i++) |
| 439 | { |
| 440 | /* Assume sorted in ascending order. */ |
| 441 | Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0); |
| 442 | |
| 443 | /* New distinct group detected. */ |
| 444 | if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0) |
| 445 | { |
| 446 | groups[++j] = items[i]; |
| 447 | groups[j].count = 0; |
| 448 | } |
| 449 | |
| 450 | groups[j].count++; |
| 451 | } |
| 452 | |
| 453 | /* ensure we filled the expected number of distinct groups */ |
| 454 | Assert(j + 1 == ngroups); |
| 455 | |
| 456 | /* Sort the distinct groups by frequency (in descending order). */ |
| 457 | pg_qsort((void *) groups, ngroups, sizeof(SortItem), |
| 458 | compare_sort_item_count); |
| 459 | |
| 460 | *ndistinct = ngroups; |
| 461 | return groups; |
| 462 | } |
| 463 | |
| 464 | /* compare sort items (single dimension) */ |
| 465 | static int |
| 466 | sort_item_compare(const void *a, const void *b, void *arg) |
| 467 | { |
| 468 | SortSupport ssup = (SortSupport) arg; |
| 469 | SortItem *ia = (SortItem *) a; |
| 470 | SortItem *ib = (SortItem *) b; |
| 471 | |
| 472 | return ApplySortComparator(ia->values[0], ia->isnull[0], |
| 473 | ib->values[0], ib->isnull[0], |
| 474 | ssup); |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | * build_column_frequencies |
| 479 | * compute frequencies of values in each column |
| 480 | * |
| 481 | * This returns an array of SortItems for each attibute the MCV is built |
| 482 | * on, with a frequency (number of occurrences) for each value. This is |
| 483 | * then used to compute "base" frequency of MCV items. |
| 484 | * |
| 485 | * All the memory is allocated in a single chunk, so that a single pfree |
| 486 | * is enough to release it. We do not allocate space for values/isnull |
| 487 | * arrays in the SortItems, because we can simply point into the input |
| 488 | * groups directly. |
| 489 | */ |
| 490 | static SortItem ** |
| 491 | build_column_frequencies(SortItem *groups, int ngroups, |
| 492 | MultiSortSupport mss, int *ncounts) |
| 493 | { |
| 494 | int i, |
| 495 | dim; |
| 496 | SortItem **result; |
| 497 | char *ptr; |
| 498 | |
| 499 | Assert(groups); |
| 500 | Assert(ncounts); |
| 501 | |
| 502 | /* allocate arrays for all columns as a single chunk */ |
| 503 | ptr = palloc(MAXALIGN(sizeof(SortItem *) * mss->ndims) + |
| 504 | mss->ndims * MAXALIGN(sizeof(SortItem) * ngroups)); |
| 505 | |
| 506 | /* initial array of pointers */ |
| 507 | result = (SortItem **) ptr; |
| 508 | ptr += MAXALIGN(sizeof(SortItem *) * mss->ndims); |
| 509 | |
| 510 | for (dim = 0; dim < mss->ndims; dim++) |
| 511 | { |
| 512 | SortSupport ssup = &mss->ssup[dim]; |
| 513 | |
| 514 | /* array of values for a single column */ |
| 515 | result[dim] = (SortItem *) ptr; |
| 516 | ptr += MAXALIGN(sizeof(SortItem) * ngroups); |
| 517 | |
| 518 | /* extract data for the dimension */ |
| 519 | for (i = 0; i < ngroups; i++) |
| 520 | { |
| 521 | /* point into the input groups */ |
| 522 | result[dim][i].values = &groups[i].values[dim]; |
| 523 | result[dim][i].isnull = &groups[i].isnull[dim]; |
| 524 | result[dim][i].count = groups[i].count; |
| 525 | } |
| 526 | |
| 527 | /* sort the values, deduplicate */ |
| 528 | qsort_arg((void *) result[dim], ngroups, sizeof(SortItem), |
| 529 | sort_item_compare, ssup); |
| 530 | |
| 531 | /* |
| 532 | * Identify distinct values, compute frequency (there might be |
| 533 | * multiple MCV items containing this value, so we need to sum |
| 534 | * counts from all of them. |
| 535 | */ |
| 536 | ncounts[dim] = 1; |
| 537 | for (i = 1; i < ngroups; i++) |
| 538 | { |
| 539 | if (sort_item_compare(&result[dim][i-1], &result[dim][i], ssup) == 0) |
| 540 | { |
| 541 | result[dim][ncounts[dim]-1].count += result[dim][i].count; |
| 542 | continue; |
| 543 | } |
| 544 | |
| 545 | result[dim][ncounts[dim]] = result[dim][i]; |
| 546 | |
| 547 | ncounts[dim]++; |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | return result; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * statext_mcv_load |
| 556 | * Load the MCV list for the indicated pg_statistic_ext tuple |
| 557 | */ |
| 558 | MCVList * |
| 559 | statext_mcv_load(Oid mvoid) |
| 560 | { |
| 561 | MCVList *result; |
| 562 | bool isnull; |
| 563 | Datum mcvlist; |
| 564 | HeapTuple htup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(mvoid)); |
| 565 | |
| 566 | if (!HeapTupleIsValid(htup)) |
| 567 | elog(ERROR, "cache lookup failed for statistics object %u" , mvoid); |
| 568 | |
| 569 | mcvlist = SysCacheGetAttr(STATEXTDATASTXOID, htup, |
| 570 | Anum_pg_statistic_ext_data_stxdmcv, &isnull); |
| 571 | |
| 572 | if (isnull) |
| 573 | elog(ERROR, |
| 574 | "requested statistic kind \"%c\" is not yet built for statistics object %u" , |
| 575 | STATS_EXT_DEPENDENCIES, mvoid); |
| 576 | |
| 577 | result = statext_mcv_deserialize(DatumGetByteaP(mcvlist)); |
| 578 | |
| 579 | ReleaseSysCache(htup); |
| 580 | |
| 581 | return result; |
| 582 | } |
| 583 | |
| 584 | |
| 585 | /* |
| 586 | * statext_mcv_serialize |
| 587 | * Serialize MCV list into a pg_mcv_list value. |
| 588 | * |
| 589 | * The MCV items may include values of various data types, and it's reasonable |
| 590 | * to expect redundancy (values for a given attribute, repeated for multiple |
| 591 | * MCV list items). So we deduplicate the values into arrays, and then replace |
| 592 | * the values by indexes into those arrays. |
| 593 | * |
| 594 | * The overall structure of the serialized representation looks like this: |
| 595 | * |
| 596 | * +---------------+----------------+---------------------+-------+ |
| 597 | * | header fields | dimension info | deduplicated values | items | |
| 598 | * +---------------+----------------+---------------------+-------+ |
| 599 | * |
| 600 | * Where dimension info stores information about type of K-th attribute (e.g. |
| 601 | * typlen, typbyval and length of deduplicated values). Deduplicated values |
| 602 | * store deduplicated values for each attribute. And items store the actual |
| 603 | * MCV list items, with values replaced by indexes into the arrays. |
| 604 | * |
| 605 | * When serializing the items, we use uint16 indexes. The number of MCV items |
| 606 | * is limited by the statistics target (which is capped to 10k at the moment). |
| 607 | * We might increase this to 65k and still fit into uint16, so there's a bit of |
| 608 | * slack. Furthermore, this limit is on the number of distinct values per column, |
| 609 | * and we usually have few of those (and various combinations of them for the |
| 610 | * those MCV list). So uint16 seems fine for now. |
| 611 | * |
| 612 | * We don't really expect the serialization to save as much space as for |
| 613 | * histograms, as we are not doing any bucket splits (which is the source |
| 614 | * of high redundancy in histograms). |
| 615 | * |
| 616 | * TODO: Consider packing boolean flags (NULL) for each item into a single char |
| 617 | * (or a longer type) instead of using an array of bool items. |
| 618 | */ |
| 619 | bytea * |
| 620 | statext_mcv_serialize(MCVList *mcvlist, VacAttrStats **stats) |
| 621 | { |
| 622 | int i; |
| 623 | int dim; |
| 624 | int ndims = mcvlist->ndimensions; |
| 625 | |
| 626 | SortSupport ssup; |
| 627 | DimensionInfo *info; |
| 628 | |
| 629 | Size total_length; |
| 630 | |
| 631 | /* serialized items (indexes into arrays, etc.) */ |
| 632 | bytea *raw; |
| 633 | char *ptr; |
| 634 | char *endptr PG_USED_FOR_ASSERTS_ONLY; |
| 635 | |
| 636 | /* values per dimension (and number of non-NULL values) */ |
| 637 | Datum **values = (Datum **) palloc0(sizeof(Datum *) * ndims); |
| 638 | int *counts = (int *) palloc0(sizeof(int) * ndims); |
| 639 | |
| 640 | /* |
| 641 | * We'll include some rudimentary information about the attribute types |
| 642 | * (length, by-val flag), so that we don't have to look them up while |
| 643 | * deserializating the MCV list (we already have the type OID in the |
| 644 | * header). This is safe, because when changing type of the attribute the |
| 645 | * statistics gets dropped automatically. We need to store the info about |
| 646 | * the arrays of deduplicated values anyway. |
| 647 | */ |
| 648 | info = (DimensionInfo *) palloc0(sizeof(DimensionInfo) * ndims); |
| 649 | |
| 650 | /* sort support data for all attributes included in the MCV list */ |
| 651 | ssup = (SortSupport) palloc0(sizeof(SortSupportData) * ndims); |
| 652 | |
| 653 | /* collect and deduplicate values for each dimension (attribute) */ |
| 654 | for (dim = 0; dim < ndims; dim++) |
| 655 | { |
| 656 | int ndistinct; |
| 657 | TypeCacheEntry *typentry; |
| 658 | |
| 659 | /* |
| 660 | * Lookup the LT operator (can't get it from stats extra_data, as we |
| 661 | * don't know how to interpret that - scalar vs. array etc.). |
| 662 | */ |
| 663 | typentry = lookup_type_cache(stats[dim]->attrtypid, TYPECACHE_LT_OPR); |
| 664 | |
| 665 | /* copy important info about the data type (length, by-value) */ |
| 666 | info[dim].typlen = stats[dim]->attrtype->typlen; |
| 667 | info[dim].typbyval = stats[dim]->attrtype->typbyval; |
| 668 | |
| 669 | /* allocate space for values in the attribute and collect them */ |
| 670 | values[dim] = (Datum *) palloc0(sizeof(Datum) * mcvlist->nitems); |
| 671 | |
| 672 | for (i = 0; i < mcvlist->nitems; i++) |
| 673 | { |
| 674 | /* skip NULL values - we don't need to deduplicate those */ |
| 675 | if (mcvlist->items[i].isnull[dim]) |
| 676 | continue; |
| 677 | |
| 678 | /* append the value at the end */ |
| 679 | values[dim][counts[dim]] = mcvlist->items[i].values[dim]; |
| 680 | counts[dim] += 1; |
| 681 | } |
| 682 | |
| 683 | /* if there are just NULL values in this dimension, we're done */ |
| 684 | if (counts[dim] == 0) |
| 685 | continue; |
| 686 | |
| 687 | /* sort and deduplicate the data */ |
| 688 | ssup[dim].ssup_cxt = CurrentMemoryContext; |
| 689 | ssup[dim].ssup_collation = stats[dim]->attrcollid; |
| 690 | ssup[dim].ssup_nulls_first = false; |
| 691 | |
| 692 | PrepareSortSupportFromOrderingOp(typentry->lt_opr, &ssup[dim]); |
| 693 | |
| 694 | qsort_arg(values[dim], counts[dim], sizeof(Datum), |
| 695 | compare_scalars_simple, &ssup[dim]); |
| 696 | |
| 697 | /* |
| 698 | * Walk through the array and eliminate duplicate values, but keep the |
| 699 | * ordering (so that we can do bsearch later). We know there's at |
| 700 | * least one item as (counts[dim] != 0), so we can skip the first |
| 701 | * element. |
| 702 | */ |
| 703 | ndistinct = 1; /* number of distinct values */ |
| 704 | for (i = 1; i < counts[dim]; i++) |
| 705 | { |
| 706 | /* expect sorted array */ |
| 707 | Assert(compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]) <= 0); |
| 708 | |
| 709 | /* if the value is the same as the previous one, we can skip it */ |
| 710 | if (!compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim])) |
| 711 | continue; |
| 712 | |
| 713 | values[dim][ndistinct] = values[dim][i]; |
| 714 | ndistinct += 1; |
| 715 | } |
| 716 | |
| 717 | /* we must not exceed PG_UINT16_MAX, as we use uint16 indexes */ |
| 718 | Assert(ndistinct <= PG_UINT16_MAX); |
| 719 | |
| 720 | /* |
| 721 | * Store additional info about the attribute - number of deduplicated |
| 722 | * values, and also size of the serialized data. For fixed-length data |
| 723 | * types this is trivial to compute, for varwidth types we need to |
| 724 | * actually walk the array and sum the sizes. |
| 725 | */ |
| 726 | info[dim].nvalues = ndistinct; |
| 727 | |
| 728 | if (info[dim].typbyval) /* by-value data types */ |
| 729 | { |
| 730 | info[dim].nbytes = info[dim].nvalues * info[dim].typlen; |
| 731 | |
| 732 | /* |
| 733 | * We copy the data into the MCV item during deserialization, so |
| 734 | * we don't need to allocate any extra space. |
| 735 | */ |
| 736 | info[dim].nbytes_aligned = 0; |
| 737 | } |
| 738 | else if (info[dim].typlen > 0) /* fixed-length by-ref */ |
| 739 | { |
| 740 | /* |
| 741 | * We don't care about alignment in the serialized data, so we |
| 742 | * pack the data as much as possible. But we also track how much |
| 743 | * data will be needed after deserialization, and in that case |
| 744 | * we need to account for alignment of each item. |
| 745 | * |
| 746 | * Note: As the items are fixed-length, we could easily compute |
| 747 | * this during deserialization, but we do it here anyway. |
| 748 | */ |
| 749 | info[dim].nbytes = info[dim].nvalues * info[dim].typlen; |
| 750 | info[dim].nbytes_aligned = info[dim].nvalues * MAXALIGN(info[dim].typlen); |
| 751 | } |
| 752 | else if (info[dim].typlen == -1) /* varlena */ |
| 753 | { |
| 754 | info[dim].nbytes = 0; |
| 755 | info[dim].nbytes_aligned = 0; |
| 756 | for (i = 0; i < info[dim].nvalues; i++) |
| 757 | { |
| 758 | Size len; |
| 759 | |
| 760 | /* |
| 761 | * For varlena values, we detoast the values and store the |
| 762 | * length and data separately. We don't bother with alignment |
| 763 | * here, which means that during deserialization we need to |
| 764 | * copy the fields and only access the copies. |
| 765 | */ |
| 766 | values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i])); |
| 767 | |
| 768 | /* serialized length (uint32 length + data) */ |
| 769 | len = VARSIZE_ANY_EXHDR(values[dim][i]); |
| 770 | info[dim].nbytes += sizeof(uint32); /* length */ |
| 771 | info[dim].nbytes += len; /* value (no header) */ |
| 772 | |
| 773 | /* |
| 774 | * During deserialization we'll build regular varlena values |
| 775 | * with full headers, and we need to align them properly. |
| 776 | */ |
| 777 | info[dim].nbytes_aligned += MAXALIGN(VARHDRSZ + len); |
| 778 | } |
| 779 | } |
| 780 | else if (info[dim].typlen == -2) /* cstring */ |
| 781 | { |
| 782 | info[dim].nbytes = 0; |
| 783 | info[dim].nbytes_aligned = 0; |
| 784 | for (i = 0; i < info[dim].nvalues; i++) |
| 785 | { |
| 786 | Size len; |
| 787 | |
| 788 | /* |
| 789 | * For cstring, we do similar thing as for varlena - first we |
| 790 | * store the length as uint32 and then the data. We don't care |
| 791 | * about alignment, which means that during deserialization we |
| 792 | * need to copy the fields and only access the copies. |
| 793 | */ |
| 794 | |
| 795 | /* c-strings include terminator, so +1 byte */ |
| 796 | len = strlen(DatumGetCString(values[dim][i])) + 1; |
| 797 | info[dim].nbytes += sizeof(uint32); /* length */ |
| 798 | info[dim].nbytes += len; /* value */ |
| 799 | |
| 800 | /* space needed for properly aligned deserialized copies */ |
| 801 | info[dim].nbytes_aligned += MAXALIGN(len); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | /* we know (count>0) so there must be some data */ |
| 806 | Assert(info[dim].nbytes > 0); |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * Now we can finally compute how much space we'll actually need for the |
| 811 | * whole serialized MCV list (varlena header, MCV header, dimension info |
| 812 | * for each attribute, deduplicated values and items). |
| 813 | */ |
| 814 | total_length = (3 * sizeof(uint32)) /* magic + type + nitems */ |
| 815 | + sizeof(AttrNumber) /* ndimensions */ |
| 816 | + (ndims * sizeof(Oid)); /* attribute types */ |
| 817 | |
| 818 | /* dimension info */ |
| 819 | total_length += ndims * sizeof(DimensionInfo); |
| 820 | |
| 821 | /* add space for the arrays of deduplicated values */ |
| 822 | for (i = 0; i < ndims; i++) |
| 823 | total_length += info[i].nbytes; |
| 824 | |
| 825 | /* |
| 826 | * And finally account for the items (those are fixed-length, thanks to |
| 827 | * replacing values with uint16 indexes into the deduplicated arrays). |
| 828 | */ |
| 829 | total_length += mcvlist->nitems * ITEM_SIZE(dim); |
| 830 | |
| 831 | /* |
| 832 | * Allocate space for the whole serialized MCV list (we'll skip bytes, so |
| 833 | * we set them to zero to make the result more compressible). |
| 834 | */ |
| 835 | raw = (bytea *) palloc0(VARHDRSZ + total_length); |
| 836 | SET_VARSIZE(raw, VARHDRSZ + total_length); |
| 837 | |
| 838 | ptr = VARDATA(raw); |
| 839 | endptr = ptr + total_length; |
| 840 | |
| 841 | /* copy the MCV list header fields, one by one */ |
| 842 | memcpy(ptr, &mcvlist->magic, sizeof(uint32)); |
| 843 | ptr += sizeof(uint32); |
| 844 | |
| 845 | memcpy(ptr, &mcvlist->type, sizeof(uint32)); |
| 846 | ptr += sizeof(uint32); |
| 847 | |
| 848 | memcpy(ptr, &mcvlist->nitems, sizeof(uint32)); |
| 849 | ptr += sizeof(uint32); |
| 850 | |
| 851 | memcpy(ptr, &mcvlist->ndimensions, sizeof(AttrNumber)); |
| 852 | ptr += sizeof(AttrNumber); |
| 853 | |
| 854 | memcpy(ptr, mcvlist->types, sizeof(Oid) * ndims); |
| 855 | ptr += (sizeof(Oid) * ndims); |
| 856 | |
| 857 | /* store information about the attributes (data amounts, ...) */ |
| 858 | memcpy(ptr, info, sizeof(DimensionInfo) * ndims); |
| 859 | ptr += sizeof(DimensionInfo) * ndims; |
| 860 | |
| 861 | /* Copy the deduplicated values for all attributes to the output. */ |
| 862 | for (dim = 0; dim < ndims; dim++) |
| 863 | { |
| 864 | /* remember the starting point for Asserts later */ |
| 865 | char *start PG_USED_FOR_ASSERTS_ONLY = ptr; |
| 866 | |
| 867 | for (i = 0; i < info[dim].nvalues; i++) |
| 868 | { |
| 869 | Datum value = values[dim][i]; |
| 870 | |
| 871 | if (info[dim].typbyval) /* passed by value */ |
| 872 | { |
| 873 | Datum tmp; |
| 874 | |
| 875 | /* |
| 876 | * For values passed by value, we need to copy just the |
| 877 | * significant bytes - we can't use memcpy directly, as that |
| 878 | * assumes little endian behavior. store_att_byval does |
| 879 | * almost what we need, but it requires properly aligned |
| 880 | * buffer - the output buffer does not guarantee that. So we |
| 881 | * simply use a local Datum variable (which guarantees proper |
| 882 | * alignment), and then copy the value from it. |
| 883 | */ |
| 884 | store_att_byval(&tmp, value, info[dim].typlen); |
| 885 | |
| 886 | memcpy(ptr, &tmp, info[dim].typlen); |
| 887 | ptr += info[dim].typlen; |
| 888 | } |
| 889 | else if (info[dim].typlen > 0) /* passed by reference */ |
| 890 | { |
| 891 | /* no special alignment needed, treated as char array */ |
| 892 | memcpy(ptr, DatumGetPointer(value), info[dim].typlen); |
| 893 | ptr += info[dim].typlen; |
| 894 | } |
| 895 | else if (info[dim].typlen == -1) /* varlena */ |
| 896 | { |
| 897 | uint32 len = VARSIZE_ANY_EXHDR(DatumGetPointer(value)); |
| 898 | |
| 899 | /* copy the length */ |
| 900 | memcpy(ptr, &len, sizeof(uint32)); |
| 901 | ptr += sizeof(uint32); |
| 902 | |
| 903 | /* data from the varlena value (without the header) */ |
| 904 | memcpy(ptr, VARDATA_ANY(DatumGetPointer(value)), len); |
| 905 | ptr += len; |
| 906 | } |
| 907 | else if (info[dim].typlen == -2) /* cstring */ |
| 908 | { |
| 909 | uint32 len = (uint32) strlen(DatumGetCString(value)) + 1; |
| 910 | |
| 911 | /* copy the length */ |
| 912 | memcpy(ptr, &len, sizeof(uint32)); |
| 913 | ptr += sizeof(uint32); |
| 914 | |
| 915 | /* value */ |
| 916 | memcpy(ptr, DatumGetCString(value), len); |
| 917 | ptr += len; |
| 918 | } |
| 919 | |
| 920 | /* no underflows or overflows */ |
| 921 | Assert((ptr > start) && ((ptr - start) <= info[dim].nbytes)); |
| 922 | } |
| 923 | |
| 924 | /* we should get exactly nbytes of data for this dimension */ |
| 925 | Assert((ptr - start) == info[dim].nbytes); |
| 926 | } |
| 927 | |
| 928 | /* Serialize the items, with uint16 indexes instead of the values. */ |
| 929 | for (i = 0; i < mcvlist->nitems; i++) |
| 930 | { |
| 931 | MCVItem *mcvitem = &mcvlist->items[i]; |
| 932 | |
| 933 | /* don't write beyond the allocated space */ |
| 934 | Assert(ptr <= (endptr - ITEM_SIZE(dim))); |
| 935 | |
| 936 | /* copy NULL and frequency flags into the serialized MCV */ |
| 937 | memcpy(ptr, mcvitem->isnull, sizeof(bool) * ndims); |
| 938 | ptr += sizeof(bool) * ndims; |
| 939 | |
| 940 | memcpy(ptr, &mcvitem->frequency, sizeof(double)); |
| 941 | ptr += sizeof(double); |
| 942 | |
| 943 | memcpy(ptr, &mcvitem->base_frequency, sizeof(double)); |
| 944 | ptr += sizeof(double); |
| 945 | |
| 946 | /* store the indexes last */ |
| 947 | for (dim = 0; dim < ndims; dim++) |
| 948 | { |
| 949 | uint16 index = 0; |
| 950 | Datum *value; |
| 951 | |
| 952 | /* do the lookup only for non-NULL values */ |
| 953 | if (!mcvitem->isnull[dim]) |
| 954 | { |
| 955 | value = (Datum *) bsearch_arg(&mcvitem->values[dim], values[dim], |
| 956 | info[dim].nvalues, sizeof(Datum), |
| 957 | compare_scalars_simple, &ssup[dim]); |
| 958 | |
| 959 | Assert(value != NULL); /* serialization or deduplication error */ |
| 960 | |
| 961 | /* compute index within the deduplicated array */ |
| 962 | index = (uint16) (value - values[dim]); |
| 963 | |
| 964 | /* check the index is within expected bounds */ |
| 965 | Assert(index < info[dim].nvalues); |
| 966 | } |
| 967 | |
| 968 | /* copy the index into the serialized MCV */ |
| 969 | memcpy(ptr, &index, sizeof(uint16)); |
| 970 | ptr += sizeof(uint16); |
| 971 | } |
| 972 | |
| 973 | /* make sure we don't overflow the allocated value */ |
| 974 | Assert(ptr <= endptr); |
| 975 | } |
| 976 | |
| 977 | /* at this point we expect to match the total_length exactly */ |
| 978 | Assert(ptr == endptr); |
| 979 | |
| 980 | pfree(values); |
| 981 | pfree(counts); |
| 982 | |
| 983 | return raw; |
| 984 | } |
| 985 | |
| 986 | /* |
| 987 | * statext_mcv_deserialize |
| 988 | * Reads serialized MCV list into MCVList structure. |
| 989 | * |
| 990 | * All the memory needed by the MCV list is allocated as a single chunk, so |
| 991 | * it's possible to simply pfree() it at once. |
| 992 | */ |
| 993 | MCVList * |
| 994 | statext_mcv_deserialize(bytea *data) |
| 995 | { |
| 996 | int dim, |
| 997 | i; |
| 998 | Size expected_size; |
| 999 | MCVList *mcvlist; |
| 1000 | char *raw; |
| 1001 | char *ptr; |
| 1002 | char *endptr PG_USED_FOR_ASSERTS_ONLY; |
| 1003 | |
| 1004 | int ndims, |
| 1005 | nitems; |
| 1006 | DimensionInfo *info = NULL; |
| 1007 | |
| 1008 | /* local allocation buffer (used only for deserialization) */ |
| 1009 | Datum **map = NULL; |
| 1010 | |
| 1011 | /* MCV list */ |
| 1012 | Size mcvlen; |
| 1013 | |
| 1014 | /* buffer used for the result */ |
| 1015 | Size datalen; |
| 1016 | char *dataptr; |
| 1017 | char *valuesptr; |
| 1018 | char *isnullptr; |
| 1019 | |
| 1020 | if (data == NULL) |
| 1021 | return NULL; |
| 1022 | |
| 1023 | /* |
| 1024 | * We can't possibly deserialize a MCV list if there's not even a complete |
| 1025 | * header. We need an explicit formula here, because we serialize the |
| 1026 | * header fields one by one, so we need to ignore struct alignment. |
| 1027 | */ |
| 1028 | if (VARSIZE_ANY(data) < MinSizeOfMCVList) |
| 1029 | elog(ERROR, "invalid MCV size %zd (expected at least %zu)" , |
| 1030 | VARSIZE_ANY(data), MinSizeOfMCVList); |
| 1031 | |
| 1032 | /* read the MCV list header */ |
| 1033 | mcvlist = (MCVList *) palloc0(offsetof(MCVList, items)); |
| 1034 | |
| 1035 | /* pointer to the data part (skip the varlena header) */ |
| 1036 | raw = (char *) data; |
| 1037 | ptr = VARDATA_ANY(raw); |
| 1038 | endptr = (char *) raw + VARSIZE_ANY(data); |
| 1039 | |
| 1040 | /* get the header and perform further sanity checks */ |
| 1041 | memcpy(&mcvlist->magic, ptr, sizeof(uint32)); |
| 1042 | ptr += sizeof(uint32); |
| 1043 | |
| 1044 | memcpy(&mcvlist->type, ptr, sizeof(uint32)); |
| 1045 | ptr += sizeof(uint32); |
| 1046 | |
| 1047 | memcpy(&mcvlist->nitems, ptr, sizeof(uint32)); |
| 1048 | ptr += sizeof(uint32); |
| 1049 | |
| 1050 | memcpy(&mcvlist->ndimensions, ptr, sizeof(AttrNumber)); |
| 1051 | ptr += sizeof(AttrNumber); |
| 1052 | |
| 1053 | if (mcvlist->magic != STATS_MCV_MAGIC) |
| 1054 | elog(ERROR, "invalid MCV magic %u (expected %u)" , |
| 1055 | mcvlist->magic, STATS_MCV_MAGIC); |
| 1056 | |
| 1057 | if (mcvlist->type != STATS_MCV_TYPE_BASIC) |
| 1058 | elog(ERROR, "invalid MCV type %u (expected %u)" , |
| 1059 | mcvlist->type, STATS_MCV_TYPE_BASIC); |
| 1060 | |
| 1061 | if (mcvlist->ndimensions == 0) |
| 1062 | elog(ERROR, "invalid zero-length dimension array in MCVList" ); |
| 1063 | else if ((mcvlist->ndimensions > STATS_MAX_DIMENSIONS) || |
| 1064 | (mcvlist->ndimensions < 0)) |
| 1065 | elog(ERROR, "invalid length (%d) dimension array in MCVList" , |
| 1066 | mcvlist->ndimensions); |
| 1067 | |
| 1068 | if (mcvlist->nitems == 0) |
| 1069 | elog(ERROR, "invalid zero-length item array in MCVList" ); |
| 1070 | else if (mcvlist->nitems > STATS_MCVLIST_MAX_ITEMS) |
| 1071 | elog(ERROR, "invalid length (%u) item array in MCVList" , |
| 1072 | mcvlist->nitems); |
| 1073 | |
| 1074 | nitems = mcvlist->nitems; |
| 1075 | ndims = mcvlist->ndimensions; |
| 1076 | |
| 1077 | /* |
| 1078 | * Check amount of data including DimensionInfo for all dimensions and |
| 1079 | * also the serialized items (including uint16 indexes). Also, walk |
| 1080 | * through the dimension information and add it to the sum. |
| 1081 | */ |
| 1082 | expected_size = SizeOfMCVList(ndims, nitems); |
| 1083 | |
| 1084 | /* |
| 1085 | * Check that we have at least the dimension and info records, along with |
| 1086 | * the items. We don't know the size of the serialized values yet. We need |
| 1087 | * to do this check first, before accessing the dimension info. |
| 1088 | */ |
| 1089 | if (VARSIZE_ANY(data) < expected_size) |
| 1090 | elog(ERROR, "invalid MCV size %zd (expected %zu)" , |
| 1091 | VARSIZE_ANY(data), expected_size); |
| 1092 | |
| 1093 | /* Now copy the array of type Oids. */ |
| 1094 | memcpy(mcvlist->types, ptr, sizeof(Oid) * ndims); |
| 1095 | ptr += (sizeof(Oid) * ndims); |
| 1096 | |
| 1097 | /* Now it's safe to access the dimension info. */ |
| 1098 | info = palloc(ndims * sizeof(DimensionInfo)); |
| 1099 | |
| 1100 | memcpy(info, ptr, ndims * sizeof(DimensionInfo)); |
| 1101 | ptr += (ndims * sizeof(DimensionInfo)); |
| 1102 | |
| 1103 | /* account for the value arrays */ |
| 1104 | for (dim = 0; dim < ndims; dim++) |
| 1105 | { |
| 1106 | /* |
| 1107 | * XXX I wonder if we can/should rely on asserts here. Maybe those |
| 1108 | * checks should be done every time? |
| 1109 | */ |
| 1110 | Assert(info[dim].nvalues >= 0); |
| 1111 | Assert(info[dim].nbytes >= 0); |
| 1112 | |
| 1113 | expected_size += info[dim].nbytes; |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * Now we know the total expected MCV size, including all the pieces |
| 1118 | * (header, dimension info. items and deduplicated data). So do the final |
| 1119 | * check on size. |
| 1120 | */ |
| 1121 | if (VARSIZE_ANY(data) != expected_size) |
| 1122 | elog(ERROR, "invalid MCV size %zd (expected %zu)" , |
| 1123 | VARSIZE_ANY(data), expected_size); |
| 1124 | |
| 1125 | /* |
| 1126 | * We need an array of Datum values for each dimension, so that we can |
| 1127 | * easily translate the uint16 indexes later. We also need a top-level |
| 1128 | * array of pointers to those per-dimension arrays. |
| 1129 | * |
| 1130 | * While allocating the arrays for dimensions, compute how much space we |
| 1131 | * need for a copy of the by-ref data, as we can't simply point to the |
| 1132 | * original values (it might go away). |
| 1133 | */ |
| 1134 | datalen = 0; /* space for by-ref data */ |
| 1135 | map = (Datum **) palloc(ndims * sizeof(Datum *)); |
| 1136 | |
| 1137 | for (dim = 0; dim < ndims; dim++) |
| 1138 | { |
| 1139 | map[dim] = (Datum *) palloc(sizeof(Datum) * info[dim].nvalues); |
| 1140 | |
| 1141 | /* space needed for a copy of data for by-ref types */ |
| 1142 | datalen += info[dim].nbytes_aligned; |
| 1143 | } |
| 1144 | |
| 1145 | /* |
| 1146 | * Now resize the MCV list so that the allocation includes all the data. |
| 1147 | * |
| 1148 | * Allocate space for a copy of the data, as we can't simply reference the |
| 1149 | * serialized data - it's not aligned properly, and it may disappear while |
| 1150 | * we're still using the MCV list, e.g. due to catcache release. |
| 1151 | * |
| 1152 | * We do care about alignment here, because we will allocate all the pieces |
| 1153 | * at once, but then use pointers to different parts. |
| 1154 | */ |
| 1155 | mcvlen = MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems)); |
| 1156 | |
| 1157 | /* arrays of values and isnull flags for all MCV items */ |
| 1158 | mcvlen += nitems * MAXALIGN(sizeof(Datum) * ndims); |
| 1159 | mcvlen += nitems * MAXALIGN(sizeof(bool) * ndims); |
| 1160 | |
| 1161 | /* we don't quite need to align this, but it makes some asserts easier */ |
| 1162 | mcvlen += MAXALIGN(datalen); |
| 1163 | |
| 1164 | /* now resize the deserialized MCV list, and compute pointers to parts */ |
| 1165 | mcvlist = repalloc(mcvlist, mcvlen); |
| 1166 | |
| 1167 | /* pointer to the beginning of values/isnull arrays */ |
| 1168 | valuesptr = (char *) mcvlist |
| 1169 | + MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems)); |
| 1170 | |
| 1171 | isnullptr = valuesptr + (nitems * MAXALIGN(sizeof(Datum) * ndims)); |
| 1172 | |
| 1173 | dataptr = isnullptr + (nitems * MAXALIGN(sizeof(bool) * ndims)); |
| 1174 | |
| 1175 | /* |
| 1176 | * Build mapping (index => value) for translating the serialized data into |
| 1177 | * the in-memory representation. |
| 1178 | */ |
| 1179 | for (dim = 0; dim < ndims; dim++) |
| 1180 | { |
| 1181 | /* remember start position in the input array */ |
| 1182 | char *start PG_USED_FOR_ASSERTS_ONLY = ptr; |
| 1183 | |
| 1184 | if (info[dim].typbyval) |
| 1185 | { |
| 1186 | /* for by-val types we simply copy data into the mapping */ |
| 1187 | for (i = 0; i < info[dim].nvalues; i++) |
| 1188 | { |
| 1189 | Datum v = 0; |
| 1190 | |
| 1191 | memcpy(&v, ptr, info[dim].typlen); |
| 1192 | ptr += info[dim].typlen; |
| 1193 | |
| 1194 | map[dim][i] = fetch_att(&v, true, info[dim].typlen); |
| 1195 | |
| 1196 | /* no under/overflow of input array */ |
| 1197 | Assert(ptr <= (start + info[dim].nbytes)); |
| 1198 | } |
| 1199 | } |
| 1200 | else |
| 1201 | { |
| 1202 | /* for by-ref types we need to also make a copy of the data */ |
| 1203 | |
| 1204 | /* passed by reference, but fixed length (name, tid, ...) */ |
| 1205 | if (info[dim].typlen > 0) |
| 1206 | { |
| 1207 | for (i = 0; i < info[dim].nvalues; i++) |
| 1208 | { |
| 1209 | memcpy(dataptr, ptr, info[dim].typlen); |
| 1210 | ptr += info[dim].typlen; |
| 1211 | |
| 1212 | /* just point into the array */ |
| 1213 | map[dim][i] = PointerGetDatum(dataptr); |
| 1214 | dataptr += MAXALIGN(info[dim].typlen); |
| 1215 | } |
| 1216 | } |
| 1217 | else if (info[dim].typlen == -1) |
| 1218 | { |
| 1219 | /* varlena */ |
| 1220 | for (i = 0; i < info[dim].nvalues; i++) |
| 1221 | { |
| 1222 | uint32 len; |
| 1223 | |
| 1224 | /* read the uint32 length */ |
| 1225 | memcpy(&len, ptr, sizeof(uint32)); |
| 1226 | ptr += sizeof(uint32); |
| 1227 | |
| 1228 | /* the length is data-only */ |
| 1229 | SET_VARSIZE(dataptr, len + VARHDRSZ); |
| 1230 | memcpy(VARDATA(dataptr), ptr, len); |
| 1231 | ptr += len; |
| 1232 | |
| 1233 | /* just point into the array */ |
| 1234 | map[dim][i] = PointerGetDatum(dataptr); |
| 1235 | |
| 1236 | /* skip to place of the next deserialized value */ |
| 1237 | dataptr += MAXALIGN(len + VARHDRSZ); |
| 1238 | } |
| 1239 | } |
| 1240 | else if (info[dim].typlen == -2) |
| 1241 | { |
| 1242 | /* cstring */ |
| 1243 | for (i = 0; i < info[dim].nvalues; i++) |
| 1244 | { |
| 1245 | uint32 len; |
| 1246 | |
| 1247 | memcpy(&len, ptr, sizeof(uint32)); |
| 1248 | ptr += sizeof(uint32); |
| 1249 | |
| 1250 | memcpy(dataptr, ptr, len); |
| 1251 | ptr += len; |
| 1252 | |
| 1253 | /* just point into the array */ |
| 1254 | map[dim][i] = PointerGetDatum(dataptr); |
| 1255 | dataptr += MAXALIGN(len); |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | /* no under/overflow of input array */ |
| 1260 | Assert(ptr <= (start + info[dim].nbytes)); |
| 1261 | |
| 1262 | /* no overflow of the output mcv value */ |
| 1263 | Assert(dataptr <= ((char *) mcvlist + mcvlen)); |
| 1264 | } |
| 1265 | |
| 1266 | /* check we consumed input data for this dimension exactly */ |
| 1267 | Assert(ptr == (start + info[dim].nbytes)); |
| 1268 | } |
| 1269 | |
| 1270 | /* we should have also filled the MCV list exactly */ |
| 1271 | Assert(dataptr == ((char *) mcvlist + mcvlen)); |
| 1272 | |
| 1273 | /* deserialize the MCV items and translate the indexes to Datums */ |
| 1274 | for (i = 0; i < nitems; i++) |
| 1275 | { |
| 1276 | MCVItem *item = &mcvlist->items[i]; |
| 1277 | |
| 1278 | item->values = (Datum *) valuesptr; |
| 1279 | valuesptr += MAXALIGN(sizeof(Datum) * ndims); |
| 1280 | |
| 1281 | item->isnull = (bool *) isnullptr; |
| 1282 | isnullptr += MAXALIGN(sizeof(bool) * ndims); |
| 1283 | |
| 1284 | memcpy(item->isnull, ptr, sizeof(bool) * ndims); |
| 1285 | ptr += sizeof(bool) * ndims; |
| 1286 | |
| 1287 | memcpy(&item->frequency, ptr, sizeof(double)); |
| 1288 | ptr += sizeof(double); |
| 1289 | |
| 1290 | memcpy(&item->base_frequency, ptr, sizeof(double)); |
| 1291 | ptr += sizeof(double); |
| 1292 | |
| 1293 | /* finally translate the indexes (for non-NULL only) */ |
| 1294 | for (dim = 0; dim < ndims; dim++) |
| 1295 | { |
| 1296 | uint16 index; |
| 1297 | |
| 1298 | memcpy(&index, ptr, sizeof(uint16)); |
| 1299 | ptr += sizeof(uint16); |
| 1300 | |
| 1301 | if (item->isnull[dim]) |
| 1302 | continue; |
| 1303 | |
| 1304 | item->values[dim] = map[dim][index]; |
| 1305 | } |
| 1306 | |
| 1307 | /* check we're not overflowing the input */ |
| 1308 | Assert(ptr <= endptr); |
| 1309 | } |
| 1310 | |
| 1311 | /* check that we processed all the data */ |
| 1312 | Assert(ptr == endptr); |
| 1313 | |
| 1314 | /* release the buffers used for mapping */ |
| 1315 | for (dim = 0; dim < ndims; dim++) |
| 1316 | pfree(map[dim]); |
| 1317 | |
| 1318 | pfree(map); |
| 1319 | |
| 1320 | return mcvlist; |
| 1321 | } |
| 1322 | |
| 1323 | /* |
| 1324 | * SRF with details about buckets of a histogram: |
| 1325 | * |
| 1326 | * - item ID (0...nitems) |
| 1327 | * - values (string array) |
| 1328 | * - nulls only (boolean array) |
| 1329 | * - frequency (double precision) |
| 1330 | * - base_frequency (double precision) |
| 1331 | * |
| 1332 | * The input is the OID of the statistics, and there are no rows returned if |
| 1333 | * the statistics contains no histogram. |
| 1334 | */ |
| 1335 | Datum |
| 1336 | pg_stats_ext_mcvlist_items(PG_FUNCTION_ARGS) |
| 1337 | { |
| 1338 | FuncCallContext *funcctx; |
| 1339 | |
| 1340 | /* stuff done only on the first call of the function */ |
| 1341 | if (SRF_IS_FIRSTCALL()) |
| 1342 | { |
| 1343 | MemoryContext oldcontext; |
| 1344 | MCVList *mcvlist; |
| 1345 | TupleDesc tupdesc; |
| 1346 | |
| 1347 | /* create a function context for cross-call persistence */ |
| 1348 | funcctx = SRF_FIRSTCALL_INIT(); |
| 1349 | |
| 1350 | /* switch to memory context appropriate for multiple function calls */ |
| 1351 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 1352 | |
| 1353 | mcvlist = statext_mcv_deserialize(PG_GETARG_BYTEA_P(0)); |
| 1354 | |
| 1355 | funcctx->user_fctx = mcvlist; |
| 1356 | |
| 1357 | /* total number of tuples to be returned */ |
| 1358 | funcctx->max_calls = 0; |
| 1359 | if (funcctx->user_fctx != NULL) |
| 1360 | funcctx->max_calls = mcvlist->nitems; |
| 1361 | |
| 1362 | /* Build a tuple descriptor for our result type */ |
| 1363 | if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) |
| 1364 | ereport(ERROR, |
| 1365 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1366 | errmsg("function returning record called in context " |
| 1367 | "that cannot accept type record" ))); |
| 1368 | tupdesc = BlessTupleDesc(tupdesc); |
| 1369 | |
| 1370 | /* |
| 1371 | * generate attribute metadata needed later to produce tuples from raw |
| 1372 | * C strings |
| 1373 | */ |
| 1374 | funcctx->attinmeta = TupleDescGetAttInMetadata(tupdesc); |
| 1375 | |
| 1376 | MemoryContextSwitchTo(oldcontext); |
| 1377 | } |
| 1378 | |
| 1379 | /* stuff done on every call of the function */ |
| 1380 | funcctx = SRF_PERCALL_SETUP(); |
| 1381 | |
| 1382 | if (funcctx->call_cntr < funcctx->max_calls) /* do when there is more left to send */ |
| 1383 | { |
| 1384 | Datum values[5]; |
| 1385 | bool nulls[5]; |
| 1386 | HeapTuple tuple; |
| 1387 | Datum result; |
| 1388 | ArrayBuildState *astate_values = NULL; |
| 1389 | ArrayBuildState *astate_nulls = NULL; |
| 1390 | |
| 1391 | int i; |
| 1392 | MCVList *mcvlist; |
| 1393 | MCVItem *item; |
| 1394 | |
| 1395 | mcvlist = (MCVList *) funcctx->user_fctx; |
| 1396 | |
| 1397 | Assert(funcctx->call_cntr < mcvlist->nitems); |
| 1398 | |
| 1399 | item = &mcvlist->items[funcctx->call_cntr]; |
| 1400 | |
| 1401 | for (i = 0; i < mcvlist->ndimensions; i++) |
| 1402 | { |
| 1403 | |
| 1404 | astate_nulls = accumArrayResult(astate_nulls, |
| 1405 | BoolGetDatum(item->isnull[i]), |
| 1406 | false, |
| 1407 | BOOLOID, |
| 1408 | CurrentMemoryContext); |
| 1409 | |
| 1410 | if (!item->isnull[i]) |
| 1411 | { |
| 1412 | bool isvarlena; |
| 1413 | Oid outfunc; |
| 1414 | FmgrInfo fmgrinfo; |
| 1415 | Datum val; |
| 1416 | text *txt; |
| 1417 | |
| 1418 | /* lookup output func for the type */ |
| 1419 | getTypeOutputInfo(mcvlist->types[i], &outfunc, &isvarlena); |
| 1420 | fmgr_info(outfunc, &fmgrinfo); |
| 1421 | |
| 1422 | val = FunctionCall1(&fmgrinfo, item->values[i]); |
| 1423 | txt = cstring_to_text(DatumGetPointer(val)); |
| 1424 | |
| 1425 | astate_values = accumArrayResult(astate_values, |
| 1426 | PointerGetDatum(txt), |
| 1427 | false, |
| 1428 | TEXTOID, |
| 1429 | CurrentMemoryContext); |
| 1430 | } |
| 1431 | else |
| 1432 | astate_values = accumArrayResult(astate_values, |
| 1433 | (Datum) 0, |
| 1434 | true, |
| 1435 | TEXTOID, |
| 1436 | CurrentMemoryContext); |
| 1437 | } |
| 1438 | |
| 1439 | values[0] = Int32GetDatum(funcctx->call_cntr); |
| 1440 | values[1] = PointerGetDatum(makeArrayResult(astate_values, CurrentMemoryContext)); |
| 1441 | values[2] = PointerGetDatum(makeArrayResult(astate_nulls, CurrentMemoryContext)); |
| 1442 | values[3] = Float8GetDatum(item->frequency); |
| 1443 | values[4] = Float8GetDatum(item->base_frequency); |
| 1444 | |
| 1445 | /* no NULLs in the tuple */ |
| 1446 | memset(nulls, 0, sizeof(nulls)); |
| 1447 | |
| 1448 | /* build a tuple */ |
| 1449 | tuple = heap_form_tuple(funcctx->attinmeta->tupdesc, values, nulls); |
| 1450 | |
| 1451 | /* make the tuple into a datum */ |
| 1452 | result = HeapTupleGetDatum(tuple); |
| 1453 | |
| 1454 | SRF_RETURN_NEXT(funcctx, result); |
| 1455 | } |
| 1456 | else /* do when there is no more left */ |
| 1457 | { |
| 1458 | SRF_RETURN_DONE(funcctx); |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | /* |
| 1463 | * pg_mcv_list_in - input routine for type pg_mcv_list. |
| 1464 | * |
| 1465 | * pg_mcv_list is real enough to be a table column, but it has no operations |
| 1466 | * of its own, and disallows input too |
| 1467 | */ |
| 1468 | Datum |
| 1469 | pg_mcv_list_in(PG_FUNCTION_ARGS) |
| 1470 | { |
| 1471 | /* |
| 1472 | * pg_mcv_list stores the data in binary form and parsing text input is |
| 1473 | * not needed, so disallow this. |
| 1474 | */ |
| 1475 | ereport(ERROR, |
| 1476 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1477 | errmsg("cannot accept a value of type %s" , "pg_mcv_list" ))); |
| 1478 | |
| 1479 | PG_RETURN_VOID(); /* keep compiler quiet */ |
| 1480 | } |
| 1481 | |
| 1482 | |
| 1483 | /* |
| 1484 | * pg_mcv_list_out - output routine for type pg_mcv_list. |
| 1485 | * |
| 1486 | * MCV lists are serialized into a bytea value, so we simply call byteaout() |
| 1487 | * to serialize the value into text. But it'd be nice to serialize that into |
| 1488 | * a meaningful representation (e.g. for inspection by people). |
| 1489 | * |
| 1490 | * XXX This should probably return something meaningful, similar to what |
| 1491 | * pg_dependencies_out does. Not sure how to deal with the deduplicated |
| 1492 | * values, though - do we want to expand that or not? |
| 1493 | */ |
| 1494 | Datum |
| 1495 | pg_mcv_list_out(PG_FUNCTION_ARGS) |
| 1496 | { |
| 1497 | return byteaout(fcinfo); |
| 1498 | } |
| 1499 | |
| 1500 | /* |
| 1501 | * pg_mcv_list_recv - binary input routine for type pg_mcv_list. |
| 1502 | */ |
| 1503 | Datum |
| 1504 | pg_mcv_list_recv(PG_FUNCTION_ARGS) |
| 1505 | { |
| 1506 | ereport(ERROR, |
| 1507 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1508 | errmsg("cannot accept a value of type %s" , "pg_mcv_list" ))); |
| 1509 | |
| 1510 | PG_RETURN_VOID(); /* keep compiler quiet */ |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * pg_mcv_list_send - binary output routine for type pg_mcv_list. |
| 1515 | * |
| 1516 | * MCV lists are serialized in a bytea value (although the type is named |
| 1517 | * differently), so let's just send that. |
| 1518 | */ |
| 1519 | Datum |
| 1520 | pg_mcv_list_send(PG_FUNCTION_ARGS) |
| 1521 | { |
| 1522 | return byteasend(fcinfo); |
| 1523 | } |
| 1524 | |
| 1525 | /* |
| 1526 | * mcv_get_match_bitmap |
| 1527 | * Evaluate clauses using the MCV list, and update the match bitmap. |
| 1528 | * |
| 1529 | * A match bitmap keeps match/mismatch status for each MCV item, and we |
| 1530 | * update it based on additional clauses. We also use it to skip items |
| 1531 | * that can't possibly match (e.g. item marked as "mismatch" can't change |
| 1532 | * to "match" when evaluating AND clause list). |
| 1533 | * |
| 1534 | * The function also returns a flag indicating whether there was an |
| 1535 | * equality condition for all attributes, the minimum frequency in the MCV |
| 1536 | * list, and a total MCV frequency (sum of frequencies for all items). |
| 1537 | * |
| 1538 | * XXX Currently the match bitmap uses a bool for each MCV item, which is |
| 1539 | * somewhat wasteful as we could do with just a single bit, thus reducing |
| 1540 | * the size to ~1/8. It would also allow us to combine bitmaps simply using |
| 1541 | * & and |, which should be faster than min/max. The bitmaps are fairly |
| 1542 | * small, though (thanks to the cap on the MCV list size). |
| 1543 | */ |
| 1544 | static bool * |
| 1545 | mcv_get_match_bitmap(PlannerInfo *root, List *clauses, |
| 1546 | Bitmapset *keys, MCVList *mcvlist, bool is_or) |
| 1547 | { |
| 1548 | int i; |
| 1549 | ListCell *l; |
| 1550 | bool *matches; |
| 1551 | |
| 1552 | /* The bitmap may be partially built. */ |
| 1553 | Assert(clauses != NIL); |
| 1554 | Assert(list_length(clauses) >= 1); |
| 1555 | Assert(mcvlist != NULL); |
| 1556 | Assert(mcvlist->nitems > 0); |
| 1557 | Assert(mcvlist->nitems <= STATS_MCVLIST_MAX_ITEMS); |
| 1558 | |
| 1559 | matches = palloc(sizeof(bool) * mcvlist->nitems); |
| 1560 | memset(matches, (is_or) ? false : true, |
| 1561 | sizeof(bool) * mcvlist->nitems); |
| 1562 | |
| 1563 | /* |
| 1564 | * Loop through the list of clauses, and for each of them evaluate all the |
| 1565 | * MCV items not yet eliminated by the preceding clauses. |
| 1566 | */ |
| 1567 | foreach(l, clauses) |
| 1568 | { |
| 1569 | Node *clause = (Node *) lfirst(l); |
| 1570 | |
| 1571 | /* if it's a RestrictInfo, then extract the clause */ |
| 1572 | if (IsA(clause, RestrictInfo)) |
| 1573 | clause = (Node *) ((RestrictInfo *) clause)->clause; |
| 1574 | |
| 1575 | /* |
| 1576 | * Handle the various types of clauses - OpClause, NullTest and |
| 1577 | * AND/OR/NOT |
| 1578 | */ |
| 1579 | if (is_opclause(clause)) |
| 1580 | { |
| 1581 | OpExpr *expr = (OpExpr *) clause; |
| 1582 | FmgrInfo opproc; |
| 1583 | |
| 1584 | /* valid only after examine_opclause_expression returns true */ |
| 1585 | Var *var; |
| 1586 | Const *cst; |
| 1587 | bool varonleft; |
| 1588 | |
| 1589 | fmgr_info(get_opcode(expr->opno), &opproc); |
| 1590 | |
| 1591 | /* extract the var and const from the expression */ |
| 1592 | if (examine_opclause_expression(expr, &var, &cst, &varonleft)) |
| 1593 | { |
| 1594 | int idx; |
| 1595 | |
| 1596 | /* match the attribute to a dimension of the statistic */ |
| 1597 | idx = bms_member_index(keys, var->varattno); |
| 1598 | |
| 1599 | /* |
| 1600 | * Walk through the MCV items and evaluate the current clause. |
| 1601 | * We can skip items that were already ruled out, and |
| 1602 | * terminate if there are no remaining MCV items that might |
| 1603 | * possibly match. |
| 1604 | */ |
| 1605 | for (i = 0; i < mcvlist->nitems; i++) |
| 1606 | { |
| 1607 | bool match = true; |
| 1608 | MCVItem *item = &mcvlist->items[i]; |
| 1609 | |
| 1610 | /* |
| 1611 | * When the MCV item or the Const value is NULL we can treat |
| 1612 | * this as a mismatch. We must not call the operator because |
| 1613 | * of strictness. |
| 1614 | */ |
| 1615 | if (item->isnull[idx] || cst->constisnull) |
| 1616 | { |
| 1617 | matches[i] = RESULT_MERGE(matches[i], is_or, false); |
| 1618 | continue; |
| 1619 | } |
| 1620 | |
| 1621 | /* |
| 1622 | * Skip MCV items that can't change result in the bitmap. |
| 1623 | * Once the value gets false for AND-lists, or true for |
| 1624 | * OR-lists, we don't need to look at more clauses. |
| 1625 | */ |
| 1626 | if (RESULT_IS_FINAL(matches[i], is_or)) |
| 1627 | continue; |
| 1628 | |
| 1629 | /* |
| 1630 | * First check whether the constant is below the lower |
| 1631 | * boundary (in that case we can skip the bucket, because |
| 1632 | * there's no overlap). |
| 1633 | * |
| 1634 | * We don't store collations used to build the statistics, |
| 1635 | * but we can use the collation for the attribute itself, |
| 1636 | * as stored in varcollid. We do reset the statistics after |
| 1637 | * a type change (including collation change), so this is |
| 1638 | * OK. We may need to relax this after allowing extended |
| 1639 | * statistics on expressions. |
| 1640 | */ |
| 1641 | if (varonleft) |
| 1642 | match = DatumGetBool(FunctionCall2Coll(&opproc, |
| 1643 | var->varcollid, |
| 1644 | item->values[idx], |
| 1645 | cst->constvalue)); |
| 1646 | else |
| 1647 | match = DatumGetBool(FunctionCall2Coll(&opproc, |
| 1648 | var->varcollid, |
| 1649 | cst->constvalue, |
| 1650 | item->values[idx])); |
| 1651 | |
| 1652 | /* update the match bitmap with the result */ |
| 1653 | matches[i] = RESULT_MERGE(matches[i], is_or, match); |
| 1654 | } |
| 1655 | } |
| 1656 | } |
| 1657 | else if (IsA(clause, NullTest)) |
| 1658 | { |
| 1659 | NullTest *expr = (NullTest *) clause; |
| 1660 | Var *var = (Var *) (expr->arg); |
| 1661 | |
| 1662 | /* match the attribute to a dimension of the statistic */ |
| 1663 | int idx = bms_member_index(keys, var->varattno); |
| 1664 | |
| 1665 | /* |
| 1666 | * Walk through the MCV items and evaluate the current clause. We |
| 1667 | * can skip items that were already ruled out, and terminate if |
| 1668 | * there are no remaining MCV items that might possibly match. |
| 1669 | */ |
| 1670 | for (i = 0; i < mcvlist->nitems; i++) |
| 1671 | { |
| 1672 | bool match = false; /* assume mismatch */ |
| 1673 | MCVItem *item = &mcvlist->items[i]; |
| 1674 | |
| 1675 | /* if the clause mismatches the MCV item, update the bitmap */ |
| 1676 | switch (expr->nulltesttype) |
| 1677 | { |
| 1678 | case IS_NULL: |
| 1679 | match = (item->isnull[idx]) ? true : match; |
| 1680 | break; |
| 1681 | |
| 1682 | case IS_NOT_NULL: |
| 1683 | match = (!item->isnull[idx]) ? true : match; |
| 1684 | break; |
| 1685 | } |
| 1686 | |
| 1687 | /* now, update the match bitmap, depending on OR/AND type */ |
| 1688 | matches[i] = RESULT_MERGE(matches[i], is_or, match); |
| 1689 | } |
| 1690 | } |
| 1691 | else if (is_orclause(clause) || is_andclause(clause)) |
| 1692 | { |
| 1693 | /* AND/OR clause, with all subclauses being compatible */ |
| 1694 | |
| 1695 | int i; |
| 1696 | BoolExpr *bool_clause = ((BoolExpr *) clause); |
| 1697 | List *bool_clauses = bool_clause->args; |
| 1698 | |
| 1699 | /* match/mismatch bitmap for each MCV item */ |
| 1700 | bool *bool_matches = NULL; |
| 1701 | |
| 1702 | Assert(bool_clauses != NIL); |
| 1703 | Assert(list_length(bool_clauses) >= 2); |
| 1704 | |
| 1705 | /* build the match bitmap for the OR-clauses */ |
| 1706 | bool_matches = mcv_get_match_bitmap(root, bool_clauses, keys, |
| 1707 | mcvlist, is_orclause(clause)); |
| 1708 | |
| 1709 | /* |
| 1710 | * Merge the bitmap produced by mcv_get_match_bitmap into the |
| 1711 | * current one. We need to consider if we're evaluating AND or OR |
| 1712 | * condition when merging the results. |
| 1713 | */ |
| 1714 | for (i = 0; i < mcvlist->nitems; i++) |
| 1715 | matches[i] = RESULT_MERGE(matches[i], is_or, bool_matches[i]); |
| 1716 | |
| 1717 | pfree(bool_matches); |
| 1718 | } |
| 1719 | else if (is_notclause(clause)) |
| 1720 | { |
| 1721 | /* NOT clause, with all subclauses compatible */ |
| 1722 | |
| 1723 | int i; |
| 1724 | BoolExpr *not_clause = ((BoolExpr *) clause); |
| 1725 | List *not_args = not_clause->args; |
| 1726 | |
| 1727 | /* match/mismatch bitmap for each MCV item */ |
| 1728 | bool *not_matches = NULL; |
| 1729 | |
| 1730 | Assert(not_args != NIL); |
| 1731 | Assert(list_length(not_args) == 1); |
| 1732 | |
| 1733 | /* build the match bitmap for the NOT-clause */ |
| 1734 | not_matches = mcv_get_match_bitmap(root, not_args, keys, |
| 1735 | mcvlist, false); |
| 1736 | |
| 1737 | /* |
| 1738 | * Merge the bitmap produced by mcv_get_match_bitmap into the |
| 1739 | * current one. We're handling a NOT clause, so invert the result |
| 1740 | * before merging it into the global bitmap. |
| 1741 | */ |
| 1742 | for (i = 0; i < mcvlist->nitems; i++) |
| 1743 | matches[i] = RESULT_MERGE(matches[i], is_or, !not_matches[i]); |
| 1744 | |
| 1745 | pfree(not_matches); |
| 1746 | } |
| 1747 | else if (IsA(clause, Var)) |
| 1748 | { |
| 1749 | /* Var (has to be a boolean Var, possibly from below NOT) */ |
| 1750 | |
| 1751 | Var *var = (Var *) (clause); |
| 1752 | |
| 1753 | /* match the attribute to a dimension of the statistic */ |
| 1754 | int idx = bms_member_index(keys, var->varattno); |
| 1755 | |
| 1756 | Assert(var->vartype == BOOLOID); |
| 1757 | |
| 1758 | /* |
| 1759 | * Walk through the MCV items and evaluate the current clause. We |
| 1760 | * can skip items that were already ruled out, and terminate if |
| 1761 | * there are no remaining MCV items that might possibly match. |
| 1762 | */ |
| 1763 | for (i = 0; i < mcvlist->nitems; i++) |
| 1764 | { |
| 1765 | MCVItem *item = &mcvlist->items[i]; |
| 1766 | bool match = false; |
| 1767 | |
| 1768 | /* if the item is NULL, it's a mismatch */ |
| 1769 | if (!item->isnull[idx] && DatumGetBool(item->values[idx])) |
| 1770 | match = true; |
| 1771 | |
| 1772 | /* update the result bitmap */ |
| 1773 | matches[i] = RESULT_MERGE(matches[i], is_or, match); |
| 1774 | } |
| 1775 | } |
| 1776 | else |
| 1777 | elog(ERROR, "unknown clause type: %d" , clause->type); |
| 1778 | } |
| 1779 | |
| 1780 | return matches; |
| 1781 | } |
| 1782 | |
| 1783 | |
| 1784 | /* |
| 1785 | * mcv_clauselist_selectivity |
| 1786 | * Return the selectivity estimate computed using an MCV list. |
| 1787 | * |
| 1788 | * First builds a bitmap of MCV items matching the clauses, and then sums |
| 1789 | * the frequencies of matching items. |
| 1790 | * |
| 1791 | * It also produces two additional interesting selectivities - total |
| 1792 | * selectivity of all the MCV items (not just the matching ones), and the |
| 1793 | * base frequency computed on the assumption of independence. |
| 1794 | */ |
| 1795 | Selectivity |
| 1796 | mcv_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat, |
| 1797 | List *clauses, int varRelid, |
| 1798 | JoinType jointype, SpecialJoinInfo *sjinfo, |
| 1799 | RelOptInfo *rel, |
| 1800 | Selectivity *basesel, Selectivity *totalsel) |
| 1801 | { |
| 1802 | int i; |
| 1803 | MCVList *mcv; |
| 1804 | Selectivity s = 0.0; |
| 1805 | |
| 1806 | /* match/mismatch bitmap for each MCV item */ |
| 1807 | bool *matches = NULL; |
| 1808 | |
| 1809 | /* load the MCV list stored in the statistics object */ |
| 1810 | mcv = statext_mcv_load(stat->statOid); |
| 1811 | |
| 1812 | /* build a match bitmap for the clauses */ |
| 1813 | matches = mcv_get_match_bitmap(root, clauses, stat->keys, mcv, false); |
| 1814 | |
| 1815 | /* sum frequencies for all the matching MCV items */ |
| 1816 | *basesel = 0.0; |
| 1817 | *totalsel = 0.0; |
| 1818 | for (i = 0; i < mcv->nitems; i++) |
| 1819 | { |
| 1820 | *totalsel += mcv->items[i].frequency; |
| 1821 | |
| 1822 | if (matches[i] != false) |
| 1823 | { |
| 1824 | /* XXX Shouldn't the basesel be outside the if condition? */ |
| 1825 | *basesel += mcv->items[i].base_frequency; |
| 1826 | s += mcv->items[i].frequency; |
| 1827 | } |
| 1828 | } |
| 1829 | |
| 1830 | return s; |
| 1831 | } |
| 1832 | |