1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * mvdistinct.c |
4 | * POSTGRES multivariate ndistinct coefficients |
5 | * |
6 | * Estimating number of groups in a combination of columns (e.g. for GROUP BY) |
7 | * is tricky, and the estimation error is often significant. |
8 | |
9 | * The multivariate ndistinct coefficients address this by storing ndistinct |
10 | * estimates for combinations of the user-specified columns. So for example |
11 | * given a statistics object on three columns (a,b,c), this module estimates |
12 | * and stores n-distinct for (a,b), (a,c), (b,c) and (a,b,c). The per-column |
13 | * estimates are already available in pg_statistic. |
14 | * |
15 | * |
16 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
17 | * Portions Copyright (c) 1994, Regents of the University of California |
18 | * |
19 | * IDENTIFICATION |
20 | * src/backend/statistics/mvdistinct.c |
21 | * |
22 | *------------------------------------------------------------------------- |
23 | */ |
24 | #include "postgres.h" |
25 | |
26 | #include <math.h> |
27 | |
28 | #include "access/htup_details.h" |
29 | #include "catalog/pg_statistic_ext.h" |
30 | #include "catalog/pg_statistic_ext_data.h" |
31 | #include "utils/fmgrprotos.h" |
32 | #include "utils/lsyscache.h" |
33 | #include "lib/stringinfo.h" |
34 | #include "utils/syscache.h" |
35 | #include "utils/typcache.h" |
36 | #include "statistics/extended_stats_internal.h" |
37 | #include "statistics/statistics.h" |
38 | |
39 | |
40 | static double ndistinct_for_combination(double totalrows, int numrows, |
41 | HeapTuple *rows, VacAttrStats **stats, |
42 | int k, int *combination); |
43 | static double estimate_ndistinct(double totalrows, int numrows, int d, int f1); |
44 | static int n_choose_k(int n, int k); |
45 | static int num_combinations(int n); |
46 | |
47 | /* size of the struct header fields (magic, type, nitems) */ |
48 | #define (3 * sizeof(uint32)) |
49 | |
50 | /* size of a serialized ndistinct item (coefficient, natts, atts) */ |
51 | #define SizeOfItem(natts) \ |
52 | (sizeof(double) + sizeof(int) + (natts) * sizeof(AttrNumber)) |
53 | |
54 | /* minimal size of a ndistinct item (with two attributes) */ |
55 | #define MinSizeOfItem SizeOfItem(2) |
56 | |
57 | /* minimal size of mvndistinct, when all items are minimal */ |
58 | #define MinSizeOfItems(nitems) \ |
59 | (SizeOfHeader + (nitems) * MinSizeOfItem) |
60 | |
61 | /* Combination generator API */ |
62 | |
63 | /* internal state for generator of k-combinations of n elements */ |
64 | typedef struct CombinationGenerator |
65 | { |
66 | int k; /* size of the combination */ |
67 | int n; /* total number of elements */ |
68 | int current; /* index of the next combination to return */ |
69 | int ncombinations; /* number of combinations (size of array) */ |
70 | int *combinations; /* array of pre-built combinations */ |
71 | } CombinationGenerator; |
72 | |
73 | static CombinationGenerator *generator_init(int n, int k); |
74 | static void generator_free(CombinationGenerator *state); |
75 | static int *generator_next(CombinationGenerator *state); |
76 | static void generate_combinations(CombinationGenerator *state); |
77 | |
78 | |
79 | /* |
80 | * statext_ndistinct_build |
81 | * Compute ndistinct coefficient for the combination of attributes. |
82 | * |
83 | * This computes the ndistinct estimate using the same estimator used |
84 | * in analyze.c and then computes the coefficient. |
85 | */ |
86 | MVNDistinct * |
87 | statext_ndistinct_build(double totalrows, int numrows, HeapTuple *rows, |
88 | Bitmapset *attrs, VacAttrStats **stats) |
89 | { |
90 | MVNDistinct *result; |
91 | int k; |
92 | int itemcnt; |
93 | int numattrs = bms_num_members(attrs); |
94 | int numcombs = num_combinations(numattrs); |
95 | |
96 | result = palloc(offsetof(MVNDistinct, items) + |
97 | numcombs * sizeof(MVNDistinctItem)); |
98 | result->magic = STATS_NDISTINCT_MAGIC; |
99 | result->type = STATS_NDISTINCT_TYPE_BASIC; |
100 | result->nitems = numcombs; |
101 | |
102 | itemcnt = 0; |
103 | for (k = 2; k <= numattrs; k++) |
104 | { |
105 | int *combination; |
106 | CombinationGenerator *generator; |
107 | |
108 | /* generate combinations of K out of N elements */ |
109 | generator = generator_init(numattrs, k); |
110 | |
111 | while ((combination = generator_next(generator))) |
112 | { |
113 | MVNDistinctItem *item = &result->items[itemcnt]; |
114 | int j; |
115 | |
116 | item->attrs = NULL; |
117 | for (j = 0; j < k; j++) |
118 | item->attrs = bms_add_member(item->attrs, |
119 | stats[combination[j]]->attr->attnum); |
120 | item->ndistinct = |
121 | ndistinct_for_combination(totalrows, numrows, rows, |
122 | stats, k, combination); |
123 | |
124 | itemcnt++; |
125 | Assert(itemcnt <= result->nitems); |
126 | } |
127 | |
128 | generator_free(generator); |
129 | } |
130 | |
131 | /* must consume exactly the whole output array */ |
132 | Assert(itemcnt == result->nitems); |
133 | |
134 | return result; |
135 | } |
136 | |
137 | /* |
138 | * statext_ndistinct_load |
139 | * Load the ndistinct value for the indicated pg_statistic_ext tuple |
140 | */ |
141 | MVNDistinct * |
142 | statext_ndistinct_load(Oid mvoid) |
143 | { |
144 | MVNDistinct *result; |
145 | bool isnull; |
146 | Datum ndist; |
147 | HeapTuple htup; |
148 | |
149 | htup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(mvoid)); |
150 | if (!HeapTupleIsValid(htup)) |
151 | elog(ERROR, "cache lookup failed for statistics object %u" , mvoid); |
152 | |
153 | ndist = SysCacheGetAttr(STATEXTDATASTXOID, htup, |
154 | Anum_pg_statistic_ext_data_stxdndistinct, &isnull); |
155 | if (isnull) |
156 | elog(ERROR, |
157 | "requested statistic kind \"%c\" is not yet built for statistics object %u" , |
158 | STATS_EXT_NDISTINCT, mvoid); |
159 | |
160 | result = statext_ndistinct_deserialize(DatumGetByteaPP(ndist)); |
161 | |
162 | ReleaseSysCache(htup); |
163 | |
164 | return result; |
165 | } |
166 | |
167 | /* |
168 | * statext_ndistinct_serialize |
169 | * serialize ndistinct to the on-disk bytea format |
170 | */ |
171 | bytea * |
172 | statext_ndistinct_serialize(MVNDistinct *ndistinct) |
173 | { |
174 | int i; |
175 | bytea *output; |
176 | char *tmp; |
177 | Size len; |
178 | |
179 | Assert(ndistinct->magic == STATS_NDISTINCT_MAGIC); |
180 | Assert(ndistinct->type == STATS_NDISTINCT_TYPE_BASIC); |
181 | |
182 | /* |
183 | * Base size is size of scalar fields in the struct, plus one base struct |
184 | * for each item, including number of items for each. |
185 | */ |
186 | len = VARHDRSZ + SizeOfHeader; |
187 | |
188 | /* and also include space for the actual attribute numbers */ |
189 | for (i = 0; i < ndistinct->nitems; i++) |
190 | { |
191 | int nmembers; |
192 | |
193 | nmembers = bms_num_members(ndistinct->items[i].attrs); |
194 | Assert(nmembers >= 2); |
195 | |
196 | len += SizeOfItem(nmembers); |
197 | } |
198 | |
199 | output = (bytea *) palloc(len); |
200 | SET_VARSIZE(output, len); |
201 | |
202 | tmp = VARDATA(output); |
203 | |
204 | /* Store the base struct values (magic, type, nitems) */ |
205 | memcpy(tmp, &ndistinct->magic, sizeof(uint32)); |
206 | tmp += sizeof(uint32); |
207 | memcpy(tmp, &ndistinct->type, sizeof(uint32)); |
208 | tmp += sizeof(uint32); |
209 | memcpy(tmp, &ndistinct->nitems, sizeof(uint32)); |
210 | tmp += sizeof(uint32); |
211 | |
212 | /* |
213 | * store number of attributes and attribute numbers for each entry |
214 | */ |
215 | for (i = 0; i < ndistinct->nitems; i++) |
216 | { |
217 | MVNDistinctItem item = ndistinct->items[i]; |
218 | int nmembers = bms_num_members(item.attrs); |
219 | int x; |
220 | |
221 | memcpy(tmp, &item.ndistinct, sizeof(double)); |
222 | tmp += sizeof(double); |
223 | memcpy(tmp, &nmembers, sizeof(int)); |
224 | tmp += sizeof(int); |
225 | |
226 | x = -1; |
227 | while ((x = bms_next_member(item.attrs, x)) >= 0) |
228 | { |
229 | AttrNumber value = (AttrNumber) x; |
230 | |
231 | memcpy(tmp, &value, sizeof(AttrNumber)); |
232 | tmp += sizeof(AttrNumber); |
233 | } |
234 | |
235 | /* protect against overflows */ |
236 | Assert(tmp <= ((char *) output + len)); |
237 | } |
238 | |
239 | /* check we used exactly the expected space */ |
240 | Assert(tmp == ((char *) output + len)); |
241 | |
242 | return output; |
243 | } |
244 | |
245 | /* |
246 | * statext_ndistinct_deserialize |
247 | * Read an on-disk bytea format MVNDistinct to in-memory format |
248 | */ |
249 | MVNDistinct * |
250 | statext_ndistinct_deserialize(bytea *data) |
251 | { |
252 | int i; |
253 | Size minimum_size; |
254 | MVNDistinct ndist; |
255 | MVNDistinct *ndistinct; |
256 | char *tmp; |
257 | |
258 | if (data == NULL) |
259 | return NULL; |
260 | |
261 | /* we expect at least the basic fields of MVNDistinct struct */ |
262 | if (VARSIZE_ANY_EXHDR(data) < SizeOfHeader) |
263 | elog(ERROR, "invalid MVNDistinct size %zd (expected at least %zd)" , |
264 | VARSIZE_ANY_EXHDR(data), SizeOfHeader); |
265 | |
266 | /* initialize pointer to the data part (skip the varlena header) */ |
267 | tmp = VARDATA_ANY(data); |
268 | |
269 | /* read the header fields and perform basic sanity checks */ |
270 | memcpy(&ndist.magic, tmp, sizeof(uint32)); |
271 | tmp += sizeof(uint32); |
272 | memcpy(&ndist.type, tmp, sizeof(uint32)); |
273 | tmp += sizeof(uint32); |
274 | memcpy(&ndist.nitems, tmp, sizeof(uint32)); |
275 | tmp += sizeof(uint32); |
276 | |
277 | if (ndist.magic != STATS_NDISTINCT_MAGIC) |
278 | elog(ERROR, "invalid ndistinct magic %08x (expected %08x)" , |
279 | ndist.magic, STATS_NDISTINCT_MAGIC); |
280 | if (ndist.type != STATS_NDISTINCT_TYPE_BASIC) |
281 | elog(ERROR, "invalid ndistinct type %d (expected %d)" , |
282 | ndist.type, STATS_NDISTINCT_TYPE_BASIC); |
283 | if (ndist.nitems == 0) |
284 | elog(ERROR, "invalid zero-length item array in MVNDistinct" ); |
285 | |
286 | /* what minimum bytea size do we expect for those parameters */ |
287 | minimum_size = MinSizeOfItems(ndist.nitems); |
288 | if (VARSIZE_ANY_EXHDR(data) < minimum_size) |
289 | elog(ERROR, "invalid MVNDistinct size %zd (expected at least %zd)" , |
290 | VARSIZE_ANY_EXHDR(data), minimum_size); |
291 | |
292 | /* |
293 | * Allocate space for the ndistinct items (no space for each item's |
294 | * attnos: those live in bitmapsets allocated separately) |
295 | */ |
296 | ndistinct = palloc0(MAXALIGN(offsetof(MVNDistinct, items)) + |
297 | (ndist.nitems * sizeof(MVNDistinctItem))); |
298 | ndistinct->magic = ndist.magic; |
299 | ndistinct->type = ndist.type; |
300 | ndistinct->nitems = ndist.nitems; |
301 | |
302 | for (i = 0; i < ndistinct->nitems; i++) |
303 | { |
304 | MVNDistinctItem *item = &ndistinct->items[i]; |
305 | int nelems; |
306 | |
307 | item->attrs = NULL; |
308 | |
309 | /* ndistinct value */ |
310 | memcpy(&item->ndistinct, tmp, sizeof(double)); |
311 | tmp += sizeof(double); |
312 | |
313 | /* number of attributes */ |
314 | memcpy(&nelems, tmp, sizeof(int)); |
315 | tmp += sizeof(int); |
316 | Assert((nelems >= 2) && (nelems <= STATS_MAX_DIMENSIONS)); |
317 | |
318 | while (nelems-- > 0) |
319 | { |
320 | AttrNumber attno; |
321 | |
322 | memcpy(&attno, tmp, sizeof(AttrNumber)); |
323 | tmp += sizeof(AttrNumber); |
324 | item->attrs = bms_add_member(item->attrs, attno); |
325 | } |
326 | |
327 | /* still within the bytea */ |
328 | Assert(tmp <= ((char *) data + VARSIZE_ANY(data))); |
329 | } |
330 | |
331 | /* we should have consumed the whole bytea exactly */ |
332 | Assert(tmp == ((char *) data + VARSIZE_ANY(data))); |
333 | |
334 | return ndistinct; |
335 | } |
336 | |
337 | /* |
338 | * pg_ndistinct_in |
339 | * input routine for type pg_ndistinct |
340 | * |
341 | * pg_ndistinct is real enough to be a table column, but it has no |
342 | * operations of its own, and disallows input (jus like pg_node_tree). |
343 | */ |
344 | Datum |
345 | pg_ndistinct_in(PG_FUNCTION_ARGS) |
346 | { |
347 | ereport(ERROR, |
348 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
349 | errmsg("cannot accept a value of type %s" , "pg_ndistinct" ))); |
350 | |
351 | PG_RETURN_VOID(); /* keep compiler quiet */ |
352 | } |
353 | |
354 | /* |
355 | * pg_ndistinct |
356 | * output routine for type pg_ndistinct |
357 | * |
358 | * Produces a human-readable representation of the value. |
359 | */ |
360 | Datum |
361 | pg_ndistinct_out(PG_FUNCTION_ARGS) |
362 | { |
363 | bytea *data = PG_GETARG_BYTEA_PP(0); |
364 | MVNDistinct *ndist = statext_ndistinct_deserialize(data); |
365 | int i; |
366 | StringInfoData str; |
367 | |
368 | initStringInfo(&str); |
369 | appendStringInfoChar(&str, '{'); |
370 | |
371 | for (i = 0; i < ndist->nitems; i++) |
372 | { |
373 | MVNDistinctItem item = ndist->items[i]; |
374 | int x = -1; |
375 | bool first = true; |
376 | |
377 | if (i > 0) |
378 | appendStringInfoString(&str, ", " ); |
379 | |
380 | while ((x = bms_next_member(item.attrs, x)) >= 0) |
381 | { |
382 | appendStringInfo(&str, "%s%d" , first ? "\"" : ", " , x); |
383 | first = false; |
384 | } |
385 | appendStringInfo(&str, "\": %d" , (int) item.ndistinct); |
386 | } |
387 | |
388 | appendStringInfoChar(&str, '}'); |
389 | |
390 | PG_RETURN_CSTRING(str.data); |
391 | } |
392 | |
393 | /* |
394 | * pg_ndistinct_recv |
395 | * binary input routine for type pg_ndistinct |
396 | */ |
397 | Datum |
398 | pg_ndistinct_recv(PG_FUNCTION_ARGS) |
399 | { |
400 | ereport(ERROR, |
401 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
402 | errmsg("cannot accept a value of type %s" , "pg_ndistinct" ))); |
403 | |
404 | PG_RETURN_VOID(); /* keep compiler quiet */ |
405 | } |
406 | |
407 | /* |
408 | * pg_ndistinct_send |
409 | * binary output routine for type pg_ndistinct |
410 | * |
411 | * n-distinct is serialized into a bytea value, so let's send that. |
412 | */ |
413 | Datum |
414 | pg_ndistinct_send(PG_FUNCTION_ARGS) |
415 | { |
416 | return byteasend(fcinfo); |
417 | } |
418 | |
419 | /* |
420 | * ndistinct_for_combination |
421 | * Estimates number of distinct values in a combination of columns. |
422 | * |
423 | * This uses the same ndistinct estimator as compute_scalar_stats() in |
424 | * ANALYZE, i.e., |
425 | * n*d / (n - f1 + f1*n/N) |
426 | * |
427 | * except that instead of values in a single column we are dealing with |
428 | * combination of multiple columns. |
429 | */ |
430 | static double |
431 | ndistinct_for_combination(double totalrows, int numrows, HeapTuple *rows, |
432 | VacAttrStats **stats, int k, int *combination) |
433 | { |
434 | int i, |
435 | j; |
436 | int f1, |
437 | cnt, |
438 | d; |
439 | bool *isnull; |
440 | Datum *values; |
441 | SortItem *items; |
442 | MultiSortSupport mss; |
443 | |
444 | mss = multi_sort_init(k); |
445 | |
446 | /* |
447 | * In order to determine the number of distinct elements, create separate |
448 | * values[]/isnull[] arrays with all the data we have, then sort them |
449 | * using the specified column combination as dimensions. We could try to |
450 | * sort in place, but it'd probably be more complex and bug-prone. |
451 | */ |
452 | items = (SortItem *) palloc(numrows * sizeof(SortItem)); |
453 | values = (Datum *) palloc0(sizeof(Datum) * numrows * k); |
454 | isnull = (bool *) palloc0(sizeof(bool) * numrows * k); |
455 | |
456 | for (i = 0; i < numrows; i++) |
457 | { |
458 | items[i].values = &values[i * k]; |
459 | items[i].isnull = &isnull[i * k]; |
460 | } |
461 | |
462 | /* |
463 | * For each dimension, set up sort-support and fill in the values from the |
464 | * sample data. |
465 | * |
466 | * We use the column data types' default sort operators and collations; |
467 | * perhaps at some point it'd be worth using column-specific collations? |
468 | */ |
469 | for (i = 0; i < k; i++) |
470 | { |
471 | VacAttrStats *colstat = stats[combination[i]]; |
472 | TypeCacheEntry *type; |
473 | |
474 | type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR); |
475 | if (type->lt_opr == InvalidOid) /* shouldn't happen */ |
476 | elog(ERROR, "cache lookup failed for ordering operator for type %u" , |
477 | colstat->attrtypid); |
478 | |
479 | /* prepare the sort function for this dimension */ |
480 | multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid); |
481 | |
482 | /* accumulate all the data for this dimension into the arrays */ |
483 | for (j = 0; j < numrows; j++) |
484 | { |
485 | items[j].values[i] = |
486 | heap_getattr(rows[j], |
487 | colstat->attr->attnum, |
488 | colstat->tupDesc, |
489 | &items[j].isnull[i]); |
490 | } |
491 | } |
492 | |
493 | /* We can sort the array now ... */ |
494 | qsort_arg((void *) items, numrows, sizeof(SortItem), |
495 | multi_sort_compare, mss); |
496 | |
497 | /* ... and count the number of distinct combinations */ |
498 | |
499 | f1 = 0; |
500 | cnt = 1; |
501 | d = 1; |
502 | for (i = 1; i < numrows; i++) |
503 | { |
504 | if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0) |
505 | { |
506 | if (cnt == 1) |
507 | f1 += 1; |
508 | |
509 | d++; |
510 | cnt = 0; |
511 | } |
512 | |
513 | cnt += 1; |
514 | } |
515 | |
516 | if (cnt == 1) |
517 | f1 += 1; |
518 | |
519 | return estimate_ndistinct(totalrows, numrows, d, f1); |
520 | } |
521 | |
522 | /* The Duj1 estimator (already used in analyze.c). */ |
523 | static double |
524 | estimate_ndistinct(double totalrows, int numrows, int d, int f1) |
525 | { |
526 | double numer, |
527 | denom, |
528 | ndistinct; |
529 | |
530 | numer = (double) numrows * (double) d; |
531 | |
532 | denom = (double) (numrows - f1) + |
533 | (double) f1 * (double) numrows / totalrows; |
534 | |
535 | ndistinct = numer / denom; |
536 | |
537 | /* Clamp to sane range in case of roundoff error */ |
538 | if (ndistinct < (double) d) |
539 | ndistinct = (double) d; |
540 | |
541 | if (ndistinct > totalrows) |
542 | ndistinct = totalrows; |
543 | |
544 | return floor(ndistinct + 0.5); |
545 | } |
546 | |
547 | /* |
548 | * n_choose_k |
549 | * computes binomial coefficients using an algorithm that is both |
550 | * efficient and prevents overflows |
551 | */ |
552 | static int |
553 | n_choose_k(int n, int k) |
554 | { |
555 | int d, |
556 | r; |
557 | |
558 | Assert((k > 0) && (n >= k)); |
559 | |
560 | /* use symmetry of the binomial coefficients */ |
561 | k = Min(k, n - k); |
562 | |
563 | r = 1; |
564 | for (d = 1; d <= k; ++d) |
565 | { |
566 | r *= n--; |
567 | r /= d; |
568 | } |
569 | |
570 | return r; |
571 | } |
572 | |
573 | /* |
574 | * num_combinations |
575 | * number of combinations, excluding single-value combinations |
576 | */ |
577 | static int |
578 | num_combinations(int n) |
579 | { |
580 | int k; |
581 | int ncombs = 1; |
582 | |
583 | for (k = 1; k <= n; k++) |
584 | ncombs *= 2; |
585 | |
586 | ncombs -= (n + 1); |
587 | |
588 | return ncombs; |
589 | } |
590 | |
591 | /* |
592 | * generator_init |
593 | * initialize the generator of combinations |
594 | * |
595 | * The generator produces combinations of K elements in the interval (0..N). |
596 | * We prebuild all the combinations in this method, which is simpler than |
597 | * generating them on the fly. |
598 | */ |
599 | static CombinationGenerator * |
600 | generator_init(int n, int k) |
601 | { |
602 | CombinationGenerator *state; |
603 | |
604 | Assert((n >= k) && (k > 0)); |
605 | |
606 | /* allocate the generator state as a single chunk of memory */ |
607 | state = (CombinationGenerator *) palloc(sizeof(CombinationGenerator)); |
608 | |
609 | state->ncombinations = n_choose_k(n, k); |
610 | |
611 | /* pre-allocate space for all combinations */ |
612 | state->combinations = (int *) palloc(sizeof(int) * k * state->ncombinations); |
613 | |
614 | state->current = 0; |
615 | state->k = k; |
616 | state->n = n; |
617 | |
618 | /* now actually pre-generate all the combinations of K elements */ |
619 | generate_combinations(state); |
620 | |
621 | /* make sure we got the expected number of combinations */ |
622 | Assert(state->current == state->ncombinations); |
623 | |
624 | /* reset the number, so we start with the first one */ |
625 | state->current = 0; |
626 | |
627 | return state; |
628 | } |
629 | |
630 | /* |
631 | * generator_next |
632 | * returns the next combination from the prebuilt list |
633 | * |
634 | * Returns a combination of K array indexes (0 .. N), as specified to |
635 | * generator_init), or NULL when there are no more combination. |
636 | */ |
637 | static int * |
638 | generator_next(CombinationGenerator *state) |
639 | { |
640 | if (state->current == state->ncombinations) |
641 | return NULL; |
642 | |
643 | return &state->combinations[state->k * state->current++]; |
644 | } |
645 | |
646 | /* |
647 | * generator_free |
648 | * free the internal state of the generator |
649 | * |
650 | * Releases the generator internal state (pre-built combinations). |
651 | */ |
652 | static void |
653 | generator_free(CombinationGenerator *state) |
654 | { |
655 | pfree(state->combinations); |
656 | pfree(state); |
657 | } |
658 | |
659 | /* |
660 | * generate_combinations_recurse |
661 | * given a prefix, generate all possible combinations |
662 | * |
663 | * Given a prefix (first few elements of the combination), generate following |
664 | * elements recursively. We generate the combinations in lexicographic order, |
665 | * which eliminates permutations of the same combination. |
666 | */ |
667 | static void |
668 | generate_combinations_recurse(CombinationGenerator *state, |
669 | int index, int start, int *current) |
670 | { |
671 | /* If we haven't filled all the elements, simply recurse. */ |
672 | if (index < state->k) |
673 | { |
674 | int i; |
675 | |
676 | /* |
677 | * The values have to be in ascending order, so make sure we start |
678 | * with the value passed by parameter. |
679 | */ |
680 | |
681 | for (i = start; i < state->n; i++) |
682 | { |
683 | current[index] = i; |
684 | generate_combinations_recurse(state, (index + 1), (i + 1), current); |
685 | } |
686 | |
687 | return; |
688 | } |
689 | else |
690 | { |
691 | /* we got a valid combination, add it to the array */ |
692 | memcpy(&state->combinations[(state->k * state->current)], |
693 | current, state->k * sizeof(int)); |
694 | state->current++; |
695 | } |
696 | } |
697 | |
698 | /* |
699 | * generate_combinations |
700 | * generate all k-combinations of N elements |
701 | */ |
702 | static void |
703 | generate_combinations(CombinationGenerator *state) |
704 | { |
705 | int *current = (int *) palloc0(sizeof(int) * state->k); |
706 | |
707 | generate_combinations_recurse(state, 0, 0, current); |
708 | |
709 | pfree(current); |
710 | } |
711 | |