| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * freespace.c |
| 4 | * POSTGRES free space map for quickly finding free space in relations |
| 5 | * |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/storage/freespace/freespace.c |
| 12 | * |
| 13 | * |
| 14 | * NOTES: |
| 15 | * |
| 16 | * Free Space Map keeps track of the amount of free space on pages, and |
| 17 | * allows quickly searching for a page with enough free space. The FSM is |
| 18 | * stored in a dedicated relation fork of all heap relations, and those |
| 19 | * index access methods that need it (see also indexfsm.c). See README for |
| 20 | * more information. |
| 21 | * |
| 22 | *------------------------------------------------------------------------- |
| 23 | */ |
| 24 | #include "postgres.h" |
| 25 | |
| 26 | #include "access/htup_details.h" |
| 27 | #include "access/xlogutils.h" |
| 28 | #include "miscadmin.h" |
| 29 | #include "storage/freespace.h" |
| 30 | #include "storage/fsm_internals.h" |
| 31 | #include "storage/lmgr.h" |
| 32 | #include "storage/smgr.h" |
| 33 | |
| 34 | |
| 35 | /* |
| 36 | * We use just one byte to store the amount of free space on a page, so we |
| 37 | * divide the amount of free space a page can have into 256 different |
| 38 | * categories. The highest category, 255, represents a page with at least |
| 39 | * MaxFSMRequestSize bytes of free space, and the second highest category |
| 40 | * represents the range from 254 * FSM_CAT_STEP, inclusive, to |
| 41 | * MaxFSMRequestSize, exclusive. |
| 42 | * |
| 43 | * MaxFSMRequestSize depends on the architecture and BLCKSZ, but assuming |
| 44 | * default 8k BLCKSZ, and that MaxFSMRequestSize is 8164 bytes, the |
| 45 | * categories look like this: |
| 46 | * |
| 47 | * |
| 48 | * Range Category |
| 49 | * 0 - 31 0 |
| 50 | * 32 - 63 1 |
| 51 | * ... ... ... |
| 52 | * 8096 - 8127 253 |
| 53 | * 8128 - 8163 254 |
| 54 | * 8164 - 8192 255 |
| 55 | * |
| 56 | * The reason that MaxFSMRequestSize is special is that if MaxFSMRequestSize |
| 57 | * isn't equal to a range boundary, a page with exactly MaxFSMRequestSize |
| 58 | * bytes of free space wouldn't satisfy a request for MaxFSMRequestSize |
| 59 | * bytes. If there isn't more than MaxFSMRequestSize bytes of free space on a |
| 60 | * completely empty page, that would mean that we could never satisfy a |
| 61 | * request of exactly MaxFSMRequestSize bytes. |
| 62 | */ |
| 63 | #define FSM_CATEGORIES 256 |
| 64 | #define FSM_CAT_STEP (BLCKSZ / FSM_CATEGORIES) |
| 65 | #define MaxFSMRequestSize MaxHeapTupleSize |
| 66 | |
| 67 | /* |
| 68 | * Depth of the on-disk tree. We need to be able to address 2^32-1 blocks, |
| 69 | * and 1626 is the smallest number that satisfies X^3 >= 2^32-1. Likewise, |
| 70 | * 216 is the smallest number that satisfies X^4 >= 2^32-1. In practice, |
| 71 | * this means that 4096 bytes is the smallest BLCKSZ that we can get away |
| 72 | * with a 3-level tree, and 512 is the smallest we support. |
| 73 | */ |
| 74 | #define FSM_TREE_DEPTH ((SlotsPerFSMPage >= 1626) ? 3 : 4) |
| 75 | |
| 76 | #define FSM_ROOT_LEVEL (FSM_TREE_DEPTH - 1) |
| 77 | #define FSM_BOTTOM_LEVEL 0 |
| 78 | |
| 79 | /* |
| 80 | * The internal FSM routines work on a logical addressing scheme. Each |
| 81 | * level of the tree can be thought of as a separately addressable file. |
| 82 | */ |
| 83 | typedef struct |
| 84 | { |
| 85 | int level; /* level */ |
| 86 | int logpageno; /* page number within the level */ |
| 87 | } FSMAddress; |
| 88 | |
| 89 | /* Address of the root page. */ |
| 90 | static const FSMAddress FSM_ROOT_ADDRESS = {FSM_ROOT_LEVEL, 0}; |
| 91 | |
| 92 | /* functions to navigate the tree */ |
| 93 | static FSMAddress fsm_get_child(FSMAddress parent, uint16 slot); |
| 94 | static FSMAddress fsm_get_parent(FSMAddress child, uint16 *slot); |
| 95 | static FSMAddress fsm_get_location(BlockNumber heapblk, uint16 *slot); |
| 96 | static BlockNumber fsm_get_heap_blk(FSMAddress addr, uint16 slot); |
| 97 | static BlockNumber fsm_logical_to_physical(FSMAddress addr); |
| 98 | |
| 99 | static Buffer fsm_readbuf(Relation rel, FSMAddress addr, bool extend); |
| 100 | static void fsm_extend(Relation rel, BlockNumber fsm_nblocks); |
| 101 | |
| 102 | /* functions to convert amount of free space to a FSM category */ |
| 103 | static uint8 fsm_space_avail_to_cat(Size avail); |
| 104 | static uint8 fsm_space_needed_to_cat(Size needed); |
| 105 | static Size fsm_space_cat_to_avail(uint8 cat); |
| 106 | |
| 107 | /* workhorse functions for various operations */ |
| 108 | static int fsm_set_and_search(Relation rel, FSMAddress addr, uint16 slot, |
| 109 | uint8 newValue, uint8 minValue); |
| 110 | static BlockNumber fsm_search(Relation rel, uint8 min_cat); |
| 111 | static uint8 fsm_vacuum_page(Relation rel, FSMAddress addr, |
| 112 | BlockNumber start, BlockNumber end, |
| 113 | bool *eof); |
| 114 | |
| 115 | |
| 116 | /******** Public API ********/ |
| 117 | |
| 118 | /* |
| 119 | * GetPageWithFreeSpace - try to find a page in the given relation with |
| 120 | * at least the specified amount of free space. |
| 121 | * |
| 122 | * If successful, return the block number; if not, return InvalidBlockNumber. |
| 123 | * |
| 124 | * The caller must be prepared for the possibility that the returned page |
| 125 | * will turn out to have too little space available by the time the caller |
| 126 | * gets a lock on it. In that case, the caller should report the actual |
| 127 | * amount of free space available on that page and then try again (see |
| 128 | * RecordAndGetPageWithFreeSpace). If InvalidBlockNumber is returned, |
| 129 | * extend the relation. |
| 130 | */ |
| 131 | BlockNumber |
| 132 | GetPageWithFreeSpace(Relation rel, Size spaceNeeded) |
| 133 | { |
| 134 | uint8 min_cat = fsm_space_needed_to_cat(spaceNeeded); |
| 135 | |
| 136 | return fsm_search(rel, min_cat); |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * RecordAndGetPageWithFreeSpace - update info about a page and try again. |
| 141 | * |
| 142 | * We provide this combo form to save some locking overhead, compared to |
| 143 | * separate RecordPageWithFreeSpace + GetPageWithFreeSpace calls. There's |
| 144 | * also some effort to return a page close to the old page; if there's a |
| 145 | * page with enough free space on the same FSM page where the old one page |
| 146 | * is located, it is preferred. |
| 147 | */ |
| 148 | BlockNumber |
| 149 | RecordAndGetPageWithFreeSpace(Relation rel, BlockNumber oldPage, |
| 150 | Size oldSpaceAvail, Size spaceNeeded) |
| 151 | { |
| 152 | int old_cat = fsm_space_avail_to_cat(oldSpaceAvail); |
| 153 | int search_cat = fsm_space_needed_to_cat(spaceNeeded); |
| 154 | FSMAddress addr; |
| 155 | uint16 slot; |
| 156 | int search_slot; |
| 157 | |
| 158 | /* Get the location of the FSM byte representing the heap block */ |
| 159 | addr = fsm_get_location(oldPage, &slot); |
| 160 | |
| 161 | search_slot = fsm_set_and_search(rel, addr, slot, old_cat, search_cat); |
| 162 | |
| 163 | /* |
| 164 | * If fsm_set_and_search found a suitable new block, return that. |
| 165 | * Otherwise, search as usual. |
| 166 | */ |
| 167 | if (search_slot != -1) |
| 168 | return fsm_get_heap_blk(addr, search_slot); |
| 169 | else |
| 170 | return fsm_search(rel, search_cat); |
| 171 | } |
| 172 | |
| 173 | /* |
| 174 | * RecordPageWithFreeSpace - update info about a page. |
| 175 | * |
| 176 | * Note that if the new spaceAvail value is higher than the old value stored |
| 177 | * in the FSM, the space might not become visible to searchers until the next |
| 178 | * FreeSpaceMapVacuum call, which updates the upper level pages. |
| 179 | */ |
| 180 | void |
| 181 | RecordPageWithFreeSpace(Relation rel, BlockNumber heapBlk, Size spaceAvail) |
| 182 | { |
| 183 | int new_cat = fsm_space_avail_to_cat(spaceAvail); |
| 184 | FSMAddress addr; |
| 185 | uint16 slot; |
| 186 | |
| 187 | /* Get the location of the FSM byte representing the heap block */ |
| 188 | addr = fsm_get_location(heapBlk, &slot); |
| 189 | |
| 190 | fsm_set_and_search(rel, addr, slot, new_cat, 0); |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * XLogRecordPageWithFreeSpace - like RecordPageWithFreeSpace, for use in |
| 195 | * WAL replay |
| 196 | */ |
| 197 | void |
| 198 | XLogRecordPageWithFreeSpace(RelFileNode rnode, BlockNumber heapBlk, |
| 199 | Size spaceAvail) |
| 200 | { |
| 201 | int new_cat = fsm_space_avail_to_cat(spaceAvail); |
| 202 | FSMAddress addr; |
| 203 | uint16 slot; |
| 204 | BlockNumber blkno; |
| 205 | Buffer buf; |
| 206 | Page page; |
| 207 | |
| 208 | /* Get the location of the FSM byte representing the heap block */ |
| 209 | addr = fsm_get_location(heapBlk, &slot); |
| 210 | blkno = fsm_logical_to_physical(addr); |
| 211 | |
| 212 | /* If the page doesn't exist already, extend */ |
| 213 | buf = XLogReadBufferExtended(rnode, FSM_FORKNUM, blkno, RBM_ZERO_ON_ERROR); |
| 214 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 215 | |
| 216 | page = BufferGetPage(buf); |
| 217 | if (PageIsNew(page)) |
| 218 | PageInit(page, BLCKSZ, 0); |
| 219 | |
| 220 | if (fsm_set_avail(page, slot, new_cat)) |
| 221 | MarkBufferDirtyHint(buf, false); |
| 222 | UnlockReleaseBuffer(buf); |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * GetRecordedFreePage - return the amount of free space on a particular page, |
| 227 | * according to the FSM. |
| 228 | */ |
| 229 | Size |
| 230 | GetRecordedFreeSpace(Relation rel, BlockNumber heapBlk) |
| 231 | { |
| 232 | FSMAddress addr; |
| 233 | uint16 slot; |
| 234 | Buffer buf; |
| 235 | uint8 cat; |
| 236 | |
| 237 | /* Get the location of the FSM byte representing the heap block */ |
| 238 | addr = fsm_get_location(heapBlk, &slot); |
| 239 | |
| 240 | buf = fsm_readbuf(rel, addr, false); |
| 241 | if (!BufferIsValid(buf)) |
| 242 | return 0; |
| 243 | cat = fsm_get_avail(BufferGetPage(buf), slot); |
| 244 | ReleaseBuffer(buf); |
| 245 | |
| 246 | return fsm_space_cat_to_avail(cat); |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * FreeSpaceMapTruncateRel - adjust for truncation of a relation. |
| 251 | * |
| 252 | * The caller must hold AccessExclusiveLock on the relation, to ensure that |
| 253 | * other backends receive the smgr invalidation event that this function sends |
| 254 | * before they access the FSM again. |
| 255 | * |
| 256 | * nblocks is the new size of the heap. |
| 257 | */ |
| 258 | void |
| 259 | FreeSpaceMapTruncateRel(Relation rel, BlockNumber nblocks) |
| 260 | { |
| 261 | BlockNumber new_nfsmblocks; |
| 262 | FSMAddress first_removed_address; |
| 263 | uint16 first_removed_slot; |
| 264 | Buffer buf; |
| 265 | |
| 266 | RelationOpenSmgr(rel); |
| 267 | |
| 268 | /* |
| 269 | * If no FSM has been created yet for this relation, there's nothing to |
| 270 | * truncate. |
| 271 | */ |
| 272 | if (!smgrexists(rel->rd_smgr, FSM_FORKNUM)) |
| 273 | return; |
| 274 | |
| 275 | /* Get the location in the FSM of the first removed heap block */ |
| 276 | first_removed_address = fsm_get_location(nblocks, &first_removed_slot); |
| 277 | |
| 278 | /* |
| 279 | * Zero out the tail of the last remaining FSM page. If the slot |
| 280 | * representing the first removed heap block is at a page boundary, as the |
| 281 | * first slot on the FSM page that first_removed_address points to, we can |
| 282 | * just truncate that page altogether. |
| 283 | */ |
| 284 | if (first_removed_slot > 0) |
| 285 | { |
| 286 | buf = fsm_readbuf(rel, first_removed_address, false); |
| 287 | if (!BufferIsValid(buf)) |
| 288 | return; /* nothing to do; the FSM was already smaller */ |
| 289 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 290 | |
| 291 | /* NO EREPORT(ERROR) from here till changes are logged */ |
| 292 | START_CRIT_SECTION(); |
| 293 | |
| 294 | fsm_truncate_avail(BufferGetPage(buf), first_removed_slot); |
| 295 | |
| 296 | /* |
| 297 | * Truncation of a relation is WAL-logged at a higher-level, and we |
| 298 | * will be called at WAL replay. But if checksums are enabled, we need |
| 299 | * to still write a WAL record to protect against a torn page, if the |
| 300 | * page is flushed to disk before the truncation WAL record. We cannot |
| 301 | * use MarkBufferDirtyHint here, because that will not dirty the page |
| 302 | * during recovery. |
| 303 | */ |
| 304 | MarkBufferDirty(buf); |
| 305 | if (!InRecovery && RelationNeedsWAL(rel) && XLogHintBitIsNeeded()) |
| 306 | log_newpage_buffer(buf, false); |
| 307 | |
| 308 | END_CRIT_SECTION(); |
| 309 | |
| 310 | UnlockReleaseBuffer(buf); |
| 311 | |
| 312 | new_nfsmblocks = fsm_logical_to_physical(first_removed_address) + 1; |
| 313 | } |
| 314 | else |
| 315 | { |
| 316 | new_nfsmblocks = fsm_logical_to_physical(first_removed_address); |
| 317 | if (smgrnblocks(rel->rd_smgr, FSM_FORKNUM) <= new_nfsmblocks) |
| 318 | return; /* nothing to do; the FSM was already smaller */ |
| 319 | } |
| 320 | |
| 321 | /* Truncate the unused FSM pages, and send smgr inval message */ |
| 322 | smgrtruncate(rel->rd_smgr, FSM_FORKNUM, new_nfsmblocks); |
| 323 | |
| 324 | /* |
| 325 | * We might as well update the local smgr_fsm_nblocks setting. |
| 326 | * smgrtruncate sent an smgr cache inval message, which will cause other |
| 327 | * backends to invalidate their copy of smgr_fsm_nblocks, and this one too |
| 328 | * at the next command boundary. But this ensures it isn't outright wrong |
| 329 | * until then. |
| 330 | */ |
| 331 | if (rel->rd_smgr) |
| 332 | rel->rd_smgr->smgr_fsm_nblocks = new_nfsmblocks; |
| 333 | |
| 334 | /* |
| 335 | * Update upper-level FSM pages to account for the truncation. This is |
| 336 | * important because the just-truncated pages were likely marked as |
| 337 | * all-free, and would be preferentially selected. |
| 338 | */ |
| 339 | FreeSpaceMapVacuumRange(rel, nblocks, InvalidBlockNumber); |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * FreeSpaceMapVacuum - update upper-level pages in the rel's FSM |
| 344 | * |
| 345 | * We assume that the bottom-level pages have already been updated with |
| 346 | * new free-space information. |
| 347 | */ |
| 348 | void |
| 349 | FreeSpaceMapVacuum(Relation rel) |
| 350 | { |
| 351 | bool dummy; |
| 352 | |
| 353 | /* Recursively scan the tree, starting at the root */ |
| 354 | (void) fsm_vacuum_page(rel, FSM_ROOT_ADDRESS, |
| 355 | (BlockNumber) 0, InvalidBlockNumber, |
| 356 | &dummy); |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * FreeSpaceMapVacuumRange - update upper-level pages in the rel's FSM |
| 361 | * |
| 362 | * As above, but assume that only heap pages between start and end-1 inclusive |
| 363 | * have new free-space information, so update only the upper-level slots |
| 364 | * covering that block range. end == InvalidBlockNumber is equivalent to |
| 365 | * "all the rest of the relation". |
| 366 | */ |
| 367 | void |
| 368 | FreeSpaceMapVacuumRange(Relation rel, BlockNumber start, BlockNumber end) |
| 369 | { |
| 370 | bool dummy; |
| 371 | |
| 372 | /* Recursively scan the tree, starting at the root */ |
| 373 | if (end > start) |
| 374 | (void) fsm_vacuum_page(rel, FSM_ROOT_ADDRESS, start, end, &dummy); |
| 375 | } |
| 376 | |
| 377 | /******** Internal routines ********/ |
| 378 | |
| 379 | /* |
| 380 | * Return category corresponding x bytes of free space |
| 381 | */ |
| 382 | static uint8 |
| 383 | fsm_space_avail_to_cat(Size avail) |
| 384 | { |
| 385 | int cat; |
| 386 | |
| 387 | Assert(avail < BLCKSZ); |
| 388 | |
| 389 | if (avail >= MaxFSMRequestSize) |
| 390 | return 255; |
| 391 | |
| 392 | cat = avail / FSM_CAT_STEP; |
| 393 | |
| 394 | /* |
| 395 | * The highest category, 255, is reserved for MaxFSMRequestSize bytes or |
| 396 | * more. |
| 397 | */ |
| 398 | if (cat > 254) |
| 399 | cat = 254; |
| 400 | |
| 401 | return (uint8) cat; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Return the lower bound of the range of free space represented by given |
| 406 | * category. |
| 407 | */ |
| 408 | static Size |
| 409 | fsm_space_cat_to_avail(uint8 cat) |
| 410 | { |
| 411 | /* The highest category represents exactly MaxFSMRequestSize bytes. */ |
| 412 | if (cat == 255) |
| 413 | return MaxFSMRequestSize; |
| 414 | else |
| 415 | return cat * FSM_CAT_STEP; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * Which category does a page need to have, to accommodate x bytes of data? |
| 420 | * While fsm_size_to_avail_cat() rounds down, this needs to round up. |
| 421 | */ |
| 422 | static uint8 |
| 423 | fsm_space_needed_to_cat(Size needed) |
| 424 | { |
| 425 | int cat; |
| 426 | |
| 427 | /* Can't ask for more space than the highest category represents */ |
| 428 | if (needed > MaxFSMRequestSize) |
| 429 | elog(ERROR, "invalid FSM request size %zu" , needed); |
| 430 | |
| 431 | if (needed == 0) |
| 432 | return 1; |
| 433 | |
| 434 | cat = (needed + FSM_CAT_STEP - 1) / FSM_CAT_STEP; |
| 435 | |
| 436 | if (cat > 255) |
| 437 | cat = 255; |
| 438 | |
| 439 | return (uint8) cat; |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * Returns the physical block number of a FSM page |
| 444 | */ |
| 445 | static BlockNumber |
| 446 | fsm_logical_to_physical(FSMAddress addr) |
| 447 | { |
| 448 | BlockNumber pages; |
| 449 | int leafno; |
| 450 | int l; |
| 451 | |
| 452 | /* |
| 453 | * Calculate the logical page number of the first leaf page below the |
| 454 | * given page. |
| 455 | */ |
| 456 | leafno = addr.logpageno; |
| 457 | for (l = 0; l < addr.level; l++) |
| 458 | leafno *= SlotsPerFSMPage; |
| 459 | |
| 460 | /* Count upper level nodes required to address the leaf page */ |
| 461 | pages = 0; |
| 462 | for (l = 0; l < FSM_TREE_DEPTH; l++) |
| 463 | { |
| 464 | pages += leafno + 1; |
| 465 | leafno /= SlotsPerFSMPage; |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * If the page we were asked for wasn't at the bottom level, subtract the |
| 470 | * additional lower level pages we counted above. |
| 471 | */ |
| 472 | pages -= addr.level; |
| 473 | |
| 474 | /* Turn the page count into 0-based block number */ |
| 475 | return pages - 1; |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | * Return the FSM location corresponding to given heap block. |
| 480 | */ |
| 481 | static FSMAddress |
| 482 | fsm_get_location(BlockNumber heapblk, uint16 *slot) |
| 483 | { |
| 484 | FSMAddress addr; |
| 485 | |
| 486 | addr.level = FSM_BOTTOM_LEVEL; |
| 487 | addr.logpageno = heapblk / SlotsPerFSMPage; |
| 488 | *slot = heapblk % SlotsPerFSMPage; |
| 489 | |
| 490 | return addr; |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * Return the heap block number corresponding to given location in the FSM. |
| 495 | */ |
| 496 | static BlockNumber |
| 497 | fsm_get_heap_blk(FSMAddress addr, uint16 slot) |
| 498 | { |
| 499 | Assert(addr.level == FSM_BOTTOM_LEVEL); |
| 500 | return ((unsigned int) addr.logpageno) * SlotsPerFSMPage + slot; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * Given a logical address of a child page, get the logical page number of |
| 505 | * the parent, and the slot within the parent corresponding to the child. |
| 506 | */ |
| 507 | static FSMAddress |
| 508 | fsm_get_parent(FSMAddress child, uint16 *slot) |
| 509 | { |
| 510 | FSMAddress parent; |
| 511 | |
| 512 | Assert(child.level < FSM_ROOT_LEVEL); |
| 513 | |
| 514 | parent.level = child.level + 1; |
| 515 | parent.logpageno = child.logpageno / SlotsPerFSMPage; |
| 516 | *slot = child.logpageno % SlotsPerFSMPage; |
| 517 | |
| 518 | return parent; |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * Given a logical address of a parent page and a slot number, get the |
| 523 | * logical address of the corresponding child page. |
| 524 | */ |
| 525 | static FSMAddress |
| 526 | fsm_get_child(FSMAddress parent, uint16 slot) |
| 527 | { |
| 528 | FSMAddress child; |
| 529 | |
| 530 | Assert(parent.level > FSM_BOTTOM_LEVEL); |
| 531 | |
| 532 | child.level = parent.level - 1; |
| 533 | child.logpageno = parent.logpageno * SlotsPerFSMPage + slot; |
| 534 | |
| 535 | return child; |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * Read a FSM page. |
| 540 | * |
| 541 | * If the page doesn't exist, InvalidBuffer is returned, or if 'extend' is |
| 542 | * true, the FSM file is extended. |
| 543 | */ |
| 544 | static Buffer |
| 545 | fsm_readbuf(Relation rel, FSMAddress addr, bool extend) |
| 546 | { |
| 547 | BlockNumber blkno = fsm_logical_to_physical(addr); |
| 548 | Buffer buf; |
| 549 | |
| 550 | RelationOpenSmgr(rel); |
| 551 | |
| 552 | /* |
| 553 | * If we haven't cached the size of the FSM yet, check it first. Also |
| 554 | * recheck if the requested block seems to be past end, since our cached |
| 555 | * value might be stale. (We send smgr inval messages on truncation, but |
| 556 | * not on extension.) |
| 557 | */ |
| 558 | if (rel->rd_smgr->smgr_fsm_nblocks == InvalidBlockNumber || |
| 559 | blkno >= rel->rd_smgr->smgr_fsm_nblocks) |
| 560 | { |
| 561 | if (smgrexists(rel->rd_smgr, FSM_FORKNUM)) |
| 562 | rel->rd_smgr->smgr_fsm_nblocks = smgrnblocks(rel->rd_smgr, |
| 563 | FSM_FORKNUM); |
| 564 | else |
| 565 | rel->rd_smgr->smgr_fsm_nblocks = 0; |
| 566 | } |
| 567 | |
| 568 | /* Handle requests beyond EOF */ |
| 569 | if (blkno >= rel->rd_smgr->smgr_fsm_nblocks) |
| 570 | { |
| 571 | if (extend) |
| 572 | fsm_extend(rel, blkno + 1); |
| 573 | else |
| 574 | return InvalidBuffer; |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | * Use ZERO_ON_ERROR mode, and initialize the page if necessary. The FSM |
| 579 | * information is not accurate anyway, so it's better to clear corrupt |
| 580 | * pages than error out. Since the FSM changes are not WAL-logged, the |
| 581 | * so-called torn page problem on crash can lead to pages with corrupt |
| 582 | * headers, for example. |
| 583 | * |
| 584 | * The initialize-the-page part is trickier than it looks, because of the |
| 585 | * possibility of multiple backends doing this concurrently, and our |
| 586 | * desire to not uselessly take the buffer lock in the normal path where |
| 587 | * the page is OK. We must take the lock to initialize the page, so |
| 588 | * recheck page newness after we have the lock, in case someone else |
| 589 | * already did it. Also, because we initially check PageIsNew with no |
| 590 | * lock, it's possible to fall through and return the buffer while someone |
| 591 | * else is still initializing the page (i.e., we might see pd_upper as set |
| 592 | * but other page header fields are still zeroes). This is harmless for |
| 593 | * callers that will take a buffer lock themselves, but some callers |
| 594 | * inspect the page without any lock at all. The latter is OK only so |
| 595 | * long as it doesn't depend on the page header having correct contents. |
| 596 | * Current usage is safe because PageGetContents() does not require that. |
| 597 | */ |
| 598 | buf = ReadBufferExtended(rel, FSM_FORKNUM, blkno, RBM_ZERO_ON_ERROR, NULL); |
| 599 | if (PageIsNew(BufferGetPage(buf))) |
| 600 | { |
| 601 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 602 | if (PageIsNew(BufferGetPage(buf))) |
| 603 | PageInit(BufferGetPage(buf), BLCKSZ, 0); |
| 604 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 605 | } |
| 606 | return buf; |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | * Ensure that the FSM fork is at least fsm_nblocks long, extending |
| 611 | * it if necessary with empty pages. And by empty, I mean pages filled |
| 612 | * with zeros, meaning there's no free space. |
| 613 | */ |
| 614 | static void |
| 615 | fsm_extend(Relation rel, BlockNumber fsm_nblocks) |
| 616 | { |
| 617 | BlockNumber fsm_nblocks_now; |
| 618 | PGAlignedBlock pg; |
| 619 | |
| 620 | PageInit((Page) pg.data, BLCKSZ, 0); |
| 621 | |
| 622 | /* |
| 623 | * We use the relation extension lock to lock out other backends trying to |
| 624 | * extend the FSM at the same time. It also locks out extension of the |
| 625 | * main fork, unnecessarily, but extending the FSM happens seldom enough |
| 626 | * that it doesn't seem worthwhile to have a separate lock tag type for |
| 627 | * it. |
| 628 | * |
| 629 | * Note that another backend might have extended or created the relation |
| 630 | * by the time we get the lock. |
| 631 | */ |
| 632 | LockRelationForExtension(rel, ExclusiveLock); |
| 633 | |
| 634 | /* Might have to re-open if a cache flush happened */ |
| 635 | RelationOpenSmgr(rel); |
| 636 | |
| 637 | /* |
| 638 | * Create the FSM file first if it doesn't exist. If smgr_fsm_nblocks is |
| 639 | * positive then it must exist, no need for an smgrexists call. |
| 640 | */ |
| 641 | if ((rel->rd_smgr->smgr_fsm_nblocks == 0 || |
| 642 | rel->rd_smgr->smgr_fsm_nblocks == InvalidBlockNumber) && |
| 643 | !smgrexists(rel->rd_smgr, FSM_FORKNUM)) |
| 644 | smgrcreate(rel->rd_smgr, FSM_FORKNUM, false); |
| 645 | |
| 646 | fsm_nblocks_now = smgrnblocks(rel->rd_smgr, FSM_FORKNUM); |
| 647 | |
| 648 | while (fsm_nblocks_now < fsm_nblocks) |
| 649 | { |
| 650 | PageSetChecksumInplace((Page) pg.data, fsm_nblocks_now); |
| 651 | |
| 652 | smgrextend(rel->rd_smgr, FSM_FORKNUM, fsm_nblocks_now, |
| 653 | pg.data, false); |
| 654 | fsm_nblocks_now++; |
| 655 | } |
| 656 | |
| 657 | /* Update local cache with the up-to-date size */ |
| 658 | rel->rd_smgr->smgr_fsm_nblocks = fsm_nblocks_now; |
| 659 | |
| 660 | UnlockRelationForExtension(rel, ExclusiveLock); |
| 661 | } |
| 662 | |
| 663 | /* |
| 664 | * Set value in given FSM page and slot. |
| 665 | * |
| 666 | * If minValue > 0, the updated page is also searched for a page with at |
| 667 | * least minValue of free space. If one is found, its slot number is |
| 668 | * returned, -1 otherwise. |
| 669 | */ |
| 670 | static int |
| 671 | fsm_set_and_search(Relation rel, FSMAddress addr, uint16 slot, |
| 672 | uint8 newValue, uint8 minValue) |
| 673 | { |
| 674 | Buffer buf; |
| 675 | Page page; |
| 676 | int newslot = -1; |
| 677 | |
| 678 | buf = fsm_readbuf(rel, addr, true); |
| 679 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 680 | |
| 681 | page = BufferGetPage(buf); |
| 682 | |
| 683 | if (fsm_set_avail(page, slot, newValue)) |
| 684 | MarkBufferDirtyHint(buf, false); |
| 685 | |
| 686 | if (minValue != 0) |
| 687 | { |
| 688 | /* Search while we still hold the lock */ |
| 689 | newslot = fsm_search_avail(buf, minValue, |
| 690 | addr.level == FSM_BOTTOM_LEVEL, |
| 691 | true); |
| 692 | } |
| 693 | |
| 694 | UnlockReleaseBuffer(buf); |
| 695 | |
| 696 | return newslot; |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * Search the tree for a heap page with at least min_cat of free space |
| 701 | */ |
| 702 | static BlockNumber |
| 703 | fsm_search(Relation rel, uint8 min_cat) |
| 704 | { |
| 705 | int restarts = 0; |
| 706 | FSMAddress addr = FSM_ROOT_ADDRESS; |
| 707 | |
| 708 | for (;;) |
| 709 | { |
| 710 | int slot; |
| 711 | Buffer buf; |
| 712 | uint8 max_avail = 0; |
| 713 | |
| 714 | /* Read the FSM page. */ |
| 715 | buf = fsm_readbuf(rel, addr, false); |
| 716 | |
| 717 | /* Search within the page */ |
| 718 | if (BufferIsValid(buf)) |
| 719 | { |
| 720 | LockBuffer(buf, BUFFER_LOCK_SHARE); |
| 721 | slot = fsm_search_avail(buf, min_cat, |
| 722 | (addr.level == FSM_BOTTOM_LEVEL), |
| 723 | false); |
| 724 | if (slot == -1) |
| 725 | max_avail = fsm_get_max_avail(BufferGetPage(buf)); |
| 726 | UnlockReleaseBuffer(buf); |
| 727 | } |
| 728 | else |
| 729 | slot = -1; |
| 730 | |
| 731 | if (slot != -1) |
| 732 | { |
| 733 | /* |
| 734 | * Descend the tree, or return the found block if we're at the |
| 735 | * bottom. |
| 736 | */ |
| 737 | if (addr.level == FSM_BOTTOM_LEVEL) |
| 738 | return fsm_get_heap_blk(addr, slot); |
| 739 | |
| 740 | addr = fsm_get_child(addr, slot); |
| 741 | } |
| 742 | else if (addr.level == FSM_ROOT_LEVEL) |
| 743 | { |
| 744 | /* |
| 745 | * At the root, failure means there's no page with enough free |
| 746 | * space in the FSM. Give up. |
| 747 | */ |
| 748 | return InvalidBlockNumber; |
| 749 | } |
| 750 | else |
| 751 | { |
| 752 | uint16 parentslot; |
| 753 | FSMAddress parent; |
| 754 | |
| 755 | /* |
| 756 | * At lower level, failure can happen if the value in the upper- |
| 757 | * level node didn't reflect the value on the lower page. Update |
| 758 | * the upper node, to avoid falling into the same trap again, and |
| 759 | * start over. |
| 760 | * |
| 761 | * There's a race condition here, if another backend updates this |
| 762 | * page right after we release it, and gets the lock on the parent |
| 763 | * page before us. We'll then update the parent page with the now |
| 764 | * stale information we had. It's OK, because it should happen |
| 765 | * rarely, and will be fixed by the next vacuum. |
| 766 | */ |
| 767 | parent = fsm_get_parent(addr, &parentslot); |
| 768 | fsm_set_and_search(rel, parent, parentslot, max_avail, 0); |
| 769 | |
| 770 | /* |
| 771 | * If the upper pages are badly out of date, we might need to loop |
| 772 | * quite a few times, updating them as we go. Any inconsistencies |
| 773 | * should eventually be corrected and the loop should end. Looping |
| 774 | * indefinitely is nevertheless scary, so provide an emergency |
| 775 | * valve. |
| 776 | */ |
| 777 | if (restarts++ > 10000) |
| 778 | return InvalidBlockNumber; |
| 779 | |
| 780 | /* Start search all over from the root */ |
| 781 | addr = FSM_ROOT_ADDRESS; |
| 782 | } |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | |
| 787 | /* |
| 788 | * Recursive guts of FreeSpaceMapVacuum |
| 789 | * |
| 790 | * Examine the FSM page indicated by addr, as well as its children, updating |
| 791 | * upper-level nodes that cover the heap block range from start to end-1. |
| 792 | * (It's okay if end is beyond the actual end of the map.) |
| 793 | * Return the maximum freespace value on this page. |
| 794 | * |
| 795 | * If addr is past the end of the FSM, set *eof_p to true and return 0. |
| 796 | * |
| 797 | * This traverses the tree in depth-first order. The tree is stored |
| 798 | * physically in depth-first order, so this should be pretty I/O efficient. |
| 799 | */ |
| 800 | static uint8 |
| 801 | fsm_vacuum_page(Relation rel, FSMAddress addr, |
| 802 | BlockNumber start, BlockNumber end, |
| 803 | bool *eof_p) |
| 804 | { |
| 805 | Buffer buf; |
| 806 | Page page; |
| 807 | uint8 max_avail; |
| 808 | |
| 809 | /* Read the page if it exists, or return EOF */ |
| 810 | buf = fsm_readbuf(rel, addr, false); |
| 811 | if (!BufferIsValid(buf)) |
| 812 | { |
| 813 | *eof_p = true; |
| 814 | return 0; |
| 815 | } |
| 816 | else |
| 817 | *eof_p = false; |
| 818 | |
| 819 | page = BufferGetPage(buf); |
| 820 | |
| 821 | /* |
| 822 | * If we're above the bottom level, recurse into children, and fix the |
| 823 | * information stored about them at this level. |
| 824 | */ |
| 825 | if (addr.level > FSM_BOTTOM_LEVEL) |
| 826 | { |
| 827 | FSMAddress fsm_start, |
| 828 | fsm_end; |
| 829 | uint16 fsm_start_slot, |
| 830 | fsm_end_slot; |
| 831 | int slot, |
| 832 | start_slot, |
| 833 | end_slot; |
| 834 | bool eof = false; |
| 835 | |
| 836 | /* |
| 837 | * Compute the range of slots we need to update on this page, given |
| 838 | * the requested range of heap blocks to consider. The first slot to |
| 839 | * update is the one covering the "start" block, and the last slot is |
| 840 | * the one covering "end - 1". (Some of this work will be duplicated |
| 841 | * in each recursive call, but it's cheap enough to not worry about.) |
| 842 | */ |
| 843 | fsm_start = fsm_get_location(start, &fsm_start_slot); |
| 844 | fsm_end = fsm_get_location(end - 1, &fsm_end_slot); |
| 845 | |
| 846 | while (fsm_start.level < addr.level) |
| 847 | { |
| 848 | fsm_start = fsm_get_parent(fsm_start, &fsm_start_slot); |
| 849 | fsm_end = fsm_get_parent(fsm_end, &fsm_end_slot); |
| 850 | } |
| 851 | Assert(fsm_start.level == addr.level); |
| 852 | |
| 853 | if (fsm_start.logpageno == addr.logpageno) |
| 854 | start_slot = fsm_start_slot; |
| 855 | else if (fsm_start.logpageno > addr.logpageno) |
| 856 | start_slot = SlotsPerFSMPage; /* shouldn't get here... */ |
| 857 | else |
| 858 | start_slot = 0; |
| 859 | |
| 860 | if (fsm_end.logpageno == addr.logpageno) |
| 861 | end_slot = fsm_end_slot; |
| 862 | else if (fsm_end.logpageno > addr.logpageno) |
| 863 | end_slot = SlotsPerFSMPage - 1; |
| 864 | else |
| 865 | end_slot = -1; /* shouldn't get here... */ |
| 866 | |
| 867 | for (slot = start_slot; slot <= end_slot; slot++) |
| 868 | { |
| 869 | int child_avail; |
| 870 | |
| 871 | CHECK_FOR_INTERRUPTS(); |
| 872 | |
| 873 | /* After we hit end-of-file, just clear the rest of the slots */ |
| 874 | if (!eof) |
| 875 | child_avail = fsm_vacuum_page(rel, fsm_get_child(addr, slot), |
| 876 | start, end, |
| 877 | &eof); |
| 878 | else |
| 879 | child_avail = 0; |
| 880 | |
| 881 | /* Update information about the child */ |
| 882 | if (fsm_get_avail(page, slot) != child_avail) |
| 883 | { |
| 884 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 885 | fsm_set_avail(page, slot, child_avail); |
| 886 | MarkBufferDirtyHint(buf, false); |
| 887 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 888 | } |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | /* Now get the maximum value on the page, to return to caller */ |
| 893 | max_avail = fsm_get_max_avail(page); |
| 894 | |
| 895 | /* |
| 896 | * Reset the next slot pointer. This encourages the use of low-numbered |
| 897 | * pages, increasing the chances that a later vacuum can truncate the |
| 898 | * relation. We don't bother with a lock here, nor with marking the page |
| 899 | * dirty if it wasn't already, since this is just a hint. |
| 900 | */ |
| 901 | ((FSMPage) PageGetContents(page))->fp_next_slot = 0; |
| 902 | |
| 903 | ReleaseBuffer(buf); |
| 904 | |
| 905 | return max_avail; |
| 906 | } |
| 907 | |