| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * lock.c |
| 4 | * POSTGRES primary lock mechanism |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/storage/lmgr/lock.c |
| 12 | * |
| 13 | * NOTES |
| 14 | * A lock table is a shared memory hash table. When |
| 15 | * a process tries to acquire a lock of a type that conflicts |
| 16 | * with existing locks, it is put to sleep using the routines |
| 17 | * in storage/lmgr/proc.c. |
| 18 | * |
| 19 | * For the most part, this code should be invoked via lmgr.c |
| 20 | * or another lock-management module, not directly. |
| 21 | * |
| 22 | * Interface: |
| 23 | * |
| 24 | * InitLocks(), GetLocksMethodTable(), GetLockTagsMethodTable(), |
| 25 | * LockAcquire(), LockRelease(), LockReleaseAll(), |
| 26 | * LockCheckConflicts(), GrantLock() |
| 27 | * |
| 28 | *------------------------------------------------------------------------- |
| 29 | */ |
| 30 | #include "postgres.h" |
| 31 | |
| 32 | #include <signal.h> |
| 33 | #include <unistd.h> |
| 34 | |
| 35 | #include "access/transam.h" |
| 36 | #include "access/twophase.h" |
| 37 | #include "access/twophase_rmgr.h" |
| 38 | #include "access/xact.h" |
| 39 | #include "access/xlog.h" |
| 40 | #include "miscadmin.h" |
| 41 | #include "pg_trace.h" |
| 42 | #include "pgstat.h" |
| 43 | #include "storage/proc.h" |
| 44 | #include "storage/procarray.h" |
| 45 | #include "storage/sinvaladt.h" |
| 46 | #include "storage/spin.h" |
| 47 | #include "storage/standby.h" |
| 48 | #include "utils/memutils.h" |
| 49 | #include "utils/ps_status.h" |
| 50 | #include "utils/resowner_private.h" |
| 51 | |
| 52 | |
| 53 | /* This configuration variable is used to set the lock table size */ |
| 54 | int max_locks_per_xact; /* set by guc.c */ |
| 55 | |
| 56 | #define NLOCKENTS() \ |
| 57 | mul_size(max_locks_per_xact, add_size(MaxBackends, max_prepared_xacts)) |
| 58 | |
| 59 | |
| 60 | /* |
| 61 | * Data structures defining the semantics of the standard lock methods. |
| 62 | * |
| 63 | * The conflict table defines the semantics of the various lock modes. |
| 64 | */ |
| 65 | static const LOCKMASK LockConflicts[] = { |
| 66 | 0, |
| 67 | |
| 68 | /* AccessShareLock */ |
| 69 | LOCKBIT_ON(AccessExclusiveLock), |
| 70 | |
| 71 | /* RowShareLock */ |
| 72 | LOCKBIT_ON(ExclusiveLock) | LOCKBIT_ON(AccessExclusiveLock), |
| 73 | |
| 74 | /* RowExclusiveLock */ |
| 75 | LOCKBIT_ON(ShareLock) | LOCKBIT_ON(ShareRowExclusiveLock) | |
| 76 | LOCKBIT_ON(ExclusiveLock) | LOCKBIT_ON(AccessExclusiveLock), |
| 77 | |
| 78 | /* ShareUpdateExclusiveLock */ |
| 79 | LOCKBIT_ON(ShareUpdateExclusiveLock) | |
| 80 | LOCKBIT_ON(ShareLock) | LOCKBIT_ON(ShareRowExclusiveLock) | |
| 81 | LOCKBIT_ON(ExclusiveLock) | LOCKBIT_ON(AccessExclusiveLock), |
| 82 | |
| 83 | /* ShareLock */ |
| 84 | LOCKBIT_ON(RowExclusiveLock) | LOCKBIT_ON(ShareUpdateExclusiveLock) | |
| 85 | LOCKBIT_ON(ShareRowExclusiveLock) | |
| 86 | LOCKBIT_ON(ExclusiveLock) | LOCKBIT_ON(AccessExclusiveLock), |
| 87 | |
| 88 | /* ShareRowExclusiveLock */ |
| 89 | LOCKBIT_ON(RowExclusiveLock) | LOCKBIT_ON(ShareUpdateExclusiveLock) | |
| 90 | LOCKBIT_ON(ShareLock) | LOCKBIT_ON(ShareRowExclusiveLock) | |
| 91 | LOCKBIT_ON(ExclusiveLock) | LOCKBIT_ON(AccessExclusiveLock), |
| 92 | |
| 93 | /* ExclusiveLock */ |
| 94 | LOCKBIT_ON(RowShareLock) | |
| 95 | LOCKBIT_ON(RowExclusiveLock) | LOCKBIT_ON(ShareUpdateExclusiveLock) | |
| 96 | LOCKBIT_ON(ShareLock) | LOCKBIT_ON(ShareRowExclusiveLock) | |
| 97 | LOCKBIT_ON(ExclusiveLock) | LOCKBIT_ON(AccessExclusiveLock), |
| 98 | |
| 99 | /* AccessExclusiveLock */ |
| 100 | LOCKBIT_ON(AccessShareLock) | LOCKBIT_ON(RowShareLock) | |
| 101 | LOCKBIT_ON(RowExclusiveLock) | LOCKBIT_ON(ShareUpdateExclusiveLock) | |
| 102 | LOCKBIT_ON(ShareLock) | LOCKBIT_ON(ShareRowExclusiveLock) | |
| 103 | LOCKBIT_ON(ExclusiveLock) | LOCKBIT_ON(AccessExclusiveLock) |
| 104 | |
| 105 | }; |
| 106 | |
| 107 | /* Names of lock modes, for debug printouts */ |
| 108 | static const char *const lock_mode_names[] = |
| 109 | { |
| 110 | "INVALID" , |
| 111 | "AccessShareLock" , |
| 112 | "RowShareLock" , |
| 113 | "RowExclusiveLock" , |
| 114 | "ShareUpdateExclusiveLock" , |
| 115 | "ShareLock" , |
| 116 | "ShareRowExclusiveLock" , |
| 117 | "ExclusiveLock" , |
| 118 | "AccessExclusiveLock" |
| 119 | }; |
| 120 | |
| 121 | #ifndef LOCK_DEBUG |
| 122 | static bool Dummy_trace = false; |
| 123 | #endif |
| 124 | |
| 125 | static const LockMethodData default_lockmethod = { |
| 126 | AccessExclusiveLock, /* highest valid lock mode number */ |
| 127 | LockConflicts, |
| 128 | lock_mode_names, |
| 129 | #ifdef LOCK_DEBUG |
| 130 | &Trace_locks |
| 131 | #else |
| 132 | &Dummy_trace |
| 133 | #endif |
| 134 | }; |
| 135 | |
| 136 | static const LockMethodData user_lockmethod = { |
| 137 | AccessExclusiveLock, /* highest valid lock mode number */ |
| 138 | LockConflicts, |
| 139 | lock_mode_names, |
| 140 | #ifdef LOCK_DEBUG |
| 141 | &Trace_userlocks |
| 142 | #else |
| 143 | &Dummy_trace |
| 144 | #endif |
| 145 | }; |
| 146 | |
| 147 | /* |
| 148 | * map from lock method id to the lock table data structures |
| 149 | */ |
| 150 | static const LockMethod LockMethods[] = { |
| 151 | NULL, |
| 152 | &default_lockmethod, |
| 153 | &user_lockmethod |
| 154 | }; |
| 155 | |
| 156 | |
| 157 | /* Record that's written to 2PC state file when a lock is persisted */ |
| 158 | typedef struct TwoPhaseLockRecord |
| 159 | { |
| 160 | LOCKTAG locktag; |
| 161 | LOCKMODE lockmode; |
| 162 | } TwoPhaseLockRecord; |
| 163 | |
| 164 | |
| 165 | /* |
| 166 | * Count of the number of fast path lock slots we believe to be used. This |
| 167 | * might be higher than the real number if another backend has transferred |
| 168 | * our locks to the primary lock table, but it can never be lower than the |
| 169 | * real value, since only we can acquire locks on our own behalf. |
| 170 | */ |
| 171 | static int FastPathLocalUseCount = 0; |
| 172 | |
| 173 | /* Macros for manipulating proc->fpLockBits */ |
| 174 | #define FAST_PATH_BITS_PER_SLOT 3 |
| 175 | #define FAST_PATH_LOCKNUMBER_OFFSET 1 |
| 176 | #define FAST_PATH_MASK ((1 << FAST_PATH_BITS_PER_SLOT) - 1) |
| 177 | #define FAST_PATH_GET_BITS(proc, n) \ |
| 178 | (((proc)->fpLockBits >> (FAST_PATH_BITS_PER_SLOT * n)) & FAST_PATH_MASK) |
| 179 | #define FAST_PATH_BIT_POSITION(n, l) \ |
| 180 | (AssertMacro((l) >= FAST_PATH_LOCKNUMBER_OFFSET), \ |
| 181 | AssertMacro((l) < FAST_PATH_BITS_PER_SLOT+FAST_PATH_LOCKNUMBER_OFFSET), \ |
| 182 | AssertMacro((n) < FP_LOCK_SLOTS_PER_BACKEND), \ |
| 183 | ((l) - FAST_PATH_LOCKNUMBER_OFFSET + FAST_PATH_BITS_PER_SLOT * (n))) |
| 184 | #define FAST_PATH_SET_LOCKMODE(proc, n, l) \ |
| 185 | (proc)->fpLockBits |= UINT64CONST(1) << FAST_PATH_BIT_POSITION(n, l) |
| 186 | #define FAST_PATH_CLEAR_LOCKMODE(proc, n, l) \ |
| 187 | (proc)->fpLockBits &= ~(UINT64CONST(1) << FAST_PATH_BIT_POSITION(n, l)) |
| 188 | #define FAST_PATH_CHECK_LOCKMODE(proc, n, l) \ |
| 189 | ((proc)->fpLockBits & (UINT64CONST(1) << FAST_PATH_BIT_POSITION(n, l))) |
| 190 | |
| 191 | /* |
| 192 | * The fast-path lock mechanism is concerned only with relation locks on |
| 193 | * unshared relations by backends bound to a database. The fast-path |
| 194 | * mechanism exists mostly to accelerate acquisition and release of locks |
| 195 | * that rarely conflict. Because ShareUpdateExclusiveLock is |
| 196 | * self-conflicting, it can't use the fast-path mechanism; but it also does |
| 197 | * not conflict with any of the locks that do, so we can ignore it completely. |
| 198 | */ |
| 199 | #define EligibleForRelationFastPath(locktag, mode) \ |
| 200 | ((locktag)->locktag_lockmethodid == DEFAULT_LOCKMETHOD && \ |
| 201 | (locktag)->locktag_type == LOCKTAG_RELATION && \ |
| 202 | (locktag)->locktag_field1 == MyDatabaseId && \ |
| 203 | MyDatabaseId != InvalidOid && \ |
| 204 | (mode) < ShareUpdateExclusiveLock) |
| 205 | #define ConflictsWithRelationFastPath(locktag, mode) \ |
| 206 | ((locktag)->locktag_lockmethodid == DEFAULT_LOCKMETHOD && \ |
| 207 | (locktag)->locktag_type == LOCKTAG_RELATION && \ |
| 208 | (locktag)->locktag_field1 != InvalidOid && \ |
| 209 | (mode) > ShareUpdateExclusiveLock) |
| 210 | |
| 211 | static bool FastPathGrantRelationLock(Oid relid, LOCKMODE lockmode); |
| 212 | static bool FastPathUnGrantRelationLock(Oid relid, LOCKMODE lockmode); |
| 213 | static bool FastPathTransferRelationLocks(LockMethod lockMethodTable, |
| 214 | const LOCKTAG *locktag, uint32 hashcode); |
| 215 | static PROCLOCK *FastPathGetRelationLockEntry(LOCALLOCK *locallock); |
| 216 | |
| 217 | /* |
| 218 | * To make the fast-path lock mechanism work, we must have some way of |
| 219 | * preventing the use of the fast-path when a conflicting lock might be |
| 220 | * present. We partition* the locktag space into FAST_PATH_HASH_BUCKETS |
| 221 | * partitions, and maintain an integer count of the number of "strong" lockers |
| 222 | * in each partition. When any "strong" lockers are present (which is |
| 223 | * hopefully not very often), the fast-path mechanism can't be used, and we |
| 224 | * must fall back to the slower method of pushing matching locks directly |
| 225 | * into the main lock tables. |
| 226 | * |
| 227 | * The deadlock detector does not know anything about the fast path mechanism, |
| 228 | * so any locks that might be involved in a deadlock must be transferred from |
| 229 | * the fast-path queues to the main lock table. |
| 230 | */ |
| 231 | |
| 232 | #define FAST_PATH_STRONG_LOCK_HASH_BITS 10 |
| 233 | #define FAST_PATH_STRONG_LOCK_HASH_PARTITIONS \ |
| 234 | (1 << FAST_PATH_STRONG_LOCK_HASH_BITS) |
| 235 | #define FastPathStrongLockHashPartition(hashcode) \ |
| 236 | ((hashcode) % FAST_PATH_STRONG_LOCK_HASH_PARTITIONS) |
| 237 | |
| 238 | typedef struct |
| 239 | { |
| 240 | slock_t mutex; |
| 241 | uint32 count[FAST_PATH_STRONG_LOCK_HASH_PARTITIONS]; |
| 242 | } FastPathStrongRelationLockData; |
| 243 | |
| 244 | static volatile FastPathStrongRelationLockData *FastPathStrongRelationLocks; |
| 245 | |
| 246 | |
| 247 | /* |
| 248 | * Pointers to hash tables containing lock state |
| 249 | * |
| 250 | * The LockMethodLockHash and LockMethodProcLockHash hash tables are in |
| 251 | * shared memory; LockMethodLocalHash is local to each backend. |
| 252 | */ |
| 253 | static HTAB *LockMethodLockHash; |
| 254 | static HTAB *LockMethodProcLockHash; |
| 255 | static HTAB *LockMethodLocalHash; |
| 256 | |
| 257 | |
| 258 | /* private state for error cleanup */ |
| 259 | static LOCALLOCK *StrongLockInProgress; |
| 260 | static LOCALLOCK *awaitedLock; |
| 261 | static ResourceOwner awaitedOwner; |
| 262 | |
| 263 | |
| 264 | #ifdef LOCK_DEBUG |
| 265 | |
| 266 | /*------ |
| 267 | * The following configuration options are available for lock debugging: |
| 268 | * |
| 269 | * TRACE_LOCKS -- give a bunch of output what's going on in this file |
| 270 | * TRACE_USERLOCKS -- same but for user locks |
| 271 | * TRACE_LOCK_OIDMIN-- do not trace locks for tables below this oid |
| 272 | * (use to avoid output on system tables) |
| 273 | * TRACE_LOCK_TABLE -- trace locks on this table (oid) unconditionally |
| 274 | * DEBUG_DEADLOCKS -- currently dumps locks at untimely occasions ;) |
| 275 | * |
| 276 | * Furthermore, but in storage/lmgr/lwlock.c: |
| 277 | * TRACE_LWLOCKS -- trace lightweight locks (pretty useless) |
| 278 | * |
| 279 | * Define LOCK_DEBUG at compile time to get all these enabled. |
| 280 | * -------- |
| 281 | */ |
| 282 | |
| 283 | int Trace_lock_oidmin = FirstNormalObjectId; |
| 284 | bool Trace_locks = false; |
| 285 | bool Trace_userlocks = false; |
| 286 | int Trace_lock_table = 0; |
| 287 | bool Debug_deadlocks = false; |
| 288 | |
| 289 | |
| 290 | inline static bool |
| 291 | LOCK_DEBUG_ENABLED(const LOCKTAG *tag) |
| 292 | { |
| 293 | return |
| 294 | (*(LockMethods[tag->locktag_lockmethodid]->trace_flag) && |
| 295 | ((Oid) tag->locktag_field2 >= (Oid) Trace_lock_oidmin)) |
| 296 | || (Trace_lock_table && |
| 297 | (tag->locktag_field2 == Trace_lock_table)); |
| 298 | } |
| 299 | |
| 300 | |
| 301 | inline static void |
| 302 | LOCK_PRINT(const char *where, const LOCK *lock, LOCKMODE type) |
| 303 | { |
| 304 | if (LOCK_DEBUG_ENABLED(&lock->tag)) |
| 305 | elog(LOG, |
| 306 | "%s: lock(%p) id(%u,%u,%u,%u,%u,%u) grantMask(%x) " |
| 307 | "req(%d,%d,%d,%d,%d,%d,%d)=%d " |
| 308 | "grant(%d,%d,%d,%d,%d,%d,%d)=%d wait(%d) type(%s)" , |
| 309 | where, lock, |
| 310 | lock->tag.locktag_field1, lock->tag.locktag_field2, |
| 311 | lock->tag.locktag_field3, lock->tag.locktag_field4, |
| 312 | lock->tag.locktag_type, lock->tag.locktag_lockmethodid, |
| 313 | lock->grantMask, |
| 314 | lock->requested[1], lock->requested[2], lock->requested[3], |
| 315 | lock->requested[4], lock->requested[5], lock->requested[6], |
| 316 | lock->requested[7], lock->nRequested, |
| 317 | lock->granted[1], lock->granted[2], lock->granted[3], |
| 318 | lock->granted[4], lock->granted[5], lock->granted[6], |
| 319 | lock->granted[7], lock->nGranted, |
| 320 | lock->waitProcs.size, |
| 321 | LockMethods[LOCK_LOCKMETHOD(*lock)]->lockModeNames[type]); |
| 322 | } |
| 323 | |
| 324 | |
| 325 | inline static void |
| 326 | PROCLOCK_PRINT(const char *where, const PROCLOCK *proclockP) |
| 327 | { |
| 328 | if (LOCK_DEBUG_ENABLED(&proclockP->tag.myLock->tag)) |
| 329 | elog(LOG, |
| 330 | "%s: proclock(%p) lock(%p) method(%u) proc(%p) hold(%x)" , |
| 331 | where, proclockP, proclockP->tag.myLock, |
| 332 | PROCLOCK_LOCKMETHOD(*(proclockP)), |
| 333 | proclockP->tag.myProc, (int) proclockP->holdMask); |
| 334 | } |
| 335 | #else /* not LOCK_DEBUG */ |
| 336 | |
| 337 | #define LOCK_PRINT(where, lock, type) ((void) 0) |
| 338 | #define PROCLOCK_PRINT(where, proclockP) ((void) 0) |
| 339 | #endif /* not LOCK_DEBUG */ |
| 340 | |
| 341 | |
| 342 | static uint32 proclock_hash(const void *key, Size keysize); |
| 343 | static void RemoveLocalLock(LOCALLOCK *locallock); |
| 344 | static PROCLOCK *SetupLockInTable(LockMethod lockMethodTable, PGPROC *proc, |
| 345 | const LOCKTAG *locktag, uint32 hashcode, LOCKMODE lockmode); |
| 346 | static void GrantLockLocal(LOCALLOCK *locallock, ResourceOwner owner); |
| 347 | static void BeginStrongLockAcquire(LOCALLOCK *locallock, uint32 fasthashcode); |
| 348 | static void FinishStrongLockAcquire(void); |
| 349 | static void WaitOnLock(LOCALLOCK *locallock, ResourceOwner owner); |
| 350 | static void ReleaseLockIfHeld(LOCALLOCK *locallock, bool sessionLock); |
| 351 | static void LockReassignOwner(LOCALLOCK *locallock, ResourceOwner parent); |
| 352 | static bool UnGrantLock(LOCK *lock, LOCKMODE lockmode, |
| 353 | PROCLOCK *proclock, LockMethod lockMethodTable); |
| 354 | static void CleanUpLock(LOCK *lock, PROCLOCK *proclock, |
| 355 | LockMethod lockMethodTable, uint32 hashcode, |
| 356 | bool wakeupNeeded); |
| 357 | static void LockRefindAndRelease(LockMethod lockMethodTable, PGPROC *proc, |
| 358 | LOCKTAG *locktag, LOCKMODE lockmode, |
| 359 | bool decrement_strong_lock_count); |
| 360 | static void GetSingleProcBlockerStatusData(PGPROC *blocked_proc, |
| 361 | BlockedProcsData *data); |
| 362 | |
| 363 | |
| 364 | /* |
| 365 | * InitLocks -- Initialize the lock manager's data structures. |
| 366 | * |
| 367 | * This is called from CreateSharedMemoryAndSemaphores(), which see for |
| 368 | * more comments. In the normal postmaster case, the shared hash tables |
| 369 | * are created here, as well as a locallock hash table that will remain |
| 370 | * unused and empty in the postmaster itself. Backends inherit the pointers |
| 371 | * to the shared tables via fork(), and also inherit an image of the locallock |
| 372 | * hash table, which they proceed to use. In the EXEC_BACKEND case, each |
| 373 | * backend re-executes this code to obtain pointers to the already existing |
| 374 | * shared hash tables and to create its locallock hash table. |
| 375 | */ |
| 376 | void |
| 377 | InitLocks(void) |
| 378 | { |
| 379 | HASHCTL info; |
| 380 | long init_table_size, |
| 381 | max_table_size; |
| 382 | bool found; |
| 383 | |
| 384 | /* |
| 385 | * Compute init/max size to request for lock hashtables. Note these |
| 386 | * calculations must agree with LockShmemSize! |
| 387 | */ |
| 388 | max_table_size = NLOCKENTS(); |
| 389 | init_table_size = max_table_size / 2; |
| 390 | |
| 391 | /* |
| 392 | * Allocate hash table for LOCK structs. This stores per-locked-object |
| 393 | * information. |
| 394 | */ |
| 395 | MemSet(&info, 0, sizeof(info)); |
| 396 | info.keysize = sizeof(LOCKTAG); |
| 397 | info.entrysize = sizeof(LOCK); |
| 398 | info.num_partitions = NUM_LOCK_PARTITIONS; |
| 399 | |
| 400 | LockMethodLockHash = ShmemInitHash("LOCK hash" , |
| 401 | init_table_size, |
| 402 | max_table_size, |
| 403 | &info, |
| 404 | HASH_ELEM | HASH_BLOBS | HASH_PARTITION); |
| 405 | |
| 406 | /* Assume an average of 2 holders per lock */ |
| 407 | max_table_size *= 2; |
| 408 | init_table_size *= 2; |
| 409 | |
| 410 | /* |
| 411 | * Allocate hash table for PROCLOCK structs. This stores |
| 412 | * per-lock-per-holder information. |
| 413 | */ |
| 414 | info.keysize = sizeof(PROCLOCKTAG); |
| 415 | info.entrysize = sizeof(PROCLOCK); |
| 416 | info.hash = proclock_hash; |
| 417 | info.num_partitions = NUM_LOCK_PARTITIONS; |
| 418 | |
| 419 | LockMethodProcLockHash = ShmemInitHash("PROCLOCK hash" , |
| 420 | init_table_size, |
| 421 | max_table_size, |
| 422 | &info, |
| 423 | HASH_ELEM | HASH_FUNCTION | HASH_PARTITION); |
| 424 | |
| 425 | /* |
| 426 | * Allocate fast-path structures. |
| 427 | */ |
| 428 | FastPathStrongRelationLocks = |
| 429 | ShmemInitStruct("Fast Path Strong Relation Lock Data" , |
| 430 | sizeof(FastPathStrongRelationLockData), &found); |
| 431 | if (!found) |
| 432 | SpinLockInit(&FastPathStrongRelationLocks->mutex); |
| 433 | |
| 434 | /* |
| 435 | * Allocate non-shared hash table for LOCALLOCK structs. This stores lock |
| 436 | * counts and resource owner information. |
| 437 | * |
| 438 | * The non-shared table could already exist in this process (this occurs |
| 439 | * when the postmaster is recreating shared memory after a backend crash). |
| 440 | * If so, delete and recreate it. (We could simply leave it, since it |
| 441 | * ought to be empty in the postmaster, but for safety let's zap it.) |
| 442 | */ |
| 443 | if (LockMethodLocalHash) |
| 444 | hash_destroy(LockMethodLocalHash); |
| 445 | |
| 446 | info.keysize = sizeof(LOCALLOCKTAG); |
| 447 | info.entrysize = sizeof(LOCALLOCK); |
| 448 | |
| 449 | LockMethodLocalHash = hash_create("LOCALLOCK hash" , |
| 450 | 16, |
| 451 | &info, |
| 452 | HASH_ELEM | HASH_BLOBS); |
| 453 | } |
| 454 | |
| 455 | |
| 456 | /* |
| 457 | * Fetch the lock method table associated with a given lock |
| 458 | */ |
| 459 | LockMethod |
| 460 | GetLocksMethodTable(const LOCK *lock) |
| 461 | { |
| 462 | LOCKMETHODID lockmethodid = LOCK_LOCKMETHOD(*lock); |
| 463 | |
| 464 | Assert(0 < lockmethodid && lockmethodid < lengthof(LockMethods)); |
| 465 | return LockMethods[lockmethodid]; |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Fetch the lock method table associated with a given locktag |
| 470 | */ |
| 471 | LockMethod |
| 472 | GetLockTagsMethodTable(const LOCKTAG *locktag) |
| 473 | { |
| 474 | LOCKMETHODID lockmethodid = (LOCKMETHODID) locktag->locktag_lockmethodid; |
| 475 | |
| 476 | Assert(0 < lockmethodid && lockmethodid < lengthof(LockMethods)); |
| 477 | return LockMethods[lockmethodid]; |
| 478 | } |
| 479 | |
| 480 | |
| 481 | /* |
| 482 | * Compute the hash code associated with a LOCKTAG. |
| 483 | * |
| 484 | * To avoid unnecessary recomputations of the hash code, we try to do this |
| 485 | * just once per function, and then pass it around as needed. Aside from |
| 486 | * passing the hashcode to hash_search_with_hash_value(), we can extract |
| 487 | * the lock partition number from the hashcode. |
| 488 | */ |
| 489 | uint32 |
| 490 | LockTagHashCode(const LOCKTAG *locktag) |
| 491 | { |
| 492 | return get_hash_value(LockMethodLockHash, (const void *) locktag); |
| 493 | } |
| 494 | |
| 495 | /* |
| 496 | * Compute the hash code associated with a PROCLOCKTAG. |
| 497 | * |
| 498 | * Because we want to use just one set of partition locks for both the |
| 499 | * LOCK and PROCLOCK hash tables, we have to make sure that PROCLOCKs |
| 500 | * fall into the same partition number as their associated LOCKs. |
| 501 | * dynahash.c expects the partition number to be the low-order bits of |
| 502 | * the hash code, and therefore a PROCLOCKTAG's hash code must have the |
| 503 | * same low-order bits as the associated LOCKTAG's hash code. We achieve |
| 504 | * this with this specialized hash function. |
| 505 | */ |
| 506 | static uint32 |
| 507 | proclock_hash(const void *key, Size keysize) |
| 508 | { |
| 509 | const PROCLOCKTAG *proclocktag = (const PROCLOCKTAG *) key; |
| 510 | uint32 lockhash; |
| 511 | Datum procptr; |
| 512 | |
| 513 | Assert(keysize == sizeof(PROCLOCKTAG)); |
| 514 | |
| 515 | /* Look into the associated LOCK object, and compute its hash code */ |
| 516 | lockhash = LockTagHashCode(&proclocktag->myLock->tag); |
| 517 | |
| 518 | /* |
| 519 | * To make the hash code also depend on the PGPROC, we xor the proc |
| 520 | * struct's address into the hash code, left-shifted so that the |
| 521 | * partition-number bits don't change. Since this is only a hash, we |
| 522 | * don't care if we lose high-order bits of the address; use an |
| 523 | * intermediate variable to suppress cast-pointer-to-int warnings. |
| 524 | */ |
| 525 | procptr = PointerGetDatum(proclocktag->myProc); |
| 526 | lockhash ^= ((uint32) procptr) << LOG2_NUM_LOCK_PARTITIONS; |
| 527 | |
| 528 | return lockhash; |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * Compute the hash code associated with a PROCLOCKTAG, given the hashcode |
| 533 | * for its underlying LOCK. |
| 534 | * |
| 535 | * We use this just to avoid redundant calls of LockTagHashCode(). |
| 536 | */ |
| 537 | static inline uint32 |
| 538 | ProcLockHashCode(const PROCLOCKTAG *proclocktag, uint32 hashcode) |
| 539 | { |
| 540 | uint32 lockhash = hashcode; |
| 541 | Datum procptr; |
| 542 | |
| 543 | /* |
| 544 | * This must match proclock_hash()! |
| 545 | */ |
| 546 | procptr = PointerGetDatum(proclocktag->myProc); |
| 547 | lockhash ^= ((uint32) procptr) << LOG2_NUM_LOCK_PARTITIONS; |
| 548 | |
| 549 | return lockhash; |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | * Given two lock modes, return whether they would conflict. |
| 554 | */ |
| 555 | bool |
| 556 | DoLockModesConflict(LOCKMODE mode1, LOCKMODE mode2) |
| 557 | { |
| 558 | LockMethod lockMethodTable = LockMethods[DEFAULT_LOCKMETHOD]; |
| 559 | |
| 560 | if (lockMethodTable->conflictTab[mode1] & LOCKBIT_ON(mode2)) |
| 561 | return true; |
| 562 | |
| 563 | return false; |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * LockHeldByMe -- test whether lock 'locktag' is held with mode 'lockmode' |
| 568 | * by the current transaction |
| 569 | */ |
| 570 | bool |
| 571 | LockHeldByMe(const LOCKTAG *locktag, LOCKMODE lockmode) |
| 572 | { |
| 573 | LOCALLOCKTAG localtag; |
| 574 | LOCALLOCK *locallock; |
| 575 | |
| 576 | /* |
| 577 | * See if there is a LOCALLOCK entry for this lock and lockmode |
| 578 | */ |
| 579 | MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */ |
| 580 | localtag.lock = *locktag; |
| 581 | localtag.mode = lockmode; |
| 582 | |
| 583 | locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash, |
| 584 | (void *) &localtag, |
| 585 | HASH_FIND, NULL); |
| 586 | |
| 587 | return (locallock && locallock->nLocks > 0); |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * LockHasWaiters -- look up 'locktag' and check if releasing this |
| 592 | * lock would wake up other processes waiting for it. |
| 593 | */ |
| 594 | bool |
| 595 | LockHasWaiters(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock) |
| 596 | { |
| 597 | LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid; |
| 598 | LockMethod lockMethodTable; |
| 599 | LOCALLOCKTAG localtag; |
| 600 | LOCALLOCK *locallock; |
| 601 | LOCK *lock; |
| 602 | PROCLOCK *proclock; |
| 603 | LWLock *partitionLock; |
| 604 | bool hasWaiters = false; |
| 605 | |
| 606 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 607 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 608 | lockMethodTable = LockMethods[lockmethodid]; |
| 609 | if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes) |
| 610 | elog(ERROR, "unrecognized lock mode: %d" , lockmode); |
| 611 | |
| 612 | #ifdef LOCK_DEBUG |
| 613 | if (LOCK_DEBUG_ENABLED(locktag)) |
| 614 | elog(LOG, "LockHasWaiters: lock [%u,%u] %s" , |
| 615 | locktag->locktag_field1, locktag->locktag_field2, |
| 616 | lockMethodTable->lockModeNames[lockmode]); |
| 617 | #endif |
| 618 | |
| 619 | /* |
| 620 | * Find the LOCALLOCK entry for this lock and lockmode |
| 621 | */ |
| 622 | MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */ |
| 623 | localtag.lock = *locktag; |
| 624 | localtag.mode = lockmode; |
| 625 | |
| 626 | locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash, |
| 627 | (void *) &localtag, |
| 628 | HASH_FIND, NULL); |
| 629 | |
| 630 | /* |
| 631 | * let the caller print its own error message, too. Do not ereport(ERROR). |
| 632 | */ |
| 633 | if (!locallock || locallock->nLocks <= 0) |
| 634 | { |
| 635 | elog(WARNING, "you don't own a lock of type %s" , |
| 636 | lockMethodTable->lockModeNames[lockmode]); |
| 637 | return false; |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * Check the shared lock table. |
| 642 | */ |
| 643 | partitionLock = LockHashPartitionLock(locallock->hashcode); |
| 644 | |
| 645 | LWLockAcquire(partitionLock, LW_SHARED); |
| 646 | |
| 647 | /* |
| 648 | * We don't need to re-find the lock or proclock, since we kept their |
| 649 | * addresses in the locallock table, and they couldn't have been removed |
| 650 | * while we were holding a lock on them. |
| 651 | */ |
| 652 | lock = locallock->lock; |
| 653 | LOCK_PRINT("LockHasWaiters: found" , lock, lockmode); |
| 654 | proclock = locallock->proclock; |
| 655 | PROCLOCK_PRINT("LockHasWaiters: found" , proclock); |
| 656 | |
| 657 | /* |
| 658 | * Double-check that we are actually holding a lock of the type we want to |
| 659 | * release. |
| 660 | */ |
| 661 | if (!(proclock->holdMask & LOCKBIT_ON(lockmode))) |
| 662 | { |
| 663 | PROCLOCK_PRINT("LockHasWaiters: WRONGTYPE" , proclock); |
| 664 | LWLockRelease(partitionLock); |
| 665 | elog(WARNING, "you don't own a lock of type %s" , |
| 666 | lockMethodTable->lockModeNames[lockmode]); |
| 667 | RemoveLocalLock(locallock); |
| 668 | return false; |
| 669 | } |
| 670 | |
| 671 | /* |
| 672 | * Do the checking. |
| 673 | */ |
| 674 | if ((lockMethodTable->conflictTab[lockmode] & lock->waitMask) != 0) |
| 675 | hasWaiters = true; |
| 676 | |
| 677 | LWLockRelease(partitionLock); |
| 678 | |
| 679 | return hasWaiters; |
| 680 | } |
| 681 | |
| 682 | /* |
| 683 | * LockAcquire -- Check for lock conflicts, sleep if conflict found, |
| 684 | * set lock if/when no conflicts. |
| 685 | * |
| 686 | * Inputs: |
| 687 | * locktag: unique identifier for the lockable object |
| 688 | * lockmode: lock mode to acquire |
| 689 | * sessionLock: if true, acquire lock for session not current transaction |
| 690 | * dontWait: if true, don't wait to acquire lock |
| 691 | * |
| 692 | * Returns one of: |
| 693 | * LOCKACQUIRE_NOT_AVAIL lock not available, and dontWait=true |
| 694 | * LOCKACQUIRE_OK lock successfully acquired |
| 695 | * LOCKACQUIRE_ALREADY_HELD incremented count for lock already held |
| 696 | * LOCKACQUIRE_ALREADY_CLEAR incremented count for lock already clear |
| 697 | * |
| 698 | * In the normal case where dontWait=false and the caller doesn't need to |
| 699 | * distinguish a freshly acquired lock from one already taken earlier in |
| 700 | * this same transaction, there is no need to examine the return value. |
| 701 | * |
| 702 | * Side Effects: The lock is acquired and recorded in lock tables. |
| 703 | * |
| 704 | * NOTE: if we wait for the lock, there is no way to abort the wait |
| 705 | * short of aborting the transaction. |
| 706 | */ |
| 707 | LockAcquireResult |
| 708 | LockAcquire(const LOCKTAG *locktag, |
| 709 | LOCKMODE lockmode, |
| 710 | bool sessionLock, |
| 711 | bool dontWait) |
| 712 | { |
| 713 | return LockAcquireExtended(locktag, lockmode, sessionLock, dontWait, |
| 714 | true, NULL); |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * LockAcquireExtended - allows us to specify additional options |
| 719 | * |
| 720 | * reportMemoryError specifies whether a lock request that fills the lock |
| 721 | * table should generate an ERROR or not. Passing "false" allows the caller |
| 722 | * to attempt to recover from lock-table-full situations, perhaps by forcibly |
| 723 | * cancelling other lock holders and then retrying. Note, however, that the |
| 724 | * return code for that is LOCKACQUIRE_NOT_AVAIL, so that it's unsafe to use |
| 725 | * in combination with dontWait = true, as the cause of failure couldn't be |
| 726 | * distinguished. |
| 727 | * |
| 728 | * If locallockp isn't NULL, *locallockp receives a pointer to the LOCALLOCK |
| 729 | * table entry if a lock is successfully acquired, or NULL if not. |
| 730 | */ |
| 731 | LockAcquireResult |
| 732 | LockAcquireExtended(const LOCKTAG *locktag, |
| 733 | LOCKMODE lockmode, |
| 734 | bool sessionLock, |
| 735 | bool dontWait, |
| 736 | bool reportMemoryError, |
| 737 | LOCALLOCK **locallockp) |
| 738 | { |
| 739 | LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid; |
| 740 | LockMethod lockMethodTable; |
| 741 | LOCALLOCKTAG localtag; |
| 742 | LOCALLOCK *locallock; |
| 743 | LOCK *lock; |
| 744 | PROCLOCK *proclock; |
| 745 | bool found; |
| 746 | ResourceOwner owner; |
| 747 | uint32 hashcode; |
| 748 | LWLock *partitionLock; |
| 749 | int status; |
| 750 | bool log_lock = false; |
| 751 | |
| 752 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 753 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 754 | lockMethodTable = LockMethods[lockmethodid]; |
| 755 | if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes) |
| 756 | elog(ERROR, "unrecognized lock mode: %d" , lockmode); |
| 757 | |
| 758 | if (RecoveryInProgress() && !InRecovery && |
| 759 | (locktag->locktag_type == LOCKTAG_OBJECT || |
| 760 | locktag->locktag_type == LOCKTAG_RELATION) && |
| 761 | lockmode > RowExclusiveLock) |
| 762 | ereport(ERROR, |
| 763 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 764 | errmsg("cannot acquire lock mode %s on database objects while recovery is in progress" , |
| 765 | lockMethodTable->lockModeNames[lockmode]), |
| 766 | errhint("Only RowExclusiveLock or less can be acquired on database objects during recovery." ))); |
| 767 | |
| 768 | #ifdef LOCK_DEBUG |
| 769 | if (LOCK_DEBUG_ENABLED(locktag)) |
| 770 | elog(LOG, "LockAcquire: lock [%u,%u] %s" , |
| 771 | locktag->locktag_field1, locktag->locktag_field2, |
| 772 | lockMethodTable->lockModeNames[lockmode]); |
| 773 | #endif |
| 774 | |
| 775 | /* Identify owner for lock */ |
| 776 | if (sessionLock) |
| 777 | owner = NULL; |
| 778 | else |
| 779 | owner = CurrentResourceOwner; |
| 780 | |
| 781 | /* |
| 782 | * Find or create a LOCALLOCK entry for this lock and lockmode |
| 783 | */ |
| 784 | MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */ |
| 785 | localtag.lock = *locktag; |
| 786 | localtag.mode = lockmode; |
| 787 | |
| 788 | locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash, |
| 789 | (void *) &localtag, |
| 790 | HASH_ENTER, &found); |
| 791 | |
| 792 | /* |
| 793 | * if it's a new locallock object, initialize it |
| 794 | */ |
| 795 | if (!found) |
| 796 | { |
| 797 | locallock->lock = NULL; |
| 798 | locallock->proclock = NULL; |
| 799 | locallock->hashcode = LockTagHashCode(&(localtag.lock)); |
| 800 | locallock->nLocks = 0; |
| 801 | locallock->holdsStrongLockCount = false; |
| 802 | locallock->lockCleared = false; |
| 803 | locallock->numLockOwners = 0; |
| 804 | locallock->maxLockOwners = 8; |
| 805 | locallock->lockOwners = NULL; /* in case next line fails */ |
| 806 | locallock->lockOwners = (LOCALLOCKOWNER *) |
| 807 | MemoryContextAlloc(TopMemoryContext, |
| 808 | locallock->maxLockOwners * sizeof(LOCALLOCKOWNER)); |
| 809 | } |
| 810 | else |
| 811 | { |
| 812 | /* Make sure there will be room to remember the lock */ |
| 813 | if (locallock->numLockOwners >= locallock->maxLockOwners) |
| 814 | { |
| 815 | int newsize = locallock->maxLockOwners * 2; |
| 816 | |
| 817 | locallock->lockOwners = (LOCALLOCKOWNER *) |
| 818 | repalloc(locallock->lockOwners, |
| 819 | newsize * sizeof(LOCALLOCKOWNER)); |
| 820 | locallock->maxLockOwners = newsize; |
| 821 | } |
| 822 | } |
| 823 | hashcode = locallock->hashcode; |
| 824 | |
| 825 | if (locallockp) |
| 826 | *locallockp = locallock; |
| 827 | |
| 828 | /* |
| 829 | * If we already hold the lock, we can just increase the count locally. |
| 830 | * |
| 831 | * If lockCleared is already set, caller need not worry about absorbing |
| 832 | * sinval messages related to the lock's object. |
| 833 | */ |
| 834 | if (locallock->nLocks > 0) |
| 835 | { |
| 836 | GrantLockLocal(locallock, owner); |
| 837 | if (locallock->lockCleared) |
| 838 | return LOCKACQUIRE_ALREADY_CLEAR; |
| 839 | else |
| 840 | return LOCKACQUIRE_ALREADY_HELD; |
| 841 | } |
| 842 | |
| 843 | /* |
| 844 | * Prepare to emit a WAL record if acquisition of this lock needs to be |
| 845 | * replayed in a standby server. |
| 846 | * |
| 847 | * Here we prepare to log; after lock is acquired we'll issue log record. |
| 848 | * This arrangement simplifies error recovery in case the preparation step |
| 849 | * fails. |
| 850 | * |
| 851 | * Only AccessExclusiveLocks can conflict with lock types that read-only |
| 852 | * transactions can acquire in a standby server. Make sure this definition |
| 853 | * matches the one in GetRunningTransactionLocks(). |
| 854 | */ |
| 855 | if (lockmode >= AccessExclusiveLock && |
| 856 | locktag->locktag_type == LOCKTAG_RELATION && |
| 857 | !RecoveryInProgress() && |
| 858 | XLogStandbyInfoActive()) |
| 859 | { |
| 860 | LogAccessExclusiveLockPrepare(); |
| 861 | log_lock = true; |
| 862 | } |
| 863 | |
| 864 | /* |
| 865 | * Attempt to take lock via fast path, if eligible. But if we remember |
| 866 | * having filled up the fast path array, we don't attempt to make any |
| 867 | * further use of it until we release some locks. It's possible that some |
| 868 | * other backend has transferred some of those locks to the shared hash |
| 869 | * table, leaving space free, but it's not worth acquiring the LWLock just |
| 870 | * to check. It's also possible that we're acquiring a second or third |
| 871 | * lock type on a relation we have already locked using the fast-path, but |
| 872 | * for now we don't worry about that case either. |
| 873 | */ |
| 874 | if (EligibleForRelationFastPath(locktag, lockmode) && |
| 875 | FastPathLocalUseCount < FP_LOCK_SLOTS_PER_BACKEND) |
| 876 | { |
| 877 | uint32 fasthashcode = FastPathStrongLockHashPartition(hashcode); |
| 878 | bool acquired; |
| 879 | |
| 880 | /* |
| 881 | * LWLockAcquire acts as a memory sequencing point, so it's safe to |
| 882 | * assume that any strong locker whose increment to |
| 883 | * FastPathStrongRelationLocks->counts becomes visible after we test |
| 884 | * it has yet to begin to transfer fast-path locks. |
| 885 | */ |
| 886 | LWLockAcquire(&MyProc->backendLock, LW_EXCLUSIVE); |
| 887 | if (FastPathStrongRelationLocks->count[fasthashcode] != 0) |
| 888 | acquired = false; |
| 889 | else |
| 890 | acquired = FastPathGrantRelationLock(locktag->locktag_field2, |
| 891 | lockmode); |
| 892 | LWLockRelease(&MyProc->backendLock); |
| 893 | if (acquired) |
| 894 | { |
| 895 | /* |
| 896 | * The locallock might contain stale pointers to some old shared |
| 897 | * objects; we MUST reset these to null before considering the |
| 898 | * lock to be acquired via fast-path. |
| 899 | */ |
| 900 | locallock->lock = NULL; |
| 901 | locallock->proclock = NULL; |
| 902 | GrantLockLocal(locallock, owner); |
| 903 | return LOCKACQUIRE_OK; |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * If this lock could potentially have been taken via the fast-path by |
| 909 | * some other backend, we must (temporarily) disable further use of the |
| 910 | * fast-path for this lock tag, and migrate any locks already taken via |
| 911 | * this method to the main lock table. |
| 912 | */ |
| 913 | if (ConflictsWithRelationFastPath(locktag, lockmode)) |
| 914 | { |
| 915 | uint32 fasthashcode = FastPathStrongLockHashPartition(hashcode); |
| 916 | |
| 917 | BeginStrongLockAcquire(locallock, fasthashcode); |
| 918 | if (!FastPathTransferRelationLocks(lockMethodTable, locktag, |
| 919 | hashcode)) |
| 920 | { |
| 921 | AbortStrongLockAcquire(); |
| 922 | if (locallock->nLocks == 0) |
| 923 | RemoveLocalLock(locallock); |
| 924 | if (locallockp) |
| 925 | *locallockp = NULL; |
| 926 | if (reportMemoryError) |
| 927 | ereport(ERROR, |
| 928 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 929 | errmsg("out of shared memory" ), |
| 930 | errhint("You might need to increase max_locks_per_transaction." ))); |
| 931 | else |
| 932 | return LOCKACQUIRE_NOT_AVAIL; |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | /* |
| 937 | * We didn't find the lock in our LOCALLOCK table, and we didn't manage to |
| 938 | * take it via the fast-path, either, so we've got to mess with the shared |
| 939 | * lock table. |
| 940 | */ |
| 941 | partitionLock = LockHashPartitionLock(hashcode); |
| 942 | |
| 943 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 944 | |
| 945 | /* |
| 946 | * Find or create lock and proclock entries with this tag |
| 947 | * |
| 948 | * Note: if the locallock object already existed, it might have a pointer |
| 949 | * to the lock already ... but we should not assume that that pointer is |
| 950 | * valid, since a lock object with zero hold and request counts can go |
| 951 | * away anytime. So we have to use SetupLockInTable() to recompute the |
| 952 | * lock and proclock pointers, even if they're already set. |
| 953 | */ |
| 954 | proclock = SetupLockInTable(lockMethodTable, MyProc, locktag, |
| 955 | hashcode, lockmode); |
| 956 | if (!proclock) |
| 957 | { |
| 958 | AbortStrongLockAcquire(); |
| 959 | LWLockRelease(partitionLock); |
| 960 | if (locallock->nLocks == 0) |
| 961 | RemoveLocalLock(locallock); |
| 962 | if (locallockp) |
| 963 | *locallockp = NULL; |
| 964 | if (reportMemoryError) |
| 965 | ereport(ERROR, |
| 966 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 967 | errmsg("out of shared memory" ), |
| 968 | errhint("You might need to increase max_locks_per_transaction." ))); |
| 969 | else |
| 970 | return LOCKACQUIRE_NOT_AVAIL; |
| 971 | } |
| 972 | locallock->proclock = proclock; |
| 973 | lock = proclock->tag.myLock; |
| 974 | locallock->lock = lock; |
| 975 | |
| 976 | /* |
| 977 | * If lock requested conflicts with locks requested by waiters, must join |
| 978 | * wait queue. Otherwise, check for conflict with already-held locks. |
| 979 | * (That's last because most complex check.) |
| 980 | */ |
| 981 | if (lockMethodTable->conflictTab[lockmode] & lock->waitMask) |
| 982 | status = STATUS_FOUND; |
| 983 | else |
| 984 | status = LockCheckConflicts(lockMethodTable, lockmode, |
| 985 | lock, proclock); |
| 986 | |
| 987 | if (status == STATUS_OK) |
| 988 | { |
| 989 | /* No conflict with held or previously requested locks */ |
| 990 | GrantLock(lock, proclock, lockmode); |
| 991 | GrantLockLocal(locallock, owner); |
| 992 | } |
| 993 | else |
| 994 | { |
| 995 | Assert(status == STATUS_FOUND); |
| 996 | |
| 997 | /* |
| 998 | * We can't acquire the lock immediately. If caller specified no |
| 999 | * blocking, remove useless table entries and return NOT_AVAIL without |
| 1000 | * waiting. |
| 1001 | */ |
| 1002 | if (dontWait) |
| 1003 | { |
| 1004 | AbortStrongLockAcquire(); |
| 1005 | if (proclock->holdMask == 0) |
| 1006 | { |
| 1007 | uint32 proclock_hashcode; |
| 1008 | |
| 1009 | proclock_hashcode = ProcLockHashCode(&proclock->tag, hashcode); |
| 1010 | SHMQueueDelete(&proclock->lockLink); |
| 1011 | SHMQueueDelete(&proclock->procLink); |
| 1012 | if (!hash_search_with_hash_value(LockMethodProcLockHash, |
| 1013 | (void *) &(proclock->tag), |
| 1014 | proclock_hashcode, |
| 1015 | HASH_REMOVE, |
| 1016 | NULL)) |
| 1017 | elog(PANIC, "proclock table corrupted" ); |
| 1018 | } |
| 1019 | else |
| 1020 | PROCLOCK_PRINT("LockAcquire: NOWAIT" , proclock); |
| 1021 | lock->nRequested--; |
| 1022 | lock->requested[lockmode]--; |
| 1023 | LOCK_PRINT("LockAcquire: conditional lock failed" , lock, lockmode); |
| 1024 | Assert((lock->nRequested > 0) && (lock->requested[lockmode] >= 0)); |
| 1025 | Assert(lock->nGranted <= lock->nRequested); |
| 1026 | LWLockRelease(partitionLock); |
| 1027 | if (locallock->nLocks == 0) |
| 1028 | RemoveLocalLock(locallock); |
| 1029 | if (locallockp) |
| 1030 | *locallockp = NULL; |
| 1031 | return LOCKACQUIRE_NOT_AVAIL; |
| 1032 | } |
| 1033 | |
| 1034 | /* |
| 1035 | * Set bitmask of locks this process already holds on this object. |
| 1036 | */ |
| 1037 | MyProc->heldLocks = proclock->holdMask; |
| 1038 | |
| 1039 | /* |
| 1040 | * Sleep till someone wakes me up. |
| 1041 | */ |
| 1042 | |
| 1043 | TRACE_POSTGRESQL_LOCK_WAIT_START(locktag->locktag_field1, |
| 1044 | locktag->locktag_field2, |
| 1045 | locktag->locktag_field3, |
| 1046 | locktag->locktag_field4, |
| 1047 | locktag->locktag_type, |
| 1048 | lockmode); |
| 1049 | |
| 1050 | WaitOnLock(locallock, owner); |
| 1051 | |
| 1052 | TRACE_POSTGRESQL_LOCK_WAIT_DONE(locktag->locktag_field1, |
| 1053 | locktag->locktag_field2, |
| 1054 | locktag->locktag_field3, |
| 1055 | locktag->locktag_field4, |
| 1056 | locktag->locktag_type, |
| 1057 | lockmode); |
| 1058 | |
| 1059 | /* |
| 1060 | * NOTE: do not do any material change of state between here and |
| 1061 | * return. All required changes in locktable state must have been |
| 1062 | * done when the lock was granted to us --- see notes in WaitOnLock. |
| 1063 | */ |
| 1064 | |
| 1065 | /* |
| 1066 | * Check the proclock entry status, in case something in the ipc |
| 1067 | * communication doesn't work correctly. |
| 1068 | */ |
| 1069 | if (!(proclock->holdMask & LOCKBIT_ON(lockmode))) |
| 1070 | { |
| 1071 | AbortStrongLockAcquire(); |
| 1072 | PROCLOCK_PRINT("LockAcquire: INCONSISTENT" , proclock); |
| 1073 | LOCK_PRINT("LockAcquire: INCONSISTENT" , lock, lockmode); |
| 1074 | /* Should we retry ? */ |
| 1075 | LWLockRelease(partitionLock); |
| 1076 | elog(ERROR, "LockAcquire failed" ); |
| 1077 | } |
| 1078 | PROCLOCK_PRINT("LockAcquire: granted" , proclock); |
| 1079 | LOCK_PRINT("LockAcquire: granted" , lock, lockmode); |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * Lock state is fully up-to-date now; if we error out after this, no |
| 1084 | * special error cleanup is required. |
| 1085 | */ |
| 1086 | FinishStrongLockAcquire(); |
| 1087 | |
| 1088 | LWLockRelease(partitionLock); |
| 1089 | |
| 1090 | /* |
| 1091 | * Emit a WAL record if acquisition of this lock needs to be replayed in a |
| 1092 | * standby server. |
| 1093 | */ |
| 1094 | if (log_lock) |
| 1095 | { |
| 1096 | /* |
| 1097 | * Decode the locktag back to the original values, to avoid sending |
| 1098 | * lots of empty bytes with every message. See lock.h to check how a |
| 1099 | * locktag is defined for LOCKTAG_RELATION |
| 1100 | */ |
| 1101 | LogAccessExclusiveLock(locktag->locktag_field1, |
| 1102 | locktag->locktag_field2); |
| 1103 | } |
| 1104 | |
| 1105 | return LOCKACQUIRE_OK; |
| 1106 | } |
| 1107 | |
| 1108 | /* |
| 1109 | * Find or create LOCK and PROCLOCK objects as needed for a new lock |
| 1110 | * request. |
| 1111 | * |
| 1112 | * Returns the PROCLOCK object, or NULL if we failed to create the objects |
| 1113 | * for lack of shared memory. |
| 1114 | * |
| 1115 | * The appropriate partition lock must be held at entry, and will be |
| 1116 | * held at exit. |
| 1117 | */ |
| 1118 | static PROCLOCK * |
| 1119 | SetupLockInTable(LockMethod lockMethodTable, PGPROC *proc, |
| 1120 | const LOCKTAG *locktag, uint32 hashcode, LOCKMODE lockmode) |
| 1121 | { |
| 1122 | LOCK *lock; |
| 1123 | PROCLOCK *proclock; |
| 1124 | PROCLOCKTAG proclocktag; |
| 1125 | uint32 proclock_hashcode; |
| 1126 | bool found; |
| 1127 | |
| 1128 | /* |
| 1129 | * Find or create a lock with this tag. |
| 1130 | */ |
| 1131 | lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash, |
| 1132 | (const void *) locktag, |
| 1133 | hashcode, |
| 1134 | HASH_ENTER_NULL, |
| 1135 | &found); |
| 1136 | if (!lock) |
| 1137 | return NULL; |
| 1138 | |
| 1139 | /* |
| 1140 | * if it's a new lock object, initialize it |
| 1141 | */ |
| 1142 | if (!found) |
| 1143 | { |
| 1144 | lock->grantMask = 0; |
| 1145 | lock->waitMask = 0; |
| 1146 | SHMQueueInit(&(lock->procLocks)); |
| 1147 | ProcQueueInit(&(lock->waitProcs)); |
| 1148 | lock->nRequested = 0; |
| 1149 | lock->nGranted = 0; |
| 1150 | MemSet(lock->requested, 0, sizeof(int) * MAX_LOCKMODES); |
| 1151 | MemSet(lock->granted, 0, sizeof(int) * MAX_LOCKMODES); |
| 1152 | LOCK_PRINT("LockAcquire: new" , lock, lockmode); |
| 1153 | } |
| 1154 | else |
| 1155 | { |
| 1156 | LOCK_PRINT("LockAcquire: found" , lock, lockmode); |
| 1157 | Assert((lock->nRequested >= 0) && (lock->requested[lockmode] >= 0)); |
| 1158 | Assert((lock->nGranted >= 0) && (lock->granted[lockmode] >= 0)); |
| 1159 | Assert(lock->nGranted <= lock->nRequested); |
| 1160 | } |
| 1161 | |
| 1162 | /* |
| 1163 | * Create the hash key for the proclock table. |
| 1164 | */ |
| 1165 | proclocktag.myLock = lock; |
| 1166 | proclocktag.myProc = proc; |
| 1167 | |
| 1168 | proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode); |
| 1169 | |
| 1170 | /* |
| 1171 | * Find or create a proclock entry with this tag |
| 1172 | */ |
| 1173 | proclock = (PROCLOCK *) hash_search_with_hash_value(LockMethodProcLockHash, |
| 1174 | (void *) &proclocktag, |
| 1175 | proclock_hashcode, |
| 1176 | HASH_ENTER_NULL, |
| 1177 | &found); |
| 1178 | if (!proclock) |
| 1179 | { |
| 1180 | /* Oops, not enough shmem for the proclock */ |
| 1181 | if (lock->nRequested == 0) |
| 1182 | { |
| 1183 | /* |
| 1184 | * There are no other requestors of this lock, so garbage-collect |
| 1185 | * the lock object. We *must* do this to avoid a permanent leak |
| 1186 | * of shared memory, because there won't be anything to cause |
| 1187 | * anyone to release the lock object later. |
| 1188 | */ |
| 1189 | Assert(SHMQueueEmpty(&(lock->procLocks))); |
| 1190 | if (!hash_search_with_hash_value(LockMethodLockHash, |
| 1191 | (void *) &(lock->tag), |
| 1192 | hashcode, |
| 1193 | HASH_REMOVE, |
| 1194 | NULL)) |
| 1195 | elog(PANIC, "lock table corrupted" ); |
| 1196 | } |
| 1197 | return NULL; |
| 1198 | } |
| 1199 | |
| 1200 | /* |
| 1201 | * If new, initialize the new entry |
| 1202 | */ |
| 1203 | if (!found) |
| 1204 | { |
| 1205 | uint32 partition = LockHashPartition(hashcode); |
| 1206 | |
| 1207 | /* |
| 1208 | * It might seem unsafe to access proclock->groupLeader without a |
| 1209 | * lock, but it's not really. Either we are initializing a proclock |
| 1210 | * on our own behalf, in which case our group leader isn't changing |
| 1211 | * because the group leader for a process can only ever be changed by |
| 1212 | * the process itself; or else we are transferring a fast-path lock to |
| 1213 | * the main lock table, in which case that process can't change it's |
| 1214 | * lock group leader without first releasing all of its locks (and in |
| 1215 | * particular the one we are currently transferring). |
| 1216 | */ |
| 1217 | proclock->groupLeader = proc->lockGroupLeader != NULL ? |
| 1218 | proc->lockGroupLeader : proc; |
| 1219 | proclock->holdMask = 0; |
| 1220 | proclock->releaseMask = 0; |
| 1221 | /* Add proclock to appropriate lists */ |
| 1222 | SHMQueueInsertBefore(&lock->procLocks, &proclock->lockLink); |
| 1223 | SHMQueueInsertBefore(&(proc->myProcLocks[partition]), |
| 1224 | &proclock->procLink); |
| 1225 | PROCLOCK_PRINT("LockAcquire: new" , proclock); |
| 1226 | } |
| 1227 | else |
| 1228 | { |
| 1229 | PROCLOCK_PRINT("LockAcquire: found" , proclock); |
| 1230 | Assert((proclock->holdMask & ~lock->grantMask) == 0); |
| 1231 | |
| 1232 | #ifdef CHECK_DEADLOCK_RISK |
| 1233 | |
| 1234 | /* |
| 1235 | * Issue warning if we already hold a lower-level lock on this object |
| 1236 | * and do not hold a lock of the requested level or higher. This |
| 1237 | * indicates a deadlock-prone coding practice (eg, we'd have a |
| 1238 | * deadlock if another backend were following the same code path at |
| 1239 | * about the same time). |
| 1240 | * |
| 1241 | * This is not enabled by default, because it may generate log entries |
| 1242 | * about user-level coding practices that are in fact safe in context. |
| 1243 | * It can be enabled to help find system-level problems. |
| 1244 | * |
| 1245 | * XXX Doing numeric comparison on the lockmodes is a hack; it'd be |
| 1246 | * better to use a table. For now, though, this works. |
| 1247 | */ |
| 1248 | { |
| 1249 | int i; |
| 1250 | |
| 1251 | for (i = lockMethodTable->numLockModes; i > 0; i--) |
| 1252 | { |
| 1253 | if (proclock->holdMask & LOCKBIT_ON(i)) |
| 1254 | { |
| 1255 | if (i >= (int) lockmode) |
| 1256 | break; /* safe: we have a lock >= req level */ |
| 1257 | elog(LOG, "deadlock risk: raising lock level" |
| 1258 | " from %s to %s on object %u/%u/%u" , |
| 1259 | lockMethodTable->lockModeNames[i], |
| 1260 | lockMethodTable->lockModeNames[lockmode], |
| 1261 | lock->tag.locktag_field1, lock->tag.locktag_field2, |
| 1262 | lock->tag.locktag_field3); |
| 1263 | break; |
| 1264 | } |
| 1265 | } |
| 1266 | } |
| 1267 | #endif /* CHECK_DEADLOCK_RISK */ |
| 1268 | } |
| 1269 | |
| 1270 | /* |
| 1271 | * lock->nRequested and lock->requested[] count the total number of |
| 1272 | * requests, whether granted or waiting, so increment those immediately. |
| 1273 | * The other counts don't increment till we get the lock. |
| 1274 | */ |
| 1275 | lock->nRequested++; |
| 1276 | lock->requested[lockmode]++; |
| 1277 | Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0)); |
| 1278 | |
| 1279 | /* |
| 1280 | * We shouldn't already hold the desired lock; else locallock table is |
| 1281 | * broken. |
| 1282 | */ |
| 1283 | if (proclock->holdMask & LOCKBIT_ON(lockmode)) |
| 1284 | elog(ERROR, "lock %s on object %u/%u/%u is already held" , |
| 1285 | lockMethodTable->lockModeNames[lockmode], |
| 1286 | lock->tag.locktag_field1, lock->tag.locktag_field2, |
| 1287 | lock->tag.locktag_field3); |
| 1288 | |
| 1289 | return proclock; |
| 1290 | } |
| 1291 | |
| 1292 | /* |
| 1293 | * Subroutine to free a locallock entry |
| 1294 | */ |
| 1295 | static void |
| 1296 | RemoveLocalLock(LOCALLOCK *locallock) |
| 1297 | { |
| 1298 | int i; |
| 1299 | |
| 1300 | for (i = locallock->numLockOwners - 1; i >= 0; i--) |
| 1301 | { |
| 1302 | if (locallock->lockOwners[i].owner != NULL) |
| 1303 | ResourceOwnerForgetLock(locallock->lockOwners[i].owner, locallock); |
| 1304 | } |
| 1305 | locallock->numLockOwners = 0; |
| 1306 | if (locallock->lockOwners != NULL) |
| 1307 | pfree(locallock->lockOwners); |
| 1308 | locallock->lockOwners = NULL; |
| 1309 | |
| 1310 | if (locallock->holdsStrongLockCount) |
| 1311 | { |
| 1312 | uint32 fasthashcode; |
| 1313 | |
| 1314 | fasthashcode = FastPathStrongLockHashPartition(locallock->hashcode); |
| 1315 | |
| 1316 | SpinLockAcquire(&FastPathStrongRelationLocks->mutex); |
| 1317 | Assert(FastPathStrongRelationLocks->count[fasthashcode] > 0); |
| 1318 | FastPathStrongRelationLocks->count[fasthashcode]--; |
| 1319 | locallock->holdsStrongLockCount = false; |
| 1320 | SpinLockRelease(&FastPathStrongRelationLocks->mutex); |
| 1321 | } |
| 1322 | |
| 1323 | if (!hash_search(LockMethodLocalHash, |
| 1324 | (void *) &(locallock->tag), |
| 1325 | HASH_REMOVE, NULL)) |
| 1326 | elog(WARNING, "locallock table corrupted" ); |
| 1327 | } |
| 1328 | |
| 1329 | /* |
| 1330 | * LockCheckConflicts -- test whether requested lock conflicts |
| 1331 | * with those already granted |
| 1332 | * |
| 1333 | * Returns STATUS_FOUND if conflict, STATUS_OK if no conflict. |
| 1334 | * |
| 1335 | * NOTES: |
| 1336 | * Here's what makes this complicated: one process's locks don't |
| 1337 | * conflict with one another, no matter what purpose they are held for |
| 1338 | * (eg, session and transaction locks do not conflict). Nor do the locks |
| 1339 | * of one process in a lock group conflict with those of another process in |
| 1340 | * the same group. So, we must subtract off these locks when determining |
| 1341 | * whether the requested new lock conflicts with those already held. |
| 1342 | */ |
| 1343 | int |
| 1344 | LockCheckConflicts(LockMethod lockMethodTable, |
| 1345 | LOCKMODE lockmode, |
| 1346 | LOCK *lock, |
| 1347 | PROCLOCK *proclock) |
| 1348 | { |
| 1349 | int numLockModes = lockMethodTable->numLockModes; |
| 1350 | LOCKMASK myLocks; |
| 1351 | int conflictMask = lockMethodTable->conflictTab[lockmode]; |
| 1352 | int conflictsRemaining[MAX_LOCKMODES]; |
| 1353 | int totalConflictsRemaining = 0; |
| 1354 | int i; |
| 1355 | SHM_QUEUE *procLocks; |
| 1356 | PROCLOCK *otherproclock; |
| 1357 | |
| 1358 | /* |
| 1359 | * first check for global conflicts: If no locks conflict with my request, |
| 1360 | * then I get the lock. |
| 1361 | * |
| 1362 | * Checking for conflict: lock->grantMask represents the types of |
| 1363 | * currently held locks. conflictTable[lockmode] has a bit set for each |
| 1364 | * type of lock that conflicts with request. Bitwise compare tells if |
| 1365 | * there is a conflict. |
| 1366 | */ |
| 1367 | if (!(conflictMask & lock->grantMask)) |
| 1368 | { |
| 1369 | PROCLOCK_PRINT("LockCheckConflicts: no conflict" , proclock); |
| 1370 | return STATUS_OK; |
| 1371 | } |
| 1372 | |
| 1373 | /* |
| 1374 | * Rats. Something conflicts. But it could still be my own lock, or a |
| 1375 | * lock held by another member of my locking group. First, figure out how |
| 1376 | * many conflicts remain after subtracting out any locks I hold myself. |
| 1377 | */ |
| 1378 | myLocks = proclock->holdMask; |
| 1379 | for (i = 1; i <= numLockModes; i++) |
| 1380 | { |
| 1381 | if ((conflictMask & LOCKBIT_ON(i)) == 0) |
| 1382 | { |
| 1383 | conflictsRemaining[i] = 0; |
| 1384 | continue; |
| 1385 | } |
| 1386 | conflictsRemaining[i] = lock->granted[i]; |
| 1387 | if (myLocks & LOCKBIT_ON(i)) |
| 1388 | --conflictsRemaining[i]; |
| 1389 | totalConflictsRemaining += conflictsRemaining[i]; |
| 1390 | } |
| 1391 | |
| 1392 | /* If no conflicts remain, we get the lock. */ |
| 1393 | if (totalConflictsRemaining == 0) |
| 1394 | { |
| 1395 | PROCLOCK_PRINT("LockCheckConflicts: resolved (simple)" , proclock); |
| 1396 | return STATUS_OK; |
| 1397 | } |
| 1398 | |
| 1399 | /* If no group locking, it's definitely a conflict. */ |
| 1400 | if (proclock->groupLeader == MyProc && MyProc->lockGroupLeader == NULL) |
| 1401 | { |
| 1402 | Assert(proclock->tag.myProc == MyProc); |
| 1403 | PROCLOCK_PRINT("LockCheckConflicts: conflicting (simple)" , |
| 1404 | proclock); |
| 1405 | return STATUS_FOUND; |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * Locks held in conflicting modes by members of our own lock group are |
| 1410 | * not real conflicts; we can subtract those out and see if we still have |
| 1411 | * a conflict. This is O(N) in the number of processes holding or |
| 1412 | * awaiting locks on this object. We could improve that by making the |
| 1413 | * shared memory state more complex (and larger) but it doesn't seem worth |
| 1414 | * it. |
| 1415 | */ |
| 1416 | procLocks = &(lock->procLocks); |
| 1417 | otherproclock = (PROCLOCK *) |
| 1418 | SHMQueueNext(procLocks, procLocks, offsetof(PROCLOCK, lockLink)); |
| 1419 | while (otherproclock != NULL) |
| 1420 | { |
| 1421 | if (proclock != otherproclock && |
| 1422 | proclock->groupLeader == otherproclock->groupLeader && |
| 1423 | (otherproclock->holdMask & conflictMask) != 0) |
| 1424 | { |
| 1425 | int intersectMask = otherproclock->holdMask & conflictMask; |
| 1426 | |
| 1427 | for (i = 1; i <= numLockModes; i++) |
| 1428 | { |
| 1429 | if ((intersectMask & LOCKBIT_ON(i)) != 0) |
| 1430 | { |
| 1431 | if (conflictsRemaining[i] <= 0) |
| 1432 | elog(PANIC, "proclocks held do not match lock" ); |
| 1433 | conflictsRemaining[i]--; |
| 1434 | totalConflictsRemaining--; |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | if (totalConflictsRemaining == 0) |
| 1439 | { |
| 1440 | PROCLOCK_PRINT("LockCheckConflicts: resolved (group)" , |
| 1441 | proclock); |
| 1442 | return STATUS_OK; |
| 1443 | } |
| 1444 | } |
| 1445 | otherproclock = (PROCLOCK *) |
| 1446 | SHMQueueNext(procLocks, &otherproclock->lockLink, |
| 1447 | offsetof(PROCLOCK, lockLink)); |
| 1448 | } |
| 1449 | |
| 1450 | /* Nope, it's a real conflict. */ |
| 1451 | PROCLOCK_PRINT("LockCheckConflicts: conflicting (group)" , proclock); |
| 1452 | return STATUS_FOUND; |
| 1453 | } |
| 1454 | |
| 1455 | /* |
| 1456 | * GrantLock -- update the lock and proclock data structures to show |
| 1457 | * the lock request has been granted. |
| 1458 | * |
| 1459 | * NOTE: if proc was blocked, it also needs to be removed from the wait list |
| 1460 | * and have its waitLock/waitProcLock fields cleared. That's not done here. |
| 1461 | * |
| 1462 | * NOTE: the lock grant also has to be recorded in the associated LOCALLOCK |
| 1463 | * table entry; but since we may be awaking some other process, we can't do |
| 1464 | * that here; it's done by GrantLockLocal, instead. |
| 1465 | */ |
| 1466 | void |
| 1467 | GrantLock(LOCK *lock, PROCLOCK *proclock, LOCKMODE lockmode) |
| 1468 | { |
| 1469 | lock->nGranted++; |
| 1470 | lock->granted[lockmode]++; |
| 1471 | lock->grantMask |= LOCKBIT_ON(lockmode); |
| 1472 | if (lock->granted[lockmode] == lock->requested[lockmode]) |
| 1473 | lock->waitMask &= LOCKBIT_OFF(lockmode); |
| 1474 | proclock->holdMask |= LOCKBIT_ON(lockmode); |
| 1475 | LOCK_PRINT("GrantLock" , lock, lockmode); |
| 1476 | Assert((lock->nGranted > 0) && (lock->granted[lockmode] > 0)); |
| 1477 | Assert(lock->nGranted <= lock->nRequested); |
| 1478 | } |
| 1479 | |
| 1480 | /* |
| 1481 | * UnGrantLock -- opposite of GrantLock. |
| 1482 | * |
| 1483 | * Updates the lock and proclock data structures to show that the lock |
| 1484 | * is no longer held nor requested by the current holder. |
| 1485 | * |
| 1486 | * Returns true if there were any waiters waiting on the lock that |
| 1487 | * should now be woken up with ProcLockWakeup. |
| 1488 | */ |
| 1489 | static bool |
| 1490 | UnGrantLock(LOCK *lock, LOCKMODE lockmode, |
| 1491 | PROCLOCK *proclock, LockMethod lockMethodTable) |
| 1492 | { |
| 1493 | bool wakeupNeeded = false; |
| 1494 | |
| 1495 | Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0)); |
| 1496 | Assert((lock->nGranted > 0) && (lock->granted[lockmode] > 0)); |
| 1497 | Assert(lock->nGranted <= lock->nRequested); |
| 1498 | |
| 1499 | /* |
| 1500 | * fix the general lock stats |
| 1501 | */ |
| 1502 | lock->nRequested--; |
| 1503 | lock->requested[lockmode]--; |
| 1504 | lock->nGranted--; |
| 1505 | lock->granted[lockmode]--; |
| 1506 | |
| 1507 | if (lock->granted[lockmode] == 0) |
| 1508 | { |
| 1509 | /* change the conflict mask. No more of this lock type. */ |
| 1510 | lock->grantMask &= LOCKBIT_OFF(lockmode); |
| 1511 | } |
| 1512 | |
| 1513 | LOCK_PRINT("UnGrantLock: updated" , lock, lockmode); |
| 1514 | |
| 1515 | /* |
| 1516 | * We need only run ProcLockWakeup if the released lock conflicts with at |
| 1517 | * least one of the lock types requested by waiter(s). Otherwise whatever |
| 1518 | * conflict made them wait must still exist. NOTE: before MVCC, we could |
| 1519 | * skip wakeup if lock->granted[lockmode] was still positive. But that's |
| 1520 | * not true anymore, because the remaining granted locks might belong to |
| 1521 | * some waiter, who could now be awakened because he doesn't conflict with |
| 1522 | * his own locks. |
| 1523 | */ |
| 1524 | if (lockMethodTable->conflictTab[lockmode] & lock->waitMask) |
| 1525 | wakeupNeeded = true; |
| 1526 | |
| 1527 | /* |
| 1528 | * Now fix the per-proclock state. |
| 1529 | */ |
| 1530 | proclock->holdMask &= LOCKBIT_OFF(lockmode); |
| 1531 | PROCLOCK_PRINT("UnGrantLock: updated" , proclock); |
| 1532 | |
| 1533 | return wakeupNeeded; |
| 1534 | } |
| 1535 | |
| 1536 | /* |
| 1537 | * CleanUpLock -- clean up after releasing a lock. We garbage-collect the |
| 1538 | * proclock and lock objects if possible, and call ProcLockWakeup if there |
| 1539 | * are remaining requests and the caller says it's OK. (Normally, this |
| 1540 | * should be called after UnGrantLock, and wakeupNeeded is the result from |
| 1541 | * UnGrantLock.) |
| 1542 | * |
| 1543 | * The appropriate partition lock must be held at entry, and will be |
| 1544 | * held at exit. |
| 1545 | */ |
| 1546 | static void |
| 1547 | CleanUpLock(LOCK *lock, PROCLOCK *proclock, |
| 1548 | LockMethod lockMethodTable, uint32 hashcode, |
| 1549 | bool wakeupNeeded) |
| 1550 | { |
| 1551 | /* |
| 1552 | * If this was my last hold on this lock, delete my entry in the proclock |
| 1553 | * table. |
| 1554 | */ |
| 1555 | if (proclock->holdMask == 0) |
| 1556 | { |
| 1557 | uint32 proclock_hashcode; |
| 1558 | |
| 1559 | PROCLOCK_PRINT("CleanUpLock: deleting" , proclock); |
| 1560 | SHMQueueDelete(&proclock->lockLink); |
| 1561 | SHMQueueDelete(&proclock->procLink); |
| 1562 | proclock_hashcode = ProcLockHashCode(&proclock->tag, hashcode); |
| 1563 | if (!hash_search_with_hash_value(LockMethodProcLockHash, |
| 1564 | (void *) &(proclock->tag), |
| 1565 | proclock_hashcode, |
| 1566 | HASH_REMOVE, |
| 1567 | NULL)) |
| 1568 | elog(PANIC, "proclock table corrupted" ); |
| 1569 | } |
| 1570 | |
| 1571 | if (lock->nRequested == 0) |
| 1572 | { |
| 1573 | /* |
| 1574 | * The caller just released the last lock, so garbage-collect the lock |
| 1575 | * object. |
| 1576 | */ |
| 1577 | LOCK_PRINT("CleanUpLock: deleting" , lock, 0); |
| 1578 | Assert(SHMQueueEmpty(&(lock->procLocks))); |
| 1579 | if (!hash_search_with_hash_value(LockMethodLockHash, |
| 1580 | (void *) &(lock->tag), |
| 1581 | hashcode, |
| 1582 | HASH_REMOVE, |
| 1583 | NULL)) |
| 1584 | elog(PANIC, "lock table corrupted" ); |
| 1585 | } |
| 1586 | else if (wakeupNeeded) |
| 1587 | { |
| 1588 | /* There are waiters on this lock, so wake them up. */ |
| 1589 | ProcLockWakeup(lockMethodTable, lock); |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | /* |
| 1594 | * GrantLockLocal -- update the locallock data structures to show |
| 1595 | * the lock request has been granted. |
| 1596 | * |
| 1597 | * We expect that LockAcquire made sure there is room to add a new |
| 1598 | * ResourceOwner entry. |
| 1599 | */ |
| 1600 | static void |
| 1601 | GrantLockLocal(LOCALLOCK *locallock, ResourceOwner owner) |
| 1602 | { |
| 1603 | LOCALLOCKOWNER *lockOwners = locallock->lockOwners; |
| 1604 | int i; |
| 1605 | |
| 1606 | Assert(locallock->numLockOwners < locallock->maxLockOwners); |
| 1607 | /* Count the total */ |
| 1608 | locallock->nLocks++; |
| 1609 | /* Count the per-owner lock */ |
| 1610 | for (i = 0; i < locallock->numLockOwners; i++) |
| 1611 | { |
| 1612 | if (lockOwners[i].owner == owner) |
| 1613 | { |
| 1614 | lockOwners[i].nLocks++; |
| 1615 | return; |
| 1616 | } |
| 1617 | } |
| 1618 | lockOwners[i].owner = owner; |
| 1619 | lockOwners[i].nLocks = 1; |
| 1620 | locallock->numLockOwners++; |
| 1621 | if (owner != NULL) |
| 1622 | ResourceOwnerRememberLock(owner, locallock); |
| 1623 | } |
| 1624 | |
| 1625 | /* |
| 1626 | * BeginStrongLockAcquire - inhibit use of fastpath for a given LOCALLOCK, |
| 1627 | * and arrange for error cleanup if it fails |
| 1628 | */ |
| 1629 | static void |
| 1630 | BeginStrongLockAcquire(LOCALLOCK *locallock, uint32 fasthashcode) |
| 1631 | { |
| 1632 | Assert(StrongLockInProgress == NULL); |
| 1633 | Assert(locallock->holdsStrongLockCount == false); |
| 1634 | |
| 1635 | /* |
| 1636 | * Adding to a memory location is not atomic, so we take a spinlock to |
| 1637 | * ensure we don't collide with someone else trying to bump the count at |
| 1638 | * the same time. |
| 1639 | * |
| 1640 | * XXX: It might be worth considering using an atomic fetch-and-add |
| 1641 | * instruction here, on architectures where that is supported. |
| 1642 | */ |
| 1643 | |
| 1644 | SpinLockAcquire(&FastPathStrongRelationLocks->mutex); |
| 1645 | FastPathStrongRelationLocks->count[fasthashcode]++; |
| 1646 | locallock->holdsStrongLockCount = true; |
| 1647 | StrongLockInProgress = locallock; |
| 1648 | SpinLockRelease(&FastPathStrongRelationLocks->mutex); |
| 1649 | } |
| 1650 | |
| 1651 | /* |
| 1652 | * FinishStrongLockAcquire - cancel pending cleanup for a strong lock |
| 1653 | * acquisition once it's no longer needed |
| 1654 | */ |
| 1655 | static void |
| 1656 | FinishStrongLockAcquire(void) |
| 1657 | { |
| 1658 | StrongLockInProgress = NULL; |
| 1659 | } |
| 1660 | |
| 1661 | /* |
| 1662 | * AbortStrongLockAcquire - undo strong lock state changes performed by |
| 1663 | * BeginStrongLockAcquire. |
| 1664 | */ |
| 1665 | void |
| 1666 | AbortStrongLockAcquire(void) |
| 1667 | { |
| 1668 | uint32 fasthashcode; |
| 1669 | LOCALLOCK *locallock = StrongLockInProgress; |
| 1670 | |
| 1671 | if (locallock == NULL) |
| 1672 | return; |
| 1673 | |
| 1674 | fasthashcode = FastPathStrongLockHashPartition(locallock->hashcode); |
| 1675 | Assert(locallock->holdsStrongLockCount == true); |
| 1676 | SpinLockAcquire(&FastPathStrongRelationLocks->mutex); |
| 1677 | Assert(FastPathStrongRelationLocks->count[fasthashcode] > 0); |
| 1678 | FastPathStrongRelationLocks->count[fasthashcode]--; |
| 1679 | locallock->holdsStrongLockCount = false; |
| 1680 | StrongLockInProgress = NULL; |
| 1681 | SpinLockRelease(&FastPathStrongRelationLocks->mutex); |
| 1682 | } |
| 1683 | |
| 1684 | /* |
| 1685 | * GrantAwaitedLock -- call GrantLockLocal for the lock we are doing |
| 1686 | * WaitOnLock on. |
| 1687 | * |
| 1688 | * proc.c needs this for the case where we are booted off the lock by |
| 1689 | * timeout, but discover that someone granted us the lock anyway. |
| 1690 | * |
| 1691 | * We could just export GrantLockLocal, but that would require including |
| 1692 | * resowner.h in lock.h, which creates circularity. |
| 1693 | */ |
| 1694 | void |
| 1695 | GrantAwaitedLock(void) |
| 1696 | { |
| 1697 | GrantLockLocal(awaitedLock, awaitedOwner); |
| 1698 | } |
| 1699 | |
| 1700 | /* |
| 1701 | * MarkLockClear -- mark an acquired lock as "clear" |
| 1702 | * |
| 1703 | * This means that we know we have absorbed all sinval messages that other |
| 1704 | * sessions generated before we acquired this lock, and so we can confidently |
| 1705 | * assume we know about any catalog changes protected by this lock. |
| 1706 | */ |
| 1707 | void |
| 1708 | MarkLockClear(LOCALLOCK *locallock) |
| 1709 | { |
| 1710 | Assert(locallock->nLocks > 0); |
| 1711 | locallock->lockCleared = true; |
| 1712 | } |
| 1713 | |
| 1714 | /* |
| 1715 | * WaitOnLock -- wait to acquire a lock |
| 1716 | * |
| 1717 | * Caller must have set MyProc->heldLocks to reflect locks already held |
| 1718 | * on the lockable object by this process. |
| 1719 | * |
| 1720 | * The appropriate partition lock must be held at entry. |
| 1721 | */ |
| 1722 | static void |
| 1723 | WaitOnLock(LOCALLOCK *locallock, ResourceOwner owner) |
| 1724 | { |
| 1725 | LOCKMETHODID lockmethodid = LOCALLOCK_LOCKMETHOD(*locallock); |
| 1726 | LockMethod lockMethodTable = LockMethods[lockmethodid]; |
| 1727 | char *volatile new_status = NULL; |
| 1728 | |
| 1729 | LOCK_PRINT("WaitOnLock: sleeping on lock" , |
| 1730 | locallock->lock, locallock->tag.mode); |
| 1731 | |
| 1732 | /* Report change to waiting status */ |
| 1733 | if (update_process_title) |
| 1734 | { |
| 1735 | const char *old_status; |
| 1736 | int len; |
| 1737 | |
| 1738 | old_status = get_ps_display(&len); |
| 1739 | new_status = (char *) palloc(len + 8 + 1); |
| 1740 | memcpy(new_status, old_status, len); |
| 1741 | strcpy(new_status + len, " waiting" ); |
| 1742 | set_ps_display(new_status, false); |
| 1743 | new_status[len] = '\0'; /* truncate off " waiting" */ |
| 1744 | } |
| 1745 | |
| 1746 | awaitedLock = locallock; |
| 1747 | awaitedOwner = owner; |
| 1748 | |
| 1749 | /* |
| 1750 | * NOTE: Think not to put any shared-state cleanup after the call to |
| 1751 | * ProcSleep, in either the normal or failure path. The lock state must |
| 1752 | * be fully set by the lock grantor, or by CheckDeadLock if we give up |
| 1753 | * waiting for the lock. This is necessary because of the possibility |
| 1754 | * that a cancel/die interrupt will interrupt ProcSleep after someone else |
| 1755 | * grants us the lock, but before we've noticed it. Hence, after granting, |
| 1756 | * the locktable state must fully reflect the fact that we own the lock; |
| 1757 | * we can't do additional work on return. |
| 1758 | * |
| 1759 | * We can and do use a PG_TRY block to try to clean up after failure, but |
| 1760 | * this still has a major limitation: elog(FATAL) can occur while waiting |
| 1761 | * (eg, a "die" interrupt), and then control won't come back here. So all |
| 1762 | * cleanup of essential state should happen in LockErrorCleanup, not here. |
| 1763 | * We can use PG_TRY to clear the "waiting" status flags, since doing that |
| 1764 | * is unimportant if the process exits. |
| 1765 | */ |
| 1766 | PG_TRY(); |
| 1767 | { |
| 1768 | if (ProcSleep(locallock, lockMethodTable) != STATUS_OK) |
| 1769 | { |
| 1770 | /* |
| 1771 | * We failed as a result of a deadlock, see CheckDeadLock(). Quit |
| 1772 | * now. |
| 1773 | */ |
| 1774 | awaitedLock = NULL; |
| 1775 | LOCK_PRINT("WaitOnLock: aborting on lock" , |
| 1776 | locallock->lock, locallock->tag.mode); |
| 1777 | LWLockRelease(LockHashPartitionLock(locallock->hashcode)); |
| 1778 | |
| 1779 | /* |
| 1780 | * Now that we aren't holding the partition lock, we can give an |
| 1781 | * error report including details about the detected deadlock. |
| 1782 | */ |
| 1783 | DeadLockReport(); |
| 1784 | /* not reached */ |
| 1785 | } |
| 1786 | } |
| 1787 | PG_CATCH(); |
| 1788 | { |
| 1789 | /* In this path, awaitedLock remains set until LockErrorCleanup */ |
| 1790 | |
| 1791 | /* Report change to non-waiting status */ |
| 1792 | if (update_process_title) |
| 1793 | { |
| 1794 | set_ps_display(new_status, false); |
| 1795 | pfree(new_status); |
| 1796 | } |
| 1797 | |
| 1798 | /* and propagate the error */ |
| 1799 | PG_RE_THROW(); |
| 1800 | } |
| 1801 | PG_END_TRY(); |
| 1802 | |
| 1803 | awaitedLock = NULL; |
| 1804 | |
| 1805 | /* Report change to non-waiting status */ |
| 1806 | if (update_process_title) |
| 1807 | { |
| 1808 | set_ps_display(new_status, false); |
| 1809 | pfree(new_status); |
| 1810 | } |
| 1811 | |
| 1812 | LOCK_PRINT("WaitOnLock: wakeup on lock" , |
| 1813 | locallock->lock, locallock->tag.mode); |
| 1814 | } |
| 1815 | |
| 1816 | /* |
| 1817 | * Remove a proc from the wait-queue it is on (caller must know it is on one). |
| 1818 | * This is only used when the proc has failed to get the lock, so we set its |
| 1819 | * waitStatus to STATUS_ERROR. |
| 1820 | * |
| 1821 | * Appropriate partition lock must be held by caller. Also, caller is |
| 1822 | * responsible for signaling the proc if needed. |
| 1823 | * |
| 1824 | * NB: this does not clean up any locallock object that may exist for the lock. |
| 1825 | */ |
| 1826 | void |
| 1827 | RemoveFromWaitQueue(PGPROC *proc, uint32 hashcode) |
| 1828 | { |
| 1829 | LOCK *waitLock = proc->waitLock; |
| 1830 | PROCLOCK *proclock = proc->waitProcLock; |
| 1831 | LOCKMODE lockmode = proc->waitLockMode; |
| 1832 | LOCKMETHODID lockmethodid = LOCK_LOCKMETHOD(*waitLock); |
| 1833 | |
| 1834 | /* Make sure proc is waiting */ |
| 1835 | Assert(proc->waitStatus == STATUS_WAITING); |
| 1836 | Assert(proc->links.next != NULL); |
| 1837 | Assert(waitLock); |
| 1838 | Assert(waitLock->waitProcs.size > 0); |
| 1839 | Assert(0 < lockmethodid && lockmethodid < lengthof(LockMethods)); |
| 1840 | |
| 1841 | /* Remove proc from lock's wait queue */ |
| 1842 | SHMQueueDelete(&(proc->links)); |
| 1843 | waitLock->waitProcs.size--; |
| 1844 | |
| 1845 | /* Undo increments of request counts by waiting process */ |
| 1846 | Assert(waitLock->nRequested > 0); |
| 1847 | Assert(waitLock->nRequested > proc->waitLock->nGranted); |
| 1848 | waitLock->nRequested--; |
| 1849 | Assert(waitLock->requested[lockmode] > 0); |
| 1850 | waitLock->requested[lockmode]--; |
| 1851 | /* don't forget to clear waitMask bit if appropriate */ |
| 1852 | if (waitLock->granted[lockmode] == waitLock->requested[lockmode]) |
| 1853 | waitLock->waitMask &= LOCKBIT_OFF(lockmode); |
| 1854 | |
| 1855 | /* Clean up the proc's own state, and pass it the ok/fail signal */ |
| 1856 | proc->waitLock = NULL; |
| 1857 | proc->waitProcLock = NULL; |
| 1858 | proc->waitStatus = STATUS_ERROR; |
| 1859 | |
| 1860 | /* |
| 1861 | * Delete the proclock immediately if it represents no already-held locks. |
| 1862 | * (This must happen now because if the owner of the lock decides to |
| 1863 | * release it, and the requested/granted counts then go to zero, |
| 1864 | * LockRelease expects there to be no remaining proclocks.) Then see if |
| 1865 | * any other waiters for the lock can be woken up now. |
| 1866 | */ |
| 1867 | CleanUpLock(waitLock, proclock, |
| 1868 | LockMethods[lockmethodid], hashcode, |
| 1869 | true); |
| 1870 | } |
| 1871 | |
| 1872 | /* |
| 1873 | * LockRelease -- look up 'locktag' and release one 'lockmode' lock on it. |
| 1874 | * Release a session lock if 'sessionLock' is true, else release a |
| 1875 | * regular transaction lock. |
| 1876 | * |
| 1877 | * Side Effects: find any waiting processes that are now wakable, |
| 1878 | * grant them their requested locks and awaken them. |
| 1879 | * (We have to grant the lock here to avoid a race between |
| 1880 | * the waking process and any new process to |
| 1881 | * come along and request the lock.) |
| 1882 | */ |
| 1883 | bool |
| 1884 | LockRelease(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock) |
| 1885 | { |
| 1886 | LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid; |
| 1887 | LockMethod lockMethodTable; |
| 1888 | LOCALLOCKTAG localtag; |
| 1889 | LOCALLOCK *locallock; |
| 1890 | LOCK *lock; |
| 1891 | PROCLOCK *proclock; |
| 1892 | LWLock *partitionLock; |
| 1893 | bool wakeupNeeded; |
| 1894 | |
| 1895 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 1896 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 1897 | lockMethodTable = LockMethods[lockmethodid]; |
| 1898 | if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes) |
| 1899 | elog(ERROR, "unrecognized lock mode: %d" , lockmode); |
| 1900 | |
| 1901 | #ifdef LOCK_DEBUG |
| 1902 | if (LOCK_DEBUG_ENABLED(locktag)) |
| 1903 | elog(LOG, "LockRelease: lock [%u,%u] %s" , |
| 1904 | locktag->locktag_field1, locktag->locktag_field2, |
| 1905 | lockMethodTable->lockModeNames[lockmode]); |
| 1906 | #endif |
| 1907 | |
| 1908 | /* |
| 1909 | * Find the LOCALLOCK entry for this lock and lockmode |
| 1910 | */ |
| 1911 | MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */ |
| 1912 | localtag.lock = *locktag; |
| 1913 | localtag.mode = lockmode; |
| 1914 | |
| 1915 | locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash, |
| 1916 | (void *) &localtag, |
| 1917 | HASH_FIND, NULL); |
| 1918 | |
| 1919 | /* |
| 1920 | * let the caller print its own error message, too. Do not ereport(ERROR). |
| 1921 | */ |
| 1922 | if (!locallock || locallock->nLocks <= 0) |
| 1923 | { |
| 1924 | elog(WARNING, "you don't own a lock of type %s" , |
| 1925 | lockMethodTable->lockModeNames[lockmode]); |
| 1926 | return false; |
| 1927 | } |
| 1928 | |
| 1929 | /* |
| 1930 | * Decrease the count for the resource owner. |
| 1931 | */ |
| 1932 | { |
| 1933 | LOCALLOCKOWNER *lockOwners = locallock->lockOwners; |
| 1934 | ResourceOwner owner; |
| 1935 | int i; |
| 1936 | |
| 1937 | /* Identify owner for lock */ |
| 1938 | if (sessionLock) |
| 1939 | owner = NULL; |
| 1940 | else |
| 1941 | owner = CurrentResourceOwner; |
| 1942 | |
| 1943 | for (i = locallock->numLockOwners - 1; i >= 0; i--) |
| 1944 | { |
| 1945 | if (lockOwners[i].owner == owner) |
| 1946 | { |
| 1947 | Assert(lockOwners[i].nLocks > 0); |
| 1948 | if (--lockOwners[i].nLocks == 0) |
| 1949 | { |
| 1950 | if (owner != NULL) |
| 1951 | ResourceOwnerForgetLock(owner, locallock); |
| 1952 | /* compact out unused slot */ |
| 1953 | locallock->numLockOwners--; |
| 1954 | if (i < locallock->numLockOwners) |
| 1955 | lockOwners[i] = lockOwners[locallock->numLockOwners]; |
| 1956 | } |
| 1957 | break; |
| 1958 | } |
| 1959 | } |
| 1960 | if (i < 0) |
| 1961 | { |
| 1962 | /* don't release a lock belonging to another owner */ |
| 1963 | elog(WARNING, "you don't own a lock of type %s" , |
| 1964 | lockMethodTable->lockModeNames[lockmode]); |
| 1965 | return false; |
| 1966 | } |
| 1967 | } |
| 1968 | |
| 1969 | /* |
| 1970 | * Decrease the total local count. If we're still holding the lock, we're |
| 1971 | * done. |
| 1972 | */ |
| 1973 | locallock->nLocks--; |
| 1974 | |
| 1975 | if (locallock->nLocks > 0) |
| 1976 | return true; |
| 1977 | |
| 1978 | /* |
| 1979 | * At this point we can no longer suppose we are clear of invalidation |
| 1980 | * messages related to this lock. Although we'll delete the LOCALLOCK |
| 1981 | * object before any intentional return from this routine, it seems worth |
| 1982 | * the trouble to explicitly reset lockCleared right now, just in case |
| 1983 | * some error prevents us from deleting the LOCALLOCK. |
| 1984 | */ |
| 1985 | locallock->lockCleared = false; |
| 1986 | |
| 1987 | /* Attempt fast release of any lock eligible for the fast path. */ |
| 1988 | if (EligibleForRelationFastPath(locktag, lockmode) && |
| 1989 | FastPathLocalUseCount > 0) |
| 1990 | { |
| 1991 | bool released; |
| 1992 | |
| 1993 | /* |
| 1994 | * We might not find the lock here, even if we originally entered it |
| 1995 | * here. Another backend may have moved it to the main table. |
| 1996 | */ |
| 1997 | LWLockAcquire(&MyProc->backendLock, LW_EXCLUSIVE); |
| 1998 | released = FastPathUnGrantRelationLock(locktag->locktag_field2, |
| 1999 | lockmode); |
| 2000 | LWLockRelease(&MyProc->backendLock); |
| 2001 | if (released) |
| 2002 | { |
| 2003 | RemoveLocalLock(locallock); |
| 2004 | return true; |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | /* |
| 2009 | * Otherwise we've got to mess with the shared lock table. |
| 2010 | */ |
| 2011 | partitionLock = LockHashPartitionLock(locallock->hashcode); |
| 2012 | |
| 2013 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 2014 | |
| 2015 | /* |
| 2016 | * Normally, we don't need to re-find the lock or proclock, since we kept |
| 2017 | * their addresses in the locallock table, and they couldn't have been |
| 2018 | * removed while we were holding a lock on them. But it's possible that |
| 2019 | * the lock was taken fast-path and has since been moved to the main hash |
| 2020 | * table by another backend, in which case we will need to look up the |
| 2021 | * objects here. We assume the lock field is NULL if so. |
| 2022 | */ |
| 2023 | lock = locallock->lock; |
| 2024 | if (!lock) |
| 2025 | { |
| 2026 | PROCLOCKTAG proclocktag; |
| 2027 | |
| 2028 | Assert(EligibleForRelationFastPath(locktag, lockmode)); |
| 2029 | lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash, |
| 2030 | (const void *) locktag, |
| 2031 | locallock->hashcode, |
| 2032 | HASH_FIND, |
| 2033 | NULL); |
| 2034 | if (!lock) |
| 2035 | elog(ERROR, "failed to re-find shared lock object" ); |
| 2036 | locallock->lock = lock; |
| 2037 | |
| 2038 | proclocktag.myLock = lock; |
| 2039 | proclocktag.myProc = MyProc; |
| 2040 | locallock->proclock = (PROCLOCK *) hash_search(LockMethodProcLockHash, |
| 2041 | (void *) &proclocktag, |
| 2042 | HASH_FIND, |
| 2043 | NULL); |
| 2044 | if (!locallock->proclock) |
| 2045 | elog(ERROR, "failed to re-find shared proclock object" ); |
| 2046 | } |
| 2047 | LOCK_PRINT("LockRelease: found" , lock, lockmode); |
| 2048 | proclock = locallock->proclock; |
| 2049 | PROCLOCK_PRINT("LockRelease: found" , proclock); |
| 2050 | |
| 2051 | /* |
| 2052 | * Double-check that we are actually holding a lock of the type we want to |
| 2053 | * release. |
| 2054 | */ |
| 2055 | if (!(proclock->holdMask & LOCKBIT_ON(lockmode))) |
| 2056 | { |
| 2057 | PROCLOCK_PRINT("LockRelease: WRONGTYPE" , proclock); |
| 2058 | LWLockRelease(partitionLock); |
| 2059 | elog(WARNING, "you don't own a lock of type %s" , |
| 2060 | lockMethodTable->lockModeNames[lockmode]); |
| 2061 | RemoveLocalLock(locallock); |
| 2062 | return false; |
| 2063 | } |
| 2064 | |
| 2065 | /* |
| 2066 | * Do the releasing. CleanUpLock will waken any now-wakable waiters. |
| 2067 | */ |
| 2068 | wakeupNeeded = UnGrantLock(lock, lockmode, proclock, lockMethodTable); |
| 2069 | |
| 2070 | CleanUpLock(lock, proclock, |
| 2071 | lockMethodTable, locallock->hashcode, |
| 2072 | wakeupNeeded); |
| 2073 | |
| 2074 | LWLockRelease(partitionLock); |
| 2075 | |
| 2076 | RemoveLocalLock(locallock); |
| 2077 | return true; |
| 2078 | } |
| 2079 | |
| 2080 | /* |
| 2081 | * LockReleaseAll -- Release all locks of the specified lock method that |
| 2082 | * are held by the current process. |
| 2083 | * |
| 2084 | * Well, not necessarily *all* locks. The available behaviors are: |
| 2085 | * allLocks == true: release all locks including session locks. |
| 2086 | * allLocks == false: release all non-session locks. |
| 2087 | */ |
| 2088 | void |
| 2089 | LockReleaseAll(LOCKMETHODID lockmethodid, bool allLocks) |
| 2090 | { |
| 2091 | HASH_SEQ_STATUS status; |
| 2092 | LockMethod lockMethodTable; |
| 2093 | int i, |
| 2094 | numLockModes; |
| 2095 | LOCALLOCK *locallock; |
| 2096 | LOCK *lock; |
| 2097 | PROCLOCK *proclock; |
| 2098 | int partition; |
| 2099 | bool have_fast_path_lwlock = false; |
| 2100 | |
| 2101 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 2102 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 2103 | lockMethodTable = LockMethods[lockmethodid]; |
| 2104 | |
| 2105 | #ifdef LOCK_DEBUG |
| 2106 | if (*(lockMethodTable->trace_flag)) |
| 2107 | elog(LOG, "LockReleaseAll: lockmethod=%d" , lockmethodid); |
| 2108 | #endif |
| 2109 | |
| 2110 | /* |
| 2111 | * Get rid of our fast-path VXID lock, if appropriate. Note that this is |
| 2112 | * the only way that the lock we hold on our own VXID can ever get |
| 2113 | * released: it is always and only released when a toplevel transaction |
| 2114 | * ends. |
| 2115 | */ |
| 2116 | if (lockmethodid == DEFAULT_LOCKMETHOD) |
| 2117 | VirtualXactLockTableCleanup(); |
| 2118 | |
| 2119 | numLockModes = lockMethodTable->numLockModes; |
| 2120 | |
| 2121 | /* |
| 2122 | * First we run through the locallock table and get rid of unwanted |
| 2123 | * entries, then we scan the process's proclocks and get rid of those. We |
| 2124 | * do this separately because we may have multiple locallock entries |
| 2125 | * pointing to the same proclock, and we daren't end up with any dangling |
| 2126 | * pointers. Fast-path locks are cleaned up during the locallock table |
| 2127 | * scan, though. |
| 2128 | */ |
| 2129 | hash_seq_init(&status, LockMethodLocalHash); |
| 2130 | |
| 2131 | while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL) |
| 2132 | { |
| 2133 | /* |
| 2134 | * If the LOCALLOCK entry is unused, we must've run out of shared |
| 2135 | * memory while trying to set up this lock. Just forget the local |
| 2136 | * entry. |
| 2137 | */ |
| 2138 | if (locallock->nLocks == 0) |
| 2139 | { |
| 2140 | RemoveLocalLock(locallock); |
| 2141 | continue; |
| 2142 | } |
| 2143 | |
| 2144 | /* Ignore items that are not of the lockmethod to be removed */ |
| 2145 | if (LOCALLOCK_LOCKMETHOD(*locallock) != lockmethodid) |
| 2146 | continue; |
| 2147 | |
| 2148 | /* |
| 2149 | * If we are asked to release all locks, we can just zap the entry. |
| 2150 | * Otherwise, must scan to see if there are session locks. We assume |
| 2151 | * there is at most one lockOwners entry for session locks. |
| 2152 | */ |
| 2153 | if (!allLocks) |
| 2154 | { |
| 2155 | LOCALLOCKOWNER *lockOwners = locallock->lockOwners; |
| 2156 | |
| 2157 | /* If session lock is above array position 0, move it down to 0 */ |
| 2158 | for (i = 0; i < locallock->numLockOwners; i++) |
| 2159 | { |
| 2160 | if (lockOwners[i].owner == NULL) |
| 2161 | lockOwners[0] = lockOwners[i]; |
| 2162 | else |
| 2163 | ResourceOwnerForgetLock(lockOwners[i].owner, locallock); |
| 2164 | } |
| 2165 | |
| 2166 | if (locallock->numLockOwners > 0 && |
| 2167 | lockOwners[0].owner == NULL && |
| 2168 | lockOwners[0].nLocks > 0) |
| 2169 | { |
| 2170 | /* Fix the locallock to show just the session locks */ |
| 2171 | locallock->nLocks = lockOwners[0].nLocks; |
| 2172 | locallock->numLockOwners = 1; |
| 2173 | /* We aren't deleting this locallock, so done */ |
| 2174 | continue; |
| 2175 | } |
| 2176 | else |
| 2177 | locallock->numLockOwners = 0; |
| 2178 | } |
| 2179 | |
| 2180 | /* |
| 2181 | * If the lock or proclock pointers are NULL, this lock was taken via |
| 2182 | * the relation fast-path (and is not known to have been transferred). |
| 2183 | */ |
| 2184 | if (locallock->proclock == NULL || locallock->lock == NULL) |
| 2185 | { |
| 2186 | LOCKMODE lockmode = locallock->tag.mode; |
| 2187 | Oid relid; |
| 2188 | |
| 2189 | /* Verify that a fast-path lock is what we've got. */ |
| 2190 | if (!EligibleForRelationFastPath(&locallock->tag.lock, lockmode)) |
| 2191 | elog(PANIC, "locallock table corrupted" ); |
| 2192 | |
| 2193 | /* |
| 2194 | * If we don't currently hold the LWLock that protects our |
| 2195 | * fast-path data structures, we must acquire it before attempting |
| 2196 | * to release the lock via the fast-path. We will continue to |
| 2197 | * hold the LWLock until we're done scanning the locallock table, |
| 2198 | * unless we hit a transferred fast-path lock. (XXX is this |
| 2199 | * really such a good idea? There could be a lot of entries ...) |
| 2200 | */ |
| 2201 | if (!have_fast_path_lwlock) |
| 2202 | { |
| 2203 | LWLockAcquire(&MyProc->backendLock, LW_EXCLUSIVE); |
| 2204 | have_fast_path_lwlock = true; |
| 2205 | } |
| 2206 | |
| 2207 | /* Attempt fast-path release. */ |
| 2208 | relid = locallock->tag.lock.locktag_field2; |
| 2209 | if (FastPathUnGrantRelationLock(relid, lockmode)) |
| 2210 | { |
| 2211 | RemoveLocalLock(locallock); |
| 2212 | continue; |
| 2213 | } |
| 2214 | |
| 2215 | /* |
| 2216 | * Our lock, originally taken via the fast path, has been |
| 2217 | * transferred to the main lock table. That's going to require |
| 2218 | * some extra work, so release our fast-path lock before starting. |
| 2219 | */ |
| 2220 | LWLockRelease(&MyProc->backendLock); |
| 2221 | have_fast_path_lwlock = false; |
| 2222 | |
| 2223 | /* |
| 2224 | * Now dump the lock. We haven't got a pointer to the LOCK or |
| 2225 | * PROCLOCK in this case, so we have to handle this a bit |
| 2226 | * differently than a normal lock release. Unfortunately, this |
| 2227 | * requires an extra LWLock acquire-and-release cycle on the |
| 2228 | * partitionLock, but hopefully it shouldn't happen often. |
| 2229 | */ |
| 2230 | LockRefindAndRelease(lockMethodTable, MyProc, |
| 2231 | &locallock->tag.lock, lockmode, false); |
| 2232 | RemoveLocalLock(locallock); |
| 2233 | continue; |
| 2234 | } |
| 2235 | |
| 2236 | /* Mark the proclock to show we need to release this lockmode */ |
| 2237 | if (locallock->nLocks > 0) |
| 2238 | locallock->proclock->releaseMask |= LOCKBIT_ON(locallock->tag.mode); |
| 2239 | |
| 2240 | /* And remove the locallock hashtable entry */ |
| 2241 | RemoveLocalLock(locallock); |
| 2242 | } |
| 2243 | |
| 2244 | /* Done with the fast-path data structures */ |
| 2245 | if (have_fast_path_lwlock) |
| 2246 | LWLockRelease(&MyProc->backendLock); |
| 2247 | |
| 2248 | /* |
| 2249 | * Now, scan each lock partition separately. |
| 2250 | */ |
| 2251 | for (partition = 0; partition < NUM_LOCK_PARTITIONS; partition++) |
| 2252 | { |
| 2253 | LWLock *partitionLock; |
| 2254 | SHM_QUEUE *procLocks = &(MyProc->myProcLocks[partition]); |
| 2255 | PROCLOCK *nextplock; |
| 2256 | |
| 2257 | partitionLock = LockHashPartitionLockByIndex(partition); |
| 2258 | |
| 2259 | /* |
| 2260 | * If the proclock list for this partition is empty, we can skip |
| 2261 | * acquiring the partition lock. This optimization is trickier than |
| 2262 | * it looks, because another backend could be in process of adding |
| 2263 | * something to our proclock list due to promoting one of our |
| 2264 | * fast-path locks. However, any such lock must be one that we |
| 2265 | * decided not to delete above, so it's okay to skip it again now; |
| 2266 | * we'd just decide not to delete it again. We must, however, be |
| 2267 | * careful to re-fetch the list header once we've acquired the |
| 2268 | * partition lock, to be sure we have a valid, up-to-date pointer. |
| 2269 | * (There is probably no significant risk if pointer fetch/store is |
| 2270 | * atomic, but we don't wish to assume that.) |
| 2271 | * |
| 2272 | * XXX This argument assumes that the locallock table correctly |
| 2273 | * represents all of our fast-path locks. While allLocks mode |
| 2274 | * guarantees to clean up all of our normal locks regardless of the |
| 2275 | * locallock situation, we lose that guarantee for fast-path locks. |
| 2276 | * This is not ideal. |
| 2277 | */ |
| 2278 | if (SHMQueueNext(procLocks, procLocks, |
| 2279 | offsetof(PROCLOCK, procLink)) == NULL) |
| 2280 | continue; /* needn't examine this partition */ |
| 2281 | |
| 2282 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 2283 | |
| 2284 | for (proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks, |
| 2285 | offsetof(PROCLOCK, procLink)); |
| 2286 | proclock; |
| 2287 | proclock = nextplock) |
| 2288 | { |
| 2289 | bool wakeupNeeded = false; |
| 2290 | |
| 2291 | /* Get link first, since we may unlink/delete this proclock */ |
| 2292 | nextplock = (PROCLOCK *) |
| 2293 | SHMQueueNext(procLocks, &proclock->procLink, |
| 2294 | offsetof(PROCLOCK, procLink)); |
| 2295 | |
| 2296 | Assert(proclock->tag.myProc == MyProc); |
| 2297 | |
| 2298 | lock = proclock->tag.myLock; |
| 2299 | |
| 2300 | /* Ignore items that are not of the lockmethod to be removed */ |
| 2301 | if (LOCK_LOCKMETHOD(*lock) != lockmethodid) |
| 2302 | continue; |
| 2303 | |
| 2304 | /* |
| 2305 | * In allLocks mode, force release of all locks even if locallock |
| 2306 | * table had problems |
| 2307 | */ |
| 2308 | if (allLocks) |
| 2309 | proclock->releaseMask = proclock->holdMask; |
| 2310 | else |
| 2311 | Assert((proclock->releaseMask & ~proclock->holdMask) == 0); |
| 2312 | |
| 2313 | /* |
| 2314 | * Ignore items that have nothing to be released, unless they have |
| 2315 | * holdMask == 0 and are therefore recyclable |
| 2316 | */ |
| 2317 | if (proclock->releaseMask == 0 && proclock->holdMask != 0) |
| 2318 | continue; |
| 2319 | |
| 2320 | PROCLOCK_PRINT("LockReleaseAll" , proclock); |
| 2321 | LOCK_PRINT("LockReleaseAll" , lock, 0); |
| 2322 | Assert(lock->nRequested >= 0); |
| 2323 | Assert(lock->nGranted >= 0); |
| 2324 | Assert(lock->nGranted <= lock->nRequested); |
| 2325 | Assert((proclock->holdMask & ~lock->grantMask) == 0); |
| 2326 | |
| 2327 | /* |
| 2328 | * Release the previously-marked lock modes |
| 2329 | */ |
| 2330 | for (i = 1; i <= numLockModes; i++) |
| 2331 | { |
| 2332 | if (proclock->releaseMask & LOCKBIT_ON(i)) |
| 2333 | wakeupNeeded |= UnGrantLock(lock, i, proclock, |
| 2334 | lockMethodTable); |
| 2335 | } |
| 2336 | Assert((lock->nRequested >= 0) && (lock->nGranted >= 0)); |
| 2337 | Assert(lock->nGranted <= lock->nRequested); |
| 2338 | LOCK_PRINT("LockReleaseAll: updated" , lock, 0); |
| 2339 | |
| 2340 | proclock->releaseMask = 0; |
| 2341 | |
| 2342 | /* CleanUpLock will wake up waiters if needed. */ |
| 2343 | CleanUpLock(lock, proclock, |
| 2344 | lockMethodTable, |
| 2345 | LockTagHashCode(&lock->tag), |
| 2346 | wakeupNeeded); |
| 2347 | } /* loop over PROCLOCKs within this partition */ |
| 2348 | |
| 2349 | LWLockRelease(partitionLock); |
| 2350 | } /* loop over partitions */ |
| 2351 | |
| 2352 | #ifdef LOCK_DEBUG |
| 2353 | if (*(lockMethodTable->trace_flag)) |
| 2354 | elog(LOG, "LockReleaseAll done" ); |
| 2355 | #endif |
| 2356 | } |
| 2357 | |
| 2358 | /* |
| 2359 | * LockReleaseSession -- Release all session locks of the specified lock method |
| 2360 | * that are held by the current process. |
| 2361 | */ |
| 2362 | void |
| 2363 | LockReleaseSession(LOCKMETHODID lockmethodid) |
| 2364 | { |
| 2365 | HASH_SEQ_STATUS status; |
| 2366 | LOCALLOCK *locallock; |
| 2367 | |
| 2368 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 2369 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 2370 | |
| 2371 | hash_seq_init(&status, LockMethodLocalHash); |
| 2372 | |
| 2373 | while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL) |
| 2374 | { |
| 2375 | /* Ignore items that are not of the specified lock method */ |
| 2376 | if (LOCALLOCK_LOCKMETHOD(*locallock) != lockmethodid) |
| 2377 | continue; |
| 2378 | |
| 2379 | ReleaseLockIfHeld(locallock, true); |
| 2380 | } |
| 2381 | } |
| 2382 | |
| 2383 | /* |
| 2384 | * LockReleaseCurrentOwner |
| 2385 | * Release all locks belonging to CurrentResourceOwner |
| 2386 | * |
| 2387 | * If the caller knows what those locks are, it can pass them as an array. |
| 2388 | * That speeds up the call significantly, when a lot of locks are held. |
| 2389 | * Otherwise, pass NULL for locallocks, and we'll traverse through our hash |
| 2390 | * table to find them. |
| 2391 | */ |
| 2392 | void |
| 2393 | LockReleaseCurrentOwner(LOCALLOCK **locallocks, int nlocks) |
| 2394 | { |
| 2395 | if (locallocks == NULL) |
| 2396 | { |
| 2397 | HASH_SEQ_STATUS status; |
| 2398 | LOCALLOCK *locallock; |
| 2399 | |
| 2400 | hash_seq_init(&status, LockMethodLocalHash); |
| 2401 | |
| 2402 | while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL) |
| 2403 | ReleaseLockIfHeld(locallock, false); |
| 2404 | } |
| 2405 | else |
| 2406 | { |
| 2407 | int i; |
| 2408 | |
| 2409 | for (i = nlocks - 1; i >= 0; i--) |
| 2410 | ReleaseLockIfHeld(locallocks[i], false); |
| 2411 | } |
| 2412 | } |
| 2413 | |
| 2414 | /* |
| 2415 | * ReleaseLockIfHeld |
| 2416 | * Release any session-level locks on this lockable object if sessionLock |
| 2417 | * is true; else, release any locks held by CurrentResourceOwner. |
| 2418 | * |
| 2419 | * It is tempting to pass this a ResourceOwner pointer (or NULL for session |
| 2420 | * locks), but without refactoring LockRelease() we cannot support releasing |
| 2421 | * locks belonging to resource owners other than CurrentResourceOwner. |
| 2422 | * If we were to refactor, it'd be a good idea to fix it so we don't have to |
| 2423 | * do a hashtable lookup of the locallock, too. However, currently this |
| 2424 | * function isn't used heavily enough to justify refactoring for its |
| 2425 | * convenience. |
| 2426 | */ |
| 2427 | static void |
| 2428 | ReleaseLockIfHeld(LOCALLOCK *locallock, bool sessionLock) |
| 2429 | { |
| 2430 | ResourceOwner owner; |
| 2431 | LOCALLOCKOWNER *lockOwners; |
| 2432 | int i; |
| 2433 | |
| 2434 | /* Identify owner for lock (must match LockRelease!) */ |
| 2435 | if (sessionLock) |
| 2436 | owner = NULL; |
| 2437 | else |
| 2438 | owner = CurrentResourceOwner; |
| 2439 | |
| 2440 | /* Scan to see if there are any locks belonging to the target owner */ |
| 2441 | lockOwners = locallock->lockOwners; |
| 2442 | for (i = locallock->numLockOwners - 1; i >= 0; i--) |
| 2443 | { |
| 2444 | if (lockOwners[i].owner == owner) |
| 2445 | { |
| 2446 | Assert(lockOwners[i].nLocks > 0); |
| 2447 | if (lockOwners[i].nLocks < locallock->nLocks) |
| 2448 | { |
| 2449 | /* |
| 2450 | * We will still hold this lock after forgetting this |
| 2451 | * ResourceOwner. |
| 2452 | */ |
| 2453 | locallock->nLocks -= lockOwners[i].nLocks; |
| 2454 | /* compact out unused slot */ |
| 2455 | locallock->numLockOwners--; |
| 2456 | if (owner != NULL) |
| 2457 | ResourceOwnerForgetLock(owner, locallock); |
| 2458 | if (i < locallock->numLockOwners) |
| 2459 | lockOwners[i] = lockOwners[locallock->numLockOwners]; |
| 2460 | } |
| 2461 | else |
| 2462 | { |
| 2463 | Assert(lockOwners[i].nLocks == locallock->nLocks); |
| 2464 | /* We want to call LockRelease just once */ |
| 2465 | lockOwners[i].nLocks = 1; |
| 2466 | locallock->nLocks = 1; |
| 2467 | if (!LockRelease(&locallock->tag.lock, |
| 2468 | locallock->tag.mode, |
| 2469 | sessionLock)) |
| 2470 | elog(WARNING, "ReleaseLockIfHeld: failed??" ); |
| 2471 | } |
| 2472 | break; |
| 2473 | } |
| 2474 | } |
| 2475 | } |
| 2476 | |
| 2477 | /* |
| 2478 | * LockReassignCurrentOwner |
| 2479 | * Reassign all locks belonging to CurrentResourceOwner to belong |
| 2480 | * to its parent resource owner. |
| 2481 | * |
| 2482 | * If the caller knows what those locks are, it can pass them as an array. |
| 2483 | * That speeds up the call significantly, when a lot of locks are held |
| 2484 | * (e.g pg_dump with a large schema). Otherwise, pass NULL for locallocks, |
| 2485 | * and we'll traverse through our hash table to find them. |
| 2486 | */ |
| 2487 | void |
| 2488 | LockReassignCurrentOwner(LOCALLOCK **locallocks, int nlocks) |
| 2489 | { |
| 2490 | ResourceOwner parent = ResourceOwnerGetParent(CurrentResourceOwner); |
| 2491 | |
| 2492 | Assert(parent != NULL); |
| 2493 | |
| 2494 | if (locallocks == NULL) |
| 2495 | { |
| 2496 | HASH_SEQ_STATUS status; |
| 2497 | LOCALLOCK *locallock; |
| 2498 | |
| 2499 | hash_seq_init(&status, LockMethodLocalHash); |
| 2500 | |
| 2501 | while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL) |
| 2502 | LockReassignOwner(locallock, parent); |
| 2503 | } |
| 2504 | else |
| 2505 | { |
| 2506 | int i; |
| 2507 | |
| 2508 | for (i = nlocks - 1; i >= 0; i--) |
| 2509 | LockReassignOwner(locallocks[i], parent); |
| 2510 | } |
| 2511 | } |
| 2512 | |
| 2513 | /* |
| 2514 | * Subroutine of LockReassignCurrentOwner. Reassigns a given lock belonging to |
| 2515 | * CurrentResourceOwner to its parent. |
| 2516 | */ |
| 2517 | static void |
| 2518 | LockReassignOwner(LOCALLOCK *locallock, ResourceOwner parent) |
| 2519 | { |
| 2520 | LOCALLOCKOWNER *lockOwners; |
| 2521 | int i; |
| 2522 | int ic = -1; |
| 2523 | int ip = -1; |
| 2524 | |
| 2525 | /* |
| 2526 | * Scan to see if there are any locks belonging to current owner or its |
| 2527 | * parent |
| 2528 | */ |
| 2529 | lockOwners = locallock->lockOwners; |
| 2530 | for (i = locallock->numLockOwners - 1; i >= 0; i--) |
| 2531 | { |
| 2532 | if (lockOwners[i].owner == CurrentResourceOwner) |
| 2533 | ic = i; |
| 2534 | else if (lockOwners[i].owner == parent) |
| 2535 | ip = i; |
| 2536 | } |
| 2537 | |
| 2538 | if (ic < 0) |
| 2539 | return; /* no current locks */ |
| 2540 | |
| 2541 | if (ip < 0) |
| 2542 | { |
| 2543 | /* Parent has no slot, so just give it the child's slot */ |
| 2544 | lockOwners[ic].owner = parent; |
| 2545 | ResourceOwnerRememberLock(parent, locallock); |
| 2546 | } |
| 2547 | else |
| 2548 | { |
| 2549 | /* Merge child's count with parent's */ |
| 2550 | lockOwners[ip].nLocks += lockOwners[ic].nLocks; |
| 2551 | /* compact out unused slot */ |
| 2552 | locallock->numLockOwners--; |
| 2553 | if (ic < locallock->numLockOwners) |
| 2554 | lockOwners[ic] = lockOwners[locallock->numLockOwners]; |
| 2555 | } |
| 2556 | ResourceOwnerForgetLock(CurrentResourceOwner, locallock); |
| 2557 | } |
| 2558 | |
| 2559 | /* |
| 2560 | * FastPathGrantRelationLock |
| 2561 | * Grant lock using per-backend fast-path array, if there is space. |
| 2562 | */ |
| 2563 | static bool |
| 2564 | FastPathGrantRelationLock(Oid relid, LOCKMODE lockmode) |
| 2565 | { |
| 2566 | uint32 f; |
| 2567 | uint32 unused_slot = FP_LOCK_SLOTS_PER_BACKEND; |
| 2568 | |
| 2569 | /* Scan for existing entry for this relid, remembering empty slot. */ |
| 2570 | for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++) |
| 2571 | { |
| 2572 | if (FAST_PATH_GET_BITS(MyProc, f) == 0) |
| 2573 | unused_slot = f; |
| 2574 | else if (MyProc->fpRelId[f] == relid) |
| 2575 | { |
| 2576 | Assert(!FAST_PATH_CHECK_LOCKMODE(MyProc, f, lockmode)); |
| 2577 | FAST_PATH_SET_LOCKMODE(MyProc, f, lockmode); |
| 2578 | return true; |
| 2579 | } |
| 2580 | } |
| 2581 | |
| 2582 | /* If no existing entry, use any empty slot. */ |
| 2583 | if (unused_slot < FP_LOCK_SLOTS_PER_BACKEND) |
| 2584 | { |
| 2585 | MyProc->fpRelId[unused_slot] = relid; |
| 2586 | FAST_PATH_SET_LOCKMODE(MyProc, unused_slot, lockmode); |
| 2587 | ++FastPathLocalUseCount; |
| 2588 | return true; |
| 2589 | } |
| 2590 | |
| 2591 | /* No existing entry, and no empty slot. */ |
| 2592 | return false; |
| 2593 | } |
| 2594 | |
| 2595 | /* |
| 2596 | * FastPathUnGrantRelationLock |
| 2597 | * Release fast-path lock, if present. Update backend-private local |
| 2598 | * use count, while we're at it. |
| 2599 | */ |
| 2600 | static bool |
| 2601 | FastPathUnGrantRelationLock(Oid relid, LOCKMODE lockmode) |
| 2602 | { |
| 2603 | uint32 f; |
| 2604 | bool result = false; |
| 2605 | |
| 2606 | FastPathLocalUseCount = 0; |
| 2607 | for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++) |
| 2608 | { |
| 2609 | if (MyProc->fpRelId[f] == relid |
| 2610 | && FAST_PATH_CHECK_LOCKMODE(MyProc, f, lockmode)) |
| 2611 | { |
| 2612 | Assert(!result); |
| 2613 | FAST_PATH_CLEAR_LOCKMODE(MyProc, f, lockmode); |
| 2614 | result = true; |
| 2615 | /* we continue iterating so as to update FastPathLocalUseCount */ |
| 2616 | } |
| 2617 | if (FAST_PATH_GET_BITS(MyProc, f) != 0) |
| 2618 | ++FastPathLocalUseCount; |
| 2619 | } |
| 2620 | return result; |
| 2621 | } |
| 2622 | |
| 2623 | /* |
| 2624 | * FastPathTransferRelationLocks |
| 2625 | * Transfer locks matching the given lock tag from per-backend fast-path |
| 2626 | * arrays to the shared hash table. |
| 2627 | * |
| 2628 | * Returns true if successful, false if ran out of shared memory. |
| 2629 | */ |
| 2630 | static bool |
| 2631 | FastPathTransferRelationLocks(LockMethod lockMethodTable, const LOCKTAG *locktag, |
| 2632 | uint32 hashcode) |
| 2633 | { |
| 2634 | LWLock *partitionLock = LockHashPartitionLock(hashcode); |
| 2635 | Oid relid = locktag->locktag_field2; |
| 2636 | uint32 i; |
| 2637 | |
| 2638 | /* |
| 2639 | * Every PGPROC that can potentially hold a fast-path lock is present in |
| 2640 | * ProcGlobal->allProcs. Prepared transactions are not, but any |
| 2641 | * outstanding fast-path locks held by prepared transactions are |
| 2642 | * transferred to the main lock table. |
| 2643 | */ |
| 2644 | for (i = 0; i < ProcGlobal->allProcCount; i++) |
| 2645 | { |
| 2646 | PGPROC *proc = &ProcGlobal->allProcs[i]; |
| 2647 | uint32 f; |
| 2648 | |
| 2649 | LWLockAcquire(&proc->backendLock, LW_EXCLUSIVE); |
| 2650 | |
| 2651 | /* |
| 2652 | * If the target backend isn't referencing the same database as the |
| 2653 | * lock, then we needn't examine the individual relation IDs at all; |
| 2654 | * none of them can be relevant. |
| 2655 | * |
| 2656 | * proc->databaseId is set at backend startup time and never changes |
| 2657 | * thereafter, so it might be safe to perform this test before |
| 2658 | * acquiring &proc->backendLock. In particular, it's certainly safe |
| 2659 | * to assume that if the target backend holds any fast-path locks, it |
| 2660 | * must have performed a memory-fencing operation (in particular, an |
| 2661 | * LWLock acquisition) since setting proc->databaseId. However, it's |
| 2662 | * less clear that our backend is certain to have performed a memory |
| 2663 | * fencing operation since the other backend set proc->databaseId. So |
| 2664 | * for now, we test it after acquiring the LWLock just to be safe. |
| 2665 | */ |
| 2666 | if (proc->databaseId != locktag->locktag_field1) |
| 2667 | { |
| 2668 | LWLockRelease(&proc->backendLock); |
| 2669 | continue; |
| 2670 | } |
| 2671 | |
| 2672 | for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++) |
| 2673 | { |
| 2674 | uint32 lockmode; |
| 2675 | |
| 2676 | /* Look for an allocated slot matching the given relid. */ |
| 2677 | if (relid != proc->fpRelId[f] || FAST_PATH_GET_BITS(proc, f) == 0) |
| 2678 | continue; |
| 2679 | |
| 2680 | /* Find or create lock object. */ |
| 2681 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 2682 | for (lockmode = FAST_PATH_LOCKNUMBER_OFFSET; |
| 2683 | lockmode < FAST_PATH_LOCKNUMBER_OFFSET + FAST_PATH_BITS_PER_SLOT; |
| 2684 | ++lockmode) |
| 2685 | { |
| 2686 | PROCLOCK *proclock; |
| 2687 | |
| 2688 | if (!FAST_PATH_CHECK_LOCKMODE(proc, f, lockmode)) |
| 2689 | continue; |
| 2690 | proclock = SetupLockInTable(lockMethodTable, proc, locktag, |
| 2691 | hashcode, lockmode); |
| 2692 | if (!proclock) |
| 2693 | { |
| 2694 | LWLockRelease(partitionLock); |
| 2695 | LWLockRelease(&proc->backendLock); |
| 2696 | return false; |
| 2697 | } |
| 2698 | GrantLock(proclock->tag.myLock, proclock, lockmode); |
| 2699 | FAST_PATH_CLEAR_LOCKMODE(proc, f, lockmode); |
| 2700 | } |
| 2701 | LWLockRelease(partitionLock); |
| 2702 | |
| 2703 | /* No need to examine remaining slots. */ |
| 2704 | break; |
| 2705 | } |
| 2706 | LWLockRelease(&proc->backendLock); |
| 2707 | } |
| 2708 | return true; |
| 2709 | } |
| 2710 | |
| 2711 | /* |
| 2712 | * FastPathGetLockEntry |
| 2713 | * Return the PROCLOCK for a lock originally taken via the fast-path, |
| 2714 | * transferring it to the primary lock table if necessary. |
| 2715 | * |
| 2716 | * Note: caller takes care of updating the locallock object. |
| 2717 | */ |
| 2718 | static PROCLOCK * |
| 2719 | FastPathGetRelationLockEntry(LOCALLOCK *locallock) |
| 2720 | { |
| 2721 | LockMethod lockMethodTable = LockMethods[DEFAULT_LOCKMETHOD]; |
| 2722 | LOCKTAG *locktag = &locallock->tag.lock; |
| 2723 | PROCLOCK *proclock = NULL; |
| 2724 | LWLock *partitionLock = LockHashPartitionLock(locallock->hashcode); |
| 2725 | Oid relid = locktag->locktag_field2; |
| 2726 | uint32 f; |
| 2727 | |
| 2728 | LWLockAcquire(&MyProc->backendLock, LW_EXCLUSIVE); |
| 2729 | |
| 2730 | for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++) |
| 2731 | { |
| 2732 | uint32 lockmode; |
| 2733 | |
| 2734 | /* Look for an allocated slot matching the given relid. */ |
| 2735 | if (relid != MyProc->fpRelId[f] || FAST_PATH_GET_BITS(MyProc, f) == 0) |
| 2736 | continue; |
| 2737 | |
| 2738 | /* If we don't have a lock of the given mode, forget it! */ |
| 2739 | lockmode = locallock->tag.mode; |
| 2740 | if (!FAST_PATH_CHECK_LOCKMODE(MyProc, f, lockmode)) |
| 2741 | break; |
| 2742 | |
| 2743 | /* Find or create lock object. */ |
| 2744 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 2745 | |
| 2746 | proclock = SetupLockInTable(lockMethodTable, MyProc, locktag, |
| 2747 | locallock->hashcode, lockmode); |
| 2748 | if (!proclock) |
| 2749 | { |
| 2750 | LWLockRelease(partitionLock); |
| 2751 | LWLockRelease(&MyProc->backendLock); |
| 2752 | ereport(ERROR, |
| 2753 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 2754 | errmsg("out of shared memory" ), |
| 2755 | errhint("You might need to increase max_locks_per_transaction." ))); |
| 2756 | } |
| 2757 | GrantLock(proclock->tag.myLock, proclock, lockmode); |
| 2758 | FAST_PATH_CLEAR_LOCKMODE(MyProc, f, lockmode); |
| 2759 | |
| 2760 | LWLockRelease(partitionLock); |
| 2761 | |
| 2762 | /* No need to examine remaining slots. */ |
| 2763 | break; |
| 2764 | } |
| 2765 | |
| 2766 | LWLockRelease(&MyProc->backendLock); |
| 2767 | |
| 2768 | /* Lock may have already been transferred by some other backend. */ |
| 2769 | if (proclock == NULL) |
| 2770 | { |
| 2771 | LOCK *lock; |
| 2772 | PROCLOCKTAG proclocktag; |
| 2773 | uint32 proclock_hashcode; |
| 2774 | |
| 2775 | LWLockAcquire(partitionLock, LW_SHARED); |
| 2776 | |
| 2777 | lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash, |
| 2778 | (void *) locktag, |
| 2779 | locallock->hashcode, |
| 2780 | HASH_FIND, |
| 2781 | NULL); |
| 2782 | if (!lock) |
| 2783 | elog(ERROR, "failed to re-find shared lock object" ); |
| 2784 | |
| 2785 | proclocktag.myLock = lock; |
| 2786 | proclocktag.myProc = MyProc; |
| 2787 | |
| 2788 | proclock_hashcode = ProcLockHashCode(&proclocktag, locallock->hashcode); |
| 2789 | proclock = (PROCLOCK *) |
| 2790 | hash_search_with_hash_value(LockMethodProcLockHash, |
| 2791 | (void *) &proclocktag, |
| 2792 | proclock_hashcode, |
| 2793 | HASH_FIND, |
| 2794 | NULL); |
| 2795 | if (!proclock) |
| 2796 | elog(ERROR, "failed to re-find shared proclock object" ); |
| 2797 | LWLockRelease(partitionLock); |
| 2798 | } |
| 2799 | |
| 2800 | return proclock; |
| 2801 | } |
| 2802 | |
| 2803 | /* |
| 2804 | * GetLockConflicts |
| 2805 | * Get an array of VirtualTransactionIds of xacts currently holding locks |
| 2806 | * that would conflict with the specified lock/lockmode. |
| 2807 | * xacts merely awaiting such a lock are NOT reported. |
| 2808 | * |
| 2809 | * The result array is palloc'd and is terminated with an invalid VXID. |
| 2810 | * *countp, if not null, is updated to the number of items set. |
| 2811 | * |
| 2812 | * Of course, the result could be out of date by the time it's returned, |
| 2813 | * so use of this function has to be thought about carefully. |
| 2814 | * |
| 2815 | * Note we never include the current xact's vxid in the result array, |
| 2816 | * since an xact never blocks itself. Also, prepared transactions are |
| 2817 | * ignored, which is a bit more debatable but is appropriate for current |
| 2818 | * uses of the result. |
| 2819 | */ |
| 2820 | VirtualTransactionId * |
| 2821 | GetLockConflicts(const LOCKTAG *locktag, LOCKMODE lockmode, int *countp) |
| 2822 | { |
| 2823 | static VirtualTransactionId *vxids; |
| 2824 | LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid; |
| 2825 | LockMethod lockMethodTable; |
| 2826 | LOCK *lock; |
| 2827 | LOCKMASK conflictMask; |
| 2828 | SHM_QUEUE *procLocks; |
| 2829 | PROCLOCK *proclock; |
| 2830 | uint32 hashcode; |
| 2831 | LWLock *partitionLock; |
| 2832 | int count = 0; |
| 2833 | int fast_count = 0; |
| 2834 | |
| 2835 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 2836 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 2837 | lockMethodTable = LockMethods[lockmethodid]; |
| 2838 | if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes) |
| 2839 | elog(ERROR, "unrecognized lock mode: %d" , lockmode); |
| 2840 | |
| 2841 | /* |
| 2842 | * Allocate memory to store results, and fill with InvalidVXID. We only |
| 2843 | * need enough space for MaxBackends + a terminator, since prepared xacts |
| 2844 | * don't count. InHotStandby allocate once in TopMemoryContext. |
| 2845 | */ |
| 2846 | if (InHotStandby) |
| 2847 | { |
| 2848 | if (vxids == NULL) |
| 2849 | vxids = (VirtualTransactionId *) |
| 2850 | MemoryContextAlloc(TopMemoryContext, |
| 2851 | sizeof(VirtualTransactionId) * (MaxBackends + 1)); |
| 2852 | } |
| 2853 | else |
| 2854 | vxids = (VirtualTransactionId *) |
| 2855 | palloc0(sizeof(VirtualTransactionId) * (MaxBackends + 1)); |
| 2856 | |
| 2857 | /* Compute hash code and partition lock, and look up conflicting modes. */ |
| 2858 | hashcode = LockTagHashCode(locktag); |
| 2859 | partitionLock = LockHashPartitionLock(hashcode); |
| 2860 | conflictMask = lockMethodTable->conflictTab[lockmode]; |
| 2861 | |
| 2862 | /* |
| 2863 | * Fast path locks might not have been entered in the primary lock table. |
| 2864 | * If the lock we're dealing with could conflict with such a lock, we must |
| 2865 | * examine each backend's fast-path array for conflicts. |
| 2866 | */ |
| 2867 | if (ConflictsWithRelationFastPath(locktag, lockmode)) |
| 2868 | { |
| 2869 | int i; |
| 2870 | Oid relid = locktag->locktag_field2; |
| 2871 | VirtualTransactionId vxid; |
| 2872 | |
| 2873 | /* |
| 2874 | * Iterate over relevant PGPROCs. Anything held by a prepared |
| 2875 | * transaction will have been transferred to the primary lock table, |
| 2876 | * so we need not worry about those. This is all a bit fuzzy, because |
| 2877 | * new locks could be taken after we've visited a particular |
| 2878 | * partition, but the callers had better be prepared to deal with that |
| 2879 | * anyway, since the locks could equally well be taken between the |
| 2880 | * time we return the value and the time the caller does something |
| 2881 | * with it. |
| 2882 | */ |
| 2883 | for (i = 0; i < ProcGlobal->allProcCount; i++) |
| 2884 | { |
| 2885 | PGPROC *proc = &ProcGlobal->allProcs[i]; |
| 2886 | uint32 f; |
| 2887 | |
| 2888 | /* A backend never blocks itself */ |
| 2889 | if (proc == MyProc) |
| 2890 | continue; |
| 2891 | |
| 2892 | LWLockAcquire(&proc->backendLock, LW_SHARED); |
| 2893 | |
| 2894 | /* |
| 2895 | * If the target backend isn't referencing the same database as |
| 2896 | * the lock, then we needn't examine the individual relation IDs |
| 2897 | * at all; none of them can be relevant. |
| 2898 | * |
| 2899 | * See FastPathTransferLocks() for discussion of why we do this |
| 2900 | * test after acquiring the lock. |
| 2901 | */ |
| 2902 | if (proc->databaseId != locktag->locktag_field1) |
| 2903 | { |
| 2904 | LWLockRelease(&proc->backendLock); |
| 2905 | continue; |
| 2906 | } |
| 2907 | |
| 2908 | for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++) |
| 2909 | { |
| 2910 | uint32 lockmask; |
| 2911 | |
| 2912 | /* Look for an allocated slot matching the given relid. */ |
| 2913 | if (relid != proc->fpRelId[f]) |
| 2914 | continue; |
| 2915 | lockmask = FAST_PATH_GET_BITS(proc, f); |
| 2916 | if (!lockmask) |
| 2917 | continue; |
| 2918 | lockmask <<= FAST_PATH_LOCKNUMBER_OFFSET; |
| 2919 | |
| 2920 | /* |
| 2921 | * There can only be one entry per relation, so if we found it |
| 2922 | * and it doesn't conflict, we can skip the rest of the slots. |
| 2923 | */ |
| 2924 | if ((lockmask & conflictMask) == 0) |
| 2925 | break; |
| 2926 | |
| 2927 | /* Conflict! */ |
| 2928 | GET_VXID_FROM_PGPROC(vxid, *proc); |
| 2929 | |
| 2930 | /* |
| 2931 | * If we see an invalid VXID, then either the xact has already |
| 2932 | * committed (or aborted), or it's a prepared xact. In either |
| 2933 | * case we may ignore it. |
| 2934 | */ |
| 2935 | if (VirtualTransactionIdIsValid(vxid)) |
| 2936 | vxids[count++] = vxid; |
| 2937 | |
| 2938 | /* No need to examine remaining slots. */ |
| 2939 | break; |
| 2940 | } |
| 2941 | |
| 2942 | LWLockRelease(&proc->backendLock); |
| 2943 | } |
| 2944 | } |
| 2945 | |
| 2946 | /* Remember how many fast-path conflicts we found. */ |
| 2947 | fast_count = count; |
| 2948 | |
| 2949 | /* |
| 2950 | * Look up the lock object matching the tag. |
| 2951 | */ |
| 2952 | LWLockAcquire(partitionLock, LW_SHARED); |
| 2953 | |
| 2954 | lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash, |
| 2955 | (const void *) locktag, |
| 2956 | hashcode, |
| 2957 | HASH_FIND, |
| 2958 | NULL); |
| 2959 | if (!lock) |
| 2960 | { |
| 2961 | /* |
| 2962 | * If the lock object doesn't exist, there is nothing holding a lock |
| 2963 | * on this lockable object. |
| 2964 | */ |
| 2965 | LWLockRelease(partitionLock); |
| 2966 | vxids[count].backendId = InvalidBackendId; |
| 2967 | vxids[count].localTransactionId = InvalidLocalTransactionId; |
| 2968 | if (countp) |
| 2969 | *countp = count; |
| 2970 | return vxids; |
| 2971 | } |
| 2972 | |
| 2973 | /* |
| 2974 | * Examine each existing holder (or awaiter) of the lock. |
| 2975 | */ |
| 2976 | |
| 2977 | procLocks = &(lock->procLocks); |
| 2978 | |
| 2979 | proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks, |
| 2980 | offsetof(PROCLOCK, lockLink)); |
| 2981 | |
| 2982 | while (proclock) |
| 2983 | { |
| 2984 | if (conflictMask & proclock->holdMask) |
| 2985 | { |
| 2986 | PGPROC *proc = proclock->tag.myProc; |
| 2987 | |
| 2988 | /* A backend never blocks itself */ |
| 2989 | if (proc != MyProc) |
| 2990 | { |
| 2991 | VirtualTransactionId vxid; |
| 2992 | |
| 2993 | GET_VXID_FROM_PGPROC(vxid, *proc); |
| 2994 | |
| 2995 | /* |
| 2996 | * If we see an invalid VXID, then either the xact has already |
| 2997 | * committed (or aborted), or it's a prepared xact. In either |
| 2998 | * case we may ignore it. |
| 2999 | */ |
| 3000 | if (VirtualTransactionIdIsValid(vxid)) |
| 3001 | { |
| 3002 | int i; |
| 3003 | |
| 3004 | /* Avoid duplicate entries. */ |
| 3005 | for (i = 0; i < fast_count; ++i) |
| 3006 | if (VirtualTransactionIdEquals(vxids[i], vxid)) |
| 3007 | break; |
| 3008 | if (i >= fast_count) |
| 3009 | vxids[count++] = vxid; |
| 3010 | } |
| 3011 | } |
| 3012 | } |
| 3013 | |
| 3014 | proclock = (PROCLOCK *) SHMQueueNext(procLocks, &proclock->lockLink, |
| 3015 | offsetof(PROCLOCK, lockLink)); |
| 3016 | } |
| 3017 | |
| 3018 | LWLockRelease(partitionLock); |
| 3019 | |
| 3020 | if (count > MaxBackends) /* should never happen */ |
| 3021 | elog(PANIC, "too many conflicting locks found" ); |
| 3022 | |
| 3023 | vxids[count].backendId = InvalidBackendId; |
| 3024 | vxids[count].localTransactionId = InvalidLocalTransactionId; |
| 3025 | if (countp) |
| 3026 | *countp = count; |
| 3027 | return vxids; |
| 3028 | } |
| 3029 | |
| 3030 | /* |
| 3031 | * Find a lock in the shared lock table and release it. It is the caller's |
| 3032 | * responsibility to verify that this is a sane thing to do. (For example, it |
| 3033 | * would be bad to release a lock here if there might still be a LOCALLOCK |
| 3034 | * object with pointers to it.) |
| 3035 | * |
| 3036 | * We currently use this in two situations: first, to release locks held by |
| 3037 | * prepared transactions on commit (see lock_twophase_postcommit); and second, |
| 3038 | * to release locks taken via the fast-path, transferred to the main hash |
| 3039 | * table, and then released (see LockReleaseAll). |
| 3040 | */ |
| 3041 | static void |
| 3042 | LockRefindAndRelease(LockMethod lockMethodTable, PGPROC *proc, |
| 3043 | LOCKTAG *locktag, LOCKMODE lockmode, |
| 3044 | bool decrement_strong_lock_count) |
| 3045 | { |
| 3046 | LOCK *lock; |
| 3047 | PROCLOCK *proclock; |
| 3048 | PROCLOCKTAG proclocktag; |
| 3049 | uint32 hashcode; |
| 3050 | uint32 proclock_hashcode; |
| 3051 | LWLock *partitionLock; |
| 3052 | bool wakeupNeeded; |
| 3053 | |
| 3054 | hashcode = LockTagHashCode(locktag); |
| 3055 | partitionLock = LockHashPartitionLock(hashcode); |
| 3056 | |
| 3057 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 3058 | |
| 3059 | /* |
| 3060 | * Re-find the lock object (it had better be there). |
| 3061 | */ |
| 3062 | lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash, |
| 3063 | (void *) locktag, |
| 3064 | hashcode, |
| 3065 | HASH_FIND, |
| 3066 | NULL); |
| 3067 | if (!lock) |
| 3068 | elog(PANIC, "failed to re-find shared lock object" ); |
| 3069 | |
| 3070 | /* |
| 3071 | * Re-find the proclock object (ditto). |
| 3072 | */ |
| 3073 | proclocktag.myLock = lock; |
| 3074 | proclocktag.myProc = proc; |
| 3075 | |
| 3076 | proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode); |
| 3077 | |
| 3078 | proclock = (PROCLOCK *) hash_search_with_hash_value(LockMethodProcLockHash, |
| 3079 | (void *) &proclocktag, |
| 3080 | proclock_hashcode, |
| 3081 | HASH_FIND, |
| 3082 | NULL); |
| 3083 | if (!proclock) |
| 3084 | elog(PANIC, "failed to re-find shared proclock object" ); |
| 3085 | |
| 3086 | /* |
| 3087 | * Double-check that we are actually holding a lock of the type we want to |
| 3088 | * release. |
| 3089 | */ |
| 3090 | if (!(proclock->holdMask & LOCKBIT_ON(lockmode))) |
| 3091 | { |
| 3092 | PROCLOCK_PRINT("lock_twophase_postcommit: WRONGTYPE" , proclock); |
| 3093 | LWLockRelease(partitionLock); |
| 3094 | elog(WARNING, "you don't own a lock of type %s" , |
| 3095 | lockMethodTable->lockModeNames[lockmode]); |
| 3096 | return; |
| 3097 | } |
| 3098 | |
| 3099 | /* |
| 3100 | * Do the releasing. CleanUpLock will waken any now-wakable waiters. |
| 3101 | */ |
| 3102 | wakeupNeeded = UnGrantLock(lock, lockmode, proclock, lockMethodTable); |
| 3103 | |
| 3104 | CleanUpLock(lock, proclock, |
| 3105 | lockMethodTable, hashcode, |
| 3106 | wakeupNeeded); |
| 3107 | |
| 3108 | LWLockRelease(partitionLock); |
| 3109 | |
| 3110 | /* |
| 3111 | * Decrement strong lock count. This logic is needed only for 2PC. |
| 3112 | */ |
| 3113 | if (decrement_strong_lock_count |
| 3114 | && ConflictsWithRelationFastPath(locktag, lockmode)) |
| 3115 | { |
| 3116 | uint32 fasthashcode = FastPathStrongLockHashPartition(hashcode); |
| 3117 | |
| 3118 | SpinLockAcquire(&FastPathStrongRelationLocks->mutex); |
| 3119 | Assert(FastPathStrongRelationLocks->count[fasthashcode] > 0); |
| 3120 | FastPathStrongRelationLocks->count[fasthashcode]--; |
| 3121 | SpinLockRelease(&FastPathStrongRelationLocks->mutex); |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | /* |
| 3126 | * AtPrepare_Locks |
| 3127 | * Do the preparatory work for a PREPARE: make 2PC state file records |
| 3128 | * for all locks currently held. |
| 3129 | * |
| 3130 | * Session-level locks are ignored, as are VXID locks. |
| 3131 | * |
| 3132 | * There are some special cases that we error out on: we can't be holding any |
| 3133 | * locks at both session and transaction level (since we must either keep or |
| 3134 | * give away the PROCLOCK object), and we can't be holding any locks on |
| 3135 | * temporary objects (since that would mess up the current backend if it tries |
| 3136 | * to exit before the prepared xact is committed). |
| 3137 | */ |
| 3138 | void |
| 3139 | AtPrepare_Locks(void) |
| 3140 | { |
| 3141 | HASH_SEQ_STATUS status; |
| 3142 | LOCALLOCK *locallock; |
| 3143 | |
| 3144 | /* |
| 3145 | * For the most part, we don't need to touch shared memory for this --- |
| 3146 | * all the necessary state information is in the locallock table. |
| 3147 | * Fast-path locks are an exception, however: we move any such locks to |
| 3148 | * the main table before allowing PREPARE TRANSACTION to succeed. |
| 3149 | */ |
| 3150 | hash_seq_init(&status, LockMethodLocalHash); |
| 3151 | |
| 3152 | while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL) |
| 3153 | { |
| 3154 | TwoPhaseLockRecord record; |
| 3155 | LOCALLOCKOWNER *lockOwners = locallock->lockOwners; |
| 3156 | bool haveSessionLock; |
| 3157 | bool haveXactLock; |
| 3158 | int i; |
| 3159 | |
| 3160 | /* |
| 3161 | * Ignore VXID locks. We don't want those to be held by prepared |
| 3162 | * transactions, since they aren't meaningful after a restart. |
| 3163 | */ |
| 3164 | if (locallock->tag.lock.locktag_type == LOCKTAG_VIRTUALTRANSACTION) |
| 3165 | continue; |
| 3166 | |
| 3167 | /* Ignore it if we don't actually hold the lock */ |
| 3168 | if (locallock->nLocks <= 0) |
| 3169 | continue; |
| 3170 | |
| 3171 | /* Scan to see whether we hold it at session or transaction level */ |
| 3172 | haveSessionLock = haveXactLock = false; |
| 3173 | for (i = locallock->numLockOwners - 1; i >= 0; i--) |
| 3174 | { |
| 3175 | if (lockOwners[i].owner == NULL) |
| 3176 | haveSessionLock = true; |
| 3177 | else |
| 3178 | haveXactLock = true; |
| 3179 | } |
| 3180 | |
| 3181 | /* Ignore it if we have only session lock */ |
| 3182 | if (!haveXactLock) |
| 3183 | continue; |
| 3184 | |
| 3185 | /* |
| 3186 | * If we have both session- and transaction-level locks, fail. This |
| 3187 | * should never happen with regular locks, since we only take those at |
| 3188 | * session level in some special operations like VACUUM. It's |
| 3189 | * possible to hit this with advisory locks, though. |
| 3190 | * |
| 3191 | * It would be nice if we could keep the session hold and give away |
| 3192 | * the transactional hold to the prepared xact. However, that would |
| 3193 | * require two PROCLOCK objects, and we cannot be sure that another |
| 3194 | * PROCLOCK will be available when it comes time for PostPrepare_Locks |
| 3195 | * to do the deed. So for now, we error out while we can still do so |
| 3196 | * safely. |
| 3197 | */ |
| 3198 | if (haveSessionLock) |
| 3199 | ereport(ERROR, |
| 3200 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3201 | errmsg("cannot PREPARE while holding both session-level and transaction-level locks on the same object" ))); |
| 3202 | |
| 3203 | /* |
| 3204 | * If the local lock was taken via the fast-path, we need to move it |
| 3205 | * to the primary lock table, or just get a pointer to the existing |
| 3206 | * primary lock table entry if by chance it's already been |
| 3207 | * transferred. |
| 3208 | */ |
| 3209 | if (locallock->proclock == NULL) |
| 3210 | { |
| 3211 | locallock->proclock = FastPathGetRelationLockEntry(locallock); |
| 3212 | locallock->lock = locallock->proclock->tag.myLock; |
| 3213 | } |
| 3214 | |
| 3215 | /* |
| 3216 | * Arrange to not release any strong lock count held by this lock |
| 3217 | * entry. We must retain the count until the prepared transaction is |
| 3218 | * committed or rolled back. |
| 3219 | */ |
| 3220 | locallock->holdsStrongLockCount = false; |
| 3221 | |
| 3222 | /* |
| 3223 | * Create a 2PC record. |
| 3224 | */ |
| 3225 | memcpy(&(record.locktag), &(locallock->tag.lock), sizeof(LOCKTAG)); |
| 3226 | record.lockmode = locallock->tag.mode; |
| 3227 | |
| 3228 | RegisterTwoPhaseRecord(TWOPHASE_RM_LOCK_ID, 0, |
| 3229 | &record, sizeof(TwoPhaseLockRecord)); |
| 3230 | } |
| 3231 | } |
| 3232 | |
| 3233 | /* |
| 3234 | * PostPrepare_Locks |
| 3235 | * Clean up after successful PREPARE |
| 3236 | * |
| 3237 | * Here, we want to transfer ownership of our locks to a dummy PGPROC |
| 3238 | * that's now associated with the prepared transaction, and we want to |
| 3239 | * clean out the corresponding entries in the LOCALLOCK table. |
| 3240 | * |
| 3241 | * Note: by removing the LOCALLOCK entries, we are leaving dangling |
| 3242 | * pointers in the transaction's resource owner. This is OK at the |
| 3243 | * moment since resowner.c doesn't try to free locks retail at a toplevel |
| 3244 | * transaction commit or abort. We could alternatively zero out nLocks |
| 3245 | * and leave the LOCALLOCK entries to be garbage-collected by LockReleaseAll, |
| 3246 | * but that probably costs more cycles. |
| 3247 | */ |
| 3248 | void |
| 3249 | PostPrepare_Locks(TransactionId xid) |
| 3250 | { |
| 3251 | PGPROC *newproc = TwoPhaseGetDummyProc(xid, false); |
| 3252 | HASH_SEQ_STATUS status; |
| 3253 | LOCALLOCK *locallock; |
| 3254 | LOCK *lock; |
| 3255 | PROCLOCK *proclock; |
| 3256 | PROCLOCKTAG proclocktag; |
| 3257 | int partition; |
| 3258 | |
| 3259 | /* Can't prepare a lock group follower. */ |
| 3260 | Assert(MyProc->lockGroupLeader == NULL || |
| 3261 | MyProc->lockGroupLeader == MyProc); |
| 3262 | |
| 3263 | /* This is a critical section: any error means big trouble */ |
| 3264 | START_CRIT_SECTION(); |
| 3265 | |
| 3266 | /* |
| 3267 | * First we run through the locallock table and get rid of unwanted |
| 3268 | * entries, then we scan the process's proclocks and transfer them to the |
| 3269 | * target proc. |
| 3270 | * |
| 3271 | * We do this separately because we may have multiple locallock entries |
| 3272 | * pointing to the same proclock, and we daren't end up with any dangling |
| 3273 | * pointers. |
| 3274 | */ |
| 3275 | hash_seq_init(&status, LockMethodLocalHash); |
| 3276 | |
| 3277 | while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL) |
| 3278 | { |
| 3279 | LOCALLOCKOWNER *lockOwners = locallock->lockOwners; |
| 3280 | bool haveSessionLock; |
| 3281 | bool haveXactLock; |
| 3282 | int i; |
| 3283 | |
| 3284 | if (locallock->proclock == NULL || locallock->lock == NULL) |
| 3285 | { |
| 3286 | /* |
| 3287 | * We must've run out of shared memory while trying to set up this |
| 3288 | * lock. Just forget the local entry. |
| 3289 | */ |
| 3290 | Assert(locallock->nLocks == 0); |
| 3291 | RemoveLocalLock(locallock); |
| 3292 | continue; |
| 3293 | } |
| 3294 | |
| 3295 | /* Ignore VXID locks */ |
| 3296 | if (locallock->tag.lock.locktag_type == LOCKTAG_VIRTUALTRANSACTION) |
| 3297 | continue; |
| 3298 | |
| 3299 | /* Scan to see whether we hold it at session or transaction level */ |
| 3300 | haveSessionLock = haveXactLock = false; |
| 3301 | for (i = locallock->numLockOwners - 1; i >= 0; i--) |
| 3302 | { |
| 3303 | if (lockOwners[i].owner == NULL) |
| 3304 | haveSessionLock = true; |
| 3305 | else |
| 3306 | haveXactLock = true; |
| 3307 | } |
| 3308 | |
| 3309 | /* Ignore it if we have only session lock */ |
| 3310 | if (!haveXactLock) |
| 3311 | continue; |
| 3312 | |
| 3313 | /* This can't happen, because we already checked it */ |
| 3314 | if (haveSessionLock) |
| 3315 | ereport(PANIC, |
| 3316 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3317 | errmsg("cannot PREPARE while holding both session-level and transaction-level locks on the same object" ))); |
| 3318 | |
| 3319 | /* Mark the proclock to show we need to release this lockmode */ |
| 3320 | if (locallock->nLocks > 0) |
| 3321 | locallock->proclock->releaseMask |= LOCKBIT_ON(locallock->tag.mode); |
| 3322 | |
| 3323 | /* And remove the locallock hashtable entry */ |
| 3324 | RemoveLocalLock(locallock); |
| 3325 | } |
| 3326 | |
| 3327 | /* |
| 3328 | * Now, scan each lock partition separately. |
| 3329 | */ |
| 3330 | for (partition = 0; partition < NUM_LOCK_PARTITIONS; partition++) |
| 3331 | { |
| 3332 | LWLock *partitionLock; |
| 3333 | SHM_QUEUE *procLocks = &(MyProc->myProcLocks[partition]); |
| 3334 | PROCLOCK *nextplock; |
| 3335 | |
| 3336 | partitionLock = LockHashPartitionLockByIndex(partition); |
| 3337 | |
| 3338 | /* |
| 3339 | * If the proclock list for this partition is empty, we can skip |
| 3340 | * acquiring the partition lock. This optimization is safer than the |
| 3341 | * situation in LockReleaseAll, because we got rid of any fast-path |
| 3342 | * locks during AtPrepare_Locks, so there cannot be any case where |
| 3343 | * another backend is adding something to our lists now. For safety, |
| 3344 | * though, we code this the same way as in LockReleaseAll. |
| 3345 | */ |
| 3346 | if (SHMQueueNext(procLocks, procLocks, |
| 3347 | offsetof(PROCLOCK, procLink)) == NULL) |
| 3348 | continue; /* needn't examine this partition */ |
| 3349 | |
| 3350 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 3351 | |
| 3352 | for (proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks, |
| 3353 | offsetof(PROCLOCK, procLink)); |
| 3354 | proclock; |
| 3355 | proclock = nextplock) |
| 3356 | { |
| 3357 | /* Get link first, since we may unlink/relink this proclock */ |
| 3358 | nextplock = (PROCLOCK *) |
| 3359 | SHMQueueNext(procLocks, &proclock->procLink, |
| 3360 | offsetof(PROCLOCK, procLink)); |
| 3361 | |
| 3362 | Assert(proclock->tag.myProc == MyProc); |
| 3363 | |
| 3364 | lock = proclock->tag.myLock; |
| 3365 | |
| 3366 | /* Ignore VXID locks */ |
| 3367 | if (lock->tag.locktag_type == LOCKTAG_VIRTUALTRANSACTION) |
| 3368 | continue; |
| 3369 | |
| 3370 | PROCLOCK_PRINT("PostPrepare_Locks" , proclock); |
| 3371 | LOCK_PRINT("PostPrepare_Locks" , lock, 0); |
| 3372 | Assert(lock->nRequested >= 0); |
| 3373 | Assert(lock->nGranted >= 0); |
| 3374 | Assert(lock->nGranted <= lock->nRequested); |
| 3375 | Assert((proclock->holdMask & ~lock->grantMask) == 0); |
| 3376 | |
| 3377 | /* Ignore it if nothing to release (must be a session lock) */ |
| 3378 | if (proclock->releaseMask == 0) |
| 3379 | continue; |
| 3380 | |
| 3381 | /* Else we should be releasing all locks */ |
| 3382 | if (proclock->releaseMask != proclock->holdMask) |
| 3383 | elog(PANIC, "we seem to have dropped a bit somewhere" ); |
| 3384 | |
| 3385 | /* |
| 3386 | * We cannot simply modify proclock->tag.myProc to reassign |
| 3387 | * ownership of the lock, because that's part of the hash key and |
| 3388 | * the proclock would then be in the wrong hash chain. Instead |
| 3389 | * use hash_update_hash_key. (We used to create a new hash entry, |
| 3390 | * but that risks out-of-memory failure if other processes are |
| 3391 | * busy making proclocks too.) We must unlink the proclock from |
| 3392 | * our procLink chain and put it into the new proc's chain, too. |
| 3393 | * |
| 3394 | * Note: the updated proclock hash key will still belong to the |
| 3395 | * same hash partition, cf proclock_hash(). So the partition lock |
| 3396 | * we already hold is sufficient for this. |
| 3397 | */ |
| 3398 | SHMQueueDelete(&proclock->procLink); |
| 3399 | |
| 3400 | /* |
| 3401 | * Create the new hash key for the proclock. |
| 3402 | */ |
| 3403 | proclocktag.myLock = lock; |
| 3404 | proclocktag.myProc = newproc; |
| 3405 | |
| 3406 | /* |
| 3407 | * Update groupLeader pointer to point to the new proc. (We'd |
| 3408 | * better not be a member of somebody else's lock group!) |
| 3409 | */ |
| 3410 | Assert(proclock->groupLeader == proclock->tag.myProc); |
| 3411 | proclock->groupLeader = newproc; |
| 3412 | |
| 3413 | /* |
| 3414 | * Update the proclock. We should not find any existing entry for |
| 3415 | * the same hash key, since there can be only one entry for any |
| 3416 | * given lock with my own proc. |
| 3417 | */ |
| 3418 | if (!hash_update_hash_key(LockMethodProcLockHash, |
| 3419 | (void *) proclock, |
| 3420 | (void *) &proclocktag)) |
| 3421 | elog(PANIC, "duplicate entry found while reassigning a prepared transaction's locks" ); |
| 3422 | |
| 3423 | /* Re-link into the new proc's proclock list */ |
| 3424 | SHMQueueInsertBefore(&(newproc->myProcLocks[partition]), |
| 3425 | &proclock->procLink); |
| 3426 | |
| 3427 | PROCLOCK_PRINT("PostPrepare_Locks: updated" , proclock); |
| 3428 | } /* loop over PROCLOCKs within this partition */ |
| 3429 | |
| 3430 | LWLockRelease(partitionLock); |
| 3431 | } /* loop over partitions */ |
| 3432 | |
| 3433 | END_CRIT_SECTION(); |
| 3434 | } |
| 3435 | |
| 3436 | |
| 3437 | /* |
| 3438 | * Estimate shared-memory space used for lock tables |
| 3439 | */ |
| 3440 | Size |
| 3441 | LockShmemSize(void) |
| 3442 | { |
| 3443 | Size size = 0; |
| 3444 | long max_table_size; |
| 3445 | |
| 3446 | /* lock hash table */ |
| 3447 | max_table_size = NLOCKENTS(); |
| 3448 | size = add_size(size, hash_estimate_size(max_table_size, sizeof(LOCK))); |
| 3449 | |
| 3450 | /* proclock hash table */ |
| 3451 | max_table_size *= 2; |
| 3452 | size = add_size(size, hash_estimate_size(max_table_size, sizeof(PROCLOCK))); |
| 3453 | |
| 3454 | /* |
| 3455 | * Since NLOCKENTS is only an estimate, add 10% safety margin. |
| 3456 | */ |
| 3457 | size = add_size(size, size / 10); |
| 3458 | |
| 3459 | return size; |
| 3460 | } |
| 3461 | |
| 3462 | /* |
| 3463 | * GetLockStatusData - Return a summary of the lock manager's internal |
| 3464 | * status, for use in a user-level reporting function. |
| 3465 | * |
| 3466 | * The return data consists of an array of LockInstanceData objects, |
| 3467 | * which are a lightly abstracted version of the PROCLOCK data structures, |
| 3468 | * i.e. there is one entry for each unique lock and interested PGPROC. |
| 3469 | * It is the caller's responsibility to match up related items (such as |
| 3470 | * references to the same lockable object or PGPROC) if wanted. |
| 3471 | * |
| 3472 | * The design goal is to hold the LWLocks for as short a time as possible; |
| 3473 | * thus, this function simply makes a copy of the necessary data and releases |
| 3474 | * the locks, allowing the caller to contemplate and format the data for as |
| 3475 | * long as it pleases. |
| 3476 | */ |
| 3477 | LockData * |
| 3478 | GetLockStatusData(void) |
| 3479 | { |
| 3480 | LockData *data; |
| 3481 | PROCLOCK *proclock; |
| 3482 | HASH_SEQ_STATUS seqstat; |
| 3483 | int els; |
| 3484 | int el; |
| 3485 | int i; |
| 3486 | |
| 3487 | data = (LockData *) palloc(sizeof(LockData)); |
| 3488 | |
| 3489 | /* Guess how much space we'll need. */ |
| 3490 | els = MaxBackends; |
| 3491 | el = 0; |
| 3492 | data->locks = (LockInstanceData *) palloc(sizeof(LockInstanceData) * els); |
| 3493 | |
| 3494 | /* |
| 3495 | * First, we iterate through the per-backend fast-path arrays, locking |
| 3496 | * them one at a time. This might produce an inconsistent picture of the |
| 3497 | * system state, but taking all of those LWLocks at the same time seems |
| 3498 | * impractical (in particular, note MAX_SIMUL_LWLOCKS). It shouldn't |
| 3499 | * matter too much, because none of these locks can be involved in lock |
| 3500 | * conflicts anyway - anything that might must be present in the main lock |
| 3501 | * table. (For the same reason, we don't sweat about making leaderPid |
| 3502 | * completely valid. We cannot safely dereference another backend's |
| 3503 | * lockGroupLeader field without holding all lock partition locks, and |
| 3504 | * it's not worth that.) |
| 3505 | */ |
| 3506 | for (i = 0; i < ProcGlobal->allProcCount; ++i) |
| 3507 | { |
| 3508 | PGPROC *proc = &ProcGlobal->allProcs[i]; |
| 3509 | uint32 f; |
| 3510 | |
| 3511 | LWLockAcquire(&proc->backendLock, LW_SHARED); |
| 3512 | |
| 3513 | for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; ++f) |
| 3514 | { |
| 3515 | LockInstanceData *instance; |
| 3516 | uint32 lockbits = FAST_PATH_GET_BITS(proc, f); |
| 3517 | |
| 3518 | /* Skip unallocated slots. */ |
| 3519 | if (!lockbits) |
| 3520 | continue; |
| 3521 | |
| 3522 | if (el >= els) |
| 3523 | { |
| 3524 | els += MaxBackends; |
| 3525 | data->locks = (LockInstanceData *) |
| 3526 | repalloc(data->locks, sizeof(LockInstanceData) * els); |
| 3527 | } |
| 3528 | |
| 3529 | instance = &data->locks[el]; |
| 3530 | SET_LOCKTAG_RELATION(instance->locktag, proc->databaseId, |
| 3531 | proc->fpRelId[f]); |
| 3532 | instance->holdMask = lockbits << FAST_PATH_LOCKNUMBER_OFFSET; |
| 3533 | instance->waitLockMode = NoLock; |
| 3534 | instance->backend = proc->backendId; |
| 3535 | instance->lxid = proc->lxid; |
| 3536 | instance->pid = proc->pid; |
| 3537 | instance->leaderPid = proc->pid; |
| 3538 | instance->fastpath = true; |
| 3539 | |
| 3540 | el++; |
| 3541 | } |
| 3542 | |
| 3543 | if (proc->fpVXIDLock) |
| 3544 | { |
| 3545 | VirtualTransactionId vxid; |
| 3546 | LockInstanceData *instance; |
| 3547 | |
| 3548 | if (el >= els) |
| 3549 | { |
| 3550 | els += MaxBackends; |
| 3551 | data->locks = (LockInstanceData *) |
| 3552 | repalloc(data->locks, sizeof(LockInstanceData) * els); |
| 3553 | } |
| 3554 | |
| 3555 | vxid.backendId = proc->backendId; |
| 3556 | vxid.localTransactionId = proc->fpLocalTransactionId; |
| 3557 | |
| 3558 | instance = &data->locks[el]; |
| 3559 | SET_LOCKTAG_VIRTUALTRANSACTION(instance->locktag, vxid); |
| 3560 | instance->holdMask = LOCKBIT_ON(ExclusiveLock); |
| 3561 | instance->waitLockMode = NoLock; |
| 3562 | instance->backend = proc->backendId; |
| 3563 | instance->lxid = proc->lxid; |
| 3564 | instance->pid = proc->pid; |
| 3565 | instance->leaderPid = proc->pid; |
| 3566 | instance->fastpath = true; |
| 3567 | |
| 3568 | el++; |
| 3569 | } |
| 3570 | |
| 3571 | LWLockRelease(&proc->backendLock); |
| 3572 | } |
| 3573 | |
| 3574 | /* |
| 3575 | * Next, acquire lock on the entire shared lock data structure. We do |
| 3576 | * this so that, at least for locks in the primary lock table, the state |
| 3577 | * will be self-consistent. |
| 3578 | * |
| 3579 | * Since this is a read-only operation, we take shared instead of |
| 3580 | * exclusive lock. There's not a whole lot of point to this, because all |
| 3581 | * the normal operations require exclusive lock, but it doesn't hurt |
| 3582 | * anything either. It will at least allow two backends to do |
| 3583 | * GetLockStatusData in parallel. |
| 3584 | * |
| 3585 | * Must grab LWLocks in partition-number order to avoid LWLock deadlock. |
| 3586 | */ |
| 3587 | for (i = 0; i < NUM_LOCK_PARTITIONS; i++) |
| 3588 | LWLockAcquire(LockHashPartitionLockByIndex(i), LW_SHARED); |
| 3589 | |
| 3590 | /* Now we can safely count the number of proclocks */ |
| 3591 | data->nelements = el + hash_get_num_entries(LockMethodProcLockHash); |
| 3592 | if (data->nelements > els) |
| 3593 | { |
| 3594 | els = data->nelements; |
| 3595 | data->locks = (LockInstanceData *) |
| 3596 | repalloc(data->locks, sizeof(LockInstanceData) * els); |
| 3597 | } |
| 3598 | |
| 3599 | /* Now scan the tables to copy the data */ |
| 3600 | hash_seq_init(&seqstat, LockMethodProcLockHash); |
| 3601 | |
| 3602 | while ((proclock = (PROCLOCK *) hash_seq_search(&seqstat))) |
| 3603 | { |
| 3604 | PGPROC *proc = proclock->tag.myProc; |
| 3605 | LOCK *lock = proclock->tag.myLock; |
| 3606 | LockInstanceData *instance = &data->locks[el]; |
| 3607 | |
| 3608 | memcpy(&instance->locktag, &lock->tag, sizeof(LOCKTAG)); |
| 3609 | instance->holdMask = proclock->holdMask; |
| 3610 | if (proc->waitLock == proclock->tag.myLock) |
| 3611 | instance->waitLockMode = proc->waitLockMode; |
| 3612 | else |
| 3613 | instance->waitLockMode = NoLock; |
| 3614 | instance->backend = proc->backendId; |
| 3615 | instance->lxid = proc->lxid; |
| 3616 | instance->pid = proc->pid; |
| 3617 | instance->leaderPid = proclock->groupLeader->pid; |
| 3618 | instance->fastpath = false; |
| 3619 | |
| 3620 | el++; |
| 3621 | } |
| 3622 | |
| 3623 | /* |
| 3624 | * And release locks. We do this in reverse order for two reasons: (1) |
| 3625 | * Anyone else who needs more than one of the locks will be trying to lock |
| 3626 | * them in increasing order; we don't want to release the other process |
| 3627 | * until it can get all the locks it needs. (2) This avoids O(N^2) |
| 3628 | * behavior inside LWLockRelease. |
| 3629 | */ |
| 3630 | for (i = NUM_LOCK_PARTITIONS; --i >= 0;) |
| 3631 | LWLockRelease(LockHashPartitionLockByIndex(i)); |
| 3632 | |
| 3633 | Assert(el == data->nelements); |
| 3634 | |
| 3635 | return data; |
| 3636 | } |
| 3637 | |
| 3638 | /* |
| 3639 | * GetBlockerStatusData - Return a summary of the lock manager's state |
| 3640 | * concerning locks that are blocking the specified PID or any member of |
| 3641 | * the PID's lock group, for use in a user-level reporting function. |
| 3642 | * |
| 3643 | * For each PID within the lock group that is awaiting some heavyweight lock, |
| 3644 | * the return data includes an array of LockInstanceData objects, which are |
| 3645 | * the same data structure used by GetLockStatusData; but unlike that function, |
| 3646 | * this one reports only the PROCLOCKs associated with the lock that that PID |
| 3647 | * is blocked on. (Hence, all the locktags should be the same for any one |
| 3648 | * blocked PID.) In addition, we return an array of the PIDs of those backends |
| 3649 | * that are ahead of the blocked PID in the lock's wait queue. These can be |
| 3650 | * compared with the PIDs in the LockInstanceData objects to determine which |
| 3651 | * waiters are ahead of or behind the blocked PID in the queue. |
| 3652 | * |
| 3653 | * If blocked_pid isn't a valid backend PID or nothing in its lock group is |
| 3654 | * waiting on any heavyweight lock, return empty arrays. |
| 3655 | * |
| 3656 | * The design goal is to hold the LWLocks for as short a time as possible; |
| 3657 | * thus, this function simply makes a copy of the necessary data and releases |
| 3658 | * the locks, allowing the caller to contemplate and format the data for as |
| 3659 | * long as it pleases. |
| 3660 | */ |
| 3661 | BlockedProcsData * |
| 3662 | GetBlockerStatusData(int blocked_pid) |
| 3663 | { |
| 3664 | BlockedProcsData *data; |
| 3665 | PGPROC *proc; |
| 3666 | int i; |
| 3667 | |
| 3668 | data = (BlockedProcsData *) palloc(sizeof(BlockedProcsData)); |
| 3669 | |
| 3670 | /* |
| 3671 | * Guess how much space we'll need, and preallocate. Most of the time |
| 3672 | * this will avoid needing to do repalloc while holding the LWLocks. (We |
| 3673 | * assume, but check with an Assert, that MaxBackends is enough entries |
| 3674 | * for the procs[] array; the other two could need enlargement, though.) |
| 3675 | */ |
| 3676 | data->nprocs = data->nlocks = data->npids = 0; |
| 3677 | data->maxprocs = data->maxlocks = data->maxpids = MaxBackends; |
| 3678 | data->procs = (BlockedProcData *) palloc(sizeof(BlockedProcData) * data->maxprocs); |
| 3679 | data->locks = (LockInstanceData *) palloc(sizeof(LockInstanceData) * data->maxlocks); |
| 3680 | data->waiter_pids = (int *) palloc(sizeof(int) * data->maxpids); |
| 3681 | |
| 3682 | /* |
| 3683 | * In order to search the ProcArray for blocked_pid and assume that that |
| 3684 | * entry won't immediately disappear under us, we must hold ProcArrayLock. |
| 3685 | * In addition, to examine the lock grouping fields of any other backend, |
| 3686 | * we must hold all the hash partition locks. (Only one of those locks is |
| 3687 | * actually relevant for any one lock group, but we can't know which one |
| 3688 | * ahead of time.) It's fairly annoying to hold all those locks |
| 3689 | * throughout this, but it's no worse than GetLockStatusData(), and it |
| 3690 | * does have the advantage that we're guaranteed to return a |
| 3691 | * self-consistent instantaneous state. |
| 3692 | */ |
| 3693 | LWLockAcquire(ProcArrayLock, LW_SHARED); |
| 3694 | |
| 3695 | proc = BackendPidGetProcWithLock(blocked_pid); |
| 3696 | |
| 3697 | /* Nothing to do if it's gone */ |
| 3698 | if (proc != NULL) |
| 3699 | { |
| 3700 | /* |
| 3701 | * Acquire lock on the entire shared lock data structure. See notes |
| 3702 | * in GetLockStatusData(). |
| 3703 | */ |
| 3704 | for (i = 0; i < NUM_LOCK_PARTITIONS; i++) |
| 3705 | LWLockAcquire(LockHashPartitionLockByIndex(i), LW_SHARED); |
| 3706 | |
| 3707 | if (proc->lockGroupLeader == NULL) |
| 3708 | { |
| 3709 | /* Easy case, proc is not a lock group member */ |
| 3710 | GetSingleProcBlockerStatusData(proc, data); |
| 3711 | } |
| 3712 | else |
| 3713 | { |
| 3714 | /* Examine all procs in proc's lock group */ |
| 3715 | dlist_iter iter; |
| 3716 | |
| 3717 | dlist_foreach(iter, &proc->lockGroupLeader->lockGroupMembers) |
| 3718 | { |
| 3719 | PGPROC *memberProc; |
| 3720 | |
| 3721 | memberProc = dlist_container(PGPROC, lockGroupLink, iter.cur); |
| 3722 | GetSingleProcBlockerStatusData(memberProc, data); |
| 3723 | } |
| 3724 | } |
| 3725 | |
| 3726 | /* |
| 3727 | * And release locks. See notes in GetLockStatusData(). |
| 3728 | */ |
| 3729 | for (i = NUM_LOCK_PARTITIONS; --i >= 0;) |
| 3730 | LWLockRelease(LockHashPartitionLockByIndex(i)); |
| 3731 | |
| 3732 | Assert(data->nprocs <= data->maxprocs); |
| 3733 | } |
| 3734 | |
| 3735 | LWLockRelease(ProcArrayLock); |
| 3736 | |
| 3737 | return data; |
| 3738 | } |
| 3739 | |
| 3740 | /* Accumulate data about one possibly-blocked proc for GetBlockerStatusData */ |
| 3741 | static void |
| 3742 | GetSingleProcBlockerStatusData(PGPROC *blocked_proc, BlockedProcsData *data) |
| 3743 | { |
| 3744 | LOCK *theLock = blocked_proc->waitLock; |
| 3745 | BlockedProcData *bproc; |
| 3746 | SHM_QUEUE *procLocks; |
| 3747 | PROCLOCK *proclock; |
| 3748 | PROC_QUEUE *waitQueue; |
| 3749 | PGPROC *proc; |
| 3750 | int queue_size; |
| 3751 | int i; |
| 3752 | |
| 3753 | /* Nothing to do if this proc is not blocked */ |
| 3754 | if (theLock == NULL) |
| 3755 | return; |
| 3756 | |
| 3757 | /* Set up a procs[] element */ |
| 3758 | bproc = &data->procs[data->nprocs++]; |
| 3759 | bproc->pid = blocked_proc->pid; |
| 3760 | bproc->first_lock = data->nlocks; |
| 3761 | bproc->first_waiter = data->npids; |
| 3762 | |
| 3763 | /* |
| 3764 | * We may ignore the proc's fast-path arrays, since nothing in those could |
| 3765 | * be related to a contended lock. |
| 3766 | */ |
| 3767 | |
| 3768 | /* Collect all PROCLOCKs associated with theLock */ |
| 3769 | procLocks = &(theLock->procLocks); |
| 3770 | proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks, |
| 3771 | offsetof(PROCLOCK, lockLink)); |
| 3772 | while (proclock) |
| 3773 | { |
| 3774 | PGPROC *proc = proclock->tag.myProc; |
| 3775 | LOCK *lock = proclock->tag.myLock; |
| 3776 | LockInstanceData *instance; |
| 3777 | |
| 3778 | if (data->nlocks >= data->maxlocks) |
| 3779 | { |
| 3780 | data->maxlocks += MaxBackends; |
| 3781 | data->locks = (LockInstanceData *) |
| 3782 | repalloc(data->locks, sizeof(LockInstanceData) * data->maxlocks); |
| 3783 | } |
| 3784 | |
| 3785 | instance = &data->locks[data->nlocks]; |
| 3786 | memcpy(&instance->locktag, &lock->tag, sizeof(LOCKTAG)); |
| 3787 | instance->holdMask = proclock->holdMask; |
| 3788 | if (proc->waitLock == lock) |
| 3789 | instance->waitLockMode = proc->waitLockMode; |
| 3790 | else |
| 3791 | instance->waitLockMode = NoLock; |
| 3792 | instance->backend = proc->backendId; |
| 3793 | instance->lxid = proc->lxid; |
| 3794 | instance->pid = proc->pid; |
| 3795 | instance->leaderPid = proclock->groupLeader->pid; |
| 3796 | instance->fastpath = false; |
| 3797 | data->nlocks++; |
| 3798 | |
| 3799 | proclock = (PROCLOCK *) SHMQueueNext(procLocks, &proclock->lockLink, |
| 3800 | offsetof(PROCLOCK, lockLink)); |
| 3801 | } |
| 3802 | |
| 3803 | /* Enlarge waiter_pids[] if it's too small to hold all wait queue PIDs */ |
| 3804 | waitQueue = &(theLock->waitProcs); |
| 3805 | queue_size = waitQueue->size; |
| 3806 | |
| 3807 | if (queue_size > data->maxpids - data->npids) |
| 3808 | { |
| 3809 | data->maxpids = Max(data->maxpids + MaxBackends, |
| 3810 | data->npids + queue_size); |
| 3811 | data->waiter_pids = (int *) repalloc(data->waiter_pids, |
| 3812 | sizeof(int) * data->maxpids); |
| 3813 | } |
| 3814 | |
| 3815 | /* Collect PIDs from the lock's wait queue, stopping at blocked_proc */ |
| 3816 | proc = (PGPROC *) waitQueue->links.next; |
| 3817 | for (i = 0; i < queue_size; i++) |
| 3818 | { |
| 3819 | if (proc == blocked_proc) |
| 3820 | break; |
| 3821 | data->waiter_pids[data->npids++] = proc->pid; |
| 3822 | proc = (PGPROC *) proc->links.next; |
| 3823 | } |
| 3824 | |
| 3825 | bproc->num_locks = data->nlocks - bproc->first_lock; |
| 3826 | bproc->num_waiters = data->npids - bproc->first_waiter; |
| 3827 | } |
| 3828 | |
| 3829 | /* |
| 3830 | * Returns a list of currently held AccessExclusiveLocks, for use by |
| 3831 | * LogStandbySnapshot(). The result is a palloc'd array, |
| 3832 | * with the number of elements returned into *nlocks. |
| 3833 | * |
| 3834 | * XXX This currently takes a lock on all partitions of the lock table, |
| 3835 | * but it's possible to do better. By reference counting locks and storing |
| 3836 | * the value in the ProcArray entry for each backend we could tell if any |
| 3837 | * locks need recording without having to acquire the partition locks and |
| 3838 | * scan the lock table. Whether that's worth the additional overhead |
| 3839 | * is pretty dubious though. |
| 3840 | */ |
| 3841 | xl_standby_lock * |
| 3842 | GetRunningTransactionLocks(int *nlocks) |
| 3843 | { |
| 3844 | xl_standby_lock *accessExclusiveLocks; |
| 3845 | PROCLOCK *proclock; |
| 3846 | HASH_SEQ_STATUS seqstat; |
| 3847 | int i; |
| 3848 | int index; |
| 3849 | int els; |
| 3850 | |
| 3851 | /* |
| 3852 | * Acquire lock on the entire shared lock data structure. |
| 3853 | * |
| 3854 | * Must grab LWLocks in partition-number order to avoid LWLock deadlock. |
| 3855 | */ |
| 3856 | for (i = 0; i < NUM_LOCK_PARTITIONS; i++) |
| 3857 | LWLockAcquire(LockHashPartitionLockByIndex(i), LW_SHARED); |
| 3858 | |
| 3859 | /* Now we can safely count the number of proclocks */ |
| 3860 | els = hash_get_num_entries(LockMethodProcLockHash); |
| 3861 | |
| 3862 | /* |
| 3863 | * Allocating enough space for all locks in the lock table is overkill, |
| 3864 | * but it's more convenient and faster than having to enlarge the array. |
| 3865 | */ |
| 3866 | accessExclusiveLocks = palloc(els * sizeof(xl_standby_lock)); |
| 3867 | |
| 3868 | /* Now scan the tables to copy the data */ |
| 3869 | hash_seq_init(&seqstat, LockMethodProcLockHash); |
| 3870 | |
| 3871 | /* |
| 3872 | * If lock is a currently granted AccessExclusiveLock then it will have |
| 3873 | * just one proclock holder, so locks are never accessed twice in this |
| 3874 | * particular case. Don't copy this code for use elsewhere because in the |
| 3875 | * general case this will give you duplicate locks when looking at |
| 3876 | * non-exclusive lock types. |
| 3877 | */ |
| 3878 | index = 0; |
| 3879 | while ((proclock = (PROCLOCK *) hash_seq_search(&seqstat))) |
| 3880 | { |
| 3881 | /* make sure this definition matches the one used in LockAcquire */ |
| 3882 | if ((proclock->holdMask & LOCKBIT_ON(AccessExclusiveLock)) && |
| 3883 | proclock->tag.myLock->tag.locktag_type == LOCKTAG_RELATION) |
| 3884 | { |
| 3885 | PGPROC *proc = proclock->tag.myProc; |
| 3886 | PGXACT *pgxact = &ProcGlobal->allPgXact[proc->pgprocno]; |
| 3887 | LOCK *lock = proclock->tag.myLock; |
| 3888 | TransactionId xid = pgxact->xid; |
| 3889 | |
| 3890 | /* |
| 3891 | * Don't record locks for transactions if we know they have |
| 3892 | * already issued their WAL record for commit but not yet released |
| 3893 | * lock. It is still possible that we see locks held by already |
| 3894 | * complete transactions, if they haven't yet zeroed their xids. |
| 3895 | */ |
| 3896 | if (!TransactionIdIsValid(xid)) |
| 3897 | continue; |
| 3898 | |
| 3899 | accessExclusiveLocks[index].xid = xid; |
| 3900 | accessExclusiveLocks[index].dbOid = lock->tag.locktag_field1; |
| 3901 | accessExclusiveLocks[index].relOid = lock->tag.locktag_field2; |
| 3902 | |
| 3903 | index++; |
| 3904 | } |
| 3905 | } |
| 3906 | |
| 3907 | Assert(index <= els); |
| 3908 | |
| 3909 | /* |
| 3910 | * And release locks. We do this in reverse order for two reasons: (1) |
| 3911 | * Anyone else who needs more than one of the locks will be trying to lock |
| 3912 | * them in increasing order; we don't want to release the other process |
| 3913 | * until it can get all the locks it needs. (2) This avoids O(N^2) |
| 3914 | * behavior inside LWLockRelease. |
| 3915 | */ |
| 3916 | for (i = NUM_LOCK_PARTITIONS; --i >= 0;) |
| 3917 | LWLockRelease(LockHashPartitionLockByIndex(i)); |
| 3918 | |
| 3919 | *nlocks = index; |
| 3920 | return accessExclusiveLocks; |
| 3921 | } |
| 3922 | |
| 3923 | /* Provide the textual name of any lock mode */ |
| 3924 | const char * |
| 3925 | GetLockmodeName(LOCKMETHODID lockmethodid, LOCKMODE mode) |
| 3926 | { |
| 3927 | Assert(lockmethodid > 0 && lockmethodid < lengthof(LockMethods)); |
| 3928 | Assert(mode > 0 && mode <= LockMethods[lockmethodid]->numLockModes); |
| 3929 | return LockMethods[lockmethodid]->lockModeNames[mode]; |
| 3930 | } |
| 3931 | |
| 3932 | #ifdef LOCK_DEBUG |
| 3933 | /* |
| 3934 | * Dump all locks in the given proc's myProcLocks lists. |
| 3935 | * |
| 3936 | * Caller is responsible for having acquired appropriate LWLocks. |
| 3937 | */ |
| 3938 | void |
| 3939 | DumpLocks(PGPROC *proc) |
| 3940 | { |
| 3941 | SHM_QUEUE *procLocks; |
| 3942 | PROCLOCK *proclock; |
| 3943 | LOCK *lock; |
| 3944 | int i; |
| 3945 | |
| 3946 | if (proc == NULL) |
| 3947 | return; |
| 3948 | |
| 3949 | if (proc->waitLock) |
| 3950 | LOCK_PRINT("DumpLocks: waiting on" , proc->waitLock, 0); |
| 3951 | |
| 3952 | for (i = 0; i < NUM_LOCK_PARTITIONS; i++) |
| 3953 | { |
| 3954 | procLocks = &(proc->myProcLocks[i]); |
| 3955 | |
| 3956 | proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks, |
| 3957 | offsetof(PROCLOCK, procLink)); |
| 3958 | |
| 3959 | while (proclock) |
| 3960 | { |
| 3961 | Assert(proclock->tag.myProc == proc); |
| 3962 | |
| 3963 | lock = proclock->tag.myLock; |
| 3964 | |
| 3965 | PROCLOCK_PRINT("DumpLocks" , proclock); |
| 3966 | LOCK_PRINT("DumpLocks" , lock, 0); |
| 3967 | |
| 3968 | proclock = (PROCLOCK *) |
| 3969 | SHMQueueNext(procLocks, &proclock->procLink, |
| 3970 | offsetof(PROCLOCK, procLink)); |
| 3971 | } |
| 3972 | } |
| 3973 | } |
| 3974 | |
| 3975 | /* |
| 3976 | * Dump all lmgr locks. |
| 3977 | * |
| 3978 | * Caller is responsible for having acquired appropriate LWLocks. |
| 3979 | */ |
| 3980 | void |
| 3981 | DumpAllLocks(void) |
| 3982 | { |
| 3983 | PGPROC *proc; |
| 3984 | PROCLOCK *proclock; |
| 3985 | LOCK *lock; |
| 3986 | HASH_SEQ_STATUS status; |
| 3987 | |
| 3988 | proc = MyProc; |
| 3989 | |
| 3990 | if (proc && proc->waitLock) |
| 3991 | LOCK_PRINT("DumpAllLocks: waiting on" , proc->waitLock, 0); |
| 3992 | |
| 3993 | hash_seq_init(&status, LockMethodProcLockHash); |
| 3994 | |
| 3995 | while ((proclock = (PROCLOCK *) hash_seq_search(&status)) != NULL) |
| 3996 | { |
| 3997 | PROCLOCK_PRINT("DumpAllLocks" , proclock); |
| 3998 | |
| 3999 | lock = proclock->tag.myLock; |
| 4000 | if (lock) |
| 4001 | LOCK_PRINT("DumpAllLocks" , lock, 0); |
| 4002 | else |
| 4003 | elog(LOG, "DumpAllLocks: proclock->tag.myLock = NULL" ); |
| 4004 | } |
| 4005 | } |
| 4006 | #endif /* LOCK_DEBUG */ |
| 4007 | |
| 4008 | /* |
| 4009 | * LOCK 2PC resource manager's routines |
| 4010 | */ |
| 4011 | |
| 4012 | /* |
| 4013 | * Re-acquire a lock belonging to a transaction that was prepared. |
| 4014 | * |
| 4015 | * Because this function is run at db startup, re-acquiring the locks should |
| 4016 | * never conflict with running transactions because there are none. We |
| 4017 | * assume that the lock state represented by the stored 2PC files is legal. |
| 4018 | * |
| 4019 | * When switching from Hot Standby mode to normal operation, the locks will |
| 4020 | * be already held by the startup process. The locks are acquired for the new |
| 4021 | * procs without checking for conflicts, so we don't get a conflict between the |
| 4022 | * startup process and the dummy procs, even though we will momentarily have |
| 4023 | * a situation where two procs are holding the same AccessExclusiveLock, |
| 4024 | * which isn't normally possible because the conflict. If we're in standby |
| 4025 | * mode, but a recovery snapshot hasn't been established yet, it's possible |
| 4026 | * that some but not all of the locks are already held by the startup process. |
| 4027 | * |
| 4028 | * This approach is simple, but also a bit dangerous, because if there isn't |
| 4029 | * enough shared memory to acquire the locks, an error will be thrown, which |
| 4030 | * is promoted to FATAL and recovery will abort, bringing down postmaster. |
| 4031 | * A safer approach would be to transfer the locks like we do in |
| 4032 | * AtPrepare_Locks, but then again, in hot standby mode it's possible for |
| 4033 | * read-only backends to use up all the shared lock memory anyway, so that |
| 4034 | * replaying the WAL record that needs to acquire a lock will throw an error |
| 4035 | * and PANIC anyway. |
| 4036 | */ |
| 4037 | void |
| 4038 | lock_twophase_recover(TransactionId xid, uint16 info, |
| 4039 | void *recdata, uint32 len) |
| 4040 | { |
| 4041 | TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata; |
| 4042 | PGPROC *proc = TwoPhaseGetDummyProc(xid, false); |
| 4043 | LOCKTAG *locktag; |
| 4044 | LOCKMODE lockmode; |
| 4045 | LOCKMETHODID lockmethodid; |
| 4046 | LOCK *lock; |
| 4047 | PROCLOCK *proclock; |
| 4048 | PROCLOCKTAG proclocktag; |
| 4049 | bool found; |
| 4050 | uint32 hashcode; |
| 4051 | uint32 proclock_hashcode; |
| 4052 | int partition; |
| 4053 | LWLock *partitionLock; |
| 4054 | LockMethod lockMethodTable; |
| 4055 | |
| 4056 | Assert(len == sizeof(TwoPhaseLockRecord)); |
| 4057 | locktag = &rec->locktag; |
| 4058 | lockmode = rec->lockmode; |
| 4059 | lockmethodid = locktag->locktag_lockmethodid; |
| 4060 | |
| 4061 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 4062 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 4063 | lockMethodTable = LockMethods[lockmethodid]; |
| 4064 | |
| 4065 | hashcode = LockTagHashCode(locktag); |
| 4066 | partition = LockHashPartition(hashcode); |
| 4067 | partitionLock = LockHashPartitionLock(hashcode); |
| 4068 | |
| 4069 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 4070 | |
| 4071 | /* |
| 4072 | * Find or create a lock with this tag. |
| 4073 | */ |
| 4074 | lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash, |
| 4075 | (void *) locktag, |
| 4076 | hashcode, |
| 4077 | HASH_ENTER_NULL, |
| 4078 | &found); |
| 4079 | if (!lock) |
| 4080 | { |
| 4081 | LWLockRelease(partitionLock); |
| 4082 | ereport(ERROR, |
| 4083 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 4084 | errmsg("out of shared memory" ), |
| 4085 | errhint("You might need to increase max_locks_per_transaction." ))); |
| 4086 | } |
| 4087 | |
| 4088 | /* |
| 4089 | * if it's a new lock object, initialize it |
| 4090 | */ |
| 4091 | if (!found) |
| 4092 | { |
| 4093 | lock->grantMask = 0; |
| 4094 | lock->waitMask = 0; |
| 4095 | SHMQueueInit(&(lock->procLocks)); |
| 4096 | ProcQueueInit(&(lock->waitProcs)); |
| 4097 | lock->nRequested = 0; |
| 4098 | lock->nGranted = 0; |
| 4099 | MemSet(lock->requested, 0, sizeof(int) * MAX_LOCKMODES); |
| 4100 | MemSet(lock->granted, 0, sizeof(int) * MAX_LOCKMODES); |
| 4101 | LOCK_PRINT("lock_twophase_recover: new" , lock, lockmode); |
| 4102 | } |
| 4103 | else |
| 4104 | { |
| 4105 | LOCK_PRINT("lock_twophase_recover: found" , lock, lockmode); |
| 4106 | Assert((lock->nRequested >= 0) && (lock->requested[lockmode] >= 0)); |
| 4107 | Assert((lock->nGranted >= 0) && (lock->granted[lockmode] >= 0)); |
| 4108 | Assert(lock->nGranted <= lock->nRequested); |
| 4109 | } |
| 4110 | |
| 4111 | /* |
| 4112 | * Create the hash key for the proclock table. |
| 4113 | */ |
| 4114 | proclocktag.myLock = lock; |
| 4115 | proclocktag.myProc = proc; |
| 4116 | |
| 4117 | proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode); |
| 4118 | |
| 4119 | /* |
| 4120 | * Find or create a proclock entry with this tag |
| 4121 | */ |
| 4122 | proclock = (PROCLOCK *) hash_search_with_hash_value(LockMethodProcLockHash, |
| 4123 | (void *) &proclocktag, |
| 4124 | proclock_hashcode, |
| 4125 | HASH_ENTER_NULL, |
| 4126 | &found); |
| 4127 | if (!proclock) |
| 4128 | { |
| 4129 | /* Oops, not enough shmem for the proclock */ |
| 4130 | if (lock->nRequested == 0) |
| 4131 | { |
| 4132 | /* |
| 4133 | * There are no other requestors of this lock, so garbage-collect |
| 4134 | * the lock object. We *must* do this to avoid a permanent leak |
| 4135 | * of shared memory, because there won't be anything to cause |
| 4136 | * anyone to release the lock object later. |
| 4137 | */ |
| 4138 | Assert(SHMQueueEmpty(&(lock->procLocks))); |
| 4139 | if (!hash_search_with_hash_value(LockMethodLockHash, |
| 4140 | (void *) &(lock->tag), |
| 4141 | hashcode, |
| 4142 | HASH_REMOVE, |
| 4143 | NULL)) |
| 4144 | elog(PANIC, "lock table corrupted" ); |
| 4145 | } |
| 4146 | LWLockRelease(partitionLock); |
| 4147 | ereport(ERROR, |
| 4148 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 4149 | errmsg("out of shared memory" ), |
| 4150 | errhint("You might need to increase max_locks_per_transaction." ))); |
| 4151 | } |
| 4152 | |
| 4153 | /* |
| 4154 | * If new, initialize the new entry |
| 4155 | */ |
| 4156 | if (!found) |
| 4157 | { |
| 4158 | Assert(proc->lockGroupLeader == NULL); |
| 4159 | proclock->groupLeader = proc; |
| 4160 | proclock->holdMask = 0; |
| 4161 | proclock->releaseMask = 0; |
| 4162 | /* Add proclock to appropriate lists */ |
| 4163 | SHMQueueInsertBefore(&lock->procLocks, &proclock->lockLink); |
| 4164 | SHMQueueInsertBefore(&(proc->myProcLocks[partition]), |
| 4165 | &proclock->procLink); |
| 4166 | PROCLOCK_PRINT("lock_twophase_recover: new" , proclock); |
| 4167 | } |
| 4168 | else |
| 4169 | { |
| 4170 | PROCLOCK_PRINT("lock_twophase_recover: found" , proclock); |
| 4171 | Assert((proclock->holdMask & ~lock->grantMask) == 0); |
| 4172 | } |
| 4173 | |
| 4174 | /* |
| 4175 | * lock->nRequested and lock->requested[] count the total number of |
| 4176 | * requests, whether granted or waiting, so increment those immediately. |
| 4177 | */ |
| 4178 | lock->nRequested++; |
| 4179 | lock->requested[lockmode]++; |
| 4180 | Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0)); |
| 4181 | |
| 4182 | /* |
| 4183 | * We shouldn't already hold the desired lock. |
| 4184 | */ |
| 4185 | if (proclock->holdMask & LOCKBIT_ON(lockmode)) |
| 4186 | elog(ERROR, "lock %s on object %u/%u/%u is already held" , |
| 4187 | lockMethodTable->lockModeNames[lockmode], |
| 4188 | lock->tag.locktag_field1, lock->tag.locktag_field2, |
| 4189 | lock->tag.locktag_field3); |
| 4190 | |
| 4191 | /* |
| 4192 | * We ignore any possible conflicts and just grant ourselves the lock. Not |
| 4193 | * only because we don't bother, but also to avoid deadlocks when |
| 4194 | * switching from standby to normal mode. See function comment. |
| 4195 | */ |
| 4196 | GrantLock(lock, proclock, lockmode); |
| 4197 | |
| 4198 | /* |
| 4199 | * Bump strong lock count, to make sure any fast-path lock requests won't |
| 4200 | * be granted without consulting the primary lock table. |
| 4201 | */ |
| 4202 | if (ConflictsWithRelationFastPath(&lock->tag, lockmode)) |
| 4203 | { |
| 4204 | uint32 fasthashcode = FastPathStrongLockHashPartition(hashcode); |
| 4205 | |
| 4206 | SpinLockAcquire(&FastPathStrongRelationLocks->mutex); |
| 4207 | FastPathStrongRelationLocks->count[fasthashcode]++; |
| 4208 | SpinLockRelease(&FastPathStrongRelationLocks->mutex); |
| 4209 | } |
| 4210 | |
| 4211 | LWLockRelease(partitionLock); |
| 4212 | } |
| 4213 | |
| 4214 | /* |
| 4215 | * Re-acquire a lock belonging to a transaction that was prepared, when |
| 4216 | * starting up into hot standby mode. |
| 4217 | */ |
| 4218 | void |
| 4219 | lock_twophase_standby_recover(TransactionId xid, uint16 info, |
| 4220 | void *recdata, uint32 len) |
| 4221 | { |
| 4222 | TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata; |
| 4223 | LOCKTAG *locktag; |
| 4224 | LOCKMODE lockmode; |
| 4225 | LOCKMETHODID lockmethodid; |
| 4226 | |
| 4227 | Assert(len == sizeof(TwoPhaseLockRecord)); |
| 4228 | locktag = &rec->locktag; |
| 4229 | lockmode = rec->lockmode; |
| 4230 | lockmethodid = locktag->locktag_lockmethodid; |
| 4231 | |
| 4232 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 4233 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 4234 | |
| 4235 | if (lockmode == AccessExclusiveLock && |
| 4236 | locktag->locktag_type == LOCKTAG_RELATION) |
| 4237 | { |
| 4238 | StandbyAcquireAccessExclusiveLock(xid, |
| 4239 | locktag->locktag_field1 /* dboid */ , |
| 4240 | locktag->locktag_field2 /* reloid */ ); |
| 4241 | } |
| 4242 | } |
| 4243 | |
| 4244 | |
| 4245 | /* |
| 4246 | * 2PC processing routine for COMMIT PREPARED case. |
| 4247 | * |
| 4248 | * Find and release the lock indicated by the 2PC record. |
| 4249 | */ |
| 4250 | void |
| 4251 | lock_twophase_postcommit(TransactionId xid, uint16 info, |
| 4252 | void *recdata, uint32 len) |
| 4253 | { |
| 4254 | TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata; |
| 4255 | PGPROC *proc = TwoPhaseGetDummyProc(xid, true); |
| 4256 | LOCKTAG *locktag; |
| 4257 | LOCKMETHODID lockmethodid; |
| 4258 | LockMethod lockMethodTable; |
| 4259 | |
| 4260 | Assert(len == sizeof(TwoPhaseLockRecord)); |
| 4261 | locktag = &rec->locktag; |
| 4262 | lockmethodid = locktag->locktag_lockmethodid; |
| 4263 | |
| 4264 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 4265 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 4266 | lockMethodTable = LockMethods[lockmethodid]; |
| 4267 | |
| 4268 | LockRefindAndRelease(lockMethodTable, proc, locktag, rec->lockmode, true); |
| 4269 | } |
| 4270 | |
| 4271 | /* |
| 4272 | * 2PC processing routine for ROLLBACK PREPARED case. |
| 4273 | * |
| 4274 | * This is actually just the same as the COMMIT case. |
| 4275 | */ |
| 4276 | void |
| 4277 | lock_twophase_postabort(TransactionId xid, uint16 info, |
| 4278 | void *recdata, uint32 len) |
| 4279 | { |
| 4280 | lock_twophase_postcommit(xid, info, recdata, len); |
| 4281 | } |
| 4282 | |
| 4283 | /* |
| 4284 | * VirtualXactLockTableInsert |
| 4285 | * |
| 4286 | * Take vxid lock via the fast-path. There can't be any pre-existing |
| 4287 | * lockers, as we haven't advertised this vxid via the ProcArray yet. |
| 4288 | * |
| 4289 | * Since MyProc->fpLocalTransactionId will normally contain the same data |
| 4290 | * as MyProc->lxid, you might wonder if we really need both. The |
| 4291 | * difference is that MyProc->lxid is set and cleared unlocked, and |
| 4292 | * examined by procarray.c, while fpLocalTransactionId is protected by |
| 4293 | * backendLock and is used only by the locking subsystem. Doing it this |
| 4294 | * way makes it easier to verify that there are no funny race conditions. |
| 4295 | * |
| 4296 | * We don't bother recording this lock in the local lock table, since it's |
| 4297 | * only ever released at the end of a transaction. Instead, |
| 4298 | * LockReleaseAll() calls VirtualXactLockTableCleanup(). |
| 4299 | */ |
| 4300 | void |
| 4301 | VirtualXactLockTableInsert(VirtualTransactionId vxid) |
| 4302 | { |
| 4303 | Assert(VirtualTransactionIdIsValid(vxid)); |
| 4304 | |
| 4305 | LWLockAcquire(&MyProc->backendLock, LW_EXCLUSIVE); |
| 4306 | |
| 4307 | Assert(MyProc->backendId == vxid.backendId); |
| 4308 | Assert(MyProc->fpLocalTransactionId == InvalidLocalTransactionId); |
| 4309 | Assert(MyProc->fpVXIDLock == false); |
| 4310 | |
| 4311 | MyProc->fpVXIDLock = true; |
| 4312 | MyProc->fpLocalTransactionId = vxid.localTransactionId; |
| 4313 | |
| 4314 | LWLockRelease(&MyProc->backendLock); |
| 4315 | } |
| 4316 | |
| 4317 | /* |
| 4318 | * VirtualXactLockTableCleanup |
| 4319 | * |
| 4320 | * Check whether a VXID lock has been materialized; if so, release it, |
| 4321 | * unblocking waiters. |
| 4322 | */ |
| 4323 | void |
| 4324 | VirtualXactLockTableCleanup(void) |
| 4325 | { |
| 4326 | bool fastpath; |
| 4327 | LocalTransactionId lxid; |
| 4328 | |
| 4329 | Assert(MyProc->backendId != InvalidBackendId); |
| 4330 | |
| 4331 | /* |
| 4332 | * Clean up shared memory state. |
| 4333 | */ |
| 4334 | LWLockAcquire(&MyProc->backendLock, LW_EXCLUSIVE); |
| 4335 | |
| 4336 | fastpath = MyProc->fpVXIDLock; |
| 4337 | lxid = MyProc->fpLocalTransactionId; |
| 4338 | MyProc->fpVXIDLock = false; |
| 4339 | MyProc->fpLocalTransactionId = InvalidLocalTransactionId; |
| 4340 | |
| 4341 | LWLockRelease(&MyProc->backendLock); |
| 4342 | |
| 4343 | /* |
| 4344 | * If fpVXIDLock has been cleared without touching fpLocalTransactionId, |
| 4345 | * that means someone transferred the lock to the main lock table. |
| 4346 | */ |
| 4347 | if (!fastpath && LocalTransactionIdIsValid(lxid)) |
| 4348 | { |
| 4349 | VirtualTransactionId vxid; |
| 4350 | LOCKTAG locktag; |
| 4351 | |
| 4352 | vxid.backendId = MyBackendId; |
| 4353 | vxid.localTransactionId = lxid; |
| 4354 | SET_LOCKTAG_VIRTUALTRANSACTION(locktag, vxid); |
| 4355 | |
| 4356 | LockRefindAndRelease(LockMethods[DEFAULT_LOCKMETHOD], MyProc, |
| 4357 | &locktag, ExclusiveLock, false); |
| 4358 | } |
| 4359 | } |
| 4360 | |
| 4361 | /* |
| 4362 | * VirtualXactLock |
| 4363 | * |
| 4364 | * If wait = true, wait until the given VXID has been released, and then |
| 4365 | * return true. |
| 4366 | * |
| 4367 | * If wait = false, just check whether the VXID is still running, and return |
| 4368 | * true or false. |
| 4369 | */ |
| 4370 | bool |
| 4371 | VirtualXactLock(VirtualTransactionId vxid, bool wait) |
| 4372 | { |
| 4373 | LOCKTAG tag; |
| 4374 | PGPROC *proc; |
| 4375 | |
| 4376 | Assert(VirtualTransactionIdIsValid(vxid)); |
| 4377 | |
| 4378 | SET_LOCKTAG_VIRTUALTRANSACTION(tag, vxid); |
| 4379 | |
| 4380 | /* |
| 4381 | * If a lock table entry must be made, this is the PGPROC on whose behalf |
| 4382 | * it must be done. Note that the transaction might end or the PGPROC |
| 4383 | * might be reassigned to a new backend before we get around to examining |
| 4384 | * it, but it doesn't matter. If we find upon examination that the |
| 4385 | * relevant lxid is no longer running here, that's enough to prove that |
| 4386 | * it's no longer running anywhere. |
| 4387 | */ |
| 4388 | proc = BackendIdGetProc(vxid.backendId); |
| 4389 | if (proc == NULL) |
| 4390 | return true; |
| 4391 | |
| 4392 | /* |
| 4393 | * We must acquire this lock before checking the backendId and lxid |
| 4394 | * against the ones we're waiting for. The target backend will only set |
| 4395 | * or clear lxid while holding this lock. |
| 4396 | */ |
| 4397 | LWLockAcquire(&proc->backendLock, LW_EXCLUSIVE); |
| 4398 | |
| 4399 | /* If the transaction has ended, our work here is done. */ |
| 4400 | if (proc->backendId != vxid.backendId |
| 4401 | || proc->fpLocalTransactionId != vxid.localTransactionId) |
| 4402 | { |
| 4403 | LWLockRelease(&proc->backendLock); |
| 4404 | return true; |
| 4405 | } |
| 4406 | |
| 4407 | /* |
| 4408 | * If we aren't asked to wait, there's no need to set up a lock table |
| 4409 | * entry. The transaction is still in progress, so just return false. |
| 4410 | */ |
| 4411 | if (!wait) |
| 4412 | { |
| 4413 | LWLockRelease(&proc->backendLock); |
| 4414 | return false; |
| 4415 | } |
| 4416 | |
| 4417 | /* |
| 4418 | * OK, we're going to need to sleep on the VXID. But first, we must set |
| 4419 | * up the primary lock table entry, if needed (ie, convert the proc's |
| 4420 | * fast-path lock on its VXID to a regular lock). |
| 4421 | */ |
| 4422 | if (proc->fpVXIDLock) |
| 4423 | { |
| 4424 | PROCLOCK *proclock; |
| 4425 | uint32 hashcode; |
| 4426 | LWLock *partitionLock; |
| 4427 | |
| 4428 | hashcode = LockTagHashCode(&tag); |
| 4429 | |
| 4430 | partitionLock = LockHashPartitionLock(hashcode); |
| 4431 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 4432 | |
| 4433 | proclock = SetupLockInTable(LockMethods[DEFAULT_LOCKMETHOD], proc, |
| 4434 | &tag, hashcode, ExclusiveLock); |
| 4435 | if (!proclock) |
| 4436 | { |
| 4437 | LWLockRelease(partitionLock); |
| 4438 | LWLockRelease(&proc->backendLock); |
| 4439 | ereport(ERROR, |
| 4440 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 4441 | errmsg("out of shared memory" ), |
| 4442 | errhint("You might need to increase max_locks_per_transaction." ))); |
| 4443 | } |
| 4444 | GrantLock(proclock->tag.myLock, proclock, ExclusiveLock); |
| 4445 | |
| 4446 | LWLockRelease(partitionLock); |
| 4447 | |
| 4448 | proc->fpVXIDLock = false; |
| 4449 | } |
| 4450 | |
| 4451 | /* Done with proc->fpLockBits */ |
| 4452 | LWLockRelease(&proc->backendLock); |
| 4453 | |
| 4454 | /* Time to wait. */ |
| 4455 | (void) LockAcquire(&tag, ShareLock, false, false); |
| 4456 | |
| 4457 | LockRelease(&tag, ShareLock, false); |
| 4458 | return true; |
| 4459 | } |
| 4460 | |
| 4461 | /* |
| 4462 | * LockWaiterCount |
| 4463 | * |
| 4464 | * Find the number of lock requester on this locktag |
| 4465 | */ |
| 4466 | int |
| 4467 | LockWaiterCount(const LOCKTAG *locktag) |
| 4468 | { |
| 4469 | LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid; |
| 4470 | LOCK *lock; |
| 4471 | bool found; |
| 4472 | uint32 hashcode; |
| 4473 | LWLock *partitionLock; |
| 4474 | int waiters = 0; |
| 4475 | |
| 4476 | if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods)) |
| 4477 | elog(ERROR, "unrecognized lock method: %d" , lockmethodid); |
| 4478 | |
| 4479 | hashcode = LockTagHashCode(locktag); |
| 4480 | partitionLock = LockHashPartitionLock(hashcode); |
| 4481 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 4482 | |
| 4483 | lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash, |
| 4484 | (const void *) locktag, |
| 4485 | hashcode, |
| 4486 | HASH_FIND, |
| 4487 | &found); |
| 4488 | if (found) |
| 4489 | { |
| 4490 | Assert(lock != NULL); |
| 4491 | waiters = lock->nRequested; |
| 4492 | } |
| 4493 | LWLockRelease(partitionLock); |
| 4494 | |
| 4495 | return waiters; |
| 4496 | } |
| 4497 | |