| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * predicate.c |
| 4 | * POSTGRES predicate locking |
| 5 | * to support full serializable transaction isolation |
| 6 | * |
| 7 | * |
| 8 | * The approach taken is to implement Serializable Snapshot Isolation (SSI) |
| 9 | * as initially described in this paper: |
| 10 | * |
| 11 | * Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. |
| 12 | * Serializable isolation for snapshot databases. |
| 13 | * In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD |
| 14 | * international conference on Management of data, |
| 15 | * pages 729-738, New York, NY, USA. ACM. |
| 16 | * http://doi.acm.org/10.1145/1376616.1376690 |
| 17 | * |
| 18 | * and further elaborated in Cahill's doctoral thesis: |
| 19 | * |
| 20 | * Michael James Cahill. 2009. |
| 21 | * Serializable Isolation for Snapshot Databases. |
| 22 | * Sydney Digital Theses. |
| 23 | * University of Sydney, School of Information Technologies. |
| 24 | * http://hdl.handle.net/2123/5353 |
| 25 | * |
| 26 | * |
| 27 | * Predicate locks for Serializable Snapshot Isolation (SSI) are SIREAD |
| 28 | * locks, which are so different from normal locks that a distinct set of |
| 29 | * structures is required to handle them. They are needed to detect |
| 30 | * rw-conflicts when the read happens before the write. (When the write |
| 31 | * occurs first, the reading transaction can check for a conflict by |
| 32 | * examining the MVCC data.) |
| 33 | * |
| 34 | * (1) Besides tuples actually read, they must cover ranges of tuples |
| 35 | * which would have been read based on the predicate. This will |
| 36 | * require modelling the predicates through locks against database |
| 37 | * objects such as pages, index ranges, or entire tables. |
| 38 | * |
| 39 | * (2) They must be kept in RAM for quick access. Because of this, it |
| 40 | * isn't possible to always maintain tuple-level granularity -- when |
| 41 | * the space allocated to store these approaches exhaustion, a |
| 42 | * request for a lock may need to scan for situations where a single |
| 43 | * transaction holds many fine-grained locks which can be coalesced |
| 44 | * into a single coarser-grained lock. |
| 45 | * |
| 46 | * (3) They never block anything; they are more like flags than locks |
| 47 | * in that regard; although they refer to database objects and are |
| 48 | * used to identify rw-conflicts with normal write locks. |
| 49 | * |
| 50 | * (4) While they are associated with a transaction, they must survive |
| 51 | * a successful COMMIT of that transaction, and remain until all |
| 52 | * overlapping transactions complete. This even means that they |
| 53 | * must survive termination of the transaction's process. If a |
| 54 | * top level transaction is rolled back, however, it is immediately |
| 55 | * flagged so that it can be ignored, and its SIREAD locks can be |
| 56 | * released any time after that. |
| 57 | * |
| 58 | * (5) The only transactions which create SIREAD locks or check for |
| 59 | * conflicts with them are serializable transactions. |
| 60 | * |
| 61 | * (6) When a write lock for a top level transaction is found to cover |
| 62 | * an existing SIREAD lock for the same transaction, the SIREAD lock |
| 63 | * can be deleted. |
| 64 | * |
| 65 | * (7) A write from a serializable transaction must ensure that an xact |
| 66 | * record exists for the transaction, with the same lifespan (until |
| 67 | * all concurrent transaction complete or the transaction is rolled |
| 68 | * back) so that rw-dependencies to that transaction can be |
| 69 | * detected. |
| 70 | * |
| 71 | * We use an optimization for read-only transactions. Under certain |
| 72 | * circumstances, a read-only transaction's snapshot can be shown to |
| 73 | * never have conflicts with other transactions. This is referred to |
| 74 | * as a "safe" snapshot (and one known not to be is "unsafe"). |
| 75 | * However, it can't be determined whether a snapshot is safe until |
| 76 | * all concurrent read/write transactions complete. |
| 77 | * |
| 78 | * Once a read-only transaction is known to have a safe snapshot, it |
| 79 | * can release its predicate locks and exempt itself from further |
| 80 | * predicate lock tracking. READ ONLY DEFERRABLE transactions run only |
| 81 | * on safe snapshots, waiting as necessary for one to be available. |
| 82 | * |
| 83 | * |
| 84 | * Lightweight locks to manage access to the predicate locking shared |
| 85 | * memory objects must be taken in this order, and should be released in |
| 86 | * reverse order: |
| 87 | * |
| 88 | * SerializableFinishedListLock |
| 89 | * - Protects the list of transactions which have completed but which |
| 90 | * may yet matter because they overlap still-active transactions. |
| 91 | * |
| 92 | * SerializablePredicateLockListLock |
| 93 | * - Protects the linked list of locks held by a transaction. Note |
| 94 | * that the locks themselves are also covered by the partition |
| 95 | * locks of their respective lock targets; this lock only affects |
| 96 | * the linked list connecting the locks related to a transaction. |
| 97 | * - All transactions share this single lock (with no partitioning). |
| 98 | * - There is never a need for a process other than the one running |
| 99 | * an active transaction to walk the list of locks held by that |
| 100 | * transaction, except parallel query workers sharing the leader's |
| 101 | * transaction. In the parallel case, an extra per-sxact lock is |
| 102 | * taken; see below. |
| 103 | * - It is relatively infrequent that another process needs to |
| 104 | * modify the list for a transaction, but it does happen for such |
| 105 | * things as index page splits for pages with predicate locks and |
| 106 | * freeing of predicate locked pages by a vacuum process. When |
| 107 | * removing a lock in such cases, the lock itself contains the |
| 108 | * pointers needed to remove it from the list. When adding a |
| 109 | * lock in such cases, the lock can be added using the anchor in |
| 110 | * the transaction structure. Neither requires walking the list. |
| 111 | * - Cleaning up the list for a terminated transaction is sometimes |
| 112 | * not done on a retail basis, in which case no lock is required. |
| 113 | * - Due to the above, a process accessing its active transaction's |
| 114 | * list always uses a shared lock, regardless of whether it is |
| 115 | * walking or maintaining the list. This improves concurrency |
| 116 | * for the common access patterns. |
| 117 | * - A process which needs to alter the list of a transaction other |
| 118 | * than its own active transaction must acquire an exclusive |
| 119 | * lock. |
| 120 | * |
| 121 | * SERIALIZABLEXACT's member 'predicateLockListLock' |
| 122 | * - Protects the linked list of locks held by a transaction. Only |
| 123 | * needed for parallel mode, where multiple backends share the |
| 124 | * same SERIALIZABLEXACT object. Not needed if |
| 125 | * SerializablePredicateLockListLock is held exclusively. |
| 126 | * |
| 127 | * PredicateLockHashPartitionLock(hashcode) |
| 128 | * - The same lock protects a target, all locks on that target, and |
| 129 | * the linked list of locks on the target. |
| 130 | * - When more than one is needed, acquire in ascending address order. |
| 131 | * - When all are needed (rare), acquire in ascending index order with |
| 132 | * PredicateLockHashPartitionLockByIndex(index). |
| 133 | * |
| 134 | * SerializableXactHashLock |
| 135 | * - Protects both PredXact and SerializableXidHash. |
| 136 | * |
| 137 | * |
| 138 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 139 | * Portions Copyright (c) 1994, Regents of the University of California |
| 140 | * |
| 141 | * |
| 142 | * IDENTIFICATION |
| 143 | * src/backend/storage/lmgr/predicate.c |
| 144 | * |
| 145 | *------------------------------------------------------------------------- |
| 146 | */ |
| 147 | /* |
| 148 | * INTERFACE ROUTINES |
| 149 | * |
| 150 | * housekeeping for setting up shared memory predicate lock structures |
| 151 | * InitPredicateLocks(void) |
| 152 | * PredicateLockShmemSize(void) |
| 153 | * |
| 154 | * predicate lock reporting |
| 155 | * GetPredicateLockStatusData(void) |
| 156 | * PageIsPredicateLocked(Relation relation, BlockNumber blkno) |
| 157 | * |
| 158 | * predicate lock maintenance |
| 159 | * GetSerializableTransactionSnapshot(Snapshot snapshot) |
| 160 | * SetSerializableTransactionSnapshot(Snapshot snapshot, |
| 161 | * VirtualTransactionId *sourcevxid) |
| 162 | * RegisterPredicateLockingXid(void) |
| 163 | * PredicateLockRelation(Relation relation, Snapshot snapshot) |
| 164 | * PredicateLockPage(Relation relation, BlockNumber blkno, |
| 165 | * Snapshot snapshot) |
| 166 | * PredicateLockTuple(Relation relation, HeapTuple tuple, |
| 167 | * Snapshot snapshot) |
| 168 | * PredicateLockPageSplit(Relation relation, BlockNumber oldblkno, |
| 169 | * BlockNumber newblkno) |
| 170 | * PredicateLockPageCombine(Relation relation, BlockNumber oldblkno, |
| 171 | * BlockNumber newblkno) |
| 172 | * TransferPredicateLocksToHeapRelation(Relation relation) |
| 173 | * ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe) |
| 174 | * |
| 175 | * conflict detection (may also trigger rollback) |
| 176 | * CheckForSerializableConflictOut(bool visible, Relation relation, |
| 177 | * HeapTupleData *tup, Buffer buffer, |
| 178 | * Snapshot snapshot) |
| 179 | * CheckForSerializableConflictIn(Relation relation, HeapTupleData *tup, |
| 180 | * Buffer buffer) |
| 181 | * CheckTableForSerializableConflictIn(Relation relation) |
| 182 | * |
| 183 | * final rollback checking |
| 184 | * PreCommit_CheckForSerializationFailure(void) |
| 185 | * |
| 186 | * two-phase commit support |
| 187 | * AtPrepare_PredicateLocks(void); |
| 188 | * PostPrepare_PredicateLocks(TransactionId xid); |
| 189 | * PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit); |
| 190 | * predicatelock_twophase_recover(TransactionId xid, uint16 info, |
| 191 | * void *recdata, uint32 len); |
| 192 | */ |
| 193 | |
| 194 | #include "postgres.h" |
| 195 | |
| 196 | #include "access/heapam.h" |
| 197 | #include "access/htup_details.h" |
| 198 | #include "access/parallel.h" |
| 199 | #include "access/slru.h" |
| 200 | #include "access/subtrans.h" |
| 201 | #include "access/transam.h" |
| 202 | #include "access/twophase.h" |
| 203 | #include "access/twophase_rmgr.h" |
| 204 | #include "access/xact.h" |
| 205 | #include "access/xlog.h" |
| 206 | #include "miscadmin.h" |
| 207 | #include "pgstat.h" |
| 208 | #include "storage/bufmgr.h" |
| 209 | #include "storage/predicate.h" |
| 210 | #include "storage/predicate_internals.h" |
| 211 | #include "storage/proc.h" |
| 212 | #include "storage/procarray.h" |
| 213 | #include "utils/rel.h" |
| 214 | #include "utils/snapmgr.h" |
| 215 | |
| 216 | /* Uncomment the next line to test the graceful degradation code. */ |
| 217 | /* #define TEST_OLDSERXID */ |
| 218 | |
| 219 | /* |
| 220 | * Test the most selective fields first, for performance. |
| 221 | * |
| 222 | * a is covered by b if all of the following hold: |
| 223 | * 1) a.database = b.database |
| 224 | * 2) a.relation = b.relation |
| 225 | * 3) b.offset is invalid (b is page-granularity or higher) |
| 226 | * 4) either of the following: |
| 227 | * 4a) a.offset is valid (a is tuple-granularity) and a.page = b.page |
| 228 | * or 4b) a.offset is invalid and b.page is invalid (a is |
| 229 | * page-granularity and b is relation-granularity |
| 230 | */ |
| 231 | #define TargetTagIsCoveredBy(covered_target, covering_target) \ |
| 232 | ((GET_PREDICATELOCKTARGETTAG_RELATION(covered_target) == /* (2) */ \ |
| 233 | GET_PREDICATELOCKTARGETTAG_RELATION(covering_target)) \ |
| 234 | && (GET_PREDICATELOCKTARGETTAG_OFFSET(covering_target) == \ |
| 235 | InvalidOffsetNumber) /* (3) */ \ |
| 236 | && (((GET_PREDICATELOCKTARGETTAG_OFFSET(covered_target) != \ |
| 237 | InvalidOffsetNumber) /* (4a) */ \ |
| 238 | && (GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \ |
| 239 | GET_PREDICATELOCKTARGETTAG_PAGE(covered_target))) \ |
| 240 | || ((GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \ |
| 241 | InvalidBlockNumber) /* (4b) */ \ |
| 242 | && (GET_PREDICATELOCKTARGETTAG_PAGE(covered_target) \ |
| 243 | != InvalidBlockNumber))) \ |
| 244 | && (GET_PREDICATELOCKTARGETTAG_DB(covered_target) == /* (1) */ \ |
| 245 | GET_PREDICATELOCKTARGETTAG_DB(covering_target))) |
| 246 | |
| 247 | /* |
| 248 | * The predicate locking target and lock shared hash tables are partitioned to |
| 249 | * reduce contention. To determine which partition a given target belongs to, |
| 250 | * compute the tag's hash code with PredicateLockTargetTagHashCode(), then |
| 251 | * apply one of these macros. |
| 252 | * NB: NUM_PREDICATELOCK_PARTITIONS must be a power of 2! |
| 253 | */ |
| 254 | #define PredicateLockHashPartition(hashcode) \ |
| 255 | ((hashcode) % NUM_PREDICATELOCK_PARTITIONS) |
| 256 | #define PredicateLockHashPartitionLock(hashcode) \ |
| 257 | (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \ |
| 258 | PredicateLockHashPartition(hashcode)].lock) |
| 259 | #define PredicateLockHashPartitionLockByIndex(i) \ |
| 260 | (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock) |
| 261 | |
| 262 | #define NPREDICATELOCKTARGETENTS() \ |
| 263 | mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts)) |
| 264 | |
| 265 | #define SxactIsOnFinishedList(sxact) (!SHMQueueIsDetached(&((sxact)->finishedLink))) |
| 266 | |
| 267 | /* |
| 268 | * Note that a sxact is marked "prepared" once it has passed |
| 269 | * PreCommit_CheckForSerializationFailure, even if it isn't using |
| 270 | * 2PC. This is the point at which it can no longer be aborted. |
| 271 | * |
| 272 | * The PREPARED flag remains set after commit, so SxactIsCommitted |
| 273 | * implies SxactIsPrepared. |
| 274 | */ |
| 275 | #define SxactIsCommitted(sxact) (((sxact)->flags & SXACT_FLAG_COMMITTED) != 0) |
| 276 | #define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0) |
| 277 | #define SxactIsRolledBack(sxact) (((sxact)->flags & SXACT_FLAG_ROLLED_BACK) != 0) |
| 278 | #define SxactIsDoomed(sxact) (((sxact)->flags & SXACT_FLAG_DOOMED) != 0) |
| 279 | #define SxactIsReadOnly(sxact) (((sxact)->flags & SXACT_FLAG_READ_ONLY) != 0) |
| 280 | #define SxactHasSummaryConflictIn(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_IN) != 0) |
| 281 | #define SxactHasSummaryConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_OUT) != 0) |
| 282 | /* |
| 283 | * The following macro actually means that the specified transaction has a |
| 284 | * conflict out *to a transaction which committed ahead of it*. It's hard |
| 285 | * to get that into a name of a reasonable length. |
| 286 | */ |
| 287 | #define SxactHasConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_CONFLICT_OUT) != 0) |
| 288 | #define SxactIsDeferrableWaiting(sxact) (((sxact)->flags & SXACT_FLAG_DEFERRABLE_WAITING) != 0) |
| 289 | #define SxactIsROSafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_SAFE) != 0) |
| 290 | #define SxactIsROUnsafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_UNSAFE) != 0) |
| 291 | #define SxactIsPartiallyReleased(sxact) (((sxact)->flags & SXACT_FLAG_PARTIALLY_RELEASED) != 0) |
| 292 | |
| 293 | /* |
| 294 | * Compute the hash code associated with a PREDICATELOCKTARGETTAG. |
| 295 | * |
| 296 | * To avoid unnecessary recomputations of the hash code, we try to do this |
| 297 | * just once per function, and then pass it around as needed. Aside from |
| 298 | * passing the hashcode to hash_search_with_hash_value(), we can extract |
| 299 | * the lock partition number from the hashcode. |
| 300 | */ |
| 301 | #define PredicateLockTargetTagHashCode(predicatelocktargettag) \ |
| 302 | get_hash_value(PredicateLockTargetHash, predicatelocktargettag) |
| 303 | |
| 304 | /* |
| 305 | * Given a predicate lock tag, and the hash for its target, |
| 306 | * compute the lock hash. |
| 307 | * |
| 308 | * To make the hash code also depend on the transaction, we xor the sxid |
| 309 | * struct's address into the hash code, left-shifted so that the |
| 310 | * partition-number bits don't change. Since this is only a hash, we |
| 311 | * don't care if we lose high-order bits of the address; use an |
| 312 | * intermediate variable to suppress cast-pointer-to-int warnings. |
| 313 | */ |
| 314 | #define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash) \ |
| 315 | ((targethash) ^ ((uint32) PointerGetDatum((predicatelocktag)->myXact)) \ |
| 316 | << LOG2_NUM_PREDICATELOCK_PARTITIONS) |
| 317 | |
| 318 | |
| 319 | /* |
| 320 | * The SLRU buffer area through which we access the old xids. |
| 321 | */ |
| 322 | static SlruCtlData OldSerXidSlruCtlData; |
| 323 | |
| 324 | #define OldSerXidSlruCtl (&OldSerXidSlruCtlData) |
| 325 | |
| 326 | #define OLDSERXID_PAGESIZE BLCKSZ |
| 327 | #define OLDSERXID_ENTRYSIZE sizeof(SerCommitSeqNo) |
| 328 | #define OLDSERXID_ENTRIESPERPAGE (OLDSERXID_PAGESIZE / OLDSERXID_ENTRYSIZE) |
| 329 | |
| 330 | /* |
| 331 | * Set maximum pages based on the number needed to track all transactions. |
| 332 | */ |
| 333 | #define OLDSERXID_MAX_PAGE (MaxTransactionId / OLDSERXID_ENTRIESPERPAGE) |
| 334 | |
| 335 | #define OldSerXidNextPage(page) (((page) >= OLDSERXID_MAX_PAGE) ? 0 : (page) + 1) |
| 336 | |
| 337 | #define OldSerXidValue(slotno, xid) (*((SerCommitSeqNo *) \ |
| 338 | (OldSerXidSlruCtl->shared->page_buffer[slotno] + \ |
| 339 | ((((uint32) (xid)) % OLDSERXID_ENTRIESPERPAGE) * OLDSERXID_ENTRYSIZE)))) |
| 340 | |
| 341 | #define OldSerXidPage(xid) (((uint32) (xid)) / OLDSERXID_ENTRIESPERPAGE) |
| 342 | |
| 343 | typedef struct OldSerXidControlData |
| 344 | { |
| 345 | int headPage; /* newest initialized page */ |
| 346 | TransactionId headXid; /* newest valid Xid in the SLRU */ |
| 347 | TransactionId tailXid; /* oldest xmin we might be interested in */ |
| 348 | } OldSerXidControlData; |
| 349 | |
| 350 | typedef struct OldSerXidControlData *OldSerXidControl; |
| 351 | |
| 352 | static OldSerXidControl oldSerXidControl; |
| 353 | |
| 354 | /* |
| 355 | * When the oldest committed transaction on the "finished" list is moved to |
| 356 | * SLRU, its predicate locks will be moved to this "dummy" transaction, |
| 357 | * collapsing duplicate targets. When a duplicate is found, the later |
| 358 | * commitSeqNo is used. |
| 359 | */ |
| 360 | static SERIALIZABLEXACT *OldCommittedSxact; |
| 361 | |
| 362 | |
| 363 | /* |
| 364 | * These configuration variables are used to set the predicate lock table size |
| 365 | * and to control promotion of predicate locks to coarser granularity in an |
| 366 | * attempt to degrade performance (mostly as false positive serialization |
| 367 | * failure) gracefully in the face of memory pressurel |
| 368 | */ |
| 369 | int max_predicate_locks_per_xact; /* set by guc.c */ |
| 370 | int max_predicate_locks_per_relation; /* set by guc.c */ |
| 371 | int max_predicate_locks_per_page; /* set by guc.c */ |
| 372 | |
| 373 | /* |
| 374 | * This provides a list of objects in order to track transactions |
| 375 | * participating in predicate locking. Entries in the list are fixed size, |
| 376 | * and reside in shared memory. The memory address of an entry must remain |
| 377 | * fixed during its lifetime. The list will be protected from concurrent |
| 378 | * update externally; no provision is made in this code to manage that. The |
| 379 | * number of entries in the list, and the size allowed for each entry is |
| 380 | * fixed upon creation. |
| 381 | */ |
| 382 | static PredXactList PredXact; |
| 383 | |
| 384 | /* |
| 385 | * This provides a pool of RWConflict data elements to use in conflict lists |
| 386 | * between transactions. |
| 387 | */ |
| 388 | static RWConflictPoolHeader RWConflictPool; |
| 389 | |
| 390 | /* |
| 391 | * The predicate locking hash tables are in shared memory. |
| 392 | * Each backend keeps pointers to them. |
| 393 | */ |
| 394 | static HTAB *SerializableXidHash; |
| 395 | static HTAB *PredicateLockTargetHash; |
| 396 | static HTAB *PredicateLockHash; |
| 397 | static SHM_QUEUE *FinishedSerializableTransactions; |
| 398 | |
| 399 | /* |
| 400 | * Tag for a dummy entry in PredicateLockTargetHash. By temporarily removing |
| 401 | * this entry, you can ensure that there's enough scratch space available for |
| 402 | * inserting one entry in the hash table. This is an otherwise-invalid tag. |
| 403 | */ |
| 404 | static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0}; |
| 405 | static uint32 ScratchTargetTagHash; |
| 406 | static LWLock *ScratchPartitionLock; |
| 407 | |
| 408 | /* |
| 409 | * The local hash table used to determine when to combine multiple fine- |
| 410 | * grained locks into a single courser-grained lock. |
| 411 | */ |
| 412 | static HTAB *LocalPredicateLockHash = NULL; |
| 413 | |
| 414 | /* |
| 415 | * Keep a pointer to the currently-running serializable transaction (if any) |
| 416 | * for quick reference. Also, remember if we have written anything that could |
| 417 | * cause a rw-conflict. |
| 418 | */ |
| 419 | static SERIALIZABLEXACT *MySerializableXact = InvalidSerializableXact; |
| 420 | static bool MyXactDidWrite = false; |
| 421 | |
| 422 | /* |
| 423 | * The SXACT_FLAG_RO_UNSAFE optimization might lead us to release |
| 424 | * MySerializableXact early. If that happens in a parallel query, the leader |
| 425 | * needs to defer the destruction of the SERIALIZABLEXACT until end of |
| 426 | * transaction, because the workers still have a reference to it. In that |
| 427 | * case, the leader stores it here. |
| 428 | */ |
| 429 | static SERIALIZABLEXACT *SavedSerializableXact = InvalidSerializableXact; |
| 430 | |
| 431 | /* local functions */ |
| 432 | |
| 433 | static SERIALIZABLEXACT *CreatePredXact(void); |
| 434 | static void ReleasePredXact(SERIALIZABLEXACT *sxact); |
| 435 | static SERIALIZABLEXACT *FirstPredXact(void); |
| 436 | static SERIALIZABLEXACT *NextPredXact(SERIALIZABLEXACT *sxact); |
| 437 | |
| 438 | static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer); |
| 439 | static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer); |
| 440 | static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact); |
| 441 | static void ReleaseRWConflict(RWConflict conflict); |
| 442 | static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact); |
| 443 | |
| 444 | static bool OldSerXidPagePrecedesLogically(int p, int q); |
| 445 | static void OldSerXidInit(void); |
| 446 | static void OldSerXidAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo); |
| 447 | static SerCommitSeqNo OldSerXidGetMinConflictCommitSeqNo(TransactionId xid); |
| 448 | static void OldSerXidSetActiveSerXmin(TransactionId xid); |
| 449 | |
| 450 | static uint32 predicatelock_hash(const void *key, Size keysize); |
| 451 | static void SummarizeOldestCommittedSxact(void); |
| 452 | static Snapshot GetSafeSnapshot(Snapshot snapshot); |
| 453 | static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot, |
| 454 | VirtualTransactionId *sourcevxid, |
| 455 | int sourcepid); |
| 456 | static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag); |
| 457 | static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag, |
| 458 | PREDICATELOCKTARGETTAG *parent); |
| 459 | static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag); |
| 460 | static void RemoveScratchTarget(bool lockheld); |
| 461 | static void RestoreScratchTarget(bool lockheld); |
| 462 | static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, |
| 463 | uint32 targettaghash); |
| 464 | static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag); |
| 465 | static int MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag); |
| 466 | static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag); |
| 467 | static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag); |
| 468 | static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag, |
| 469 | uint32 targettaghash, |
| 470 | SERIALIZABLEXACT *sxact); |
| 471 | static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash); |
| 472 | static bool TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag, |
| 473 | PREDICATELOCKTARGETTAG newtargettag, |
| 474 | bool removeOld); |
| 475 | static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag); |
| 476 | static void DropAllPredicateLocksFromTable(Relation relation, |
| 477 | bool transfer); |
| 478 | static void SetNewSxactGlobalXmin(void); |
| 479 | static void ClearOldPredicateLocks(void); |
| 480 | static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial, |
| 481 | bool summarize); |
| 482 | static bool XidIsConcurrent(TransactionId xid); |
| 483 | static void CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag); |
| 484 | static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer); |
| 485 | static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader, |
| 486 | SERIALIZABLEXACT *writer); |
| 487 | static void CreateLocalPredicateLockHash(void); |
| 488 | static void ReleasePredicateLocksLocal(void); |
| 489 | |
| 490 | |
| 491 | /*------------------------------------------------------------------------*/ |
| 492 | |
| 493 | /* |
| 494 | * Does this relation participate in predicate locking? Temporary and system |
| 495 | * relations are exempt, as are materialized views. |
| 496 | */ |
| 497 | static inline bool |
| 498 | PredicateLockingNeededForRelation(Relation relation) |
| 499 | { |
| 500 | return !(relation->rd_id < FirstBootstrapObjectId || |
| 501 | RelationUsesLocalBuffers(relation) || |
| 502 | relation->rd_rel->relkind == RELKIND_MATVIEW); |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * When a public interface method is called for a read, this is the test to |
| 507 | * see if we should do a quick return. |
| 508 | * |
| 509 | * Note: this function has side-effects! If this transaction has been flagged |
| 510 | * as RO-safe since the last call, we release all predicate locks and reset |
| 511 | * MySerializableXact. That makes subsequent calls to return quickly. |
| 512 | * |
| 513 | * This is marked as 'inline' to eliminate the function call overhead in the |
| 514 | * common case that serialization is not needed. |
| 515 | */ |
| 516 | static inline bool |
| 517 | SerializationNeededForRead(Relation relation, Snapshot snapshot) |
| 518 | { |
| 519 | /* Nothing to do if this is not a serializable transaction */ |
| 520 | if (MySerializableXact == InvalidSerializableXact) |
| 521 | return false; |
| 522 | |
| 523 | /* |
| 524 | * Don't acquire locks or conflict when scanning with a special snapshot. |
| 525 | * This excludes things like CLUSTER and REINDEX. They use the wholesale |
| 526 | * functions TransferPredicateLocksToHeapRelation() and |
| 527 | * CheckTableForSerializableConflictIn() to participate in serialization, |
| 528 | * but the scans involved don't need serialization. |
| 529 | */ |
| 530 | if (!IsMVCCSnapshot(snapshot)) |
| 531 | return false; |
| 532 | |
| 533 | /* |
| 534 | * Check if we have just become "RO-safe". If we have, immediately release |
| 535 | * all locks as they're not needed anymore. This also resets |
| 536 | * MySerializableXact, so that subsequent calls to this function can exit |
| 537 | * quickly. |
| 538 | * |
| 539 | * A transaction is flagged as RO_SAFE if all concurrent R/W transactions |
| 540 | * commit without having conflicts out to an earlier snapshot, thus |
| 541 | * ensuring that no conflicts are possible for this transaction. |
| 542 | */ |
| 543 | if (SxactIsROSafe(MySerializableXact)) |
| 544 | { |
| 545 | ReleasePredicateLocks(false, true); |
| 546 | return false; |
| 547 | } |
| 548 | |
| 549 | /* Check if the relation doesn't participate in predicate locking */ |
| 550 | if (!PredicateLockingNeededForRelation(relation)) |
| 551 | return false; |
| 552 | |
| 553 | return true; /* no excuse to skip predicate locking */ |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * Like SerializationNeededForRead(), but called on writes. |
| 558 | * The logic is the same, but there is no snapshot and we can't be RO-safe. |
| 559 | */ |
| 560 | static inline bool |
| 561 | SerializationNeededForWrite(Relation relation) |
| 562 | { |
| 563 | /* Nothing to do if this is not a serializable transaction */ |
| 564 | if (MySerializableXact == InvalidSerializableXact) |
| 565 | return false; |
| 566 | |
| 567 | /* Check if the relation doesn't participate in predicate locking */ |
| 568 | if (!PredicateLockingNeededForRelation(relation)) |
| 569 | return false; |
| 570 | |
| 571 | return true; /* no excuse to skip predicate locking */ |
| 572 | } |
| 573 | |
| 574 | |
| 575 | /*------------------------------------------------------------------------*/ |
| 576 | |
| 577 | /* |
| 578 | * These functions are a simple implementation of a list for this specific |
| 579 | * type of struct. If there is ever a generalized shared memory list, we |
| 580 | * should probably switch to that. |
| 581 | */ |
| 582 | static SERIALIZABLEXACT * |
| 583 | CreatePredXact(void) |
| 584 | { |
| 585 | PredXactListElement ptle; |
| 586 | |
| 587 | ptle = (PredXactListElement) |
| 588 | SHMQueueNext(&PredXact->availableList, |
| 589 | &PredXact->availableList, |
| 590 | offsetof(PredXactListElementData, link)); |
| 591 | if (!ptle) |
| 592 | return NULL; |
| 593 | |
| 594 | SHMQueueDelete(&ptle->link); |
| 595 | SHMQueueInsertBefore(&PredXact->activeList, &ptle->link); |
| 596 | return &ptle->sxact; |
| 597 | } |
| 598 | |
| 599 | static void |
| 600 | ReleasePredXact(SERIALIZABLEXACT *sxact) |
| 601 | { |
| 602 | PredXactListElement ptle; |
| 603 | |
| 604 | Assert(ShmemAddrIsValid(sxact)); |
| 605 | |
| 606 | ptle = (PredXactListElement) |
| 607 | (((char *) sxact) |
| 608 | - offsetof(PredXactListElementData, sxact) |
| 609 | + offsetof(PredXactListElementData, link)); |
| 610 | SHMQueueDelete(&ptle->link); |
| 611 | SHMQueueInsertBefore(&PredXact->availableList, &ptle->link); |
| 612 | } |
| 613 | |
| 614 | static SERIALIZABLEXACT * |
| 615 | FirstPredXact(void) |
| 616 | { |
| 617 | PredXactListElement ptle; |
| 618 | |
| 619 | ptle = (PredXactListElement) |
| 620 | SHMQueueNext(&PredXact->activeList, |
| 621 | &PredXact->activeList, |
| 622 | offsetof(PredXactListElementData, link)); |
| 623 | if (!ptle) |
| 624 | return NULL; |
| 625 | |
| 626 | return &ptle->sxact; |
| 627 | } |
| 628 | |
| 629 | static SERIALIZABLEXACT * |
| 630 | NextPredXact(SERIALIZABLEXACT *sxact) |
| 631 | { |
| 632 | PredXactListElement ptle; |
| 633 | |
| 634 | Assert(ShmemAddrIsValid(sxact)); |
| 635 | |
| 636 | ptle = (PredXactListElement) |
| 637 | (((char *) sxact) |
| 638 | - offsetof(PredXactListElementData, sxact) |
| 639 | + offsetof(PredXactListElementData, link)); |
| 640 | ptle = (PredXactListElement) |
| 641 | SHMQueueNext(&PredXact->activeList, |
| 642 | &ptle->link, |
| 643 | offsetof(PredXactListElementData, link)); |
| 644 | if (!ptle) |
| 645 | return NULL; |
| 646 | |
| 647 | return &ptle->sxact; |
| 648 | } |
| 649 | |
| 650 | /*------------------------------------------------------------------------*/ |
| 651 | |
| 652 | /* |
| 653 | * These functions manage primitive access to the RWConflict pool and lists. |
| 654 | */ |
| 655 | static bool |
| 656 | RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer) |
| 657 | { |
| 658 | RWConflict conflict; |
| 659 | |
| 660 | Assert(reader != writer); |
| 661 | |
| 662 | /* Check the ends of the purported conflict first. */ |
| 663 | if (SxactIsDoomed(reader) |
| 664 | || SxactIsDoomed(writer) |
| 665 | || SHMQueueEmpty(&reader->outConflicts) |
| 666 | || SHMQueueEmpty(&writer->inConflicts)) |
| 667 | return false; |
| 668 | |
| 669 | /* A conflict is possible; walk the list to find out. */ |
| 670 | conflict = (RWConflict) |
| 671 | SHMQueueNext(&reader->outConflicts, |
| 672 | &reader->outConflicts, |
| 673 | offsetof(RWConflictData, outLink)); |
| 674 | while (conflict) |
| 675 | { |
| 676 | if (conflict->sxactIn == writer) |
| 677 | return true; |
| 678 | conflict = (RWConflict) |
| 679 | SHMQueueNext(&reader->outConflicts, |
| 680 | &conflict->outLink, |
| 681 | offsetof(RWConflictData, outLink)); |
| 682 | } |
| 683 | |
| 684 | /* No conflict found. */ |
| 685 | return false; |
| 686 | } |
| 687 | |
| 688 | static void |
| 689 | SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer) |
| 690 | { |
| 691 | RWConflict conflict; |
| 692 | |
| 693 | Assert(reader != writer); |
| 694 | Assert(!RWConflictExists(reader, writer)); |
| 695 | |
| 696 | conflict = (RWConflict) |
| 697 | SHMQueueNext(&RWConflictPool->availableList, |
| 698 | &RWConflictPool->availableList, |
| 699 | offsetof(RWConflictData, outLink)); |
| 700 | if (!conflict) |
| 701 | ereport(ERROR, |
| 702 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 703 | errmsg("not enough elements in RWConflictPool to record a read/write conflict" ), |
| 704 | errhint("You might need to run fewer transactions at a time or increase max_connections." ))); |
| 705 | |
| 706 | SHMQueueDelete(&conflict->outLink); |
| 707 | |
| 708 | conflict->sxactOut = reader; |
| 709 | conflict->sxactIn = writer; |
| 710 | SHMQueueInsertBefore(&reader->outConflicts, &conflict->outLink); |
| 711 | SHMQueueInsertBefore(&writer->inConflicts, &conflict->inLink); |
| 712 | } |
| 713 | |
| 714 | static void |
| 715 | SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, |
| 716 | SERIALIZABLEXACT *activeXact) |
| 717 | { |
| 718 | RWConflict conflict; |
| 719 | |
| 720 | Assert(roXact != activeXact); |
| 721 | Assert(SxactIsReadOnly(roXact)); |
| 722 | Assert(!SxactIsReadOnly(activeXact)); |
| 723 | |
| 724 | conflict = (RWConflict) |
| 725 | SHMQueueNext(&RWConflictPool->availableList, |
| 726 | &RWConflictPool->availableList, |
| 727 | offsetof(RWConflictData, outLink)); |
| 728 | if (!conflict) |
| 729 | ereport(ERROR, |
| 730 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 731 | errmsg("not enough elements in RWConflictPool to record a potential read/write conflict" ), |
| 732 | errhint("You might need to run fewer transactions at a time or increase max_connections." ))); |
| 733 | |
| 734 | SHMQueueDelete(&conflict->outLink); |
| 735 | |
| 736 | conflict->sxactOut = activeXact; |
| 737 | conflict->sxactIn = roXact; |
| 738 | SHMQueueInsertBefore(&activeXact->possibleUnsafeConflicts, |
| 739 | &conflict->outLink); |
| 740 | SHMQueueInsertBefore(&roXact->possibleUnsafeConflicts, |
| 741 | &conflict->inLink); |
| 742 | } |
| 743 | |
| 744 | static void |
| 745 | ReleaseRWConflict(RWConflict conflict) |
| 746 | { |
| 747 | SHMQueueDelete(&conflict->inLink); |
| 748 | SHMQueueDelete(&conflict->outLink); |
| 749 | SHMQueueInsertBefore(&RWConflictPool->availableList, &conflict->outLink); |
| 750 | } |
| 751 | |
| 752 | static void |
| 753 | FlagSxactUnsafe(SERIALIZABLEXACT *sxact) |
| 754 | { |
| 755 | RWConflict conflict, |
| 756 | nextConflict; |
| 757 | |
| 758 | Assert(SxactIsReadOnly(sxact)); |
| 759 | Assert(!SxactIsROSafe(sxact)); |
| 760 | |
| 761 | sxact->flags |= SXACT_FLAG_RO_UNSAFE; |
| 762 | |
| 763 | /* |
| 764 | * We know this isn't a safe snapshot, so we can stop looking for other |
| 765 | * potential conflicts. |
| 766 | */ |
| 767 | conflict = (RWConflict) |
| 768 | SHMQueueNext(&sxact->possibleUnsafeConflicts, |
| 769 | &sxact->possibleUnsafeConflicts, |
| 770 | offsetof(RWConflictData, inLink)); |
| 771 | while (conflict) |
| 772 | { |
| 773 | nextConflict = (RWConflict) |
| 774 | SHMQueueNext(&sxact->possibleUnsafeConflicts, |
| 775 | &conflict->inLink, |
| 776 | offsetof(RWConflictData, inLink)); |
| 777 | |
| 778 | Assert(!SxactIsReadOnly(conflict->sxactOut)); |
| 779 | Assert(sxact == conflict->sxactIn); |
| 780 | |
| 781 | ReleaseRWConflict(conflict); |
| 782 | |
| 783 | conflict = nextConflict; |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | /*------------------------------------------------------------------------*/ |
| 788 | |
| 789 | /* |
| 790 | * We will work on the page range of 0..OLDSERXID_MAX_PAGE. |
| 791 | * Compares using wraparound logic, as is required by slru.c. |
| 792 | */ |
| 793 | static bool |
| 794 | OldSerXidPagePrecedesLogically(int p, int q) |
| 795 | { |
| 796 | int diff; |
| 797 | |
| 798 | /* |
| 799 | * We have to compare modulo (OLDSERXID_MAX_PAGE+1)/2. Both inputs should |
| 800 | * be in the range 0..OLDSERXID_MAX_PAGE. |
| 801 | */ |
| 802 | Assert(p >= 0 && p <= OLDSERXID_MAX_PAGE); |
| 803 | Assert(q >= 0 && q <= OLDSERXID_MAX_PAGE); |
| 804 | |
| 805 | diff = p - q; |
| 806 | if (diff >= ((OLDSERXID_MAX_PAGE + 1) / 2)) |
| 807 | diff -= OLDSERXID_MAX_PAGE + 1; |
| 808 | else if (diff < -((int) (OLDSERXID_MAX_PAGE + 1) / 2)) |
| 809 | diff += OLDSERXID_MAX_PAGE + 1; |
| 810 | return diff < 0; |
| 811 | } |
| 812 | |
| 813 | /* |
| 814 | * Initialize for the tracking of old serializable committed xids. |
| 815 | */ |
| 816 | static void |
| 817 | OldSerXidInit(void) |
| 818 | { |
| 819 | bool found; |
| 820 | |
| 821 | /* |
| 822 | * Set up SLRU management of the pg_serial data. |
| 823 | */ |
| 824 | OldSerXidSlruCtl->PagePrecedes = OldSerXidPagePrecedesLogically; |
| 825 | SimpleLruInit(OldSerXidSlruCtl, "oldserxid" , |
| 826 | NUM_OLDSERXID_BUFFERS, 0, OldSerXidLock, "pg_serial" , |
| 827 | LWTRANCHE_OLDSERXID_BUFFERS); |
| 828 | /* Override default assumption that writes should be fsync'd */ |
| 829 | OldSerXidSlruCtl->do_fsync = false; |
| 830 | |
| 831 | /* |
| 832 | * Create or attach to the OldSerXidControl structure. |
| 833 | */ |
| 834 | oldSerXidControl = (OldSerXidControl) |
| 835 | ShmemInitStruct("OldSerXidControlData" , sizeof(OldSerXidControlData), &found); |
| 836 | |
| 837 | Assert(found == IsUnderPostmaster); |
| 838 | if (!found) |
| 839 | { |
| 840 | /* |
| 841 | * Set control information to reflect empty SLRU. |
| 842 | */ |
| 843 | oldSerXidControl->headPage = -1; |
| 844 | oldSerXidControl->headXid = InvalidTransactionId; |
| 845 | oldSerXidControl->tailXid = InvalidTransactionId; |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * Record a committed read write serializable xid and the minimum |
| 851 | * commitSeqNo of any transactions to which this xid had a rw-conflict out. |
| 852 | * An invalid seqNo means that there were no conflicts out from xid. |
| 853 | */ |
| 854 | static void |
| 855 | OldSerXidAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo) |
| 856 | { |
| 857 | TransactionId tailXid; |
| 858 | int targetPage; |
| 859 | int slotno; |
| 860 | int firstZeroPage; |
| 861 | bool isNewPage; |
| 862 | |
| 863 | Assert(TransactionIdIsValid(xid)); |
| 864 | |
| 865 | targetPage = OldSerXidPage(xid); |
| 866 | |
| 867 | LWLockAcquire(OldSerXidLock, LW_EXCLUSIVE); |
| 868 | |
| 869 | /* |
| 870 | * If no serializable transactions are active, there shouldn't be anything |
| 871 | * to push out to the SLRU. Hitting this assert would mean there's |
| 872 | * something wrong with the earlier cleanup logic. |
| 873 | */ |
| 874 | tailXid = oldSerXidControl->tailXid; |
| 875 | Assert(TransactionIdIsValid(tailXid)); |
| 876 | |
| 877 | /* |
| 878 | * If the SLRU is currently unused, zero out the whole active region from |
| 879 | * tailXid to headXid before taking it into use. Otherwise zero out only |
| 880 | * any new pages that enter the tailXid-headXid range as we advance |
| 881 | * headXid. |
| 882 | */ |
| 883 | if (oldSerXidControl->headPage < 0) |
| 884 | { |
| 885 | firstZeroPage = OldSerXidPage(tailXid); |
| 886 | isNewPage = true; |
| 887 | } |
| 888 | else |
| 889 | { |
| 890 | firstZeroPage = OldSerXidNextPage(oldSerXidControl->headPage); |
| 891 | isNewPage = OldSerXidPagePrecedesLogically(oldSerXidControl->headPage, |
| 892 | targetPage); |
| 893 | } |
| 894 | |
| 895 | if (!TransactionIdIsValid(oldSerXidControl->headXid) |
| 896 | || TransactionIdFollows(xid, oldSerXidControl->headXid)) |
| 897 | oldSerXidControl->headXid = xid; |
| 898 | if (isNewPage) |
| 899 | oldSerXidControl->headPage = targetPage; |
| 900 | |
| 901 | if (isNewPage) |
| 902 | { |
| 903 | /* Initialize intervening pages. */ |
| 904 | while (firstZeroPage != targetPage) |
| 905 | { |
| 906 | (void) SimpleLruZeroPage(OldSerXidSlruCtl, firstZeroPage); |
| 907 | firstZeroPage = OldSerXidNextPage(firstZeroPage); |
| 908 | } |
| 909 | slotno = SimpleLruZeroPage(OldSerXidSlruCtl, targetPage); |
| 910 | } |
| 911 | else |
| 912 | slotno = SimpleLruReadPage(OldSerXidSlruCtl, targetPage, true, xid); |
| 913 | |
| 914 | OldSerXidValue(slotno, xid) = minConflictCommitSeqNo; |
| 915 | OldSerXidSlruCtl->shared->page_dirty[slotno] = true; |
| 916 | |
| 917 | LWLockRelease(OldSerXidLock); |
| 918 | } |
| 919 | |
| 920 | /* |
| 921 | * Get the minimum commitSeqNo for any conflict out for the given xid. For |
| 922 | * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo |
| 923 | * will be returned. |
| 924 | */ |
| 925 | static SerCommitSeqNo |
| 926 | OldSerXidGetMinConflictCommitSeqNo(TransactionId xid) |
| 927 | { |
| 928 | TransactionId headXid; |
| 929 | TransactionId tailXid; |
| 930 | SerCommitSeqNo val; |
| 931 | int slotno; |
| 932 | |
| 933 | Assert(TransactionIdIsValid(xid)); |
| 934 | |
| 935 | LWLockAcquire(OldSerXidLock, LW_SHARED); |
| 936 | headXid = oldSerXidControl->headXid; |
| 937 | tailXid = oldSerXidControl->tailXid; |
| 938 | LWLockRelease(OldSerXidLock); |
| 939 | |
| 940 | if (!TransactionIdIsValid(headXid)) |
| 941 | return 0; |
| 942 | |
| 943 | Assert(TransactionIdIsValid(tailXid)); |
| 944 | |
| 945 | if (TransactionIdPrecedes(xid, tailXid) |
| 946 | || TransactionIdFollows(xid, headXid)) |
| 947 | return 0; |
| 948 | |
| 949 | /* |
| 950 | * The following function must be called without holding OldSerXidLock, |
| 951 | * but will return with that lock held, which must then be released. |
| 952 | */ |
| 953 | slotno = SimpleLruReadPage_ReadOnly(OldSerXidSlruCtl, |
| 954 | OldSerXidPage(xid), xid); |
| 955 | val = OldSerXidValue(slotno, xid); |
| 956 | LWLockRelease(OldSerXidLock); |
| 957 | return val; |
| 958 | } |
| 959 | |
| 960 | /* |
| 961 | * Call this whenever there is a new xmin for active serializable |
| 962 | * transactions. We don't need to keep information on transactions which |
| 963 | * precede that. InvalidTransactionId means none active, so everything in |
| 964 | * the SLRU can be discarded. |
| 965 | */ |
| 966 | static void |
| 967 | OldSerXidSetActiveSerXmin(TransactionId xid) |
| 968 | { |
| 969 | LWLockAcquire(OldSerXidLock, LW_EXCLUSIVE); |
| 970 | |
| 971 | /* |
| 972 | * When no sxacts are active, nothing overlaps, set the xid values to |
| 973 | * invalid to show that there are no valid entries. Don't clear headPage, |
| 974 | * though. A new xmin might still land on that page, and we don't want to |
| 975 | * repeatedly zero out the same page. |
| 976 | */ |
| 977 | if (!TransactionIdIsValid(xid)) |
| 978 | { |
| 979 | oldSerXidControl->tailXid = InvalidTransactionId; |
| 980 | oldSerXidControl->headXid = InvalidTransactionId; |
| 981 | LWLockRelease(OldSerXidLock); |
| 982 | return; |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * When we're recovering prepared transactions, the global xmin might move |
| 987 | * backwards depending on the order they're recovered. Normally that's not |
| 988 | * OK, but during recovery no serializable transactions will commit, so |
| 989 | * the SLRU is empty and we can get away with it. |
| 990 | */ |
| 991 | if (RecoveryInProgress()) |
| 992 | { |
| 993 | Assert(oldSerXidControl->headPage < 0); |
| 994 | if (!TransactionIdIsValid(oldSerXidControl->tailXid) |
| 995 | || TransactionIdPrecedes(xid, oldSerXidControl->tailXid)) |
| 996 | { |
| 997 | oldSerXidControl->tailXid = xid; |
| 998 | } |
| 999 | LWLockRelease(OldSerXidLock); |
| 1000 | return; |
| 1001 | } |
| 1002 | |
| 1003 | Assert(!TransactionIdIsValid(oldSerXidControl->tailXid) |
| 1004 | || TransactionIdFollows(xid, oldSerXidControl->tailXid)); |
| 1005 | |
| 1006 | oldSerXidControl->tailXid = xid; |
| 1007 | |
| 1008 | LWLockRelease(OldSerXidLock); |
| 1009 | } |
| 1010 | |
| 1011 | /* |
| 1012 | * Perform a checkpoint --- either during shutdown, or on-the-fly |
| 1013 | * |
| 1014 | * We don't have any data that needs to survive a restart, but this is a |
| 1015 | * convenient place to truncate the SLRU. |
| 1016 | */ |
| 1017 | void |
| 1018 | CheckPointPredicate(void) |
| 1019 | { |
| 1020 | int tailPage; |
| 1021 | |
| 1022 | LWLockAcquire(OldSerXidLock, LW_EXCLUSIVE); |
| 1023 | |
| 1024 | /* Exit quickly if the SLRU is currently not in use. */ |
| 1025 | if (oldSerXidControl->headPage < 0) |
| 1026 | { |
| 1027 | LWLockRelease(OldSerXidLock); |
| 1028 | return; |
| 1029 | } |
| 1030 | |
| 1031 | if (TransactionIdIsValid(oldSerXidControl->tailXid)) |
| 1032 | { |
| 1033 | /* We can truncate the SLRU up to the page containing tailXid */ |
| 1034 | tailPage = OldSerXidPage(oldSerXidControl->tailXid); |
| 1035 | } |
| 1036 | else |
| 1037 | { |
| 1038 | /* |
| 1039 | * The SLRU is no longer needed. Truncate to head before we set head |
| 1040 | * invalid. |
| 1041 | * |
| 1042 | * XXX: It's possible that the SLRU is not needed again until XID |
| 1043 | * wrap-around has happened, so that the segment containing headPage |
| 1044 | * that we leave behind will appear to be new again. In that case it |
| 1045 | * won't be removed until XID horizon advances enough to make it |
| 1046 | * current again. |
| 1047 | */ |
| 1048 | tailPage = oldSerXidControl->headPage; |
| 1049 | oldSerXidControl->headPage = -1; |
| 1050 | } |
| 1051 | |
| 1052 | LWLockRelease(OldSerXidLock); |
| 1053 | |
| 1054 | /* Truncate away pages that are no longer required */ |
| 1055 | SimpleLruTruncate(OldSerXidSlruCtl, tailPage); |
| 1056 | |
| 1057 | /* |
| 1058 | * Flush dirty SLRU pages to disk |
| 1059 | * |
| 1060 | * This is not actually necessary from a correctness point of view. We do |
| 1061 | * it merely as a debugging aid. |
| 1062 | * |
| 1063 | * We're doing this after the truncation to avoid writing pages right |
| 1064 | * before deleting the file in which they sit, which would be completely |
| 1065 | * pointless. |
| 1066 | */ |
| 1067 | SimpleLruFlush(OldSerXidSlruCtl, true); |
| 1068 | } |
| 1069 | |
| 1070 | /*------------------------------------------------------------------------*/ |
| 1071 | |
| 1072 | /* |
| 1073 | * InitPredicateLocks -- Initialize the predicate locking data structures. |
| 1074 | * |
| 1075 | * This is called from CreateSharedMemoryAndSemaphores(), which see for |
| 1076 | * more comments. In the normal postmaster case, the shared hash tables |
| 1077 | * are created here. Backends inherit the pointers |
| 1078 | * to the shared tables via fork(). In the EXEC_BACKEND case, each |
| 1079 | * backend re-executes this code to obtain pointers to the already existing |
| 1080 | * shared hash tables. |
| 1081 | */ |
| 1082 | void |
| 1083 | InitPredicateLocks(void) |
| 1084 | { |
| 1085 | HASHCTL info; |
| 1086 | long max_table_size; |
| 1087 | Size requestSize; |
| 1088 | bool found; |
| 1089 | |
| 1090 | #ifndef EXEC_BACKEND |
| 1091 | Assert(!IsUnderPostmaster); |
| 1092 | #endif |
| 1093 | |
| 1094 | /* |
| 1095 | * Compute size of predicate lock target hashtable. Note these |
| 1096 | * calculations must agree with PredicateLockShmemSize! |
| 1097 | */ |
| 1098 | max_table_size = NPREDICATELOCKTARGETENTS(); |
| 1099 | |
| 1100 | /* |
| 1101 | * Allocate hash table for PREDICATELOCKTARGET structs. This stores |
| 1102 | * per-predicate-lock-target information. |
| 1103 | */ |
| 1104 | MemSet(&info, 0, sizeof(info)); |
| 1105 | info.keysize = sizeof(PREDICATELOCKTARGETTAG); |
| 1106 | info.entrysize = sizeof(PREDICATELOCKTARGET); |
| 1107 | info.num_partitions = NUM_PREDICATELOCK_PARTITIONS; |
| 1108 | |
| 1109 | PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash" , |
| 1110 | max_table_size, |
| 1111 | max_table_size, |
| 1112 | &info, |
| 1113 | HASH_ELEM | HASH_BLOBS | |
| 1114 | HASH_PARTITION | HASH_FIXED_SIZE); |
| 1115 | |
| 1116 | /* |
| 1117 | * Reserve a dummy entry in the hash table; we use it to make sure there's |
| 1118 | * always one entry available when we need to split or combine a page, |
| 1119 | * because running out of space there could mean aborting a |
| 1120 | * non-serializable transaction. |
| 1121 | */ |
| 1122 | if (!IsUnderPostmaster) |
| 1123 | { |
| 1124 | (void) hash_search(PredicateLockTargetHash, &ScratchTargetTag, |
| 1125 | HASH_ENTER, &found); |
| 1126 | Assert(!found); |
| 1127 | } |
| 1128 | |
| 1129 | /* Pre-calculate the hash and partition lock of the scratch entry */ |
| 1130 | ScratchTargetTagHash = PredicateLockTargetTagHashCode(&ScratchTargetTag); |
| 1131 | ScratchPartitionLock = PredicateLockHashPartitionLock(ScratchTargetTagHash); |
| 1132 | |
| 1133 | /* |
| 1134 | * Allocate hash table for PREDICATELOCK structs. This stores per |
| 1135 | * xact-lock-of-a-target information. |
| 1136 | */ |
| 1137 | MemSet(&info, 0, sizeof(info)); |
| 1138 | info.keysize = sizeof(PREDICATELOCKTAG); |
| 1139 | info.entrysize = sizeof(PREDICATELOCK); |
| 1140 | info.hash = predicatelock_hash; |
| 1141 | info.num_partitions = NUM_PREDICATELOCK_PARTITIONS; |
| 1142 | |
| 1143 | /* Assume an average of 2 xacts per target */ |
| 1144 | max_table_size *= 2; |
| 1145 | |
| 1146 | PredicateLockHash = ShmemInitHash("PREDICATELOCK hash" , |
| 1147 | max_table_size, |
| 1148 | max_table_size, |
| 1149 | &info, |
| 1150 | HASH_ELEM | HASH_FUNCTION | |
| 1151 | HASH_PARTITION | HASH_FIXED_SIZE); |
| 1152 | |
| 1153 | /* |
| 1154 | * Compute size for serializable transaction hashtable. Note these |
| 1155 | * calculations must agree with PredicateLockShmemSize! |
| 1156 | */ |
| 1157 | max_table_size = (MaxBackends + max_prepared_xacts); |
| 1158 | |
| 1159 | /* |
| 1160 | * Allocate a list to hold information on transactions participating in |
| 1161 | * predicate locking. |
| 1162 | * |
| 1163 | * Assume an average of 10 predicate locking transactions per backend. |
| 1164 | * This allows aggressive cleanup while detail is present before data must |
| 1165 | * be summarized for storage in SLRU and the "dummy" transaction. |
| 1166 | */ |
| 1167 | max_table_size *= 10; |
| 1168 | |
| 1169 | PredXact = ShmemInitStruct("PredXactList" , |
| 1170 | PredXactListDataSize, |
| 1171 | &found); |
| 1172 | Assert(found == IsUnderPostmaster); |
| 1173 | if (!found) |
| 1174 | { |
| 1175 | int i; |
| 1176 | |
| 1177 | SHMQueueInit(&PredXact->availableList); |
| 1178 | SHMQueueInit(&PredXact->activeList); |
| 1179 | PredXact->SxactGlobalXmin = InvalidTransactionId; |
| 1180 | PredXact->SxactGlobalXminCount = 0; |
| 1181 | PredXact->WritableSxactCount = 0; |
| 1182 | PredXact->LastSxactCommitSeqNo = FirstNormalSerCommitSeqNo - 1; |
| 1183 | PredXact->CanPartialClearThrough = 0; |
| 1184 | PredXact->HavePartialClearedThrough = 0; |
| 1185 | requestSize = mul_size((Size) max_table_size, |
| 1186 | PredXactListElementDataSize); |
| 1187 | PredXact->element = ShmemAlloc(requestSize); |
| 1188 | /* Add all elements to available list, clean. */ |
| 1189 | memset(PredXact->element, 0, requestSize); |
| 1190 | for (i = 0; i < max_table_size; i++) |
| 1191 | { |
| 1192 | LWLockInitialize(&PredXact->element[i].sxact.predicateLockListLock, |
| 1193 | LWTRANCHE_SXACT); |
| 1194 | SHMQueueInsertBefore(&(PredXact->availableList), |
| 1195 | &(PredXact->element[i].link)); |
| 1196 | } |
| 1197 | PredXact->OldCommittedSxact = CreatePredXact(); |
| 1198 | SetInvalidVirtualTransactionId(PredXact->OldCommittedSxact->vxid); |
| 1199 | PredXact->OldCommittedSxact->prepareSeqNo = 0; |
| 1200 | PredXact->OldCommittedSxact->commitSeqNo = 0; |
| 1201 | PredXact->OldCommittedSxact->SeqNo.lastCommitBeforeSnapshot = 0; |
| 1202 | SHMQueueInit(&PredXact->OldCommittedSxact->outConflicts); |
| 1203 | SHMQueueInit(&PredXact->OldCommittedSxact->inConflicts); |
| 1204 | SHMQueueInit(&PredXact->OldCommittedSxact->predicateLocks); |
| 1205 | SHMQueueInit(&PredXact->OldCommittedSxact->finishedLink); |
| 1206 | SHMQueueInit(&PredXact->OldCommittedSxact->possibleUnsafeConflicts); |
| 1207 | PredXact->OldCommittedSxact->topXid = InvalidTransactionId; |
| 1208 | PredXact->OldCommittedSxact->finishedBefore = InvalidTransactionId; |
| 1209 | PredXact->OldCommittedSxact->xmin = InvalidTransactionId; |
| 1210 | PredXact->OldCommittedSxact->flags = SXACT_FLAG_COMMITTED; |
| 1211 | PredXact->OldCommittedSxact->pid = 0; |
| 1212 | } |
| 1213 | /* This never changes, so let's keep a local copy. */ |
| 1214 | OldCommittedSxact = PredXact->OldCommittedSxact; |
| 1215 | |
| 1216 | /* |
| 1217 | * Allocate hash table for SERIALIZABLEXID structs. This stores per-xid |
| 1218 | * information for serializable transactions which have accessed data. |
| 1219 | */ |
| 1220 | MemSet(&info, 0, sizeof(info)); |
| 1221 | info.keysize = sizeof(SERIALIZABLEXIDTAG); |
| 1222 | info.entrysize = sizeof(SERIALIZABLEXID); |
| 1223 | |
| 1224 | SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash" , |
| 1225 | max_table_size, |
| 1226 | max_table_size, |
| 1227 | &info, |
| 1228 | HASH_ELEM | HASH_BLOBS | |
| 1229 | HASH_FIXED_SIZE); |
| 1230 | |
| 1231 | /* |
| 1232 | * Allocate space for tracking rw-conflicts in lists attached to the |
| 1233 | * transactions. |
| 1234 | * |
| 1235 | * Assume an average of 5 conflicts per transaction. Calculations suggest |
| 1236 | * that this will prevent resource exhaustion in even the most pessimal |
| 1237 | * loads up to max_connections = 200 with all 200 connections pounding the |
| 1238 | * database with serializable transactions. Beyond that, there may be |
| 1239 | * occasional transactions canceled when trying to flag conflicts. That's |
| 1240 | * probably OK. |
| 1241 | */ |
| 1242 | max_table_size *= 5; |
| 1243 | |
| 1244 | RWConflictPool = ShmemInitStruct("RWConflictPool" , |
| 1245 | RWConflictPoolHeaderDataSize, |
| 1246 | &found); |
| 1247 | Assert(found == IsUnderPostmaster); |
| 1248 | if (!found) |
| 1249 | { |
| 1250 | int i; |
| 1251 | |
| 1252 | SHMQueueInit(&RWConflictPool->availableList); |
| 1253 | requestSize = mul_size((Size) max_table_size, |
| 1254 | RWConflictDataSize); |
| 1255 | RWConflictPool->element = ShmemAlloc(requestSize); |
| 1256 | /* Add all elements to available list, clean. */ |
| 1257 | memset(RWConflictPool->element, 0, requestSize); |
| 1258 | for (i = 0; i < max_table_size; i++) |
| 1259 | { |
| 1260 | SHMQueueInsertBefore(&(RWConflictPool->availableList), |
| 1261 | &(RWConflictPool->element[i].outLink)); |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | /* |
| 1266 | * Create or attach to the header for the list of finished serializable |
| 1267 | * transactions. |
| 1268 | */ |
| 1269 | FinishedSerializableTransactions = (SHM_QUEUE *) |
| 1270 | ShmemInitStruct("FinishedSerializableTransactions" , |
| 1271 | sizeof(SHM_QUEUE), |
| 1272 | &found); |
| 1273 | Assert(found == IsUnderPostmaster); |
| 1274 | if (!found) |
| 1275 | SHMQueueInit(FinishedSerializableTransactions); |
| 1276 | |
| 1277 | /* |
| 1278 | * Initialize the SLRU storage for old committed serializable |
| 1279 | * transactions. |
| 1280 | */ |
| 1281 | OldSerXidInit(); |
| 1282 | } |
| 1283 | |
| 1284 | /* |
| 1285 | * Estimate shared-memory space used for predicate lock table |
| 1286 | */ |
| 1287 | Size |
| 1288 | PredicateLockShmemSize(void) |
| 1289 | { |
| 1290 | Size size = 0; |
| 1291 | long max_table_size; |
| 1292 | |
| 1293 | /* predicate lock target hash table */ |
| 1294 | max_table_size = NPREDICATELOCKTARGETENTS(); |
| 1295 | size = add_size(size, hash_estimate_size(max_table_size, |
| 1296 | sizeof(PREDICATELOCKTARGET))); |
| 1297 | |
| 1298 | /* predicate lock hash table */ |
| 1299 | max_table_size *= 2; |
| 1300 | size = add_size(size, hash_estimate_size(max_table_size, |
| 1301 | sizeof(PREDICATELOCK))); |
| 1302 | |
| 1303 | /* |
| 1304 | * Since NPREDICATELOCKTARGETENTS is only an estimate, add 10% safety |
| 1305 | * margin. |
| 1306 | */ |
| 1307 | size = add_size(size, size / 10); |
| 1308 | |
| 1309 | /* transaction list */ |
| 1310 | max_table_size = MaxBackends + max_prepared_xacts; |
| 1311 | max_table_size *= 10; |
| 1312 | size = add_size(size, PredXactListDataSize); |
| 1313 | size = add_size(size, mul_size((Size) max_table_size, |
| 1314 | PredXactListElementDataSize)); |
| 1315 | |
| 1316 | /* transaction xid table */ |
| 1317 | size = add_size(size, hash_estimate_size(max_table_size, |
| 1318 | sizeof(SERIALIZABLEXID))); |
| 1319 | |
| 1320 | /* rw-conflict pool */ |
| 1321 | max_table_size *= 5; |
| 1322 | size = add_size(size, RWConflictPoolHeaderDataSize); |
| 1323 | size = add_size(size, mul_size((Size) max_table_size, |
| 1324 | RWConflictDataSize)); |
| 1325 | |
| 1326 | /* Head for list of finished serializable transactions. */ |
| 1327 | size = add_size(size, sizeof(SHM_QUEUE)); |
| 1328 | |
| 1329 | /* Shared memory structures for SLRU tracking of old committed xids. */ |
| 1330 | size = add_size(size, sizeof(OldSerXidControlData)); |
| 1331 | size = add_size(size, SimpleLruShmemSize(NUM_OLDSERXID_BUFFERS, 0)); |
| 1332 | |
| 1333 | return size; |
| 1334 | } |
| 1335 | |
| 1336 | |
| 1337 | /* |
| 1338 | * Compute the hash code associated with a PREDICATELOCKTAG. |
| 1339 | * |
| 1340 | * Because we want to use just one set of partition locks for both the |
| 1341 | * PREDICATELOCKTARGET and PREDICATELOCK hash tables, we have to make sure |
| 1342 | * that PREDICATELOCKs fall into the same partition number as their |
| 1343 | * associated PREDICATELOCKTARGETs. dynahash.c expects the partition number |
| 1344 | * to be the low-order bits of the hash code, and therefore a |
| 1345 | * PREDICATELOCKTAG's hash code must have the same low-order bits as the |
| 1346 | * associated PREDICATELOCKTARGETTAG's hash code. We achieve this with this |
| 1347 | * specialized hash function. |
| 1348 | */ |
| 1349 | static uint32 |
| 1350 | predicatelock_hash(const void *key, Size keysize) |
| 1351 | { |
| 1352 | const PREDICATELOCKTAG *predicatelocktag = (const PREDICATELOCKTAG *) key; |
| 1353 | uint32 targethash; |
| 1354 | |
| 1355 | Assert(keysize == sizeof(PREDICATELOCKTAG)); |
| 1356 | |
| 1357 | /* Look into the associated target object, and compute its hash code */ |
| 1358 | targethash = PredicateLockTargetTagHashCode(&predicatelocktag->myTarget->tag); |
| 1359 | |
| 1360 | return PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash); |
| 1361 | } |
| 1362 | |
| 1363 | |
| 1364 | /* |
| 1365 | * GetPredicateLockStatusData |
| 1366 | * Return a table containing the internal state of the predicate |
| 1367 | * lock manager for use in pg_lock_status. |
| 1368 | * |
| 1369 | * Like GetLockStatusData, this function tries to hold the partition LWLocks |
| 1370 | * for as short a time as possible by returning two arrays that simply |
| 1371 | * contain the PREDICATELOCKTARGETTAG and SERIALIZABLEXACT for each lock |
| 1372 | * table entry. Multiple copies of the same PREDICATELOCKTARGETTAG and |
| 1373 | * SERIALIZABLEXACT will likely appear. |
| 1374 | */ |
| 1375 | PredicateLockData * |
| 1376 | GetPredicateLockStatusData(void) |
| 1377 | { |
| 1378 | PredicateLockData *data; |
| 1379 | int i; |
| 1380 | int els, |
| 1381 | el; |
| 1382 | HASH_SEQ_STATUS seqstat; |
| 1383 | PREDICATELOCK *predlock; |
| 1384 | |
| 1385 | data = (PredicateLockData *) palloc(sizeof(PredicateLockData)); |
| 1386 | |
| 1387 | /* |
| 1388 | * To ensure consistency, take simultaneous locks on all partition locks |
| 1389 | * in ascending order, then SerializableXactHashLock. |
| 1390 | */ |
| 1391 | for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++) |
| 1392 | LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED); |
| 1393 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 1394 | |
| 1395 | /* Get number of locks and allocate appropriately-sized arrays. */ |
| 1396 | els = hash_get_num_entries(PredicateLockHash); |
| 1397 | data->nelements = els; |
| 1398 | data->locktags = (PREDICATELOCKTARGETTAG *) |
| 1399 | palloc(sizeof(PREDICATELOCKTARGETTAG) * els); |
| 1400 | data->xacts = (SERIALIZABLEXACT *) |
| 1401 | palloc(sizeof(SERIALIZABLEXACT) * els); |
| 1402 | |
| 1403 | |
| 1404 | /* Scan through PredicateLockHash and copy contents */ |
| 1405 | hash_seq_init(&seqstat, PredicateLockHash); |
| 1406 | |
| 1407 | el = 0; |
| 1408 | |
| 1409 | while ((predlock = (PREDICATELOCK *) hash_seq_search(&seqstat))) |
| 1410 | { |
| 1411 | data->locktags[el] = predlock->tag.myTarget->tag; |
| 1412 | data->xacts[el] = *predlock->tag.myXact; |
| 1413 | el++; |
| 1414 | } |
| 1415 | |
| 1416 | Assert(el == els); |
| 1417 | |
| 1418 | /* Release locks in reverse order */ |
| 1419 | LWLockRelease(SerializableXactHashLock); |
| 1420 | for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--) |
| 1421 | LWLockRelease(PredicateLockHashPartitionLockByIndex(i)); |
| 1422 | |
| 1423 | return data; |
| 1424 | } |
| 1425 | |
| 1426 | /* |
| 1427 | * Free up shared memory structures by pushing the oldest sxact (the one at |
| 1428 | * the front of the SummarizeOldestCommittedSxact queue) into summary form. |
| 1429 | * Each call will free exactly one SERIALIZABLEXACT structure and may also |
| 1430 | * free one or more of these structures: SERIALIZABLEXID, PREDICATELOCK, |
| 1431 | * PREDICATELOCKTARGET, RWConflictData. |
| 1432 | */ |
| 1433 | static void |
| 1434 | SummarizeOldestCommittedSxact(void) |
| 1435 | { |
| 1436 | SERIALIZABLEXACT *sxact; |
| 1437 | |
| 1438 | LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE); |
| 1439 | |
| 1440 | /* |
| 1441 | * This function is only called if there are no sxact slots available. |
| 1442 | * Some of them must belong to old, already-finished transactions, so |
| 1443 | * there should be something in FinishedSerializableTransactions list that |
| 1444 | * we can summarize. However, there's a race condition: while we were not |
| 1445 | * holding any locks, a transaction might have ended and cleaned up all |
| 1446 | * the finished sxact entries already, freeing up their sxact slots. In |
| 1447 | * that case, we have nothing to do here. The caller will find one of the |
| 1448 | * slots released by the other backend when it retries. |
| 1449 | */ |
| 1450 | if (SHMQueueEmpty(FinishedSerializableTransactions)) |
| 1451 | { |
| 1452 | LWLockRelease(SerializableFinishedListLock); |
| 1453 | return; |
| 1454 | } |
| 1455 | |
| 1456 | /* |
| 1457 | * Grab the first sxact off the finished list -- this will be the earliest |
| 1458 | * commit. Remove it from the list. |
| 1459 | */ |
| 1460 | sxact = (SERIALIZABLEXACT *) |
| 1461 | SHMQueueNext(FinishedSerializableTransactions, |
| 1462 | FinishedSerializableTransactions, |
| 1463 | offsetof(SERIALIZABLEXACT, finishedLink)); |
| 1464 | SHMQueueDelete(&(sxact->finishedLink)); |
| 1465 | |
| 1466 | /* Add to SLRU summary information. */ |
| 1467 | if (TransactionIdIsValid(sxact->topXid) && !SxactIsReadOnly(sxact)) |
| 1468 | OldSerXidAdd(sxact->topXid, SxactHasConflictOut(sxact) |
| 1469 | ? sxact->SeqNo.earliestOutConflictCommit : InvalidSerCommitSeqNo); |
| 1470 | |
| 1471 | /* Summarize and release the detail. */ |
| 1472 | ReleaseOneSerializableXact(sxact, false, true); |
| 1473 | |
| 1474 | LWLockRelease(SerializableFinishedListLock); |
| 1475 | } |
| 1476 | |
| 1477 | /* |
| 1478 | * GetSafeSnapshot |
| 1479 | * Obtain and register a snapshot for a READ ONLY DEFERRABLE |
| 1480 | * transaction. Ensures that the snapshot is "safe", i.e. a |
| 1481 | * read-only transaction running on it can execute serializably |
| 1482 | * without further checks. This requires waiting for concurrent |
| 1483 | * transactions to complete, and retrying with a new snapshot if |
| 1484 | * one of them could possibly create a conflict. |
| 1485 | * |
| 1486 | * As with GetSerializableTransactionSnapshot (which this is a subroutine |
| 1487 | * for), the passed-in Snapshot pointer should reference a static data |
| 1488 | * area that can safely be passed to GetSnapshotData. |
| 1489 | */ |
| 1490 | static Snapshot |
| 1491 | GetSafeSnapshot(Snapshot origSnapshot) |
| 1492 | { |
| 1493 | Snapshot snapshot; |
| 1494 | |
| 1495 | Assert(XactReadOnly && XactDeferrable); |
| 1496 | |
| 1497 | while (true) |
| 1498 | { |
| 1499 | /* |
| 1500 | * GetSerializableTransactionSnapshotInt is going to call |
| 1501 | * GetSnapshotData, so we need to provide it the static snapshot area |
| 1502 | * our caller passed to us. The pointer returned is actually the same |
| 1503 | * one passed to it, but we avoid assuming that here. |
| 1504 | */ |
| 1505 | snapshot = GetSerializableTransactionSnapshotInt(origSnapshot, |
| 1506 | NULL, InvalidPid); |
| 1507 | |
| 1508 | if (MySerializableXact == InvalidSerializableXact) |
| 1509 | return snapshot; /* no concurrent r/w xacts; it's safe */ |
| 1510 | |
| 1511 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 1512 | |
| 1513 | /* |
| 1514 | * Wait for concurrent transactions to finish. Stop early if one of |
| 1515 | * them marked us as conflicted. |
| 1516 | */ |
| 1517 | MySerializableXact->flags |= SXACT_FLAG_DEFERRABLE_WAITING; |
| 1518 | while (!(SHMQueueEmpty(&MySerializableXact->possibleUnsafeConflicts) || |
| 1519 | SxactIsROUnsafe(MySerializableXact))) |
| 1520 | { |
| 1521 | LWLockRelease(SerializableXactHashLock); |
| 1522 | ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT); |
| 1523 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 1524 | } |
| 1525 | MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING; |
| 1526 | |
| 1527 | if (!SxactIsROUnsafe(MySerializableXact)) |
| 1528 | { |
| 1529 | LWLockRelease(SerializableXactHashLock); |
| 1530 | break; /* success */ |
| 1531 | } |
| 1532 | |
| 1533 | LWLockRelease(SerializableXactHashLock); |
| 1534 | |
| 1535 | /* else, need to retry... */ |
| 1536 | ereport(DEBUG2, |
| 1537 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 1538 | errmsg("deferrable snapshot was unsafe; trying a new one" ))); |
| 1539 | ReleasePredicateLocks(false, false); |
| 1540 | } |
| 1541 | |
| 1542 | /* |
| 1543 | * Now we have a safe snapshot, so we don't need to do any further checks. |
| 1544 | */ |
| 1545 | Assert(SxactIsROSafe(MySerializableXact)); |
| 1546 | ReleasePredicateLocks(false, true); |
| 1547 | |
| 1548 | return snapshot; |
| 1549 | } |
| 1550 | |
| 1551 | /* |
| 1552 | * GetSafeSnapshotBlockingPids |
| 1553 | * If the specified process is currently blocked in GetSafeSnapshot, |
| 1554 | * write the process IDs of all processes that it is blocked by |
| 1555 | * into the caller-supplied buffer output[]. The list is truncated at |
| 1556 | * output_size, and the number of PIDs written into the buffer is |
| 1557 | * returned. Returns zero if the given PID is not currently blocked |
| 1558 | * in GetSafeSnapshot. |
| 1559 | */ |
| 1560 | int |
| 1561 | GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size) |
| 1562 | { |
| 1563 | int num_written = 0; |
| 1564 | SERIALIZABLEXACT *sxact; |
| 1565 | |
| 1566 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 1567 | |
| 1568 | /* Find blocked_pid's SERIALIZABLEXACT by linear search. */ |
| 1569 | for (sxact = FirstPredXact(); sxact != NULL; sxact = NextPredXact(sxact)) |
| 1570 | { |
| 1571 | if (sxact->pid == blocked_pid) |
| 1572 | break; |
| 1573 | } |
| 1574 | |
| 1575 | /* Did we find it, and is it currently waiting in GetSafeSnapshot? */ |
| 1576 | if (sxact != NULL && SxactIsDeferrableWaiting(sxact)) |
| 1577 | { |
| 1578 | RWConflict possibleUnsafeConflict; |
| 1579 | |
| 1580 | /* Traverse the list of possible unsafe conflicts collecting PIDs. */ |
| 1581 | possibleUnsafeConflict = (RWConflict) |
| 1582 | SHMQueueNext(&sxact->possibleUnsafeConflicts, |
| 1583 | &sxact->possibleUnsafeConflicts, |
| 1584 | offsetof(RWConflictData, inLink)); |
| 1585 | |
| 1586 | while (possibleUnsafeConflict != NULL && num_written < output_size) |
| 1587 | { |
| 1588 | output[num_written++] = possibleUnsafeConflict->sxactOut->pid; |
| 1589 | possibleUnsafeConflict = (RWConflict) |
| 1590 | SHMQueueNext(&sxact->possibleUnsafeConflicts, |
| 1591 | &possibleUnsafeConflict->inLink, |
| 1592 | offsetof(RWConflictData, inLink)); |
| 1593 | } |
| 1594 | } |
| 1595 | |
| 1596 | LWLockRelease(SerializableXactHashLock); |
| 1597 | |
| 1598 | return num_written; |
| 1599 | } |
| 1600 | |
| 1601 | /* |
| 1602 | * Acquire a snapshot that can be used for the current transaction. |
| 1603 | * |
| 1604 | * Make sure we have a SERIALIZABLEXACT reference in MySerializableXact. |
| 1605 | * It should be current for this process and be contained in PredXact. |
| 1606 | * |
| 1607 | * The passed-in Snapshot pointer should reference a static data area that |
| 1608 | * can safely be passed to GetSnapshotData. The return value is actually |
| 1609 | * always this same pointer; no new snapshot data structure is allocated |
| 1610 | * within this function. |
| 1611 | */ |
| 1612 | Snapshot |
| 1613 | GetSerializableTransactionSnapshot(Snapshot snapshot) |
| 1614 | { |
| 1615 | Assert(IsolationIsSerializable()); |
| 1616 | |
| 1617 | /* |
| 1618 | * Can't use serializable mode while recovery is still active, as it is, |
| 1619 | * for example, on a hot standby. We could get here despite the check in |
| 1620 | * check_XactIsoLevel() if default_transaction_isolation is set to |
| 1621 | * serializable, so phrase the hint accordingly. |
| 1622 | */ |
| 1623 | if (RecoveryInProgress()) |
| 1624 | ereport(ERROR, |
| 1625 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1626 | errmsg("cannot use serializable mode in a hot standby" ), |
| 1627 | errdetail("\"default_transaction_isolation\" is set to \"serializable\"." ), |
| 1628 | errhint("You can use \"SET default_transaction_isolation = 'repeatable read'\" to change the default." ))); |
| 1629 | |
| 1630 | /* |
| 1631 | * A special optimization is available for SERIALIZABLE READ ONLY |
| 1632 | * DEFERRABLE transactions -- we can wait for a suitable snapshot and |
| 1633 | * thereby avoid all SSI overhead once it's running. |
| 1634 | */ |
| 1635 | if (XactReadOnly && XactDeferrable) |
| 1636 | return GetSafeSnapshot(snapshot); |
| 1637 | |
| 1638 | return GetSerializableTransactionSnapshotInt(snapshot, |
| 1639 | NULL, InvalidPid); |
| 1640 | } |
| 1641 | |
| 1642 | /* |
| 1643 | * Import a snapshot to be used for the current transaction. |
| 1644 | * |
| 1645 | * This is nearly the same as GetSerializableTransactionSnapshot, except that |
| 1646 | * we don't take a new snapshot, but rather use the data we're handed. |
| 1647 | * |
| 1648 | * The caller must have verified that the snapshot came from a serializable |
| 1649 | * transaction; and if we're read-write, the source transaction must not be |
| 1650 | * read-only. |
| 1651 | */ |
| 1652 | void |
| 1653 | SetSerializableTransactionSnapshot(Snapshot snapshot, |
| 1654 | VirtualTransactionId *sourcevxid, |
| 1655 | int sourcepid) |
| 1656 | { |
| 1657 | Assert(IsolationIsSerializable()); |
| 1658 | |
| 1659 | /* |
| 1660 | * If this is called by parallel.c in a parallel worker, we don't want to |
| 1661 | * create a SERIALIZABLEXACT just yet because the leader's |
| 1662 | * SERIALIZABLEXACT will be installed with AttachSerializableXact(). We |
| 1663 | * also don't want to reject SERIALIZABLE READ ONLY DEFERRABLE in this |
| 1664 | * case, because the leader has already determined that the snapshot it |
| 1665 | * has passed us is safe. So there is nothing for us to do. |
| 1666 | */ |
| 1667 | if (IsParallelWorker()) |
| 1668 | return; |
| 1669 | |
| 1670 | /* |
| 1671 | * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to |
| 1672 | * import snapshots, since there's no way to wait for a safe snapshot when |
| 1673 | * we're using the snap we're told to. (XXX instead of throwing an error, |
| 1674 | * we could just ignore the XactDeferrable flag?) |
| 1675 | */ |
| 1676 | if (XactReadOnly && XactDeferrable) |
| 1677 | ereport(ERROR, |
| 1678 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1679 | errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE" ))); |
| 1680 | |
| 1681 | (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid, |
| 1682 | sourcepid); |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * Guts of GetSerializableTransactionSnapshot |
| 1687 | * |
| 1688 | * If sourcexid is valid, this is actually an import operation and we should |
| 1689 | * skip calling GetSnapshotData, because the snapshot contents are already |
| 1690 | * loaded up. HOWEVER: to avoid race conditions, we must check that the |
| 1691 | * source xact is still running after we acquire SerializableXactHashLock. |
| 1692 | * We do that by calling ProcArrayInstallImportedXmin. |
| 1693 | */ |
| 1694 | static Snapshot |
| 1695 | GetSerializableTransactionSnapshotInt(Snapshot snapshot, |
| 1696 | VirtualTransactionId *sourcevxid, |
| 1697 | int sourcepid) |
| 1698 | { |
| 1699 | PGPROC *proc; |
| 1700 | VirtualTransactionId vxid; |
| 1701 | SERIALIZABLEXACT *sxact, |
| 1702 | *othersxact; |
| 1703 | |
| 1704 | /* We only do this for serializable transactions. Once. */ |
| 1705 | Assert(MySerializableXact == InvalidSerializableXact); |
| 1706 | |
| 1707 | Assert(!RecoveryInProgress()); |
| 1708 | |
| 1709 | /* |
| 1710 | * Since all parts of a serializable transaction must use the same |
| 1711 | * snapshot, it is too late to establish one after a parallel operation |
| 1712 | * has begun. |
| 1713 | */ |
| 1714 | if (IsInParallelMode()) |
| 1715 | elog(ERROR, "cannot establish serializable snapshot during a parallel operation" ); |
| 1716 | |
| 1717 | proc = MyProc; |
| 1718 | Assert(proc != NULL); |
| 1719 | GET_VXID_FROM_PGPROC(vxid, *proc); |
| 1720 | |
| 1721 | /* |
| 1722 | * First we get the sxact structure, which may involve looping and access |
| 1723 | * to the "finished" list to free a structure for use. |
| 1724 | * |
| 1725 | * We must hold SerializableXactHashLock when taking/checking the snapshot |
| 1726 | * to avoid race conditions, for much the same reasons that |
| 1727 | * GetSnapshotData takes the ProcArrayLock. Since we might have to |
| 1728 | * release SerializableXactHashLock to call SummarizeOldestCommittedSxact, |
| 1729 | * this means we have to create the sxact first, which is a bit annoying |
| 1730 | * (in particular, an elog(ERROR) in procarray.c would cause us to leak |
| 1731 | * the sxact). Consider refactoring to avoid this. |
| 1732 | */ |
| 1733 | #ifdef TEST_OLDSERXID |
| 1734 | SummarizeOldestCommittedSxact(); |
| 1735 | #endif |
| 1736 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 1737 | do |
| 1738 | { |
| 1739 | sxact = CreatePredXact(); |
| 1740 | /* If null, push out committed sxact to SLRU summary & retry. */ |
| 1741 | if (!sxact) |
| 1742 | { |
| 1743 | LWLockRelease(SerializableXactHashLock); |
| 1744 | SummarizeOldestCommittedSxact(); |
| 1745 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 1746 | } |
| 1747 | } while (!sxact); |
| 1748 | |
| 1749 | /* Get the snapshot, or check that it's safe to use */ |
| 1750 | if (!sourcevxid) |
| 1751 | snapshot = GetSnapshotData(snapshot); |
| 1752 | else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid)) |
| 1753 | { |
| 1754 | ReleasePredXact(sxact); |
| 1755 | LWLockRelease(SerializableXactHashLock); |
| 1756 | ereport(ERROR, |
| 1757 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 1758 | errmsg("could not import the requested snapshot" ), |
| 1759 | errdetail("The source process with PID %d is not running anymore." , |
| 1760 | sourcepid))); |
| 1761 | } |
| 1762 | |
| 1763 | /* |
| 1764 | * If there are no serializable transactions which are not read-only, we |
| 1765 | * can "opt out" of predicate locking and conflict checking for a |
| 1766 | * read-only transaction. |
| 1767 | * |
| 1768 | * The reason this is safe is that a read-only transaction can only become |
| 1769 | * part of a dangerous structure if it overlaps a writable transaction |
| 1770 | * which in turn overlaps a writable transaction which committed before |
| 1771 | * the read-only transaction started. A new writable transaction can |
| 1772 | * overlap this one, but it can't meet the other condition of overlapping |
| 1773 | * a transaction which committed before this one started. |
| 1774 | */ |
| 1775 | if (XactReadOnly && PredXact->WritableSxactCount == 0) |
| 1776 | { |
| 1777 | ReleasePredXact(sxact); |
| 1778 | LWLockRelease(SerializableXactHashLock); |
| 1779 | return snapshot; |
| 1780 | } |
| 1781 | |
| 1782 | /* Maintain serializable global xmin info. */ |
| 1783 | if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)) |
| 1784 | { |
| 1785 | Assert(PredXact->SxactGlobalXminCount == 0); |
| 1786 | PredXact->SxactGlobalXmin = snapshot->xmin; |
| 1787 | PredXact->SxactGlobalXminCount = 1; |
| 1788 | OldSerXidSetActiveSerXmin(snapshot->xmin); |
| 1789 | } |
| 1790 | else if (TransactionIdEquals(snapshot->xmin, PredXact->SxactGlobalXmin)) |
| 1791 | { |
| 1792 | Assert(PredXact->SxactGlobalXminCount > 0); |
| 1793 | PredXact->SxactGlobalXminCount++; |
| 1794 | } |
| 1795 | else |
| 1796 | { |
| 1797 | Assert(TransactionIdFollows(snapshot->xmin, PredXact->SxactGlobalXmin)); |
| 1798 | } |
| 1799 | |
| 1800 | /* Initialize the structure. */ |
| 1801 | sxact->vxid = vxid; |
| 1802 | sxact->SeqNo.lastCommitBeforeSnapshot = PredXact->LastSxactCommitSeqNo; |
| 1803 | sxact->prepareSeqNo = InvalidSerCommitSeqNo; |
| 1804 | sxact->commitSeqNo = InvalidSerCommitSeqNo; |
| 1805 | SHMQueueInit(&(sxact->outConflicts)); |
| 1806 | SHMQueueInit(&(sxact->inConflicts)); |
| 1807 | SHMQueueInit(&(sxact->possibleUnsafeConflicts)); |
| 1808 | sxact->topXid = GetTopTransactionIdIfAny(); |
| 1809 | sxact->finishedBefore = InvalidTransactionId; |
| 1810 | sxact->xmin = snapshot->xmin; |
| 1811 | sxact->pid = MyProcPid; |
| 1812 | SHMQueueInit(&(sxact->predicateLocks)); |
| 1813 | SHMQueueElemInit(&(sxact->finishedLink)); |
| 1814 | sxact->flags = 0; |
| 1815 | if (XactReadOnly) |
| 1816 | { |
| 1817 | sxact->flags |= SXACT_FLAG_READ_ONLY; |
| 1818 | |
| 1819 | /* |
| 1820 | * Register all concurrent r/w transactions as possible conflicts; if |
| 1821 | * all of them commit without any outgoing conflicts to earlier |
| 1822 | * transactions then this snapshot can be deemed safe (and we can run |
| 1823 | * without tracking predicate locks). |
| 1824 | */ |
| 1825 | for (othersxact = FirstPredXact(); |
| 1826 | othersxact != NULL; |
| 1827 | othersxact = NextPredXact(othersxact)) |
| 1828 | { |
| 1829 | if (!SxactIsCommitted(othersxact) |
| 1830 | && !SxactIsDoomed(othersxact) |
| 1831 | && !SxactIsReadOnly(othersxact)) |
| 1832 | { |
| 1833 | SetPossibleUnsafeConflict(sxact, othersxact); |
| 1834 | } |
| 1835 | } |
| 1836 | } |
| 1837 | else |
| 1838 | { |
| 1839 | ++(PredXact->WritableSxactCount); |
| 1840 | Assert(PredXact->WritableSxactCount <= |
| 1841 | (MaxBackends + max_prepared_xacts)); |
| 1842 | } |
| 1843 | |
| 1844 | MySerializableXact = sxact; |
| 1845 | MyXactDidWrite = false; /* haven't written anything yet */ |
| 1846 | |
| 1847 | LWLockRelease(SerializableXactHashLock); |
| 1848 | |
| 1849 | CreateLocalPredicateLockHash(); |
| 1850 | |
| 1851 | return snapshot; |
| 1852 | } |
| 1853 | |
| 1854 | static void |
| 1855 | CreateLocalPredicateLockHash(void) |
| 1856 | { |
| 1857 | HASHCTL hash_ctl; |
| 1858 | |
| 1859 | /* Initialize the backend-local hash table of parent locks */ |
| 1860 | Assert(LocalPredicateLockHash == NULL); |
| 1861 | MemSet(&hash_ctl, 0, sizeof(hash_ctl)); |
| 1862 | hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG); |
| 1863 | hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK); |
| 1864 | LocalPredicateLockHash = hash_create("Local predicate lock" , |
| 1865 | max_predicate_locks_per_xact, |
| 1866 | &hash_ctl, |
| 1867 | HASH_ELEM | HASH_BLOBS); |
| 1868 | } |
| 1869 | |
| 1870 | /* |
| 1871 | * Register the top level XID in SerializableXidHash. |
| 1872 | * Also store it for easy reference in MySerializableXact. |
| 1873 | */ |
| 1874 | void |
| 1875 | RegisterPredicateLockingXid(TransactionId xid) |
| 1876 | { |
| 1877 | SERIALIZABLEXIDTAG sxidtag; |
| 1878 | SERIALIZABLEXID *sxid; |
| 1879 | bool found; |
| 1880 | |
| 1881 | /* |
| 1882 | * If we're not tracking predicate lock data for this transaction, we |
| 1883 | * should ignore the request and return quickly. |
| 1884 | */ |
| 1885 | if (MySerializableXact == InvalidSerializableXact) |
| 1886 | return; |
| 1887 | |
| 1888 | /* We should have a valid XID and be at the top level. */ |
| 1889 | Assert(TransactionIdIsValid(xid)); |
| 1890 | |
| 1891 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 1892 | |
| 1893 | /* This should only be done once per transaction. */ |
| 1894 | Assert(MySerializableXact->topXid == InvalidTransactionId); |
| 1895 | |
| 1896 | MySerializableXact->topXid = xid; |
| 1897 | |
| 1898 | sxidtag.xid = xid; |
| 1899 | sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash, |
| 1900 | &sxidtag, |
| 1901 | HASH_ENTER, &found); |
| 1902 | Assert(!found); |
| 1903 | |
| 1904 | /* Initialize the structure. */ |
| 1905 | sxid->myXact = MySerializableXact; |
| 1906 | LWLockRelease(SerializableXactHashLock); |
| 1907 | } |
| 1908 | |
| 1909 | |
| 1910 | /* |
| 1911 | * Check whether there are any predicate locks held by any transaction |
| 1912 | * for the page at the given block number. |
| 1913 | * |
| 1914 | * Note that the transaction may be completed but not yet subject to |
| 1915 | * cleanup due to overlapping serializable transactions. This must |
| 1916 | * return valid information regardless of transaction isolation level. |
| 1917 | * |
| 1918 | * Also note that this doesn't check for a conflicting relation lock, |
| 1919 | * just a lock specifically on the given page. |
| 1920 | * |
| 1921 | * One use is to support proper behavior during GiST index vacuum. |
| 1922 | */ |
| 1923 | bool |
| 1924 | PageIsPredicateLocked(Relation relation, BlockNumber blkno) |
| 1925 | { |
| 1926 | PREDICATELOCKTARGETTAG targettag; |
| 1927 | uint32 targettaghash; |
| 1928 | LWLock *partitionLock; |
| 1929 | PREDICATELOCKTARGET *target; |
| 1930 | |
| 1931 | SET_PREDICATELOCKTARGETTAG_PAGE(targettag, |
| 1932 | relation->rd_node.dbNode, |
| 1933 | relation->rd_id, |
| 1934 | blkno); |
| 1935 | |
| 1936 | targettaghash = PredicateLockTargetTagHashCode(&targettag); |
| 1937 | partitionLock = PredicateLockHashPartitionLock(targettaghash); |
| 1938 | LWLockAcquire(partitionLock, LW_SHARED); |
| 1939 | target = (PREDICATELOCKTARGET *) |
| 1940 | hash_search_with_hash_value(PredicateLockTargetHash, |
| 1941 | &targettag, targettaghash, |
| 1942 | HASH_FIND, NULL); |
| 1943 | LWLockRelease(partitionLock); |
| 1944 | |
| 1945 | return (target != NULL); |
| 1946 | } |
| 1947 | |
| 1948 | |
| 1949 | /* |
| 1950 | * Check whether a particular lock is held by this transaction. |
| 1951 | * |
| 1952 | * Important note: this function may return false even if the lock is |
| 1953 | * being held, because it uses the local lock table which is not |
| 1954 | * updated if another transaction modifies our lock list (e.g. to |
| 1955 | * split an index page). It can also return true when a coarser |
| 1956 | * granularity lock that covers this target is being held. Be careful |
| 1957 | * to only use this function in circumstances where such errors are |
| 1958 | * acceptable! |
| 1959 | */ |
| 1960 | static bool |
| 1961 | PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag) |
| 1962 | { |
| 1963 | LOCALPREDICATELOCK *lock; |
| 1964 | |
| 1965 | /* check local hash table */ |
| 1966 | lock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash, |
| 1967 | targettag, |
| 1968 | HASH_FIND, NULL); |
| 1969 | |
| 1970 | if (!lock) |
| 1971 | return false; |
| 1972 | |
| 1973 | /* |
| 1974 | * Found entry in the table, but still need to check whether it's actually |
| 1975 | * held -- it could just be a parent of some held lock. |
| 1976 | */ |
| 1977 | return lock->held; |
| 1978 | } |
| 1979 | |
| 1980 | /* |
| 1981 | * Return the parent lock tag in the lock hierarchy: the next coarser |
| 1982 | * lock that covers the provided tag. |
| 1983 | * |
| 1984 | * Returns true and sets *parent to the parent tag if one exists, |
| 1985 | * returns false if none exists. |
| 1986 | */ |
| 1987 | static bool |
| 1988 | GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag, |
| 1989 | PREDICATELOCKTARGETTAG *parent) |
| 1990 | { |
| 1991 | switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag)) |
| 1992 | { |
| 1993 | case PREDLOCKTAG_RELATION: |
| 1994 | /* relation locks have no parent lock */ |
| 1995 | return false; |
| 1996 | |
| 1997 | case PREDLOCKTAG_PAGE: |
| 1998 | /* parent lock is relation lock */ |
| 1999 | SET_PREDICATELOCKTARGETTAG_RELATION(*parent, |
| 2000 | GET_PREDICATELOCKTARGETTAG_DB(*tag), |
| 2001 | GET_PREDICATELOCKTARGETTAG_RELATION(*tag)); |
| 2002 | |
| 2003 | return true; |
| 2004 | |
| 2005 | case PREDLOCKTAG_TUPLE: |
| 2006 | /* parent lock is page lock */ |
| 2007 | SET_PREDICATELOCKTARGETTAG_PAGE(*parent, |
| 2008 | GET_PREDICATELOCKTARGETTAG_DB(*tag), |
| 2009 | GET_PREDICATELOCKTARGETTAG_RELATION(*tag), |
| 2010 | GET_PREDICATELOCKTARGETTAG_PAGE(*tag)); |
| 2011 | return true; |
| 2012 | } |
| 2013 | |
| 2014 | /* not reachable */ |
| 2015 | Assert(false); |
| 2016 | return false; |
| 2017 | } |
| 2018 | |
| 2019 | /* |
| 2020 | * Check whether the lock we are considering is already covered by a |
| 2021 | * coarser lock for our transaction. |
| 2022 | * |
| 2023 | * Like PredicateLockExists, this function might return a false |
| 2024 | * negative, but it will never return a false positive. |
| 2025 | */ |
| 2026 | static bool |
| 2027 | CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag) |
| 2028 | { |
| 2029 | PREDICATELOCKTARGETTAG targettag, |
| 2030 | parenttag; |
| 2031 | |
| 2032 | targettag = *newtargettag; |
| 2033 | |
| 2034 | /* check parents iteratively until no more */ |
| 2035 | while (GetParentPredicateLockTag(&targettag, &parenttag)) |
| 2036 | { |
| 2037 | targettag = parenttag; |
| 2038 | if (PredicateLockExists(&targettag)) |
| 2039 | return true; |
| 2040 | } |
| 2041 | |
| 2042 | /* no more parents to check; lock is not covered */ |
| 2043 | return false; |
| 2044 | } |
| 2045 | |
| 2046 | /* |
| 2047 | * Remove the dummy entry from the predicate lock target hash, to free up some |
| 2048 | * scratch space. The caller must be holding SerializablePredicateLockListLock, |
| 2049 | * and must restore the entry with RestoreScratchTarget() before releasing the |
| 2050 | * lock. |
| 2051 | * |
| 2052 | * If lockheld is true, the caller is already holding the partition lock |
| 2053 | * of the partition containing the scratch entry. |
| 2054 | */ |
| 2055 | static void |
| 2056 | RemoveScratchTarget(bool lockheld) |
| 2057 | { |
| 2058 | bool found; |
| 2059 | |
| 2060 | Assert(LWLockHeldByMe(SerializablePredicateLockListLock)); |
| 2061 | |
| 2062 | if (!lockheld) |
| 2063 | LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE); |
| 2064 | hash_search_with_hash_value(PredicateLockTargetHash, |
| 2065 | &ScratchTargetTag, |
| 2066 | ScratchTargetTagHash, |
| 2067 | HASH_REMOVE, &found); |
| 2068 | Assert(found); |
| 2069 | if (!lockheld) |
| 2070 | LWLockRelease(ScratchPartitionLock); |
| 2071 | } |
| 2072 | |
| 2073 | /* |
| 2074 | * Re-insert the dummy entry in predicate lock target hash. |
| 2075 | */ |
| 2076 | static void |
| 2077 | RestoreScratchTarget(bool lockheld) |
| 2078 | { |
| 2079 | bool found; |
| 2080 | |
| 2081 | Assert(LWLockHeldByMe(SerializablePredicateLockListLock)); |
| 2082 | |
| 2083 | if (!lockheld) |
| 2084 | LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE); |
| 2085 | hash_search_with_hash_value(PredicateLockTargetHash, |
| 2086 | &ScratchTargetTag, |
| 2087 | ScratchTargetTagHash, |
| 2088 | HASH_ENTER, &found); |
| 2089 | Assert(!found); |
| 2090 | if (!lockheld) |
| 2091 | LWLockRelease(ScratchPartitionLock); |
| 2092 | } |
| 2093 | |
| 2094 | /* |
| 2095 | * Check whether the list of related predicate locks is empty for a |
| 2096 | * predicate lock target, and remove the target if it is. |
| 2097 | */ |
| 2098 | static void |
| 2099 | RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash) |
| 2100 | { |
| 2101 | PREDICATELOCKTARGET *rmtarget PG_USED_FOR_ASSERTS_ONLY; |
| 2102 | |
| 2103 | Assert(LWLockHeldByMe(SerializablePredicateLockListLock)); |
| 2104 | |
| 2105 | /* Can't remove it until no locks at this target. */ |
| 2106 | if (!SHMQueueEmpty(&target->predicateLocks)) |
| 2107 | return; |
| 2108 | |
| 2109 | /* Actually remove the target. */ |
| 2110 | rmtarget = hash_search_with_hash_value(PredicateLockTargetHash, |
| 2111 | &target->tag, |
| 2112 | targettaghash, |
| 2113 | HASH_REMOVE, NULL); |
| 2114 | Assert(rmtarget == target); |
| 2115 | } |
| 2116 | |
| 2117 | /* |
| 2118 | * Delete child target locks owned by this process. |
| 2119 | * This implementation is assuming that the usage of each target tag field |
| 2120 | * is uniform. No need to make this hard if we don't have to. |
| 2121 | * |
| 2122 | * We acquire an LWLock in the case of parallel mode, because worker |
| 2123 | * backends have access to the leader's SERIALIZABLEXACT. Otherwise, |
| 2124 | * we aren't acquiring LWLocks for the predicate lock or lock |
| 2125 | * target structures associated with this transaction unless we're going |
| 2126 | * to modify them, because no other process is permitted to modify our |
| 2127 | * locks. |
| 2128 | */ |
| 2129 | static void |
| 2130 | DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag) |
| 2131 | { |
| 2132 | SERIALIZABLEXACT *sxact; |
| 2133 | PREDICATELOCK *predlock; |
| 2134 | |
| 2135 | LWLockAcquire(SerializablePredicateLockListLock, LW_SHARED); |
| 2136 | sxact = MySerializableXact; |
| 2137 | if (IsInParallelMode()) |
| 2138 | LWLockAcquire(&sxact->predicateLockListLock, LW_EXCLUSIVE); |
| 2139 | predlock = (PREDICATELOCK *) |
| 2140 | SHMQueueNext(&(sxact->predicateLocks), |
| 2141 | &(sxact->predicateLocks), |
| 2142 | offsetof(PREDICATELOCK, xactLink)); |
| 2143 | while (predlock) |
| 2144 | { |
| 2145 | SHM_QUEUE *predlocksxactlink; |
| 2146 | PREDICATELOCK *nextpredlock; |
| 2147 | PREDICATELOCKTAG oldlocktag; |
| 2148 | PREDICATELOCKTARGET *oldtarget; |
| 2149 | PREDICATELOCKTARGETTAG oldtargettag; |
| 2150 | |
| 2151 | predlocksxactlink = &(predlock->xactLink); |
| 2152 | nextpredlock = (PREDICATELOCK *) |
| 2153 | SHMQueueNext(&(sxact->predicateLocks), |
| 2154 | predlocksxactlink, |
| 2155 | offsetof(PREDICATELOCK, xactLink)); |
| 2156 | |
| 2157 | oldlocktag = predlock->tag; |
| 2158 | Assert(oldlocktag.myXact == sxact); |
| 2159 | oldtarget = oldlocktag.myTarget; |
| 2160 | oldtargettag = oldtarget->tag; |
| 2161 | |
| 2162 | if (TargetTagIsCoveredBy(oldtargettag, *newtargettag)) |
| 2163 | { |
| 2164 | uint32 oldtargettaghash; |
| 2165 | LWLock *partitionLock; |
| 2166 | PREDICATELOCK *rmpredlock PG_USED_FOR_ASSERTS_ONLY; |
| 2167 | |
| 2168 | oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag); |
| 2169 | partitionLock = PredicateLockHashPartitionLock(oldtargettaghash); |
| 2170 | |
| 2171 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 2172 | |
| 2173 | SHMQueueDelete(predlocksxactlink); |
| 2174 | SHMQueueDelete(&(predlock->targetLink)); |
| 2175 | rmpredlock = hash_search_with_hash_value |
| 2176 | (PredicateLockHash, |
| 2177 | &oldlocktag, |
| 2178 | PredicateLockHashCodeFromTargetHashCode(&oldlocktag, |
| 2179 | oldtargettaghash), |
| 2180 | HASH_REMOVE, NULL); |
| 2181 | Assert(rmpredlock == predlock); |
| 2182 | |
| 2183 | RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash); |
| 2184 | |
| 2185 | LWLockRelease(partitionLock); |
| 2186 | |
| 2187 | DecrementParentLocks(&oldtargettag); |
| 2188 | } |
| 2189 | |
| 2190 | predlock = nextpredlock; |
| 2191 | } |
| 2192 | if (IsInParallelMode()) |
| 2193 | LWLockRelease(&sxact->predicateLockListLock); |
| 2194 | LWLockRelease(SerializablePredicateLockListLock); |
| 2195 | } |
| 2196 | |
| 2197 | /* |
| 2198 | * Returns the promotion limit for a given predicate lock target. This is the |
| 2199 | * max number of descendant locks allowed before promoting to the specified |
| 2200 | * tag. Note that the limit includes non-direct descendants (e.g., both tuples |
| 2201 | * and pages for a relation lock). |
| 2202 | * |
| 2203 | * Currently the default limit is 2 for a page lock, and half of the value of |
| 2204 | * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior |
| 2205 | * of earlier releases when upgrading. |
| 2206 | * |
| 2207 | * TODO SSI: We should probably add additional GUCs to allow a maximum ratio |
| 2208 | * of page and tuple locks based on the pages in a relation, and the maximum |
| 2209 | * ratio of tuple locks to tuples in a page. This would provide more |
| 2210 | * generally "balanced" allocation of locks to where they are most useful, |
| 2211 | * while still allowing the absolute numbers to prevent one relation from |
| 2212 | * tying up all predicate lock resources. |
| 2213 | */ |
| 2214 | static int |
| 2215 | MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag) |
| 2216 | { |
| 2217 | switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag)) |
| 2218 | { |
| 2219 | case PREDLOCKTAG_RELATION: |
| 2220 | return max_predicate_locks_per_relation < 0 |
| 2221 | ? (max_predicate_locks_per_xact |
| 2222 | / (-max_predicate_locks_per_relation)) - 1 |
| 2223 | : max_predicate_locks_per_relation; |
| 2224 | |
| 2225 | case PREDLOCKTAG_PAGE: |
| 2226 | return max_predicate_locks_per_page; |
| 2227 | |
| 2228 | case PREDLOCKTAG_TUPLE: |
| 2229 | |
| 2230 | /* |
| 2231 | * not reachable: nothing is finer-granularity than a tuple, so we |
| 2232 | * should never try to promote to it. |
| 2233 | */ |
| 2234 | Assert(false); |
| 2235 | return 0; |
| 2236 | } |
| 2237 | |
| 2238 | /* not reachable */ |
| 2239 | Assert(false); |
| 2240 | return 0; |
| 2241 | } |
| 2242 | |
| 2243 | /* |
| 2244 | * For all ancestors of a newly-acquired predicate lock, increment |
| 2245 | * their child count in the parent hash table. If any of them have |
| 2246 | * more descendants than their promotion threshold, acquire the |
| 2247 | * coarsest such lock. |
| 2248 | * |
| 2249 | * Returns true if a parent lock was acquired and false otherwise. |
| 2250 | */ |
| 2251 | static bool |
| 2252 | CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag) |
| 2253 | { |
| 2254 | PREDICATELOCKTARGETTAG targettag, |
| 2255 | nexttag, |
| 2256 | promotiontag; |
| 2257 | LOCALPREDICATELOCK *parentlock; |
| 2258 | bool found, |
| 2259 | promote; |
| 2260 | |
| 2261 | promote = false; |
| 2262 | |
| 2263 | targettag = *reqtag; |
| 2264 | |
| 2265 | /* check parents iteratively */ |
| 2266 | while (GetParentPredicateLockTag(&targettag, &nexttag)) |
| 2267 | { |
| 2268 | targettag = nexttag; |
| 2269 | parentlock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash, |
| 2270 | &targettag, |
| 2271 | HASH_ENTER, |
| 2272 | &found); |
| 2273 | if (!found) |
| 2274 | { |
| 2275 | parentlock->held = false; |
| 2276 | parentlock->childLocks = 1; |
| 2277 | } |
| 2278 | else |
| 2279 | parentlock->childLocks++; |
| 2280 | |
| 2281 | if (parentlock->childLocks > |
| 2282 | MaxPredicateChildLocks(&targettag)) |
| 2283 | { |
| 2284 | /* |
| 2285 | * We should promote to this parent lock. Continue to check its |
| 2286 | * ancestors, however, both to get their child counts right and to |
| 2287 | * check whether we should just go ahead and promote to one of |
| 2288 | * them. |
| 2289 | */ |
| 2290 | promotiontag = targettag; |
| 2291 | promote = true; |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | if (promote) |
| 2296 | { |
| 2297 | /* acquire coarsest ancestor eligible for promotion */ |
| 2298 | PredicateLockAcquire(&promotiontag); |
| 2299 | return true; |
| 2300 | } |
| 2301 | else |
| 2302 | return false; |
| 2303 | } |
| 2304 | |
| 2305 | /* |
| 2306 | * When releasing a lock, decrement the child count on all ancestor |
| 2307 | * locks. |
| 2308 | * |
| 2309 | * This is called only when releasing a lock via |
| 2310 | * DeleteChildTargetLocks (i.e. when a lock becomes redundant because |
| 2311 | * we've acquired its parent, possibly due to promotion) or when a new |
| 2312 | * MVCC write lock makes the predicate lock unnecessary. There's no |
| 2313 | * point in calling it when locks are released at transaction end, as |
| 2314 | * this information is no longer needed. |
| 2315 | */ |
| 2316 | static void |
| 2317 | DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag) |
| 2318 | { |
| 2319 | PREDICATELOCKTARGETTAG parenttag, |
| 2320 | nexttag; |
| 2321 | |
| 2322 | parenttag = *targettag; |
| 2323 | |
| 2324 | while (GetParentPredicateLockTag(&parenttag, &nexttag)) |
| 2325 | { |
| 2326 | uint32 targettaghash; |
| 2327 | LOCALPREDICATELOCK *parentlock, |
| 2328 | *rmlock PG_USED_FOR_ASSERTS_ONLY; |
| 2329 | |
| 2330 | parenttag = nexttag; |
| 2331 | targettaghash = PredicateLockTargetTagHashCode(&parenttag); |
| 2332 | parentlock = (LOCALPREDICATELOCK *) |
| 2333 | hash_search_with_hash_value(LocalPredicateLockHash, |
| 2334 | &parenttag, targettaghash, |
| 2335 | HASH_FIND, NULL); |
| 2336 | |
| 2337 | /* |
| 2338 | * There's a small chance the parent lock doesn't exist in the lock |
| 2339 | * table. This can happen if we prematurely removed it because an |
| 2340 | * index split caused the child refcount to be off. |
| 2341 | */ |
| 2342 | if (parentlock == NULL) |
| 2343 | continue; |
| 2344 | |
| 2345 | parentlock->childLocks--; |
| 2346 | |
| 2347 | /* |
| 2348 | * Under similar circumstances the parent lock's refcount might be |
| 2349 | * zero. This only happens if we're holding that lock (otherwise we |
| 2350 | * would have removed the entry). |
| 2351 | */ |
| 2352 | if (parentlock->childLocks < 0) |
| 2353 | { |
| 2354 | Assert(parentlock->held); |
| 2355 | parentlock->childLocks = 0; |
| 2356 | } |
| 2357 | |
| 2358 | if ((parentlock->childLocks == 0) && (!parentlock->held)) |
| 2359 | { |
| 2360 | rmlock = (LOCALPREDICATELOCK *) |
| 2361 | hash_search_with_hash_value(LocalPredicateLockHash, |
| 2362 | &parenttag, targettaghash, |
| 2363 | HASH_REMOVE, NULL); |
| 2364 | Assert(rmlock == parentlock); |
| 2365 | } |
| 2366 | } |
| 2367 | } |
| 2368 | |
| 2369 | /* |
| 2370 | * Indicate that a predicate lock on the given target is held by the |
| 2371 | * specified transaction. Has no effect if the lock is already held. |
| 2372 | * |
| 2373 | * This updates the lock table and the sxact's lock list, and creates |
| 2374 | * the lock target if necessary, but does *not* do anything related to |
| 2375 | * granularity promotion or the local lock table. See |
| 2376 | * PredicateLockAcquire for that. |
| 2377 | */ |
| 2378 | static void |
| 2379 | CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag, |
| 2380 | uint32 targettaghash, |
| 2381 | SERIALIZABLEXACT *sxact) |
| 2382 | { |
| 2383 | PREDICATELOCKTARGET *target; |
| 2384 | PREDICATELOCKTAG locktag; |
| 2385 | PREDICATELOCK *lock; |
| 2386 | LWLock *partitionLock; |
| 2387 | bool found; |
| 2388 | |
| 2389 | partitionLock = PredicateLockHashPartitionLock(targettaghash); |
| 2390 | |
| 2391 | LWLockAcquire(SerializablePredicateLockListLock, LW_SHARED); |
| 2392 | if (IsInParallelMode()) |
| 2393 | LWLockAcquire(&sxact->predicateLockListLock, LW_EXCLUSIVE); |
| 2394 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 2395 | |
| 2396 | /* Make sure that the target is represented. */ |
| 2397 | target = (PREDICATELOCKTARGET *) |
| 2398 | hash_search_with_hash_value(PredicateLockTargetHash, |
| 2399 | targettag, targettaghash, |
| 2400 | HASH_ENTER_NULL, &found); |
| 2401 | if (!target) |
| 2402 | ereport(ERROR, |
| 2403 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 2404 | errmsg("out of shared memory" ), |
| 2405 | errhint("You might need to increase max_pred_locks_per_transaction." ))); |
| 2406 | if (!found) |
| 2407 | SHMQueueInit(&(target->predicateLocks)); |
| 2408 | |
| 2409 | /* We've got the sxact and target, make sure they're joined. */ |
| 2410 | locktag.myTarget = target; |
| 2411 | locktag.myXact = sxact; |
| 2412 | lock = (PREDICATELOCK *) |
| 2413 | hash_search_with_hash_value(PredicateLockHash, &locktag, |
| 2414 | PredicateLockHashCodeFromTargetHashCode(&locktag, targettaghash), |
| 2415 | HASH_ENTER_NULL, &found); |
| 2416 | if (!lock) |
| 2417 | ereport(ERROR, |
| 2418 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 2419 | errmsg("out of shared memory" ), |
| 2420 | errhint("You might need to increase max_pred_locks_per_transaction." ))); |
| 2421 | |
| 2422 | if (!found) |
| 2423 | { |
| 2424 | SHMQueueInsertBefore(&(target->predicateLocks), &(lock->targetLink)); |
| 2425 | SHMQueueInsertBefore(&(sxact->predicateLocks), |
| 2426 | &(lock->xactLink)); |
| 2427 | lock->commitSeqNo = InvalidSerCommitSeqNo; |
| 2428 | } |
| 2429 | |
| 2430 | LWLockRelease(partitionLock); |
| 2431 | if (IsInParallelMode()) |
| 2432 | LWLockRelease(&sxact->predicateLockListLock); |
| 2433 | LWLockRelease(SerializablePredicateLockListLock); |
| 2434 | } |
| 2435 | |
| 2436 | /* |
| 2437 | * Acquire a predicate lock on the specified target for the current |
| 2438 | * connection if not already held. This updates the local lock table |
| 2439 | * and uses it to implement granularity promotion. It will consolidate |
| 2440 | * multiple locks into a coarser lock if warranted, and will release |
| 2441 | * any finer-grained locks covered by the new one. |
| 2442 | */ |
| 2443 | static void |
| 2444 | PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag) |
| 2445 | { |
| 2446 | uint32 targettaghash; |
| 2447 | bool found; |
| 2448 | LOCALPREDICATELOCK *locallock; |
| 2449 | |
| 2450 | /* Do we have the lock already, or a covering lock? */ |
| 2451 | if (PredicateLockExists(targettag)) |
| 2452 | return; |
| 2453 | |
| 2454 | if (CoarserLockCovers(targettag)) |
| 2455 | return; |
| 2456 | |
| 2457 | /* the same hash and LW lock apply to the lock target and the local lock. */ |
| 2458 | targettaghash = PredicateLockTargetTagHashCode(targettag); |
| 2459 | |
| 2460 | /* Acquire lock in local table */ |
| 2461 | locallock = (LOCALPREDICATELOCK *) |
| 2462 | hash_search_with_hash_value(LocalPredicateLockHash, |
| 2463 | targettag, targettaghash, |
| 2464 | HASH_ENTER, &found); |
| 2465 | locallock->held = true; |
| 2466 | if (!found) |
| 2467 | locallock->childLocks = 0; |
| 2468 | |
| 2469 | /* Actually create the lock */ |
| 2470 | CreatePredicateLock(targettag, targettaghash, MySerializableXact); |
| 2471 | |
| 2472 | /* |
| 2473 | * Lock has been acquired. Check whether it should be promoted to a |
| 2474 | * coarser granularity, or whether there are finer-granularity locks to |
| 2475 | * clean up. |
| 2476 | */ |
| 2477 | if (CheckAndPromotePredicateLockRequest(targettag)) |
| 2478 | { |
| 2479 | /* |
| 2480 | * Lock request was promoted to a coarser-granularity lock, and that |
| 2481 | * lock was acquired. It will delete this lock and any of its |
| 2482 | * children, so we're done. |
| 2483 | */ |
| 2484 | } |
| 2485 | else |
| 2486 | { |
| 2487 | /* Clean up any finer-granularity locks */ |
| 2488 | if (GET_PREDICATELOCKTARGETTAG_TYPE(*targettag) != PREDLOCKTAG_TUPLE) |
| 2489 | DeleteChildTargetLocks(targettag); |
| 2490 | } |
| 2491 | } |
| 2492 | |
| 2493 | |
| 2494 | /* |
| 2495 | * PredicateLockRelation |
| 2496 | * |
| 2497 | * Gets a predicate lock at the relation level. |
| 2498 | * Skip if not in full serializable transaction isolation level. |
| 2499 | * Skip if this is a temporary table. |
| 2500 | * Clear any finer-grained predicate locks this session has on the relation. |
| 2501 | */ |
| 2502 | void |
| 2503 | PredicateLockRelation(Relation relation, Snapshot snapshot) |
| 2504 | { |
| 2505 | PREDICATELOCKTARGETTAG tag; |
| 2506 | |
| 2507 | if (!SerializationNeededForRead(relation, snapshot)) |
| 2508 | return; |
| 2509 | |
| 2510 | SET_PREDICATELOCKTARGETTAG_RELATION(tag, |
| 2511 | relation->rd_node.dbNode, |
| 2512 | relation->rd_id); |
| 2513 | PredicateLockAcquire(&tag); |
| 2514 | } |
| 2515 | |
| 2516 | /* |
| 2517 | * PredicateLockPage |
| 2518 | * |
| 2519 | * Gets a predicate lock at the page level. |
| 2520 | * Skip if not in full serializable transaction isolation level. |
| 2521 | * Skip if this is a temporary table. |
| 2522 | * Skip if a coarser predicate lock already covers this page. |
| 2523 | * Clear any finer-grained predicate locks this session has on the relation. |
| 2524 | */ |
| 2525 | void |
| 2526 | PredicateLockPage(Relation relation, BlockNumber blkno, Snapshot snapshot) |
| 2527 | { |
| 2528 | PREDICATELOCKTARGETTAG tag; |
| 2529 | |
| 2530 | if (!SerializationNeededForRead(relation, snapshot)) |
| 2531 | return; |
| 2532 | |
| 2533 | SET_PREDICATELOCKTARGETTAG_PAGE(tag, |
| 2534 | relation->rd_node.dbNode, |
| 2535 | relation->rd_id, |
| 2536 | blkno); |
| 2537 | PredicateLockAcquire(&tag); |
| 2538 | } |
| 2539 | |
| 2540 | /* |
| 2541 | * PredicateLockTuple |
| 2542 | * |
| 2543 | * Gets a predicate lock at the tuple level. |
| 2544 | * Skip if not in full serializable transaction isolation level. |
| 2545 | * Skip if this is a temporary table. |
| 2546 | */ |
| 2547 | void |
| 2548 | PredicateLockTuple(Relation relation, HeapTuple tuple, Snapshot snapshot) |
| 2549 | { |
| 2550 | PREDICATELOCKTARGETTAG tag; |
| 2551 | ItemPointer tid; |
| 2552 | TransactionId targetxmin; |
| 2553 | |
| 2554 | if (!SerializationNeededForRead(relation, snapshot)) |
| 2555 | return; |
| 2556 | |
| 2557 | /* |
| 2558 | * If it's a heap tuple, return if this xact wrote it. |
| 2559 | */ |
| 2560 | if (relation->rd_index == NULL) |
| 2561 | { |
| 2562 | TransactionId myxid; |
| 2563 | |
| 2564 | targetxmin = HeapTupleHeaderGetXmin(tuple->t_data); |
| 2565 | |
| 2566 | myxid = GetTopTransactionIdIfAny(); |
| 2567 | if (TransactionIdIsValid(myxid)) |
| 2568 | { |
| 2569 | if (TransactionIdFollowsOrEquals(targetxmin, TransactionXmin)) |
| 2570 | { |
| 2571 | TransactionId xid = SubTransGetTopmostTransaction(targetxmin); |
| 2572 | |
| 2573 | if (TransactionIdEquals(xid, myxid)) |
| 2574 | { |
| 2575 | /* We wrote it; we already have a write lock. */ |
| 2576 | return; |
| 2577 | } |
| 2578 | } |
| 2579 | } |
| 2580 | } |
| 2581 | |
| 2582 | /* |
| 2583 | * Do quick-but-not-definitive test for a relation lock first. This will |
| 2584 | * never cause a return when the relation is *not* locked, but will |
| 2585 | * occasionally let the check continue when there really *is* a relation |
| 2586 | * level lock. |
| 2587 | */ |
| 2588 | SET_PREDICATELOCKTARGETTAG_RELATION(tag, |
| 2589 | relation->rd_node.dbNode, |
| 2590 | relation->rd_id); |
| 2591 | if (PredicateLockExists(&tag)) |
| 2592 | return; |
| 2593 | |
| 2594 | tid = &(tuple->t_self); |
| 2595 | SET_PREDICATELOCKTARGETTAG_TUPLE(tag, |
| 2596 | relation->rd_node.dbNode, |
| 2597 | relation->rd_id, |
| 2598 | ItemPointerGetBlockNumber(tid), |
| 2599 | ItemPointerGetOffsetNumber(tid)); |
| 2600 | PredicateLockAcquire(&tag); |
| 2601 | } |
| 2602 | |
| 2603 | |
| 2604 | /* |
| 2605 | * DeleteLockTarget |
| 2606 | * |
| 2607 | * Remove a predicate lock target along with any locks held for it. |
| 2608 | * |
| 2609 | * Caller must hold SerializablePredicateLockListLock and the |
| 2610 | * appropriate hash partition lock for the target. |
| 2611 | */ |
| 2612 | static void |
| 2613 | DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash) |
| 2614 | { |
| 2615 | PREDICATELOCK *predlock; |
| 2616 | SHM_QUEUE *predlocktargetlink; |
| 2617 | PREDICATELOCK *nextpredlock; |
| 2618 | bool found; |
| 2619 | |
| 2620 | Assert(LWLockHeldByMeInMode(SerializablePredicateLockListLock, |
| 2621 | LW_EXCLUSIVE)); |
| 2622 | Assert(LWLockHeldByMe(PredicateLockHashPartitionLock(targettaghash))); |
| 2623 | |
| 2624 | predlock = (PREDICATELOCK *) |
| 2625 | SHMQueueNext(&(target->predicateLocks), |
| 2626 | &(target->predicateLocks), |
| 2627 | offsetof(PREDICATELOCK, targetLink)); |
| 2628 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 2629 | while (predlock) |
| 2630 | { |
| 2631 | predlocktargetlink = &(predlock->targetLink); |
| 2632 | nextpredlock = (PREDICATELOCK *) |
| 2633 | SHMQueueNext(&(target->predicateLocks), |
| 2634 | predlocktargetlink, |
| 2635 | offsetof(PREDICATELOCK, targetLink)); |
| 2636 | |
| 2637 | SHMQueueDelete(&(predlock->xactLink)); |
| 2638 | SHMQueueDelete(&(predlock->targetLink)); |
| 2639 | |
| 2640 | hash_search_with_hash_value |
| 2641 | (PredicateLockHash, |
| 2642 | &predlock->tag, |
| 2643 | PredicateLockHashCodeFromTargetHashCode(&predlock->tag, |
| 2644 | targettaghash), |
| 2645 | HASH_REMOVE, &found); |
| 2646 | Assert(found); |
| 2647 | |
| 2648 | predlock = nextpredlock; |
| 2649 | } |
| 2650 | LWLockRelease(SerializableXactHashLock); |
| 2651 | |
| 2652 | /* Remove the target itself, if possible. */ |
| 2653 | RemoveTargetIfNoLongerUsed(target, targettaghash); |
| 2654 | } |
| 2655 | |
| 2656 | |
| 2657 | /* |
| 2658 | * TransferPredicateLocksToNewTarget |
| 2659 | * |
| 2660 | * Move or copy all the predicate locks for a lock target, for use by |
| 2661 | * index page splits/combines and other things that create or replace |
| 2662 | * lock targets. If 'removeOld' is true, the old locks and the target |
| 2663 | * will be removed. |
| 2664 | * |
| 2665 | * Returns true on success, or false if we ran out of shared memory to |
| 2666 | * allocate the new target or locks. Guaranteed to always succeed if |
| 2667 | * removeOld is set (by using the scratch entry in PredicateLockTargetHash |
| 2668 | * for scratch space). |
| 2669 | * |
| 2670 | * Warning: the "removeOld" option should be used only with care, |
| 2671 | * because this function does not (indeed, can not) update other |
| 2672 | * backends' LocalPredicateLockHash. If we are only adding new |
| 2673 | * entries, this is not a problem: the local lock table is used only |
| 2674 | * as a hint, so missing entries for locks that are held are |
| 2675 | * OK. Having entries for locks that are no longer held, as can happen |
| 2676 | * when using "removeOld", is not in general OK. We can only use it |
| 2677 | * safely when replacing a lock with a coarser-granularity lock that |
| 2678 | * covers it, or if we are absolutely certain that no one will need to |
| 2679 | * refer to that lock in the future. |
| 2680 | * |
| 2681 | * Caller must hold SerializablePredicateLockListLock exclusively. |
| 2682 | */ |
| 2683 | static bool |
| 2684 | TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag, |
| 2685 | PREDICATELOCKTARGETTAG newtargettag, |
| 2686 | bool removeOld) |
| 2687 | { |
| 2688 | uint32 oldtargettaghash; |
| 2689 | LWLock *oldpartitionLock; |
| 2690 | PREDICATELOCKTARGET *oldtarget; |
| 2691 | uint32 newtargettaghash; |
| 2692 | LWLock *newpartitionLock; |
| 2693 | bool found; |
| 2694 | bool outOfShmem = false; |
| 2695 | |
| 2696 | Assert(LWLockHeldByMeInMode(SerializablePredicateLockListLock, |
| 2697 | LW_EXCLUSIVE)); |
| 2698 | |
| 2699 | oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag); |
| 2700 | newtargettaghash = PredicateLockTargetTagHashCode(&newtargettag); |
| 2701 | oldpartitionLock = PredicateLockHashPartitionLock(oldtargettaghash); |
| 2702 | newpartitionLock = PredicateLockHashPartitionLock(newtargettaghash); |
| 2703 | |
| 2704 | if (removeOld) |
| 2705 | { |
| 2706 | /* |
| 2707 | * Remove the dummy entry to give us scratch space, so we know we'll |
| 2708 | * be able to create the new lock target. |
| 2709 | */ |
| 2710 | RemoveScratchTarget(false); |
| 2711 | } |
| 2712 | |
| 2713 | /* |
| 2714 | * We must get the partition locks in ascending sequence to avoid |
| 2715 | * deadlocks. If old and new partitions are the same, we must request the |
| 2716 | * lock only once. |
| 2717 | */ |
| 2718 | if (oldpartitionLock < newpartitionLock) |
| 2719 | { |
| 2720 | LWLockAcquire(oldpartitionLock, |
| 2721 | (removeOld ? LW_EXCLUSIVE : LW_SHARED)); |
| 2722 | LWLockAcquire(newpartitionLock, LW_EXCLUSIVE); |
| 2723 | } |
| 2724 | else if (oldpartitionLock > newpartitionLock) |
| 2725 | { |
| 2726 | LWLockAcquire(newpartitionLock, LW_EXCLUSIVE); |
| 2727 | LWLockAcquire(oldpartitionLock, |
| 2728 | (removeOld ? LW_EXCLUSIVE : LW_SHARED)); |
| 2729 | } |
| 2730 | else |
| 2731 | LWLockAcquire(newpartitionLock, LW_EXCLUSIVE); |
| 2732 | |
| 2733 | /* |
| 2734 | * Look for the old target. If not found, that's OK; no predicate locks |
| 2735 | * are affected, so we can just clean up and return. If it does exist, |
| 2736 | * walk its list of predicate locks and move or copy them to the new |
| 2737 | * target. |
| 2738 | */ |
| 2739 | oldtarget = hash_search_with_hash_value(PredicateLockTargetHash, |
| 2740 | &oldtargettag, |
| 2741 | oldtargettaghash, |
| 2742 | HASH_FIND, NULL); |
| 2743 | |
| 2744 | if (oldtarget) |
| 2745 | { |
| 2746 | PREDICATELOCKTARGET *newtarget; |
| 2747 | PREDICATELOCK *oldpredlock; |
| 2748 | PREDICATELOCKTAG newpredlocktag; |
| 2749 | |
| 2750 | newtarget = hash_search_with_hash_value(PredicateLockTargetHash, |
| 2751 | &newtargettag, |
| 2752 | newtargettaghash, |
| 2753 | HASH_ENTER_NULL, &found); |
| 2754 | |
| 2755 | if (!newtarget) |
| 2756 | { |
| 2757 | /* Failed to allocate due to insufficient shmem */ |
| 2758 | outOfShmem = true; |
| 2759 | goto exit; |
| 2760 | } |
| 2761 | |
| 2762 | /* If we created a new entry, initialize it */ |
| 2763 | if (!found) |
| 2764 | SHMQueueInit(&(newtarget->predicateLocks)); |
| 2765 | |
| 2766 | newpredlocktag.myTarget = newtarget; |
| 2767 | |
| 2768 | /* |
| 2769 | * Loop through all the locks on the old target, replacing them with |
| 2770 | * locks on the new target. |
| 2771 | */ |
| 2772 | oldpredlock = (PREDICATELOCK *) |
| 2773 | SHMQueueNext(&(oldtarget->predicateLocks), |
| 2774 | &(oldtarget->predicateLocks), |
| 2775 | offsetof(PREDICATELOCK, targetLink)); |
| 2776 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 2777 | while (oldpredlock) |
| 2778 | { |
| 2779 | SHM_QUEUE *predlocktargetlink; |
| 2780 | PREDICATELOCK *nextpredlock; |
| 2781 | PREDICATELOCK *newpredlock; |
| 2782 | SerCommitSeqNo oldCommitSeqNo = oldpredlock->commitSeqNo; |
| 2783 | |
| 2784 | predlocktargetlink = &(oldpredlock->targetLink); |
| 2785 | nextpredlock = (PREDICATELOCK *) |
| 2786 | SHMQueueNext(&(oldtarget->predicateLocks), |
| 2787 | predlocktargetlink, |
| 2788 | offsetof(PREDICATELOCK, targetLink)); |
| 2789 | newpredlocktag.myXact = oldpredlock->tag.myXact; |
| 2790 | |
| 2791 | if (removeOld) |
| 2792 | { |
| 2793 | SHMQueueDelete(&(oldpredlock->xactLink)); |
| 2794 | SHMQueueDelete(&(oldpredlock->targetLink)); |
| 2795 | |
| 2796 | hash_search_with_hash_value |
| 2797 | (PredicateLockHash, |
| 2798 | &oldpredlock->tag, |
| 2799 | PredicateLockHashCodeFromTargetHashCode(&oldpredlock->tag, |
| 2800 | oldtargettaghash), |
| 2801 | HASH_REMOVE, &found); |
| 2802 | Assert(found); |
| 2803 | } |
| 2804 | |
| 2805 | newpredlock = (PREDICATELOCK *) |
| 2806 | hash_search_with_hash_value(PredicateLockHash, |
| 2807 | &newpredlocktag, |
| 2808 | PredicateLockHashCodeFromTargetHashCode(&newpredlocktag, |
| 2809 | newtargettaghash), |
| 2810 | HASH_ENTER_NULL, |
| 2811 | &found); |
| 2812 | if (!newpredlock) |
| 2813 | { |
| 2814 | /* Out of shared memory. Undo what we've done so far. */ |
| 2815 | LWLockRelease(SerializableXactHashLock); |
| 2816 | DeleteLockTarget(newtarget, newtargettaghash); |
| 2817 | outOfShmem = true; |
| 2818 | goto exit; |
| 2819 | } |
| 2820 | if (!found) |
| 2821 | { |
| 2822 | SHMQueueInsertBefore(&(newtarget->predicateLocks), |
| 2823 | &(newpredlock->targetLink)); |
| 2824 | SHMQueueInsertBefore(&(newpredlocktag.myXact->predicateLocks), |
| 2825 | &(newpredlock->xactLink)); |
| 2826 | newpredlock->commitSeqNo = oldCommitSeqNo; |
| 2827 | } |
| 2828 | else |
| 2829 | { |
| 2830 | if (newpredlock->commitSeqNo < oldCommitSeqNo) |
| 2831 | newpredlock->commitSeqNo = oldCommitSeqNo; |
| 2832 | } |
| 2833 | |
| 2834 | Assert(newpredlock->commitSeqNo != 0); |
| 2835 | Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo) |
| 2836 | || (newpredlock->tag.myXact == OldCommittedSxact)); |
| 2837 | |
| 2838 | oldpredlock = nextpredlock; |
| 2839 | } |
| 2840 | LWLockRelease(SerializableXactHashLock); |
| 2841 | |
| 2842 | if (removeOld) |
| 2843 | { |
| 2844 | Assert(SHMQueueEmpty(&oldtarget->predicateLocks)); |
| 2845 | RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash); |
| 2846 | } |
| 2847 | } |
| 2848 | |
| 2849 | |
| 2850 | exit: |
| 2851 | /* Release partition locks in reverse order of acquisition. */ |
| 2852 | if (oldpartitionLock < newpartitionLock) |
| 2853 | { |
| 2854 | LWLockRelease(newpartitionLock); |
| 2855 | LWLockRelease(oldpartitionLock); |
| 2856 | } |
| 2857 | else if (oldpartitionLock > newpartitionLock) |
| 2858 | { |
| 2859 | LWLockRelease(oldpartitionLock); |
| 2860 | LWLockRelease(newpartitionLock); |
| 2861 | } |
| 2862 | else |
| 2863 | LWLockRelease(newpartitionLock); |
| 2864 | |
| 2865 | if (removeOld) |
| 2866 | { |
| 2867 | /* We shouldn't run out of memory if we're moving locks */ |
| 2868 | Assert(!outOfShmem); |
| 2869 | |
| 2870 | /* Put the scratch entry back */ |
| 2871 | RestoreScratchTarget(false); |
| 2872 | } |
| 2873 | |
| 2874 | return !outOfShmem; |
| 2875 | } |
| 2876 | |
| 2877 | /* |
| 2878 | * Drop all predicate locks of any granularity from the specified relation, |
| 2879 | * which can be a heap relation or an index relation. If 'transfer' is true, |
| 2880 | * acquire a relation lock on the heap for any transactions with any lock(s) |
| 2881 | * on the specified relation. |
| 2882 | * |
| 2883 | * This requires grabbing a lot of LW locks and scanning the entire lock |
| 2884 | * target table for matches. That makes this more expensive than most |
| 2885 | * predicate lock management functions, but it will only be called for DDL |
| 2886 | * type commands that are expensive anyway, and there are fast returns when |
| 2887 | * no serializable transactions are active or the relation is temporary. |
| 2888 | * |
| 2889 | * We don't use the TransferPredicateLocksToNewTarget function because it |
| 2890 | * acquires its own locks on the partitions of the two targets involved, |
| 2891 | * and we'll already be holding all partition locks. |
| 2892 | * |
| 2893 | * We can't throw an error from here, because the call could be from a |
| 2894 | * transaction which is not serializable. |
| 2895 | * |
| 2896 | * NOTE: This is currently only called with transfer set to true, but that may |
| 2897 | * change. If we decide to clean up the locks from a table on commit of a |
| 2898 | * transaction which executed DROP TABLE, the false condition will be useful. |
| 2899 | */ |
| 2900 | static void |
| 2901 | DropAllPredicateLocksFromTable(Relation relation, bool transfer) |
| 2902 | { |
| 2903 | HASH_SEQ_STATUS seqstat; |
| 2904 | PREDICATELOCKTARGET *oldtarget; |
| 2905 | PREDICATELOCKTARGET *heaptarget; |
| 2906 | Oid dbId; |
| 2907 | Oid relId; |
| 2908 | Oid heapId; |
| 2909 | int i; |
| 2910 | bool isIndex; |
| 2911 | bool found; |
| 2912 | uint32 heaptargettaghash; |
| 2913 | |
| 2914 | /* |
| 2915 | * Bail out quickly if there are no serializable transactions running. |
| 2916 | * It's safe to check this without taking locks because the caller is |
| 2917 | * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which |
| 2918 | * would matter here can be acquired while that is held. |
| 2919 | */ |
| 2920 | if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)) |
| 2921 | return; |
| 2922 | |
| 2923 | if (!PredicateLockingNeededForRelation(relation)) |
| 2924 | return; |
| 2925 | |
| 2926 | dbId = relation->rd_node.dbNode; |
| 2927 | relId = relation->rd_id; |
| 2928 | if (relation->rd_index == NULL) |
| 2929 | { |
| 2930 | isIndex = false; |
| 2931 | heapId = relId; |
| 2932 | } |
| 2933 | else |
| 2934 | { |
| 2935 | isIndex = true; |
| 2936 | heapId = relation->rd_index->indrelid; |
| 2937 | } |
| 2938 | Assert(heapId != InvalidOid); |
| 2939 | Assert(transfer || !isIndex); /* index OID only makes sense with |
| 2940 | * transfer */ |
| 2941 | |
| 2942 | /* Retrieve first time needed, then keep. */ |
| 2943 | heaptargettaghash = 0; |
| 2944 | heaptarget = NULL; |
| 2945 | |
| 2946 | /* Acquire locks on all lock partitions */ |
| 2947 | LWLockAcquire(SerializablePredicateLockListLock, LW_EXCLUSIVE); |
| 2948 | for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++) |
| 2949 | LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_EXCLUSIVE); |
| 2950 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 2951 | |
| 2952 | /* |
| 2953 | * Remove the dummy entry to give us scratch space, so we know we'll be |
| 2954 | * able to create the new lock target. |
| 2955 | */ |
| 2956 | if (transfer) |
| 2957 | RemoveScratchTarget(true); |
| 2958 | |
| 2959 | /* Scan through target map */ |
| 2960 | hash_seq_init(&seqstat, PredicateLockTargetHash); |
| 2961 | |
| 2962 | while ((oldtarget = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat))) |
| 2963 | { |
| 2964 | PREDICATELOCK *oldpredlock; |
| 2965 | |
| 2966 | /* |
| 2967 | * Check whether this is a target which needs attention. |
| 2968 | */ |
| 2969 | if (GET_PREDICATELOCKTARGETTAG_RELATION(oldtarget->tag) != relId) |
| 2970 | continue; /* wrong relation id */ |
| 2971 | if (GET_PREDICATELOCKTARGETTAG_DB(oldtarget->tag) != dbId) |
| 2972 | continue; /* wrong database id */ |
| 2973 | if (transfer && !isIndex |
| 2974 | && GET_PREDICATELOCKTARGETTAG_TYPE(oldtarget->tag) == PREDLOCKTAG_RELATION) |
| 2975 | continue; /* already the right lock */ |
| 2976 | |
| 2977 | /* |
| 2978 | * If we made it here, we have work to do. We make sure the heap |
| 2979 | * relation lock exists, then we walk the list of predicate locks for |
| 2980 | * the old target we found, moving all locks to the heap relation lock |
| 2981 | * -- unless they already hold that. |
| 2982 | */ |
| 2983 | |
| 2984 | /* |
| 2985 | * First make sure we have the heap relation target. We only need to |
| 2986 | * do this once. |
| 2987 | */ |
| 2988 | if (transfer && heaptarget == NULL) |
| 2989 | { |
| 2990 | PREDICATELOCKTARGETTAG heaptargettag; |
| 2991 | |
| 2992 | SET_PREDICATELOCKTARGETTAG_RELATION(heaptargettag, dbId, heapId); |
| 2993 | heaptargettaghash = PredicateLockTargetTagHashCode(&heaptargettag); |
| 2994 | heaptarget = hash_search_with_hash_value(PredicateLockTargetHash, |
| 2995 | &heaptargettag, |
| 2996 | heaptargettaghash, |
| 2997 | HASH_ENTER, &found); |
| 2998 | if (!found) |
| 2999 | SHMQueueInit(&heaptarget->predicateLocks); |
| 3000 | } |
| 3001 | |
| 3002 | /* |
| 3003 | * Loop through all the locks on the old target, replacing them with |
| 3004 | * locks on the new target. |
| 3005 | */ |
| 3006 | oldpredlock = (PREDICATELOCK *) |
| 3007 | SHMQueueNext(&(oldtarget->predicateLocks), |
| 3008 | &(oldtarget->predicateLocks), |
| 3009 | offsetof(PREDICATELOCK, targetLink)); |
| 3010 | while (oldpredlock) |
| 3011 | { |
| 3012 | PREDICATELOCK *nextpredlock; |
| 3013 | PREDICATELOCK *newpredlock; |
| 3014 | SerCommitSeqNo oldCommitSeqNo; |
| 3015 | SERIALIZABLEXACT *oldXact; |
| 3016 | |
| 3017 | nextpredlock = (PREDICATELOCK *) |
| 3018 | SHMQueueNext(&(oldtarget->predicateLocks), |
| 3019 | &(oldpredlock->targetLink), |
| 3020 | offsetof(PREDICATELOCK, targetLink)); |
| 3021 | |
| 3022 | /* |
| 3023 | * Remove the old lock first. This avoids the chance of running |
| 3024 | * out of lock structure entries for the hash table. |
| 3025 | */ |
| 3026 | oldCommitSeqNo = oldpredlock->commitSeqNo; |
| 3027 | oldXact = oldpredlock->tag.myXact; |
| 3028 | |
| 3029 | SHMQueueDelete(&(oldpredlock->xactLink)); |
| 3030 | |
| 3031 | /* |
| 3032 | * No need for retail delete from oldtarget list, we're removing |
| 3033 | * the whole target anyway. |
| 3034 | */ |
| 3035 | hash_search(PredicateLockHash, |
| 3036 | &oldpredlock->tag, |
| 3037 | HASH_REMOVE, &found); |
| 3038 | Assert(found); |
| 3039 | |
| 3040 | if (transfer) |
| 3041 | { |
| 3042 | PREDICATELOCKTAG newpredlocktag; |
| 3043 | |
| 3044 | newpredlocktag.myTarget = heaptarget; |
| 3045 | newpredlocktag.myXact = oldXact; |
| 3046 | newpredlock = (PREDICATELOCK *) |
| 3047 | hash_search_with_hash_value(PredicateLockHash, |
| 3048 | &newpredlocktag, |
| 3049 | PredicateLockHashCodeFromTargetHashCode(&newpredlocktag, |
| 3050 | heaptargettaghash), |
| 3051 | HASH_ENTER, |
| 3052 | &found); |
| 3053 | if (!found) |
| 3054 | { |
| 3055 | SHMQueueInsertBefore(&(heaptarget->predicateLocks), |
| 3056 | &(newpredlock->targetLink)); |
| 3057 | SHMQueueInsertBefore(&(newpredlocktag.myXact->predicateLocks), |
| 3058 | &(newpredlock->xactLink)); |
| 3059 | newpredlock->commitSeqNo = oldCommitSeqNo; |
| 3060 | } |
| 3061 | else |
| 3062 | { |
| 3063 | if (newpredlock->commitSeqNo < oldCommitSeqNo) |
| 3064 | newpredlock->commitSeqNo = oldCommitSeqNo; |
| 3065 | } |
| 3066 | |
| 3067 | Assert(newpredlock->commitSeqNo != 0); |
| 3068 | Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo) |
| 3069 | || (newpredlock->tag.myXact == OldCommittedSxact)); |
| 3070 | } |
| 3071 | |
| 3072 | oldpredlock = nextpredlock; |
| 3073 | } |
| 3074 | |
| 3075 | hash_search(PredicateLockTargetHash, &oldtarget->tag, HASH_REMOVE, |
| 3076 | &found); |
| 3077 | Assert(found); |
| 3078 | } |
| 3079 | |
| 3080 | /* Put the scratch entry back */ |
| 3081 | if (transfer) |
| 3082 | RestoreScratchTarget(true); |
| 3083 | |
| 3084 | /* Release locks in reverse order */ |
| 3085 | LWLockRelease(SerializableXactHashLock); |
| 3086 | for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--) |
| 3087 | LWLockRelease(PredicateLockHashPartitionLockByIndex(i)); |
| 3088 | LWLockRelease(SerializablePredicateLockListLock); |
| 3089 | } |
| 3090 | |
| 3091 | /* |
| 3092 | * TransferPredicateLocksToHeapRelation |
| 3093 | * For all transactions, transfer all predicate locks for the given |
| 3094 | * relation to a single relation lock on the heap. |
| 3095 | */ |
| 3096 | void |
| 3097 | TransferPredicateLocksToHeapRelation(Relation relation) |
| 3098 | { |
| 3099 | DropAllPredicateLocksFromTable(relation, true); |
| 3100 | } |
| 3101 | |
| 3102 | |
| 3103 | /* |
| 3104 | * PredicateLockPageSplit |
| 3105 | * |
| 3106 | * Copies any predicate locks for the old page to the new page. |
| 3107 | * Skip if this is a temporary table or toast table. |
| 3108 | * |
| 3109 | * NOTE: A page split (or overflow) affects all serializable transactions, |
| 3110 | * even if it occurs in the context of another transaction isolation level. |
| 3111 | * |
| 3112 | * NOTE: This currently leaves the local copy of the locks without |
| 3113 | * information on the new lock which is in shared memory. This could cause |
| 3114 | * problems if enough page splits occur on locked pages without the processes |
| 3115 | * which hold the locks getting in and noticing. |
| 3116 | */ |
| 3117 | void |
| 3118 | PredicateLockPageSplit(Relation relation, BlockNumber oldblkno, |
| 3119 | BlockNumber newblkno) |
| 3120 | { |
| 3121 | PREDICATELOCKTARGETTAG oldtargettag; |
| 3122 | PREDICATELOCKTARGETTAG newtargettag; |
| 3123 | bool success; |
| 3124 | |
| 3125 | /* |
| 3126 | * Bail out quickly if there are no serializable transactions running. |
| 3127 | * |
| 3128 | * It's safe to do this check without taking any additional locks. Even if |
| 3129 | * a serializable transaction starts concurrently, we know it can't take |
| 3130 | * any SIREAD locks on the page being split because the caller is holding |
| 3131 | * the associated buffer page lock. Memory reordering isn't an issue; the |
| 3132 | * memory barrier in the LWLock acquisition guarantees that this read |
| 3133 | * occurs while the buffer page lock is held. |
| 3134 | */ |
| 3135 | if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)) |
| 3136 | return; |
| 3137 | |
| 3138 | if (!PredicateLockingNeededForRelation(relation)) |
| 3139 | return; |
| 3140 | |
| 3141 | Assert(oldblkno != newblkno); |
| 3142 | Assert(BlockNumberIsValid(oldblkno)); |
| 3143 | Assert(BlockNumberIsValid(newblkno)); |
| 3144 | |
| 3145 | SET_PREDICATELOCKTARGETTAG_PAGE(oldtargettag, |
| 3146 | relation->rd_node.dbNode, |
| 3147 | relation->rd_id, |
| 3148 | oldblkno); |
| 3149 | SET_PREDICATELOCKTARGETTAG_PAGE(newtargettag, |
| 3150 | relation->rd_node.dbNode, |
| 3151 | relation->rd_id, |
| 3152 | newblkno); |
| 3153 | |
| 3154 | LWLockAcquire(SerializablePredicateLockListLock, LW_EXCLUSIVE); |
| 3155 | |
| 3156 | /* |
| 3157 | * Try copying the locks over to the new page's tag, creating it if |
| 3158 | * necessary. |
| 3159 | */ |
| 3160 | success = TransferPredicateLocksToNewTarget(oldtargettag, |
| 3161 | newtargettag, |
| 3162 | false); |
| 3163 | |
| 3164 | if (!success) |
| 3165 | { |
| 3166 | /* |
| 3167 | * No more predicate lock entries are available. Failure isn't an |
| 3168 | * option here, so promote the page lock to a relation lock. |
| 3169 | */ |
| 3170 | |
| 3171 | /* Get the parent relation lock's lock tag */ |
| 3172 | success = GetParentPredicateLockTag(&oldtargettag, |
| 3173 | &newtargettag); |
| 3174 | Assert(success); |
| 3175 | |
| 3176 | /* |
| 3177 | * Move the locks to the parent. This shouldn't fail. |
| 3178 | * |
| 3179 | * Note that here we are removing locks held by other backends, |
| 3180 | * leading to a possible inconsistency in their local lock hash table. |
| 3181 | * This is OK because we're replacing it with a lock that covers the |
| 3182 | * old one. |
| 3183 | */ |
| 3184 | success = TransferPredicateLocksToNewTarget(oldtargettag, |
| 3185 | newtargettag, |
| 3186 | true); |
| 3187 | Assert(success); |
| 3188 | } |
| 3189 | |
| 3190 | LWLockRelease(SerializablePredicateLockListLock); |
| 3191 | } |
| 3192 | |
| 3193 | /* |
| 3194 | * PredicateLockPageCombine |
| 3195 | * |
| 3196 | * Combines predicate locks for two existing pages. |
| 3197 | * Skip if this is a temporary table or toast table. |
| 3198 | * |
| 3199 | * NOTE: A page combine affects all serializable transactions, even if it |
| 3200 | * occurs in the context of another transaction isolation level. |
| 3201 | */ |
| 3202 | void |
| 3203 | PredicateLockPageCombine(Relation relation, BlockNumber oldblkno, |
| 3204 | BlockNumber newblkno) |
| 3205 | { |
| 3206 | /* |
| 3207 | * Page combines differ from page splits in that we ought to be able to |
| 3208 | * remove the locks on the old page after transferring them to the new |
| 3209 | * page, instead of duplicating them. However, because we can't edit other |
| 3210 | * backends' local lock tables, removing the old lock would leave them |
| 3211 | * with an entry in their LocalPredicateLockHash for a lock they're not |
| 3212 | * holding, which isn't acceptable. So we wind up having to do the same |
| 3213 | * work as a page split, acquiring a lock on the new page and keeping the |
| 3214 | * old page locked too. That can lead to some false positives, but should |
| 3215 | * be rare in practice. |
| 3216 | */ |
| 3217 | PredicateLockPageSplit(relation, oldblkno, newblkno); |
| 3218 | } |
| 3219 | |
| 3220 | /* |
| 3221 | * Walk the list of in-progress serializable transactions and find the new |
| 3222 | * xmin. |
| 3223 | */ |
| 3224 | static void |
| 3225 | SetNewSxactGlobalXmin(void) |
| 3226 | { |
| 3227 | SERIALIZABLEXACT *sxact; |
| 3228 | |
| 3229 | Assert(LWLockHeldByMe(SerializableXactHashLock)); |
| 3230 | |
| 3231 | PredXact->SxactGlobalXmin = InvalidTransactionId; |
| 3232 | PredXact->SxactGlobalXminCount = 0; |
| 3233 | |
| 3234 | for (sxact = FirstPredXact(); sxact != NULL; sxact = NextPredXact(sxact)) |
| 3235 | { |
| 3236 | if (!SxactIsRolledBack(sxact) |
| 3237 | && !SxactIsCommitted(sxact) |
| 3238 | && sxact != OldCommittedSxact) |
| 3239 | { |
| 3240 | Assert(sxact->xmin != InvalidTransactionId); |
| 3241 | if (!TransactionIdIsValid(PredXact->SxactGlobalXmin) |
| 3242 | || TransactionIdPrecedes(sxact->xmin, |
| 3243 | PredXact->SxactGlobalXmin)) |
| 3244 | { |
| 3245 | PredXact->SxactGlobalXmin = sxact->xmin; |
| 3246 | PredXact->SxactGlobalXminCount = 1; |
| 3247 | } |
| 3248 | else if (TransactionIdEquals(sxact->xmin, |
| 3249 | PredXact->SxactGlobalXmin)) |
| 3250 | PredXact->SxactGlobalXminCount++; |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | OldSerXidSetActiveSerXmin(PredXact->SxactGlobalXmin); |
| 3255 | } |
| 3256 | |
| 3257 | /* |
| 3258 | * ReleasePredicateLocks |
| 3259 | * |
| 3260 | * Releases predicate locks based on completion of the current transaction, |
| 3261 | * whether committed or rolled back. It can also be called for a read only |
| 3262 | * transaction when it becomes impossible for the transaction to become |
| 3263 | * part of a dangerous structure. |
| 3264 | * |
| 3265 | * We do nothing unless this is a serializable transaction. |
| 3266 | * |
| 3267 | * This method must ensure that shared memory hash tables are cleaned |
| 3268 | * up in some relatively timely fashion. |
| 3269 | * |
| 3270 | * If this transaction is committing and is holding any predicate locks, |
| 3271 | * it must be added to a list of completed serializable transactions still |
| 3272 | * holding locks. |
| 3273 | * |
| 3274 | * If isReadOnlySafe is true, then predicate locks are being released before |
| 3275 | * the end of the transaction because MySerializableXact has been determined |
| 3276 | * to be RO_SAFE. In non-parallel mode we can release it completely, but it |
| 3277 | * in parallel mode we partially release the SERIALIZABLEXACT and keep it |
| 3278 | * around until the end of the transaction, allowing each backend to clear its |
| 3279 | * MySerializableXact variable and benefit from the optimization in its own |
| 3280 | * time. |
| 3281 | */ |
| 3282 | void |
| 3283 | ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe) |
| 3284 | { |
| 3285 | bool needToClear; |
| 3286 | RWConflict conflict, |
| 3287 | nextConflict, |
| 3288 | possibleUnsafeConflict; |
| 3289 | SERIALIZABLEXACT *roXact; |
| 3290 | |
| 3291 | /* |
| 3292 | * We can't trust XactReadOnly here, because a transaction which started |
| 3293 | * as READ WRITE can show as READ ONLY later, e.g., within |
| 3294 | * subtransactions. We want to flag a transaction as READ ONLY if it |
| 3295 | * commits without writing so that de facto READ ONLY transactions get the |
| 3296 | * benefit of some RO optimizations, so we will use this local variable to |
| 3297 | * get some cleanup logic right which is based on whether the transaction |
| 3298 | * was declared READ ONLY at the top level. |
| 3299 | */ |
| 3300 | bool topLevelIsDeclaredReadOnly; |
| 3301 | |
| 3302 | /* We can't be both committing and releasing early due to RO_SAFE. */ |
| 3303 | Assert(!(isCommit && isReadOnlySafe)); |
| 3304 | |
| 3305 | /* Are we at the end of a transaction, that is, a commit or abort? */ |
| 3306 | if (!isReadOnlySafe) |
| 3307 | { |
| 3308 | /* |
| 3309 | * Parallel workers mustn't release predicate locks at the end of |
| 3310 | * their transaction. The leader will do that at the end of its |
| 3311 | * transaction. |
| 3312 | */ |
| 3313 | if (IsParallelWorker()) |
| 3314 | { |
| 3315 | ReleasePredicateLocksLocal(); |
| 3316 | return; |
| 3317 | } |
| 3318 | |
| 3319 | /* |
| 3320 | * By the time the leader in a parallel query reaches end of |
| 3321 | * transaction, it has waited for all workers to exit. |
| 3322 | */ |
| 3323 | Assert(!ParallelContextActive()); |
| 3324 | |
| 3325 | /* |
| 3326 | * If the leader in a parallel query earlier stashed a partially |
| 3327 | * released SERIALIZABLEXACT for final clean-up at end of transaction |
| 3328 | * (because workers might still have been accessing it), then it's |
| 3329 | * time to restore it. |
| 3330 | */ |
| 3331 | if (SavedSerializableXact != InvalidSerializableXact) |
| 3332 | { |
| 3333 | Assert(MySerializableXact == InvalidSerializableXact); |
| 3334 | MySerializableXact = SavedSerializableXact; |
| 3335 | SavedSerializableXact = InvalidSerializableXact; |
| 3336 | Assert(SxactIsPartiallyReleased(MySerializableXact)); |
| 3337 | } |
| 3338 | } |
| 3339 | |
| 3340 | if (MySerializableXact == InvalidSerializableXact) |
| 3341 | { |
| 3342 | Assert(LocalPredicateLockHash == NULL); |
| 3343 | return; |
| 3344 | } |
| 3345 | |
| 3346 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 3347 | |
| 3348 | /* |
| 3349 | * If the transaction is committing, but it has been partially released |
| 3350 | * already, then treat this as a roll back. It was marked as rolled back. |
| 3351 | */ |
| 3352 | if (isCommit && SxactIsPartiallyReleased(MySerializableXact)) |
| 3353 | isCommit = false; |
| 3354 | |
| 3355 | /* |
| 3356 | * If we're called in the middle of a transaction because we discovered |
| 3357 | * that the SXACT_FLAG_RO_SAFE flag was set, then we'll partially release |
| 3358 | * it (that is, release the predicate locks and conflicts, but not the |
| 3359 | * SERIALIZABLEXACT itself) if we're the first backend to have noticed. |
| 3360 | */ |
| 3361 | if (isReadOnlySafe && IsInParallelMode()) |
| 3362 | { |
| 3363 | /* |
| 3364 | * The leader needs to stash a pointer to it, so that it can |
| 3365 | * completely release it at end-of-transaction. |
| 3366 | */ |
| 3367 | if (!IsParallelWorker()) |
| 3368 | SavedSerializableXact = MySerializableXact; |
| 3369 | |
| 3370 | /* |
| 3371 | * The first backend to reach this condition will partially release |
| 3372 | * the SERIALIZABLEXACT. All others will just clear their |
| 3373 | * backend-local state so that they stop doing SSI checks for the rest |
| 3374 | * of the transaction. |
| 3375 | */ |
| 3376 | if (SxactIsPartiallyReleased(MySerializableXact)) |
| 3377 | { |
| 3378 | LWLockRelease(SerializableXactHashLock); |
| 3379 | ReleasePredicateLocksLocal(); |
| 3380 | return; |
| 3381 | } |
| 3382 | else |
| 3383 | { |
| 3384 | MySerializableXact->flags |= SXACT_FLAG_PARTIALLY_RELEASED; |
| 3385 | /* ... and proceed to perform the partial release below. */ |
| 3386 | } |
| 3387 | } |
| 3388 | Assert(!isCommit || SxactIsPrepared(MySerializableXact)); |
| 3389 | Assert(!isCommit || !SxactIsDoomed(MySerializableXact)); |
| 3390 | Assert(!SxactIsCommitted(MySerializableXact)); |
| 3391 | Assert(SxactIsPartiallyReleased(MySerializableXact) |
| 3392 | || !SxactIsRolledBack(MySerializableXact)); |
| 3393 | |
| 3394 | /* may not be serializable during COMMIT/ROLLBACK PREPARED */ |
| 3395 | Assert(MySerializableXact->pid == 0 || IsolationIsSerializable()); |
| 3396 | |
| 3397 | /* We'd better not already be on the cleanup list. */ |
| 3398 | Assert(!SxactIsOnFinishedList(MySerializableXact)); |
| 3399 | |
| 3400 | topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact); |
| 3401 | |
| 3402 | /* |
| 3403 | * We don't hold XidGenLock lock here, assuming that TransactionId is |
| 3404 | * atomic! |
| 3405 | * |
| 3406 | * If this value is changing, we don't care that much whether we get the |
| 3407 | * old or new value -- it is just used to determine how far |
| 3408 | * GlobalSerializableXmin must advance before this transaction can be |
| 3409 | * fully cleaned up. The worst that could happen is we wait for one more |
| 3410 | * transaction to complete before freeing some RAM; correctness of visible |
| 3411 | * behavior is not affected. |
| 3412 | */ |
| 3413 | MySerializableXact->finishedBefore = XidFromFullTransactionId(ShmemVariableCache->nextFullXid); |
| 3414 | |
| 3415 | /* |
| 3416 | * If it's not a commit it's either a rollback or a read-only transaction |
| 3417 | * flagged SXACT_FLAG_RO_SAFE, and we can clear our locks immediately. |
| 3418 | */ |
| 3419 | if (isCommit) |
| 3420 | { |
| 3421 | MySerializableXact->flags |= SXACT_FLAG_COMMITTED; |
| 3422 | MySerializableXact->commitSeqNo = ++(PredXact->LastSxactCommitSeqNo); |
| 3423 | /* Recognize implicit read-only transaction (commit without write). */ |
| 3424 | if (!MyXactDidWrite) |
| 3425 | MySerializableXact->flags |= SXACT_FLAG_READ_ONLY; |
| 3426 | } |
| 3427 | else |
| 3428 | { |
| 3429 | /* |
| 3430 | * The DOOMED flag indicates that we intend to roll back this |
| 3431 | * transaction and so it should not cause serialization failures for |
| 3432 | * other transactions that conflict with it. Note that this flag might |
| 3433 | * already be set, if another backend marked this transaction for |
| 3434 | * abort. |
| 3435 | * |
| 3436 | * The ROLLED_BACK flag further indicates that ReleasePredicateLocks |
| 3437 | * has been called, and so the SerializableXact is eligible for |
| 3438 | * cleanup. This means it should not be considered when calculating |
| 3439 | * SxactGlobalXmin. |
| 3440 | */ |
| 3441 | MySerializableXact->flags |= SXACT_FLAG_DOOMED; |
| 3442 | MySerializableXact->flags |= SXACT_FLAG_ROLLED_BACK; |
| 3443 | |
| 3444 | /* |
| 3445 | * If the transaction was previously prepared, but is now failing due |
| 3446 | * to a ROLLBACK PREPARED or (hopefully very rare) error after the |
| 3447 | * prepare, clear the prepared flag. This simplifies conflict |
| 3448 | * checking. |
| 3449 | */ |
| 3450 | MySerializableXact->flags &= ~SXACT_FLAG_PREPARED; |
| 3451 | } |
| 3452 | |
| 3453 | if (!topLevelIsDeclaredReadOnly) |
| 3454 | { |
| 3455 | Assert(PredXact->WritableSxactCount > 0); |
| 3456 | if (--(PredXact->WritableSxactCount) == 0) |
| 3457 | { |
| 3458 | /* |
| 3459 | * Release predicate locks and rw-conflicts in for all committed |
| 3460 | * transactions. There are no longer any transactions which might |
| 3461 | * conflict with the locks and no chance for new transactions to |
| 3462 | * overlap. Similarly, existing conflicts in can't cause pivots, |
| 3463 | * and any conflicts in which could have completed a dangerous |
| 3464 | * structure would already have caused a rollback, so any |
| 3465 | * remaining ones must be benign. |
| 3466 | */ |
| 3467 | PredXact->CanPartialClearThrough = PredXact->LastSxactCommitSeqNo; |
| 3468 | } |
| 3469 | } |
| 3470 | else |
| 3471 | { |
| 3472 | /* |
| 3473 | * Read-only transactions: clear the list of transactions that might |
| 3474 | * make us unsafe. Note that we use 'inLink' for the iteration as |
| 3475 | * opposed to 'outLink' for the r/w xacts. |
| 3476 | */ |
| 3477 | possibleUnsafeConflict = (RWConflict) |
| 3478 | SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts, |
| 3479 | &MySerializableXact->possibleUnsafeConflicts, |
| 3480 | offsetof(RWConflictData, inLink)); |
| 3481 | while (possibleUnsafeConflict) |
| 3482 | { |
| 3483 | nextConflict = (RWConflict) |
| 3484 | SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts, |
| 3485 | &possibleUnsafeConflict->inLink, |
| 3486 | offsetof(RWConflictData, inLink)); |
| 3487 | |
| 3488 | Assert(!SxactIsReadOnly(possibleUnsafeConflict->sxactOut)); |
| 3489 | Assert(MySerializableXact == possibleUnsafeConflict->sxactIn); |
| 3490 | |
| 3491 | ReleaseRWConflict(possibleUnsafeConflict); |
| 3492 | |
| 3493 | possibleUnsafeConflict = nextConflict; |
| 3494 | } |
| 3495 | } |
| 3496 | |
| 3497 | /* Check for conflict out to old committed transactions. */ |
| 3498 | if (isCommit |
| 3499 | && !SxactIsReadOnly(MySerializableXact) |
| 3500 | && SxactHasSummaryConflictOut(MySerializableXact)) |
| 3501 | { |
| 3502 | /* |
| 3503 | * we don't know which old committed transaction we conflicted with, |
| 3504 | * so be conservative and use FirstNormalSerCommitSeqNo here |
| 3505 | */ |
| 3506 | MySerializableXact->SeqNo.earliestOutConflictCommit = |
| 3507 | FirstNormalSerCommitSeqNo; |
| 3508 | MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT; |
| 3509 | } |
| 3510 | |
| 3511 | /* |
| 3512 | * Release all outConflicts to committed transactions. If we're rolling |
| 3513 | * back clear them all. Set SXACT_FLAG_CONFLICT_OUT if any point to |
| 3514 | * previously committed transactions. |
| 3515 | */ |
| 3516 | conflict = (RWConflict) |
| 3517 | SHMQueueNext(&MySerializableXact->outConflicts, |
| 3518 | &MySerializableXact->outConflicts, |
| 3519 | offsetof(RWConflictData, outLink)); |
| 3520 | while (conflict) |
| 3521 | { |
| 3522 | nextConflict = (RWConflict) |
| 3523 | SHMQueueNext(&MySerializableXact->outConflicts, |
| 3524 | &conflict->outLink, |
| 3525 | offsetof(RWConflictData, outLink)); |
| 3526 | |
| 3527 | if (isCommit |
| 3528 | && !SxactIsReadOnly(MySerializableXact) |
| 3529 | && SxactIsCommitted(conflict->sxactIn)) |
| 3530 | { |
| 3531 | if ((MySerializableXact->flags & SXACT_FLAG_CONFLICT_OUT) == 0 |
| 3532 | || conflict->sxactIn->prepareSeqNo < MySerializableXact->SeqNo.earliestOutConflictCommit) |
| 3533 | MySerializableXact->SeqNo.earliestOutConflictCommit = conflict->sxactIn->prepareSeqNo; |
| 3534 | MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT; |
| 3535 | } |
| 3536 | |
| 3537 | if (!isCommit |
| 3538 | || SxactIsCommitted(conflict->sxactIn) |
| 3539 | || (conflict->sxactIn->SeqNo.lastCommitBeforeSnapshot >= PredXact->LastSxactCommitSeqNo)) |
| 3540 | ReleaseRWConflict(conflict); |
| 3541 | |
| 3542 | conflict = nextConflict; |
| 3543 | } |
| 3544 | |
| 3545 | /* |
| 3546 | * Release all inConflicts from committed and read-only transactions. If |
| 3547 | * we're rolling back, clear them all. |
| 3548 | */ |
| 3549 | conflict = (RWConflict) |
| 3550 | SHMQueueNext(&MySerializableXact->inConflicts, |
| 3551 | &MySerializableXact->inConflicts, |
| 3552 | offsetof(RWConflictData, inLink)); |
| 3553 | while (conflict) |
| 3554 | { |
| 3555 | nextConflict = (RWConflict) |
| 3556 | SHMQueueNext(&MySerializableXact->inConflicts, |
| 3557 | &conflict->inLink, |
| 3558 | offsetof(RWConflictData, inLink)); |
| 3559 | |
| 3560 | if (!isCommit |
| 3561 | || SxactIsCommitted(conflict->sxactOut) |
| 3562 | || SxactIsReadOnly(conflict->sxactOut)) |
| 3563 | ReleaseRWConflict(conflict); |
| 3564 | |
| 3565 | conflict = nextConflict; |
| 3566 | } |
| 3567 | |
| 3568 | if (!topLevelIsDeclaredReadOnly) |
| 3569 | { |
| 3570 | /* |
| 3571 | * Remove ourselves from the list of possible conflicts for concurrent |
| 3572 | * READ ONLY transactions, flagging them as unsafe if we have a |
| 3573 | * conflict out. If any are waiting DEFERRABLE transactions, wake them |
| 3574 | * up if they are known safe or known unsafe. |
| 3575 | */ |
| 3576 | possibleUnsafeConflict = (RWConflict) |
| 3577 | SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts, |
| 3578 | &MySerializableXact->possibleUnsafeConflicts, |
| 3579 | offsetof(RWConflictData, outLink)); |
| 3580 | while (possibleUnsafeConflict) |
| 3581 | { |
| 3582 | nextConflict = (RWConflict) |
| 3583 | SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts, |
| 3584 | &possibleUnsafeConflict->outLink, |
| 3585 | offsetof(RWConflictData, outLink)); |
| 3586 | |
| 3587 | roXact = possibleUnsafeConflict->sxactIn; |
| 3588 | Assert(MySerializableXact == possibleUnsafeConflict->sxactOut); |
| 3589 | Assert(SxactIsReadOnly(roXact)); |
| 3590 | |
| 3591 | /* Mark conflicted if necessary. */ |
| 3592 | if (isCommit |
| 3593 | && MyXactDidWrite |
| 3594 | && SxactHasConflictOut(MySerializableXact) |
| 3595 | && (MySerializableXact->SeqNo.earliestOutConflictCommit |
| 3596 | <= roXact->SeqNo.lastCommitBeforeSnapshot)) |
| 3597 | { |
| 3598 | /* |
| 3599 | * This releases possibleUnsafeConflict (as well as all other |
| 3600 | * possible conflicts for roXact) |
| 3601 | */ |
| 3602 | FlagSxactUnsafe(roXact); |
| 3603 | } |
| 3604 | else |
| 3605 | { |
| 3606 | ReleaseRWConflict(possibleUnsafeConflict); |
| 3607 | |
| 3608 | /* |
| 3609 | * If we were the last possible conflict, flag it safe. The |
| 3610 | * transaction can now safely release its predicate locks (but |
| 3611 | * that transaction's backend has to do that itself). |
| 3612 | */ |
| 3613 | if (SHMQueueEmpty(&roXact->possibleUnsafeConflicts)) |
| 3614 | roXact->flags |= SXACT_FLAG_RO_SAFE; |
| 3615 | } |
| 3616 | |
| 3617 | /* |
| 3618 | * Wake up the process for a waiting DEFERRABLE transaction if we |
| 3619 | * now know it's either safe or conflicted. |
| 3620 | */ |
| 3621 | if (SxactIsDeferrableWaiting(roXact) && |
| 3622 | (SxactIsROUnsafe(roXact) || SxactIsROSafe(roXact))) |
| 3623 | ProcSendSignal(roXact->pid); |
| 3624 | |
| 3625 | possibleUnsafeConflict = nextConflict; |
| 3626 | } |
| 3627 | } |
| 3628 | |
| 3629 | /* |
| 3630 | * Check whether it's time to clean up old transactions. This can only be |
| 3631 | * done when the last serializable transaction with the oldest xmin among |
| 3632 | * serializable transactions completes. We then find the "new oldest" |
| 3633 | * xmin and purge any transactions which finished before this transaction |
| 3634 | * was launched. |
| 3635 | */ |
| 3636 | needToClear = false; |
| 3637 | if (TransactionIdEquals(MySerializableXact->xmin, PredXact->SxactGlobalXmin)) |
| 3638 | { |
| 3639 | Assert(PredXact->SxactGlobalXminCount > 0); |
| 3640 | if (--(PredXact->SxactGlobalXminCount) == 0) |
| 3641 | { |
| 3642 | SetNewSxactGlobalXmin(); |
| 3643 | needToClear = true; |
| 3644 | } |
| 3645 | } |
| 3646 | |
| 3647 | LWLockRelease(SerializableXactHashLock); |
| 3648 | |
| 3649 | LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE); |
| 3650 | |
| 3651 | /* Add this to the list of transactions to check for later cleanup. */ |
| 3652 | if (isCommit) |
| 3653 | SHMQueueInsertBefore(FinishedSerializableTransactions, |
| 3654 | &MySerializableXact->finishedLink); |
| 3655 | |
| 3656 | /* |
| 3657 | * If we're releasing a RO_SAFE transaction in parallel mode, we'll only |
| 3658 | * partially release it. That's necessary because other backends may have |
| 3659 | * a reference to it. The leader will release the SERIALIZABLEXACT itself |
| 3660 | * at the end of the transaction after workers have stopped running. |
| 3661 | */ |
| 3662 | if (!isCommit) |
| 3663 | ReleaseOneSerializableXact(MySerializableXact, |
| 3664 | isReadOnlySafe && IsInParallelMode(), |
| 3665 | false); |
| 3666 | |
| 3667 | LWLockRelease(SerializableFinishedListLock); |
| 3668 | |
| 3669 | if (needToClear) |
| 3670 | ClearOldPredicateLocks(); |
| 3671 | |
| 3672 | ReleasePredicateLocksLocal(); |
| 3673 | } |
| 3674 | |
| 3675 | static void |
| 3676 | ReleasePredicateLocksLocal(void) |
| 3677 | { |
| 3678 | MySerializableXact = InvalidSerializableXact; |
| 3679 | MyXactDidWrite = false; |
| 3680 | |
| 3681 | /* Delete per-transaction lock table */ |
| 3682 | if (LocalPredicateLockHash != NULL) |
| 3683 | { |
| 3684 | hash_destroy(LocalPredicateLockHash); |
| 3685 | LocalPredicateLockHash = NULL; |
| 3686 | } |
| 3687 | } |
| 3688 | |
| 3689 | /* |
| 3690 | * Clear old predicate locks, belonging to committed transactions that are no |
| 3691 | * longer interesting to any in-progress transaction. |
| 3692 | */ |
| 3693 | static void |
| 3694 | ClearOldPredicateLocks(void) |
| 3695 | { |
| 3696 | SERIALIZABLEXACT *finishedSxact; |
| 3697 | PREDICATELOCK *predlock; |
| 3698 | |
| 3699 | /* |
| 3700 | * Loop through finished transactions. They are in commit order, so we can |
| 3701 | * stop as soon as we find one that's still interesting. |
| 3702 | */ |
| 3703 | LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE); |
| 3704 | finishedSxact = (SERIALIZABLEXACT *) |
| 3705 | SHMQueueNext(FinishedSerializableTransactions, |
| 3706 | FinishedSerializableTransactions, |
| 3707 | offsetof(SERIALIZABLEXACT, finishedLink)); |
| 3708 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 3709 | while (finishedSxact) |
| 3710 | { |
| 3711 | SERIALIZABLEXACT *nextSxact; |
| 3712 | |
| 3713 | nextSxact = (SERIALIZABLEXACT *) |
| 3714 | SHMQueueNext(FinishedSerializableTransactions, |
| 3715 | &(finishedSxact->finishedLink), |
| 3716 | offsetof(SERIALIZABLEXACT, finishedLink)); |
| 3717 | if (!TransactionIdIsValid(PredXact->SxactGlobalXmin) |
| 3718 | || TransactionIdPrecedesOrEquals(finishedSxact->finishedBefore, |
| 3719 | PredXact->SxactGlobalXmin)) |
| 3720 | { |
| 3721 | /* |
| 3722 | * This transaction committed before any in-progress transaction |
| 3723 | * took its snapshot. It's no longer interesting. |
| 3724 | */ |
| 3725 | LWLockRelease(SerializableXactHashLock); |
| 3726 | SHMQueueDelete(&(finishedSxact->finishedLink)); |
| 3727 | ReleaseOneSerializableXact(finishedSxact, false, false); |
| 3728 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 3729 | } |
| 3730 | else if (finishedSxact->commitSeqNo > PredXact->HavePartialClearedThrough |
| 3731 | && finishedSxact->commitSeqNo <= PredXact->CanPartialClearThrough) |
| 3732 | { |
| 3733 | /* |
| 3734 | * Any active transactions that took their snapshot before this |
| 3735 | * transaction committed are read-only, so we can clear part of |
| 3736 | * its state. |
| 3737 | */ |
| 3738 | LWLockRelease(SerializableXactHashLock); |
| 3739 | |
| 3740 | if (SxactIsReadOnly(finishedSxact)) |
| 3741 | { |
| 3742 | /* A read-only transaction can be removed entirely */ |
| 3743 | SHMQueueDelete(&(finishedSxact->finishedLink)); |
| 3744 | ReleaseOneSerializableXact(finishedSxact, false, false); |
| 3745 | } |
| 3746 | else |
| 3747 | { |
| 3748 | /* |
| 3749 | * A read-write transaction can only be partially cleared. We |
| 3750 | * need to keep the SERIALIZABLEXACT but can release the |
| 3751 | * SIREAD locks and conflicts in. |
| 3752 | */ |
| 3753 | ReleaseOneSerializableXact(finishedSxact, true, false); |
| 3754 | } |
| 3755 | |
| 3756 | PredXact->HavePartialClearedThrough = finishedSxact->commitSeqNo; |
| 3757 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 3758 | } |
| 3759 | else |
| 3760 | { |
| 3761 | /* Still interesting. */ |
| 3762 | break; |
| 3763 | } |
| 3764 | finishedSxact = nextSxact; |
| 3765 | } |
| 3766 | LWLockRelease(SerializableXactHashLock); |
| 3767 | |
| 3768 | /* |
| 3769 | * Loop through predicate locks on dummy transaction for summarized data. |
| 3770 | */ |
| 3771 | LWLockAcquire(SerializablePredicateLockListLock, LW_SHARED); |
| 3772 | predlock = (PREDICATELOCK *) |
| 3773 | SHMQueueNext(&OldCommittedSxact->predicateLocks, |
| 3774 | &OldCommittedSxact->predicateLocks, |
| 3775 | offsetof(PREDICATELOCK, xactLink)); |
| 3776 | while (predlock) |
| 3777 | { |
| 3778 | PREDICATELOCK *nextpredlock; |
| 3779 | bool canDoPartialCleanup; |
| 3780 | |
| 3781 | nextpredlock = (PREDICATELOCK *) |
| 3782 | SHMQueueNext(&OldCommittedSxact->predicateLocks, |
| 3783 | &predlock->xactLink, |
| 3784 | offsetof(PREDICATELOCK, xactLink)); |
| 3785 | |
| 3786 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 3787 | Assert(predlock->commitSeqNo != 0); |
| 3788 | Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo); |
| 3789 | canDoPartialCleanup = (predlock->commitSeqNo <= PredXact->CanPartialClearThrough); |
| 3790 | LWLockRelease(SerializableXactHashLock); |
| 3791 | |
| 3792 | /* |
| 3793 | * If this lock originally belonged to an old enough transaction, we |
| 3794 | * can release it. |
| 3795 | */ |
| 3796 | if (canDoPartialCleanup) |
| 3797 | { |
| 3798 | PREDICATELOCKTAG tag; |
| 3799 | PREDICATELOCKTARGET *target; |
| 3800 | PREDICATELOCKTARGETTAG targettag; |
| 3801 | uint32 targettaghash; |
| 3802 | LWLock *partitionLock; |
| 3803 | |
| 3804 | tag = predlock->tag; |
| 3805 | target = tag.myTarget; |
| 3806 | targettag = target->tag; |
| 3807 | targettaghash = PredicateLockTargetTagHashCode(&targettag); |
| 3808 | partitionLock = PredicateLockHashPartitionLock(targettaghash); |
| 3809 | |
| 3810 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 3811 | |
| 3812 | SHMQueueDelete(&(predlock->targetLink)); |
| 3813 | SHMQueueDelete(&(predlock->xactLink)); |
| 3814 | |
| 3815 | hash_search_with_hash_value(PredicateLockHash, &tag, |
| 3816 | PredicateLockHashCodeFromTargetHashCode(&tag, |
| 3817 | targettaghash), |
| 3818 | HASH_REMOVE, NULL); |
| 3819 | RemoveTargetIfNoLongerUsed(target, targettaghash); |
| 3820 | |
| 3821 | LWLockRelease(partitionLock); |
| 3822 | } |
| 3823 | |
| 3824 | predlock = nextpredlock; |
| 3825 | } |
| 3826 | |
| 3827 | LWLockRelease(SerializablePredicateLockListLock); |
| 3828 | LWLockRelease(SerializableFinishedListLock); |
| 3829 | } |
| 3830 | |
| 3831 | /* |
| 3832 | * This is the normal way to delete anything from any of the predicate |
| 3833 | * locking hash tables. Given a transaction which we know can be deleted: |
| 3834 | * delete all predicate locks held by that transaction and any predicate |
| 3835 | * lock targets which are now unreferenced by a lock; delete all conflicts |
| 3836 | * for the transaction; delete all xid values for the transaction; then |
| 3837 | * delete the transaction. |
| 3838 | * |
| 3839 | * When the partial flag is set, we can release all predicate locks and |
| 3840 | * in-conflict information -- we've established that there are no longer |
| 3841 | * any overlapping read write transactions for which this transaction could |
| 3842 | * matter -- but keep the transaction entry itself and any outConflicts. |
| 3843 | * |
| 3844 | * When the summarize flag is set, we've run short of room for sxact data |
| 3845 | * and must summarize to the SLRU. Predicate locks are transferred to a |
| 3846 | * dummy "old" transaction, with duplicate locks on a single target |
| 3847 | * collapsing to a single lock with the "latest" commitSeqNo from among |
| 3848 | * the conflicting locks.. |
| 3849 | */ |
| 3850 | static void |
| 3851 | ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial, |
| 3852 | bool summarize) |
| 3853 | { |
| 3854 | PREDICATELOCK *predlock; |
| 3855 | SERIALIZABLEXIDTAG sxidtag; |
| 3856 | RWConflict conflict, |
| 3857 | nextConflict; |
| 3858 | |
| 3859 | Assert(sxact != NULL); |
| 3860 | Assert(SxactIsRolledBack(sxact) || SxactIsCommitted(sxact)); |
| 3861 | Assert(partial || !SxactIsOnFinishedList(sxact)); |
| 3862 | Assert(LWLockHeldByMe(SerializableFinishedListLock)); |
| 3863 | |
| 3864 | /* |
| 3865 | * First release all the predicate locks held by this xact (or transfer |
| 3866 | * them to OldCommittedSxact if summarize is true) |
| 3867 | */ |
| 3868 | LWLockAcquire(SerializablePredicateLockListLock, LW_SHARED); |
| 3869 | if (IsInParallelMode()) |
| 3870 | LWLockAcquire(&sxact->predicateLockListLock, LW_EXCLUSIVE); |
| 3871 | predlock = (PREDICATELOCK *) |
| 3872 | SHMQueueNext(&(sxact->predicateLocks), |
| 3873 | &(sxact->predicateLocks), |
| 3874 | offsetof(PREDICATELOCK, xactLink)); |
| 3875 | while (predlock) |
| 3876 | { |
| 3877 | PREDICATELOCK *nextpredlock; |
| 3878 | PREDICATELOCKTAG tag; |
| 3879 | SHM_QUEUE *targetLink; |
| 3880 | PREDICATELOCKTARGET *target; |
| 3881 | PREDICATELOCKTARGETTAG targettag; |
| 3882 | uint32 targettaghash; |
| 3883 | LWLock *partitionLock; |
| 3884 | |
| 3885 | nextpredlock = (PREDICATELOCK *) |
| 3886 | SHMQueueNext(&(sxact->predicateLocks), |
| 3887 | &(predlock->xactLink), |
| 3888 | offsetof(PREDICATELOCK, xactLink)); |
| 3889 | |
| 3890 | tag = predlock->tag; |
| 3891 | targetLink = &(predlock->targetLink); |
| 3892 | target = tag.myTarget; |
| 3893 | targettag = target->tag; |
| 3894 | targettaghash = PredicateLockTargetTagHashCode(&targettag); |
| 3895 | partitionLock = PredicateLockHashPartitionLock(targettaghash); |
| 3896 | |
| 3897 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 3898 | |
| 3899 | SHMQueueDelete(targetLink); |
| 3900 | |
| 3901 | hash_search_with_hash_value(PredicateLockHash, &tag, |
| 3902 | PredicateLockHashCodeFromTargetHashCode(&tag, |
| 3903 | targettaghash), |
| 3904 | HASH_REMOVE, NULL); |
| 3905 | if (summarize) |
| 3906 | { |
| 3907 | bool found; |
| 3908 | |
| 3909 | /* Fold into dummy transaction list. */ |
| 3910 | tag.myXact = OldCommittedSxact; |
| 3911 | predlock = hash_search_with_hash_value(PredicateLockHash, &tag, |
| 3912 | PredicateLockHashCodeFromTargetHashCode(&tag, |
| 3913 | targettaghash), |
| 3914 | HASH_ENTER_NULL, &found); |
| 3915 | if (!predlock) |
| 3916 | ereport(ERROR, |
| 3917 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 3918 | errmsg("out of shared memory" ), |
| 3919 | errhint("You might need to increase max_pred_locks_per_transaction." ))); |
| 3920 | if (found) |
| 3921 | { |
| 3922 | Assert(predlock->commitSeqNo != 0); |
| 3923 | Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo); |
| 3924 | if (predlock->commitSeqNo < sxact->commitSeqNo) |
| 3925 | predlock->commitSeqNo = sxact->commitSeqNo; |
| 3926 | } |
| 3927 | else |
| 3928 | { |
| 3929 | SHMQueueInsertBefore(&(target->predicateLocks), |
| 3930 | &(predlock->targetLink)); |
| 3931 | SHMQueueInsertBefore(&(OldCommittedSxact->predicateLocks), |
| 3932 | &(predlock->xactLink)); |
| 3933 | predlock->commitSeqNo = sxact->commitSeqNo; |
| 3934 | } |
| 3935 | } |
| 3936 | else |
| 3937 | RemoveTargetIfNoLongerUsed(target, targettaghash); |
| 3938 | |
| 3939 | LWLockRelease(partitionLock); |
| 3940 | |
| 3941 | predlock = nextpredlock; |
| 3942 | } |
| 3943 | |
| 3944 | /* |
| 3945 | * Rather than retail removal, just re-init the head after we've run |
| 3946 | * through the list. |
| 3947 | */ |
| 3948 | SHMQueueInit(&sxact->predicateLocks); |
| 3949 | |
| 3950 | if (IsInParallelMode()) |
| 3951 | LWLockRelease(&sxact->predicateLockListLock); |
| 3952 | LWLockRelease(SerializablePredicateLockListLock); |
| 3953 | |
| 3954 | sxidtag.xid = sxact->topXid; |
| 3955 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 3956 | |
| 3957 | /* Release all outConflicts (unless 'partial' is true) */ |
| 3958 | if (!partial) |
| 3959 | { |
| 3960 | conflict = (RWConflict) |
| 3961 | SHMQueueNext(&sxact->outConflicts, |
| 3962 | &sxact->outConflicts, |
| 3963 | offsetof(RWConflictData, outLink)); |
| 3964 | while (conflict) |
| 3965 | { |
| 3966 | nextConflict = (RWConflict) |
| 3967 | SHMQueueNext(&sxact->outConflicts, |
| 3968 | &conflict->outLink, |
| 3969 | offsetof(RWConflictData, outLink)); |
| 3970 | if (summarize) |
| 3971 | conflict->sxactIn->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN; |
| 3972 | ReleaseRWConflict(conflict); |
| 3973 | conflict = nextConflict; |
| 3974 | } |
| 3975 | } |
| 3976 | |
| 3977 | /* Release all inConflicts. */ |
| 3978 | conflict = (RWConflict) |
| 3979 | SHMQueueNext(&sxact->inConflicts, |
| 3980 | &sxact->inConflicts, |
| 3981 | offsetof(RWConflictData, inLink)); |
| 3982 | while (conflict) |
| 3983 | { |
| 3984 | nextConflict = (RWConflict) |
| 3985 | SHMQueueNext(&sxact->inConflicts, |
| 3986 | &conflict->inLink, |
| 3987 | offsetof(RWConflictData, inLink)); |
| 3988 | if (summarize) |
| 3989 | conflict->sxactOut->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT; |
| 3990 | ReleaseRWConflict(conflict); |
| 3991 | conflict = nextConflict; |
| 3992 | } |
| 3993 | |
| 3994 | /* Finally, get rid of the xid and the record of the transaction itself. */ |
| 3995 | if (!partial) |
| 3996 | { |
| 3997 | if (sxidtag.xid != InvalidTransactionId) |
| 3998 | hash_search(SerializableXidHash, &sxidtag, HASH_REMOVE, NULL); |
| 3999 | ReleasePredXact(sxact); |
| 4000 | } |
| 4001 | |
| 4002 | LWLockRelease(SerializableXactHashLock); |
| 4003 | } |
| 4004 | |
| 4005 | /* |
| 4006 | * Tests whether the given top level transaction is concurrent with |
| 4007 | * (overlaps) our current transaction. |
| 4008 | * |
| 4009 | * We need to identify the top level transaction for SSI, anyway, so pass |
| 4010 | * that to this function to save the overhead of checking the snapshot's |
| 4011 | * subxip array. |
| 4012 | */ |
| 4013 | static bool |
| 4014 | XidIsConcurrent(TransactionId xid) |
| 4015 | { |
| 4016 | Snapshot snap; |
| 4017 | uint32 i; |
| 4018 | |
| 4019 | Assert(TransactionIdIsValid(xid)); |
| 4020 | Assert(!TransactionIdEquals(xid, GetTopTransactionIdIfAny())); |
| 4021 | |
| 4022 | snap = GetTransactionSnapshot(); |
| 4023 | |
| 4024 | if (TransactionIdPrecedes(xid, snap->xmin)) |
| 4025 | return false; |
| 4026 | |
| 4027 | if (TransactionIdFollowsOrEquals(xid, snap->xmax)) |
| 4028 | return true; |
| 4029 | |
| 4030 | for (i = 0; i < snap->xcnt; i++) |
| 4031 | { |
| 4032 | if (xid == snap->xip[i]) |
| 4033 | return true; |
| 4034 | } |
| 4035 | |
| 4036 | return false; |
| 4037 | } |
| 4038 | |
| 4039 | /* |
| 4040 | * CheckForSerializableConflictOut |
| 4041 | * We are reading a tuple which has been modified. If it is visible to |
| 4042 | * us but has been deleted, that indicates a rw-conflict out. If it's |
| 4043 | * not visible and was created by a concurrent (overlapping) |
| 4044 | * serializable transaction, that is also a rw-conflict out, |
| 4045 | * |
| 4046 | * We will determine the top level xid of the writing transaction with which |
| 4047 | * we may be in conflict, and check for overlap with our own transaction. |
| 4048 | * If the transactions overlap (i.e., they cannot see each other's writes), |
| 4049 | * then we have a conflict out. |
| 4050 | * |
| 4051 | * This function should be called just about anywhere in heapam.c where a |
| 4052 | * tuple has been read. The caller must hold at least a shared lock on the |
| 4053 | * buffer, because this function might set hint bits on the tuple. There is |
| 4054 | * currently no known reason to call this function from an index AM. |
| 4055 | */ |
| 4056 | void |
| 4057 | CheckForSerializableConflictOut(bool visible, Relation relation, |
| 4058 | HeapTuple tuple, Buffer buffer, |
| 4059 | Snapshot snapshot) |
| 4060 | { |
| 4061 | TransactionId xid; |
| 4062 | SERIALIZABLEXIDTAG sxidtag; |
| 4063 | SERIALIZABLEXID *sxid; |
| 4064 | SERIALIZABLEXACT *sxact; |
| 4065 | HTSV_Result htsvResult; |
| 4066 | |
| 4067 | if (!SerializationNeededForRead(relation, snapshot)) |
| 4068 | return; |
| 4069 | |
| 4070 | /* Check if someone else has already decided that we need to die */ |
| 4071 | if (SxactIsDoomed(MySerializableXact)) |
| 4072 | { |
| 4073 | ereport(ERROR, |
| 4074 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4075 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4076 | errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking." ), |
| 4077 | errhint("The transaction might succeed if retried." ))); |
| 4078 | } |
| 4079 | |
| 4080 | /* |
| 4081 | * Check to see whether the tuple has been written to by a concurrent |
| 4082 | * transaction, either to create it not visible to us, or to delete it |
| 4083 | * while it is visible to us. The "visible" bool indicates whether the |
| 4084 | * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else |
| 4085 | * is going on with it. |
| 4086 | */ |
| 4087 | htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer); |
| 4088 | switch (htsvResult) |
| 4089 | { |
| 4090 | case HEAPTUPLE_LIVE: |
| 4091 | if (visible) |
| 4092 | return; |
| 4093 | xid = HeapTupleHeaderGetXmin(tuple->t_data); |
| 4094 | break; |
| 4095 | case HEAPTUPLE_RECENTLY_DEAD: |
| 4096 | if (!visible) |
| 4097 | return; |
| 4098 | xid = HeapTupleHeaderGetUpdateXid(tuple->t_data); |
| 4099 | break; |
| 4100 | case HEAPTUPLE_DELETE_IN_PROGRESS: |
| 4101 | xid = HeapTupleHeaderGetUpdateXid(tuple->t_data); |
| 4102 | break; |
| 4103 | case HEAPTUPLE_INSERT_IN_PROGRESS: |
| 4104 | xid = HeapTupleHeaderGetXmin(tuple->t_data); |
| 4105 | break; |
| 4106 | case HEAPTUPLE_DEAD: |
| 4107 | return; |
| 4108 | default: |
| 4109 | |
| 4110 | /* |
| 4111 | * The only way to get to this default clause is if a new value is |
| 4112 | * added to the enum type without adding it to this switch |
| 4113 | * statement. That's a bug, so elog. |
| 4114 | */ |
| 4115 | elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u" , htsvResult); |
| 4116 | |
| 4117 | /* |
| 4118 | * In spite of having all enum values covered and calling elog on |
| 4119 | * this default, some compilers think this is a code path which |
| 4120 | * allows xid to be used below without initialization. Silence |
| 4121 | * that warning. |
| 4122 | */ |
| 4123 | xid = InvalidTransactionId; |
| 4124 | } |
| 4125 | Assert(TransactionIdIsValid(xid)); |
| 4126 | Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin)); |
| 4127 | |
| 4128 | /* |
| 4129 | * Find top level xid. Bail out if xid is too early to be a conflict, or |
| 4130 | * if it's our own xid. |
| 4131 | */ |
| 4132 | if (TransactionIdEquals(xid, GetTopTransactionIdIfAny())) |
| 4133 | return; |
| 4134 | xid = SubTransGetTopmostTransaction(xid); |
| 4135 | if (TransactionIdPrecedes(xid, TransactionXmin)) |
| 4136 | return; |
| 4137 | if (TransactionIdEquals(xid, GetTopTransactionIdIfAny())) |
| 4138 | return; |
| 4139 | |
| 4140 | /* |
| 4141 | * Find sxact or summarized info for the top level xid. |
| 4142 | */ |
| 4143 | sxidtag.xid = xid; |
| 4144 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 4145 | sxid = (SERIALIZABLEXID *) |
| 4146 | hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL); |
| 4147 | if (!sxid) |
| 4148 | { |
| 4149 | /* |
| 4150 | * Transaction not found in "normal" SSI structures. Check whether it |
| 4151 | * got pushed out to SLRU storage for "old committed" transactions. |
| 4152 | */ |
| 4153 | SerCommitSeqNo conflictCommitSeqNo; |
| 4154 | |
| 4155 | conflictCommitSeqNo = OldSerXidGetMinConflictCommitSeqNo(xid); |
| 4156 | if (conflictCommitSeqNo != 0) |
| 4157 | { |
| 4158 | if (conflictCommitSeqNo != InvalidSerCommitSeqNo |
| 4159 | && (!SxactIsReadOnly(MySerializableXact) |
| 4160 | || conflictCommitSeqNo |
| 4161 | <= MySerializableXact->SeqNo.lastCommitBeforeSnapshot)) |
| 4162 | ereport(ERROR, |
| 4163 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4164 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4165 | errdetail_internal("Reason code: Canceled on conflict out to old pivot %u." , xid), |
| 4166 | errhint("The transaction might succeed if retried." ))); |
| 4167 | |
| 4168 | if (SxactHasSummaryConflictIn(MySerializableXact) |
| 4169 | || !SHMQueueEmpty(&MySerializableXact->inConflicts)) |
| 4170 | ereport(ERROR, |
| 4171 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4172 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4173 | errdetail_internal("Reason code: Canceled on identification as a pivot, with conflict out to old committed transaction %u." , xid), |
| 4174 | errhint("The transaction might succeed if retried." ))); |
| 4175 | |
| 4176 | MySerializableXact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT; |
| 4177 | } |
| 4178 | |
| 4179 | /* It's not serializable or otherwise not important. */ |
| 4180 | LWLockRelease(SerializableXactHashLock); |
| 4181 | return; |
| 4182 | } |
| 4183 | sxact = sxid->myXact; |
| 4184 | Assert(TransactionIdEquals(sxact->topXid, xid)); |
| 4185 | if (sxact == MySerializableXact || SxactIsDoomed(sxact)) |
| 4186 | { |
| 4187 | /* Can't conflict with ourself or a transaction that will roll back. */ |
| 4188 | LWLockRelease(SerializableXactHashLock); |
| 4189 | return; |
| 4190 | } |
| 4191 | |
| 4192 | /* |
| 4193 | * We have a conflict out to a transaction which has a conflict out to a |
| 4194 | * summarized transaction. That summarized transaction must have |
| 4195 | * committed first, and we can't tell when it committed in relation to our |
| 4196 | * snapshot acquisition, so something needs to be canceled. |
| 4197 | */ |
| 4198 | if (SxactHasSummaryConflictOut(sxact)) |
| 4199 | { |
| 4200 | if (!SxactIsPrepared(sxact)) |
| 4201 | { |
| 4202 | sxact->flags |= SXACT_FLAG_DOOMED; |
| 4203 | LWLockRelease(SerializableXactHashLock); |
| 4204 | return; |
| 4205 | } |
| 4206 | else |
| 4207 | { |
| 4208 | LWLockRelease(SerializableXactHashLock); |
| 4209 | ereport(ERROR, |
| 4210 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4211 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4212 | errdetail_internal("Reason code: Canceled on conflict out to old pivot." ), |
| 4213 | errhint("The transaction might succeed if retried." ))); |
| 4214 | } |
| 4215 | } |
| 4216 | |
| 4217 | /* |
| 4218 | * If this is a read-only transaction and the writing transaction has |
| 4219 | * committed, and it doesn't have a rw-conflict to a transaction which |
| 4220 | * committed before it, no conflict. |
| 4221 | */ |
| 4222 | if (SxactIsReadOnly(MySerializableXact) |
| 4223 | && SxactIsCommitted(sxact) |
| 4224 | && !SxactHasSummaryConflictOut(sxact) |
| 4225 | && (!SxactHasConflictOut(sxact) |
| 4226 | || MySerializableXact->SeqNo.lastCommitBeforeSnapshot < sxact->SeqNo.earliestOutConflictCommit)) |
| 4227 | { |
| 4228 | /* Read-only transaction will appear to run first. No conflict. */ |
| 4229 | LWLockRelease(SerializableXactHashLock); |
| 4230 | return; |
| 4231 | } |
| 4232 | |
| 4233 | if (!XidIsConcurrent(xid)) |
| 4234 | { |
| 4235 | /* This write was already in our snapshot; no conflict. */ |
| 4236 | LWLockRelease(SerializableXactHashLock); |
| 4237 | return; |
| 4238 | } |
| 4239 | |
| 4240 | if (RWConflictExists(MySerializableXact, sxact)) |
| 4241 | { |
| 4242 | /* We don't want duplicate conflict records in the list. */ |
| 4243 | LWLockRelease(SerializableXactHashLock); |
| 4244 | return; |
| 4245 | } |
| 4246 | |
| 4247 | /* |
| 4248 | * Flag the conflict. But first, if this conflict creates a dangerous |
| 4249 | * structure, ereport an error. |
| 4250 | */ |
| 4251 | FlagRWConflict(MySerializableXact, sxact); |
| 4252 | LWLockRelease(SerializableXactHashLock); |
| 4253 | } |
| 4254 | |
| 4255 | /* |
| 4256 | * Check a particular target for rw-dependency conflict in. A subroutine of |
| 4257 | * CheckForSerializableConflictIn(). |
| 4258 | */ |
| 4259 | static void |
| 4260 | CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag) |
| 4261 | { |
| 4262 | uint32 targettaghash; |
| 4263 | LWLock *partitionLock; |
| 4264 | PREDICATELOCKTARGET *target; |
| 4265 | PREDICATELOCK *predlock; |
| 4266 | PREDICATELOCK *mypredlock = NULL; |
| 4267 | PREDICATELOCKTAG mypredlocktag; |
| 4268 | |
| 4269 | Assert(MySerializableXact != InvalidSerializableXact); |
| 4270 | |
| 4271 | /* |
| 4272 | * The same hash and LW lock apply to the lock target and the lock itself. |
| 4273 | */ |
| 4274 | targettaghash = PredicateLockTargetTagHashCode(targettag); |
| 4275 | partitionLock = PredicateLockHashPartitionLock(targettaghash); |
| 4276 | LWLockAcquire(partitionLock, LW_SHARED); |
| 4277 | target = (PREDICATELOCKTARGET *) |
| 4278 | hash_search_with_hash_value(PredicateLockTargetHash, |
| 4279 | targettag, targettaghash, |
| 4280 | HASH_FIND, NULL); |
| 4281 | if (!target) |
| 4282 | { |
| 4283 | /* Nothing has this target locked; we're done here. */ |
| 4284 | LWLockRelease(partitionLock); |
| 4285 | return; |
| 4286 | } |
| 4287 | |
| 4288 | /* |
| 4289 | * Each lock for an overlapping transaction represents a conflict: a |
| 4290 | * rw-dependency in to this transaction. |
| 4291 | */ |
| 4292 | predlock = (PREDICATELOCK *) |
| 4293 | SHMQueueNext(&(target->predicateLocks), |
| 4294 | &(target->predicateLocks), |
| 4295 | offsetof(PREDICATELOCK, targetLink)); |
| 4296 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 4297 | while (predlock) |
| 4298 | { |
| 4299 | SHM_QUEUE *predlocktargetlink; |
| 4300 | PREDICATELOCK *nextpredlock; |
| 4301 | SERIALIZABLEXACT *sxact; |
| 4302 | |
| 4303 | predlocktargetlink = &(predlock->targetLink); |
| 4304 | nextpredlock = (PREDICATELOCK *) |
| 4305 | SHMQueueNext(&(target->predicateLocks), |
| 4306 | predlocktargetlink, |
| 4307 | offsetof(PREDICATELOCK, targetLink)); |
| 4308 | |
| 4309 | sxact = predlock->tag.myXact; |
| 4310 | if (sxact == MySerializableXact) |
| 4311 | { |
| 4312 | /* |
| 4313 | * If we're getting a write lock on a tuple, we don't need a |
| 4314 | * predicate (SIREAD) lock on the same tuple. We can safely remove |
| 4315 | * our SIREAD lock, but we'll defer doing so until after the loop |
| 4316 | * because that requires upgrading to an exclusive partition lock. |
| 4317 | * |
| 4318 | * We can't use this optimization within a subtransaction because |
| 4319 | * the subtransaction could roll back, and we would be left |
| 4320 | * without any lock at the top level. |
| 4321 | */ |
| 4322 | if (!IsSubTransaction() |
| 4323 | && GET_PREDICATELOCKTARGETTAG_OFFSET(*targettag)) |
| 4324 | { |
| 4325 | mypredlock = predlock; |
| 4326 | mypredlocktag = predlock->tag; |
| 4327 | } |
| 4328 | } |
| 4329 | else if (!SxactIsDoomed(sxact) |
| 4330 | && (!SxactIsCommitted(sxact) |
| 4331 | || TransactionIdPrecedes(GetTransactionSnapshot()->xmin, |
| 4332 | sxact->finishedBefore)) |
| 4333 | && !RWConflictExists(sxact, MySerializableXact)) |
| 4334 | { |
| 4335 | LWLockRelease(SerializableXactHashLock); |
| 4336 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 4337 | |
| 4338 | /* |
| 4339 | * Re-check after getting exclusive lock because the other |
| 4340 | * transaction may have flagged a conflict. |
| 4341 | */ |
| 4342 | if (!SxactIsDoomed(sxact) |
| 4343 | && (!SxactIsCommitted(sxact) |
| 4344 | || TransactionIdPrecedes(GetTransactionSnapshot()->xmin, |
| 4345 | sxact->finishedBefore)) |
| 4346 | && !RWConflictExists(sxact, MySerializableXact)) |
| 4347 | { |
| 4348 | FlagRWConflict(sxact, MySerializableXact); |
| 4349 | } |
| 4350 | |
| 4351 | LWLockRelease(SerializableXactHashLock); |
| 4352 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 4353 | } |
| 4354 | |
| 4355 | predlock = nextpredlock; |
| 4356 | } |
| 4357 | LWLockRelease(SerializableXactHashLock); |
| 4358 | LWLockRelease(partitionLock); |
| 4359 | |
| 4360 | /* |
| 4361 | * If we found one of our own SIREAD locks to remove, remove it now. |
| 4362 | * |
| 4363 | * At this point our transaction already has an ExclusiveRowLock on the |
| 4364 | * relation, so we are OK to drop the predicate lock on the tuple, if |
| 4365 | * found, without fearing that another write against the tuple will occur |
| 4366 | * before the MVCC information makes it to the buffer. |
| 4367 | */ |
| 4368 | if (mypredlock != NULL) |
| 4369 | { |
| 4370 | uint32 predlockhashcode; |
| 4371 | PREDICATELOCK *rmpredlock; |
| 4372 | |
| 4373 | LWLockAcquire(SerializablePredicateLockListLock, LW_SHARED); |
| 4374 | if (IsInParallelMode()) |
| 4375 | LWLockAcquire(&MySerializableXact->predicateLockListLock, LW_EXCLUSIVE); |
| 4376 | LWLockAcquire(partitionLock, LW_EXCLUSIVE); |
| 4377 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 4378 | |
| 4379 | /* |
| 4380 | * Remove the predicate lock from shared memory, if it wasn't removed |
| 4381 | * while the locks were released. One way that could happen is from |
| 4382 | * autovacuum cleaning up an index. |
| 4383 | */ |
| 4384 | predlockhashcode = PredicateLockHashCodeFromTargetHashCode |
| 4385 | (&mypredlocktag, targettaghash); |
| 4386 | rmpredlock = (PREDICATELOCK *) |
| 4387 | hash_search_with_hash_value(PredicateLockHash, |
| 4388 | &mypredlocktag, |
| 4389 | predlockhashcode, |
| 4390 | HASH_FIND, NULL); |
| 4391 | if (rmpredlock != NULL) |
| 4392 | { |
| 4393 | Assert(rmpredlock == mypredlock); |
| 4394 | |
| 4395 | SHMQueueDelete(&(mypredlock->targetLink)); |
| 4396 | SHMQueueDelete(&(mypredlock->xactLink)); |
| 4397 | |
| 4398 | rmpredlock = (PREDICATELOCK *) |
| 4399 | hash_search_with_hash_value(PredicateLockHash, |
| 4400 | &mypredlocktag, |
| 4401 | predlockhashcode, |
| 4402 | HASH_REMOVE, NULL); |
| 4403 | Assert(rmpredlock == mypredlock); |
| 4404 | |
| 4405 | RemoveTargetIfNoLongerUsed(target, targettaghash); |
| 4406 | } |
| 4407 | |
| 4408 | LWLockRelease(SerializableXactHashLock); |
| 4409 | LWLockRelease(partitionLock); |
| 4410 | if (IsInParallelMode()) |
| 4411 | LWLockRelease(&MySerializableXact->predicateLockListLock); |
| 4412 | LWLockRelease(SerializablePredicateLockListLock); |
| 4413 | |
| 4414 | if (rmpredlock != NULL) |
| 4415 | { |
| 4416 | /* |
| 4417 | * Remove entry in local lock table if it exists. It's OK if it |
| 4418 | * doesn't exist; that means the lock was transferred to a new |
| 4419 | * target by a different backend. |
| 4420 | */ |
| 4421 | hash_search_with_hash_value(LocalPredicateLockHash, |
| 4422 | targettag, targettaghash, |
| 4423 | HASH_REMOVE, NULL); |
| 4424 | |
| 4425 | DecrementParentLocks(targettag); |
| 4426 | } |
| 4427 | } |
| 4428 | } |
| 4429 | |
| 4430 | /* |
| 4431 | * CheckForSerializableConflictIn |
| 4432 | * We are writing the given tuple. If that indicates a rw-conflict |
| 4433 | * in from another serializable transaction, take appropriate action. |
| 4434 | * |
| 4435 | * Skip checking for any granularity for which a parameter is missing. |
| 4436 | * |
| 4437 | * A tuple update or delete is in conflict if we have a predicate lock |
| 4438 | * against the relation or page in which the tuple exists, or against the |
| 4439 | * tuple itself. |
| 4440 | */ |
| 4441 | void |
| 4442 | CheckForSerializableConflictIn(Relation relation, HeapTuple tuple, |
| 4443 | Buffer buffer) |
| 4444 | { |
| 4445 | PREDICATELOCKTARGETTAG targettag; |
| 4446 | |
| 4447 | if (!SerializationNeededForWrite(relation)) |
| 4448 | return; |
| 4449 | |
| 4450 | /* Check if someone else has already decided that we need to die */ |
| 4451 | if (SxactIsDoomed(MySerializableXact)) |
| 4452 | ereport(ERROR, |
| 4453 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4454 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4455 | errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking." ), |
| 4456 | errhint("The transaction might succeed if retried." ))); |
| 4457 | |
| 4458 | /* |
| 4459 | * We're doing a write which might cause rw-conflicts now or later. |
| 4460 | * Memorize that fact. |
| 4461 | */ |
| 4462 | MyXactDidWrite = true; |
| 4463 | |
| 4464 | /* |
| 4465 | * It is important that we check for locks from the finest granularity to |
| 4466 | * the coarsest granularity, so that granularity promotion doesn't cause |
| 4467 | * us to miss a lock. The new (coarser) lock will be acquired before the |
| 4468 | * old (finer) locks are released. |
| 4469 | * |
| 4470 | * It is not possible to take and hold a lock across the checks for all |
| 4471 | * granularities because each target could be in a separate partition. |
| 4472 | */ |
| 4473 | if (tuple != NULL) |
| 4474 | { |
| 4475 | SET_PREDICATELOCKTARGETTAG_TUPLE(targettag, |
| 4476 | relation->rd_node.dbNode, |
| 4477 | relation->rd_id, |
| 4478 | ItemPointerGetBlockNumber(&(tuple->t_self)), |
| 4479 | ItemPointerGetOffsetNumber(&(tuple->t_self))); |
| 4480 | CheckTargetForConflictsIn(&targettag); |
| 4481 | } |
| 4482 | |
| 4483 | if (BufferIsValid(buffer)) |
| 4484 | { |
| 4485 | SET_PREDICATELOCKTARGETTAG_PAGE(targettag, |
| 4486 | relation->rd_node.dbNode, |
| 4487 | relation->rd_id, |
| 4488 | BufferGetBlockNumber(buffer)); |
| 4489 | CheckTargetForConflictsIn(&targettag); |
| 4490 | } |
| 4491 | |
| 4492 | SET_PREDICATELOCKTARGETTAG_RELATION(targettag, |
| 4493 | relation->rd_node.dbNode, |
| 4494 | relation->rd_id); |
| 4495 | CheckTargetForConflictsIn(&targettag); |
| 4496 | } |
| 4497 | |
| 4498 | /* |
| 4499 | * CheckTableForSerializableConflictIn |
| 4500 | * The entire table is going through a DDL-style logical mass delete |
| 4501 | * like TRUNCATE or DROP TABLE. If that causes a rw-conflict in from |
| 4502 | * another serializable transaction, take appropriate action. |
| 4503 | * |
| 4504 | * While these operations do not operate entirely within the bounds of |
| 4505 | * snapshot isolation, they can occur inside a serializable transaction, and |
| 4506 | * will logically occur after any reads which saw rows which were destroyed |
| 4507 | * by these operations, so we do what we can to serialize properly under |
| 4508 | * SSI. |
| 4509 | * |
| 4510 | * The relation passed in must be a heap relation. Any predicate lock of any |
| 4511 | * granularity on the heap will cause a rw-conflict in to this transaction. |
| 4512 | * Predicate locks on indexes do not matter because they only exist to guard |
| 4513 | * against conflicting inserts into the index, and this is a mass *delete*. |
| 4514 | * When a table is truncated or dropped, the index will also be truncated |
| 4515 | * or dropped, and we'll deal with locks on the index when that happens. |
| 4516 | * |
| 4517 | * Dropping or truncating a table also needs to drop any existing predicate |
| 4518 | * locks on heap tuples or pages, because they're about to go away. This |
| 4519 | * should be done before altering the predicate locks because the transaction |
| 4520 | * could be rolled back because of a conflict, in which case the lock changes |
| 4521 | * are not needed. (At the moment, we don't actually bother to drop the |
| 4522 | * existing locks on a dropped or truncated table at the moment. That might |
| 4523 | * lead to some false positives, but it doesn't seem worth the trouble.) |
| 4524 | */ |
| 4525 | void |
| 4526 | CheckTableForSerializableConflictIn(Relation relation) |
| 4527 | { |
| 4528 | HASH_SEQ_STATUS seqstat; |
| 4529 | PREDICATELOCKTARGET *target; |
| 4530 | Oid dbId; |
| 4531 | Oid heapId; |
| 4532 | int i; |
| 4533 | |
| 4534 | /* |
| 4535 | * Bail out quickly if there are no serializable transactions running. |
| 4536 | * It's safe to check this without taking locks because the caller is |
| 4537 | * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which |
| 4538 | * would matter here can be acquired while that is held. |
| 4539 | */ |
| 4540 | if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)) |
| 4541 | return; |
| 4542 | |
| 4543 | if (!SerializationNeededForWrite(relation)) |
| 4544 | return; |
| 4545 | |
| 4546 | /* |
| 4547 | * We're doing a write which might cause rw-conflicts now or later. |
| 4548 | * Memorize that fact. |
| 4549 | */ |
| 4550 | MyXactDidWrite = true; |
| 4551 | |
| 4552 | Assert(relation->rd_index == NULL); /* not an index relation */ |
| 4553 | |
| 4554 | dbId = relation->rd_node.dbNode; |
| 4555 | heapId = relation->rd_id; |
| 4556 | |
| 4557 | LWLockAcquire(SerializablePredicateLockListLock, LW_EXCLUSIVE); |
| 4558 | for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++) |
| 4559 | LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED); |
| 4560 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 4561 | |
| 4562 | /* Scan through target list */ |
| 4563 | hash_seq_init(&seqstat, PredicateLockTargetHash); |
| 4564 | |
| 4565 | while ((target = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat))) |
| 4566 | { |
| 4567 | PREDICATELOCK *predlock; |
| 4568 | |
| 4569 | /* |
| 4570 | * Check whether this is a target which needs attention. |
| 4571 | */ |
| 4572 | if (GET_PREDICATELOCKTARGETTAG_RELATION(target->tag) != heapId) |
| 4573 | continue; /* wrong relation id */ |
| 4574 | if (GET_PREDICATELOCKTARGETTAG_DB(target->tag) != dbId) |
| 4575 | continue; /* wrong database id */ |
| 4576 | |
| 4577 | /* |
| 4578 | * Loop through locks for this target and flag conflicts. |
| 4579 | */ |
| 4580 | predlock = (PREDICATELOCK *) |
| 4581 | SHMQueueNext(&(target->predicateLocks), |
| 4582 | &(target->predicateLocks), |
| 4583 | offsetof(PREDICATELOCK, targetLink)); |
| 4584 | while (predlock) |
| 4585 | { |
| 4586 | PREDICATELOCK *nextpredlock; |
| 4587 | |
| 4588 | nextpredlock = (PREDICATELOCK *) |
| 4589 | SHMQueueNext(&(target->predicateLocks), |
| 4590 | &(predlock->targetLink), |
| 4591 | offsetof(PREDICATELOCK, targetLink)); |
| 4592 | |
| 4593 | if (predlock->tag.myXact != MySerializableXact |
| 4594 | && !RWConflictExists(predlock->tag.myXact, MySerializableXact)) |
| 4595 | { |
| 4596 | FlagRWConflict(predlock->tag.myXact, MySerializableXact); |
| 4597 | } |
| 4598 | |
| 4599 | predlock = nextpredlock; |
| 4600 | } |
| 4601 | } |
| 4602 | |
| 4603 | /* Release locks in reverse order */ |
| 4604 | LWLockRelease(SerializableXactHashLock); |
| 4605 | for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--) |
| 4606 | LWLockRelease(PredicateLockHashPartitionLockByIndex(i)); |
| 4607 | LWLockRelease(SerializablePredicateLockListLock); |
| 4608 | } |
| 4609 | |
| 4610 | |
| 4611 | /* |
| 4612 | * Flag a rw-dependency between two serializable transactions. |
| 4613 | * |
| 4614 | * The caller is responsible for ensuring that we have a LW lock on |
| 4615 | * the transaction hash table. |
| 4616 | */ |
| 4617 | static void |
| 4618 | FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer) |
| 4619 | { |
| 4620 | Assert(reader != writer); |
| 4621 | |
| 4622 | /* First, see if this conflict causes failure. */ |
| 4623 | OnConflict_CheckForSerializationFailure(reader, writer); |
| 4624 | |
| 4625 | /* Actually do the conflict flagging. */ |
| 4626 | if (reader == OldCommittedSxact) |
| 4627 | writer->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN; |
| 4628 | else if (writer == OldCommittedSxact) |
| 4629 | reader->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT; |
| 4630 | else |
| 4631 | SetRWConflict(reader, writer); |
| 4632 | } |
| 4633 | |
| 4634 | /*---------------------------------------------------------------------------- |
| 4635 | * We are about to add a RW-edge to the dependency graph - check that we don't |
| 4636 | * introduce a dangerous structure by doing so, and abort one of the |
| 4637 | * transactions if so. |
| 4638 | * |
| 4639 | * A serialization failure can only occur if there is a dangerous structure |
| 4640 | * in the dependency graph: |
| 4641 | * |
| 4642 | * Tin ------> Tpivot ------> Tout |
| 4643 | * rw rw |
| 4644 | * |
| 4645 | * Furthermore, Tout must commit first. |
| 4646 | * |
| 4647 | * One more optimization is that if Tin is declared READ ONLY (or commits |
| 4648 | * without writing), we can only have a problem if Tout committed before Tin |
| 4649 | * acquired its snapshot. |
| 4650 | *---------------------------------------------------------------------------- |
| 4651 | */ |
| 4652 | static void |
| 4653 | OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader, |
| 4654 | SERIALIZABLEXACT *writer) |
| 4655 | { |
| 4656 | bool failure; |
| 4657 | RWConflict conflict; |
| 4658 | |
| 4659 | Assert(LWLockHeldByMe(SerializableXactHashLock)); |
| 4660 | |
| 4661 | failure = false; |
| 4662 | |
| 4663 | /*------------------------------------------------------------------------ |
| 4664 | * Check for already-committed writer with rw-conflict out flagged |
| 4665 | * (conflict-flag on W means that T2 committed before W): |
| 4666 | * |
| 4667 | * R ------> W ------> T2 |
| 4668 | * rw rw |
| 4669 | * |
| 4670 | * That is a dangerous structure, so we must abort. (Since the writer |
| 4671 | * has already committed, we must be the reader) |
| 4672 | *------------------------------------------------------------------------ |
| 4673 | */ |
| 4674 | if (SxactIsCommitted(writer) |
| 4675 | && (SxactHasConflictOut(writer) || SxactHasSummaryConflictOut(writer))) |
| 4676 | failure = true; |
| 4677 | |
| 4678 | /*------------------------------------------------------------------------ |
| 4679 | * Check whether the writer has become a pivot with an out-conflict |
| 4680 | * committed transaction (T2), and T2 committed first: |
| 4681 | * |
| 4682 | * R ------> W ------> T2 |
| 4683 | * rw rw |
| 4684 | * |
| 4685 | * Because T2 must've committed first, there is no anomaly if: |
| 4686 | * - the reader committed before T2 |
| 4687 | * - the writer committed before T2 |
| 4688 | * - the reader is a READ ONLY transaction and the reader was concurrent |
| 4689 | * with T2 (= reader acquired its snapshot before T2 committed) |
| 4690 | * |
| 4691 | * We also handle the case that T2 is prepared but not yet committed |
| 4692 | * here. In that case T2 has already checked for conflicts, so if it |
| 4693 | * commits first, making the above conflict real, it's too late for it |
| 4694 | * to abort. |
| 4695 | *------------------------------------------------------------------------ |
| 4696 | */ |
| 4697 | if (!failure) |
| 4698 | { |
| 4699 | if (SxactHasSummaryConflictOut(writer)) |
| 4700 | { |
| 4701 | failure = true; |
| 4702 | conflict = NULL; |
| 4703 | } |
| 4704 | else |
| 4705 | conflict = (RWConflict) |
| 4706 | SHMQueueNext(&writer->outConflicts, |
| 4707 | &writer->outConflicts, |
| 4708 | offsetof(RWConflictData, outLink)); |
| 4709 | while (conflict) |
| 4710 | { |
| 4711 | SERIALIZABLEXACT *t2 = conflict->sxactIn; |
| 4712 | |
| 4713 | if (SxactIsPrepared(t2) |
| 4714 | && (!SxactIsCommitted(reader) |
| 4715 | || t2->prepareSeqNo <= reader->commitSeqNo) |
| 4716 | && (!SxactIsCommitted(writer) |
| 4717 | || t2->prepareSeqNo <= writer->commitSeqNo) |
| 4718 | && (!SxactIsReadOnly(reader) |
| 4719 | || t2->prepareSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot)) |
| 4720 | { |
| 4721 | failure = true; |
| 4722 | break; |
| 4723 | } |
| 4724 | conflict = (RWConflict) |
| 4725 | SHMQueueNext(&writer->outConflicts, |
| 4726 | &conflict->outLink, |
| 4727 | offsetof(RWConflictData, outLink)); |
| 4728 | } |
| 4729 | } |
| 4730 | |
| 4731 | /*------------------------------------------------------------------------ |
| 4732 | * Check whether the reader has become a pivot with a writer |
| 4733 | * that's committed (or prepared): |
| 4734 | * |
| 4735 | * T0 ------> R ------> W |
| 4736 | * rw rw |
| 4737 | * |
| 4738 | * Because W must've committed first for an anomaly to occur, there is no |
| 4739 | * anomaly if: |
| 4740 | * - T0 committed before the writer |
| 4741 | * - T0 is READ ONLY, and overlaps the writer |
| 4742 | *------------------------------------------------------------------------ |
| 4743 | */ |
| 4744 | if (!failure && SxactIsPrepared(writer) && !SxactIsReadOnly(reader)) |
| 4745 | { |
| 4746 | if (SxactHasSummaryConflictIn(reader)) |
| 4747 | { |
| 4748 | failure = true; |
| 4749 | conflict = NULL; |
| 4750 | } |
| 4751 | else |
| 4752 | conflict = (RWConflict) |
| 4753 | SHMQueueNext(&reader->inConflicts, |
| 4754 | &reader->inConflicts, |
| 4755 | offsetof(RWConflictData, inLink)); |
| 4756 | while (conflict) |
| 4757 | { |
| 4758 | SERIALIZABLEXACT *t0 = conflict->sxactOut; |
| 4759 | |
| 4760 | if (!SxactIsDoomed(t0) |
| 4761 | && (!SxactIsCommitted(t0) |
| 4762 | || t0->commitSeqNo >= writer->prepareSeqNo) |
| 4763 | && (!SxactIsReadOnly(t0) |
| 4764 | || t0->SeqNo.lastCommitBeforeSnapshot >= writer->prepareSeqNo)) |
| 4765 | { |
| 4766 | failure = true; |
| 4767 | break; |
| 4768 | } |
| 4769 | conflict = (RWConflict) |
| 4770 | SHMQueueNext(&reader->inConflicts, |
| 4771 | &conflict->inLink, |
| 4772 | offsetof(RWConflictData, inLink)); |
| 4773 | } |
| 4774 | } |
| 4775 | |
| 4776 | if (failure) |
| 4777 | { |
| 4778 | /* |
| 4779 | * We have to kill a transaction to avoid a possible anomaly from |
| 4780 | * occurring. If the writer is us, we can just ereport() to cause a |
| 4781 | * transaction abort. Otherwise we flag the writer for termination, |
| 4782 | * causing it to abort when it tries to commit. However, if the writer |
| 4783 | * is a prepared transaction, already prepared, we can't abort it |
| 4784 | * anymore, so we have to kill the reader instead. |
| 4785 | */ |
| 4786 | if (MySerializableXact == writer) |
| 4787 | { |
| 4788 | LWLockRelease(SerializableXactHashLock); |
| 4789 | ereport(ERROR, |
| 4790 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4791 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4792 | errdetail_internal("Reason code: Canceled on identification as a pivot, during write." ), |
| 4793 | errhint("The transaction might succeed if retried." ))); |
| 4794 | } |
| 4795 | else if (SxactIsPrepared(writer)) |
| 4796 | { |
| 4797 | LWLockRelease(SerializableXactHashLock); |
| 4798 | |
| 4799 | /* if we're not the writer, we have to be the reader */ |
| 4800 | Assert(MySerializableXact == reader); |
| 4801 | ereport(ERROR, |
| 4802 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4803 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4804 | errdetail_internal("Reason code: Canceled on conflict out to pivot %u, during read." , writer->topXid), |
| 4805 | errhint("The transaction might succeed if retried." ))); |
| 4806 | } |
| 4807 | writer->flags |= SXACT_FLAG_DOOMED; |
| 4808 | } |
| 4809 | } |
| 4810 | |
| 4811 | /* |
| 4812 | * PreCommit_CheckForSerializableConflicts |
| 4813 | * Check for dangerous structures in a serializable transaction |
| 4814 | * at commit. |
| 4815 | * |
| 4816 | * We're checking for a dangerous structure as each conflict is recorded. |
| 4817 | * The only way we could have a problem at commit is if this is the "out" |
| 4818 | * side of a pivot, and neither the "in" side nor the pivot has yet |
| 4819 | * committed. |
| 4820 | * |
| 4821 | * If a dangerous structure is found, the pivot (the near conflict) is |
| 4822 | * marked for death, because rolling back another transaction might mean |
| 4823 | * that we flail without ever making progress. This transaction is |
| 4824 | * committing writes, so letting it commit ensures progress. If we |
| 4825 | * canceled the far conflict, it might immediately fail again on retry. |
| 4826 | */ |
| 4827 | void |
| 4828 | PreCommit_CheckForSerializationFailure(void) |
| 4829 | { |
| 4830 | RWConflict nearConflict; |
| 4831 | |
| 4832 | if (MySerializableXact == InvalidSerializableXact) |
| 4833 | return; |
| 4834 | |
| 4835 | Assert(IsolationIsSerializable()); |
| 4836 | |
| 4837 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 4838 | |
| 4839 | /* Check if someone else has already decided that we need to die */ |
| 4840 | if (SxactIsDoomed(MySerializableXact)) |
| 4841 | { |
| 4842 | Assert(!SxactIsPartiallyReleased(MySerializableXact)); |
| 4843 | LWLockRelease(SerializableXactHashLock); |
| 4844 | ereport(ERROR, |
| 4845 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4846 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4847 | errdetail_internal("Reason code: Canceled on identification as a pivot, during commit attempt." ), |
| 4848 | errhint("The transaction might succeed if retried." ))); |
| 4849 | } |
| 4850 | |
| 4851 | nearConflict = (RWConflict) |
| 4852 | SHMQueueNext(&MySerializableXact->inConflicts, |
| 4853 | &MySerializableXact->inConflicts, |
| 4854 | offsetof(RWConflictData, inLink)); |
| 4855 | while (nearConflict) |
| 4856 | { |
| 4857 | if (!SxactIsCommitted(nearConflict->sxactOut) |
| 4858 | && !SxactIsDoomed(nearConflict->sxactOut)) |
| 4859 | { |
| 4860 | RWConflict farConflict; |
| 4861 | |
| 4862 | farConflict = (RWConflict) |
| 4863 | SHMQueueNext(&nearConflict->sxactOut->inConflicts, |
| 4864 | &nearConflict->sxactOut->inConflicts, |
| 4865 | offsetof(RWConflictData, inLink)); |
| 4866 | while (farConflict) |
| 4867 | { |
| 4868 | if (farConflict->sxactOut == MySerializableXact |
| 4869 | || (!SxactIsCommitted(farConflict->sxactOut) |
| 4870 | && !SxactIsReadOnly(farConflict->sxactOut) |
| 4871 | && !SxactIsDoomed(farConflict->sxactOut))) |
| 4872 | { |
| 4873 | /* |
| 4874 | * Normally, we kill the pivot transaction to make sure we |
| 4875 | * make progress if the failing transaction is retried. |
| 4876 | * However, we can't kill it if it's already prepared, so |
| 4877 | * in that case we commit suicide instead. |
| 4878 | */ |
| 4879 | if (SxactIsPrepared(nearConflict->sxactOut)) |
| 4880 | { |
| 4881 | LWLockRelease(SerializableXactHashLock); |
| 4882 | ereport(ERROR, |
| 4883 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 4884 | errmsg("could not serialize access due to read/write dependencies among transactions" ), |
| 4885 | errdetail_internal("Reason code: Canceled on commit attempt with conflict in from prepared pivot." ), |
| 4886 | errhint("The transaction might succeed if retried." ))); |
| 4887 | } |
| 4888 | nearConflict->sxactOut->flags |= SXACT_FLAG_DOOMED; |
| 4889 | break; |
| 4890 | } |
| 4891 | farConflict = (RWConflict) |
| 4892 | SHMQueueNext(&nearConflict->sxactOut->inConflicts, |
| 4893 | &farConflict->inLink, |
| 4894 | offsetof(RWConflictData, inLink)); |
| 4895 | } |
| 4896 | } |
| 4897 | |
| 4898 | nearConflict = (RWConflict) |
| 4899 | SHMQueueNext(&MySerializableXact->inConflicts, |
| 4900 | &nearConflict->inLink, |
| 4901 | offsetof(RWConflictData, inLink)); |
| 4902 | } |
| 4903 | |
| 4904 | MySerializableXact->prepareSeqNo = ++(PredXact->LastSxactCommitSeqNo); |
| 4905 | MySerializableXact->flags |= SXACT_FLAG_PREPARED; |
| 4906 | |
| 4907 | LWLockRelease(SerializableXactHashLock); |
| 4908 | } |
| 4909 | |
| 4910 | /*------------------------------------------------------------------------*/ |
| 4911 | |
| 4912 | /* |
| 4913 | * Two-phase commit support |
| 4914 | */ |
| 4915 | |
| 4916 | /* |
| 4917 | * AtPrepare_Locks |
| 4918 | * Do the preparatory work for a PREPARE: make 2PC state file |
| 4919 | * records for all predicate locks currently held. |
| 4920 | */ |
| 4921 | void |
| 4922 | AtPrepare_PredicateLocks(void) |
| 4923 | { |
| 4924 | PREDICATELOCK *predlock; |
| 4925 | SERIALIZABLEXACT *sxact; |
| 4926 | TwoPhasePredicateRecord record; |
| 4927 | TwoPhasePredicateXactRecord *xactRecord; |
| 4928 | TwoPhasePredicateLockRecord *lockRecord; |
| 4929 | |
| 4930 | sxact = MySerializableXact; |
| 4931 | xactRecord = &(record.data.xactRecord); |
| 4932 | lockRecord = &(record.data.lockRecord); |
| 4933 | |
| 4934 | if (MySerializableXact == InvalidSerializableXact) |
| 4935 | return; |
| 4936 | |
| 4937 | /* Generate an xact record for our SERIALIZABLEXACT */ |
| 4938 | record.type = TWOPHASEPREDICATERECORD_XACT; |
| 4939 | xactRecord->xmin = MySerializableXact->xmin; |
| 4940 | xactRecord->flags = MySerializableXact->flags; |
| 4941 | |
| 4942 | /* |
| 4943 | * Note that we don't include the list of conflicts in our out in the |
| 4944 | * statefile, because new conflicts can be added even after the |
| 4945 | * transaction prepares. We'll just make a conservative assumption during |
| 4946 | * recovery instead. |
| 4947 | */ |
| 4948 | |
| 4949 | RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0, |
| 4950 | &record, sizeof(record)); |
| 4951 | |
| 4952 | /* |
| 4953 | * Generate a lock record for each lock. |
| 4954 | * |
| 4955 | * To do this, we need to walk the predicate lock list in our sxact rather |
| 4956 | * than using the local predicate lock table because the latter is not |
| 4957 | * guaranteed to be accurate. |
| 4958 | */ |
| 4959 | LWLockAcquire(SerializablePredicateLockListLock, LW_SHARED); |
| 4960 | |
| 4961 | /* |
| 4962 | * No need to take sxact->predicateLockListLock in parallel mode because |
| 4963 | * there cannot be any parallel workers running while we are preparing a |
| 4964 | * transaction. |
| 4965 | */ |
| 4966 | Assert(!IsParallelWorker() && !ParallelContextActive()); |
| 4967 | |
| 4968 | predlock = (PREDICATELOCK *) |
| 4969 | SHMQueueNext(&(sxact->predicateLocks), |
| 4970 | &(sxact->predicateLocks), |
| 4971 | offsetof(PREDICATELOCK, xactLink)); |
| 4972 | |
| 4973 | while (predlock != NULL) |
| 4974 | { |
| 4975 | record.type = TWOPHASEPREDICATERECORD_LOCK; |
| 4976 | lockRecord->target = predlock->tag.myTarget->tag; |
| 4977 | |
| 4978 | RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0, |
| 4979 | &record, sizeof(record)); |
| 4980 | |
| 4981 | predlock = (PREDICATELOCK *) |
| 4982 | SHMQueueNext(&(sxact->predicateLocks), |
| 4983 | &(predlock->xactLink), |
| 4984 | offsetof(PREDICATELOCK, xactLink)); |
| 4985 | } |
| 4986 | |
| 4987 | LWLockRelease(SerializablePredicateLockListLock); |
| 4988 | } |
| 4989 | |
| 4990 | /* |
| 4991 | * PostPrepare_Locks |
| 4992 | * Clean up after successful PREPARE. Unlike the non-predicate |
| 4993 | * lock manager, we do not need to transfer locks to a dummy |
| 4994 | * PGPROC because our SERIALIZABLEXACT will stay around |
| 4995 | * anyway. We only need to clean up our local state. |
| 4996 | */ |
| 4997 | void |
| 4998 | PostPrepare_PredicateLocks(TransactionId xid) |
| 4999 | { |
| 5000 | if (MySerializableXact == InvalidSerializableXact) |
| 5001 | return; |
| 5002 | |
| 5003 | Assert(SxactIsPrepared(MySerializableXact)); |
| 5004 | |
| 5005 | MySerializableXact->pid = 0; |
| 5006 | |
| 5007 | hash_destroy(LocalPredicateLockHash); |
| 5008 | LocalPredicateLockHash = NULL; |
| 5009 | |
| 5010 | MySerializableXact = InvalidSerializableXact; |
| 5011 | MyXactDidWrite = false; |
| 5012 | } |
| 5013 | |
| 5014 | /* |
| 5015 | * PredicateLockTwoPhaseFinish |
| 5016 | * Release a prepared transaction's predicate locks once it |
| 5017 | * commits or aborts. |
| 5018 | */ |
| 5019 | void |
| 5020 | PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit) |
| 5021 | { |
| 5022 | SERIALIZABLEXID *sxid; |
| 5023 | SERIALIZABLEXIDTAG sxidtag; |
| 5024 | |
| 5025 | sxidtag.xid = xid; |
| 5026 | |
| 5027 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 5028 | sxid = (SERIALIZABLEXID *) |
| 5029 | hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL); |
| 5030 | LWLockRelease(SerializableXactHashLock); |
| 5031 | |
| 5032 | /* xid will not be found if it wasn't a serializable transaction */ |
| 5033 | if (sxid == NULL) |
| 5034 | return; |
| 5035 | |
| 5036 | /* Release its locks */ |
| 5037 | MySerializableXact = sxid->myXact; |
| 5038 | MyXactDidWrite = true; /* conservatively assume that we wrote |
| 5039 | * something */ |
| 5040 | ReleasePredicateLocks(isCommit, false); |
| 5041 | } |
| 5042 | |
| 5043 | /* |
| 5044 | * Re-acquire a predicate lock belonging to a transaction that was prepared. |
| 5045 | */ |
| 5046 | void |
| 5047 | predicatelock_twophase_recover(TransactionId xid, uint16 info, |
| 5048 | void *recdata, uint32 len) |
| 5049 | { |
| 5050 | TwoPhasePredicateRecord *record; |
| 5051 | |
| 5052 | Assert(len == sizeof(TwoPhasePredicateRecord)); |
| 5053 | |
| 5054 | record = (TwoPhasePredicateRecord *) recdata; |
| 5055 | |
| 5056 | Assert((record->type == TWOPHASEPREDICATERECORD_XACT) || |
| 5057 | (record->type == TWOPHASEPREDICATERECORD_LOCK)); |
| 5058 | |
| 5059 | if (record->type == TWOPHASEPREDICATERECORD_XACT) |
| 5060 | { |
| 5061 | /* Per-transaction record. Set up a SERIALIZABLEXACT. */ |
| 5062 | TwoPhasePredicateXactRecord *xactRecord; |
| 5063 | SERIALIZABLEXACT *sxact; |
| 5064 | SERIALIZABLEXID *sxid; |
| 5065 | SERIALIZABLEXIDTAG sxidtag; |
| 5066 | bool found; |
| 5067 | |
| 5068 | xactRecord = (TwoPhasePredicateXactRecord *) &record->data.xactRecord; |
| 5069 | |
| 5070 | LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); |
| 5071 | sxact = CreatePredXact(); |
| 5072 | if (!sxact) |
| 5073 | ereport(ERROR, |
| 5074 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 5075 | errmsg("out of shared memory" ))); |
| 5076 | |
| 5077 | /* vxid for a prepared xact is InvalidBackendId/xid; no pid */ |
| 5078 | sxact->vxid.backendId = InvalidBackendId; |
| 5079 | sxact->vxid.localTransactionId = (LocalTransactionId) xid; |
| 5080 | sxact->pid = 0; |
| 5081 | |
| 5082 | /* a prepared xact hasn't committed yet */ |
| 5083 | sxact->prepareSeqNo = RecoverySerCommitSeqNo; |
| 5084 | sxact->commitSeqNo = InvalidSerCommitSeqNo; |
| 5085 | sxact->finishedBefore = InvalidTransactionId; |
| 5086 | |
| 5087 | sxact->SeqNo.lastCommitBeforeSnapshot = RecoverySerCommitSeqNo; |
| 5088 | |
| 5089 | /* |
| 5090 | * Don't need to track this; no transactions running at the time the |
| 5091 | * recovered xact started are still active, except possibly other |
| 5092 | * prepared xacts and we don't care whether those are RO_SAFE or not. |
| 5093 | */ |
| 5094 | SHMQueueInit(&(sxact->possibleUnsafeConflicts)); |
| 5095 | |
| 5096 | SHMQueueInit(&(sxact->predicateLocks)); |
| 5097 | SHMQueueElemInit(&(sxact->finishedLink)); |
| 5098 | |
| 5099 | sxact->topXid = xid; |
| 5100 | sxact->xmin = xactRecord->xmin; |
| 5101 | sxact->flags = xactRecord->flags; |
| 5102 | Assert(SxactIsPrepared(sxact)); |
| 5103 | if (!SxactIsReadOnly(sxact)) |
| 5104 | { |
| 5105 | ++(PredXact->WritableSxactCount); |
| 5106 | Assert(PredXact->WritableSxactCount <= |
| 5107 | (MaxBackends + max_prepared_xacts)); |
| 5108 | } |
| 5109 | |
| 5110 | /* |
| 5111 | * We don't know whether the transaction had any conflicts or not, so |
| 5112 | * we'll conservatively assume that it had both a conflict in and a |
| 5113 | * conflict out, and represent that with the summary conflict flags. |
| 5114 | */ |
| 5115 | SHMQueueInit(&(sxact->outConflicts)); |
| 5116 | SHMQueueInit(&(sxact->inConflicts)); |
| 5117 | sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN; |
| 5118 | sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT; |
| 5119 | |
| 5120 | /* Register the transaction's xid */ |
| 5121 | sxidtag.xid = xid; |
| 5122 | sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash, |
| 5123 | &sxidtag, |
| 5124 | HASH_ENTER, &found); |
| 5125 | Assert(sxid != NULL); |
| 5126 | Assert(!found); |
| 5127 | sxid->myXact = (SERIALIZABLEXACT *) sxact; |
| 5128 | |
| 5129 | /* |
| 5130 | * Update global xmin. Note that this is a special case compared to |
| 5131 | * registering a normal transaction, because the global xmin might go |
| 5132 | * backwards. That's OK, because until recovery is over we're not |
| 5133 | * going to complete any transactions or create any non-prepared |
| 5134 | * transactions, so there's no danger of throwing away. |
| 5135 | */ |
| 5136 | if ((!TransactionIdIsValid(PredXact->SxactGlobalXmin)) || |
| 5137 | (TransactionIdFollows(PredXact->SxactGlobalXmin, sxact->xmin))) |
| 5138 | { |
| 5139 | PredXact->SxactGlobalXmin = sxact->xmin; |
| 5140 | PredXact->SxactGlobalXminCount = 1; |
| 5141 | OldSerXidSetActiveSerXmin(sxact->xmin); |
| 5142 | } |
| 5143 | else if (TransactionIdEquals(sxact->xmin, PredXact->SxactGlobalXmin)) |
| 5144 | { |
| 5145 | Assert(PredXact->SxactGlobalXminCount > 0); |
| 5146 | PredXact->SxactGlobalXminCount++; |
| 5147 | } |
| 5148 | |
| 5149 | LWLockRelease(SerializableXactHashLock); |
| 5150 | } |
| 5151 | else if (record->type == TWOPHASEPREDICATERECORD_LOCK) |
| 5152 | { |
| 5153 | /* Lock record. Recreate the PREDICATELOCK */ |
| 5154 | TwoPhasePredicateLockRecord *lockRecord; |
| 5155 | SERIALIZABLEXID *sxid; |
| 5156 | SERIALIZABLEXACT *sxact; |
| 5157 | SERIALIZABLEXIDTAG sxidtag; |
| 5158 | uint32 targettaghash; |
| 5159 | |
| 5160 | lockRecord = (TwoPhasePredicateLockRecord *) &record->data.lockRecord; |
| 5161 | targettaghash = PredicateLockTargetTagHashCode(&lockRecord->target); |
| 5162 | |
| 5163 | LWLockAcquire(SerializableXactHashLock, LW_SHARED); |
| 5164 | sxidtag.xid = xid; |
| 5165 | sxid = (SERIALIZABLEXID *) |
| 5166 | hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL); |
| 5167 | LWLockRelease(SerializableXactHashLock); |
| 5168 | |
| 5169 | Assert(sxid != NULL); |
| 5170 | sxact = sxid->myXact; |
| 5171 | Assert(sxact != InvalidSerializableXact); |
| 5172 | |
| 5173 | CreatePredicateLock(&lockRecord->target, targettaghash, sxact); |
| 5174 | } |
| 5175 | } |
| 5176 | |
| 5177 | /* |
| 5178 | * Prepare to share the current SERIALIZABLEXACT with parallel workers. |
| 5179 | * Return a handle object that can be used by AttachSerializableXact() in a |
| 5180 | * parallel worker. |
| 5181 | */ |
| 5182 | SerializableXactHandle |
| 5183 | ShareSerializableXact(void) |
| 5184 | { |
| 5185 | return MySerializableXact; |
| 5186 | } |
| 5187 | |
| 5188 | /* |
| 5189 | * Allow parallel workers to import the leader's SERIALIZABLEXACT. |
| 5190 | */ |
| 5191 | void |
| 5192 | AttachSerializableXact(SerializableXactHandle handle) |
| 5193 | { |
| 5194 | |
| 5195 | Assert(MySerializableXact == InvalidSerializableXact); |
| 5196 | |
| 5197 | MySerializableXact = (SERIALIZABLEXACT *) handle; |
| 5198 | if (MySerializableXact != InvalidSerializableXact) |
| 5199 | CreateLocalPredicateLockHash(); |
| 5200 | } |
| 5201 | |