1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * array_selfuncs.c |
4 | * Functions for selectivity estimation of array operators |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/utils/adt/array_selfuncs.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | #include "postgres.h" |
16 | |
17 | #include <math.h> |
18 | |
19 | #include "access/htup_details.h" |
20 | #include "catalog/pg_collation.h" |
21 | #include "catalog/pg_operator.h" |
22 | #include "catalog/pg_statistic.h" |
23 | #include "utils/array.h" |
24 | #include "utils/builtins.h" |
25 | #include "utils/lsyscache.h" |
26 | #include "utils/selfuncs.h" |
27 | #include "utils/typcache.h" |
28 | |
29 | |
30 | /* Default selectivity constant for "@>" and "<@" operators */ |
31 | #define DEFAULT_CONTAIN_SEL 0.005 |
32 | |
33 | /* Default selectivity constant for "&&" operator */ |
34 | #define DEFAULT_OVERLAP_SEL 0.01 |
35 | |
36 | /* Default selectivity for given operator */ |
37 | #define DEFAULT_SEL(operator) \ |
38 | ((operator) == OID_ARRAY_OVERLAP_OP ? \ |
39 | DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL) |
40 | |
41 | static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval, |
42 | Oid elemtype, Oid operator); |
43 | static Selectivity mcelem_array_selec(ArrayType *array, |
44 | TypeCacheEntry *typentry, |
45 | Datum *mcelem, int nmcelem, |
46 | float4 *numbers, int nnumbers, |
47 | float4 *hist, int nhist, |
48 | Oid operator); |
49 | static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, |
50 | float4 *numbers, int nnumbers, |
51 | Datum *array_data, int nitems, |
52 | Oid operator, TypeCacheEntry *typentry); |
53 | static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem, |
54 | float4 *numbers, int nnumbers, |
55 | Datum *array_data, int nitems, |
56 | float4 *hist, int nhist, |
57 | Oid operator, TypeCacheEntry *typentry); |
58 | static float *calc_hist(const float4 *hist, int nhist, int n); |
59 | static float *calc_distr(const float *p, int n, int m, float rest); |
60 | static int floor_log2(uint32 n); |
61 | static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, |
62 | int *index, TypeCacheEntry *typentry); |
63 | static int element_compare(const void *key1, const void *key2, void *arg); |
64 | static int float_compare_desc(const void *key1, const void *key2); |
65 | |
66 | |
67 | /* |
68 | * scalararraysel_containment |
69 | * Estimate selectivity of ScalarArrayOpExpr via array containment. |
70 | * |
71 | * If we have const =/<> ANY/ALL (array_var) then we can estimate the |
72 | * selectivity as though this were an array containment operator, |
73 | * array_var op ARRAY[const]. |
74 | * |
75 | * scalararraysel() has already verified that the ScalarArrayOpExpr's operator |
76 | * is the array element type's default equality or inequality operator, and |
77 | * has aggressively simplified both inputs to constants. |
78 | * |
79 | * Returns selectivity (0..1), or -1 if we fail to estimate selectivity. |
80 | */ |
81 | Selectivity |
82 | scalararraysel_containment(PlannerInfo *root, |
83 | Node *leftop, Node *rightop, |
84 | Oid elemtype, bool isEquality, bool useOr, |
85 | int varRelid) |
86 | { |
87 | Selectivity selec; |
88 | VariableStatData vardata; |
89 | Datum constval; |
90 | TypeCacheEntry *typentry; |
91 | FmgrInfo *cmpfunc; |
92 | |
93 | /* |
94 | * rightop must be a variable, else punt. |
95 | */ |
96 | examine_variable(root, rightop, varRelid, &vardata); |
97 | if (!vardata.rel) |
98 | { |
99 | ReleaseVariableStats(vardata); |
100 | return -1.0; |
101 | } |
102 | |
103 | /* |
104 | * leftop must be a constant, else punt. |
105 | */ |
106 | if (!IsA(leftop, Const)) |
107 | { |
108 | ReleaseVariableStats(vardata); |
109 | return -1.0; |
110 | } |
111 | if (((Const *) leftop)->constisnull) |
112 | { |
113 | /* qual can't succeed if null on left */ |
114 | ReleaseVariableStats(vardata); |
115 | return (Selectivity) 0.0; |
116 | } |
117 | constval = ((Const *) leftop)->constvalue; |
118 | |
119 | /* Get element type's default comparison function */ |
120 | typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO); |
121 | if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
122 | { |
123 | ReleaseVariableStats(vardata); |
124 | return -1.0; |
125 | } |
126 | cmpfunc = &typentry->cmp_proc_finfo; |
127 | |
128 | /* |
129 | * If the operator is <>, swap ANY/ALL, then invert the result later. |
130 | */ |
131 | if (!isEquality) |
132 | useOr = !useOr; |
133 | |
134 | /* Get array element stats for var, if available */ |
135 | if (HeapTupleIsValid(vardata.statsTuple) && |
136 | statistic_proc_security_check(&vardata, cmpfunc->fn_oid)) |
137 | { |
138 | Form_pg_statistic stats; |
139 | AttStatsSlot sslot; |
140 | AttStatsSlot hslot; |
141 | |
142 | stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
143 | |
144 | /* MCELEM will be an array of same type as element */ |
145 | if (get_attstatsslot(&sslot, vardata.statsTuple, |
146 | STATISTIC_KIND_MCELEM, InvalidOid, |
147 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
148 | { |
149 | /* For ALL case, also get histogram of distinct-element counts */ |
150 | if (useOr || |
151 | !get_attstatsslot(&hslot, vardata.statsTuple, |
152 | STATISTIC_KIND_DECHIST, InvalidOid, |
153 | ATTSTATSSLOT_NUMBERS)) |
154 | memset(&hslot, 0, sizeof(hslot)); |
155 | |
156 | /* |
157 | * For = ANY, estimate as var @> ARRAY[const]. |
158 | * |
159 | * For = ALL, estimate as var <@ ARRAY[const]. |
160 | */ |
161 | if (useOr) |
162 | selec = mcelem_array_contain_overlap_selec(sslot.values, |
163 | sslot.nvalues, |
164 | sslot.numbers, |
165 | sslot.nnumbers, |
166 | &constval, 1, |
167 | OID_ARRAY_CONTAINS_OP, |
168 | typentry); |
169 | else |
170 | selec = mcelem_array_contained_selec(sslot.values, |
171 | sslot.nvalues, |
172 | sslot.numbers, |
173 | sslot.nnumbers, |
174 | &constval, 1, |
175 | hslot.numbers, |
176 | hslot.nnumbers, |
177 | OID_ARRAY_CONTAINED_OP, |
178 | typentry); |
179 | |
180 | free_attstatsslot(&hslot); |
181 | free_attstatsslot(&sslot); |
182 | } |
183 | else |
184 | { |
185 | /* No most-common-elements info, so do without */ |
186 | if (useOr) |
187 | selec = mcelem_array_contain_overlap_selec(NULL, 0, |
188 | NULL, 0, |
189 | &constval, 1, |
190 | OID_ARRAY_CONTAINS_OP, |
191 | typentry); |
192 | else |
193 | selec = mcelem_array_contained_selec(NULL, 0, |
194 | NULL, 0, |
195 | &constval, 1, |
196 | NULL, 0, |
197 | OID_ARRAY_CONTAINED_OP, |
198 | typentry); |
199 | } |
200 | |
201 | /* |
202 | * MCE stats count only non-null rows, so adjust for null rows. |
203 | */ |
204 | selec *= (1.0 - stats->stanullfrac); |
205 | } |
206 | else |
207 | { |
208 | /* No stats at all, so do without */ |
209 | if (useOr) |
210 | selec = mcelem_array_contain_overlap_selec(NULL, 0, |
211 | NULL, 0, |
212 | &constval, 1, |
213 | OID_ARRAY_CONTAINS_OP, |
214 | typentry); |
215 | else |
216 | selec = mcelem_array_contained_selec(NULL, 0, |
217 | NULL, 0, |
218 | &constval, 1, |
219 | NULL, 0, |
220 | OID_ARRAY_CONTAINED_OP, |
221 | typentry); |
222 | /* we assume no nulls here, so no stanullfrac correction */ |
223 | } |
224 | |
225 | ReleaseVariableStats(vardata); |
226 | |
227 | /* |
228 | * If the operator is <>, invert the results. |
229 | */ |
230 | if (!isEquality) |
231 | selec = 1.0 - selec; |
232 | |
233 | CLAMP_PROBABILITY(selec); |
234 | |
235 | return selec; |
236 | } |
237 | |
238 | /* |
239 | * arraycontsel -- restriction selectivity for array @>, &&, <@ operators |
240 | */ |
241 | Datum |
242 | arraycontsel(PG_FUNCTION_ARGS) |
243 | { |
244 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
245 | Oid operator = PG_GETARG_OID(1); |
246 | List *args = (List *) PG_GETARG_POINTER(2); |
247 | int varRelid = PG_GETARG_INT32(3); |
248 | VariableStatData vardata; |
249 | Node *other; |
250 | bool varonleft; |
251 | Selectivity selec; |
252 | Oid element_typeid; |
253 | |
254 | /* |
255 | * If expression is not (variable op something) or (something op |
256 | * variable), then punt and return a default estimate. |
257 | */ |
258 | if (!get_restriction_variable(root, args, varRelid, |
259 | &vardata, &other, &varonleft)) |
260 | PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
261 | |
262 | /* |
263 | * Can't do anything useful if the something is not a constant, either. |
264 | */ |
265 | if (!IsA(other, Const)) |
266 | { |
267 | ReleaseVariableStats(vardata); |
268 | PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
269 | } |
270 | |
271 | /* |
272 | * The "&&", "@>" and "<@" operators are strict, so we can cope with a |
273 | * NULL constant right away. |
274 | */ |
275 | if (((Const *) other)->constisnull) |
276 | { |
277 | ReleaseVariableStats(vardata); |
278 | PG_RETURN_FLOAT8(0.0); |
279 | } |
280 | |
281 | /* |
282 | * If var is on the right, commute the operator, so that we can assume the |
283 | * var is on the left in what follows. |
284 | */ |
285 | if (!varonleft) |
286 | { |
287 | if (operator == OID_ARRAY_CONTAINS_OP) |
288 | operator = OID_ARRAY_CONTAINED_OP; |
289 | else if (operator == OID_ARRAY_CONTAINED_OP) |
290 | operator = OID_ARRAY_CONTAINS_OP; |
291 | } |
292 | |
293 | /* |
294 | * OK, there's a Var and a Const we're dealing with here. We need the |
295 | * Const to be an array with same element type as column, else we can't do |
296 | * anything useful. (Such cases will likely fail at runtime, but here |
297 | * we'd rather just return a default estimate.) |
298 | */ |
299 | element_typeid = get_base_element_type(((Const *) other)->consttype); |
300 | if (element_typeid != InvalidOid && |
301 | element_typeid == get_base_element_type(vardata.vartype)) |
302 | { |
303 | selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue, |
304 | element_typeid, operator); |
305 | } |
306 | else |
307 | { |
308 | selec = DEFAULT_SEL(operator); |
309 | } |
310 | |
311 | ReleaseVariableStats(vardata); |
312 | |
313 | CLAMP_PROBABILITY(selec); |
314 | |
315 | PG_RETURN_FLOAT8((float8) selec); |
316 | } |
317 | |
318 | /* |
319 | * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators |
320 | */ |
321 | Datum |
322 | arraycontjoinsel(PG_FUNCTION_ARGS) |
323 | { |
324 | /* For the moment this is just a stub */ |
325 | Oid operator = PG_GETARG_OID(1); |
326 | |
327 | PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
328 | } |
329 | |
330 | /* |
331 | * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const" |
332 | * or "arraycolumn <@ const" based on the statistics |
333 | * |
334 | * This function is mainly responsible for extracting the pg_statistic data |
335 | * to be used; we then pass the problem on to mcelem_array_selec(). |
336 | */ |
337 | static Selectivity |
338 | calc_arraycontsel(VariableStatData *vardata, Datum constval, |
339 | Oid elemtype, Oid operator) |
340 | { |
341 | Selectivity selec; |
342 | TypeCacheEntry *typentry; |
343 | FmgrInfo *cmpfunc; |
344 | ArrayType *array; |
345 | |
346 | /* Get element type's default comparison function */ |
347 | typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO); |
348 | if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
349 | return DEFAULT_SEL(operator); |
350 | cmpfunc = &typentry->cmp_proc_finfo; |
351 | |
352 | /* |
353 | * The caller made sure the const is an array with same element type, so |
354 | * get it now |
355 | */ |
356 | array = DatumGetArrayTypeP(constval); |
357 | |
358 | if (HeapTupleIsValid(vardata->statsTuple) && |
359 | statistic_proc_security_check(vardata, cmpfunc->fn_oid)) |
360 | { |
361 | Form_pg_statistic stats; |
362 | AttStatsSlot sslot; |
363 | AttStatsSlot hslot; |
364 | |
365 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
366 | |
367 | /* MCELEM will be an array of same type as column */ |
368 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
369 | STATISTIC_KIND_MCELEM, InvalidOid, |
370 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
371 | { |
372 | /* |
373 | * For "array <@ const" case we also need histogram of distinct |
374 | * element counts. |
375 | */ |
376 | if (operator != OID_ARRAY_CONTAINED_OP || |
377 | !get_attstatsslot(&hslot, vardata->statsTuple, |
378 | STATISTIC_KIND_DECHIST, InvalidOid, |
379 | ATTSTATSSLOT_NUMBERS)) |
380 | memset(&hslot, 0, sizeof(hslot)); |
381 | |
382 | /* Use the most-common-elements slot for the array Var. */ |
383 | selec = mcelem_array_selec(array, typentry, |
384 | sslot.values, sslot.nvalues, |
385 | sslot.numbers, sslot.nnumbers, |
386 | hslot.numbers, hslot.nnumbers, |
387 | operator); |
388 | |
389 | free_attstatsslot(&hslot); |
390 | free_attstatsslot(&sslot); |
391 | } |
392 | else |
393 | { |
394 | /* No most-common-elements info, so do without */ |
395 | selec = mcelem_array_selec(array, typentry, |
396 | NULL, 0, NULL, 0, NULL, 0, |
397 | operator); |
398 | } |
399 | |
400 | /* |
401 | * MCE stats count only non-null rows, so adjust for null rows. |
402 | */ |
403 | selec *= (1.0 - stats->stanullfrac); |
404 | } |
405 | else |
406 | { |
407 | /* No stats at all, so do without */ |
408 | selec = mcelem_array_selec(array, typentry, |
409 | NULL, 0, NULL, 0, NULL, 0, |
410 | operator); |
411 | /* we assume no nulls here, so no stanullfrac correction */ |
412 | } |
413 | |
414 | /* If constant was toasted, release the copy we made */ |
415 | if (PointerGetDatum(array) != constval) |
416 | pfree(array); |
417 | |
418 | return selec; |
419 | } |
420 | |
421 | /* |
422 | * Array selectivity estimation based on most common elements statistics |
423 | * |
424 | * This function just deconstructs and sorts the array constant's contents, |
425 | * and then passes the problem on to mcelem_array_contain_overlap_selec or |
426 | * mcelem_array_contained_selec depending on the operator. |
427 | */ |
428 | static Selectivity |
429 | mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry, |
430 | Datum *mcelem, int nmcelem, |
431 | float4 *numbers, int nnumbers, |
432 | float4 *hist, int nhist, |
433 | Oid operator) |
434 | { |
435 | Selectivity selec; |
436 | int num_elems; |
437 | Datum *elem_values; |
438 | bool *elem_nulls; |
439 | bool null_present; |
440 | int nonnull_nitems; |
441 | int i; |
442 | |
443 | /* |
444 | * Prepare constant array data for sorting. Sorting lets us find unique |
445 | * elements and efficiently merge with the MCELEM array. |
446 | */ |
447 | deconstruct_array(array, |
448 | typentry->type_id, |
449 | typentry->typlen, |
450 | typentry->typbyval, |
451 | typentry->typalign, |
452 | &elem_values, &elem_nulls, &num_elems); |
453 | |
454 | /* Collapse out any null elements */ |
455 | nonnull_nitems = 0; |
456 | null_present = false; |
457 | for (i = 0; i < num_elems; i++) |
458 | { |
459 | if (elem_nulls[i]) |
460 | null_present = true; |
461 | else |
462 | elem_values[nonnull_nitems++] = elem_values[i]; |
463 | } |
464 | |
465 | /* |
466 | * Query "column @> '{anything, null}'" matches nothing. For the other |
467 | * two operators, presence of a null in the constant can be ignored. |
468 | */ |
469 | if (null_present && operator == OID_ARRAY_CONTAINS_OP) |
470 | { |
471 | pfree(elem_values); |
472 | pfree(elem_nulls); |
473 | return (Selectivity) 0.0; |
474 | } |
475 | |
476 | /* Sort extracted elements using their default comparison function. */ |
477 | qsort_arg(elem_values, nonnull_nitems, sizeof(Datum), |
478 | element_compare, typentry); |
479 | |
480 | /* Separate cases according to operator */ |
481 | if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP) |
482 | selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem, |
483 | numbers, nnumbers, |
484 | elem_values, nonnull_nitems, |
485 | operator, typentry); |
486 | else if (operator == OID_ARRAY_CONTAINED_OP) |
487 | selec = mcelem_array_contained_selec(mcelem, nmcelem, |
488 | numbers, nnumbers, |
489 | elem_values, nonnull_nitems, |
490 | hist, nhist, |
491 | operator, typentry); |
492 | else |
493 | { |
494 | elog(ERROR, "arraycontsel called for unrecognized operator %u" , |
495 | operator); |
496 | selec = 0.0; /* keep compiler quiet */ |
497 | } |
498 | |
499 | pfree(elem_values); |
500 | pfree(elem_nulls); |
501 | return selec; |
502 | } |
503 | |
504 | /* |
505 | * Estimate selectivity of "column @> const" and "column && const" based on |
506 | * most common element statistics. This estimation assumes element |
507 | * occurrences are independent. |
508 | * |
509 | * mcelem (of length nmcelem) and numbers (of length nnumbers) are from |
510 | * the array column's MCELEM statistics slot, or are NULL/0 if stats are |
511 | * not available. array_data (of length nitems) is the constant's elements. |
512 | * |
513 | * Both the mcelem and array_data arrays are assumed presorted according |
514 | * to the element type's cmpfunc. Null elements are not present. |
515 | * |
516 | * TODO: this estimate probably could be improved by using the distinct |
517 | * elements count histogram. For example, excepting the special case of |
518 | * "column @> '{}'", we can multiply the calculated selectivity by the |
519 | * fraction of nonempty arrays in the column. |
520 | */ |
521 | static Selectivity |
522 | mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, |
523 | float4 *numbers, int nnumbers, |
524 | Datum *array_data, int nitems, |
525 | Oid operator, TypeCacheEntry *typentry) |
526 | { |
527 | Selectivity selec, |
528 | elem_selec; |
529 | int mcelem_index, |
530 | i; |
531 | bool use_bsearch; |
532 | float4 minfreq; |
533 | |
534 | /* |
535 | * There should be three more Numbers than Values, because the last three |
536 | * cells should hold minimal and maximal frequency among the non-null |
537 | * elements, and then the frequency of null elements. Ignore the Numbers |
538 | * if not right. |
539 | */ |
540 | if (nnumbers != nmcelem + 3) |
541 | { |
542 | numbers = NULL; |
543 | nnumbers = 0; |
544 | } |
545 | |
546 | if (numbers) |
547 | { |
548 | /* Grab the lowest observed frequency */ |
549 | minfreq = numbers[nmcelem]; |
550 | } |
551 | else |
552 | { |
553 | /* Without statistics make some default assumptions */ |
554 | minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL; |
555 | } |
556 | |
557 | /* Decide whether it is faster to use binary search or not. */ |
558 | if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems) |
559 | use_bsearch = true; |
560 | else |
561 | use_bsearch = false; |
562 | |
563 | if (operator == OID_ARRAY_CONTAINS_OP) |
564 | { |
565 | /* |
566 | * Initial selectivity for "column @> const" query is 1.0, and it will |
567 | * be decreased with each element of constant array. |
568 | */ |
569 | selec = 1.0; |
570 | } |
571 | else |
572 | { |
573 | /* |
574 | * Initial selectivity for "column && const" query is 0.0, and it will |
575 | * be increased with each element of constant array. |
576 | */ |
577 | selec = 0.0; |
578 | } |
579 | |
580 | /* Scan mcelem and array in parallel. */ |
581 | mcelem_index = 0; |
582 | for (i = 0; i < nitems; i++) |
583 | { |
584 | bool match = false; |
585 | |
586 | /* Ignore any duplicates in the array data. */ |
587 | if (i > 0 && |
588 | element_compare(&array_data[i - 1], &array_data[i], typentry) == 0) |
589 | continue; |
590 | |
591 | /* Find the smallest MCELEM >= this array item. */ |
592 | if (use_bsearch) |
593 | { |
594 | match = find_next_mcelem(mcelem, nmcelem, array_data[i], |
595 | &mcelem_index, typentry); |
596 | } |
597 | else |
598 | { |
599 | while (mcelem_index < nmcelem) |
600 | { |
601 | int cmp = element_compare(&mcelem[mcelem_index], |
602 | &array_data[i], |
603 | typentry); |
604 | |
605 | if (cmp < 0) |
606 | mcelem_index++; |
607 | else |
608 | { |
609 | if (cmp == 0) |
610 | match = true; /* mcelem is found */ |
611 | break; |
612 | } |
613 | } |
614 | } |
615 | |
616 | if (match && numbers) |
617 | { |
618 | /* MCELEM matches the array item; use its frequency. */ |
619 | elem_selec = numbers[mcelem_index]; |
620 | mcelem_index++; |
621 | } |
622 | else |
623 | { |
624 | /* |
625 | * The element is not in MCELEM. Punt, but assume that the |
626 | * selectivity cannot be more than minfreq / 2. |
627 | */ |
628 | elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2); |
629 | } |
630 | |
631 | /* |
632 | * Update overall selectivity using the current element's selectivity |
633 | * and an assumption of element occurrence independence. |
634 | */ |
635 | if (operator == OID_ARRAY_CONTAINS_OP) |
636 | selec *= elem_selec; |
637 | else |
638 | selec = selec + elem_selec - selec * elem_selec; |
639 | |
640 | /* Clamp intermediate results to stay sane despite roundoff error */ |
641 | CLAMP_PROBABILITY(selec); |
642 | } |
643 | |
644 | return selec; |
645 | } |
646 | |
647 | /* |
648 | * Estimate selectivity of "column <@ const" based on most common element |
649 | * statistics. |
650 | * |
651 | * mcelem (of length nmcelem) and numbers (of length nnumbers) are from |
652 | * the array column's MCELEM statistics slot, or are NULL/0 if stats are |
653 | * not available. array_data (of length nitems) is the constant's elements. |
654 | * hist (of length nhist) is from the array column's DECHIST statistics slot, |
655 | * or is NULL/0 if those stats are not available. |
656 | * |
657 | * Both the mcelem and array_data arrays are assumed presorted according |
658 | * to the element type's cmpfunc. Null elements are not present. |
659 | * |
660 | * Independent element occurrence would imply a particular distribution of |
661 | * distinct element counts among matching rows. Real data usually falsifies |
662 | * that assumption. For example, in a set of 11-element integer arrays having |
663 | * elements in the range [0..10], element occurrences are typically not |
664 | * independent. If they were, a sufficiently-large set would include all |
665 | * distinct element counts 0 through 11. We correct for this using the |
666 | * histogram of distinct element counts. |
667 | * |
668 | * In the "column @> const" and "column && const" cases, we usually have a |
669 | * "const" with low number of elements (otherwise we have selectivity close |
670 | * to 0 or 1 respectively). That's why the effect of dependence related |
671 | * to distinct element count distribution is negligible there. In the |
672 | * "column <@ const" case, number of elements is usually high (otherwise we |
673 | * have selectivity close to 0). That's why we should do a correction with |
674 | * the array distinct element count distribution here. |
675 | * |
676 | * Using the histogram of distinct element counts produces a different |
677 | * distribution law than independent occurrences of elements. This |
678 | * distribution law can be described as follows: |
679 | * |
680 | * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * |
681 | * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m] |
682 | * |
683 | * where: |
684 | * o1, o2, ..., on - occurrences of elements 1, 2, ..., n |
685 | * (1 - occurrence, 0 - no occurrence) in row |
686 | * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n |
687 | * (scalar values in [0..1]) according to collected statistics |
688 | * m = o1 + o2 + ... + on = total number of distinct elements in row |
689 | * hist[m] - histogram data for occurrence of m elements. |
690 | * ind[m] - probability of m occurrences from n events assuming their |
691 | * probabilities to be equal to frequencies of array elements. |
692 | * |
693 | * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) * |
694 | * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m |
695 | */ |
696 | static Selectivity |
697 | mcelem_array_contained_selec(Datum *mcelem, int nmcelem, |
698 | float4 *numbers, int nnumbers, |
699 | Datum *array_data, int nitems, |
700 | float4 *hist, int nhist, |
701 | Oid operator, TypeCacheEntry *typentry) |
702 | { |
703 | int mcelem_index, |
704 | i, |
705 | unique_nitems = 0; |
706 | float selec, |
707 | minfreq, |
708 | nullelem_freq; |
709 | float *dist, |
710 | *mcelem_dist, |
711 | *hist_part; |
712 | float avg_count, |
713 | mult, |
714 | rest; |
715 | float *elem_selec; |
716 | |
717 | /* |
718 | * There should be three more Numbers than Values in the MCELEM slot, |
719 | * because the last three cells should hold minimal and maximal frequency |
720 | * among the non-null elements, and then the frequency of null elements. |
721 | * Punt if not right, because we can't do much without the element freqs. |
722 | */ |
723 | if (numbers == NULL || nnumbers != nmcelem + 3) |
724 | return DEFAULT_CONTAIN_SEL; |
725 | |
726 | /* Can't do much without a count histogram, either */ |
727 | if (hist == NULL || nhist < 3) |
728 | return DEFAULT_CONTAIN_SEL; |
729 | |
730 | /* |
731 | * Grab some of the summary statistics that compute_array_stats() stores: |
732 | * lowest frequency, frequency of null elements, and average distinct |
733 | * element count. |
734 | */ |
735 | minfreq = numbers[nmcelem]; |
736 | nullelem_freq = numbers[nmcelem + 2]; |
737 | avg_count = hist[nhist - 1]; |
738 | |
739 | /* |
740 | * "rest" will be the sum of the frequencies of all elements not |
741 | * represented in MCELEM. The average distinct element count is the sum |
742 | * of the frequencies of *all* elements. Begin with that; we will proceed |
743 | * to subtract the MCELEM frequencies. |
744 | */ |
745 | rest = avg_count; |
746 | |
747 | /* |
748 | * mult is a multiplier representing estimate of probability that each |
749 | * mcelem that is not present in constant doesn't occur. |
750 | */ |
751 | mult = 1.0f; |
752 | |
753 | /* |
754 | * elem_selec is array of estimated frequencies for elements in the |
755 | * constant. |
756 | */ |
757 | elem_selec = (float *) palloc(sizeof(float) * nitems); |
758 | |
759 | /* Scan mcelem and array in parallel. */ |
760 | mcelem_index = 0; |
761 | for (i = 0; i < nitems; i++) |
762 | { |
763 | bool match = false; |
764 | |
765 | /* Ignore any duplicates in the array data. */ |
766 | if (i > 0 && |
767 | element_compare(&array_data[i - 1], &array_data[i], typentry) == 0) |
768 | continue; |
769 | |
770 | /* |
771 | * Iterate over MCELEM until we find an entry greater than or equal to |
772 | * this element of the constant. Update "rest" and "mult" for mcelem |
773 | * entries skipped over. |
774 | */ |
775 | while (mcelem_index < nmcelem) |
776 | { |
777 | int cmp = element_compare(&mcelem[mcelem_index], |
778 | &array_data[i], |
779 | typentry); |
780 | |
781 | if (cmp < 0) |
782 | { |
783 | mult *= (1.0f - numbers[mcelem_index]); |
784 | rest -= numbers[mcelem_index]; |
785 | mcelem_index++; |
786 | } |
787 | else |
788 | { |
789 | if (cmp == 0) |
790 | match = true; /* mcelem is found */ |
791 | break; |
792 | } |
793 | } |
794 | |
795 | if (match) |
796 | { |
797 | /* MCELEM matches the array item. */ |
798 | elem_selec[unique_nitems] = numbers[mcelem_index]; |
799 | /* "rest" is decremented for all mcelems, matched or not */ |
800 | rest -= numbers[mcelem_index]; |
801 | mcelem_index++; |
802 | } |
803 | else |
804 | { |
805 | /* |
806 | * The element is not in MCELEM. Punt, but assume that the |
807 | * selectivity cannot be more than minfreq / 2. |
808 | */ |
809 | elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL, |
810 | minfreq / 2); |
811 | } |
812 | |
813 | unique_nitems++; |
814 | } |
815 | |
816 | /* |
817 | * If we handled all constant elements without exhausting the MCELEM |
818 | * array, finish walking it to complete calculation of "rest" and "mult". |
819 | */ |
820 | while (mcelem_index < nmcelem) |
821 | { |
822 | mult *= (1.0f - numbers[mcelem_index]); |
823 | rest -= numbers[mcelem_index]; |
824 | mcelem_index++; |
825 | } |
826 | |
827 | /* |
828 | * The presence of many distinct rare elements materially decreases |
829 | * selectivity. Use the Poisson distribution to estimate the probability |
830 | * of a column value having zero occurrences of such elements. See above |
831 | * for the definition of "rest". |
832 | */ |
833 | mult *= exp(-rest); |
834 | |
835 | /*---------- |
836 | * Using the distinct element count histogram requires |
837 | * O(unique_nitems * (nmcelem + unique_nitems)) |
838 | * operations. Beyond a certain computational cost threshold, it's |
839 | * reasonable to sacrifice accuracy for decreased planning time. We limit |
840 | * the number of operations to EFFORT * nmcelem; since nmcelem is limited |
841 | * by the column's statistics target, the work done is user-controllable. |
842 | * |
843 | * If the number of operations would be too large, we can reduce it |
844 | * without losing all accuracy by reducing unique_nitems and considering |
845 | * only the most-common elements of the constant array. To make the |
846 | * results exactly match what we would have gotten with only those |
847 | * elements to start with, we'd have to remove any discarded elements' |
848 | * frequencies from "mult", but since this is only an approximation |
849 | * anyway, we don't bother with that. Therefore it's sufficient to qsort |
850 | * elem_selec[] and take the largest elements. (They will no longer match |
851 | * up with the elements of array_data[], but we don't care.) |
852 | *---------- |
853 | */ |
854 | #define EFFORT 100 |
855 | |
856 | if ((nmcelem + unique_nitems) > 0 && |
857 | unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems)) |
858 | { |
859 | /* |
860 | * Use the quadratic formula to solve for largest allowable N. We |
861 | * have A = 1, B = nmcelem, C = - EFFORT * nmcelem. |
862 | */ |
863 | double b = (double) nmcelem; |
864 | int n; |
865 | |
866 | n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2); |
867 | |
868 | /* Sort, then take just the first n elements */ |
869 | qsort(elem_selec, unique_nitems, sizeof(float), |
870 | float_compare_desc); |
871 | unique_nitems = n; |
872 | } |
873 | |
874 | /* |
875 | * Calculate probabilities of each distinct element count for both mcelems |
876 | * and constant elements. At this point, assume independent element |
877 | * occurrence. |
878 | */ |
879 | dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f); |
880 | mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest); |
881 | |
882 | /* ignore hist[nhist-1], which is the average not a histogram member */ |
883 | hist_part = calc_hist(hist, nhist - 1, unique_nitems); |
884 | |
885 | selec = 0.0f; |
886 | for (i = 0; i <= unique_nitems; i++) |
887 | { |
888 | /* |
889 | * mult * dist[i] / mcelem_dist[i] gives us probability of qual |
890 | * matching from assumption of independent element occurrence with the |
891 | * condition that distinct element count = i. |
892 | */ |
893 | if (mcelem_dist[i] > 0) |
894 | selec += hist_part[i] * mult * dist[i] / mcelem_dist[i]; |
895 | } |
896 | |
897 | pfree(dist); |
898 | pfree(mcelem_dist); |
899 | pfree(hist_part); |
900 | pfree(elem_selec); |
901 | |
902 | /* Take into account occurrence of NULL element. */ |
903 | selec *= (1.0f - nullelem_freq); |
904 | |
905 | CLAMP_PROBABILITY(selec); |
906 | |
907 | return selec; |
908 | } |
909 | |
910 | /* |
911 | * Calculate the first n distinct element count probabilities from a |
912 | * histogram of distinct element counts. |
913 | * |
914 | * Returns a palloc'd array of n+1 entries, with array[k] being the |
915 | * probability of element count k, k in [0..n]. |
916 | * |
917 | * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) * |
918 | * (nhist - 1)) probability to each value in (a,b) and an additional half of |
919 | * that to a and b themselves. |
920 | */ |
921 | static float * |
922 | calc_hist(const float4 *hist, int nhist, int n) |
923 | { |
924 | float *hist_part; |
925 | int k, |
926 | i = 0; |
927 | float prev_interval = 0, |
928 | next_interval; |
929 | float frac; |
930 | |
931 | hist_part = (float *) palloc((n + 1) * sizeof(float)); |
932 | |
933 | /* |
934 | * frac is a probability contribution for each interval between histogram |
935 | * values. We have nhist - 1 intervals, so contribution of each one will |
936 | * be 1 / (nhist - 1). |
937 | */ |
938 | frac = 1.0f / ((float) (nhist - 1)); |
939 | |
940 | for (k = 0; k <= n; k++) |
941 | { |
942 | int count = 0; |
943 | |
944 | /* |
945 | * Count the histogram boundaries equal to k. (Although the histogram |
946 | * should theoretically contain only exact integers, entries are |
947 | * floats so there could be roundoff error in large values. Treat any |
948 | * fractional value as equal to the next larger k.) |
949 | */ |
950 | while (i < nhist && hist[i] <= k) |
951 | { |
952 | count++; |
953 | i++; |
954 | } |
955 | |
956 | if (count > 0) |
957 | { |
958 | /* k is an exact bound for at least one histogram box. */ |
959 | float val; |
960 | |
961 | /* Find length between current histogram value and the next one */ |
962 | if (i < nhist) |
963 | next_interval = hist[i] - hist[i - 1]; |
964 | else |
965 | next_interval = 0; |
966 | |
967 | /* |
968 | * count - 1 histogram boxes contain k exclusively. They |
969 | * contribute a total of (count - 1) * frac probability. Also |
970 | * factor in the partial histogram boxes on either side. |
971 | */ |
972 | val = (float) (count - 1); |
973 | if (next_interval > 0) |
974 | val += 0.5f / next_interval; |
975 | if (prev_interval > 0) |
976 | val += 0.5f / prev_interval; |
977 | hist_part[k] = frac * val; |
978 | |
979 | prev_interval = next_interval; |
980 | } |
981 | else |
982 | { |
983 | /* k does not appear as an exact histogram bound. */ |
984 | if (prev_interval > 0) |
985 | hist_part[k] = frac / prev_interval; |
986 | else |
987 | hist_part[k] = 0.0f; |
988 | } |
989 | } |
990 | |
991 | return hist_part; |
992 | } |
993 | |
994 | /* |
995 | * Consider n independent events with probabilities p[]. This function |
996 | * calculates probabilities of exact k of events occurrence for k in [0..m]. |
997 | * Returns a palloc'd array of size m+1. |
998 | * |
999 | * "rest" is the sum of the probabilities of all low-probability events not |
1000 | * included in p. |
1001 | * |
1002 | * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the |
1003 | * probability that exactly j of first i events occur. Obviously M[0,0] = 1. |
1004 | * For any constant j, each increment of i increases the probability iff the |
1005 | * event occurs. So, by the law of total probability: |
1006 | * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i] |
1007 | * for i > 0, j > 0. |
1008 | * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0. |
1009 | */ |
1010 | static float * |
1011 | calc_distr(const float *p, int n, int m, float rest) |
1012 | { |
1013 | float *row, |
1014 | *prev_row, |
1015 | *tmp; |
1016 | int i, |
1017 | j; |
1018 | |
1019 | /* |
1020 | * Since we return only the last row of the matrix and need only the |
1021 | * current and previous row for calculations, allocate two rows. |
1022 | */ |
1023 | row = (float *) palloc((m + 1) * sizeof(float)); |
1024 | prev_row = (float *) palloc((m + 1) * sizeof(float)); |
1025 | |
1026 | /* M[0,0] = 1 */ |
1027 | row[0] = 1.0f; |
1028 | for (i = 1; i <= n; i++) |
1029 | { |
1030 | float t = p[i - 1]; |
1031 | |
1032 | /* Swap rows */ |
1033 | tmp = row; |
1034 | row = prev_row; |
1035 | prev_row = tmp; |
1036 | |
1037 | /* Calculate next row */ |
1038 | for (j = 0; j <= i && j <= m; j++) |
1039 | { |
1040 | float val = 0.0f; |
1041 | |
1042 | if (j < i) |
1043 | val += prev_row[j] * (1.0f - t); |
1044 | if (j > 0) |
1045 | val += prev_row[j - 1] * t; |
1046 | row[j] = val; |
1047 | } |
1048 | } |
1049 | |
1050 | /* |
1051 | * The presence of many distinct rare (not in "p") elements materially |
1052 | * decreases selectivity. Model their collective occurrence with the |
1053 | * Poisson distribution. |
1054 | */ |
1055 | if (rest > DEFAULT_CONTAIN_SEL) |
1056 | { |
1057 | float t; |
1058 | |
1059 | /* Swap rows */ |
1060 | tmp = row; |
1061 | row = prev_row; |
1062 | prev_row = tmp; |
1063 | |
1064 | for (i = 0; i <= m; i++) |
1065 | row[i] = 0.0f; |
1066 | |
1067 | /* Value of Poisson distribution for 0 occurrences */ |
1068 | t = exp(-rest); |
1069 | |
1070 | /* |
1071 | * Calculate convolution of previously computed distribution and the |
1072 | * Poisson distribution. |
1073 | */ |
1074 | for (i = 0; i <= m; i++) |
1075 | { |
1076 | for (j = 0; j <= m - i; j++) |
1077 | row[j + i] += prev_row[j] * t; |
1078 | |
1079 | /* Get Poisson distribution value for (i + 1) occurrences */ |
1080 | t *= rest / (float) (i + 1); |
1081 | } |
1082 | } |
1083 | |
1084 | pfree(prev_row); |
1085 | return row; |
1086 | } |
1087 | |
1088 | /* Fast function for floor value of 2 based logarithm calculation. */ |
1089 | static int |
1090 | floor_log2(uint32 n) |
1091 | { |
1092 | int logval = 0; |
1093 | |
1094 | if (n == 0) |
1095 | return -1; |
1096 | if (n >= (1 << 16)) |
1097 | { |
1098 | n >>= 16; |
1099 | logval += 16; |
1100 | } |
1101 | if (n >= (1 << 8)) |
1102 | { |
1103 | n >>= 8; |
1104 | logval += 8; |
1105 | } |
1106 | if (n >= (1 << 4)) |
1107 | { |
1108 | n >>= 4; |
1109 | logval += 4; |
1110 | } |
1111 | if (n >= (1 << 2)) |
1112 | { |
1113 | n >>= 2; |
1114 | logval += 2; |
1115 | } |
1116 | if (n >= (1 << 1)) |
1117 | { |
1118 | logval += 1; |
1119 | } |
1120 | return logval; |
1121 | } |
1122 | |
1123 | /* |
1124 | * find_next_mcelem binary-searches a most common elements array, starting |
1125 | * from *index, for the first member >= value. It saves the position of the |
1126 | * match into *index and returns true if it's an exact match. (Note: we |
1127 | * assume the mcelem elements are distinct so there can't be more than one |
1128 | * exact match.) |
1129 | */ |
1130 | static bool |
1131 | find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index, |
1132 | TypeCacheEntry *typentry) |
1133 | { |
1134 | int l = *index, |
1135 | r = nmcelem - 1, |
1136 | i, |
1137 | res; |
1138 | |
1139 | while (l <= r) |
1140 | { |
1141 | i = (l + r) / 2; |
1142 | res = element_compare(&mcelem[i], &value, typentry); |
1143 | if (res == 0) |
1144 | { |
1145 | *index = i; |
1146 | return true; |
1147 | } |
1148 | else if (res < 0) |
1149 | l = i + 1; |
1150 | else |
1151 | r = i - 1; |
1152 | } |
1153 | *index = l; |
1154 | return false; |
1155 | } |
1156 | |
1157 | /* |
1158 | * Comparison function for elements. |
1159 | * |
1160 | * We use the element type's default btree opclass, and its default collation |
1161 | * if the type is collation-sensitive. |
1162 | * |
1163 | * XXX consider using SortSupport infrastructure |
1164 | */ |
1165 | static int |
1166 | element_compare(const void *key1, const void *key2, void *arg) |
1167 | { |
1168 | Datum d1 = *((const Datum *) key1); |
1169 | Datum d2 = *((const Datum *) key2); |
1170 | TypeCacheEntry *typentry = (TypeCacheEntry *) arg; |
1171 | FmgrInfo *cmpfunc = &typentry->cmp_proc_finfo; |
1172 | Datum c; |
1173 | |
1174 | c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2); |
1175 | return DatumGetInt32(c); |
1176 | } |
1177 | |
1178 | /* |
1179 | * Comparison function for sorting floats into descending order. |
1180 | */ |
1181 | static int |
1182 | float_compare_desc(const void *key1, const void *key2) |
1183 | { |
1184 | float d1 = *((const float *) key1); |
1185 | float d2 = *((const float *) key2); |
1186 | |
1187 | if (d1 > d2) |
1188 | return -1; |
1189 | else if (d1 < d2) |
1190 | return 1; |
1191 | else |
1192 | return 0; |
1193 | } |
1194 | |