| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * array_selfuncs.c |
| 4 | * Functions for selectivity estimation of array operators |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/adt/array_selfuncs.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <math.h> |
| 18 | |
| 19 | #include "access/htup_details.h" |
| 20 | #include "catalog/pg_collation.h" |
| 21 | #include "catalog/pg_operator.h" |
| 22 | #include "catalog/pg_statistic.h" |
| 23 | #include "utils/array.h" |
| 24 | #include "utils/builtins.h" |
| 25 | #include "utils/lsyscache.h" |
| 26 | #include "utils/selfuncs.h" |
| 27 | #include "utils/typcache.h" |
| 28 | |
| 29 | |
| 30 | /* Default selectivity constant for "@>" and "<@" operators */ |
| 31 | #define DEFAULT_CONTAIN_SEL 0.005 |
| 32 | |
| 33 | /* Default selectivity constant for "&&" operator */ |
| 34 | #define DEFAULT_OVERLAP_SEL 0.01 |
| 35 | |
| 36 | /* Default selectivity for given operator */ |
| 37 | #define DEFAULT_SEL(operator) \ |
| 38 | ((operator) == OID_ARRAY_OVERLAP_OP ? \ |
| 39 | DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL) |
| 40 | |
| 41 | static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval, |
| 42 | Oid elemtype, Oid operator); |
| 43 | static Selectivity mcelem_array_selec(ArrayType *array, |
| 44 | TypeCacheEntry *typentry, |
| 45 | Datum *mcelem, int nmcelem, |
| 46 | float4 *numbers, int nnumbers, |
| 47 | float4 *hist, int nhist, |
| 48 | Oid operator); |
| 49 | static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, |
| 50 | float4 *numbers, int nnumbers, |
| 51 | Datum *array_data, int nitems, |
| 52 | Oid operator, TypeCacheEntry *typentry); |
| 53 | static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem, |
| 54 | float4 *numbers, int nnumbers, |
| 55 | Datum *array_data, int nitems, |
| 56 | float4 *hist, int nhist, |
| 57 | Oid operator, TypeCacheEntry *typentry); |
| 58 | static float *calc_hist(const float4 *hist, int nhist, int n); |
| 59 | static float *calc_distr(const float *p, int n, int m, float rest); |
| 60 | static int floor_log2(uint32 n); |
| 61 | static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, |
| 62 | int *index, TypeCacheEntry *typentry); |
| 63 | static int element_compare(const void *key1, const void *key2, void *arg); |
| 64 | static int float_compare_desc(const void *key1, const void *key2); |
| 65 | |
| 66 | |
| 67 | /* |
| 68 | * scalararraysel_containment |
| 69 | * Estimate selectivity of ScalarArrayOpExpr via array containment. |
| 70 | * |
| 71 | * If we have const =/<> ANY/ALL (array_var) then we can estimate the |
| 72 | * selectivity as though this were an array containment operator, |
| 73 | * array_var op ARRAY[const]. |
| 74 | * |
| 75 | * scalararraysel() has already verified that the ScalarArrayOpExpr's operator |
| 76 | * is the array element type's default equality or inequality operator, and |
| 77 | * has aggressively simplified both inputs to constants. |
| 78 | * |
| 79 | * Returns selectivity (0..1), or -1 if we fail to estimate selectivity. |
| 80 | */ |
| 81 | Selectivity |
| 82 | scalararraysel_containment(PlannerInfo *root, |
| 83 | Node *leftop, Node *rightop, |
| 84 | Oid elemtype, bool isEquality, bool useOr, |
| 85 | int varRelid) |
| 86 | { |
| 87 | Selectivity selec; |
| 88 | VariableStatData vardata; |
| 89 | Datum constval; |
| 90 | TypeCacheEntry *typentry; |
| 91 | FmgrInfo *cmpfunc; |
| 92 | |
| 93 | /* |
| 94 | * rightop must be a variable, else punt. |
| 95 | */ |
| 96 | examine_variable(root, rightop, varRelid, &vardata); |
| 97 | if (!vardata.rel) |
| 98 | { |
| 99 | ReleaseVariableStats(vardata); |
| 100 | return -1.0; |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * leftop must be a constant, else punt. |
| 105 | */ |
| 106 | if (!IsA(leftop, Const)) |
| 107 | { |
| 108 | ReleaseVariableStats(vardata); |
| 109 | return -1.0; |
| 110 | } |
| 111 | if (((Const *) leftop)->constisnull) |
| 112 | { |
| 113 | /* qual can't succeed if null on left */ |
| 114 | ReleaseVariableStats(vardata); |
| 115 | return (Selectivity) 0.0; |
| 116 | } |
| 117 | constval = ((Const *) leftop)->constvalue; |
| 118 | |
| 119 | /* Get element type's default comparison function */ |
| 120 | typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO); |
| 121 | if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
| 122 | { |
| 123 | ReleaseVariableStats(vardata); |
| 124 | return -1.0; |
| 125 | } |
| 126 | cmpfunc = &typentry->cmp_proc_finfo; |
| 127 | |
| 128 | /* |
| 129 | * If the operator is <>, swap ANY/ALL, then invert the result later. |
| 130 | */ |
| 131 | if (!isEquality) |
| 132 | useOr = !useOr; |
| 133 | |
| 134 | /* Get array element stats for var, if available */ |
| 135 | if (HeapTupleIsValid(vardata.statsTuple) && |
| 136 | statistic_proc_security_check(&vardata, cmpfunc->fn_oid)) |
| 137 | { |
| 138 | Form_pg_statistic stats; |
| 139 | AttStatsSlot sslot; |
| 140 | AttStatsSlot hslot; |
| 141 | |
| 142 | stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
| 143 | |
| 144 | /* MCELEM will be an array of same type as element */ |
| 145 | if (get_attstatsslot(&sslot, vardata.statsTuple, |
| 146 | STATISTIC_KIND_MCELEM, InvalidOid, |
| 147 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
| 148 | { |
| 149 | /* For ALL case, also get histogram of distinct-element counts */ |
| 150 | if (useOr || |
| 151 | !get_attstatsslot(&hslot, vardata.statsTuple, |
| 152 | STATISTIC_KIND_DECHIST, InvalidOid, |
| 153 | ATTSTATSSLOT_NUMBERS)) |
| 154 | memset(&hslot, 0, sizeof(hslot)); |
| 155 | |
| 156 | /* |
| 157 | * For = ANY, estimate as var @> ARRAY[const]. |
| 158 | * |
| 159 | * For = ALL, estimate as var <@ ARRAY[const]. |
| 160 | */ |
| 161 | if (useOr) |
| 162 | selec = mcelem_array_contain_overlap_selec(sslot.values, |
| 163 | sslot.nvalues, |
| 164 | sslot.numbers, |
| 165 | sslot.nnumbers, |
| 166 | &constval, 1, |
| 167 | OID_ARRAY_CONTAINS_OP, |
| 168 | typentry); |
| 169 | else |
| 170 | selec = mcelem_array_contained_selec(sslot.values, |
| 171 | sslot.nvalues, |
| 172 | sslot.numbers, |
| 173 | sslot.nnumbers, |
| 174 | &constval, 1, |
| 175 | hslot.numbers, |
| 176 | hslot.nnumbers, |
| 177 | OID_ARRAY_CONTAINED_OP, |
| 178 | typentry); |
| 179 | |
| 180 | free_attstatsslot(&hslot); |
| 181 | free_attstatsslot(&sslot); |
| 182 | } |
| 183 | else |
| 184 | { |
| 185 | /* No most-common-elements info, so do without */ |
| 186 | if (useOr) |
| 187 | selec = mcelem_array_contain_overlap_selec(NULL, 0, |
| 188 | NULL, 0, |
| 189 | &constval, 1, |
| 190 | OID_ARRAY_CONTAINS_OP, |
| 191 | typentry); |
| 192 | else |
| 193 | selec = mcelem_array_contained_selec(NULL, 0, |
| 194 | NULL, 0, |
| 195 | &constval, 1, |
| 196 | NULL, 0, |
| 197 | OID_ARRAY_CONTAINED_OP, |
| 198 | typentry); |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * MCE stats count only non-null rows, so adjust for null rows. |
| 203 | */ |
| 204 | selec *= (1.0 - stats->stanullfrac); |
| 205 | } |
| 206 | else |
| 207 | { |
| 208 | /* No stats at all, so do without */ |
| 209 | if (useOr) |
| 210 | selec = mcelem_array_contain_overlap_selec(NULL, 0, |
| 211 | NULL, 0, |
| 212 | &constval, 1, |
| 213 | OID_ARRAY_CONTAINS_OP, |
| 214 | typentry); |
| 215 | else |
| 216 | selec = mcelem_array_contained_selec(NULL, 0, |
| 217 | NULL, 0, |
| 218 | &constval, 1, |
| 219 | NULL, 0, |
| 220 | OID_ARRAY_CONTAINED_OP, |
| 221 | typentry); |
| 222 | /* we assume no nulls here, so no stanullfrac correction */ |
| 223 | } |
| 224 | |
| 225 | ReleaseVariableStats(vardata); |
| 226 | |
| 227 | /* |
| 228 | * If the operator is <>, invert the results. |
| 229 | */ |
| 230 | if (!isEquality) |
| 231 | selec = 1.0 - selec; |
| 232 | |
| 233 | CLAMP_PROBABILITY(selec); |
| 234 | |
| 235 | return selec; |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * arraycontsel -- restriction selectivity for array @>, &&, <@ operators |
| 240 | */ |
| 241 | Datum |
| 242 | arraycontsel(PG_FUNCTION_ARGS) |
| 243 | { |
| 244 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
| 245 | Oid operator = PG_GETARG_OID(1); |
| 246 | List *args = (List *) PG_GETARG_POINTER(2); |
| 247 | int varRelid = PG_GETARG_INT32(3); |
| 248 | VariableStatData vardata; |
| 249 | Node *other; |
| 250 | bool varonleft; |
| 251 | Selectivity selec; |
| 252 | Oid element_typeid; |
| 253 | |
| 254 | /* |
| 255 | * If expression is not (variable op something) or (something op |
| 256 | * variable), then punt and return a default estimate. |
| 257 | */ |
| 258 | if (!get_restriction_variable(root, args, varRelid, |
| 259 | &vardata, &other, &varonleft)) |
| 260 | PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
| 261 | |
| 262 | /* |
| 263 | * Can't do anything useful if the something is not a constant, either. |
| 264 | */ |
| 265 | if (!IsA(other, Const)) |
| 266 | { |
| 267 | ReleaseVariableStats(vardata); |
| 268 | PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * The "&&", "@>" and "<@" operators are strict, so we can cope with a |
| 273 | * NULL constant right away. |
| 274 | */ |
| 275 | if (((Const *) other)->constisnull) |
| 276 | { |
| 277 | ReleaseVariableStats(vardata); |
| 278 | PG_RETURN_FLOAT8(0.0); |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * If var is on the right, commute the operator, so that we can assume the |
| 283 | * var is on the left in what follows. |
| 284 | */ |
| 285 | if (!varonleft) |
| 286 | { |
| 287 | if (operator == OID_ARRAY_CONTAINS_OP) |
| 288 | operator = OID_ARRAY_CONTAINED_OP; |
| 289 | else if (operator == OID_ARRAY_CONTAINED_OP) |
| 290 | operator = OID_ARRAY_CONTAINS_OP; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * OK, there's a Var and a Const we're dealing with here. We need the |
| 295 | * Const to be an array with same element type as column, else we can't do |
| 296 | * anything useful. (Such cases will likely fail at runtime, but here |
| 297 | * we'd rather just return a default estimate.) |
| 298 | */ |
| 299 | element_typeid = get_base_element_type(((Const *) other)->consttype); |
| 300 | if (element_typeid != InvalidOid && |
| 301 | element_typeid == get_base_element_type(vardata.vartype)) |
| 302 | { |
| 303 | selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue, |
| 304 | element_typeid, operator); |
| 305 | } |
| 306 | else |
| 307 | { |
| 308 | selec = DEFAULT_SEL(operator); |
| 309 | } |
| 310 | |
| 311 | ReleaseVariableStats(vardata); |
| 312 | |
| 313 | CLAMP_PROBABILITY(selec); |
| 314 | |
| 315 | PG_RETURN_FLOAT8((float8) selec); |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators |
| 320 | */ |
| 321 | Datum |
| 322 | arraycontjoinsel(PG_FUNCTION_ARGS) |
| 323 | { |
| 324 | /* For the moment this is just a stub */ |
| 325 | Oid operator = PG_GETARG_OID(1); |
| 326 | |
| 327 | PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const" |
| 332 | * or "arraycolumn <@ const" based on the statistics |
| 333 | * |
| 334 | * This function is mainly responsible for extracting the pg_statistic data |
| 335 | * to be used; we then pass the problem on to mcelem_array_selec(). |
| 336 | */ |
| 337 | static Selectivity |
| 338 | calc_arraycontsel(VariableStatData *vardata, Datum constval, |
| 339 | Oid elemtype, Oid operator) |
| 340 | { |
| 341 | Selectivity selec; |
| 342 | TypeCacheEntry *typentry; |
| 343 | FmgrInfo *cmpfunc; |
| 344 | ArrayType *array; |
| 345 | |
| 346 | /* Get element type's default comparison function */ |
| 347 | typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO); |
| 348 | if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
| 349 | return DEFAULT_SEL(operator); |
| 350 | cmpfunc = &typentry->cmp_proc_finfo; |
| 351 | |
| 352 | /* |
| 353 | * The caller made sure the const is an array with same element type, so |
| 354 | * get it now |
| 355 | */ |
| 356 | array = DatumGetArrayTypeP(constval); |
| 357 | |
| 358 | if (HeapTupleIsValid(vardata->statsTuple) && |
| 359 | statistic_proc_security_check(vardata, cmpfunc->fn_oid)) |
| 360 | { |
| 361 | Form_pg_statistic stats; |
| 362 | AttStatsSlot sslot; |
| 363 | AttStatsSlot hslot; |
| 364 | |
| 365 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
| 366 | |
| 367 | /* MCELEM will be an array of same type as column */ |
| 368 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
| 369 | STATISTIC_KIND_MCELEM, InvalidOid, |
| 370 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
| 371 | { |
| 372 | /* |
| 373 | * For "array <@ const" case we also need histogram of distinct |
| 374 | * element counts. |
| 375 | */ |
| 376 | if (operator != OID_ARRAY_CONTAINED_OP || |
| 377 | !get_attstatsslot(&hslot, vardata->statsTuple, |
| 378 | STATISTIC_KIND_DECHIST, InvalidOid, |
| 379 | ATTSTATSSLOT_NUMBERS)) |
| 380 | memset(&hslot, 0, sizeof(hslot)); |
| 381 | |
| 382 | /* Use the most-common-elements slot for the array Var. */ |
| 383 | selec = mcelem_array_selec(array, typentry, |
| 384 | sslot.values, sslot.nvalues, |
| 385 | sslot.numbers, sslot.nnumbers, |
| 386 | hslot.numbers, hslot.nnumbers, |
| 387 | operator); |
| 388 | |
| 389 | free_attstatsslot(&hslot); |
| 390 | free_attstatsslot(&sslot); |
| 391 | } |
| 392 | else |
| 393 | { |
| 394 | /* No most-common-elements info, so do without */ |
| 395 | selec = mcelem_array_selec(array, typentry, |
| 396 | NULL, 0, NULL, 0, NULL, 0, |
| 397 | operator); |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * MCE stats count only non-null rows, so adjust for null rows. |
| 402 | */ |
| 403 | selec *= (1.0 - stats->stanullfrac); |
| 404 | } |
| 405 | else |
| 406 | { |
| 407 | /* No stats at all, so do without */ |
| 408 | selec = mcelem_array_selec(array, typentry, |
| 409 | NULL, 0, NULL, 0, NULL, 0, |
| 410 | operator); |
| 411 | /* we assume no nulls here, so no stanullfrac correction */ |
| 412 | } |
| 413 | |
| 414 | /* If constant was toasted, release the copy we made */ |
| 415 | if (PointerGetDatum(array) != constval) |
| 416 | pfree(array); |
| 417 | |
| 418 | return selec; |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Array selectivity estimation based on most common elements statistics |
| 423 | * |
| 424 | * This function just deconstructs and sorts the array constant's contents, |
| 425 | * and then passes the problem on to mcelem_array_contain_overlap_selec or |
| 426 | * mcelem_array_contained_selec depending on the operator. |
| 427 | */ |
| 428 | static Selectivity |
| 429 | mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry, |
| 430 | Datum *mcelem, int nmcelem, |
| 431 | float4 *numbers, int nnumbers, |
| 432 | float4 *hist, int nhist, |
| 433 | Oid operator) |
| 434 | { |
| 435 | Selectivity selec; |
| 436 | int num_elems; |
| 437 | Datum *elem_values; |
| 438 | bool *elem_nulls; |
| 439 | bool null_present; |
| 440 | int nonnull_nitems; |
| 441 | int i; |
| 442 | |
| 443 | /* |
| 444 | * Prepare constant array data for sorting. Sorting lets us find unique |
| 445 | * elements and efficiently merge with the MCELEM array. |
| 446 | */ |
| 447 | deconstruct_array(array, |
| 448 | typentry->type_id, |
| 449 | typentry->typlen, |
| 450 | typentry->typbyval, |
| 451 | typentry->typalign, |
| 452 | &elem_values, &elem_nulls, &num_elems); |
| 453 | |
| 454 | /* Collapse out any null elements */ |
| 455 | nonnull_nitems = 0; |
| 456 | null_present = false; |
| 457 | for (i = 0; i < num_elems; i++) |
| 458 | { |
| 459 | if (elem_nulls[i]) |
| 460 | null_present = true; |
| 461 | else |
| 462 | elem_values[nonnull_nitems++] = elem_values[i]; |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * Query "column @> '{anything, null}'" matches nothing. For the other |
| 467 | * two operators, presence of a null in the constant can be ignored. |
| 468 | */ |
| 469 | if (null_present && operator == OID_ARRAY_CONTAINS_OP) |
| 470 | { |
| 471 | pfree(elem_values); |
| 472 | pfree(elem_nulls); |
| 473 | return (Selectivity) 0.0; |
| 474 | } |
| 475 | |
| 476 | /* Sort extracted elements using their default comparison function. */ |
| 477 | qsort_arg(elem_values, nonnull_nitems, sizeof(Datum), |
| 478 | element_compare, typentry); |
| 479 | |
| 480 | /* Separate cases according to operator */ |
| 481 | if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP) |
| 482 | selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem, |
| 483 | numbers, nnumbers, |
| 484 | elem_values, nonnull_nitems, |
| 485 | operator, typentry); |
| 486 | else if (operator == OID_ARRAY_CONTAINED_OP) |
| 487 | selec = mcelem_array_contained_selec(mcelem, nmcelem, |
| 488 | numbers, nnumbers, |
| 489 | elem_values, nonnull_nitems, |
| 490 | hist, nhist, |
| 491 | operator, typentry); |
| 492 | else |
| 493 | { |
| 494 | elog(ERROR, "arraycontsel called for unrecognized operator %u" , |
| 495 | operator); |
| 496 | selec = 0.0; /* keep compiler quiet */ |
| 497 | } |
| 498 | |
| 499 | pfree(elem_values); |
| 500 | pfree(elem_nulls); |
| 501 | return selec; |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * Estimate selectivity of "column @> const" and "column && const" based on |
| 506 | * most common element statistics. This estimation assumes element |
| 507 | * occurrences are independent. |
| 508 | * |
| 509 | * mcelem (of length nmcelem) and numbers (of length nnumbers) are from |
| 510 | * the array column's MCELEM statistics slot, or are NULL/0 if stats are |
| 511 | * not available. array_data (of length nitems) is the constant's elements. |
| 512 | * |
| 513 | * Both the mcelem and array_data arrays are assumed presorted according |
| 514 | * to the element type's cmpfunc. Null elements are not present. |
| 515 | * |
| 516 | * TODO: this estimate probably could be improved by using the distinct |
| 517 | * elements count histogram. For example, excepting the special case of |
| 518 | * "column @> '{}'", we can multiply the calculated selectivity by the |
| 519 | * fraction of nonempty arrays in the column. |
| 520 | */ |
| 521 | static Selectivity |
| 522 | mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, |
| 523 | float4 *numbers, int nnumbers, |
| 524 | Datum *array_data, int nitems, |
| 525 | Oid operator, TypeCacheEntry *typentry) |
| 526 | { |
| 527 | Selectivity selec, |
| 528 | elem_selec; |
| 529 | int mcelem_index, |
| 530 | i; |
| 531 | bool use_bsearch; |
| 532 | float4 minfreq; |
| 533 | |
| 534 | /* |
| 535 | * There should be three more Numbers than Values, because the last three |
| 536 | * cells should hold minimal and maximal frequency among the non-null |
| 537 | * elements, and then the frequency of null elements. Ignore the Numbers |
| 538 | * if not right. |
| 539 | */ |
| 540 | if (nnumbers != nmcelem + 3) |
| 541 | { |
| 542 | numbers = NULL; |
| 543 | nnumbers = 0; |
| 544 | } |
| 545 | |
| 546 | if (numbers) |
| 547 | { |
| 548 | /* Grab the lowest observed frequency */ |
| 549 | minfreq = numbers[nmcelem]; |
| 550 | } |
| 551 | else |
| 552 | { |
| 553 | /* Without statistics make some default assumptions */ |
| 554 | minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL; |
| 555 | } |
| 556 | |
| 557 | /* Decide whether it is faster to use binary search or not. */ |
| 558 | if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems) |
| 559 | use_bsearch = true; |
| 560 | else |
| 561 | use_bsearch = false; |
| 562 | |
| 563 | if (operator == OID_ARRAY_CONTAINS_OP) |
| 564 | { |
| 565 | /* |
| 566 | * Initial selectivity for "column @> const" query is 1.0, and it will |
| 567 | * be decreased with each element of constant array. |
| 568 | */ |
| 569 | selec = 1.0; |
| 570 | } |
| 571 | else |
| 572 | { |
| 573 | /* |
| 574 | * Initial selectivity for "column && const" query is 0.0, and it will |
| 575 | * be increased with each element of constant array. |
| 576 | */ |
| 577 | selec = 0.0; |
| 578 | } |
| 579 | |
| 580 | /* Scan mcelem and array in parallel. */ |
| 581 | mcelem_index = 0; |
| 582 | for (i = 0; i < nitems; i++) |
| 583 | { |
| 584 | bool match = false; |
| 585 | |
| 586 | /* Ignore any duplicates in the array data. */ |
| 587 | if (i > 0 && |
| 588 | element_compare(&array_data[i - 1], &array_data[i], typentry) == 0) |
| 589 | continue; |
| 590 | |
| 591 | /* Find the smallest MCELEM >= this array item. */ |
| 592 | if (use_bsearch) |
| 593 | { |
| 594 | match = find_next_mcelem(mcelem, nmcelem, array_data[i], |
| 595 | &mcelem_index, typentry); |
| 596 | } |
| 597 | else |
| 598 | { |
| 599 | while (mcelem_index < nmcelem) |
| 600 | { |
| 601 | int cmp = element_compare(&mcelem[mcelem_index], |
| 602 | &array_data[i], |
| 603 | typentry); |
| 604 | |
| 605 | if (cmp < 0) |
| 606 | mcelem_index++; |
| 607 | else |
| 608 | { |
| 609 | if (cmp == 0) |
| 610 | match = true; /* mcelem is found */ |
| 611 | break; |
| 612 | } |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | if (match && numbers) |
| 617 | { |
| 618 | /* MCELEM matches the array item; use its frequency. */ |
| 619 | elem_selec = numbers[mcelem_index]; |
| 620 | mcelem_index++; |
| 621 | } |
| 622 | else |
| 623 | { |
| 624 | /* |
| 625 | * The element is not in MCELEM. Punt, but assume that the |
| 626 | * selectivity cannot be more than minfreq / 2. |
| 627 | */ |
| 628 | elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2); |
| 629 | } |
| 630 | |
| 631 | /* |
| 632 | * Update overall selectivity using the current element's selectivity |
| 633 | * and an assumption of element occurrence independence. |
| 634 | */ |
| 635 | if (operator == OID_ARRAY_CONTAINS_OP) |
| 636 | selec *= elem_selec; |
| 637 | else |
| 638 | selec = selec + elem_selec - selec * elem_selec; |
| 639 | |
| 640 | /* Clamp intermediate results to stay sane despite roundoff error */ |
| 641 | CLAMP_PROBABILITY(selec); |
| 642 | } |
| 643 | |
| 644 | return selec; |
| 645 | } |
| 646 | |
| 647 | /* |
| 648 | * Estimate selectivity of "column <@ const" based on most common element |
| 649 | * statistics. |
| 650 | * |
| 651 | * mcelem (of length nmcelem) and numbers (of length nnumbers) are from |
| 652 | * the array column's MCELEM statistics slot, or are NULL/0 if stats are |
| 653 | * not available. array_data (of length nitems) is the constant's elements. |
| 654 | * hist (of length nhist) is from the array column's DECHIST statistics slot, |
| 655 | * or is NULL/0 if those stats are not available. |
| 656 | * |
| 657 | * Both the mcelem and array_data arrays are assumed presorted according |
| 658 | * to the element type's cmpfunc. Null elements are not present. |
| 659 | * |
| 660 | * Independent element occurrence would imply a particular distribution of |
| 661 | * distinct element counts among matching rows. Real data usually falsifies |
| 662 | * that assumption. For example, in a set of 11-element integer arrays having |
| 663 | * elements in the range [0..10], element occurrences are typically not |
| 664 | * independent. If they were, a sufficiently-large set would include all |
| 665 | * distinct element counts 0 through 11. We correct for this using the |
| 666 | * histogram of distinct element counts. |
| 667 | * |
| 668 | * In the "column @> const" and "column && const" cases, we usually have a |
| 669 | * "const" with low number of elements (otherwise we have selectivity close |
| 670 | * to 0 or 1 respectively). That's why the effect of dependence related |
| 671 | * to distinct element count distribution is negligible there. In the |
| 672 | * "column <@ const" case, number of elements is usually high (otherwise we |
| 673 | * have selectivity close to 0). That's why we should do a correction with |
| 674 | * the array distinct element count distribution here. |
| 675 | * |
| 676 | * Using the histogram of distinct element counts produces a different |
| 677 | * distribution law than independent occurrences of elements. This |
| 678 | * distribution law can be described as follows: |
| 679 | * |
| 680 | * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * |
| 681 | * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m] |
| 682 | * |
| 683 | * where: |
| 684 | * o1, o2, ..., on - occurrences of elements 1, 2, ..., n |
| 685 | * (1 - occurrence, 0 - no occurrence) in row |
| 686 | * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n |
| 687 | * (scalar values in [0..1]) according to collected statistics |
| 688 | * m = o1 + o2 + ... + on = total number of distinct elements in row |
| 689 | * hist[m] - histogram data for occurrence of m elements. |
| 690 | * ind[m] - probability of m occurrences from n events assuming their |
| 691 | * probabilities to be equal to frequencies of array elements. |
| 692 | * |
| 693 | * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) * |
| 694 | * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m |
| 695 | */ |
| 696 | static Selectivity |
| 697 | mcelem_array_contained_selec(Datum *mcelem, int nmcelem, |
| 698 | float4 *numbers, int nnumbers, |
| 699 | Datum *array_data, int nitems, |
| 700 | float4 *hist, int nhist, |
| 701 | Oid operator, TypeCacheEntry *typentry) |
| 702 | { |
| 703 | int mcelem_index, |
| 704 | i, |
| 705 | unique_nitems = 0; |
| 706 | float selec, |
| 707 | minfreq, |
| 708 | nullelem_freq; |
| 709 | float *dist, |
| 710 | *mcelem_dist, |
| 711 | *hist_part; |
| 712 | float avg_count, |
| 713 | mult, |
| 714 | rest; |
| 715 | float *elem_selec; |
| 716 | |
| 717 | /* |
| 718 | * There should be three more Numbers than Values in the MCELEM slot, |
| 719 | * because the last three cells should hold minimal and maximal frequency |
| 720 | * among the non-null elements, and then the frequency of null elements. |
| 721 | * Punt if not right, because we can't do much without the element freqs. |
| 722 | */ |
| 723 | if (numbers == NULL || nnumbers != nmcelem + 3) |
| 724 | return DEFAULT_CONTAIN_SEL; |
| 725 | |
| 726 | /* Can't do much without a count histogram, either */ |
| 727 | if (hist == NULL || nhist < 3) |
| 728 | return DEFAULT_CONTAIN_SEL; |
| 729 | |
| 730 | /* |
| 731 | * Grab some of the summary statistics that compute_array_stats() stores: |
| 732 | * lowest frequency, frequency of null elements, and average distinct |
| 733 | * element count. |
| 734 | */ |
| 735 | minfreq = numbers[nmcelem]; |
| 736 | nullelem_freq = numbers[nmcelem + 2]; |
| 737 | avg_count = hist[nhist - 1]; |
| 738 | |
| 739 | /* |
| 740 | * "rest" will be the sum of the frequencies of all elements not |
| 741 | * represented in MCELEM. The average distinct element count is the sum |
| 742 | * of the frequencies of *all* elements. Begin with that; we will proceed |
| 743 | * to subtract the MCELEM frequencies. |
| 744 | */ |
| 745 | rest = avg_count; |
| 746 | |
| 747 | /* |
| 748 | * mult is a multiplier representing estimate of probability that each |
| 749 | * mcelem that is not present in constant doesn't occur. |
| 750 | */ |
| 751 | mult = 1.0f; |
| 752 | |
| 753 | /* |
| 754 | * elem_selec is array of estimated frequencies for elements in the |
| 755 | * constant. |
| 756 | */ |
| 757 | elem_selec = (float *) palloc(sizeof(float) * nitems); |
| 758 | |
| 759 | /* Scan mcelem and array in parallel. */ |
| 760 | mcelem_index = 0; |
| 761 | for (i = 0; i < nitems; i++) |
| 762 | { |
| 763 | bool match = false; |
| 764 | |
| 765 | /* Ignore any duplicates in the array data. */ |
| 766 | if (i > 0 && |
| 767 | element_compare(&array_data[i - 1], &array_data[i], typentry) == 0) |
| 768 | continue; |
| 769 | |
| 770 | /* |
| 771 | * Iterate over MCELEM until we find an entry greater than or equal to |
| 772 | * this element of the constant. Update "rest" and "mult" for mcelem |
| 773 | * entries skipped over. |
| 774 | */ |
| 775 | while (mcelem_index < nmcelem) |
| 776 | { |
| 777 | int cmp = element_compare(&mcelem[mcelem_index], |
| 778 | &array_data[i], |
| 779 | typentry); |
| 780 | |
| 781 | if (cmp < 0) |
| 782 | { |
| 783 | mult *= (1.0f - numbers[mcelem_index]); |
| 784 | rest -= numbers[mcelem_index]; |
| 785 | mcelem_index++; |
| 786 | } |
| 787 | else |
| 788 | { |
| 789 | if (cmp == 0) |
| 790 | match = true; /* mcelem is found */ |
| 791 | break; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | if (match) |
| 796 | { |
| 797 | /* MCELEM matches the array item. */ |
| 798 | elem_selec[unique_nitems] = numbers[mcelem_index]; |
| 799 | /* "rest" is decremented for all mcelems, matched or not */ |
| 800 | rest -= numbers[mcelem_index]; |
| 801 | mcelem_index++; |
| 802 | } |
| 803 | else |
| 804 | { |
| 805 | /* |
| 806 | * The element is not in MCELEM. Punt, but assume that the |
| 807 | * selectivity cannot be more than minfreq / 2. |
| 808 | */ |
| 809 | elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL, |
| 810 | minfreq / 2); |
| 811 | } |
| 812 | |
| 813 | unique_nitems++; |
| 814 | } |
| 815 | |
| 816 | /* |
| 817 | * If we handled all constant elements without exhausting the MCELEM |
| 818 | * array, finish walking it to complete calculation of "rest" and "mult". |
| 819 | */ |
| 820 | while (mcelem_index < nmcelem) |
| 821 | { |
| 822 | mult *= (1.0f - numbers[mcelem_index]); |
| 823 | rest -= numbers[mcelem_index]; |
| 824 | mcelem_index++; |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * The presence of many distinct rare elements materially decreases |
| 829 | * selectivity. Use the Poisson distribution to estimate the probability |
| 830 | * of a column value having zero occurrences of such elements. See above |
| 831 | * for the definition of "rest". |
| 832 | */ |
| 833 | mult *= exp(-rest); |
| 834 | |
| 835 | /*---------- |
| 836 | * Using the distinct element count histogram requires |
| 837 | * O(unique_nitems * (nmcelem + unique_nitems)) |
| 838 | * operations. Beyond a certain computational cost threshold, it's |
| 839 | * reasonable to sacrifice accuracy for decreased planning time. We limit |
| 840 | * the number of operations to EFFORT * nmcelem; since nmcelem is limited |
| 841 | * by the column's statistics target, the work done is user-controllable. |
| 842 | * |
| 843 | * If the number of operations would be too large, we can reduce it |
| 844 | * without losing all accuracy by reducing unique_nitems and considering |
| 845 | * only the most-common elements of the constant array. To make the |
| 846 | * results exactly match what we would have gotten with only those |
| 847 | * elements to start with, we'd have to remove any discarded elements' |
| 848 | * frequencies from "mult", but since this is only an approximation |
| 849 | * anyway, we don't bother with that. Therefore it's sufficient to qsort |
| 850 | * elem_selec[] and take the largest elements. (They will no longer match |
| 851 | * up with the elements of array_data[], but we don't care.) |
| 852 | *---------- |
| 853 | */ |
| 854 | #define EFFORT 100 |
| 855 | |
| 856 | if ((nmcelem + unique_nitems) > 0 && |
| 857 | unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems)) |
| 858 | { |
| 859 | /* |
| 860 | * Use the quadratic formula to solve for largest allowable N. We |
| 861 | * have A = 1, B = nmcelem, C = - EFFORT * nmcelem. |
| 862 | */ |
| 863 | double b = (double) nmcelem; |
| 864 | int n; |
| 865 | |
| 866 | n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2); |
| 867 | |
| 868 | /* Sort, then take just the first n elements */ |
| 869 | qsort(elem_selec, unique_nitems, sizeof(float), |
| 870 | float_compare_desc); |
| 871 | unique_nitems = n; |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * Calculate probabilities of each distinct element count for both mcelems |
| 876 | * and constant elements. At this point, assume independent element |
| 877 | * occurrence. |
| 878 | */ |
| 879 | dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f); |
| 880 | mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest); |
| 881 | |
| 882 | /* ignore hist[nhist-1], which is the average not a histogram member */ |
| 883 | hist_part = calc_hist(hist, nhist - 1, unique_nitems); |
| 884 | |
| 885 | selec = 0.0f; |
| 886 | for (i = 0; i <= unique_nitems; i++) |
| 887 | { |
| 888 | /* |
| 889 | * mult * dist[i] / mcelem_dist[i] gives us probability of qual |
| 890 | * matching from assumption of independent element occurrence with the |
| 891 | * condition that distinct element count = i. |
| 892 | */ |
| 893 | if (mcelem_dist[i] > 0) |
| 894 | selec += hist_part[i] * mult * dist[i] / mcelem_dist[i]; |
| 895 | } |
| 896 | |
| 897 | pfree(dist); |
| 898 | pfree(mcelem_dist); |
| 899 | pfree(hist_part); |
| 900 | pfree(elem_selec); |
| 901 | |
| 902 | /* Take into account occurrence of NULL element. */ |
| 903 | selec *= (1.0f - nullelem_freq); |
| 904 | |
| 905 | CLAMP_PROBABILITY(selec); |
| 906 | |
| 907 | return selec; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * Calculate the first n distinct element count probabilities from a |
| 912 | * histogram of distinct element counts. |
| 913 | * |
| 914 | * Returns a palloc'd array of n+1 entries, with array[k] being the |
| 915 | * probability of element count k, k in [0..n]. |
| 916 | * |
| 917 | * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) * |
| 918 | * (nhist - 1)) probability to each value in (a,b) and an additional half of |
| 919 | * that to a and b themselves. |
| 920 | */ |
| 921 | static float * |
| 922 | calc_hist(const float4 *hist, int nhist, int n) |
| 923 | { |
| 924 | float *hist_part; |
| 925 | int k, |
| 926 | i = 0; |
| 927 | float prev_interval = 0, |
| 928 | next_interval; |
| 929 | float frac; |
| 930 | |
| 931 | hist_part = (float *) palloc((n + 1) * sizeof(float)); |
| 932 | |
| 933 | /* |
| 934 | * frac is a probability contribution for each interval between histogram |
| 935 | * values. We have nhist - 1 intervals, so contribution of each one will |
| 936 | * be 1 / (nhist - 1). |
| 937 | */ |
| 938 | frac = 1.0f / ((float) (nhist - 1)); |
| 939 | |
| 940 | for (k = 0; k <= n; k++) |
| 941 | { |
| 942 | int count = 0; |
| 943 | |
| 944 | /* |
| 945 | * Count the histogram boundaries equal to k. (Although the histogram |
| 946 | * should theoretically contain only exact integers, entries are |
| 947 | * floats so there could be roundoff error in large values. Treat any |
| 948 | * fractional value as equal to the next larger k.) |
| 949 | */ |
| 950 | while (i < nhist && hist[i] <= k) |
| 951 | { |
| 952 | count++; |
| 953 | i++; |
| 954 | } |
| 955 | |
| 956 | if (count > 0) |
| 957 | { |
| 958 | /* k is an exact bound for at least one histogram box. */ |
| 959 | float val; |
| 960 | |
| 961 | /* Find length between current histogram value and the next one */ |
| 962 | if (i < nhist) |
| 963 | next_interval = hist[i] - hist[i - 1]; |
| 964 | else |
| 965 | next_interval = 0; |
| 966 | |
| 967 | /* |
| 968 | * count - 1 histogram boxes contain k exclusively. They |
| 969 | * contribute a total of (count - 1) * frac probability. Also |
| 970 | * factor in the partial histogram boxes on either side. |
| 971 | */ |
| 972 | val = (float) (count - 1); |
| 973 | if (next_interval > 0) |
| 974 | val += 0.5f / next_interval; |
| 975 | if (prev_interval > 0) |
| 976 | val += 0.5f / prev_interval; |
| 977 | hist_part[k] = frac * val; |
| 978 | |
| 979 | prev_interval = next_interval; |
| 980 | } |
| 981 | else |
| 982 | { |
| 983 | /* k does not appear as an exact histogram bound. */ |
| 984 | if (prev_interval > 0) |
| 985 | hist_part[k] = frac / prev_interval; |
| 986 | else |
| 987 | hist_part[k] = 0.0f; |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | return hist_part; |
| 992 | } |
| 993 | |
| 994 | /* |
| 995 | * Consider n independent events with probabilities p[]. This function |
| 996 | * calculates probabilities of exact k of events occurrence for k in [0..m]. |
| 997 | * Returns a palloc'd array of size m+1. |
| 998 | * |
| 999 | * "rest" is the sum of the probabilities of all low-probability events not |
| 1000 | * included in p. |
| 1001 | * |
| 1002 | * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the |
| 1003 | * probability that exactly j of first i events occur. Obviously M[0,0] = 1. |
| 1004 | * For any constant j, each increment of i increases the probability iff the |
| 1005 | * event occurs. So, by the law of total probability: |
| 1006 | * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i] |
| 1007 | * for i > 0, j > 0. |
| 1008 | * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0. |
| 1009 | */ |
| 1010 | static float * |
| 1011 | calc_distr(const float *p, int n, int m, float rest) |
| 1012 | { |
| 1013 | float *row, |
| 1014 | *prev_row, |
| 1015 | *tmp; |
| 1016 | int i, |
| 1017 | j; |
| 1018 | |
| 1019 | /* |
| 1020 | * Since we return only the last row of the matrix and need only the |
| 1021 | * current and previous row for calculations, allocate two rows. |
| 1022 | */ |
| 1023 | row = (float *) palloc((m + 1) * sizeof(float)); |
| 1024 | prev_row = (float *) palloc((m + 1) * sizeof(float)); |
| 1025 | |
| 1026 | /* M[0,0] = 1 */ |
| 1027 | row[0] = 1.0f; |
| 1028 | for (i = 1; i <= n; i++) |
| 1029 | { |
| 1030 | float t = p[i - 1]; |
| 1031 | |
| 1032 | /* Swap rows */ |
| 1033 | tmp = row; |
| 1034 | row = prev_row; |
| 1035 | prev_row = tmp; |
| 1036 | |
| 1037 | /* Calculate next row */ |
| 1038 | for (j = 0; j <= i && j <= m; j++) |
| 1039 | { |
| 1040 | float val = 0.0f; |
| 1041 | |
| 1042 | if (j < i) |
| 1043 | val += prev_row[j] * (1.0f - t); |
| 1044 | if (j > 0) |
| 1045 | val += prev_row[j - 1] * t; |
| 1046 | row[j] = val; |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | /* |
| 1051 | * The presence of many distinct rare (not in "p") elements materially |
| 1052 | * decreases selectivity. Model their collective occurrence with the |
| 1053 | * Poisson distribution. |
| 1054 | */ |
| 1055 | if (rest > DEFAULT_CONTAIN_SEL) |
| 1056 | { |
| 1057 | float t; |
| 1058 | |
| 1059 | /* Swap rows */ |
| 1060 | tmp = row; |
| 1061 | row = prev_row; |
| 1062 | prev_row = tmp; |
| 1063 | |
| 1064 | for (i = 0; i <= m; i++) |
| 1065 | row[i] = 0.0f; |
| 1066 | |
| 1067 | /* Value of Poisson distribution for 0 occurrences */ |
| 1068 | t = exp(-rest); |
| 1069 | |
| 1070 | /* |
| 1071 | * Calculate convolution of previously computed distribution and the |
| 1072 | * Poisson distribution. |
| 1073 | */ |
| 1074 | for (i = 0; i <= m; i++) |
| 1075 | { |
| 1076 | for (j = 0; j <= m - i; j++) |
| 1077 | row[j + i] += prev_row[j] * t; |
| 1078 | |
| 1079 | /* Get Poisson distribution value for (i + 1) occurrences */ |
| 1080 | t *= rest / (float) (i + 1); |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | pfree(prev_row); |
| 1085 | return row; |
| 1086 | } |
| 1087 | |
| 1088 | /* Fast function for floor value of 2 based logarithm calculation. */ |
| 1089 | static int |
| 1090 | floor_log2(uint32 n) |
| 1091 | { |
| 1092 | int logval = 0; |
| 1093 | |
| 1094 | if (n == 0) |
| 1095 | return -1; |
| 1096 | if (n >= (1 << 16)) |
| 1097 | { |
| 1098 | n >>= 16; |
| 1099 | logval += 16; |
| 1100 | } |
| 1101 | if (n >= (1 << 8)) |
| 1102 | { |
| 1103 | n >>= 8; |
| 1104 | logval += 8; |
| 1105 | } |
| 1106 | if (n >= (1 << 4)) |
| 1107 | { |
| 1108 | n >>= 4; |
| 1109 | logval += 4; |
| 1110 | } |
| 1111 | if (n >= (1 << 2)) |
| 1112 | { |
| 1113 | n >>= 2; |
| 1114 | logval += 2; |
| 1115 | } |
| 1116 | if (n >= (1 << 1)) |
| 1117 | { |
| 1118 | logval += 1; |
| 1119 | } |
| 1120 | return logval; |
| 1121 | } |
| 1122 | |
| 1123 | /* |
| 1124 | * find_next_mcelem binary-searches a most common elements array, starting |
| 1125 | * from *index, for the first member >= value. It saves the position of the |
| 1126 | * match into *index and returns true if it's an exact match. (Note: we |
| 1127 | * assume the mcelem elements are distinct so there can't be more than one |
| 1128 | * exact match.) |
| 1129 | */ |
| 1130 | static bool |
| 1131 | find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index, |
| 1132 | TypeCacheEntry *typentry) |
| 1133 | { |
| 1134 | int l = *index, |
| 1135 | r = nmcelem - 1, |
| 1136 | i, |
| 1137 | res; |
| 1138 | |
| 1139 | while (l <= r) |
| 1140 | { |
| 1141 | i = (l + r) / 2; |
| 1142 | res = element_compare(&mcelem[i], &value, typentry); |
| 1143 | if (res == 0) |
| 1144 | { |
| 1145 | *index = i; |
| 1146 | return true; |
| 1147 | } |
| 1148 | else if (res < 0) |
| 1149 | l = i + 1; |
| 1150 | else |
| 1151 | r = i - 1; |
| 1152 | } |
| 1153 | *index = l; |
| 1154 | return false; |
| 1155 | } |
| 1156 | |
| 1157 | /* |
| 1158 | * Comparison function for elements. |
| 1159 | * |
| 1160 | * We use the element type's default btree opclass, and its default collation |
| 1161 | * if the type is collation-sensitive. |
| 1162 | * |
| 1163 | * XXX consider using SortSupport infrastructure |
| 1164 | */ |
| 1165 | static int |
| 1166 | element_compare(const void *key1, const void *key2, void *arg) |
| 1167 | { |
| 1168 | Datum d1 = *((const Datum *) key1); |
| 1169 | Datum d2 = *((const Datum *) key2); |
| 1170 | TypeCacheEntry *typentry = (TypeCacheEntry *) arg; |
| 1171 | FmgrInfo *cmpfunc = &typentry->cmp_proc_finfo; |
| 1172 | Datum c; |
| 1173 | |
| 1174 | c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2); |
| 1175 | return DatumGetInt32(c); |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * Comparison function for sorting floats into descending order. |
| 1180 | */ |
| 1181 | static int |
| 1182 | float_compare_desc(const void *key1, const void *key2) |
| 1183 | { |
| 1184 | float d1 = *((const float *) key1); |
| 1185 | float d2 = *((const float *) key2); |
| 1186 | |
| 1187 | if (d1 > d2) |
| 1188 | return -1; |
| 1189 | else if (d1 < d2) |
| 1190 | return 1; |
| 1191 | else |
| 1192 | return 0; |
| 1193 | } |
| 1194 | |