| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * arrayfuncs.c |
| 4 | * Support functions for arrays. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/adt/arrayfuncs.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <ctype.h> |
| 18 | #include <math.h> |
| 19 | |
| 20 | #include "access/htup_details.h" |
| 21 | #include "catalog/pg_type.h" |
| 22 | #include "funcapi.h" |
| 23 | #include "libpq/pqformat.h" |
| 24 | #include "nodes/nodeFuncs.h" |
| 25 | #include "nodes/supportnodes.h" |
| 26 | #include "optimizer/optimizer.h" |
| 27 | #include "utils/array.h" |
| 28 | #include "utils/arrayaccess.h" |
| 29 | #include "utils/builtins.h" |
| 30 | #include "utils/datum.h" |
| 31 | #include "utils/lsyscache.h" |
| 32 | #include "utils/memutils.h" |
| 33 | #include "utils/selfuncs.h" |
| 34 | #include "utils/typcache.h" |
| 35 | |
| 36 | |
| 37 | /* |
| 38 | * GUC parameter |
| 39 | */ |
| 40 | bool Array_nulls = true; |
| 41 | |
| 42 | /* |
| 43 | * Local definitions |
| 44 | */ |
| 45 | #define ASSGN "=" |
| 46 | |
| 47 | #define AARR_FREE_IF_COPY(array,n) \ |
| 48 | do { \ |
| 49 | if (!VARATT_IS_EXPANDED_HEADER(array)) \ |
| 50 | PG_FREE_IF_COPY(array, n); \ |
| 51 | } while (0) |
| 52 | |
| 53 | typedef enum |
| 54 | { |
| 55 | ARRAY_NO_LEVEL, |
| 56 | ARRAY_LEVEL_STARTED, |
| 57 | ARRAY_ELEM_STARTED, |
| 58 | ARRAY_ELEM_COMPLETED, |
| 59 | ARRAY_QUOTED_ELEM_STARTED, |
| 60 | ARRAY_QUOTED_ELEM_COMPLETED, |
| 61 | ARRAY_ELEM_DELIMITED, |
| 62 | ARRAY_LEVEL_COMPLETED, |
| 63 | ARRAY_LEVEL_DELIMITED |
| 64 | } ArrayParseState; |
| 65 | |
| 66 | /* Working state for array_iterate() */ |
| 67 | typedef struct ArrayIteratorData |
| 68 | { |
| 69 | /* basic info about the array, set up during array_create_iterator() */ |
| 70 | ArrayType *arr; /* array we're iterating through */ |
| 71 | bits8 *nullbitmap; /* its null bitmap, if any */ |
| 72 | int nitems; /* total number of elements in array */ |
| 73 | int16 typlen; /* element type's length */ |
| 74 | bool typbyval; /* element type's byval property */ |
| 75 | char typalign; /* element type's align property */ |
| 76 | |
| 77 | /* information about the requested slice size */ |
| 78 | int slice_ndim; /* slice dimension, or 0 if not slicing */ |
| 79 | int slice_len; /* number of elements per slice */ |
| 80 | int *slice_dims; /* slice dims array */ |
| 81 | int *slice_lbound; /* slice lbound array */ |
| 82 | Datum *slice_values; /* workspace of length slice_len */ |
| 83 | bool *slice_nulls; /* workspace of length slice_len */ |
| 84 | |
| 85 | /* current position information, updated on each iteration */ |
| 86 | char *data_ptr; /* our current position in the array */ |
| 87 | int current_item; /* the item # we're at in the array */ |
| 88 | } ArrayIteratorData; |
| 89 | |
| 90 | static bool array_isspace(char ch); |
| 91 | static int ArrayCount(const char *str, int *dim, char typdelim); |
| 92 | static void ReadArrayStr(char *arrayStr, const char *origStr, |
| 93 | int nitems, int ndim, int *dim, |
| 94 | FmgrInfo *inputproc, Oid typioparam, int32 typmod, |
| 95 | char typdelim, |
| 96 | int typlen, bool typbyval, char typalign, |
| 97 | Datum *values, bool *nulls, |
| 98 | bool *hasnulls, int32 *nbytes); |
| 99 | static void ReadArrayBinary(StringInfo buf, int nitems, |
| 100 | FmgrInfo *receiveproc, Oid typioparam, int32 typmod, |
| 101 | int typlen, bool typbyval, char typalign, |
| 102 | Datum *values, bool *nulls, |
| 103 | bool *hasnulls, int32 *nbytes); |
| 104 | static Datum array_get_element_expanded(Datum arraydatum, |
| 105 | int nSubscripts, int *indx, |
| 106 | int arraytyplen, |
| 107 | int elmlen, bool elmbyval, char elmalign, |
| 108 | bool *isNull); |
| 109 | static Datum array_set_element_expanded(Datum arraydatum, |
| 110 | int nSubscripts, int *indx, |
| 111 | Datum dataValue, bool isNull, |
| 112 | int arraytyplen, |
| 113 | int elmlen, bool elmbyval, char elmalign); |
| 114 | static bool array_get_isnull(const bits8 *nullbitmap, int offset); |
| 115 | static void array_set_isnull(bits8 *nullbitmap, int offset, bool isNull); |
| 116 | static Datum ArrayCast(char *value, bool byval, int len); |
| 117 | static int ArrayCastAndSet(Datum src, |
| 118 | int typlen, bool typbyval, char typalign, |
| 119 | char *dest); |
| 120 | static char *array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems, |
| 121 | int typlen, bool typbyval, char typalign); |
| 122 | static int array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, |
| 123 | int nitems, int typlen, bool typbyval, char typalign); |
| 124 | static int array_copy(char *destptr, int nitems, |
| 125 | char *srcptr, int offset, bits8 *nullbitmap, |
| 126 | int typlen, bool typbyval, char typalign); |
| 127 | static int array_slice_size(char *arraydataptr, bits8 *arraynullsptr, |
| 128 | int ndim, int *dim, int *lb, |
| 129 | int *st, int *endp, |
| 130 | int typlen, bool typbyval, char typalign); |
| 131 | static void array_extract_slice(ArrayType *newarray, |
| 132 | int ndim, int *dim, int *lb, |
| 133 | char *arraydataptr, bits8 *arraynullsptr, |
| 134 | int *st, int *endp, |
| 135 | int typlen, bool typbyval, char typalign); |
| 136 | static void array_insert_slice(ArrayType *destArray, ArrayType *origArray, |
| 137 | ArrayType *srcArray, |
| 138 | int ndim, int *dim, int *lb, |
| 139 | int *st, int *endp, |
| 140 | int typlen, bool typbyval, char typalign); |
| 141 | static int array_cmp(FunctionCallInfo fcinfo); |
| 142 | static ArrayType *create_array_envelope(int ndims, int *dimv, int *lbv, int nbytes, |
| 143 | Oid elmtype, int dataoffset); |
| 144 | static ArrayType *array_fill_internal(ArrayType *dims, ArrayType *lbs, |
| 145 | Datum value, bool isnull, Oid elmtype, |
| 146 | FunctionCallInfo fcinfo); |
| 147 | static ArrayType *array_replace_internal(ArrayType *array, |
| 148 | Datum search, bool search_isnull, |
| 149 | Datum replace, bool replace_isnull, |
| 150 | bool remove, Oid collation, |
| 151 | FunctionCallInfo fcinfo); |
| 152 | static int width_bucket_array_float8(Datum operand, ArrayType *thresholds); |
| 153 | static int width_bucket_array_fixed(Datum operand, |
| 154 | ArrayType *thresholds, |
| 155 | Oid collation, |
| 156 | TypeCacheEntry *typentry); |
| 157 | static int width_bucket_array_variable(Datum operand, |
| 158 | ArrayType *thresholds, |
| 159 | Oid collation, |
| 160 | TypeCacheEntry *typentry); |
| 161 | |
| 162 | |
| 163 | /* |
| 164 | * array_in : |
| 165 | * converts an array from the external format in "string" to |
| 166 | * its internal format. |
| 167 | * |
| 168 | * return value : |
| 169 | * the internal representation of the input array |
| 170 | */ |
| 171 | Datum |
| 172 | array_in(PG_FUNCTION_ARGS) |
| 173 | { |
| 174 | char *string = PG_GETARG_CSTRING(0); /* external form */ |
| 175 | Oid element_type = PG_GETARG_OID(1); /* type of an array |
| 176 | * element */ |
| 177 | int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */ |
| 178 | int typlen; |
| 179 | bool typbyval; |
| 180 | char typalign; |
| 181 | char typdelim; |
| 182 | Oid typioparam; |
| 183 | char *string_save, |
| 184 | *p; |
| 185 | int i, |
| 186 | nitems; |
| 187 | Datum *dataPtr; |
| 188 | bool *nullsPtr; |
| 189 | bool hasnulls; |
| 190 | int32 nbytes; |
| 191 | int32 dataoffset; |
| 192 | ArrayType *retval; |
| 193 | int ndim, |
| 194 | dim[MAXDIM], |
| 195 | lBound[MAXDIM]; |
| 196 | ArrayMetaState *; |
| 197 | |
| 198 | /* |
| 199 | * We arrange to look up info about element type, including its input |
| 200 | * conversion proc, only once per series of calls, assuming the element |
| 201 | * type doesn't change underneath us. |
| 202 | */ |
| 203 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 204 | if (my_extra == NULL) |
| 205 | { |
| 206 | fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| 207 | sizeof(ArrayMetaState)); |
| 208 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 209 | my_extra->element_type = ~element_type; |
| 210 | } |
| 211 | |
| 212 | if (my_extra->element_type != element_type) |
| 213 | { |
| 214 | /* |
| 215 | * Get info about element type, including its input conversion proc |
| 216 | */ |
| 217 | get_type_io_data(element_type, IOFunc_input, |
| 218 | &my_extra->typlen, &my_extra->typbyval, |
| 219 | &my_extra->typalign, &my_extra->typdelim, |
| 220 | &my_extra->typioparam, &my_extra->typiofunc); |
| 221 | fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| 222 | fcinfo->flinfo->fn_mcxt); |
| 223 | my_extra->element_type = element_type; |
| 224 | } |
| 225 | typlen = my_extra->typlen; |
| 226 | typbyval = my_extra->typbyval; |
| 227 | typalign = my_extra->typalign; |
| 228 | typdelim = my_extra->typdelim; |
| 229 | typioparam = my_extra->typioparam; |
| 230 | |
| 231 | /* Make a modifiable copy of the input */ |
| 232 | string_save = pstrdup(string); |
| 233 | |
| 234 | /* |
| 235 | * If the input string starts with dimension info, read and use that. |
| 236 | * Otherwise, we require the input to be in curly-brace style, and we |
| 237 | * prescan the input to determine dimensions. |
| 238 | * |
| 239 | * Dimension info takes the form of one or more [n] or [m:n] items. The |
| 240 | * outer loop iterates once per dimension item. |
| 241 | */ |
| 242 | p = string_save; |
| 243 | ndim = 0; |
| 244 | for (;;) |
| 245 | { |
| 246 | char *q; |
| 247 | int ub; |
| 248 | |
| 249 | /* |
| 250 | * Note: we currently allow whitespace between, but not within, |
| 251 | * dimension items. |
| 252 | */ |
| 253 | while (array_isspace(*p)) |
| 254 | p++; |
| 255 | if (*p != '[') |
| 256 | break; /* no more dimension items */ |
| 257 | p++; |
| 258 | if (ndim >= MAXDIM) |
| 259 | ereport(ERROR, |
| 260 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 261 | errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)" , |
| 262 | ndim + 1, MAXDIM))); |
| 263 | |
| 264 | for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++) |
| 265 | /* skip */ ; |
| 266 | if (q == p) /* no digits? */ |
| 267 | ereport(ERROR, |
| 268 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 269 | errmsg("malformed array literal: \"%s\"" , string), |
| 270 | errdetail("\"[\" must introduce explicitly-specified array dimensions." ))); |
| 271 | |
| 272 | if (*q == ':') |
| 273 | { |
| 274 | /* [m:n] format */ |
| 275 | *q = '\0'; |
| 276 | lBound[ndim] = atoi(p); |
| 277 | p = q + 1; |
| 278 | for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++) |
| 279 | /* skip */ ; |
| 280 | if (q == p) /* no digits? */ |
| 281 | ereport(ERROR, |
| 282 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 283 | errmsg("malformed array literal: \"%s\"" , string), |
| 284 | errdetail("Missing array dimension value." ))); |
| 285 | } |
| 286 | else |
| 287 | { |
| 288 | /* [n] format */ |
| 289 | lBound[ndim] = 1; |
| 290 | } |
| 291 | if (*q != ']') |
| 292 | ereport(ERROR, |
| 293 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 294 | errmsg("malformed array literal: \"%s\"" , string), |
| 295 | errdetail("Missing \"%s\" after array dimensions." , |
| 296 | "]" ))); |
| 297 | |
| 298 | *q = '\0'; |
| 299 | ub = atoi(p); |
| 300 | p = q + 1; |
| 301 | if (ub < lBound[ndim]) |
| 302 | ereport(ERROR, |
| 303 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 304 | errmsg("upper bound cannot be less than lower bound" ))); |
| 305 | |
| 306 | dim[ndim] = ub - lBound[ndim] + 1; |
| 307 | ndim++; |
| 308 | } |
| 309 | |
| 310 | if (ndim == 0) |
| 311 | { |
| 312 | /* No array dimensions, so intuit dimensions from brace structure */ |
| 313 | if (*p != '{') |
| 314 | ereport(ERROR, |
| 315 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 316 | errmsg("malformed array literal: \"%s\"" , string), |
| 317 | errdetail("Array value must start with \"{\" or dimension information." ))); |
| 318 | ndim = ArrayCount(p, dim, typdelim); |
| 319 | for (i = 0; i < ndim; i++) |
| 320 | lBound[i] = 1; |
| 321 | } |
| 322 | else |
| 323 | { |
| 324 | int ndim_braces, |
| 325 | dim_braces[MAXDIM]; |
| 326 | |
| 327 | /* If array dimensions are given, expect '=' operator */ |
| 328 | if (strncmp(p, ASSGN, strlen(ASSGN)) != 0) |
| 329 | ereport(ERROR, |
| 330 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 331 | errmsg("malformed array literal: \"%s\"" , string), |
| 332 | errdetail("Missing \"%s\" after array dimensions." , |
| 333 | ASSGN))); |
| 334 | p += strlen(ASSGN); |
| 335 | while (array_isspace(*p)) |
| 336 | p++; |
| 337 | |
| 338 | /* |
| 339 | * intuit dimensions from brace structure -- it better match what we |
| 340 | * were given |
| 341 | */ |
| 342 | if (*p != '{') |
| 343 | ereport(ERROR, |
| 344 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 345 | errmsg("malformed array literal: \"%s\"" , string), |
| 346 | errdetail("Array contents must start with \"{\"." ))); |
| 347 | ndim_braces = ArrayCount(p, dim_braces, typdelim); |
| 348 | if (ndim_braces != ndim) |
| 349 | ereport(ERROR, |
| 350 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 351 | errmsg("malformed array literal: \"%s\"" , string), |
| 352 | errdetail("Specified array dimensions do not match array contents." ))); |
| 353 | for (i = 0; i < ndim; ++i) |
| 354 | { |
| 355 | if (dim[i] != dim_braces[i]) |
| 356 | ereport(ERROR, |
| 357 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 358 | errmsg("malformed array literal: \"%s\"" , string), |
| 359 | errdetail("Specified array dimensions do not match array contents." ))); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | #ifdef ARRAYDEBUG |
| 364 | printf("array_in- ndim %d (" , ndim); |
| 365 | for (i = 0; i < ndim; i++) |
| 366 | { |
| 367 | printf(" %d" , dim[i]); |
| 368 | }; |
| 369 | printf(") for %s\n" , string); |
| 370 | #endif |
| 371 | |
| 372 | /* This checks for overflow of the array dimensions */ |
| 373 | nitems = ArrayGetNItems(ndim, dim); |
| 374 | /* Empty array? */ |
| 375 | if (nitems == 0) |
| 376 | PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type)); |
| 377 | |
| 378 | dataPtr = (Datum *) palloc(nitems * sizeof(Datum)); |
| 379 | nullsPtr = (bool *) palloc(nitems * sizeof(bool)); |
| 380 | ReadArrayStr(p, string, |
| 381 | nitems, ndim, dim, |
| 382 | &my_extra->proc, typioparam, typmod, |
| 383 | typdelim, |
| 384 | typlen, typbyval, typalign, |
| 385 | dataPtr, nullsPtr, |
| 386 | &hasnulls, &nbytes); |
| 387 | if (hasnulls) |
| 388 | { |
| 389 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); |
| 390 | nbytes += dataoffset; |
| 391 | } |
| 392 | else |
| 393 | { |
| 394 | dataoffset = 0; /* marker for no null bitmap */ |
| 395 | nbytes += ARR_OVERHEAD_NONULLS(ndim); |
| 396 | } |
| 397 | retval = (ArrayType *) palloc0(nbytes); |
| 398 | SET_VARSIZE(retval, nbytes); |
| 399 | retval->ndim = ndim; |
| 400 | retval->dataoffset = dataoffset; |
| 401 | |
| 402 | /* |
| 403 | * This comes from the array's pg_type.typelem (which points to the base |
| 404 | * data type's pg_type.oid) and stores system oids in user tables. This |
| 405 | * oid must be preserved by binary upgrades. |
| 406 | */ |
| 407 | retval->elemtype = element_type; |
| 408 | memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int)); |
| 409 | memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int)); |
| 410 | |
| 411 | CopyArrayEls(retval, |
| 412 | dataPtr, nullsPtr, nitems, |
| 413 | typlen, typbyval, typalign, |
| 414 | true); |
| 415 | |
| 416 | pfree(dataPtr); |
| 417 | pfree(nullsPtr); |
| 418 | pfree(string_save); |
| 419 | |
| 420 | PG_RETURN_ARRAYTYPE_P(retval); |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * array_isspace() --- a non-locale-dependent isspace() |
| 425 | * |
| 426 | * We used to use isspace() for parsing array values, but that has |
| 427 | * undesirable results: an array value might be silently interpreted |
| 428 | * differently depending on the locale setting. Now we just hard-wire |
| 429 | * the traditional ASCII definition of isspace(). |
| 430 | */ |
| 431 | static bool |
| 432 | array_isspace(char ch) |
| 433 | { |
| 434 | if (ch == ' ' || |
| 435 | ch == '\t' || |
| 436 | ch == '\n' || |
| 437 | ch == '\r' || |
| 438 | ch == '\v' || |
| 439 | ch == '\f') |
| 440 | return true; |
| 441 | return false; |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * ArrayCount |
| 446 | * Determines the dimensions for an array string. |
| 447 | * |
| 448 | * Returns number of dimensions as function result. The axis lengths are |
| 449 | * returned in dim[], which must be of size MAXDIM. |
| 450 | */ |
| 451 | static int |
| 452 | ArrayCount(const char *str, int *dim, char typdelim) |
| 453 | { |
| 454 | int nest_level = 0, |
| 455 | i; |
| 456 | int ndim = 1, |
| 457 | temp[MAXDIM], |
| 458 | nelems[MAXDIM], |
| 459 | nelems_last[MAXDIM]; |
| 460 | bool in_quotes = false; |
| 461 | bool eoArray = false; |
| 462 | bool empty_array = true; |
| 463 | const char *ptr; |
| 464 | ArrayParseState parse_state = ARRAY_NO_LEVEL; |
| 465 | |
| 466 | for (i = 0; i < MAXDIM; ++i) |
| 467 | { |
| 468 | temp[i] = dim[i] = nelems_last[i] = 0; |
| 469 | nelems[i] = 1; |
| 470 | } |
| 471 | |
| 472 | ptr = str; |
| 473 | while (!eoArray) |
| 474 | { |
| 475 | bool itemdone = false; |
| 476 | |
| 477 | while (!itemdone) |
| 478 | { |
| 479 | if (parse_state == ARRAY_ELEM_STARTED || |
| 480 | parse_state == ARRAY_QUOTED_ELEM_STARTED) |
| 481 | empty_array = false; |
| 482 | |
| 483 | switch (*ptr) |
| 484 | { |
| 485 | case '\0': |
| 486 | /* Signal a premature end of the string */ |
| 487 | ereport(ERROR, |
| 488 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 489 | errmsg("malformed array literal: \"%s\"" , str), |
| 490 | errdetail("Unexpected end of input." ))); |
| 491 | break; |
| 492 | case '\\': |
| 493 | |
| 494 | /* |
| 495 | * An escape must be after a level start, after an element |
| 496 | * start, or after an element delimiter. In any case we |
| 497 | * now must be past an element start. |
| 498 | */ |
| 499 | if (parse_state != ARRAY_LEVEL_STARTED && |
| 500 | parse_state != ARRAY_ELEM_STARTED && |
| 501 | parse_state != ARRAY_QUOTED_ELEM_STARTED && |
| 502 | parse_state != ARRAY_ELEM_DELIMITED) |
| 503 | ereport(ERROR, |
| 504 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 505 | errmsg("malformed array literal: \"%s\"" , str), |
| 506 | errdetail("Unexpected \"%c\" character." , |
| 507 | '\\'))); |
| 508 | if (parse_state != ARRAY_QUOTED_ELEM_STARTED) |
| 509 | parse_state = ARRAY_ELEM_STARTED; |
| 510 | /* skip the escaped character */ |
| 511 | if (*(ptr + 1)) |
| 512 | ptr++; |
| 513 | else |
| 514 | ereport(ERROR, |
| 515 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 516 | errmsg("malformed array literal: \"%s\"" , str), |
| 517 | errdetail("Unexpected end of input." ))); |
| 518 | break; |
| 519 | case '"': |
| 520 | |
| 521 | /* |
| 522 | * A quote must be after a level start, after a quoted |
| 523 | * element start, or after an element delimiter. In any |
| 524 | * case we now must be past an element start. |
| 525 | */ |
| 526 | if (parse_state != ARRAY_LEVEL_STARTED && |
| 527 | parse_state != ARRAY_QUOTED_ELEM_STARTED && |
| 528 | parse_state != ARRAY_ELEM_DELIMITED) |
| 529 | ereport(ERROR, |
| 530 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 531 | errmsg("malformed array literal: \"%s\"" , str), |
| 532 | errdetail("Unexpected array element." ))); |
| 533 | in_quotes = !in_quotes; |
| 534 | if (in_quotes) |
| 535 | parse_state = ARRAY_QUOTED_ELEM_STARTED; |
| 536 | else |
| 537 | parse_state = ARRAY_QUOTED_ELEM_COMPLETED; |
| 538 | break; |
| 539 | case '{': |
| 540 | if (!in_quotes) |
| 541 | { |
| 542 | /* |
| 543 | * A left brace can occur if no nesting has occurred |
| 544 | * yet, after a level start, or after a level |
| 545 | * delimiter. |
| 546 | */ |
| 547 | if (parse_state != ARRAY_NO_LEVEL && |
| 548 | parse_state != ARRAY_LEVEL_STARTED && |
| 549 | parse_state != ARRAY_LEVEL_DELIMITED) |
| 550 | ereport(ERROR, |
| 551 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 552 | errmsg("malformed array literal: \"%s\"" , str), |
| 553 | errdetail("Unexpected \"%c\" character." , |
| 554 | '{'))); |
| 555 | parse_state = ARRAY_LEVEL_STARTED; |
| 556 | if (nest_level >= MAXDIM) |
| 557 | ereport(ERROR, |
| 558 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 559 | errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)" , |
| 560 | nest_level + 1, MAXDIM))); |
| 561 | temp[nest_level] = 0; |
| 562 | nest_level++; |
| 563 | if (ndim < nest_level) |
| 564 | ndim = nest_level; |
| 565 | } |
| 566 | break; |
| 567 | case '}': |
| 568 | if (!in_quotes) |
| 569 | { |
| 570 | /* |
| 571 | * A right brace can occur after an element start, an |
| 572 | * element completion, a quoted element completion, or |
| 573 | * a level completion. |
| 574 | */ |
| 575 | if (parse_state != ARRAY_ELEM_STARTED && |
| 576 | parse_state != ARRAY_ELEM_COMPLETED && |
| 577 | parse_state != ARRAY_QUOTED_ELEM_COMPLETED && |
| 578 | parse_state != ARRAY_LEVEL_COMPLETED && |
| 579 | !(nest_level == 1 && parse_state == ARRAY_LEVEL_STARTED)) |
| 580 | ereport(ERROR, |
| 581 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 582 | errmsg("malformed array literal: \"%s\"" , str), |
| 583 | errdetail("Unexpected \"%c\" character." , |
| 584 | '}'))); |
| 585 | parse_state = ARRAY_LEVEL_COMPLETED; |
| 586 | if (nest_level == 0) |
| 587 | ereport(ERROR, |
| 588 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 589 | errmsg("malformed array literal: \"%s\"" , str), |
| 590 | errdetail("Unmatched \"%c\" character." , '}'))); |
| 591 | nest_level--; |
| 592 | |
| 593 | if (nelems_last[nest_level] != 0 && |
| 594 | nelems[nest_level] != nelems_last[nest_level]) |
| 595 | ereport(ERROR, |
| 596 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 597 | errmsg("malformed array literal: \"%s\"" , str), |
| 598 | errdetail("Multidimensional arrays must have " |
| 599 | "sub-arrays with matching " |
| 600 | "dimensions." ))); |
| 601 | nelems_last[nest_level] = nelems[nest_level]; |
| 602 | nelems[nest_level] = 1; |
| 603 | if (nest_level == 0) |
| 604 | eoArray = itemdone = true; |
| 605 | else |
| 606 | { |
| 607 | /* |
| 608 | * We don't set itemdone here; see comments in |
| 609 | * ReadArrayStr |
| 610 | */ |
| 611 | temp[nest_level - 1]++; |
| 612 | } |
| 613 | } |
| 614 | break; |
| 615 | default: |
| 616 | if (!in_quotes) |
| 617 | { |
| 618 | if (*ptr == typdelim) |
| 619 | { |
| 620 | /* |
| 621 | * Delimiters can occur after an element start, an |
| 622 | * element completion, a quoted element |
| 623 | * completion, or a level completion. |
| 624 | */ |
| 625 | if (parse_state != ARRAY_ELEM_STARTED && |
| 626 | parse_state != ARRAY_ELEM_COMPLETED && |
| 627 | parse_state != ARRAY_QUOTED_ELEM_COMPLETED && |
| 628 | parse_state != ARRAY_LEVEL_COMPLETED) |
| 629 | ereport(ERROR, |
| 630 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 631 | errmsg("malformed array literal: \"%s\"" , str), |
| 632 | errdetail("Unexpected \"%c\" character." , |
| 633 | typdelim))); |
| 634 | if (parse_state == ARRAY_LEVEL_COMPLETED) |
| 635 | parse_state = ARRAY_LEVEL_DELIMITED; |
| 636 | else |
| 637 | parse_state = ARRAY_ELEM_DELIMITED; |
| 638 | itemdone = true; |
| 639 | nelems[nest_level - 1]++; |
| 640 | } |
| 641 | else if (!array_isspace(*ptr)) |
| 642 | { |
| 643 | /* |
| 644 | * Other non-space characters must be after a |
| 645 | * level start, after an element start, or after |
| 646 | * an element delimiter. In any case we now must |
| 647 | * be past an element start. |
| 648 | */ |
| 649 | if (parse_state != ARRAY_LEVEL_STARTED && |
| 650 | parse_state != ARRAY_ELEM_STARTED && |
| 651 | parse_state != ARRAY_ELEM_DELIMITED) |
| 652 | ereport(ERROR, |
| 653 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 654 | errmsg("malformed array literal: \"%s\"" , str), |
| 655 | errdetail("Unexpected array element." ))); |
| 656 | parse_state = ARRAY_ELEM_STARTED; |
| 657 | } |
| 658 | } |
| 659 | break; |
| 660 | } |
| 661 | if (!itemdone) |
| 662 | ptr++; |
| 663 | } |
| 664 | temp[ndim - 1]++; |
| 665 | ptr++; |
| 666 | } |
| 667 | |
| 668 | /* only whitespace is allowed after the closing brace */ |
| 669 | while (*ptr) |
| 670 | { |
| 671 | if (!array_isspace(*ptr++)) |
| 672 | ereport(ERROR, |
| 673 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 674 | errmsg("malformed array literal: \"%s\"" , str), |
| 675 | errdetail("Junk after closing right brace." ))); |
| 676 | } |
| 677 | |
| 678 | /* special case for an empty array */ |
| 679 | if (empty_array) |
| 680 | return 0; |
| 681 | |
| 682 | for (i = 0; i < ndim; ++i) |
| 683 | dim[i] = temp[i]; |
| 684 | |
| 685 | return ndim; |
| 686 | } |
| 687 | |
| 688 | /* |
| 689 | * ReadArrayStr : |
| 690 | * parses the array string pointed to by "arrayStr" and converts the values |
| 691 | * to internal format. Unspecified elements are initialized to nulls. |
| 692 | * The array dimensions must already have been determined. |
| 693 | * |
| 694 | * Inputs: |
| 695 | * arrayStr: the string to parse. |
| 696 | * CAUTION: the contents of "arrayStr" will be modified! |
| 697 | * origStr: the unmodified input string, used only in error messages. |
| 698 | * nitems: total number of array elements, as already determined. |
| 699 | * ndim: number of array dimensions |
| 700 | * dim[]: array axis lengths |
| 701 | * inputproc: type-specific input procedure for element datatype. |
| 702 | * typioparam, typmod: auxiliary values to pass to inputproc. |
| 703 | * typdelim: the value delimiter (type-specific). |
| 704 | * typlen, typbyval, typalign: storage parameters of element datatype. |
| 705 | * |
| 706 | * Outputs: |
| 707 | * values[]: filled with converted data values. |
| 708 | * nulls[]: filled with is-null markers. |
| 709 | * *hasnulls: set true iff there are any null elements. |
| 710 | * *nbytes: set to total size of data area needed (including alignment |
| 711 | * padding but not including array header overhead). |
| 712 | * |
| 713 | * Note that values[] and nulls[] are allocated by the caller, and must have |
| 714 | * nitems elements. |
| 715 | */ |
| 716 | static void |
| 717 | ReadArrayStr(char *arrayStr, |
| 718 | const char *origStr, |
| 719 | int nitems, |
| 720 | int ndim, |
| 721 | int *dim, |
| 722 | FmgrInfo *inputproc, |
| 723 | Oid typioparam, |
| 724 | int32 typmod, |
| 725 | char typdelim, |
| 726 | int typlen, |
| 727 | bool typbyval, |
| 728 | char typalign, |
| 729 | Datum *values, |
| 730 | bool *nulls, |
| 731 | bool *hasnulls, |
| 732 | int32 *nbytes) |
| 733 | { |
| 734 | int i, |
| 735 | nest_level = 0; |
| 736 | char *srcptr; |
| 737 | bool in_quotes = false; |
| 738 | bool eoArray = false; |
| 739 | bool hasnull; |
| 740 | int32 totbytes; |
| 741 | int indx[MAXDIM], |
| 742 | prod[MAXDIM]; |
| 743 | |
| 744 | mda_get_prod(ndim, dim, prod); |
| 745 | MemSet(indx, 0, sizeof(indx)); |
| 746 | |
| 747 | /* Initialize is-null markers to true */ |
| 748 | memset(nulls, true, nitems * sizeof(bool)); |
| 749 | |
| 750 | /* |
| 751 | * We have to remove " and \ characters to create a clean item value to |
| 752 | * pass to the datatype input routine. We overwrite each item value |
| 753 | * in-place within arrayStr to do this. srcptr is the current scan point, |
| 754 | * and dstptr is where we are copying to. |
| 755 | * |
| 756 | * We also want to suppress leading and trailing unquoted whitespace. We |
| 757 | * use the leadingspace flag to suppress leading space. Trailing space is |
| 758 | * tracked by using dstendptr to point to the last significant output |
| 759 | * character. |
| 760 | * |
| 761 | * The error checking in this routine is mostly pro-forma, since we expect |
| 762 | * that ArrayCount() already validated the string. So we don't bother |
| 763 | * with errdetail messages. |
| 764 | */ |
| 765 | srcptr = arrayStr; |
| 766 | while (!eoArray) |
| 767 | { |
| 768 | bool itemdone = false; |
| 769 | bool leadingspace = true; |
| 770 | bool hasquoting = false; |
| 771 | char *itemstart; |
| 772 | char *dstptr; |
| 773 | char *dstendptr; |
| 774 | |
| 775 | i = -1; |
| 776 | itemstart = dstptr = dstendptr = srcptr; |
| 777 | |
| 778 | while (!itemdone) |
| 779 | { |
| 780 | switch (*srcptr) |
| 781 | { |
| 782 | case '\0': |
| 783 | /* Signal a premature end of the string */ |
| 784 | ereport(ERROR, |
| 785 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 786 | errmsg("malformed array literal: \"%s\"" , |
| 787 | origStr))); |
| 788 | break; |
| 789 | case '\\': |
| 790 | /* Skip backslash, copy next character as-is. */ |
| 791 | srcptr++; |
| 792 | if (*srcptr == '\0') |
| 793 | ereport(ERROR, |
| 794 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 795 | errmsg("malformed array literal: \"%s\"" , |
| 796 | origStr))); |
| 797 | *dstptr++ = *srcptr++; |
| 798 | /* Treat the escaped character as non-whitespace */ |
| 799 | leadingspace = false; |
| 800 | dstendptr = dstptr; |
| 801 | hasquoting = true; /* can't be a NULL marker */ |
| 802 | break; |
| 803 | case '"': |
| 804 | in_quotes = !in_quotes; |
| 805 | if (in_quotes) |
| 806 | leadingspace = false; |
| 807 | else |
| 808 | { |
| 809 | /* |
| 810 | * Advance dstendptr when we exit in_quotes; this |
| 811 | * saves having to do it in all the other in_quotes |
| 812 | * cases. |
| 813 | */ |
| 814 | dstendptr = dstptr; |
| 815 | } |
| 816 | hasquoting = true; /* can't be a NULL marker */ |
| 817 | srcptr++; |
| 818 | break; |
| 819 | case '{': |
| 820 | if (!in_quotes) |
| 821 | { |
| 822 | if (nest_level >= ndim) |
| 823 | ereport(ERROR, |
| 824 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 825 | errmsg("malformed array literal: \"%s\"" , |
| 826 | origStr))); |
| 827 | nest_level++; |
| 828 | indx[nest_level - 1] = 0; |
| 829 | srcptr++; |
| 830 | } |
| 831 | else |
| 832 | *dstptr++ = *srcptr++; |
| 833 | break; |
| 834 | case '}': |
| 835 | if (!in_quotes) |
| 836 | { |
| 837 | if (nest_level == 0) |
| 838 | ereport(ERROR, |
| 839 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 840 | errmsg("malformed array literal: \"%s\"" , |
| 841 | origStr))); |
| 842 | if (i == -1) |
| 843 | i = ArrayGetOffset0(ndim, indx, prod); |
| 844 | indx[nest_level - 1] = 0; |
| 845 | nest_level--; |
| 846 | if (nest_level == 0) |
| 847 | eoArray = itemdone = true; |
| 848 | else |
| 849 | indx[nest_level - 1]++; |
| 850 | srcptr++; |
| 851 | } |
| 852 | else |
| 853 | *dstptr++ = *srcptr++; |
| 854 | break; |
| 855 | default: |
| 856 | if (in_quotes) |
| 857 | *dstptr++ = *srcptr++; |
| 858 | else if (*srcptr == typdelim) |
| 859 | { |
| 860 | if (i == -1) |
| 861 | i = ArrayGetOffset0(ndim, indx, prod); |
| 862 | itemdone = true; |
| 863 | indx[ndim - 1]++; |
| 864 | srcptr++; |
| 865 | } |
| 866 | else if (array_isspace(*srcptr)) |
| 867 | { |
| 868 | /* |
| 869 | * If leading space, drop it immediately. Else, copy |
| 870 | * but don't advance dstendptr. |
| 871 | */ |
| 872 | if (leadingspace) |
| 873 | srcptr++; |
| 874 | else |
| 875 | *dstptr++ = *srcptr++; |
| 876 | } |
| 877 | else |
| 878 | { |
| 879 | *dstptr++ = *srcptr++; |
| 880 | leadingspace = false; |
| 881 | dstendptr = dstptr; |
| 882 | } |
| 883 | break; |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | Assert(dstptr < srcptr); |
| 888 | *dstendptr = '\0'; |
| 889 | |
| 890 | if (i < 0 || i >= nitems) |
| 891 | ereport(ERROR, |
| 892 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 893 | errmsg("malformed array literal: \"%s\"" , |
| 894 | origStr))); |
| 895 | |
| 896 | if (Array_nulls && !hasquoting && |
| 897 | pg_strcasecmp(itemstart, "NULL" ) == 0) |
| 898 | { |
| 899 | /* it's a NULL item */ |
| 900 | values[i] = InputFunctionCall(inputproc, NULL, |
| 901 | typioparam, typmod); |
| 902 | nulls[i] = true; |
| 903 | } |
| 904 | else |
| 905 | { |
| 906 | values[i] = InputFunctionCall(inputproc, itemstart, |
| 907 | typioparam, typmod); |
| 908 | nulls[i] = false; |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | /* |
| 913 | * Check for nulls, compute total data space needed |
| 914 | */ |
| 915 | hasnull = false; |
| 916 | totbytes = 0; |
| 917 | for (i = 0; i < nitems; i++) |
| 918 | { |
| 919 | if (nulls[i]) |
| 920 | hasnull = true; |
| 921 | else |
| 922 | { |
| 923 | /* let's just make sure data is not toasted */ |
| 924 | if (typlen == -1) |
| 925 | values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); |
| 926 | totbytes = att_addlength_datum(totbytes, typlen, values[i]); |
| 927 | totbytes = att_align_nominal(totbytes, typalign); |
| 928 | /* check for overflow of total request */ |
| 929 | if (!AllocSizeIsValid(totbytes)) |
| 930 | ereport(ERROR, |
| 931 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 932 | errmsg("array size exceeds the maximum allowed (%d)" , |
| 933 | (int) MaxAllocSize))); |
| 934 | } |
| 935 | } |
| 936 | *hasnulls = hasnull; |
| 937 | *nbytes = totbytes; |
| 938 | } |
| 939 | |
| 940 | |
| 941 | /* |
| 942 | * Copy data into an array object from a temporary array of Datums. |
| 943 | * |
| 944 | * array: array object (with header fields already filled in) |
| 945 | * values: array of Datums to be copied |
| 946 | * nulls: array of is-null flags (can be NULL if no nulls) |
| 947 | * nitems: number of Datums to be copied |
| 948 | * typbyval, typlen, typalign: info about element datatype |
| 949 | * freedata: if true and element type is pass-by-ref, pfree data values |
| 950 | * referenced by Datums after copying them. |
| 951 | * |
| 952 | * If the input data is of varlena type, the caller must have ensured that |
| 953 | * the values are not toasted. (Doing it here doesn't work since the |
| 954 | * caller has already allocated space for the array...) |
| 955 | */ |
| 956 | void |
| 957 | CopyArrayEls(ArrayType *array, |
| 958 | Datum *values, |
| 959 | bool *nulls, |
| 960 | int nitems, |
| 961 | int typlen, |
| 962 | bool typbyval, |
| 963 | char typalign, |
| 964 | bool freedata) |
| 965 | { |
| 966 | char *p = ARR_DATA_PTR(array); |
| 967 | bits8 *bitmap = ARR_NULLBITMAP(array); |
| 968 | int bitval = 0; |
| 969 | int bitmask = 1; |
| 970 | int i; |
| 971 | |
| 972 | if (typbyval) |
| 973 | freedata = false; |
| 974 | |
| 975 | for (i = 0; i < nitems; i++) |
| 976 | { |
| 977 | if (nulls && nulls[i]) |
| 978 | { |
| 979 | if (!bitmap) /* shouldn't happen */ |
| 980 | elog(ERROR, "null array element where not supported" ); |
| 981 | /* bitmap bit stays 0 */ |
| 982 | } |
| 983 | else |
| 984 | { |
| 985 | bitval |= bitmask; |
| 986 | p += ArrayCastAndSet(values[i], typlen, typbyval, typalign, p); |
| 987 | if (freedata) |
| 988 | pfree(DatumGetPointer(values[i])); |
| 989 | } |
| 990 | if (bitmap) |
| 991 | { |
| 992 | bitmask <<= 1; |
| 993 | if (bitmask == 0x100) |
| 994 | { |
| 995 | *bitmap++ = bitval; |
| 996 | bitval = 0; |
| 997 | bitmask = 1; |
| 998 | } |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | if (bitmap && bitmask != 1) |
| 1003 | *bitmap = bitval; |
| 1004 | } |
| 1005 | |
| 1006 | /* |
| 1007 | * array_out : |
| 1008 | * takes the internal representation of an array and returns a string |
| 1009 | * containing the array in its external format. |
| 1010 | */ |
| 1011 | Datum |
| 1012 | array_out(PG_FUNCTION_ARGS) |
| 1013 | { |
| 1014 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 1015 | Oid element_type = AARR_ELEMTYPE(v); |
| 1016 | int typlen; |
| 1017 | bool typbyval; |
| 1018 | char typalign; |
| 1019 | char typdelim; |
| 1020 | char *p, |
| 1021 | *tmp, |
| 1022 | *retval, |
| 1023 | **values, |
| 1024 | dims_str[(MAXDIM * 33) + 2]; |
| 1025 | |
| 1026 | /* |
| 1027 | * 33 per dim since we assume 15 digits per number + ':' +'[]' |
| 1028 | * |
| 1029 | * +2 allows for assignment operator + trailing null |
| 1030 | */ |
| 1031 | bool *needquotes, |
| 1032 | needdims = false; |
| 1033 | size_t overall_length; |
| 1034 | int nitems, |
| 1035 | i, |
| 1036 | j, |
| 1037 | k, |
| 1038 | indx[MAXDIM]; |
| 1039 | int ndim, |
| 1040 | *dims, |
| 1041 | *lb; |
| 1042 | array_iter iter; |
| 1043 | ArrayMetaState *; |
| 1044 | |
| 1045 | /* |
| 1046 | * We arrange to look up info about element type, including its output |
| 1047 | * conversion proc, only once per series of calls, assuming the element |
| 1048 | * type doesn't change underneath us. |
| 1049 | */ |
| 1050 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 1051 | if (my_extra == NULL) |
| 1052 | { |
| 1053 | fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| 1054 | sizeof(ArrayMetaState)); |
| 1055 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 1056 | my_extra->element_type = ~element_type; |
| 1057 | } |
| 1058 | |
| 1059 | if (my_extra->element_type != element_type) |
| 1060 | { |
| 1061 | /* |
| 1062 | * Get info about element type, including its output conversion proc |
| 1063 | */ |
| 1064 | get_type_io_data(element_type, IOFunc_output, |
| 1065 | &my_extra->typlen, &my_extra->typbyval, |
| 1066 | &my_extra->typalign, &my_extra->typdelim, |
| 1067 | &my_extra->typioparam, &my_extra->typiofunc); |
| 1068 | fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| 1069 | fcinfo->flinfo->fn_mcxt); |
| 1070 | my_extra->element_type = element_type; |
| 1071 | } |
| 1072 | typlen = my_extra->typlen; |
| 1073 | typbyval = my_extra->typbyval; |
| 1074 | typalign = my_extra->typalign; |
| 1075 | typdelim = my_extra->typdelim; |
| 1076 | |
| 1077 | ndim = AARR_NDIM(v); |
| 1078 | dims = AARR_DIMS(v); |
| 1079 | lb = AARR_LBOUND(v); |
| 1080 | nitems = ArrayGetNItems(ndim, dims); |
| 1081 | |
| 1082 | if (nitems == 0) |
| 1083 | { |
| 1084 | retval = pstrdup("{}" ); |
| 1085 | PG_RETURN_CSTRING(retval); |
| 1086 | } |
| 1087 | |
| 1088 | /* |
| 1089 | * we will need to add explicit dimensions if any dimension has a lower |
| 1090 | * bound other than one |
| 1091 | */ |
| 1092 | for (i = 0; i < ndim; i++) |
| 1093 | { |
| 1094 | if (lb[i] != 1) |
| 1095 | { |
| 1096 | needdims = true; |
| 1097 | break; |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | /* |
| 1102 | * Convert all values to string form, count total space needed (including |
| 1103 | * any overhead such as escaping backslashes), and detect whether each |
| 1104 | * item needs double quotes. |
| 1105 | */ |
| 1106 | values = (char **) palloc(nitems * sizeof(char *)); |
| 1107 | needquotes = (bool *) palloc(nitems * sizeof(bool)); |
| 1108 | overall_length = 0; |
| 1109 | |
| 1110 | array_iter_setup(&iter, v); |
| 1111 | |
| 1112 | for (i = 0; i < nitems; i++) |
| 1113 | { |
| 1114 | Datum itemvalue; |
| 1115 | bool isnull; |
| 1116 | bool needquote; |
| 1117 | |
| 1118 | /* Get source element, checking for NULL */ |
| 1119 | itemvalue = array_iter_next(&iter, &isnull, i, |
| 1120 | typlen, typbyval, typalign); |
| 1121 | |
| 1122 | if (isnull) |
| 1123 | { |
| 1124 | values[i] = pstrdup("NULL" ); |
| 1125 | overall_length += 4; |
| 1126 | needquote = false; |
| 1127 | } |
| 1128 | else |
| 1129 | { |
| 1130 | values[i] = OutputFunctionCall(&my_extra->proc, itemvalue); |
| 1131 | |
| 1132 | /* count data plus backslashes; detect chars needing quotes */ |
| 1133 | if (values[i][0] == '\0') |
| 1134 | needquote = true; /* force quotes for empty string */ |
| 1135 | else if (pg_strcasecmp(values[i], "NULL" ) == 0) |
| 1136 | needquote = true; /* force quotes for literal NULL */ |
| 1137 | else |
| 1138 | needquote = false; |
| 1139 | |
| 1140 | for (tmp = values[i]; *tmp != '\0'; tmp++) |
| 1141 | { |
| 1142 | char ch = *tmp; |
| 1143 | |
| 1144 | overall_length += 1; |
| 1145 | if (ch == '"' || ch == '\\') |
| 1146 | { |
| 1147 | needquote = true; |
| 1148 | overall_length += 1; |
| 1149 | } |
| 1150 | else if (ch == '{' || ch == '}' || ch == typdelim || |
| 1151 | array_isspace(ch)) |
| 1152 | needquote = true; |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | needquotes[i] = needquote; |
| 1157 | |
| 1158 | /* Count the pair of double quotes, if needed */ |
| 1159 | if (needquote) |
| 1160 | overall_length += 2; |
| 1161 | /* and the comma (or other typdelim delimiter) */ |
| 1162 | overall_length += 1; |
| 1163 | } |
| 1164 | |
| 1165 | /* |
| 1166 | * The very last array element doesn't have a typdelim delimiter after it, |
| 1167 | * but that's OK; that space is needed for the trailing '\0'. |
| 1168 | * |
| 1169 | * Now count total number of curly brace pairs in output string. |
| 1170 | */ |
| 1171 | for (i = j = 0, k = 1; i < ndim; i++) |
| 1172 | { |
| 1173 | j += k, k *= dims[i]; |
| 1174 | } |
| 1175 | overall_length += 2 * j; |
| 1176 | |
| 1177 | /* Format explicit dimensions if required */ |
| 1178 | dims_str[0] = '\0'; |
| 1179 | if (needdims) |
| 1180 | { |
| 1181 | char *ptr = dims_str; |
| 1182 | |
| 1183 | for (i = 0; i < ndim; i++) |
| 1184 | { |
| 1185 | sprintf(ptr, "[%d:%d]" , lb[i], lb[i] + dims[i] - 1); |
| 1186 | ptr += strlen(ptr); |
| 1187 | } |
| 1188 | *ptr++ = *ASSGN; |
| 1189 | *ptr = '\0'; |
| 1190 | overall_length += ptr - dims_str; |
| 1191 | } |
| 1192 | |
| 1193 | /* Now construct the output string */ |
| 1194 | retval = (char *) palloc(overall_length); |
| 1195 | p = retval; |
| 1196 | |
| 1197 | #define APPENDSTR(str) (strcpy(p, (str)), p += strlen(p)) |
| 1198 | #define APPENDCHAR(ch) (*p++ = (ch), *p = '\0') |
| 1199 | |
| 1200 | if (needdims) |
| 1201 | APPENDSTR(dims_str); |
| 1202 | APPENDCHAR('{'); |
| 1203 | for (i = 0; i < ndim; i++) |
| 1204 | indx[i] = 0; |
| 1205 | j = 0; |
| 1206 | k = 0; |
| 1207 | do |
| 1208 | { |
| 1209 | for (i = j; i < ndim - 1; i++) |
| 1210 | APPENDCHAR('{'); |
| 1211 | |
| 1212 | if (needquotes[k]) |
| 1213 | { |
| 1214 | APPENDCHAR('"'); |
| 1215 | for (tmp = values[k]; *tmp; tmp++) |
| 1216 | { |
| 1217 | char ch = *tmp; |
| 1218 | |
| 1219 | if (ch == '"' || ch == '\\') |
| 1220 | *p++ = '\\'; |
| 1221 | *p++ = ch; |
| 1222 | } |
| 1223 | *p = '\0'; |
| 1224 | APPENDCHAR('"'); |
| 1225 | } |
| 1226 | else |
| 1227 | APPENDSTR(values[k]); |
| 1228 | pfree(values[k++]); |
| 1229 | |
| 1230 | for (i = ndim - 1; i >= 0; i--) |
| 1231 | { |
| 1232 | if (++(indx[i]) < dims[i]) |
| 1233 | { |
| 1234 | APPENDCHAR(typdelim); |
| 1235 | break; |
| 1236 | } |
| 1237 | else |
| 1238 | { |
| 1239 | indx[i] = 0; |
| 1240 | APPENDCHAR('}'); |
| 1241 | } |
| 1242 | } |
| 1243 | j = i; |
| 1244 | } while (j != -1); |
| 1245 | |
| 1246 | #undef APPENDSTR |
| 1247 | #undef APPENDCHAR |
| 1248 | |
| 1249 | /* Assert that we calculated the string length accurately */ |
| 1250 | Assert(overall_length == (p - retval + 1)); |
| 1251 | |
| 1252 | pfree(values); |
| 1253 | pfree(needquotes); |
| 1254 | |
| 1255 | PG_RETURN_CSTRING(retval); |
| 1256 | } |
| 1257 | |
| 1258 | /* |
| 1259 | * array_recv : |
| 1260 | * converts an array from the external binary format to |
| 1261 | * its internal format. |
| 1262 | * |
| 1263 | * return value : |
| 1264 | * the internal representation of the input array |
| 1265 | */ |
| 1266 | Datum |
| 1267 | array_recv(PG_FUNCTION_ARGS) |
| 1268 | { |
| 1269 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 1270 | Oid spec_element_type = PG_GETARG_OID(1); /* type of an array |
| 1271 | * element */ |
| 1272 | int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */ |
| 1273 | Oid element_type; |
| 1274 | int typlen; |
| 1275 | bool typbyval; |
| 1276 | char typalign; |
| 1277 | Oid typioparam; |
| 1278 | int i, |
| 1279 | nitems; |
| 1280 | Datum *dataPtr; |
| 1281 | bool *nullsPtr; |
| 1282 | bool hasnulls; |
| 1283 | int32 nbytes; |
| 1284 | int32 dataoffset; |
| 1285 | ArrayType *retval; |
| 1286 | int ndim, |
| 1287 | flags, |
| 1288 | dim[MAXDIM], |
| 1289 | lBound[MAXDIM]; |
| 1290 | ArrayMetaState *; |
| 1291 | |
| 1292 | /* Get the array header information */ |
| 1293 | ndim = pq_getmsgint(buf, 4); |
| 1294 | if (ndim < 0) /* we do allow zero-dimension arrays */ |
| 1295 | ereport(ERROR, |
| 1296 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 1297 | errmsg("invalid number of dimensions: %d" , ndim))); |
| 1298 | if (ndim > MAXDIM) |
| 1299 | ereport(ERROR, |
| 1300 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1301 | errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)" , |
| 1302 | ndim, MAXDIM))); |
| 1303 | |
| 1304 | flags = pq_getmsgint(buf, 4); |
| 1305 | if (flags != 0 && flags != 1) |
| 1306 | ereport(ERROR, |
| 1307 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 1308 | errmsg("invalid array flags" ))); |
| 1309 | |
| 1310 | element_type = pq_getmsgint(buf, sizeof(Oid)); |
| 1311 | if (element_type != spec_element_type) |
| 1312 | { |
| 1313 | /* XXX Can we allow taking the input element type in any cases? */ |
| 1314 | ereport(ERROR, |
| 1315 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 1316 | errmsg("wrong element type" ))); |
| 1317 | } |
| 1318 | |
| 1319 | for (i = 0; i < ndim; i++) |
| 1320 | { |
| 1321 | dim[i] = pq_getmsgint(buf, 4); |
| 1322 | lBound[i] = pq_getmsgint(buf, 4); |
| 1323 | |
| 1324 | /* |
| 1325 | * Check overflow of upper bound. (ArrayGetNItems() below checks that |
| 1326 | * dim[i] >= 0) |
| 1327 | */ |
| 1328 | if (dim[i] != 0) |
| 1329 | { |
| 1330 | int ub = lBound[i] + dim[i] - 1; |
| 1331 | |
| 1332 | if (lBound[i] > ub) |
| 1333 | ereport(ERROR, |
| 1334 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1335 | errmsg("integer out of range" ))); |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | /* This checks for overflow of array dimensions */ |
| 1340 | nitems = ArrayGetNItems(ndim, dim); |
| 1341 | |
| 1342 | /* |
| 1343 | * We arrange to look up info about element type, including its receive |
| 1344 | * conversion proc, only once per series of calls, assuming the element |
| 1345 | * type doesn't change underneath us. |
| 1346 | */ |
| 1347 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 1348 | if (my_extra == NULL) |
| 1349 | { |
| 1350 | fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| 1351 | sizeof(ArrayMetaState)); |
| 1352 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 1353 | my_extra->element_type = ~element_type; |
| 1354 | } |
| 1355 | |
| 1356 | if (my_extra->element_type != element_type) |
| 1357 | { |
| 1358 | /* Get info about element type, including its receive proc */ |
| 1359 | get_type_io_data(element_type, IOFunc_receive, |
| 1360 | &my_extra->typlen, &my_extra->typbyval, |
| 1361 | &my_extra->typalign, &my_extra->typdelim, |
| 1362 | &my_extra->typioparam, &my_extra->typiofunc); |
| 1363 | if (!OidIsValid(my_extra->typiofunc)) |
| 1364 | ereport(ERROR, |
| 1365 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 1366 | errmsg("no binary input function available for type %s" , |
| 1367 | format_type_be(element_type)))); |
| 1368 | fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| 1369 | fcinfo->flinfo->fn_mcxt); |
| 1370 | my_extra->element_type = element_type; |
| 1371 | } |
| 1372 | |
| 1373 | if (nitems == 0) |
| 1374 | { |
| 1375 | /* Return empty array ... but not till we've validated element_type */ |
| 1376 | PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type)); |
| 1377 | } |
| 1378 | |
| 1379 | typlen = my_extra->typlen; |
| 1380 | typbyval = my_extra->typbyval; |
| 1381 | typalign = my_extra->typalign; |
| 1382 | typioparam = my_extra->typioparam; |
| 1383 | |
| 1384 | dataPtr = (Datum *) palloc(nitems * sizeof(Datum)); |
| 1385 | nullsPtr = (bool *) palloc(nitems * sizeof(bool)); |
| 1386 | ReadArrayBinary(buf, nitems, |
| 1387 | &my_extra->proc, typioparam, typmod, |
| 1388 | typlen, typbyval, typalign, |
| 1389 | dataPtr, nullsPtr, |
| 1390 | &hasnulls, &nbytes); |
| 1391 | if (hasnulls) |
| 1392 | { |
| 1393 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); |
| 1394 | nbytes += dataoffset; |
| 1395 | } |
| 1396 | else |
| 1397 | { |
| 1398 | dataoffset = 0; /* marker for no null bitmap */ |
| 1399 | nbytes += ARR_OVERHEAD_NONULLS(ndim); |
| 1400 | } |
| 1401 | retval = (ArrayType *) palloc0(nbytes); |
| 1402 | SET_VARSIZE(retval, nbytes); |
| 1403 | retval->ndim = ndim; |
| 1404 | retval->dataoffset = dataoffset; |
| 1405 | retval->elemtype = element_type; |
| 1406 | memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int)); |
| 1407 | memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int)); |
| 1408 | |
| 1409 | CopyArrayEls(retval, |
| 1410 | dataPtr, nullsPtr, nitems, |
| 1411 | typlen, typbyval, typalign, |
| 1412 | true); |
| 1413 | |
| 1414 | pfree(dataPtr); |
| 1415 | pfree(nullsPtr); |
| 1416 | |
| 1417 | PG_RETURN_ARRAYTYPE_P(retval); |
| 1418 | } |
| 1419 | |
| 1420 | /* |
| 1421 | * ReadArrayBinary: |
| 1422 | * collect the data elements of an array being read in binary style. |
| 1423 | * |
| 1424 | * Inputs: |
| 1425 | * buf: the data buffer to read from. |
| 1426 | * nitems: total number of array elements (already read). |
| 1427 | * receiveproc: type-specific receive procedure for element datatype. |
| 1428 | * typioparam, typmod: auxiliary values to pass to receiveproc. |
| 1429 | * typlen, typbyval, typalign: storage parameters of element datatype. |
| 1430 | * |
| 1431 | * Outputs: |
| 1432 | * values[]: filled with converted data values. |
| 1433 | * nulls[]: filled with is-null markers. |
| 1434 | * *hasnulls: set true iff there are any null elements. |
| 1435 | * *nbytes: set to total size of data area needed (including alignment |
| 1436 | * padding but not including array header overhead). |
| 1437 | * |
| 1438 | * Note that values[] and nulls[] are allocated by the caller, and must have |
| 1439 | * nitems elements. |
| 1440 | */ |
| 1441 | static void |
| 1442 | ReadArrayBinary(StringInfo buf, |
| 1443 | int nitems, |
| 1444 | FmgrInfo *receiveproc, |
| 1445 | Oid typioparam, |
| 1446 | int32 typmod, |
| 1447 | int typlen, |
| 1448 | bool typbyval, |
| 1449 | char typalign, |
| 1450 | Datum *values, |
| 1451 | bool *nulls, |
| 1452 | bool *hasnulls, |
| 1453 | int32 *nbytes) |
| 1454 | { |
| 1455 | int i; |
| 1456 | bool hasnull; |
| 1457 | int32 totbytes; |
| 1458 | |
| 1459 | for (i = 0; i < nitems; i++) |
| 1460 | { |
| 1461 | int itemlen; |
| 1462 | StringInfoData elem_buf; |
| 1463 | char csave; |
| 1464 | |
| 1465 | /* Get and check the item length */ |
| 1466 | itemlen = pq_getmsgint(buf, 4); |
| 1467 | if (itemlen < -1 || itemlen > (buf->len - buf->cursor)) |
| 1468 | ereport(ERROR, |
| 1469 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 1470 | errmsg("insufficient data left in message" ))); |
| 1471 | |
| 1472 | if (itemlen == -1) |
| 1473 | { |
| 1474 | /* -1 length means NULL */ |
| 1475 | values[i] = ReceiveFunctionCall(receiveproc, NULL, |
| 1476 | typioparam, typmod); |
| 1477 | nulls[i] = true; |
| 1478 | continue; |
| 1479 | } |
| 1480 | |
| 1481 | /* |
| 1482 | * Rather than copying data around, we just set up a phony StringInfo |
| 1483 | * pointing to the correct portion of the input buffer. We assume we |
| 1484 | * can scribble on the input buffer so as to maintain the convention |
| 1485 | * that StringInfos have a trailing null. |
| 1486 | */ |
| 1487 | elem_buf.data = &buf->data[buf->cursor]; |
| 1488 | elem_buf.maxlen = itemlen + 1; |
| 1489 | elem_buf.len = itemlen; |
| 1490 | elem_buf.cursor = 0; |
| 1491 | |
| 1492 | buf->cursor += itemlen; |
| 1493 | |
| 1494 | csave = buf->data[buf->cursor]; |
| 1495 | buf->data[buf->cursor] = '\0'; |
| 1496 | |
| 1497 | /* Now call the element's receiveproc */ |
| 1498 | values[i] = ReceiveFunctionCall(receiveproc, &elem_buf, |
| 1499 | typioparam, typmod); |
| 1500 | nulls[i] = false; |
| 1501 | |
| 1502 | /* Trouble if it didn't eat the whole buffer */ |
| 1503 | if (elem_buf.cursor != itemlen) |
| 1504 | ereport(ERROR, |
| 1505 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 1506 | errmsg("improper binary format in array element %d" , |
| 1507 | i + 1))); |
| 1508 | |
| 1509 | buf->data[buf->cursor] = csave; |
| 1510 | } |
| 1511 | |
| 1512 | /* |
| 1513 | * Check for nulls, compute total data space needed |
| 1514 | */ |
| 1515 | hasnull = false; |
| 1516 | totbytes = 0; |
| 1517 | for (i = 0; i < nitems; i++) |
| 1518 | { |
| 1519 | if (nulls[i]) |
| 1520 | hasnull = true; |
| 1521 | else |
| 1522 | { |
| 1523 | /* let's just make sure data is not toasted */ |
| 1524 | if (typlen == -1) |
| 1525 | values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); |
| 1526 | totbytes = att_addlength_datum(totbytes, typlen, values[i]); |
| 1527 | totbytes = att_align_nominal(totbytes, typalign); |
| 1528 | /* check for overflow of total request */ |
| 1529 | if (!AllocSizeIsValid(totbytes)) |
| 1530 | ereport(ERROR, |
| 1531 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1532 | errmsg("array size exceeds the maximum allowed (%d)" , |
| 1533 | (int) MaxAllocSize))); |
| 1534 | } |
| 1535 | } |
| 1536 | *hasnulls = hasnull; |
| 1537 | *nbytes = totbytes; |
| 1538 | } |
| 1539 | |
| 1540 | |
| 1541 | /* |
| 1542 | * array_send : |
| 1543 | * takes the internal representation of an array and returns a bytea |
| 1544 | * containing the array in its external binary format. |
| 1545 | */ |
| 1546 | Datum |
| 1547 | array_send(PG_FUNCTION_ARGS) |
| 1548 | { |
| 1549 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 1550 | Oid element_type = AARR_ELEMTYPE(v); |
| 1551 | int typlen; |
| 1552 | bool typbyval; |
| 1553 | char typalign; |
| 1554 | int nitems, |
| 1555 | i; |
| 1556 | int ndim, |
| 1557 | *dim, |
| 1558 | *lb; |
| 1559 | StringInfoData buf; |
| 1560 | array_iter iter; |
| 1561 | ArrayMetaState *; |
| 1562 | |
| 1563 | /* |
| 1564 | * We arrange to look up info about element type, including its send |
| 1565 | * conversion proc, only once per series of calls, assuming the element |
| 1566 | * type doesn't change underneath us. |
| 1567 | */ |
| 1568 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 1569 | if (my_extra == NULL) |
| 1570 | { |
| 1571 | fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| 1572 | sizeof(ArrayMetaState)); |
| 1573 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 1574 | my_extra->element_type = ~element_type; |
| 1575 | } |
| 1576 | |
| 1577 | if (my_extra->element_type != element_type) |
| 1578 | { |
| 1579 | /* Get info about element type, including its send proc */ |
| 1580 | get_type_io_data(element_type, IOFunc_send, |
| 1581 | &my_extra->typlen, &my_extra->typbyval, |
| 1582 | &my_extra->typalign, &my_extra->typdelim, |
| 1583 | &my_extra->typioparam, &my_extra->typiofunc); |
| 1584 | if (!OidIsValid(my_extra->typiofunc)) |
| 1585 | ereport(ERROR, |
| 1586 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 1587 | errmsg("no binary output function available for type %s" , |
| 1588 | format_type_be(element_type)))); |
| 1589 | fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| 1590 | fcinfo->flinfo->fn_mcxt); |
| 1591 | my_extra->element_type = element_type; |
| 1592 | } |
| 1593 | typlen = my_extra->typlen; |
| 1594 | typbyval = my_extra->typbyval; |
| 1595 | typalign = my_extra->typalign; |
| 1596 | |
| 1597 | ndim = AARR_NDIM(v); |
| 1598 | dim = AARR_DIMS(v); |
| 1599 | lb = AARR_LBOUND(v); |
| 1600 | nitems = ArrayGetNItems(ndim, dim); |
| 1601 | |
| 1602 | pq_begintypsend(&buf); |
| 1603 | |
| 1604 | /* Send the array header information */ |
| 1605 | pq_sendint32(&buf, ndim); |
| 1606 | pq_sendint32(&buf, AARR_HASNULL(v) ? 1 : 0); |
| 1607 | pq_sendint32(&buf, element_type); |
| 1608 | for (i = 0; i < ndim; i++) |
| 1609 | { |
| 1610 | pq_sendint32(&buf, dim[i]); |
| 1611 | pq_sendint32(&buf, lb[i]); |
| 1612 | } |
| 1613 | |
| 1614 | /* Send the array elements using the element's own sendproc */ |
| 1615 | array_iter_setup(&iter, v); |
| 1616 | |
| 1617 | for (i = 0; i < nitems; i++) |
| 1618 | { |
| 1619 | Datum itemvalue; |
| 1620 | bool isnull; |
| 1621 | |
| 1622 | /* Get source element, checking for NULL */ |
| 1623 | itemvalue = array_iter_next(&iter, &isnull, i, |
| 1624 | typlen, typbyval, typalign); |
| 1625 | |
| 1626 | if (isnull) |
| 1627 | { |
| 1628 | /* -1 length means a NULL */ |
| 1629 | pq_sendint32(&buf, -1); |
| 1630 | } |
| 1631 | else |
| 1632 | { |
| 1633 | bytea *outputbytes; |
| 1634 | |
| 1635 | outputbytes = SendFunctionCall(&my_extra->proc, itemvalue); |
| 1636 | pq_sendint32(&buf, VARSIZE(outputbytes) - VARHDRSZ); |
| 1637 | pq_sendbytes(&buf, VARDATA(outputbytes), |
| 1638 | VARSIZE(outputbytes) - VARHDRSZ); |
| 1639 | pfree(outputbytes); |
| 1640 | } |
| 1641 | } |
| 1642 | |
| 1643 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 1644 | } |
| 1645 | |
| 1646 | /* |
| 1647 | * array_ndims : |
| 1648 | * returns the number of dimensions of the array pointed to by "v" |
| 1649 | */ |
| 1650 | Datum |
| 1651 | array_ndims(PG_FUNCTION_ARGS) |
| 1652 | { |
| 1653 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 1654 | |
| 1655 | /* Sanity check: does it look like an array at all? */ |
| 1656 | if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| 1657 | PG_RETURN_NULL(); |
| 1658 | |
| 1659 | PG_RETURN_INT32(AARR_NDIM(v)); |
| 1660 | } |
| 1661 | |
| 1662 | /* |
| 1663 | * array_dims : |
| 1664 | * returns the dimensions of the array pointed to by "v", as a "text" |
| 1665 | */ |
| 1666 | Datum |
| 1667 | array_dims(PG_FUNCTION_ARGS) |
| 1668 | { |
| 1669 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 1670 | char *p; |
| 1671 | int i; |
| 1672 | int *dimv, |
| 1673 | *lb; |
| 1674 | |
| 1675 | /* |
| 1676 | * 33 since we assume 15 digits per number + ':' +'[]' |
| 1677 | * |
| 1678 | * +1 for trailing null |
| 1679 | */ |
| 1680 | char buf[MAXDIM * 33 + 1]; |
| 1681 | |
| 1682 | /* Sanity check: does it look like an array at all? */ |
| 1683 | if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| 1684 | PG_RETURN_NULL(); |
| 1685 | |
| 1686 | dimv = AARR_DIMS(v); |
| 1687 | lb = AARR_LBOUND(v); |
| 1688 | |
| 1689 | p = buf; |
| 1690 | for (i = 0; i < AARR_NDIM(v); i++) |
| 1691 | { |
| 1692 | sprintf(p, "[%d:%d]" , lb[i], dimv[i] + lb[i] - 1); |
| 1693 | p += strlen(p); |
| 1694 | } |
| 1695 | |
| 1696 | PG_RETURN_TEXT_P(cstring_to_text(buf)); |
| 1697 | } |
| 1698 | |
| 1699 | /* |
| 1700 | * array_lower : |
| 1701 | * returns the lower dimension, of the DIM requested, for |
| 1702 | * the array pointed to by "v", as an int4 |
| 1703 | */ |
| 1704 | Datum |
| 1705 | array_lower(PG_FUNCTION_ARGS) |
| 1706 | { |
| 1707 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 1708 | int reqdim = PG_GETARG_INT32(1); |
| 1709 | int *lb; |
| 1710 | int result; |
| 1711 | |
| 1712 | /* Sanity check: does it look like an array at all? */ |
| 1713 | if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| 1714 | PG_RETURN_NULL(); |
| 1715 | |
| 1716 | /* Sanity check: was the requested dim valid */ |
| 1717 | if (reqdim <= 0 || reqdim > AARR_NDIM(v)) |
| 1718 | PG_RETURN_NULL(); |
| 1719 | |
| 1720 | lb = AARR_LBOUND(v); |
| 1721 | result = lb[reqdim - 1]; |
| 1722 | |
| 1723 | PG_RETURN_INT32(result); |
| 1724 | } |
| 1725 | |
| 1726 | /* |
| 1727 | * array_upper : |
| 1728 | * returns the upper dimension, of the DIM requested, for |
| 1729 | * the array pointed to by "v", as an int4 |
| 1730 | */ |
| 1731 | Datum |
| 1732 | array_upper(PG_FUNCTION_ARGS) |
| 1733 | { |
| 1734 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 1735 | int reqdim = PG_GETARG_INT32(1); |
| 1736 | int *dimv, |
| 1737 | *lb; |
| 1738 | int result; |
| 1739 | |
| 1740 | /* Sanity check: does it look like an array at all? */ |
| 1741 | if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| 1742 | PG_RETURN_NULL(); |
| 1743 | |
| 1744 | /* Sanity check: was the requested dim valid */ |
| 1745 | if (reqdim <= 0 || reqdim > AARR_NDIM(v)) |
| 1746 | PG_RETURN_NULL(); |
| 1747 | |
| 1748 | lb = AARR_LBOUND(v); |
| 1749 | dimv = AARR_DIMS(v); |
| 1750 | |
| 1751 | result = dimv[reqdim - 1] + lb[reqdim - 1] - 1; |
| 1752 | |
| 1753 | PG_RETURN_INT32(result); |
| 1754 | } |
| 1755 | |
| 1756 | /* |
| 1757 | * array_length : |
| 1758 | * returns the length, of the dimension requested, for |
| 1759 | * the array pointed to by "v", as an int4 |
| 1760 | */ |
| 1761 | Datum |
| 1762 | array_length(PG_FUNCTION_ARGS) |
| 1763 | { |
| 1764 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 1765 | int reqdim = PG_GETARG_INT32(1); |
| 1766 | int *dimv; |
| 1767 | int result; |
| 1768 | |
| 1769 | /* Sanity check: does it look like an array at all? */ |
| 1770 | if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| 1771 | PG_RETURN_NULL(); |
| 1772 | |
| 1773 | /* Sanity check: was the requested dim valid */ |
| 1774 | if (reqdim <= 0 || reqdim > AARR_NDIM(v)) |
| 1775 | PG_RETURN_NULL(); |
| 1776 | |
| 1777 | dimv = AARR_DIMS(v); |
| 1778 | |
| 1779 | result = dimv[reqdim - 1]; |
| 1780 | |
| 1781 | PG_RETURN_INT32(result); |
| 1782 | } |
| 1783 | |
| 1784 | /* |
| 1785 | * array_cardinality: |
| 1786 | * returns the total number of elements in an array |
| 1787 | */ |
| 1788 | Datum |
| 1789 | array_cardinality(PG_FUNCTION_ARGS) |
| 1790 | { |
| 1791 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 1792 | |
| 1793 | PG_RETURN_INT32(ArrayGetNItems(AARR_NDIM(v), AARR_DIMS(v))); |
| 1794 | } |
| 1795 | |
| 1796 | |
| 1797 | /* |
| 1798 | * array_get_element : |
| 1799 | * This routine takes an array datum and a subscript array and returns |
| 1800 | * the referenced item as a Datum. Note that for a pass-by-reference |
| 1801 | * datatype, the returned Datum is a pointer into the array object. |
| 1802 | * |
| 1803 | * This handles both ordinary varlena arrays and fixed-length arrays. |
| 1804 | * |
| 1805 | * Inputs: |
| 1806 | * arraydatum: the array object (mustn't be NULL) |
| 1807 | * nSubscripts: number of subscripts supplied |
| 1808 | * indx[]: the subscript values |
| 1809 | * arraytyplen: pg_type.typlen for the array type |
| 1810 | * elmlen: pg_type.typlen for the array's element type |
| 1811 | * elmbyval: pg_type.typbyval for the array's element type |
| 1812 | * elmalign: pg_type.typalign for the array's element type |
| 1813 | * |
| 1814 | * Outputs: |
| 1815 | * The return value is the element Datum. |
| 1816 | * *isNull is set to indicate whether the element is NULL. |
| 1817 | */ |
| 1818 | Datum |
| 1819 | array_get_element(Datum arraydatum, |
| 1820 | int nSubscripts, |
| 1821 | int *indx, |
| 1822 | int arraytyplen, |
| 1823 | int elmlen, |
| 1824 | bool elmbyval, |
| 1825 | char elmalign, |
| 1826 | bool *isNull) |
| 1827 | { |
| 1828 | int i, |
| 1829 | ndim, |
| 1830 | *dim, |
| 1831 | *lb, |
| 1832 | offset, |
| 1833 | fixedDim[1], |
| 1834 | fixedLb[1]; |
| 1835 | char *arraydataptr, |
| 1836 | *retptr; |
| 1837 | bits8 *arraynullsptr; |
| 1838 | |
| 1839 | if (arraytyplen > 0) |
| 1840 | { |
| 1841 | /* |
| 1842 | * fixed-length arrays -- these are assumed to be 1-d, 0-based |
| 1843 | */ |
| 1844 | ndim = 1; |
| 1845 | fixedDim[0] = arraytyplen / elmlen; |
| 1846 | fixedLb[0] = 0; |
| 1847 | dim = fixedDim; |
| 1848 | lb = fixedLb; |
| 1849 | arraydataptr = (char *) DatumGetPointer(arraydatum); |
| 1850 | arraynullsptr = NULL; |
| 1851 | } |
| 1852 | else if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(arraydatum))) |
| 1853 | { |
| 1854 | /* expanded array: let's do this in a separate function */ |
| 1855 | return array_get_element_expanded(arraydatum, |
| 1856 | nSubscripts, |
| 1857 | indx, |
| 1858 | arraytyplen, |
| 1859 | elmlen, |
| 1860 | elmbyval, |
| 1861 | elmalign, |
| 1862 | isNull); |
| 1863 | } |
| 1864 | else |
| 1865 | { |
| 1866 | /* detoast array if necessary, producing normal varlena input */ |
| 1867 | ArrayType *array = DatumGetArrayTypeP(arraydatum); |
| 1868 | |
| 1869 | ndim = ARR_NDIM(array); |
| 1870 | dim = ARR_DIMS(array); |
| 1871 | lb = ARR_LBOUND(array); |
| 1872 | arraydataptr = ARR_DATA_PTR(array); |
| 1873 | arraynullsptr = ARR_NULLBITMAP(array); |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * Return NULL for invalid subscript |
| 1878 | */ |
| 1879 | if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) |
| 1880 | { |
| 1881 | *isNull = true; |
| 1882 | return (Datum) 0; |
| 1883 | } |
| 1884 | for (i = 0; i < ndim; i++) |
| 1885 | { |
| 1886 | if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) |
| 1887 | { |
| 1888 | *isNull = true; |
| 1889 | return (Datum) 0; |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | /* |
| 1894 | * Calculate the element number |
| 1895 | */ |
| 1896 | offset = ArrayGetOffset(nSubscripts, dim, lb, indx); |
| 1897 | |
| 1898 | /* |
| 1899 | * Check for NULL array element |
| 1900 | */ |
| 1901 | if (array_get_isnull(arraynullsptr, offset)) |
| 1902 | { |
| 1903 | *isNull = true; |
| 1904 | return (Datum) 0; |
| 1905 | } |
| 1906 | |
| 1907 | /* |
| 1908 | * OK, get the element |
| 1909 | */ |
| 1910 | *isNull = false; |
| 1911 | retptr = array_seek(arraydataptr, 0, arraynullsptr, offset, |
| 1912 | elmlen, elmbyval, elmalign); |
| 1913 | return ArrayCast(retptr, elmbyval, elmlen); |
| 1914 | } |
| 1915 | |
| 1916 | /* |
| 1917 | * Implementation of array_get_element() for an expanded array |
| 1918 | */ |
| 1919 | static Datum |
| 1920 | array_get_element_expanded(Datum arraydatum, |
| 1921 | int nSubscripts, int *indx, |
| 1922 | int arraytyplen, |
| 1923 | int elmlen, bool elmbyval, char elmalign, |
| 1924 | bool *isNull) |
| 1925 | { |
| 1926 | ExpandedArrayHeader *eah; |
| 1927 | int i, |
| 1928 | ndim, |
| 1929 | *dim, |
| 1930 | *lb, |
| 1931 | offset; |
| 1932 | Datum *dvalues; |
| 1933 | bool *dnulls; |
| 1934 | |
| 1935 | eah = (ExpandedArrayHeader *) DatumGetEOHP(arraydatum); |
| 1936 | Assert(eah->ea_magic == EA_MAGIC); |
| 1937 | |
| 1938 | /* sanity-check caller's info against object */ |
| 1939 | Assert(arraytyplen == -1); |
| 1940 | Assert(elmlen == eah->typlen); |
| 1941 | Assert(elmbyval == eah->typbyval); |
| 1942 | Assert(elmalign == eah->typalign); |
| 1943 | |
| 1944 | ndim = eah->ndims; |
| 1945 | dim = eah->dims; |
| 1946 | lb = eah->lbound; |
| 1947 | |
| 1948 | /* |
| 1949 | * Return NULL for invalid subscript |
| 1950 | */ |
| 1951 | if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) |
| 1952 | { |
| 1953 | *isNull = true; |
| 1954 | return (Datum) 0; |
| 1955 | } |
| 1956 | for (i = 0; i < ndim; i++) |
| 1957 | { |
| 1958 | if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) |
| 1959 | { |
| 1960 | *isNull = true; |
| 1961 | return (Datum) 0; |
| 1962 | } |
| 1963 | } |
| 1964 | |
| 1965 | /* |
| 1966 | * Calculate the element number |
| 1967 | */ |
| 1968 | offset = ArrayGetOffset(nSubscripts, dim, lb, indx); |
| 1969 | |
| 1970 | /* |
| 1971 | * Deconstruct array if we didn't already. Note that we apply this even |
| 1972 | * if the input is nominally read-only: it should be safe enough. |
| 1973 | */ |
| 1974 | deconstruct_expanded_array(eah); |
| 1975 | |
| 1976 | dvalues = eah->dvalues; |
| 1977 | dnulls = eah->dnulls; |
| 1978 | |
| 1979 | /* |
| 1980 | * Check for NULL array element |
| 1981 | */ |
| 1982 | if (dnulls && dnulls[offset]) |
| 1983 | { |
| 1984 | *isNull = true; |
| 1985 | return (Datum) 0; |
| 1986 | } |
| 1987 | |
| 1988 | /* |
| 1989 | * OK, get the element. It's OK to return a pass-by-ref value as a |
| 1990 | * pointer into the expanded array, for the same reason that regular |
| 1991 | * array_get_element can return a pointer into flat arrays: the value is |
| 1992 | * assumed not to change for as long as the Datum reference can exist. |
| 1993 | */ |
| 1994 | *isNull = false; |
| 1995 | return dvalues[offset]; |
| 1996 | } |
| 1997 | |
| 1998 | /* |
| 1999 | * array_get_slice : |
| 2000 | * This routine takes an array and a range of indices (upperIndex and |
| 2001 | * lowerIndx), creates a new array structure for the referred elements |
| 2002 | * and returns a pointer to it. |
| 2003 | * |
| 2004 | * This handles both ordinary varlena arrays and fixed-length arrays. |
| 2005 | * |
| 2006 | * Inputs: |
| 2007 | * arraydatum: the array object (mustn't be NULL) |
| 2008 | * nSubscripts: number of subscripts supplied (must be same for upper/lower) |
| 2009 | * upperIndx[]: the upper subscript values |
| 2010 | * lowerIndx[]: the lower subscript values |
| 2011 | * upperProvided[]: true for provided upper subscript values |
| 2012 | * lowerProvided[]: true for provided lower subscript values |
| 2013 | * arraytyplen: pg_type.typlen for the array type |
| 2014 | * elmlen: pg_type.typlen for the array's element type |
| 2015 | * elmbyval: pg_type.typbyval for the array's element type |
| 2016 | * elmalign: pg_type.typalign for the array's element type |
| 2017 | * |
| 2018 | * Outputs: |
| 2019 | * The return value is the new array Datum (it's never NULL) |
| 2020 | * |
| 2021 | * Omitted upper and lower subscript values are replaced by the corresponding |
| 2022 | * array bound. |
| 2023 | * |
| 2024 | * NOTE: we assume it is OK to scribble on the provided subscript arrays |
| 2025 | * lowerIndx[] and upperIndx[]. These are generally just temporaries. |
| 2026 | */ |
| 2027 | Datum |
| 2028 | array_get_slice(Datum arraydatum, |
| 2029 | int nSubscripts, |
| 2030 | int *upperIndx, |
| 2031 | int *lowerIndx, |
| 2032 | bool *upperProvided, |
| 2033 | bool *lowerProvided, |
| 2034 | int arraytyplen, |
| 2035 | int elmlen, |
| 2036 | bool elmbyval, |
| 2037 | char elmalign) |
| 2038 | { |
| 2039 | ArrayType *array; |
| 2040 | ArrayType *newarray; |
| 2041 | int i, |
| 2042 | ndim, |
| 2043 | *dim, |
| 2044 | *lb, |
| 2045 | *newlb; |
| 2046 | int fixedDim[1], |
| 2047 | fixedLb[1]; |
| 2048 | Oid elemtype; |
| 2049 | char *arraydataptr; |
| 2050 | bits8 *arraynullsptr; |
| 2051 | int32 dataoffset; |
| 2052 | int bytes, |
| 2053 | span[MAXDIM]; |
| 2054 | |
| 2055 | if (arraytyplen > 0) |
| 2056 | { |
| 2057 | /* |
| 2058 | * fixed-length arrays -- currently, cannot slice these because parser |
| 2059 | * labels output as being of the fixed-length array type! Code below |
| 2060 | * shows how we could support it if the parser were changed to label |
| 2061 | * output as a suitable varlena array type. |
| 2062 | */ |
| 2063 | ereport(ERROR, |
| 2064 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2065 | errmsg("slices of fixed-length arrays not implemented" ))); |
| 2066 | |
| 2067 | /* |
| 2068 | * fixed-length arrays -- these are assumed to be 1-d, 0-based |
| 2069 | * |
| 2070 | * XXX where would we get the correct ELEMTYPE from? |
| 2071 | */ |
| 2072 | ndim = 1; |
| 2073 | fixedDim[0] = arraytyplen / elmlen; |
| 2074 | fixedLb[0] = 0; |
| 2075 | dim = fixedDim; |
| 2076 | lb = fixedLb; |
| 2077 | elemtype = InvalidOid; /* XXX */ |
| 2078 | arraydataptr = (char *) DatumGetPointer(arraydatum); |
| 2079 | arraynullsptr = NULL; |
| 2080 | } |
| 2081 | else |
| 2082 | { |
| 2083 | /* detoast input array if necessary */ |
| 2084 | array = DatumGetArrayTypeP(arraydatum); |
| 2085 | |
| 2086 | ndim = ARR_NDIM(array); |
| 2087 | dim = ARR_DIMS(array); |
| 2088 | lb = ARR_LBOUND(array); |
| 2089 | elemtype = ARR_ELEMTYPE(array); |
| 2090 | arraydataptr = ARR_DATA_PTR(array); |
| 2091 | arraynullsptr = ARR_NULLBITMAP(array); |
| 2092 | } |
| 2093 | |
| 2094 | /* |
| 2095 | * Check provided subscripts. A slice exceeding the current array limits |
| 2096 | * is silently truncated to the array limits. If we end up with an empty |
| 2097 | * slice, return an empty array. |
| 2098 | */ |
| 2099 | if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) |
| 2100 | return PointerGetDatum(construct_empty_array(elemtype)); |
| 2101 | |
| 2102 | for (i = 0; i < nSubscripts; i++) |
| 2103 | { |
| 2104 | if (!lowerProvided[i] || lowerIndx[i] < lb[i]) |
| 2105 | lowerIndx[i] = lb[i]; |
| 2106 | if (!upperProvided[i] || upperIndx[i] >= (dim[i] + lb[i])) |
| 2107 | upperIndx[i] = dim[i] + lb[i] - 1; |
| 2108 | if (lowerIndx[i] > upperIndx[i]) |
| 2109 | return PointerGetDatum(construct_empty_array(elemtype)); |
| 2110 | } |
| 2111 | /* fill any missing subscript positions with full array range */ |
| 2112 | for (; i < ndim; i++) |
| 2113 | { |
| 2114 | lowerIndx[i] = lb[i]; |
| 2115 | upperIndx[i] = dim[i] + lb[i] - 1; |
| 2116 | if (lowerIndx[i] > upperIndx[i]) |
| 2117 | return PointerGetDatum(construct_empty_array(elemtype)); |
| 2118 | } |
| 2119 | |
| 2120 | mda_get_range(ndim, span, lowerIndx, upperIndx); |
| 2121 | |
| 2122 | bytes = array_slice_size(arraydataptr, arraynullsptr, |
| 2123 | ndim, dim, lb, |
| 2124 | lowerIndx, upperIndx, |
| 2125 | elmlen, elmbyval, elmalign); |
| 2126 | |
| 2127 | /* |
| 2128 | * Currently, we put a null bitmap in the result if the source has one; |
| 2129 | * could be smarter ... |
| 2130 | */ |
| 2131 | if (arraynullsptr) |
| 2132 | { |
| 2133 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, ArrayGetNItems(ndim, span)); |
| 2134 | bytes += dataoffset; |
| 2135 | } |
| 2136 | else |
| 2137 | { |
| 2138 | dataoffset = 0; /* marker for no null bitmap */ |
| 2139 | bytes += ARR_OVERHEAD_NONULLS(ndim); |
| 2140 | } |
| 2141 | |
| 2142 | newarray = (ArrayType *) palloc0(bytes); |
| 2143 | SET_VARSIZE(newarray, bytes); |
| 2144 | newarray->ndim = ndim; |
| 2145 | newarray->dataoffset = dataoffset; |
| 2146 | newarray->elemtype = elemtype; |
| 2147 | memcpy(ARR_DIMS(newarray), span, ndim * sizeof(int)); |
| 2148 | |
| 2149 | /* |
| 2150 | * Lower bounds of the new array are set to 1. Formerly (before 7.3) we |
| 2151 | * copied the given lowerIndx values ... but that seems confusing. |
| 2152 | */ |
| 2153 | newlb = ARR_LBOUND(newarray); |
| 2154 | for (i = 0; i < ndim; i++) |
| 2155 | newlb[i] = 1; |
| 2156 | |
| 2157 | array_extract_slice(newarray, |
| 2158 | ndim, dim, lb, |
| 2159 | arraydataptr, arraynullsptr, |
| 2160 | lowerIndx, upperIndx, |
| 2161 | elmlen, elmbyval, elmalign); |
| 2162 | |
| 2163 | return PointerGetDatum(newarray); |
| 2164 | } |
| 2165 | |
| 2166 | /* |
| 2167 | * array_set_element : |
| 2168 | * This routine sets the value of one array element (specified by |
| 2169 | * a subscript array) to a new value specified by "dataValue". |
| 2170 | * |
| 2171 | * This handles both ordinary varlena arrays and fixed-length arrays. |
| 2172 | * |
| 2173 | * Inputs: |
| 2174 | * arraydatum: the initial array object (mustn't be NULL) |
| 2175 | * nSubscripts: number of subscripts supplied |
| 2176 | * indx[]: the subscript values |
| 2177 | * dataValue: the datum to be inserted at the given position |
| 2178 | * isNull: whether dataValue is NULL |
| 2179 | * arraytyplen: pg_type.typlen for the array type |
| 2180 | * elmlen: pg_type.typlen for the array's element type |
| 2181 | * elmbyval: pg_type.typbyval for the array's element type |
| 2182 | * elmalign: pg_type.typalign for the array's element type |
| 2183 | * |
| 2184 | * Result: |
| 2185 | * A new array is returned, just like the old except for the one |
| 2186 | * modified entry. The original array object is not changed, |
| 2187 | * unless what is passed is a read-write reference to an expanded |
| 2188 | * array object; in that case the expanded array is updated in-place. |
| 2189 | * |
| 2190 | * For one-dimensional arrays only, we allow the array to be extended |
| 2191 | * by assigning to a position outside the existing subscript range; any |
| 2192 | * positions between the existing elements and the new one are set to NULLs. |
| 2193 | * (XXX TODO: allow a corresponding behavior for multidimensional arrays) |
| 2194 | * |
| 2195 | * NOTE: For assignments, we throw an error for invalid subscripts etc, |
| 2196 | * rather than returning a NULL as the fetch operations do. |
| 2197 | */ |
| 2198 | Datum |
| 2199 | array_set_element(Datum arraydatum, |
| 2200 | int nSubscripts, |
| 2201 | int *indx, |
| 2202 | Datum dataValue, |
| 2203 | bool isNull, |
| 2204 | int arraytyplen, |
| 2205 | int elmlen, |
| 2206 | bool elmbyval, |
| 2207 | char elmalign) |
| 2208 | { |
| 2209 | ArrayType *array; |
| 2210 | ArrayType *newarray; |
| 2211 | int i, |
| 2212 | ndim, |
| 2213 | dim[MAXDIM], |
| 2214 | lb[MAXDIM], |
| 2215 | offset; |
| 2216 | char *elt_ptr; |
| 2217 | bool newhasnulls; |
| 2218 | bits8 *oldnullbitmap; |
| 2219 | int oldnitems, |
| 2220 | newnitems, |
| 2221 | olddatasize, |
| 2222 | newsize, |
| 2223 | olditemlen, |
| 2224 | newitemlen, |
| 2225 | overheadlen, |
| 2226 | oldoverheadlen, |
| 2227 | addedbefore, |
| 2228 | addedafter, |
| 2229 | lenbefore, |
| 2230 | lenafter; |
| 2231 | |
| 2232 | if (arraytyplen > 0) |
| 2233 | { |
| 2234 | /* |
| 2235 | * fixed-length arrays -- these are assumed to be 1-d, 0-based. We |
| 2236 | * cannot extend them, either. |
| 2237 | */ |
| 2238 | char *resultarray; |
| 2239 | |
| 2240 | if (nSubscripts != 1) |
| 2241 | ereport(ERROR, |
| 2242 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2243 | errmsg("wrong number of array subscripts" ))); |
| 2244 | |
| 2245 | if (indx[0] < 0 || indx[0] * elmlen >= arraytyplen) |
| 2246 | ereport(ERROR, |
| 2247 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2248 | errmsg("array subscript out of range" ))); |
| 2249 | |
| 2250 | if (isNull) |
| 2251 | ereport(ERROR, |
| 2252 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 2253 | errmsg("cannot assign null value to an element of a fixed-length array" ))); |
| 2254 | |
| 2255 | resultarray = (char *) palloc(arraytyplen); |
| 2256 | memcpy(resultarray, DatumGetPointer(arraydatum), arraytyplen); |
| 2257 | elt_ptr = (char *) resultarray + indx[0] * elmlen; |
| 2258 | ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, elt_ptr); |
| 2259 | return PointerGetDatum(resultarray); |
| 2260 | } |
| 2261 | |
| 2262 | if (nSubscripts <= 0 || nSubscripts > MAXDIM) |
| 2263 | ereport(ERROR, |
| 2264 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2265 | errmsg("wrong number of array subscripts" ))); |
| 2266 | |
| 2267 | /* make sure item to be inserted is not toasted */ |
| 2268 | if (elmlen == -1 && !isNull) |
| 2269 | dataValue = PointerGetDatum(PG_DETOAST_DATUM(dataValue)); |
| 2270 | |
| 2271 | if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(arraydatum))) |
| 2272 | { |
| 2273 | /* expanded array: let's do this in a separate function */ |
| 2274 | return array_set_element_expanded(arraydatum, |
| 2275 | nSubscripts, |
| 2276 | indx, |
| 2277 | dataValue, |
| 2278 | isNull, |
| 2279 | arraytyplen, |
| 2280 | elmlen, |
| 2281 | elmbyval, |
| 2282 | elmalign); |
| 2283 | } |
| 2284 | |
| 2285 | /* detoast input array if necessary */ |
| 2286 | array = DatumGetArrayTypeP(arraydatum); |
| 2287 | |
| 2288 | ndim = ARR_NDIM(array); |
| 2289 | |
| 2290 | /* |
| 2291 | * if number of dims is zero, i.e. an empty array, create an array with |
| 2292 | * nSubscripts dimensions, and set the lower bounds to the supplied |
| 2293 | * subscripts |
| 2294 | */ |
| 2295 | if (ndim == 0) |
| 2296 | { |
| 2297 | Oid elmtype = ARR_ELEMTYPE(array); |
| 2298 | |
| 2299 | for (i = 0; i < nSubscripts; i++) |
| 2300 | { |
| 2301 | dim[i] = 1; |
| 2302 | lb[i] = indx[i]; |
| 2303 | } |
| 2304 | |
| 2305 | return PointerGetDatum(construct_md_array(&dataValue, &isNull, |
| 2306 | nSubscripts, dim, lb, |
| 2307 | elmtype, |
| 2308 | elmlen, elmbyval, elmalign)); |
| 2309 | } |
| 2310 | |
| 2311 | if (ndim != nSubscripts) |
| 2312 | ereport(ERROR, |
| 2313 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2314 | errmsg("wrong number of array subscripts" ))); |
| 2315 | |
| 2316 | /* copy dim/lb since we may modify them */ |
| 2317 | memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); |
| 2318 | memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); |
| 2319 | |
| 2320 | newhasnulls = (ARR_HASNULL(array) || isNull); |
| 2321 | addedbefore = addedafter = 0; |
| 2322 | |
| 2323 | /* |
| 2324 | * Check subscripts |
| 2325 | */ |
| 2326 | if (ndim == 1) |
| 2327 | { |
| 2328 | if (indx[0] < lb[0]) |
| 2329 | { |
| 2330 | addedbefore = lb[0] - indx[0]; |
| 2331 | dim[0] += addedbefore; |
| 2332 | lb[0] = indx[0]; |
| 2333 | if (addedbefore > 1) |
| 2334 | newhasnulls = true; /* will insert nulls */ |
| 2335 | } |
| 2336 | if (indx[0] >= (dim[0] + lb[0])) |
| 2337 | { |
| 2338 | addedafter = indx[0] - (dim[0] + lb[0]) + 1; |
| 2339 | dim[0] += addedafter; |
| 2340 | if (addedafter > 1) |
| 2341 | newhasnulls = true; /* will insert nulls */ |
| 2342 | } |
| 2343 | } |
| 2344 | else |
| 2345 | { |
| 2346 | /* |
| 2347 | * XXX currently we do not support extending multi-dimensional arrays |
| 2348 | * during assignment |
| 2349 | */ |
| 2350 | for (i = 0; i < ndim; i++) |
| 2351 | { |
| 2352 | if (indx[i] < lb[i] || |
| 2353 | indx[i] >= (dim[i] + lb[i])) |
| 2354 | ereport(ERROR, |
| 2355 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2356 | errmsg("array subscript out of range" ))); |
| 2357 | } |
| 2358 | } |
| 2359 | |
| 2360 | /* |
| 2361 | * Compute sizes of items and areas to copy |
| 2362 | */ |
| 2363 | newnitems = ArrayGetNItems(ndim, dim); |
| 2364 | if (newhasnulls) |
| 2365 | overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, newnitems); |
| 2366 | else |
| 2367 | overheadlen = ARR_OVERHEAD_NONULLS(ndim); |
| 2368 | oldnitems = ArrayGetNItems(ndim, ARR_DIMS(array)); |
| 2369 | oldnullbitmap = ARR_NULLBITMAP(array); |
| 2370 | oldoverheadlen = ARR_DATA_OFFSET(array); |
| 2371 | olddatasize = ARR_SIZE(array) - oldoverheadlen; |
| 2372 | if (addedbefore) |
| 2373 | { |
| 2374 | offset = 0; |
| 2375 | lenbefore = 0; |
| 2376 | olditemlen = 0; |
| 2377 | lenafter = olddatasize; |
| 2378 | } |
| 2379 | else if (addedafter) |
| 2380 | { |
| 2381 | offset = oldnitems; |
| 2382 | lenbefore = olddatasize; |
| 2383 | olditemlen = 0; |
| 2384 | lenafter = 0; |
| 2385 | } |
| 2386 | else |
| 2387 | { |
| 2388 | offset = ArrayGetOffset(nSubscripts, dim, lb, indx); |
| 2389 | elt_ptr = array_seek(ARR_DATA_PTR(array), 0, oldnullbitmap, offset, |
| 2390 | elmlen, elmbyval, elmalign); |
| 2391 | lenbefore = (int) (elt_ptr - ARR_DATA_PTR(array)); |
| 2392 | if (array_get_isnull(oldnullbitmap, offset)) |
| 2393 | olditemlen = 0; |
| 2394 | else |
| 2395 | { |
| 2396 | olditemlen = att_addlength_pointer(0, elmlen, elt_ptr); |
| 2397 | olditemlen = att_align_nominal(olditemlen, elmalign); |
| 2398 | } |
| 2399 | lenafter = (int) (olddatasize - lenbefore - olditemlen); |
| 2400 | } |
| 2401 | |
| 2402 | if (isNull) |
| 2403 | newitemlen = 0; |
| 2404 | else |
| 2405 | { |
| 2406 | newitemlen = att_addlength_datum(0, elmlen, dataValue); |
| 2407 | newitemlen = att_align_nominal(newitemlen, elmalign); |
| 2408 | } |
| 2409 | |
| 2410 | newsize = overheadlen + lenbefore + newitemlen + lenafter; |
| 2411 | |
| 2412 | /* |
| 2413 | * OK, create the new array and fill in header/dimensions |
| 2414 | */ |
| 2415 | newarray = (ArrayType *) palloc0(newsize); |
| 2416 | SET_VARSIZE(newarray, newsize); |
| 2417 | newarray->ndim = ndim; |
| 2418 | newarray->dataoffset = newhasnulls ? overheadlen : 0; |
| 2419 | newarray->elemtype = ARR_ELEMTYPE(array); |
| 2420 | memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); |
| 2421 | memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); |
| 2422 | |
| 2423 | /* |
| 2424 | * Fill in data |
| 2425 | */ |
| 2426 | memcpy((char *) newarray + overheadlen, |
| 2427 | (char *) array + oldoverheadlen, |
| 2428 | lenbefore); |
| 2429 | if (!isNull) |
| 2430 | ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, |
| 2431 | (char *) newarray + overheadlen + lenbefore); |
| 2432 | memcpy((char *) newarray + overheadlen + lenbefore + newitemlen, |
| 2433 | (char *) array + oldoverheadlen + lenbefore + olditemlen, |
| 2434 | lenafter); |
| 2435 | |
| 2436 | /* |
| 2437 | * Fill in nulls bitmap if needed |
| 2438 | * |
| 2439 | * Note: it's possible we just replaced the last NULL with a non-NULL, and |
| 2440 | * could get rid of the bitmap. Seems not worth testing for though. |
| 2441 | */ |
| 2442 | if (newhasnulls) |
| 2443 | { |
| 2444 | bits8 *newnullbitmap = ARR_NULLBITMAP(newarray); |
| 2445 | |
| 2446 | /* Zero the bitmap to take care of marking inserted positions null */ |
| 2447 | MemSet(newnullbitmap, 0, (newnitems + 7) / 8); |
| 2448 | /* Fix the inserted value */ |
| 2449 | if (addedafter) |
| 2450 | array_set_isnull(newnullbitmap, newnitems - 1, isNull); |
| 2451 | else |
| 2452 | array_set_isnull(newnullbitmap, offset, isNull); |
| 2453 | /* Fix the copied range(s) */ |
| 2454 | if (addedbefore) |
| 2455 | array_bitmap_copy(newnullbitmap, addedbefore, |
| 2456 | oldnullbitmap, 0, |
| 2457 | oldnitems); |
| 2458 | else |
| 2459 | { |
| 2460 | array_bitmap_copy(newnullbitmap, 0, |
| 2461 | oldnullbitmap, 0, |
| 2462 | offset); |
| 2463 | if (addedafter == 0) |
| 2464 | array_bitmap_copy(newnullbitmap, offset + 1, |
| 2465 | oldnullbitmap, offset + 1, |
| 2466 | oldnitems - offset - 1); |
| 2467 | } |
| 2468 | } |
| 2469 | |
| 2470 | return PointerGetDatum(newarray); |
| 2471 | } |
| 2472 | |
| 2473 | /* |
| 2474 | * Implementation of array_set_element() for an expanded array |
| 2475 | * |
| 2476 | * Note: as with any operation on a read/write expanded object, we must |
| 2477 | * take pains not to leave the object in a corrupt state if we fail partway |
| 2478 | * through. |
| 2479 | */ |
| 2480 | static Datum |
| 2481 | array_set_element_expanded(Datum arraydatum, |
| 2482 | int nSubscripts, int *indx, |
| 2483 | Datum dataValue, bool isNull, |
| 2484 | int arraytyplen, |
| 2485 | int elmlen, bool elmbyval, char elmalign) |
| 2486 | { |
| 2487 | ExpandedArrayHeader *eah; |
| 2488 | Datum *dvalues; |
| 2489 | bool *dnulls; |
| 2490 | int i, |
| 2491 | ndim, |
| 2492 | dim[MAXDIM], |
| 2493 | lb[MAXDIM], |
| 2494 | offset; |
| 2495 | bool dimschanged, |
| 2496 | newhasnulls; |
| 2497 | int addedbefore, |
| 2498 | addedafter; |
| 2499 | char *oldValue; |
| 2500 | |
| 2501 | /* Convert to R/W object if not so already */ |
| 2502 | eah = DatumGetExpandedArray(arraydatum); |
| 2503 | |
| 2504 | /* Sanity-check caller's info against object; we don't use it otherwise */ |
| 2505 | Assert(arraytyplen == -1); |
| 2506 | Assert(elmlen == eah->typlen); |
| 2507 | Assert(elmbyval == eah->typbyval); |
| 2508 | Assert(elmalign == eah->typalign); |
| 2509 | |
| 2510 | /* |
| 2511 | * Copy dimension info into local storage. This allows us to modify the |
| 2512 | * dimensions if needed, while not messing up the expanded value if we |
| 2513 | * fail partway through. |
| 2514 | */ |
| 2515 | ndim = eah->ndims; |
| 2516 | Assert(ndim >= 0 && ndim <= MAXDIM); |
| 2517 | memcpy(dim, eah->dims, ndim * sizeof(int)); |
| 2518 | memcpy(lb, eah->lbound, ndim * sizeof(int)); |
| 2519 | dimschanged = false; |
| 2520 | |
| 2521 | /* |
| 2522 | * if number of dims is zero, i.e. an empty array, create an array with |
| 2523 | * nSubscripts dimensions, and set the lower bounds to the supplied |
| 2524 | * subscripts. |
| 2525 | */ |
| 2526 | if (ndim == 0) |
| 2527 | { |
| 2528 | /* |
| 2529 | * Allocate adequate space for new dimension info. This is harmless |
| 2530 | * if we fail later. |
| 2531 | */ |
| 2532 | Assert(nSubscripts > 0 && nSubscripts <= MAXDIM); |
| 2533 | eah->dims = (int *) MemoryContextAllocZero(eah->hdr.eoh_context, |
| 2534 | nSubscripts * sizeof(int)); |
| 2535 | eah->lbound = (int *) MemoryContextAllocZero(eah->hdr.eoh_context, |
| 2536 | nSubscripts * sizeof(int)); |
| 2537 | |
| 2538 | /* Update local copies of dimension info */ |
| 2539 | ndim = nSubscripts; |
| 2540 | for (i = 0; i < nSubscripts; i++) |
| 2541 | { |
| 2542 | dim[i] = 0; |
| 2543 | lb[i] = indx[i]; |
| 2544 | } |
| 2545 | dimschanged = true; |
| 2546 | } |
| 2547 | else if (ndim != nSubscripts) |
| 2548 | ereport(ERROR, |
| 2549 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2550 | errmsg("wrong number of array subscripts" ))); |
| 2551 | |
| 2552 | /* |
| 2553 | * Deconstruct array if we didn't already. (Someday maybe add a special |
| 2554 | * case path for fixed-length, no-nulls cases, where we can overwrite an |
| 2555 | * element in place without ever deconstructing. But today is not that |
| 2556 | * day.) |
| 2557 | */ |
| 2558 | deconstruct_expanded_array(eah); |
| 2559 | |
| 2560 | /* |
| 2561 | * Copy new element into array's context, if needed (we assume it's |
| 2562 | * already detoasted, so no junk should be created). If we fail further |
| 2563 | * down, this memory is leaked, but that's reasonably harmless. |
| 2564 | */ |
| 2565 | if (!eah->typbyval && !isNull) |
| 2566 | { |
| 2567 | MemoryContext oldcxt = MemoryContextSwitchTo(eah->hdr.eoh_context); |
| 2568 | |
| 2569 | dataValue = datumCopy(dataValue, false, eah->typlen); |
| 2570 | MemoryContextSwitchTo(oldcxt); |
| 2571 | } |
| 2572 | |
| 2573 | dvalues = eah->dvalues; |
| 2574 | dnulls = eah->dnulls; |
| 2575 | |
| 2576 | newhasnulls = ((dnulls != NULL) || isNull); |
| 2577 | addedbefore = addedafter = 0; |
| 2578 | |
| 2579 | /* |
| 2580 | * Check subscripts (this logic matches original array_set_element) |
| 2581 | */ |
| 2582 | if (ndim == 1) |
| 2583 | { |
| 2584 | if (indx[0] < lb[0]) |
| 2585 | { |
| 2586 | addedbefore = lb[0] - indx[0]; |
| 2587 | dim[0] += addedbefore; |
| 2588 | lb[0] = indx[0]; |
| 2589 | dimschanged = true; |
| 2590 | if (addedbefore > 1) |
| 2591 | newhasnulls = true; /* will insert nulls */ |
| 2592 | } |
| 2593 | if (indx[0] >= (dim[0] + lb[0])) |
| 2594 | { |
| 2595 | addedafter = indx[0] - (dim[0] + lb[0]) + 1; |
| 2596 | dim[0] += addedafter; |
| 2597 | dimschanged = true; |
| 2598 | if (addedafter > 1) |
| 2599 | newhasnulls = true; /* will insert nulls */ |
| 2600 | } |
| 2601 | } |
| 2602 | else |
| 2603 | { |
| 2604 | /* |
| 2605 | * XXX currently we do not support extending multi-dimensional arrays |
| 2606 | * during assignment |
| 2607 | */ |
| 2608 | for (i = 0; i < ndim; i++) |
| 2609 | { |
| 2610 | if (indx[i] < lb[i] || |
| 2611 | indx[i] >= (dim[i] + lb[i])) |
| 2612 | ereport(ERROR, |
| 2613 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2614 | errmsg("array subscript out of range" ))); |
| 2615 | } |
| 2616 | } |
| 2617 | |
| 2618 | /* Now we can calculate linear offset of target item in array */ |
| 2619 | offset = ArrayGetOffset(nSubscripts, dim, lb, indx); |
| 2620 | |
| 2621 | /* Physically enlarge existing dvalues/dnulls arrays if needed */ |
| 2622 | if (dim[0] > eah->dvalueslen) |
| 2623 | { |
| 2624 | /* We want some extra space if we're enlarging */ |
| 2625 | int newlen = dim[0] + dim[0] / 8; |
| 2626 | |
| 2627 | newlen = Max(newlen, dim[0]); /* integer overflow guard */ |
| 2628 | eah->dvalues = dvalues = (Datum *) |
| 2629 | repalloc(dvalues, newlen * sizeof(Datum)); |
| 2630 | if (dnulls) |
| 2631 | eah->dnulls = dnulls = (bool *) |
| 2632 | repalloc(dnulls, newlen * sizeof(bool)); |
| 2633 | eah->dvalueslen = newlen; |
| 2634 | } |
| 2635 | |
| 2636 | /* |
| 2637 | * If we need a nulls bitmap and don't already have one, create it, being |
| 2638 | * sure to mark all existing entries as not null. |
| 2639 | */ |
| 2640 | if (newhasnulls && dnulls == NULL) |
| 2641 | eah->dnulls = dnulls = (bool *) |
| 2642 | MemoryContextAllocZero(eah->hdr.eoh_context, |
| 2643 | eah->dvalueslen * sizeof(bool)); |
| 2644 | |
| 2645 | /* |
| 2646 | * We now have all the needed space allocated, so we're ready to make |
| 2647 | * irreversible changes. Be very wary of allowing failure below here. |
| 2648 | */ |
| 2649 | |
| 2650 | /* Flattened value will no longer represent array accurately */ |
| 2651 | eah->fvalue = NULL; |
| 2652 | /* And we don't know the flattened size either */ |
| 2653 | eah->flat_size = 0; |
| 2654 | |
| 2655 | /* Update dimensionality info if needed */ |
| 2656 | if (dimschanged) |
| 2657 | { |
| 2658 | eah->ndims = ndim; |
| 2659 | memcpy(eah->dims, dim, ndim * sizeof(int)); |
| 2660 | memcpy(eah->lbound, lb, ndim * sizeof(int)); |
| 2661 | } |
| 2662 | |
| 2663 | /* Reposition items if needed, and fill addedbefore items with nulls */ |
| 2664 | if (addedbefore > 0) |
| 2665 | { |
| 2666 | memmove(dvalues + addedbefore, dvalues, eah->nelems * sizeof(Datum)); |
| 2667 | for (i = 0; i < addedbefore; i++) |
| 2668 | dvalues[i] = (Datum) 0; |
| 2669 | if (dnulls) |
| 2670 | { |
| 2671 | memmove(dnulls + addedbefore, dnulls, eah->nelems * sizeof(bool)); |
| 2672 | for (i = 0; i < addedbefore; i++) |
| 2673 | dnulls[i] = true; |
| 2674 | } |
| 2675 | eah->nelems += addedbefore; |
| 2676 | } |
| 2677 | |
| 2678 | /* fill addedafter items with nulls */ |
| 2679 | if (addedafter > 0) |
| 2680 | { |
| 2681 | for (i = 0; i < addedafter; i++) |
| 2682 | dvalues[eah->nelems + i] = (Datum) 0; |
| 2683 | if (dnulls) |
| 2684 | { |
| 2685 | for (i = 0; i < addedafter; i++) |
| 2686 | dnulls[eah->nelems + i] = true; |
| 2687 | } |
| 2688 | eah->nelems += addedafter; |
| 2689 | } |
| 2690 | |
| 2691 | /* Grab old element value for pfree'ing, if needed. */ |
| 2692 | if (!eah->typbyval && (dnulls == NULL || !dnulls[offset])) |
| 2693 | oldValue = (char *) DatumGetPointer(dvalues[offset]); |
| 2694 | else |
| 2695 | oldValue = NULL; |
| 2696 | |
| 2697 | /* And finally we can insert the new element. */ |
| 2698 | dvalues[offset] = dataValue; |
| 2699 | if (dnulls) |
| 2700 | dnulls[offset] = isNull; |
| 2701 | |
| 2702 | /* |
| 2703 | * Free old element if needed; this keeps repeated element replacements |
| 2704 | * from bloating the array's storage. If the pfree somehow fails, it |
| 2705 | * won't corrupt the array. |
| 2706 | */ |
| 2707 | if (oldValue) |
| 2708 | { |
| 2709 | /* Don't try to pfree a part of the original flat array */ |
| 2710 | if (oldValue < eah->fstartptr || oldValue >= eah->fendptr) |
| 2711 | pfree(oldValue); |
| 2712 | } |
| 2713 | |
| 2714 | /* Done, return standard TOAST pointer for object */ |
| 2715 | return EOHPGetRWDatum(&eah->hdr); |
| 2716 | } |
| 2717 | |
| 2718 | /* |
| 2719 | * array_set_slice : |
| 2720 | * This routine sets the value of a range of array locations (specified |
| 2721 | * by upper and lower subscript values) to new values passed as |
| 2722 | * another array. |
| 2723 | * |
| 2724 | * This handles both ordinary varlena arrays and fixed-length arrays. |
| 2725 | * |
| 2726 | * Inputs: |
| 2727 | * arraydatum: the initial array object (mustn't be NULL) |
| 2728 | * nSubscripts: number of subscripts supplied (must be same for upper/lower) |
| 2729 | * upperIndx[]: the upper subscript values |
| 2730 | * lowerIndx[]: the lower subscript values |
| 2731 | * upperProvided[]: true for provided upper subscript values |
| 2732 | * lowerProvided[]: true for provided lower subscript values |
| 2733 | * srcArrayDatum: the source for the inserted values |
| 2734 | * isNull: indicates whether srcArrayDatum is NULL |
| 2735 | * arraytyplen: pg_type.typlen for the array type |
| 2736 | * elmlen: pg_type.typlen for the array's element type |
| 2737 | * elmbyval: pg_type.typbyval for the array's element type |
| 2738 | * elmalign: pg_type.typalign for the array's element type |
| 2739 | * |
| 2740 | * Result: |
| 2741 | * A new array is returned, just like the old except for the |
| 2742 | * modified range. The original array object is not changed. |
| 2743 | * |
| 2744 | * Omitted upper and lower subscript values are replaced by the corresponding |
| 2745 | * array bound. |
| 2746 | * |
| 2747 | * For one-dimensional arrays only, we allow the array to be extended |
| 2748 | * by assigning to positions outside the existing subscript range; any |
| 2749 | * positions between the existing elements and the new ones are set to NULLs. |
| 2750 | * (XXX TODO: allow a corresponding behavior for multidimensional arrays) |
| 2751 | * |
| 2752 | * NOTE: we assume it is OK to scribble on the provided index arrays |
| 2753 | * lowerIndx[] and upperIndx[]. These are generally just temporaries. |
| 2754 | * |
| 2755 | * NOTE: For assignments, we throw an error for silly subscripts etc, |
| 2756 | * rather than returning a NULL or empty array as the fetch operations do. |
| 2757 | */ |
| 2758 | Datum |
| 2759 | array_set_slice(Datum arraydatum, |
| 2760 | int nSubscripts, |
| 2761 | int *upperIndx, |
| 2762 | int *lowerIndx, |
| 2763 | bool *upperProvided, |
| 2764 | bool *lowerProvided, |
| 2765 | Datum srcArrayDatum, |
| 2766 | bool isNull, |
| 2767 | int arraytyplen, |
| 2768 | int elmlen, |
| 2769 | bool elmbyval, |
| 2770 | char elmalign) |
| 2771 | { |
| 2772 | ArrayType *array; |
| 2773 | ArrayType *srcArray; |
| 2774 | ArrayType *newarray; |
| 2775 | int i, |
| 2776 | ndim, |
| 2777 | dim[MAXDIM], |
| 2778 | lb[MAXDIM], |
| 2779 | span[MAXDIM]; |
| 2780 | bool newhasnulls; |
| 2781 | int nitems, |
| 2782 | nsrcitems, |
| 2783 | olddatasize, |
| 2784 | newsize, |
| 2785 | olditemsize, |
| 2786 | newitemsize, |
| 2787 | overheadlen, |
| 2788 | oldoverheadlen, |
| 2789 | addedbefore, |
| 2790 | addedafter, |
| 2791 | lenbefore, |
| 2792 | lenafter, |
| 2793 | itemsbefore, |
| 2794 | itemsafter, |
| 2795 | nolditems; |
| 2796 | |
| 2797 | /* Currently, assignment from a NULL source array is a no-op */ |
| 2798 | if (isNull) |
| 2799 | return arraydatum; |
| 2800 | |
| 2801 | if (arraytyplen > 0) |
| 2802 | { |
| 2803 | /* |
| 2804 | * fixed-length arrays -- not got round to doing this... |
| 2805 | */ |
| 2806 | ereport(ERROR, |
| 2807 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2808 | errmsg("updates on slices of fixed-length arrays not implemented" ))); |
| 2809 | } |
| 2810 | |
| 2811 | /* detoast arrays if necessary */ |
| 2812 | array = DatumGetArrayTypeP(arraydatum); |
| 2813 | srcArray = DatumGetArrayTypeP(srcArrayDatum); |
| 2814 | |
| 2815 | /* note: we assume srcArray contains no toasted elements */ |
| 2816 | |
| 2817 | ndim = ARR_NDIM(array); |
| 2818 | |
| 2819 | /* |
| 2820 | * if number of dims is zero, i.e. an empty array, create an array with |
| 2821 | * nSubscripts dimensions, and set the upper and lower bounds to the |
| 2822 | * supplied subscripts |
| 2823 | */ |
| 2824 | if (ndim == 0) |
| 2825 | { |
| 2826 | Datum *dvalues; |
| 2827 | bool *dnulls; |
| 2828 | int nelems; |
| 2829 | Oid elmtype = ARR_ELEMTYPE(array); |
| 2830 | |
| 2831 | deconstruct_array(srcArray, elmtype, elmlen, elmbyval, elmalign, |
| 2832 | &dvalues, &dnulls, &nelems); |
| 2833 | |
| 2834 | for (i = 0; i < nSubscripts; i++) |
| 2835 | { |
| 2836 | if (!upperProvided[i] || !lowerProvided[i]) |
| 2837 | ereport(ERROR, |
| 2838 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2839 | errmsg("array slice subscript must provide both boundaries" ), |
| 2840 | errdetail("When assigning to a slice of an empty array value," |
| 2841 | " slice boundaries must be fully specified." ))); |
| 2842 | |
| 2843 | dim[i] = 1 + upperIndx[i] - lowerIndx[i]; |
| 2844 | lb[i] = lowerIndx[i]; |
| 2845 | } |
| 2846 | |
| 2847 | /* complain if too few source items; we ignore extras, however */ |
| 2848 | if (nelems < ArrayGetNItems(nSubscripts, dim)) |
| 2849 | ereport(ERROR, |
| 2850 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2851 | errmsg("source array too small" ))); |
| 2852 | |
| 2853 | return PointerGetDatum(construct_md_array(dvalues, dnulls, nSubscripts, |
| 2854 | dim, lb, elmtype, |
| 2855 | elmlen, elmbyval, elmalign)); |
| 2856 | } |
| 2857 | |
| 2858 | if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) |
| 2859 | ereport(ERROR, |
| 2860 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2861 | errmsg("wrong number of array subscripts" ))); |
| 2862 | |
| 2863 | /* copy dim/lb since we may modify them */ |
| 2864 | memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); |
| 2865 | memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); |
| 2866 | |
| 2867 | newhasnulls = (ARR_HASNULL(array) || ARR_HASNULL(srcArray)); |
| 2868 | addedbefore = addedafter = 0; |
| 2869 | |
| 2870 | /* |
| 2871 | * Check subscripts |
| 2872 | */ |
| 2873 | if (ndim == 1) |
| 2874 | { |
| 2875 | Assert(nSubscripts == 1); |
| 2876 | if (!lowerProvided[0]) |
| 2877 | lowerIndx[0] = lb[0]; |
| 2878 | if (!upperProvided[0]) |
| 2879 | upperIndx[0] = dim[0] + lb[0] - 1; |
| 2880 | if (lowerIndx[0] > upperIndx[0]) |
| 2881 | ereport(ERROR, |
| 2882 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2883 | errmsg("upper bound cannot be less than lower bound" ))); |
| 2884 | if (lowerIndx[0] < lb[0]) |
| 2885 | { |
| 2886 | if (upperIndx[0] < lb[0] - 1) |
| 2887 | newhasnulls = true; /* will insert nulls */ |
| 2888 | addedbefore = lb[0] - lowerIndx[0]; |
| 2889 | dim[0] += addedbefore; |
| 2890 | lb[0] = lowerIndx[0]; |
| 2891 | } |
| 2892 | if (upperIndx[0] >= (dim[0] + lb[0])) |
| 2893 | { |
| 2894 | if (lowerIndx[0] > (dim[0] + lb[0])) |
| 2895 | newhasnulls = true; /* will insert nulls */ |
| 2896 | addedafter = upperIndx[0] - (dim[0] + lb[0]) + 1; |
| 2897 | dim[0] += addedafter; |
| 2898 | } |
| 2899 | } |
| 2900 | else |
| 2901 | { |
| 2902 | /* |
| 2903 | * XXX currently we do not support extending multi-dimensional arrays |
| 2904 | * during assignment |
| 2905 | */ |
| 2906 | for (i = 0; i < nSubscripts; i++) |
| 2907 | { |
| 2908 | if (!lowerProvided[i]) |
| 2909 | lowerIndx[i] = lb[i]; |
| 2910 | if (!upperProvided[i]) |
| 2911 | upperIndx[i] = dim[i] + lb[i] - 1; |
| 2912 | if (lowerIndx[i] > upperIndx[i]) |
| 2913 | ereport(ERROR, |
| 2914 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2915 | errmsg("upper bound cannot be less than lower bound" ))); |
| 2916 | if (lowerIndx[i] < lb[i] || |
| 2917 | upperIndx[i] >= (dim[i] + lb[i])) |
| 2918 | ereport(ERROR, |
| 2919 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2920 | errmsg("array subscript out of range" ))); |
| 2921 | } |
| 2922 | /* fill any missing subscript positions with full array range */ |
| 2923 | for (; i < ndim; i++) |
| 2924 | { |
| 2925 | lowerIndx[i] = lb[i]; |
| 2926 | upperIndx[i] = dim[i] + lb[i] - 1; |
| 2927 | if (lowerIndx[i] > upperIndx[i]) |
| 2928 | ereport(ERROR, |
| 2929 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2930 | errmsg("upper bound cannot be less than lower bound" ))); |
| 2931 | } |
| 2932 | } |
| 2933 | |
| 2934 | /* Do this mainly to check for overflow */ |
| 2935 | nitems = ArrayGetNItems(ndim, dim); |
| 2936 | |
| 2937 | /* |
| 2938 | * Make sure source array has enough entries. Note we ignore the shape of |
| 2939 | * the source array and just read entries serially. |
| 2940 | */ |
| 2941 | mda_get_range(ndim, span, lowerIndx, upperIndx); |
| 2942 | nsrcitems = ArrayGetNItems(ndim, span); |
| 2943 | if (nsrcitems > ArrayGetNItems(ARR_NDIM(srcArray), ARR_DIMS(srcArray))) |
| 2944 | ereport(ERROR, |
| 2945 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 2946 | errmsg("source array too small" ))); |
| 2947 | |
| 2948 | /* |
| 2949 | * Compute space occupied by new entries, space occupied by replaced |
| 2950 | * entries, and required space for new array. |
| 2951 | */ |
| 2952 | if (newhasnulls) |
| 2953 | overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, nitems); |
| 2954 | else |
| 2955 | overheadlen = ARR_OVERHEAD_NONULLS(ndim); |
| 2956 | newitemsize = array_nelems_size(ARR_DATA_PTR(srcArray), 0, |
| 2957 | ARR_NULLBITMAP(srcArray), nsrcitems, |
| 2958 | elmlen, elmbyval, elmalign); |
| 2959 | oldoverheadlen = ARR_DATA_OFFSET(array); |
| 2960 | olddatasize = ARR_SIZE(array) - oldoverheadlen; |
| 2961 | if (ndim > 1) |
| 2962 | { |
| 2963 | /* |
| 2964 | * here we do not need to cope with extension of the array; it would |
| 2965 | * be a lot more complicated if we had to do so... |
| 2966 | */ |
| 2967 | olditemsize = array_slice_size(ARR_DATA_PTR(array), |
| 2968 | ARR_NULLBITMAP(array), |
| 2969 | ndim, dim, lb, |
| 2970 | lowerIndx, upperIndx, |
| 2971 | elmlen, elmbyval, elmalign); |
| 2972 | lenbefore = lenafter = 0; /* keep compiler quiet */ |
| 2973 | itemsbefore = itemsafter = nolditems = 0; |
| 2974 | } |
| 2975 | else |
| 2976 | { |
| 2977 | /* |
| 2978 | * here we must allow for possibility of slice larger than orig array |
| 2979 | * and/or not adjacent to orig array subscripts |
| 2980 | */ |
| 2981 | int oldlb = ARR_LBOUND(array)[0]; |
| 2982 | int oldub = oldlb + ARR_DIMS(array)[0] - 1; |
| 2983 | int slicelb = Max(oldlb, lowerIndx[0]); |
| 2984 | int sliceub = Min(oldub, upperIndx[0]); |
| 2985 | char *oldarraydata = ARR_DATA_PTR(array); |
| 2986 | bits8 *oldarraybitmap = ARR_NULLBITMAP(array); |
| 2987 | |
| 2988 | /* count/size of old array entries that will go before the slice */ |
| 2989 | itemsbefore = Min(slicelb, oldub + 1) - oldlb; |
| 2990 | lenbefore = array_nelems_size(oldarraydata, 0, oldarraybitmap, |
| 2991 | itemsbefore, |
| 2992 | elmlen, elmbyval, elmalign); |
| 2993 | /* count/size of old array entries that will be replaced by slice */ |
| 2994 | if (slicelb > sliceub) |
| 2995 | { |
| 2996 | nolditems = 0; |
| 2997 | olditemsize = 0; |
| 2998 | } |
| 2999 | else |
| 3000 | { |
| 3001 | nolditems = sliceub - slicelb + 1; |
| 3002 | olditemsize = array_nelems_size(oldarraydata + lenbefore, |
| 3003 | itemsbefore, oldarraybitmap, |
| 3004 | nolditems, |
| 3005 | elmlen, elmbyval, elmalign); |
| 3006 | } |
| 3007 | /* count/size of old array entries that will go after the slice */ |
| 3008 | itemsafter = oldub + 1 - Max(sliceub + 1, oldlb); |
| 3009 | lenafter = olddatasize - lenbefore - olditemsize; |
| 3010 | } |
| 3011 | |
| 3012 | newsize = overheadlen + olddatasize - olditemsize + newitemsize; |
| 3013 | |
| 3014 | newarray = (ArrayType *) palloc0(newsize); |
| 3015 | SET_VARSIZE(newarray, newsize); |
| 3016 | newarray->ndim = ndim; |
| 3017 | newarray->dataoffset = newhasnulls ? overheadlen : 0; |
| 3018 | newarray->elemtype = ARR_ELEMTYPE(array); |
| 3019 | memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); |
| 3020 | memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); |
| 3021 | |
| 3022 | if (ndim > 1) |
| 3023 | { |
| 3024 | /* |
| 3025 | * here we do not need to cope with extension of the array; it would |
| 3026 | * be a lot more complicated if we had to do so... |
| 3027 | */ |
| 3028 | array_insert_slice(newarray, array, srcArray, |
| 3029 | ndim, dim, lb, |
| 3030 | lowerIndx, upperIndx, |
| 3031 | elmlen, elmbyval, elmalign); |
| 3032 | } |
| 3033 | else |
| 3034 | { |
| 3035 | /* fill in data */ |
| 3036 | memcpy((char *) newarray + overheadlen, |
| 3037 | (char *) array + oldoverheadlen, |
| 3038 | lenbefore); |
| 3039 | memcpy((char *) newarray + overheadlen + lenbefore, |
| 3040 | ARR_DATA_PTR(srcArray), |
| 3041 | newitemsize); |
| 3042 | memcpy((char *) newarray + overheadlen + lenbefore + newitemsize, |
| 3043 | (char *) array + oldoverheadlen + lenbefore + olditemsize, |
| 3044 | lenafter); |
| 3045 | /* fill in nulls bitmap if needed */ |
| 3046 | if (newhasnulls) |
| 3047 | { |
| 3048 | bits8 *newnullbitmap = ARR_NULLBITMAP(newarray); |
| 3049 | bits8 *oldnullbitmap = ARR_NULLBITMAP(array); |
| 3050 | |
| 3051 | /* Zero the bitmap to handle marking inserted positions null */ |
| 3052 | MemSet(newnullbitmap, 0, (nitems + 7) / 8); |
| 3053 | array_bitmap_copy(newnullbitmap, addedbefore, |
| 3054 | oldnullbitmap, 0, |
| 3055 | itemsbefore); |
| 3056 | array_bitmap_copy(newnullbitmap, lowerIndx[0] - lb[0], |
| 3057 | ARR_NULLBITMAP(srcArray), 0, |
| 3058 | nsrcitems); |
| 3059 | array_bitmap_copy(newnullbitmap, addedbefore + itemsbefore + nolditems, |
| 3060 | oldnullbitmap, itemsbefore + nolditems, |
| 3061 | itemsafter); |
| 3062 | } |
| 3063 | } |
| 3064 | |
| 3065 | return PointerGetDatum(newarray); |
| 3066 | } |
| 3067 | |
| 3068 | /* |
| 3069 | * array_ref : backwards compatibility wrapper for array_get_element |
| 3070 | * |
| 3071 | * This only works for detoasted/flattened varlena arrays, since the array |
| 3072 | * argument is declared as "ArrayType *". However there's enough code like |
| 3073 | * that to justify preserving this API. |
| 3074 | */ |
| 3075 | Datum |
| 3076 | array_ref(ArrayType *array, int nSubscripts, int *indx, |
| 3077 | int arraytyplen, int elmlen, bool elmbyval, char elmalign, |
| 3078 | bool *isNull) |
| 3079 | { |
| 3080 | return array_get_element(PointerGetDatum(array), nSubscripts, indx, |
| 3081 | arraytyplen, elmlen, elmbyval, elmalign, |
| 3082 | isNull); |
| 3083 | } |
| 3084 | |
| 3085 | /* |
| 3086 | * array_set : backwards compatibility wrapper for array_set_element |
| 3087 | * |
| 3088 | * This only works for detoasted/flattened varlena arrays, since the array |
| 3089 | * argument and result are declared as "ArrayType *". However there's enough |
| 3090 | * code like that to justify preserving this API. |
| 3091 | */ |
| 3092 | ArrayType * |
| 3093 | array_set(ArrayType *array, int nSubscripts, int *indx, |
| 3094 | Datum dataValue, bool isNull, |
| 3095 | int arraytyplen, int elmlen, bool elmbyval, char elmalign) |
| 3096 | { |
| 3097 | return DatumGetArrayTypeP(array_set_element(PointerGetDatum(array), |
| 3098 | nSubscripts, indx, |
| 3099 | dataValue, isNull, |
| 3100 | arraytyplen, |
| 3101 | elmlen, elmbyval, elmalign)); |
| 3102 | } |
| 3103 | |
| 3104 | /* |
| 3105 | * array_map() |
| 3106 | * |
| 3107 | * Map an array through an arbitrary expression. Return a new array with |
| 3108 | * the same dimensions and each source element transformed by the given, |
| 3109 | * already-compiled expression. Each source element is placed in the |
| 3110 | * innermost_caseval/innermost_casenull fields of the ExprState. |
| 3111 | * |
| 3112 | * Parameters are: |
| 3113 | * * arrayd: Datum representing array argument. |
| 3114 | * * exprstate: ExprState representing the per-element transformation. |
| 3115 | * * econtext: context for expression evaluation. |
| 3116 | * * retType: OID of element type of output array. This must be the same as, |
| 3117 | * or binary-compatible with, the result type of the expression. It might |
| 3118 | * be different from the input array's element type. |
| 3119 | * * amstate: workspace for array_map. Must be zeroed by caller before |
| 3120 | * first call, and not touched after that. |
| 3121 | * |
| 3122 | * It is legitimate to pass a freshly-zeroed ArrayMapState on each call, |
| 3123 | * but better performance can be had if the state can be preserved across |
| 3124 | * a series of calls. |
| 3125 | * |
| 3126 | * NB: caller must assure that input array is not NULL. NULL elements in |
| 3127 | * the array are OK however. |
| 3128 | * NB: caller should be running in econtext's per-tuple memory context. |
| 3129 | */ |
| 3130 | Datum |
| 3131 | array_map(Datum arrayd, |
| 3132 | ExprState *exprstate, ExprContext *econtext, |
| 3133 | Oid retType, ArrayMapState *amstate) |
| 3134 | { |
| 3135 | AnyArrayType *v = DatumGetAnyArrayP(arrayd); |
| 3136 | ArrayType *result; |
| 3137 | Datum *values; |
| 3138 | bool *nulls; |
| 3139 | int *dim; |
| 3140 | int ndim; |
| 3141 | int nitems; |
| 3142 | int i; |
| 3143 | int32 nbytes = 0; |
| 3144 | int32 dataoffset; |
| 3145 | bool hasnulls; |
| 3146 | Oid inpType; |
| 3147 | int inp_typlen; |
| 3148 | bool inp_typbyval; |
| 3149 | char inp_typalign; |
| 3150 | int typlen; |
| 3151 | bool typbyval; |
| 3152 | char typalign; |
| 3153 | array_iter iter; |
| 3154 | ArrayMetaState *; |
| 3155 | ArrayMetaState *; |
| 3156 | Datum *transform_source = exprstate->innermost_caseval; |
| 3157 | bool *transform_source_isnull = exprstate->innermost_casenull; |
| 3158 | |
| 3159 | inpType = AARR_ELEMTYPE(v); |
| 3160 | ndim = AARR_NDIM(v); |
| 3161 | dim = AARR_DIMS(v); |
| 3162 | nitems = ArrayGetNItems(ndim, dim); |
| 3163 | |
| 3164 | /* Check for empty array */ |
| 3165 | if (nitems <= 0) |
| 3166 | { |
| 3167 | /* Return empty array */ |
| 3168 | return PointerGetDatum(construct_empty_array(retType)); |
| 3169 | } |
| 3170 | |
| 3171 | /* |
| 3172 | * We arrange to look up info about input and return element types only |
| 3173 | * once per series of calls, assuming the element type doesn't change |
| 3174 | * underneath us. |
| 3175 | */ |
| 3176 | inp_extra = &amstate->inp_extra; |
| 3177 | ret_extra = &amstate->ret_extra; |
| 3178 | |
| 3179 | if (inp_extra->element_type != inpType) |
| 3180 | { |
| 3181 | get_typlenbyvalalign(inpType, |
| 3182 | &inp_extra->typlen, |
| 3183 | &inp_extra->typbyval, |
| 3184 | &inp_extra->typalign); |
| 3185 | inp_extra->element_type = inpType; |
| 3186 | } |
| 3187 | inp_typlen = inp_extra->typlen; |
| 3188 | inp_typbyval = inp_extra->typbyval; |
| 3189 | inp_typalign = inp_extra->typalign; |
| 3190 | |
| 3191 | if (ret_extra->element_type != retType) |
| 3192 | { |
| 3193 | get_typlenbyvalalign(retType, |
| 3194 | &ret_extra->typlen, |
| 3195 | &ret_extra->typbyval, |
| 3196 | &ret_extra->typalign); |
| 3197 | ret_extra->element_type = retType; |
| 3198 | } |
| 3199 | typlen = ret_extra->typlen; |
| 3200 | typbyval = ret_extra->typbyval; |
| 3201 | typalign = ret_extra->typalign; |
| 3202 | |
| 3203 | /* Allocate temporary arrays for new values */ |
| 3204 | values = (Datum *) palloc(nitems * sizeof(Datum)); |
| 3205 | nulls = (bool *) palloc(nitems * sizeof(bool)); |
| 3206 | |
| 3207 | /* Loop over source data */ |
| 3208 | array_iter_setup(&iter, v); |
| 3209 | hasnulls = false; |
| 3210 | |
| 3211 | for (i = 0; i < nitems; i++) |
| 3212 | { |
| 3213 | /* Get source element, checking for NULL */ |
| 3214 | *transform_source = |
| 3215 | array_iter_next(&iter, transform_source_isnull, i, |
| 3216 | inp_typlen, inp_typbyval, inp_typalign); |
| 3217 | |
| 3218 | /* Apply the given expression to source element */ |
| 3219 | values[i] = ExecEvalExpr(exprstate, econtext, &nulls[i]); |
| 3220 | |
| 3221 | if (nulls[i]) |
| 3222 | hasnulls = true; |
| 3223 | else |
| 3224 | { |
| 3225 | /* Ensure data is not toasted */ |
| 3226 | if (typlen == -1) |
| 3227 | values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); |
| 3228 | /* Update total result size */ |
| 3229 | nbytes = att_addlength_datum(nbytes, typlen, values[i]); |
| 3230 | nbytes = att_align_nominal(nbytes, typalign); |
| 3231 | /* check for overflow of total request */ |
| 3232 | if (!AllocSizeIsValid(nbytes)) |
| 3233 | ereport(ERROR, |
| 3234 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 3235 | errmsg("array size exceeds the maximum allowed (%d)" , |
| 3236 | (int) MaxAllocSize))); |
| 3237 | } |
| 3238 | } |
| 3239 | |
| 3240 | /* Allocate and fill the result array */ |
| 3241 | if (hasnulls) |
| 3242 | { |
| 3243 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); |
| 3244 | nbytes += dataoffset; |
| 3245 | } |
| 3246 | else |
| 3247 | { |
| 3248 | dataoffset = 0; /* marker for no null bitmap */ |
| 3249 | nbytes += ARR_OVERHEAD_NONULLS(ndim); |
| 3250 | } |
| 3251 | result = (ArrayType *) palloc0(nbytes); |
| 3252 | SET_VARSIZE(result, nbytes); |
| 3253 | result->ndim = ndim; |
| 3254 | result->dataoffset = dataoffset; |
| 3255 | result->elemtype = retType; |
| 3256 | memcpy(ARR_DIMS(result), AARR_DIMS(v), ndim * sizeof(int)); |
| 3257 | memcpy(ARR_LBOUND(result), AARR_LBOUND(v), ndim * sizeof(int)); |
| 3258 | |
| 3259 | CopyArrayEls(result, |
| 3260 | values, nulls, nitems, |
| 3261 | typlen, typbyval, typalign, |
| 3262 | false); |
| 3263 | |
| 3264 | /* |
| 3265 | * Note: do not risk trying to pfree the results of the called expression |
| 3266 | */ |
| 3267 | pfree(values); |
| 3268 | pfree(nulls); |
| 3269 | |
| 3270 | return PointerGetDatum(result); |
| 3271 | } |
| 3272 | |
| 3273 | /* |
| 3274 | * construct_array --- simple method for constructing an array object |
| 3275 | * |
| 3276 | * elems: array of Datum items to become the array contents |
| 3277 | * (NULL element values are not supported). |
| 3278 | * nelems: number of items |
| 3279 | * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items |
| 3280 | * |
| 3281 | * A palloc'd 1-D array object is constructed and returned. Note that |
| 3282 | * elem values will be copied into the object even if pass-by-ref type. |
| 3283 | * Also note the result will be 0-D not 1-D if nelems = 0. |
| 3284 | * |
| 3285 | * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info |
| 3286 | * from the system catalogs, given the elmtype. However, the caller is |
| 3287 | * in a better position to cache this info across multiple uses, or even |
| 3288 | * to hard-wire values if the element type is hard-wired. |
| 3289 | */ |
| 3290 | ArrayType * |
| 3291 | construct_array(Datum *elems, int nelems, |
| 3292 | Oid elmtype, |
| 3293 | int elmlen, bool elmbyval, char elmalign) |
| 3294 | { |
| 3295 | int dims[1]; |
| 3296 | int lbs[1]; |
| 3297 | |
| 3298 | dims[0] = nelems; |
| 3299 | lbs[0] = 1; |
| 3300 | |
| 3301 | return construct_md_array(elems, NULL, 1, dims, lbs, |
| 3302 | elmtype, elmlen, elmbyval, elmalign); |
| 3303 | } |
| 3304 | |
| 3305 | /* |
| 3306 | * construct_md_array --- simple method for constructing an array object |
| 3307 | * with arbitrary dimensions and possible NULLs |
| 3308 | * |
| 3309 | * elems: array of Datum items to become the array contents |
| 3310 | * nulls: array of is-null flags (can be NULL if no nulls) |
| 3311 | * ndims: number of dimensions |
| 3312 | * dims: integer array with size of each dimension |
| 3313 | * lbs: integer array with lower bound of each dimension |
| 3314 | * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items |
| 3315 | * |
| 3316 | * A palloc'd ndims-D array object is constructed and returned. Note that |
| 3317 | * elem values will be copied into the object even if pass-by-ref type. |
| 3318 | * Also note the result will be 0-D not ndims-D if any dims[i] = 0. |
| 3319 | * |
| 3320 | * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info |
| 3321 | * from the system catalogs, given the elmtype. However, the caller is |
| 3322 | * in a better position to cache this info across multiple uses, or even |
| 3323 | * to hard-wire values if the element type is hard-wired. |
| 3324 | */ |
| 3325 | ArrayType * |
| 3326 | construct_md_array(Datum *elems, |
| 3327 | bool *nulls, |
| 3328 | int ndims, |
| 3329 | int *dims, |
| 3330 | int *lbs, |
| 3331 | Oid elmtype, int elmlen, bool elmbyval, char elmalign) |
| 3332 | { |
| 3333 | ArrayType *result; |
| 3334 | bool hasnulls; |
| 3335 | int32 nbytes; |
| 3336 | int32 dataoffset; |
| 3337 | int i; |
| 3338 | int nelems; |
| 3339 | |
| 3340 | if (ndims < 0) /* we do allow zero-dimension arrays */ |
| 3341 | ereport(ERROR, |
| 3342 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 3343 | errmsg("invalid number of dimensions: %d" , ndims))); |
| 3344 | if (ndims > MAXDIM) |
| 3345 | ereport(ERROR, |
| 3346 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 3347 | errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)" , |
| 3348 | ndims, MAXDIM))); |
| 3349 | |
| 3350 | nelems = ArrayGetNItems(ndims, dims); |
| 3351 | |
| 3352 | /* if ndims <= 0 or any dims[i] == 0, return empty array */ |
| 3353 | if (nelems <= 0) |
| 3354 | return construct_empty_array(elmtype); |
| 3355 | |
| 3356 | /* compute required space */ |
| 3357 | nbytes = 0; |
| 3358 | hasnulls = false; |
| 3359 | for (i = 0; i < nelems; i++) |
| 3360 | { |
| 3361 | if (nulls && nulls[i]) |
| 3362 | { |
| 3363 | hasnulls = true; |
| 3364 | continue; |
| 3365 | } |
| 3366 | /* make sure data is not toasted */ |
| 3367 | if (elmlen == -1) |
| 3368 | elems[i] = PointerGetDatum(PG_DETOAST_DATUM(elems[i])); |
| 3369 | nbytes = att_addlength_datum(nbytes, elmlen, elems[i]); |
| 3370 | nbytes = att_align_nominal(nbytes, elmalign); |
| 3371 | /* check for overflow of total request */ |
| 3372 | if (!AllocSizeIsValid(nbytes)) |
| 3373 | ereport(ERROR, |
| 3374 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 3375 | errmsg("array size exceeds the maximum allowed (%d)" , |
| 3376 | (int) MaxAllocSize))); |
| 3377 | } |
| 3378 | |
| 3379 | /* Allocate and initialize result array */ |
| 3380 | if (hasnulls) |
| 3381 | { |
| 3382 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nelems); |
| 3383 | nbytes += dataoffset; |
| 3384 | } |
| 3385 | else |
| 3386 | { |
| 3387 | dataoffset = 0; /* marker for no null bitmap */ |
| 3388 | nbytes += ARR_OVERHEAD_NONULLS(ndims); |
| 3389 | } |
| 3390 | result = (ArrayType *) palloc0(nbytes); |
| 3391 | SET_VARSIZE(result, nbytes); |
| 3392 | result->ndim = ndims; |
| 3393 | result->dataoffset = dataoffset; |
| 3394 | result->elemtype = elmtype; |
| 3395 | memcpy(ARR_DIMS(result), dims, ndims * sizeof(int)); |
| 3396 | memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int)); |
| 3397 | |
| 3398 | CopyArrayEls(result, |
| 3399 | elems, nulls, nelems, |
| 3400 | elmlen, elmbyval, elmalign, |
| 3401 | false); |
| 3402 | |
| 3403 | return result; |
| 3404 | } |
| 3405 | |
| 3406 | /* |
| 3407 | * construct_empty_array --- make a zero-dimensional array of given type |
| 3408 | */ |
| 3409 | ArrayType * |
| 3410 | construct_empty_array(Oid elmtype) |
| 3411 | { |
| 3412 | ArrayType *result; |
| 3413 | |
| 3414 | result = (ArrayType *) palloc0(sizeof(ArrayType)); |
| 3415 | SET_VARSIZE(result, sizeof(ArrayType)); |
| 3416 | result->ndim = 0; |
| 3417 | result->dataoffset = 0; |
| 3418 | result->elemtype = elmtype; |
| 3419 | return result; |
| 3420 | } |
| 3421 | |
| 3422 | /* |
| 3423 | * construct_empty_expanded_array: make an empty expanded array |
| 3424 | * given only type information. (metacache can be NULL if not needed.) |
| 3425 | */ |
| 3426 | ExpandedArrayHeader * |
| 3427 | construct_empty_expanded_array(Oid element_type, |
| 3428 | MemoryContext parentcontext, |
| 3429 | ArrayMetaState *metacache) |
| 3430 | { |
| 3431 | ArrayType *array = construct_empty_array(element_type); |
| 3432 | Datum d; |
| 3433 | |
| 3434 | d = expand_array(PointerGetDatum(array), parentcontext, metacache); |
| 3435 | pfree(array); |
| 3436 | return (ExpandedArrayHeader *) DatumGetEOHP(d); |
| 3437 | } |
| 3438 | |
| 3439 | /* |
| 3440 | * deconstruct_array --- simple method for extracting data from an array |
| 3441 | * |
| 3442 | * array: array object to examine (must not be NULL) |
| 3443 | * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items |
| 3444 | * elemsp: return value, set to point to palloc'd array of Datum values |
| 3445 | * nullsp: return value, set to point to palloc'd array of isnull markers |
| 3446 | * nelemsp: return value, set to number of extracted values |
| 3447 | * |
| 3448 | * The caller may pass nullsp == NULL if it does not support NULLs in the |
| 3449 | * array. Note that this produces a very uninformative error message, |
| 3450 | * so do it only in cases where a NULL is really not expected. |
| 3451 | * |
| 3452 | * If array elements are pass-by-ref data type, the returned Datums will |
| 3453 | * be pointers into the array object. |
| 3454 | * |
| 3455 | * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info |
| 3456 | * from the system catalogs, given the elmtype. However, in most current |
| 3457 | * uses the type is hard-wired into the caller and so we can save a lookup |
| 3458 | * cycle by hard-wiring the type info as well. |
| 3459 | */ |
| 3460 | void |
| 3461 | deconstruct_array(ArrayType *array, |
| 3462 | Oid elmtype, |
| 3463 | int elmlen, bool elmbyval, char elmalign, |
| 3464 | Datum **elemsp, bool **nullsp, int *nelemsp) |
| 3465 | { |
| 3466 | Datum *elems; |
| 3467 | bool *nulls; |
| 3468 | int nelems; |
| 3469 | char *p; |
| 3470 | bits8 *bitmap; |
| 3471 | int bitmask; |
| 3472 | int i; |
| 3473 | |
| 3474 | Assert(ARR_ELEMTYPE(array) == elmtype); |
| 3475 | |
| 3476 | nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array)); |
| 3477 | *elemsp = elems = (Datum *) palloc(nelems * sizeof(Datum)); |
| 3478 | if (nullsp) |
| 3479 | *nullsp = nulls = (bool *) palloc0(nelems * sizeof(bool)); |
| 3480 | else |
| 3481 | nulls = NULL; |
| 3482 | *nelemsp = nelems; |
| 3483 | |
| 3484 | p = ARR_DATA_PTR(array); |
| 3485 | bitmap = ARR_NULLBITMAP(array); |
| 3486 | bitmask = 1; |
| 3487 | |
| 3488 | for (i = 0; i < nelems; i++) |
| 3489 | { |
| 3490 | /* Get source element, checking for NULL */ |
| 3491 | if (bitmap && (*bitmap & bitmask) == 0) |
| 3492 | { |
| 3493 | elems[i] = (Datum) 0; |
| 3494 | if (nulls) |
| 3495 | nulls[i] = true; |
| 3496 | else |
| 3497 | ereport(ERROR, |
| 3498 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 3499 | errmsg("null array element not allowed in this context" ))); |
| 3500 | } |
| 3501 | else |
| 3502 | { |
| 3503 | elems[i] = fetch_att(p, elmbyval, elmlen); |
| 3504 | p = att_addlength_pointer(p, elmlen, p); |
| 3505 | p = (char *) att_align_nominal(p, elmalign); |
| 3506 | } |
| 3507 | |
| 3508 | /* advance bitmap pointer if any */ |
| 3509 | if (bitmap) |
| 3510 | { |
| 3511 | bitmask <<= 1; |
| 3512 | if (bitmask == 0x100) |
| 3513 | { |
| 3514 | bitmap++; |
| 3515 | bitmask = 1; |
| 3516 | } |
| 3517 | } |
| 3518 | } |
| 3519 | } |
| 3520 | |
| 3521 | /* |
| 3522 | * array_contains_nulls --- detect whether an array has any null elements |
| 3523 | * |
| 3524 | * This gives an accurate answer, whereas testing ARR_HASNULL only tells |
| 3525 | * if the array *might* contain a null. |
| 3526 | */ |
| 3527 | bool |
| 3528 | array_contains_nulls(ArrayType *array) |
| 3529 | { |
| 3530 | int nelems; |
| 3531 | bits8 *bitmap; |
| 3532 | int bitmask; |
| 3533 | |
| 3534 | /* Easy answer if there's no null bitmap */ |
| 3535 | if (!ARR_HASNULL(array)) |
| 3536 | return false; |
| 3537 | |
| 3538 | nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array)); |
| 3539 | |
| 3540 | bitmap = ARR_NULLBITMAP(array); |
| 3541 | |
| 3542 | /* check whole bytes of the bitmap byte-at-a-time */ |
| 3543 | while (nelems >= 8) |
| 3544 | { |
| 3545 | if (*bitmap != 0xFF) |
| 3546 | return true; |
| 3547 | bitmap++; |
| 3548 | nelems -= 8; |
| 3549 | } |
| 3550 | |
| 3551 | /* check last partial byte */ |
| 3552 | bitmask = 1; |
| 3553 | while (nelems > 0) |
| 3554 | { |
| 3555 | if ((*bitmap & bitmask) == 0) |
| 3556 | return true; |
| 3557 | bitmask <<= 1; |
| 3558 | nelems--; |
| 3559 | } |
| 3560 | |
| 3561 | return false; |
| 3562 | } |
| 3563 | |
| 3564 | |
| 3565 | /* |
| 3566 | * array_eq : |
| 3567 | * compares two arrays for equality |
| 3568 | * result : |
| 3569 | * returns true if the arrays are equal, false otherwise. |
| 3570 | * |
| 3571 | * Note: we do not use array_cmp here, since equality may be meaningful in |
| 3572 | * datatypes that don't have a total ordering (and hence no btree support). |
| 3573 | */ |
| 3574 | Datum |
| 3575 | array_eq(PG_FUNCTION_ARGS) |
| 3576 | { |
| 3577 | LOCAL_FCINFO(locfcinfo, 2); |
| 3578 | AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| 3579 | AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| 3580 | Oid collation = PG_GET_COLLATION(); |
| 3581 | int ndims1 = AARR_NDIM(array1); |
| 3582 | int ndims2 = AARR_NDIM(array2); |
| 3583 | int *dims1 = AARR_DIMS(array1); |
| 3584 | int *dims2 = AARR_DIMS(array2); |
| 3585 | int *lbs1 = AARR_LBOUND(array1); |
| 3586 | int *lbs2 = AARR_LBOUND(array2); |
| 3587 | Oid element_type = AARR_ELEMTYPE(array1); |
| 3588 | bool result = true; |
| 3589 | int nitems; |
| 3590 | TypeCacheEntry *typentry; |
| 3591 | int typlen; |
| 3592 | bool typbyval; |
| 3593 | char typalign; |
| 3594 | array_iter it1; |
| 3595 | array_iter it2; |
| 3596 | int i; |
| 3597 | |
| 3598 | if (element_type != AARR_ELEMTYPE(array2)) |
| 3599 | ereport(ERROR, |
| 3600 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 3601 | errmsg("cannot compare arrays of different element types" ))); |
| 3602 | |
| 3603 | /* fast path if the arrays do not have the same dimensionality */ |
| 3604 | if (ndims1 != ndims2 || |
| 3605 | memcmp(dims1, dims2, ndims1 * sizeof(int)) != 0 || |
| 3606 | memcmp(lbs1, lbs2, ndims1 * sizeof(int)) != 0) |
| 3607 | result = false; |
| 3608 | else |
| 3609 | { |
| 3610 | /* |
| 3611 | * We arrange to look up the equality function only once per series of |
| 3612 | * calls, assuming the element type doesn't change underneath us. The |
| 3613 | * typcache is used so that we have no memory leakage when being used |
| 3614 | * as an index support function. |
| 3615 | */ |
| 3616 | typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| 3617 | if (typentry == NULL || |
| 3618 | typentry->type_id != element_type) |
| 3619 | { |
| 3620 | typentry = lookup_type_cache(element_type, |
| 3621 | TYPECACHE_EQ_OPR_FINFO); |
| 3622 | if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) |
| 3623 | ereport(ERROR, |
| 3624 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 3625 | errmsg("could not identify an equality operator for type %s" , |
| 3626 | format_type_be(element_type)))); |
| 3627 | fcinfo->flinfo->fn_extra = (void *) typentry; |
| 3628 | } |
| 3629 | typlen = typentry->typlen; |
| 3630 | typbyval = typentry->typbyval; |
| 3631 | typalign = typentry->typalign; |
| 3632 | |
| 3633 | /* |
| 3634 | * apply the operator to each pair of array elements. |
| 3635 | */ |
| 3636 | InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, |
| 3637 | collation, NULL, NULL); |
| 3638 | |
| 3639 | /* Loop over source data */ |
| 3640 | nitems = ArrayGetNItems(ndims1, dims1); |
| 3641 | array_iter_setup(&it1, array1); |
| 3642 | array_iter_setup(&it2, array2); |
| 3643 | |
| 3644 | for (i = 0; i < nitems; i++) |
| 3645 | { |
| 3646 | Datum elt1; |
| 3647 | Datum elt2; |
| 3648 | bool isnull1; |
| 3649 | bool isnull2; |
| 3650 | bool oprresult; |
| 3651 | |
| 3652 | /* Get elements, checking for NULL */ |
| 3653 | elt1 = array_iter_next(&it1, &isnull1, i, |
| 3654 | typlen, typbyval, typalign); |
| 3655 | elt2 = array_iter_next(&it2, &isnull2, i, |
| 3656 | typlen, typbyval, typalign); |
| 3657 | |
| 3658 | /* |
| 3659 | * We consider two NULLs equal; NULL and not-NULL are unequal. |
| 3660 | */ |
| 3661 | if (isnull1 && isnull2) |
| 3662 | continue; |
| 3663 | if (isnull1 || isnull2) |
| 3664 | { |
| 3665 | result = false; |
| 3666 | break; |
| 3667 | } |
| 3668 | |
| 3669 | /* |
| 3670 | * Apply the operator to the element pair |
| 3671 | */ |
| 3672 | locfcinfo->args[0].value = elt1; |
| 3673 | locfcinfo->args[0].isnull = false; |
| 3674 | locfcinfo->args[1].value = elt2; |
| 3675 | locfcinfo->args[1].isnull = false; |
| 3676 | locfcinfo->isnull = false; |
| 3677 | oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); |
| 3678 | if (!oprresult) |
| 3679 | { |
| 3680 | result = false; |
| 3681 | break; |
| 3682 | } |
| 3683 | } |
| 3684 | } |
| 3685 | |
| 3686 | /* Avoid leaking memory when handed toasted input. */ |
| 3687 | AARR_FREE_IF_COPY(array1, 0); |
| 3688 | AARR_FREE_IF_COPY(array2, 1); |
| 3689 | |
| 3690 | PG_RETURN_BOOL(result); |
| 3691 | } |
| 3692 | |
| 3693 | |
| 3694 | /*----------------------------------------------------------------------------- |
| 3695 | * array-array bool operators: |
| 3696 | * Given two arrays, iterate comparison operators |
| 3697 | * over the array. Uses logic similar to text comparison |
| 3698 | * functions, except element-by-element instead of |
| 3699 | * character-by-character. |
| 3700 | *---------------------------------------------------------------------------- |
| 3701 | */ |
| 3702 | |
| 3703 | Datum |
| 3704 | array_ne(PG_FUNCTION_ARGS) |
| 3705 | { |
| 3706 | PG_RETURN_BOOL(!DatumGetBool(array_eq(fcinfo))); |
| 3707 | } |
| 3708 | |
| 3709 | Datum |
| 3710 | array_lt(PG_FUNCTION_ARGS) |
| 3711 | { |
| 3712 | PG_RETURN_BOOL(array_cmp(fcinfo) < 0); |
| 3713 | } |
| 3714 | |
| 3715 | Datum |
| 3716 | array_gt(PG_FUNCTION_ARGS) |
| 3717 | { |
| 3718 | PG_RETURN_BOOL(array_cmp(fcinfo) > 0); |
| 3719 | } |
| 3720 | |
| 3721 | Datum |
| 3722 | array_le(PG_FUNCTION_ARGS) |
| 3723 | { |
| 3724 | PG_RETURN_BOOL(array_cmp(fcinfo) <= 0); |
| 3725 | } |
| 3726 | |
| 3727 | Datum |
| 3728 | array_ge(PG_FUNCTION_ARGS) |
| 3729 | { |
| 3730 | PG_RETURN_BOOL(array_cmp(fcinfo) >= 0); |
| 3731 | } |
| 3732 | |
| 3733 | Datum |
| 3734 | btarraycmp(PG_FUNCTION_ARGS) |
| 3735 | { |
| 3736 | PG_RETURN_INT32(array_cmp(fcinfo)); |
| 3737 | } |
| 3738 | |
| 3739 | /* |
| 3740 | * array_cmp() |
| 3741 | * Internal comparison function for arrays. |
| 3742 | * |
| 3743 | * Returns -1, 0 or 1 |
| 3744 | */ |
| 3745 | static int |
| 3746 | array_cmp(FunctionCallInfo fcinfo) |
| 3747 | { |
| 3748 | LOCAL_FCINFO(locfcinfo, 2); |
| 3749 | AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| 3750 | AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| 3751 | Oid collation = PG_GET_COLLATION(); |
| 3752 | int ndims1 = AARR_NDIM(array1); |
| 3753 | int ndims2 = AARR_NDIM(array2); |
| 3754 | int *dims1 = AARR_DIMS(array1); |
| 3755 | int *dims2 = AARR_DIMS(array2); |
| 3756 | int nitems1 = ArrayGetNItems(ndims1, dims1); |
| 3757 | int nitems2 = ArrayGetNItems(ndims2, dims2); |
| 3758 | Oid element_type = AARR_ELEMTYPE(array1); |
| 3759 | int result = 0; |
| 3760 | TypeCacheEntry *typentry; |
| 3761 | int typlen; |
| 3762 | bool typbyval; |
| 3763 | char typalign; |
| 3764 | int min_nitems; |
| 3765 | array_iter it1; |
| 3766 | array_iter it2; |
| 3767 | int i; |
| 3768 | |
| 3769 | if (element_type != AARR_ELEMTYPE(array2)) |
| 3770 | ereport(ERROR, |
| 3771 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 3772 | errmsg("cannot compare arrays of different element types" ))); |
| 3773 | |
| 3774 | /* |
| 3775 | * We arrange to look up the comparison function only once per series of |
| 3776 | * calls, assuming the element type doesn't change underneath us. The |
| 3777 | * typcache is used so that we have no memory leakage when being used as |
| 3778 | * an index support function. |
| 3779 | */ |
| 3780 | typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| 3781 | if (typentry == NULL || |
| 3782 | typentry->type_id != element_type) |
| 3783 | { |
| 3784 | typentry = lookup_type_cache(element_type, |
| 3785 | TYPECACHE_CMP_PROC_FINFO); |
| 3786 | if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
| 3787 | ereport(ERROR, |
| 3788 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 3789 | errmsg("could not identify a comparison function for type %s" , |
| 3790 | format_type_be(element_type)))); |
| 3791 | fcinfo->flinfo->fn_extra = (void *) typentry; |
| 3792 | } |
| 3793 | typlen = typentry->typlen; |
| 3794 | typbyval = typentry->typbyval; |
| 3795 | typalign = typentry->typalign; |
| 3796 | |
| 3797 | /* |
| 3798 | * apply the operator to each pair of array elements. |
| 3799 | */ |
| 3800 | InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, |
| 3801 | collation, NULL, NULL); |
| 3802 | |
| 3803 | /* Loop over source data */ |
| 3804 | min_nitems = Min(nitems1, nitems2); |
| 3805 | array_iter_setup(&it1, array1); |
| 3806 | array_iter_setup(&it2, array2); |
| 3807 | |
| 3808 | for (i = 0; i < min_nitems; i++) |
| 3809 | { |
| 3810 | Datum elt1; |
| 3811 | Datum elt2; |
| 3812 | bool isnull1; |
| 3813 | bool isnull2; |
| 3814 | int32 cmpresult; |
| 3815 | |
| 3816 | /* Get elements, checking for NULL */ |
| 3817 | elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign); |
| 3818 | elt2 = array_iter_next(&it2, &isnull2, i, typlen, typbyval, typalign); |
| 3819 | |
| 3820 | /* |
| 3821 | * We consider two NULLs equal; NULL > not-NULL. |
| 3822 | */ |
| 3823 | if (isnull1 && isnull2) |
| 3824 | continue; |
| 3825 | if (isnull1) |
| 3826 | { |
| 3827 | /* arg1 is greater than arg2 */ |
| 3828 | result = 1; |
| 3829 | break; |
| 3830 | } |
| 3831 | if (isnull2) |
| 3832 | { |
| 3833 | /* arg1 is less than arg2 */ |
| 3834 | result = -1; |
| 3835 | break; |
| 3836 | } |
| 3837 | |
| 3838 | /* Compare the pair of elements */ |
| 3839 | locfcinfo->args[0].value = elt1; |
| 3840 | locfcinfo->args[0].isnull = false; |
| 3841 | locfcinfo->args[1].value = elt2; |
| 3842 | locfcinfo->args[1].isnull = false; |
| 3843 | locfcinfo->isnull = false; |
| 3844 | cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); |
| 3845 | |
| 3846 | if (cmpresult == 0) |
| 3847 | continue; /* equal */ |
| 3848 | |
| 3849 | if (cmpresult < 0) |
| 3850 | { |
| 3851 | /* arg1 is less than arg2 */ |
| 3852 | result = -1; |
| 3853 | break; |
| 3854 | } |
| 3855 | else |
| 3856 | { |
| 3857 | /* arg1 is greater than arg2 */ |
| 3858 | result = 1; |
| 3859 | break; |
| 3860 | } |
| 3861 | } |
| 3862 | |
| 3863 | /* |
| 3864 | * If arrays contain same data (up to end of shorter one), apply |
| 3865 | * additional rules to sort by dimensionality. The relative significance |
| 3866 | * of the different bits of information is historical; mainly we just care |
| 3867 | * that we don't say "equal" for arrays of different dimensionality. |
| 3868 | */ |
| 3869 | if (result == 0) |
| 3870 | { |
| 3871 | if (nitems1 != nitems2) |
| 3872 | result = (nitems1 < nitems2) ? -1 : 1; |
| 3873 | else if (ndims1 != ndims2) |
| 3874 | result = (ndims1 < ndims2) ? -1 : 1; |
| 3875 | else |
| 3876 | { |
| 3877 | for (i = 0; i < ndims1; i++) |
| 3878 | { |
| 3879 | if (dims1[i] != dims2[i]) |
| 3880 | { |
| 3881 | result = (dims1[i] < dims2[i]) ? -1 : 1; |
| 3882 | break; |
| 3883 | } |
| 3884 | } |
| 3885 | if (result == 0) |
| 3886 | { |
| 3887 | int *lbound1 = AARR_LBOUND(array1); |
| 3888 | int *lbound2 = AARR_LBOUND(array2); |
| 3889 | |
| 3890 | for (i = 0; i < ndims1; i++) |
| 3891 | { |
| 3892 | if (lbound1[i] != lbound2[i]) |
| 3893 | { |
| 3894 | result = (lbound1[i] < lbound2[i]) ? -1 : 1; |
| 3895 | break; |
| 3896 | } |
| 3897 | } |
| 3898 | } |
| 3899 | } |
| 3900 | } |
| 3901 | |
| 3902 | /* Avoid leaking memory when handed toasted input. */ |
| 3903 | AARR_FREE_IF_COPY(array1, 0); |
| 3904 | AARR_FREE_IF_COPY(array2, 1); |
| 3905 | |
| 3906 | return result; |
| 3907 | } |
| 3908 | |
| 3909 | |
| 3910 | /*----------------------------------------------------------------------------- |
| 3911 | * array hashing |
| 3912 | * Hash the elements and combine the results. |
| 3913 | *---------------------------------------------------------------------------- |
| 3914 | */ |
| 3915 | |
| 3916 | Datum |
| 3917 | hash_array(PG_FUNCTION_ARGS) |
| 3918 | { |
| 3919 | LOCAL_FCINFO(locfcinfo, 1); |
| 3920 | AnyArrayType *array = PG_GETARG_ANY_ARRAY_P(0); |
| 3921 | int ndims = AARR_NDIM(array); |
| 3922 | int *dims = AARR_DIMS(array); |
| 3923 | Oid element_type = AARR_ELEMTYPE(array); |
| 3924 | uint32 result = 1; |
| 3925 | int nitems; |
| 3926 | TypeCacheEntry *typentry; |
| 3927 | int typlen; |
| 3928 | bool typbyval; |
| 3929 | char typalign; |
| 3930 | int i; |
| 3931 | array_iter iter; |
| 3932 | |
| 3933 | /* |
| 3934 | * We arrange to look up the hash function only once per series of calls, |
| 3935 | * assuming the element type doesn't change underneath us. The typcache |
| 3936 | * is used so that we have no memory leakage when being used as an index |
| 3937 | * support function. |
| 3938 | */ |
| 3939 | typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| 3940 | if (typentry == NULL || |
| 3941 | typentry->type_id != element_type) |
| 3942 | { |
| 3943 | typentry = lookup_type_cache(element_type, |
| 3944 | TYPECACHE_HASH_PROC_FINFO); |
| 3945 | if (!OidIsValid(typentry->hash_proc_finfo.fn_oid)) |
| 3946 | ereport(ERROR, |
| 3947 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 3948 | errmsg("could not identify a hash function for type %s" , |
| 3949 | format_type_be(element_type)))); |
| 3950 | fcinfo->flinfo->fn_extra = (void *) typentry; |
| 3951 | } |
| 3952 | typlen = typentry->typlen; |
| 3953 | typbyval = typentry->typbyval; |
| 3954 | typalign = typentry->typalign; |
| 3955 | |
| 3956 | /* |
| 3957 | * apply the hash function to each array element. |
| 3958 | */ |
| 3959 | InitFunctionCallInfoData(*locfcinfo, &typentry->hash_proc_finfo, 1, |
| 3960 | PG_GET_COLLATION(), NULL, NULL); |
| 3961 | |
| 3962 | /* Loop over source data */ |
| 3963 | nitems = ArrayGetNItems(ndims, dims); |
| 3964 | array_iter_setup(&iter, array); |
| 3965 | |
| 3966 | for (i = 0; i < nitems; i++) |
| 3967 | { |
| 3968 | Datum elt; |
| 3969 | bool isnull; |
| 3970 | uint32 elthash; |
| 3971 | |
| 3972 | /* Get element, checking for NULL */ |
| 3973 | elt = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign); |
| 3974 | |
| 3975 | if (isnull) |
| 3976 | { |
| 3977 | /* Treat nulls as having hashvalue 0 */ |
| 3978 | elthash = 0; |
| 3979 | } |
| 3980 | else |
| 3981 | { |
| 3982 | /* Apply the hash function */ |
| 3983 | locfcinfo->args[0].value = elt; |
| 3984 | locfcinfo->args[0].isnull = false; |
| 3985 | locfcinfo->isnull = false; |
| 3986 | elthash = DatumGetUInt32(FunctionCallInvoke(locfcinfo)); |
| 3987 | } |
| 3988 | |
| 3989 | /* |
| 3990 | * Combine hash values of successive elements by multiplying the |
| 3991 | * current value by 31 and adding on the new element's hash value. |
| 3992 | * |
| 3993 | * The result is a sum in which each element's hash value is |
| 3994 | * multiplied by a different power of 31. This is modulo 2^32 |
| 3995 | * arithmetic, and the powers of 31 modulo 2^32 form a cyclic group of |
| 3996 | * order 2^27. So for arrays of up to 2^27 elements, each element's |
| 3997 | * hash value is multiplied by a different (odd) number, resulting in |
| 3998 | * a good mixing of all the elements' hash values. |
| 3999 | */ |
| 4000 | result = (result << 5) - result + elthash; |
| 4001 | } |
| 4002 | |
| 4003 | /* Avoid leaking memory when handed toasted input. */ |
| 4004 | AARR_FREE_IF_COPY(array, 0); |
| 4005 | |
| 4006 | PG_RETURN_UINT32(result); |
| 4007 | } |
| 4008 | |
| 4009 | /* |
| 4010 | * Returns 64-bit value by hashing a value to a 64-bit value, with a seed. |
| 4011 | * Otherwise, similar to hash_array. |
| 4012 | */ |
| 4013 | Datum |
| 4014 | hash_array_extended(PG_FUNCTION_ARGS) |
| 4015 | { |
| 4016 | LOCAL_FCINFO(locfcinfo, 2); |
| 4017 | AnyArrayType *array = PG_GETARG_ANY_ARRAY_P(0); |
| 4018 | uint64 seed = PG_GETARG_INT64(1); |
| 4019 | int ndims = AARR_NDIM(array); |
| 4020 | int *dims = AARR_DIMS(array); |
| 4021 | Oid element_type = AARR_ELEMTYPE(array); |
| 4022 | uint64 result = 1; |
| 4023 | int nitems; |
| 4024 | TypeCacheEntry *typentry; |
| 4025 | int typlen; |
| 4026 | bool typbyval; |
| 4027 | char typalign; |
| 4028 | int i; |
| 4029 | array_iter iter; |
| 4030 | |
| 4031 | typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| 4032 | if (typentry == NULL || |
| 4033 | typentry->type_id != element_type) |
| 4034 | { |
| 4035 | typentry = lookup_type_cache(element_type, |
| 4036 | TYPECACHE_HASH_EXTENDED_PROC_FINFO); |
| 4037 | if (!OidIsValid(typentry->hash_extended_proc_finfo.fn_oid)) |
| 4038 | ereport(ERROR, |
| 4039 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 4040 | errmsg("could not identify an extended hash function for type %s" , |
| 4041 | format_type_be(element_type)))); |
| 4042 | fcinfo->flinfo->fn_extra = (void *) typentry; |
| 4043 | } |
| 4044 | typlen = typentry->typlen; |
| 4045 | typbyval = typentry->typbyval; |
| 4046 | typalign = typentry->typalign; |
| 4047 | |
| 4048 | InitFunctionCallInfoData(*locfcinfo, &typentry->hash_extended_proc_finfo, 2, |
| 4049 | InvalidOid, NULL, NULL); |
| 4050 | |
| 4051 | /* Loop over source data */ |
| 4052 | nitems = ArrayGetNItems(ndims, dims); |
| 4053 | array_iter_setup(&iter, array); |
| 4054 | |
| 4055 | for (i = 0; i < nitems; i++) |
| 4056 | { |
| 4057 | Datum elt; |
| 4058 | bool isnull; |
| 4059 | uint64 elthash; |
| 4060 | |
| 4061 | /* Get element, checking for NULL */ |
| 4062 | elt = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign); |
| 4063 | |
| 4064 | if (isnull) |
| 4065 | { |
| 4066 | elthash = 0; |
| 4067 | } |
| 4068 | else |
| 4069 | { |
| 4070 | /* Apply the hash function */ |
| 4071 | locfcinfo->args[0].value = elt; |
| 4072 | locfcinfo->args[0].isnull = false; |
| 4073 | locfcinfo->args[1].value = Int64GetDatum(seed); |
| 4074 | locfcinfo->args[1].isnull = false; |
| 4075 | elthash = DatumGetUInt64(FunctionCallInvoke(locfcinfo)); |
| 4076 | } |
| 4077 | |
| 4078 | result = (result << 5) - result + elthash; |
| 4079 | } |
| 4080 | |
| 4081 | AARR_FREE_IF_COPY(array, 0); |
| 4082 | |
| 4083 | PG_RETURN_UINT64(result); |
| 4084 | } |
| 4085 | |
| 4086 | |
| 4087 | /*----------------------------------------------------------------------------- |
| 4088 | * array overlap/containment comparisons |
| 4089 | * These use the same methods of comparing array elements as array_eq. |
| 4090 | * We consider only the elements of the arrays, ignoring dimensionality. |
| 4091 | *---------------------------------------------------------------------------- |
| 4092 | */ |
| 4093 | |
| 4094 | /* |
| 4095 | * array_contain_compare : |
| 4096 | * compares two arrays for overlap/containment |
| 4097 | * |
| 4098 | * When matchall is true, return true if all members of array1 are in array2. |
| 4099 | * When matchall is false, return true if any members of array1 are in array2. |
| 4100 | */ |
| 4101 | static bool |
| 4102 | array_contain_compare(AnyArrayType *array1, AnyArrayType *array2, Oid collation, |
| 4103 | bool matchall, void **) |
| 4104 | { |
| 4105 | LOCAL_FCINFO(locfcinfo, 2); |
| 4106 | bool result = matchall; |
| 4107 | Oid element_type = AARR_ELEMTYPE(array1); |
| 4108 | TypeCacheEntry *typentry; |
| 4109 | int nelems1; |
| 4110 | Datum *values2; |
| 4111 | bool *nulls2; |
| 4112 | int nelems2; |
| 4113 | int typlen; |
| 4114 | bool typbyval; |
| 4115 | char typalign; |
| 4116 | int i; |
| 4117 | int j; |
| 4118 | array_iter it1; |
| 4119 | |
| 4120 | if (element_type != AARR_ELEMTYPE(array2)) |
| 4121 | ereport(ERROR, |
| 4122 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 4123 | errmsg("cannot compare arrays of different element types" ))); |
| 4124 | |
| 4125 | /* |
| 4126 | * We arrange to look up the equality function only once per series of |
| 4127 | * calls, assuming the element type doesn't change underneath us. The |
| 4128 | * typcache is used so that we have no memory leakage when being used as |
| 4129 | * an index support function. |
| 4130 | */ |
| 4131 | typentry = (TypeCacheEntry *) *fn_extra; |
| 4132 | if (typentry == NULL || |
| 4133 | typentry->type_id != element_type) |
| 4134 | { |
| 4135 | typentry = lookup_type_cache(element_type, |
| 4136 | TYPECACHE_EQ_OPR_FINFO); |
| 4137 | if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) |
| 4138 | ereport(ERROR, |
| 4139 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 4140 | errmsg("could not identify an equality operator for type %s" , |
| 4141 | format_type_be(element_type)))); |
| 4142 | *fn_extra = (void *) typentry; |
| 4143 | } |
| 4144 | typlen = typentry->typlen; |
| 4145 | typbyval = typentry->typbyval; |
| 4146 | typalign = typentry->typalign; |
| 4147 | |
| 4148 | /* |
| 4149 | * Since we probably will need to scan array2 multiple times, it's |
| 4150 | * worthwhile to use deconstruct_array on it. We scan array1 the hard way |
| 4151 | * however, since we very likely won't need to look at all of it. |
| 4152 | */ |
| 4153 | if (VARATT_IS_EXPANDED_HEADER(array2)) |
| 4154 | { |
| 4155 | /* This should be safe even if input is read-only */ |
| 4156 | deconstruct_expanded_array(&(array2->xpn)); |
| 4157 | values2 = array2->xpn.dvalues; |
| 4158 | nulls2 = array2->xpn.dnulls; |
| 4159 | nelems2 = array2->xpn.nelems; |
| 4160 | } |
| 4161 | else |
| 4162 | deconstruct_array((ArrayType *) array2, |
| 4163 | element_type, typlen, typbyval, typalign, |
| 4164 | &values2, &nulls2, &nelems2); |
| 4165 | |
| 4166 | /* |
| 4167 | * Apply the comparison operator to each pair of array elements. |
| 4168 | */ |
| 4169 | InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, |
| 4170 | collation, NULL, NULL); |
| 4171 | |
| 4172 | /* Loop over source data */ |
| 4173 | nelems1 = ArrayGetNItems(AARR_NDIM(array1), AARR_DIMS(array1)); |
| 4174 | array_iter_setup(&it1, array1); |
| 4175 | |
| 4176 | for (i = 0; i < nelems1; i++) |
| 4177 | { |
| 4178 | Datum elt1; |
| 4179 | bool isnull1; |
| 4180 | |
| 4181 | /* Get element, checking for NULL */ |
| 4182 | elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign); |
| 4183 | |
| 4184 | /* |
| 4185 | * We assume that the comparison operator is strict, so a NULL can't |
| 4186 | * match anything. XXX this diverges from the "NULL=NULL" behavior of |
| 4187 | * array_eq, should we act like that? |
| 4188 | */ |
| 4189 | if (isnull1) |
| 4190 | { |
| 4191 | if (matchall) |
| 4192 | { |
| 4193 | result = false; |
| 4194 | break; |
| 4195 | } |
| 4196 | continue; |
| 4197 | } |
| 4198 | |
| 4199 | for (j = 0; j < nelems2; j++) |
| 4200 | { |
| 4201 | Datum elt2 = values2[j]; |
| 4202 | bool isnull2 = nulls2 ? nulls2[j] : false; |
| 4203 | bool oprresult; |
| 4204 | |
| 4205 | if (isnull2) |
| 4206 | continue; /* can't match */ |
| 4207 | |
| 4208 | /* |
| 4209 | * Apply the operator to the element pair |
| 4210 | */ |
| 4211 | locfcinfo->args[0].value = elt1; |
| 4212 | locfcinfo->args[0].isnull = false; |
| 4213 | locfcinfo->args[1].value = elt2; |
| 4214 | locfcinfo->args[1].isnull = false; |
| 4215 | locfcinfo->isnull = false; |
| 4216 | oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); |
| 4217 | if (oprresult) |
| 4218 | break; |
| 4219 | } |
| 4220 | |
| 4221 | if (j < nelems2) |
| 4222 | { |
| 4223 | /* found a match for elt1 */ |
| 4224 | if (!matchall) |
| 4225 | { |
| 4226 | result = true; |
| 4227 | break; |
| 4228 | } |
| 4229 | } |
| 4230 | else |
| 4231 | { |
| 4232 | /* no match for elt1 */ |
| 4233 | if (matchall) |
| 4234 | { |
| 4235 | result = false; |
| 4236 | break; |
| 4237 | } |
| 4238 | } |
| 4239 | } |
| 4240 | |
| 4241 | return result; |
| 4242 | } |
| 4243 | |
| 4244 | Datum |
| 4245 | arrayoverlap(PG_FUNCTION_ARGS) |
| 4246 | { |
| 4247 | AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| 4248 | AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| 4249 | Oid collation = PG_GET_COLLATION(); |
| 4250 | bool result; |
| 4251 | |
| 4252 | result = array_contain_compare(array1, array2, collation, false, |
| 4253 | &fcinfo->flinfo->fn_extra); |
| 4254 | |
| 4255 | /* Avoid leaking memory when handed toasted input. */ |
| 4256 | AARR_FREE_IF_COPY(array1, 0); |
| 4257 | AARR_FREE_IF_COPY(array2, 1); |
| 4258 | |
| 4259 | PG_RETURN_BOOL(result); |
| 4260 | } |
| 4261 | |
| 4262 | Datum |
| 4263 | arraycontains(PG_FUNCTION_ARGS) |
| 4264 | { |
| 4265 | AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| 4266 | AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| 4267 | Oid collation = PG_GET_COLLATION(); |
| 4268 | bool result; |
| 4269 | |
| 4270 | result = array_contain_compare(array2, array1, collation, true, |
| 4271 | &fcinfo->flinfo->fn_extra); |
| 4272 | |
| 4273 | /* Avoid leaking memory when handed toasted input. */ |
| 4274 | AARR_FREE_IF_COPY(array1, 0); |
| 4275 | AARR_FREE_IF_COPY(array2, 1); |
| 4276 | |
| 4277 | PG_RETURN_BOOL(result); |
| 4278 | } |
| 4279 | |
| 4280 | Datum |
| 4281 | arraycontained(PG_FUNCTION_ARGS) |
| 4282 | { |
| 4283 | AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| 4284 | AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| 4285 | Oid collation = PG_GET_COLLATION(); |
| 4286 | bool result; |
| 4287 | |
| 4288 | result = array_contain_compare(array1, array2, collation, true, |
| 4289 | &fcinfo->flinfo->fn_extra); |
| 4290 | |
| 4291 | /* Avoid leaking memory when handed toasted input. */ |
| 4292 | AARR_FREE_IF_COPY(array1, 0); |
| 4293 | AARR_FREE_IF_COPY(array2, 1); |
| 4294 | |
| 4295 | PG_RETURN_BOOL(result); |
| 4296 | } |
| 4297 | |
| 4298 | |
| 4299 | /*----------------------------------------------------------------------------- |
| 4300 | * Array iteration functions |
| 4301 | * These functions are used to iterate efficiently through arrays |
| 4302 | *----------------------------------------------------------------------------- |
| 4303 | */ |
| 4304 | |
| 4305 | /* |
| 4306 | * array_create_iterator --- set up to iterate through an array |
| 4307 | * |
| 4308 | * If slice_ndim is zero, we will iterate element-by-element; the returned |
| 4309 | * datums are of the array's element type. |
| 4310 | * |
| 4311 | * If slice_ndim is 1..ARR_NDIM(arr), we will iterate by slices: the |
| 4312 | * returned datums are of the same array type as 'arr', but of size |
| 4313 | * equal to the rightmost N dimensions of 'arr'. |
| 4314 | * |
| 4315 | * The passed-in array must remain valid for the lifetime of the iterator. |
| 4316 | */ |
| 4317 | ArrayIterator |
| 4318 | array_create_iterator(ArrayType *arr, int slice_ndim, ArrayMetaState *mstate) |
| 4319 | { |
| 4320 | ArrayIterator iterator = palloc0(sizeof(ArrayIteratorData)); |
| 4321 | |
| 4322 | /* |
| 4323 | * Sanity-check inputs --- caller should have got this right already |
| 4324 | */ |
| 4325 | Assert(PointerIsValid(arr)); |
| 4326 | if (slice_ndim < 0 || slice_ndim > ARR_NDIM(arr)) |
| 4327 | elog(ERROR, "invalid arguments to array_create_iterator" ); |
| 4328 | |
| 4329 | /* |
| 4330 | * Remember basic info about the array and its element type |
| 4331 | */ |
| 4332 | iterator->arr = arr; |
| 4333 | iterator->nullbitmap = ARR_NULLBITMAP(arr); |
| 4334 | iterator->nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr)); |
| 4335 | |
| 4336 | if (mstate != NULL) |
| 4337 | { |
| 4338 | Assert(mstate->element_type == ARR_ELEMTYPE(arr)); |
| 4339 | |
| 4340 | iterator->typlen = mstate->typlen; |
| 4341 | iterator->typbyval = mstate->typbyval; |
| 4342 | iterator->typalign = mstate->typalign; |
| 4343 | } |
| 4344 | else |
| 4345 | get_typlenbyvalalign(ARR_ELEMTYPE(arr), |
| 4346 | &iterator->typlen, |
| 4347 | &iterator->typbyval, |
| 4348 | &iterator->typalign); |
| 4349 | |
| 4350 | /* |
| 4351 | * Remember the slicing parameters. |
| 4352 | */ |
| 4353 | iterator->slice_ndim = slice_ndim; |
| 4354 | |
| 4355 | if (slice_ndim > 0) |
| 4356 | { |
| 4357 | /* |
| 4358 | * Get pointers into the array's dims and lbound arrays to represent |
| 4359 | * the dims/lbound arrays of a slice. These are the same as the |
| 4360 | * rightmost N dimensions of the array. |
| 4361 | */ |
| 4362 | iterator->slice_dims = ARR_DIMS(arr) + ARR_NDIM(arr) - slice_ndim; |
| 4363 | iterator->slice_lbound = ARR_LBOUND(arr) + ARR_NDIM(arr) - slice_ndim; |
| 4364 | |
| 4365 | /* |
| 4366 | * Compute number of elements in a slice. |
| 4367 | */ |
| 4368 | iterator->slice_len = ArrayGetNItems(slice_ndim, |
| 4369 | iterator->slice_dims); |
| 4370 | |
| 4371 | /* |
| 4372 | * Create workspace for building sub-arrays. |
| 4373 | */ |
| 4374 | iterator->slice_values = (Datum *) |
| 4375 | palloc(iterator->slice_len * sizeof(Datum)); |
| 4376 | iterator->slice_nulls = (bool *) |
| 4377 | palloc(iterator->slice_len * sizeof(bool)); |
| 4378 | } |
| 4379 | |
| 4380 | /* |
| 4381 | * Initialize our data pointer and linear element number. These will |
| 4382 | * advance through the array during array_iterate(). |
| 4383 | */ |
| 4384 | iterator->data_ptr = ARR_DATA_PTR(arr); |
| 4385 | iterator->current_item = 0; |
| 4386 | |
| 4387 | return iterator; |
| 4388 | } |
| 4389 | |
| 4390 | /* |
| 4391 | * Iterate through the array referenced by 'iterator'. |
| 4392 | * |
| 4393 | * As long as there is another element (or slice), return it into |
| 4394 | * *value / *isnull, and return true. Return false when no more data. |
| 4395 | */ |
| 4396 | bool |
| 4397 | array_iterate(ArrayIterator iterator, Datum *value, bool *isnull) |
| 4398 | { |
| 4399 | /* Done if we have reached the end of the array */ |
| 4400 | if (iterator->current_item >= iterator->nitems) |
| 4401 | return false; |
| 4402 | |
| 4403 | if (iterator->slice_ndim == 0) |
| 4404 | { |
| 4405 | /* |
| 4406 | * Scalar case: return one element. |
| 4407 | */ |
| 4408 | if (array_get_isnull(iterator->nullbitmap, iterator->current_item++)) |
| 4409 | { |
| 4410 | *isnull = true; |
| 4411 | *value = (Datum) 0; |
| 4412 | } |
| 4413 | else |
| 4414 | { |
| 4415 | /* non-NULL, so fetch the individual Datum to return */ |
| 4416 | char *p = iterator->data_ptr; |
| 4417 | |
| 4418 | *isnull = false; |
| 4419 | *value = fetch_att(p, iterator->typbyval, iterator->typlen); |
| 4420 | |
| 4421 | /* Move our data pointer forward to the next element */ |
| 4422 | p = att_addlength_pointer(p, iterator->typlen, p); |
| 4423 | p = (char *) att_align_nominal(p, iterator->typalign); |
| 4424 | iterator->data_ptr = p; |
| 4425 | } |
| 4426 | } |
| 4427 | else |
| 4428 | { |
| 4429 | /* |
| 4430 | * Slice case: build and return an array of the requested size. |
| 4431 | */ |
| 4432 | ArrayType *result; |
| 4433 | Datum *values = iterator->slice_values; |
| 4434 | bool *nulls = iterator->slice_nulls; |
| 4435 | char *p = iterator->data_ptr; |
| 4436 | int i; |
| 4437 | |
| 4438 | for (i = 0; i < iterator->slice_len; i++) |
| 4439 | { |
| 4440 | if (array_get_isnull(iterator->nullbitmap, |
| 4441 | iterator->current_item++)) |
| 4442 | { |
| 4443 | nulls[i] = true; |
| 4444 | values[i] = (Datum) 0; |
| 4445 | } |
| 4446 | else |
| 4447 | { |
| 4448 | nulls[i] = false; |
| 4449 | values[i] = fetch_att(p, iterator->typbyval, iterator->typlen); |
| 4450 | |
| 4451 | /* Move our data pointer forward to the next element */ |
| 4452 | p = att_addlength_pointer(p, iterator->typlen, p); |
| 4453 | p = (char *) att_align_nominal(p, iterator->typalign); |
| 4454 | } |
| 4455 | } |
| 4456 | |
| 4457 | iterator->data_ptr = p; |
| 4458 | |
| 4459 | result = construct_md_array(values, |
| 4460 | nulls, |
| 4461 | iterator->slice_ndim, |
| 4462 | iterator->slice_dims, |
| 4463 | iterator->slice_lbound, |
| 4464 | ARR_ELEMTYPE(iterator->arr), |
| 4465 | iterator->typlen, |
| 4466 | iterator->typbyval, |
| 4467 | iterator->typalign); |
| 4468 | |
| 4469 | *isnull = false; |
| 4470 | *value = PointerGetDatum(result); |
| 4471 | } |
| 4472 | |
| 4473 | return true; |
| 4474 | } |
| 4475 | |
| 4476 | /* |
| 4477 | * Release an ArrayIterator data structure |
| 4478 | */ |
| 4479 | void |
| 4480 | array_free_iterator(ArrayIterator iterator) |
| 4481 | { |
| 4482 | if (iterator->slice_ndim > 0) |
| 4483 | { |
| 4484 | pfree(iterator->slice_values); |
| 4485 | pfree(iterator->slice_nulls); |
| 4486 | } |
| 4487 | pfree(iterator); |
| 4488 | } |
| 4489 | |
| 4490 | |
| 4491 | /***************************************************************************/ |
| 4492 | /******************| Support Routines |*****************/ |
| 4493 | /***************************************************************************/ |
| 4494 | |
| 4495 | /* |
| 4496 | * Check whether a specific array element is NULL |
| 4497 | * |
| 4498 | * nullbitmap: pointer to array's null bitmap (NULL if none) |
| 4499 | * offset: 0-based linear element number of array element |
| 4500 | */ |
| 4501 | static bool |
| 4502 | array_get_isnull(const bits8 *nullbitmap, int offset) |
| 4503 | { |
| 4504 | if (nullbitmap == NULL) |
| 4505 | return false; /* assume not null */ |
| 4506 | if (nullbitmap[offset / 8] & (1 << (offset % 8))) |
| 4507 | return false; /* not null */ |
| 4508 | return true; |
| 4509 | } |
| 4510 | |
| 4511 | /* |
| 4512 | * Set a specific array element's null-bitmap entry |
| 4513 | * |
| 4514 | * nullbitmap: pointer to array's null bitmap (mustn't be NULL) |
| 4515 | * offset: 0-based linear element number of array element |
| 4516 | * isNull: null status to set |
| 4517 | */ |
| 4518 | static void |
| 4519 | array_set_isnull(bits8 *nullbitmap, int offset, bool isNull) |
| 4520 | { |
| 4521 | int bitmask; |
| 4522 | |
| 4523 | nullbitmap += offset / 8; |
| 4524 | bitmask = 1 << (offset % 8); |
| 4525 | if (isNull) |
| 4526 | *nullbitmap &= ~bitmask; |
| 4527 | else |
| 4528 | *nullbitmap |= bitmask; |
| 4529 | } |
| 4530 | |
| 4531 | /* |
| 4532 | * Fetch array element at pointer, converted correctly to a Datum |
| 4533 | * |
| 4534 | * Caller must have handled case of NULL element |
| 4535 | */ |
| 4536 | static Datum |
| 4537 | ArrayCast(char *value, bool byval, int len) |
| 4538 | { |
| 4539 | return fetch_att(value, byval, len); |
| 4540 | } |
| 4541 | |
| 4542 | /* |
| 4543 | * Copy datum to *dest and return total space used (including align padding) |
| 4544 | * |
| 4545 | * Caller must have handled case of NULL element |
| 4546 | */ |
| 4547 | static int |
| 4548 | ArrayCastAndSet(Datum src, |
| 4549 | int typlen, |
| 4550 | bool typbyval, |
| 4551 | char typalign, |
| 4552 | char *dest) |
| 4553 | { |
| 4554 | int inc; |
| 4555 | |
| 4556 | if (typlen > 0) |
| 4557 | { |
| 4558 | if (typbyval) |
| 4559 | store_att_byval(dest, src, typlen); |
| 4560 | else |
| 4561 | memmove(dest, DatumGetPointer(src), typlen); |
| 4562 | inc = att_align_nominal(typlen, typalign); |
| 4563 | } |
| 4564 | else |
| 4565 | { |
| 4566 | Assert(!typbyval); |
| 4567 | inc = att_addlength_datum(0, typlen, src); |
| 4568 | memmove(dest, DatumGetPointer(src), inc); |
| 4569 | inc = att_align_nominal(inc, typalign); |
| 4570 | } |
| 4571 | |
| 4572 | return inc; |
| 4573 | } |
| 4574 | |
| 4575 | /* |
| 4576 | * Advance ptr over nitems array elements |
| 4577 | * |
| 4578 | * ptr: starting location in array |
| 4579 | * offset: 0-based linear element number of first element (the one at *ptr) |
| 4580 | * nullbitmap: start of array's null bitmap, or NULL if none |
| 4581 | * nitems: number of array elements to advance over (>= 0) |
| 4582 | * typlen, typbyval, typalign: storage parameters of array element datatype |
| 4583 | * |
| 4584 | * It is caller's responsibility to ensure that nitems is within range |
| 4585 | */ |
| 4586 | static char * |
| 4587 | array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems, |
| 4588 | int typlen, bool typbyval, char typalign) |
| 4589 | { |
| 4590 | int bitmask; |
| 4591 | int i; |
| 4592 | |
| 4593 | /* easy if fixed-size elements and no NULLs */ |
| 4594 | if (typlen > 0 && !nullbitmap) |
| 4595 | return ptr + nitems * ((Size) att_align_nominal(typlen, typalign)); |
| 4596 | |
| 4597 | /* seems worth having separate loops for NULL and no-NULLs cases */ |
| 4598 | if (nullbitmap) |
| 4599 | { |
| 4600 | nullbitmap += offset / 8; |
| 4601 | bitmask = 1 << (offset % 8); |
| 4602 | |
| 4603 | for (i = 0; i < nitems; i++) |
| 4604 | { |
| 4605 | if (*nullbitmap & bitmask) |
| 4606 | { |
| 4607 | ptr = att_addlength_pointer(ptr, typlen, ptr); |
| 4608 | ptr = (char *) att_align_nominal(ptr, typalign); |
| 4609 | } |
| 4610 | bitmask <<= 1; |
| 4611 | if (bitmask == 0x100) |
| 4612 | { |
| 4613 | nullbitmap++; |
| 4614 | bitmask = 1; |
| 4615 | } |
| 4616 | } |
| 4617 | } |
| 4618 | else |
| 4619 | { |
| 4620 | for (i = 0; i < nitems; i++) |
| 4621 | { |
| 4622 | ptr = att_addlength_pointer(ptr, typlen, ptr); |
| 4623 | ptr = (char *) att_align_nominal(ptr, typalign); |
| 4624 | } |
| 4625 | } |
| 4626 | return ptr; |
| 4627 | } |
| 4628 | |
| 4629 | /* |
| 4630 | * Compute total size of the nitems array elements starting at *ptr |
| 4631 | * |
| 4632 | * Parameters same as for array_seek |
| 4633 | */ |
| 4634 | static int |
| 4635 | array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, int nitems, |
| 4636 | int typlen, bool typbyval, char typalign) |
| 4637 | { |
| 4638 | return array_seek(ptr, offset, nullbitmap, nitems, |
| 4639 | typlen, typbyval, typalign) - ptr; |
| 4640 | } |
| 4641 | |
| 4642 | /* |
| 4643 | * Copy nitems array elements from srcptr to destptr |
| 4644 | * |
| 4645 | * destptr: starting destination location (must be enough room!) |
| 4646 | * nitems: number of array elements to copy (>= 0) |
| 4647 | * srcptr: starting location in source array |
| 4648 | * offset: 0-based linear element number of first element (the one at *srcptr) |
| 4649 | * nullbitmap: start of source array's null bitmap, or NULL if none |
| 4650 | * typlen, typbyval, typalign: storage parameters of array element datatype |
| 4651 | * |
| 4652 | * Returns number of bytes copied |
| 4653 | * |
| 4654 | * NB: this does not take care of setting up the destination's null bitmap! |
| 4655 | */ |
| 4656 | static int |
| 4657 | array_copy(char *destptr, int nitems, |
| 4658 | char *srcptr, int offset, bits8 *nullbitmap, |
| 4659 | int typlen, bool typbyval, char typalign) |
| 4660 | { |
| 4661 | int numbytes; |
| 4662 | |
| 4663 | numbytes = array_nelems_size(srcptr, offset, nullbitmap, nitems, |
| 4664 | typlen, typbyval, typalign); |
| 4665 | memcpy(destptr, srcptr, numbytes); |
| 4666 | return numbytes; |
| 4667 | } |
| 4668 | |
| 4669 | /* |
| 4670 | * Copy nitems null-bitmap bits from source to destination |
| 4671 | * |
| 4672 | * destbitmap: start of destination array's null bitmap (mustn't be NULL) |
| 4673 | * destoffset: 0-based linear element number of first dest element |
| 4674 | * srcbitmap: start of source array's null bitmap, or NULL if none |
| 4675 | * srcoffset: 0-based linear element number of first source element |
| 4676 | * nitems: number of bits to copy (>= 0) |
| 4677 | * |
| 4678 | * If srcbitmap is NULL then we assume the source is all-non-NULL and |
| 4679 | * fill 1's into the destination bitmap. Note that only the specified |
| 4680 | * bits in the destination map are changed, not any before or after. |
| 4681 | * |
| 4682 | * Note: this could certainly be optimized using standard bitblt methods. |
| 4683 | * However, it's not clear that the typical Postgres array has enough elements |
| 4684 | * to make it worth worrying too much. For the moment, KISS. |
| 4685 | */ |
| 4686 | void |
| 4687 | array_bitmap_copy(bits8 *destbitmap, int destoffset, |
| 4688 | const bits8 *srcbitmap, int srcoffset, |
| 4689 | int nitems) |
| 4690 | { |
| 4691 | int destbitmask, |
| 4692 | destbitval, |
| 4693 | srcbitmask, |
| 4694 | srcbitval; |
| 4695 | |
| 4696 | Assert(destbitmap); |
| 4697 | if (nitems <= 0) |
| 4698 | return; /* don't risk fetch off end of memory */ |
| 4699 | destbitmap += destoffset / 8; |
| 4700 | destbitmask = 1 << (destoffset % 8); |
| 4701 | destbitval = *destbitmap; |
| 4702 | if (srcbitmap) |
| 4703 | { |
| 4704 | srcbitmap += srcoffset / 8; |
| 4705 | srcbitmask = 1 << (srcoffset % 8); |
| 4706 | srcbitval = *srcbitmap; |
| 4707 | while (nitems-- > 0) |
| 4708 | { |
| 4709 | if (srcbitval & srcbitmask) |
| 4710 | destbitval |= destbitmask; |
| 4711 | else |
| 4712 | destbitval &= ~destbitmask; |
| 4713 | destbitmask <<= 1; |
| 4714 | if (destbitmask == 0x100) |
| 4715 | { |
| 4716 | *destbitmap++ = destbitval; |
| 4717 | destbitmask = 1; |
| 4718 | if (nitems > 0) |
| 4719 | destbitval = *destbitmap; |
| 4720 | } |
| 4721 | srcbitmask <<= 1; |
| 4722 | if (srcbitmask == 0x100) |
| 4723 | { |
| 4724 | srcbitmap++; |
| 4725 | srcbitmask = 1; |
| 4726 | if (nitems > 0) |
| 4727 | srcbitval = *srcbitmap; |
| 4728 | } |
| 4729 | } |
| 4730 | if (destbitmask != 1) |
| 4731 | *destbitmap = destbitval; |
| 4732 | } |
| 4733 | else |
| 4734 | { |
| 4735 | while (nitems-- > 0) |
| 4736 | { |
| 4737 | destbitval |= destbitmask; |
| 4738 | destbitmask <<= 1; |
| 4739 | if (destbitmask == 0x100) |
| 4740 | { |
| 4741 | *destbitmap++ = destbitval; |
| 4742 | destbitmask = 1; |
| 4743 | if (nitems > 0) |
| 4744 | destbitval = *destbitmap; |
| 4745 | } |
| 4746 | } |
| 4747 | if (destbitmask != 1) |
| 4748 | *destbitmap = destbitval; |
| 4749 | } |
| 4750 | } |
| 4751 | |
| 4752 | /* |
| 4753 | * Compute space needed for a slice of an array |
| 4754 | * |
| 4755 | * We assume the caller has verified that the slice coordinates are valid. |
| 4756 | */ |
| 4757 | static int |
| 4758 | array_slice_size(char *arraydataptr, bits8 *arraynullsptr, |
| 4759 | int ndim, int *dim, int *lb, |
| 4760 | int *st, int *endp, |
| 4761 | int typlen, bool typbyval, char typalign) |
| 4762 | { |
| 4763 | int src_offset, |
| 4764 | span[MAXDIM], |
| 4765 | prod[MAXDIM], |
| 4766 | dist[MAXDIM], |
| 4767 | indx[MAXDIM]; |
| 4768 | char *ptr; |
| 4769 | int i, |
| 4770 | j, |
| 4771 | inc; |
| 4772 | int count = 0; |
| 4773 | |
| 4774 | mda_get_range(ndim, span, st, endp); |
| 4775 | |
| 4776 | /* Pretty easy for fixed element length without nulls ... */ |
| 4777 | if (typlen > 0 && !arraynullsptr) |
| 4778 | return ArrayGetNItems(ndim, span) * att_align_nominal(typlen, typalign); |
| 4779 | |
| 4780 | /* Else gotta do it the hard way */ |
| 4781 | src_offset = ArrayGetOffset(ndim, dim, lb, st); |
| 4782 | ptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset, |
| 4783 | typlen, typbyval, typalign); |
| 4784 | mda_get_prod(ndim, dim, prod); |
| 4785 | mda_get_offset_values(ndim, dist, prod, span); |
| 4786 | for (i = 0; i < ndim; i++) |
| 4787 | indx[i] = 0; |
| 4788 | j = ndim - 1; |
| 4789 | do |
| 4790 | { |
| 4791 | if (dist[j]) |
| 4792 | { |
| 4793 | ptr = array_seek(ptr, src_offset, arraynullsptr, dist[j], |
| 4794 | typlen, typbyval, typalign); |
| 4795 | src_offset += dist[j]; |
| 4796 | } |
| 4797 | if (!array_get_isnull(arraynullsptr, src_offset)) |
| 4798 | { |
| 4799 | inc = att_addlength_pointer(0, typlen, ptr); |
| 4800 | inc = att_align_nominal(inc, typalign); |
| 4801 | ptr += inc; |
| 4802 | count += inc; |
| 4803 | } |
| 4804 | src_offset++; |
| 4805 | } while ((j = mda_next_tuple(ndim, indx, span)) != -1); |
| 4806 | return count; |
| 4807 | } |
| 4808 | |
| 4809 | /* |
| 4810 | * Extract a slice of an array into consecutive elements in the destination |
| 4811 | * array. |
| 4812 | * |
| 4813 | * We assume the caller has verified that the slice coordinates are valid, |
| 4814 | * allocated enough storage for the result, and initialized the header |
| 4815 | * of the new array. |
| 4816 | */ |
| 4817 | static void |
| 4818 | (ArrayType *newarray, |
| 4819 | int ndim, |
| 4820 | int *dim, |
| 4821 | int *lb, |
| 4822 | char *arraydataptr, |
| 4823 | bits8 *arraynullsptr, |
| 4824 | int *st, |
| 4825 | int *endp, |
| 4826 | int typlen, |
| 4827 | bool typbyval, |
| 4828 | char typalign) |
| 4829 | { |
| 4830 | char *destdataptr = ARR_DATA_PTR(newarray); |
| 4831 | bits8 *destnullsptr = ARR_NULLBITMAP(newarray); |
| 4832 | char *srcdataptr; |
| 4833 | int src_offset, |
| 4834 | dest_offset, |
| 4835 | prod[MAXDIM], |
| 4836 | span[MAXDIM], |
| 4837 | dist[MAXDIM], |
| 4838 | indx[MAXDIM]; |
| 4839 | int i, |
| 4840 | j, |
| 4841 | inc; |
| 4842 | |
| 4843 | src_offset = ArrayGetOffset(ndim, dim, lb, st); |
| 4844 | srcdataptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset, |
| 4845 | typlen, typbyval, typalign); |
| 4846 | mda_get_prod(ndim, dim, prod); |
| 4847 | mda_get_range(ndim, span, st, endp); |
| 4848 | mda_get_offset_values(ndim, dist, prod, span); |
| 4849 | for (i = 0; i < ndim; i++) |
| 4850 | indx[i] = 0; |
| 4851 | dest_offset = 0; |
| 4852 | j = ndim - 1; |
| 4853 | do |
| 4854 | { |
| 4855 | if (dist[j]) |
| 4856 | { |
| 4857 | /* skip unwanted elements */ |
| 4858 | srcdataptr = array_seek(srcdataptr, src_offset, arraynullsptr, |
| 4859 | dist[j], |
| 4860 | typlen, typbyval, typalign); |
| 4861 | src_offset += dist[j]; |
| 4862 | } |
| 4863 | inc = array_copy(destdataptr, 1, |
| 4864 | srcdataptr, src_offset, arraynullsptr, |
| 4865 | typlen, typbyval, typalign); |
| 4866 | if (destnullsptr) |
| 4867 | array_bitmap_copy(destnullsptr, dest_offset, |
| 4868 | arraynullsptr, src_offset, |
| 4869 | 1); |
| 4870 | destdataptr += inc; |
| 4871 | srcdataptr += inc; |
| 4872 | src_offset++; |
| 4873 | dest_offset++; |
| 4874 | } while ((j = mda_next_tuple(ndim, indx, span)) != -1); |
| 4875 | } |
| 4876 | |
| 4877 | /* |
| 4878 | * Insert a slice into an array. |
| 4879 | * |
| 4880 | * ndim/dim[]/lb[] are dimensions of the original array. A new array with |
| 4881 | * those same dimensions is to be constructed. destArray must already |
| 4882 | * have been allocated and its header initialized. |
| 4883 | * |
| 4884 | * st[]/endp[] identify the slice to be replaced. Elements within the slice |
| 4885 | * volume are taken from consecutive elements of the srcArray; elements |
| 4886 | * outside it are copied from origArray. |
| 4887 | * |
| 4888 | * We assume the caller has verified that the slice coordinates are valid. |
| 4889 | */ |
| 4890 | static void |
| 4891 | array_insert_slice(ArrayType *destArray, |
| 4892 | ArrayType *origArray, |
| 4893 | ArrayType *srcArray, |
| 4894 | int ndim, |
| 4895 | int *dim, |
| 4896 | int *lb, |
| 4897 | int *st, |
| 4898 | int *endp, |
| 4899 | int typlen, |
| 4900 | bool typbyval, |
| 4901 | char typalign) |
| 4902 | { |
| 4903 | char *destPtr = ARR_DATA_PTR(destArray); |
| 4904 | char *origPtr = ARR_DATA_PTR(origArray); |
| 4905 | char *srcPtr = ARR_DATA_PTR(srcArray); |
| 4906 | bits8 *destBitmap = ARR_NULLBITMAP(destArray); |
| 4907 | bits8 *origBitmap = ARR_NULLBITMAP(origArray); |
| 4908 | bits8 *srcBitmap = ARR_NULLBITMAP(srcArray); |
| 4909 | int orignitems = ArrayGetNItems(ARR_NDIM(origArray), |
| 4910 | ARR_DIMS(origArray)); |
| 4911 | int dest_offset, |
| 4912 | orig_offset, |
| 4913 | src_offset, |
| 4914 | prod[MAXDIM], |
| 4915 | span[MAXDIM], |
| 4916 | dist[MAXDIM], |
| 4917 | indx[MAXDIM]; |
| 4918 | int i, |
| 4919 | j, |
| 4920 | inc; |
| 4921 | |
| 4922 | dest_offset = ArrayGetOffset(ndim, dim, lb, st); |
| 4923 | /* copy items before the slice start */ |
| 4924 | inc = array_copy(destPtr, dest_offset, |
| 4925 | origPtr, 0, origBitmap, |
| 4926 | typlen, typbyval, typalign); |
| 4927 | destPtr += inc; |
| 4928 | origPtr += inc; |
| 4929 | if (destBitmap) |
| 4930 | array_bitmap_copy(destBitmap, 0, origBitmap, 0, dest_offset); |
| 4931 | orig_offset = dest_offset; |
| 4932 | mda_get_prod(ndim, dim, prod); |
| 4933 | mda_get_range(ndim, span, st, endp); |
| 4934 | mda_get_offset_values(ndim, dist, prod, span); |
| 4935 | for (i = 0; i < ndim; i++) |
| 4936 | indx[i] = 0; |
| 4937 | src_offset = 0; |
| 4938 | j = ndim - 1; |
| 4939 | do |
| 4940 | { |
| 4941 | /* Copy/advance over elements between here and next part of slice */ |
| 4942 | if (dist[j]) |
| 4943 | { |
| 4944 | inc = array_copy(destPtr, dist[j], |
| 4945 | origPtr, orig_offset, origBitmap, |
| 4946 | typlen, typbyval, typalign); |
| 4947 | destPtr += inc; |
| 4948 | origPtr += inc; |
| 4949 | if (destBitmap) |
| 4950 | array_bitmap_copy(destBitmap, dest_offset, |
| 4951 | origBitmap, orig_offset, |
| 4952 | dist[j]); |
| 4953 | dest_offset += dist[j]; |
| 4954 | orig_offset += dist[j]; |
| 4955 | } |
| 4956 | /* Copy new element at this slice position */ |
| 4957 | inc = array_copy(destPtr, 1, |
| 4958 | srcPtr, src_offset, srcBitmap, |
| 4959 | typlen, typbyval, typalign); |
| 4960 | if (destBitmap) |
| 4961 | array_bitmap_copy(destBitmap, dest_offset, |
| 4962 | srcBitmap, src_offset, |
| 4963 | 1); |
| 4964 | destPtr += inc; |
| 4965 | srcPtr += inc; |
| 4966 | dest_offset++; |
| 4967 | src_offset++; |
| 4968 | /* Advance over old element at this slice position */ |
| 4969 | origPtr = array_seek(origPtr, orig_offset, origBitmap, 1, |
| 4970 | typlen, typbyval, typalign); |
| 4971 | orig_offset++; |
| 4972 | } while ((j = mda_next_tuple(ndim, indx, span)) != -1); |
| 4973 | |
| 4974 | /* don't miss any data at the end */ |
| 4975 | array_copy(destPtr, orignitems - orig_offset, |
| 4976 | origPtr, orig_offset, origBitmap, |
| 4977 | typlen, typbyval, typalign); |
| 4978 | if (destBitmap) |
| 4979 | array_bitmap_copy(destBitmap, dest_offset, |
| 4980 | origBitmap, orig_offset, |
| 4981 | orignitems - orig_offset); |
| 4982 | } |
| 4983 | |
| 4984 | /* |
| 4985 | * initArrayResult - initialize an empty ArrayBuildState |
| 4986 | * |
| 4987 | * element_type is the array element type (must be a valid array element type) |
| 4988 | * rcontext is where to keep working state |
| 4989 | * subcontext is a flag determining whether to use a separate memory context |
| 4990 | * |
| 4991 | * Note: there are two common schemes for using accumArrayResult(). |
| 4992 | * In the older scheme, you start with a NULL ArrayBuildState pointer, and |
| 4993 | * call accumArrayResult once per element. In this scheme you end up with |
| 4994 | * a NULL pointer if there were no elements, which you need to special-case. |
| 4995 | * In the newer scheme, call initArrayResult and then call accumArrayResult |
| 4996 | * once per element. In this scheme you always end with a non-NULL pointer |
| 4997 | * that you can pass to makeArrayResult; you get an empty array if there |
| 4998 | * were no elements. This is preferred if an empty array is what you want. |
| 4999 | * |
| 5000 | * It's possible to choose whether to create a separate memory context for the |
| 5001 | * array build state, or whether to allocate it directly within rcontext. |
| 5002 | * |
| 5003 | * When there are many concurrent small states (e.g. array_agg() using hash |
| 5004 | * aggregation of many small groups), using a separate memory context for each |
| 5005 | * one may result in severe memory bloat. In such cases, use the same memory |
| 5006 | * context to initialize all such array build states, and pass |
| 5007 | * subcontext=false. |
| 5008 | * |
| 5009 | * In cases when the array build states have different lifetimes, using a |
| 5010 | * single memory context is impractical. Instead, pass subcontext=true so that |
| 5011 | * the array build states can be freed individually. |
| 5012 | */ |
| 5013 | ArrayBuildState * |
| 5014 | initArrayResult(Oid element_type, MemoryContext rcontext, bool subcontext) |
| 5015 | { |
| 5016 | ArrayBuildState *astate; |
| 5017 | MemoryContext arr_context = rcontext; |
| 5018 | |
| 5019 | /* Make a temporary context to hold all the junk */ |
| 5020 | if (subcontext) |
| 5021 | arr_context = AllocSetContextCreate(rcontext, |
| 5022 | "accumArrayResult" , |
| 5023 | ALLOCSET_DEFAULT_SIZES); |
| 5024 | |
| 5025 | astate = (ArrayBuildState *) |
| 5026 | MemoryContextAlloc(arr_context, sizeof(ArrayBuildState)); |
| 5027 | astate->mcontext = arr_context; |
| 5028 | astate->private_cxt = subcontext; |
| 5029 | astate->alen = (subcontext ? 64 : 8); /* arbitrary starting array size */ |
| 5030 | astate->dvalues = (Datum *) |
| 5031 | MemoryContextAlloc(arr_context, astate->alen * sizeof(Datum)); |
| 5032 | astate->dnulls = (bool *) |
| 5033 | MemoryContextAlloc(arr_context, astate->alen * sizeof(bool)); |
| 5034 | astate->nelems = 0; |
| 5035 | astate->element_type = element_type; |
| 5036 | get_typlenbyvalalign(element_type, |
| 5037 | &astate->typlen, |
| 5038 | &astate->typbyval, |
| 5039 | &astate->typalign); |
| 5040 | |
| 5041 | return astate; |
| 5042 | } |
| 5043 | |
| 5044 | /* |
| 5045 | * accumArrayResult - accumulate one (more) Datum for an array result |
| 5046 | * |
| 5047 | * astate is working state (can be NULL on first call) |
| 5048 | * dvalue/disnull represent the new Datum to append to the array |
| 5049 | * element_type is the Datum's type (must be a valid array element type) |
| 5050 | * rcontext is where to keep working state |
| 5051 | */ |
| 5052 | ArrayBuildState * |
| 5053 | accumArrayResult(ArrayBuildState *astate, |
| 5054 | Datum dvalue, bool disnull, |
| 5055 | Oid element_type, |
| 5056 | MemoryContext rcontext) |
| 5057 | { |
| 5058 | MemoryContext oldcontext; |
| 5059 | |
| 5060 | if (astate == NULL) |
| 5061 | { |
| 5062 | /* First time through --- initialize */ |
| 5063 | astate = initArrayResult(element_type, rcontext, true); |
| 5064 | } |
| 5065 | else |
| 5066 | { |
| 5067 | Assert(astate->element_type == element_type); |
| 5068 | } |
| 5069 | |
| 5070 | oldcontext = MemoryContextSwitchTo(astate->mcontext); |
| 5071 | |
| 5072 | /* enlarge dvalues[]/dnulls[] if needed */ |
| 5073 | if (astate->nelems >= astate->alen) |
| 5074 | { |
| 5075 | astate->alen *= 2; |
| 5076 | astate->dvalues = (Datum *) |
| 5077 | repalloc(astate->dvalues, astate->alen * sizeof(Datum)); |
| 5078 | astate->dnulls = (bool *) |
| 5079 | repalloc(astate->dnulls, astate->alen * sizeof(bool)); |
| 5080 | } |
| 5081 | |
| 5082 | /* |
| 5083 | * Ensure pass-by-ref stuff is copied into mcontext; and detoast it too if |
| 5084 | * it's varlena. (You might think that detoasting is not needed here |
| 5085 | * because construct_md_array can detoast the array elements later. |
| 5086 | * However, we must not let construct_md_array modify the ArrayBuildState |
| 5087 | * because that would mean array_agg_finalfn damages its input, which is |
| 5088 | * verboten. Also, this way frequently saves one copying step.) |
| 5089 | */ |
| 5090 | if (!disnull && !astate->typbyval) |
| 5091 | { |
| 5092 | if (astate->typlen == -1) |
| 5093 | dvalue = PointerGetDatum(PG_DETOAST_DATUM_COPY(dvalue)); |
| 5094 | else |
| 5095 | dvalue = datumCopy(dvalue, astate->typbyval, astate->typlen); |
| 5096 | } |
| 5097 | |
| 5098 | astate->dvalues[astate->nelems] = dvalue; |
| 5099 | astate->dnulls[astate->nelems] = disnull; |
| 5100 | astate->nelems++; |
| 5101 | |
| 5102 | MemoryContextSwitchTo(oldcontext); |
| 5103 | |
| 5104 | return astate; |
| 5105 | } |
| 5106 | |
| 5107 | /* |
| 5108 | * makeArrayResult - produce 1-D final result of accumArrayResult |
| 5109 | * |
| 5110 | * Note: only releases astate if it was initialized within a separate memory |
| 5111 | * context (i.e. using subcontext=true when calling initArrayResult). |
| 5112 | * |
| 5113 | * astate is working state (must not be NULL) |
| 5114 | * rcontext is where to construct result |
| 5115 | */ |
| 5116 | Datum |
| 5117 | makeArrayResult(ArrayBuildState *astate, |
| 5118 | MemoryContext rcontext) |
| 5119 | { |
| 5120 | int ndims; |
| 5121 | int dims[1]; |
| 5122 | int lbs[1]; |
| 5123 | |
| 5124 | /* If no elements were presented, we want to create an empty array */ |
| 5125 | ndims = (astate->nelems > 0) ? 1 : 0; |
| 5126 | dims[0] = astate->nelems; |
| 5127 | lbs[0] = 1; |
| 5128 | |
| 5129 | return makeMdArrayResult(astate, ndims, dims, lbs, rcontext, |
| 5130 | astate->private_cxt); |
| 5131 | } |
| 5132 | |
| 5133 | /* |
| 5134 | * makeMdArrayResult - produce multi-D final result of accumArrayResult |
| 5135 | * |
| 5136 | * beware: no check that specified dimensions match the number of values |
| 5137 | * accumulated. |
| 5138 | * |
| 5139 | * Note: if the astate was not initialized within a separate memory context |
| 5140 | * (that is, initArrayResult was called with subcontext=false), then using |
| 5141 | * release=true is illegal. Instead, release astate along with the rest of its |
| 5142 | * context when appropriate. |
| 5143 | * |
| 5144 | * astate is working state (must not be NULL) |
| 5145 | * rcontext is where to construct result |
| 5146 | * release is true if okay to release working state |
| 5147 | */ |
| 5148 | Datum |
| 5149 | makeMdArrayResult(ArrayBuildState *astate, |
| 5150 | int ndims, |
| 5151 | int *dims, |
| 5152 | int *lbs, |
| 5153 | MemoryContext rcontext, |
| 5154 | bool release) |
| 5155 | { |
| 5156 | ArrayType *result; |
| 5157 | MemoryContext oldcontext; |
| 5158 | |
| 5159 | /* Build the final array result in rcontext */ |
| 5160 | oldcontext = MemoryContextSwitchTo(rcontext); |
| 5161 | |
| 5162 | result = construct_md_array(astate->dvalues, |
| 5163 | astate->dnulls, |
| 5164 | ndims, |
| 5165 | dims, |
| 5166 | lbs, |
| 5167 | astate->element_type, |
| 5168 | astate->typlen, |
| 5169 | astate->typbyval, |
| 5170 | astate->typalign); |
| 5171 | |
| 5172 | MemoryContextSwitchTo(oldcontext); |
| 5173 | |
| 5174 | /* Clean up all the junk */ |
| 5175 | if (release) |
| 5176 | { |
| 5177 | Assert(astate->private_cxt); |
| 5178 | MemoryContextDelete(astate->mcontext); |
| 5179 | } |
| 5180 | |
| 5181 | return PointerGetDatum(result); |
| 5182 | } |
| 5183 | |
| 5184 | /* |
| 5185 | * The following three functions provide essentially the same API as |
| 5186 | * initArrayResult/accumArrayResult/makeArrayResult, but instead of accepting |
| 5187 | * inputs that are array elements, they accept inputs that are arrays and |
| 5188 | * produce an output array having N+1 dimensions. The inputs must all have |
| 5189 | * identical dimensionality as well as element type. |
| 5190 | */ |
| 5191 | |
| 5192 | /* |
| 5193 | * initArrayResultArr - initialize an empty ArrayBuildStateArr |
| 5194 | * |
| 5195 | * array_type is the array type (must be a valid varlena array type) |
| 5196 | * element_type is the type of the array's elements (lookup if InvalidOid) |
| 5197 | * rcontext is where to keep working state |
| 5198 | * subcontext is a flag determining whether to use a separate memory context |
| 5199 | */ |
| 5200 | ArrayBuildStateArr * |
| 5201 | initArrayResultArr(Oid array_type, Oid element_type, MemoryContext rcontext, |
| 5202 | bool subcontext) |
| 5203 | { |
| 5204 | ArrayBuildStateArr *astate; |
| 5205 | MemoryContext arr_context = rcontext; /* by default use the parent ctx */ |
| 5206 | |
| 5207 | /* Lookup element type, unless element_type already provided */ |
| 5208 | if (!OidIsValid(element_type)) |
| 5209 | { |
| 5210 | element_type = get_element_type(array_type); |
| 5211 | |
| 5212 | if (!OidIsValid(element_type)) |
| 5213 | ereport(ERROR, |
| 5214 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
| 5215 | errmsg("data type %s is not an array type" , |
| 5216 | format_type_be(array_type)))); |
| 5217 | } |
| 5218 | |
| 5219 | /* Make a temporary context to hold all the junk */ |
| 5220 | if (subcontext) |
| 5221 | arr_context = AllocSetContextCreate(rcontext, |
| 5222 | "accumArrayResultArr" , |
| 5223 | ALLOCSET_DEFAULT_SIZES); |
| 5224 | |
| 5225 | /* Note we initialize all fields to zero */ |
| 5226 | astate = (ArrayBuildStateArr *) |
| 5227 | MemoryContextAllocZero(arr_context, sizeof(ArrayBuildStateArr)); |
| 5228 | astate->mcontext = arr_context; |
| 5229 | astate->private_cxt = subcontext; |
| 5230 | |
| 5231 | /* Save relevant datatype information */ |
| 5232 | astate->array_type = array_type; |
| 5233 | astate->element_type = element_type; |
| 5234 | |
| 5235 | return astate; |
| 5236 | } |
| 5237 | |
| 5238 | /* |
| 5239 | * accumArrayResultArr - accumulate one (more) sub-array for an array result |
| 5240 | * |
| 5241 | * astate is working state (can be NULL on first call) |
| 5242 | * dvalue/disnull represent the new sub-array to append to the array |
| 5243 | * array_type is the array type (must be a valid varlena array type) |
| 5244 | * rcontext is where to keep working state |
| 5245 | */ |
| 5246 | ArrayBuildStateArr * |
| 5247 | accumArrayResultArr(ArrayBuildStateArr *astate, |
| 5248 | Datum dvalue, bool disnull, |
| 5249 | Oid array_type, |
| 5250 | MemoryContext rcontext) |
| 5251 | { |
| 5252 | ArrayType *arg; |
| 5253 | MemoryContext oldcontext; |
| 5254 | int *dims, |
| 5255 | *lbs, |
| 5256 | ndims, |
| 5257 | nitems, |
| 5258 | ndatabytes; |
| 5259 | char *data; |
| 5260 | int i; |
| 5261 | |
| 5262 | /* |
| 5263 | * We disallow accumulating null subarrays. Another plausible definition |
| 5264 | * is to ignore them, but callers that want that can just skip calling |
| 5265 | * this function. |
| 5266 | */ |
| 5267 | if (disnull) |
| 5268 | ereport(ERROR, |
| 5269 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 5270 | errmsg("cannot accumulate null arrays" ))); |
| 5271 | |
| 5272 | /* Detoast input array in caller's context */ |
| 5273 | arg = DatumGetArrayTypeP(dvalue); |
| 5274 | |
| 5275 | if (astate == NULL) |
| 5276 | astate = initArrayResultArr(array_type, InvalidOid, rcontext, true); |
| 5277 | else |
| 5278 | Assert(astate->array_type == array_type); |
| 5279 | |
| 5280 | oldcontext = MemoryContextSwitchTo(astate->mcontext); |
| 5281 | |
| 5282 | /* Collect this input's dimensions */ |
| 5283 | ndims = ARR_NDIM(arg); |
| 5284 | dims = ARR_DIMS(arg); |
| 5285 | lbs = ARR_LBOUND(arg); |
| 5286 | data = ARR_DATA_PTR(arg); |
| 5287 | nitems = ArrayGetNItems(ndims, dims); |
| 5288 | ndatabytes = ARR_SIZE(arg) - ARR_DATA_OFFSET(arg); |
| 5289 | |
| 5290 | if (astate->ndims == 0) |
| 5291 | { |
| 5292 | /* First input; check/save the dimensionality info */ |
| 5293 | |
| 5294 | /* Should we allow empty inputs and just produce an empty output? */ |
| 5295 | if (ndims == 0) |
| 5296 | ereport(ERROR, |
| 5297 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 5298 | errmsg("cannot accumulate empty arrays" ))); |
| 5299 | if (ndims + 1 > MAXDIM) |
| 5300 | ereport(ERROR, |
| 5301 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 5302 | errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)" , |
| 5303 | ndims + 1, MAXDIM))); |
| 5304 | |
| 5305 | /* |
| 5306 | * The output array will have n+1 dimensions, with the ones after the |
| 5307 | * first matching the input's dimensions. |
| 5308 | */ |
| 5309 | astate->ndims = ndims + 1; |
| 5310 | astate->dims[0] = 0; |
| 5311 | memcpy(&astate->dims[1], dims, ndims * sizeof(int)); |
| 5312 | astate->lbs[0] = 1; |
| 5313 | memcpy(&astate->lbs[1], lbs, ndims * sizeof(int)); |
| 5314 | |
| 5315 | /* Allocate at least enough data space for this item */ |
| 5316 | astate->abytes = 1024; |
| 5317 | while (astate->abytes <= ndatabytes) |
| 5318 | astate->abytes *= 2; |
| 5319 | astate->data = (char *) palloc(astate->abytes); |
| 5320 | } |
| 5321 | else |
| 5322 | { |
| 5323 | /* Second or later input: must match first input's dimensionality */ |
| 5324 | if (astate->ndims != ndims + 1) |
| 5325 | ereport(ERROR, |
| 5326 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 5327 | errmsg("cannot accumulate arrays of different dimensionality" ))); |
| 5328 | for (i = 0; i < ndims; i++) |
| 5329 | { |
| 5330 | if (astate->dims[i + 1] != dims[i] || astate->lbs[i + 1] != lbs[i]) |
| 5331 | ereport(ERROR, |
| 5332 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 5333 | errmsg("cannot accumulate arrays of different dimensionality" ))); |
| 5334 | } |
| 5335 | |
| 5336 | /* Enlarge data space if needed */ |
| 5337 | if (astate->nbytes + ndatabytes > astate->abytes) |
| 5338 | { |
| 5339 | astate->abytes = Max(astate->abytes * 2, |
| 5340 | astate->nbytes + ndatabytes); |
| 5341 | astate->data = (char *) repalloc(astate->data, astate->abytes); |
| 5342 | } |
| 5343 | } |
| 5344 | |
| 5345 | /* |
| 5346 | * Copy the data portion of the sub-array. Note we assume that the |
| 5347 | * advertised data length of the sub-array is properly aligned. We do not |
| 5348 | * have to worry about detoasting elements since whatever's in the |
| 5349 | * sub-array should be OK already. |
| 5350 | */ |
| 5351 | memcpy(astate->data + astate->nbytes, data, ndatabytes); |
| 5352 | astate->nbytes += ndatabytes; |
| 5353 | |
| 5354 | /* Deal with null bitmap if needed */ |
| 5355 | if (astate->nullbitmap || ARR_HASNULL(arg)) |
| 5356 | { |
| 5357 | int newnitems = astate->nitems + nitems; |
| 5358 | |
| 5359 | if (astate->nullbitmap == NULL) |
| 5360 | { |
| 5361 | /* |
| 5362 | * First input with nulls; we must retrospectively handle any |
| 5363 | * previous inputs by marking all their items non-null. |
| 5364 | */ |
| 5365 | astate->aitems = 256; |
| 5366 | while (astate->aitems <= newnitems) |
| 5367 | astate->aitems *= 2; |
| 5368 | astate->nullbitmap = (bits8 *) palloc((astate->aitems + 7) / 8); |
| 5369 | array_bitmap_copy(astate->nullbitmap, 0, |
| 5370 | NULL, 0, |
| 5371 | astate->nitems); |
| 5372 | } |
| 5373 | else if (newnitems > astate->aitems) |
| 5374 | { |
| 5375 | astate->aitems = Max(astate->aitems * 2, newnitems); |
| 5376 | astate->nullbitmap = (bits8 *) |
| 5377 | repalloc(astate->nullbitmap, (astate->aitems + 7) / 8); |
| 5378 | } |
| 5379 | array_bitmap_copy(astate->nullbitmap, astate->nitems, |
| 5380 | ARR_NULLBITMAP(arg), 0, |
| 5381 | nitems); |
| 5382 | } |
| 5383 | |
| 5384 | astate->nitems += nitems; |
| 5385 | astate->dims[0] += 1; |
| 5386 | |
| 5387 | MemoryContextSwitchTo(oldcontext); |
| 5388 | |
| 5389 | /* Release detoasted copy if any */ |
| 5390 | if ((Pointer) arg != DatumGetPointer(dvalue)) |
| 5391 | pfree(arg); |
| 5392 | |
| 5393 | return astate; |
| 5394 | } |
| 5395 | |
| 5396 | /* |
| 5397 | * makeArrayResultArr - produce N+1-D final result of accumArrayResultArr |
| 5398 | * |
| 5399 | * astate is working state (must not be NULL) |
| 5400 | * rcontext is where to construct result |
| 5401 | * release is true if okay to release working state |
| 5402 | */ |
| 5403 | Datum |
| 5404 | makeArrayResultArr(ArrayBuildStateArr *astate, |
| 5405 | MemoryContext rcontext, |
| 5406 | bool release) |
| 5407 | { |
| 5408 | ArrayType *result; |
| 5409 | MemoryContext oldcontext; |
| 5410 | |
| 5411 | /* Build the final array result in rcontext */ |
| 5412 | oldcontext = MemoryContextSwitchTo(rcontext); |
| 5413 | |
| 5414 | if (astate->ndims == 0) |
| 5415 | { |
| 5416 | /* No inputs, return empty array */ |
| 5417 | result = construct_empty_array(astate->element_type); |
| 5418 | } |
| 5419 | else |
| 5420 | { |
| 5421 | int dataoffset, |
| 5422 | nbytes; |
| 5423 | |
| 5424 | /* Compute required space */ |
| 5425 | nbytes = astate->nbytes; |
| 5426 | if (astate->nullbitmap != NULL) |
| 5427 | { |
| 5428 | dataoffset = ARR_OVERHEAD_WITHNULLS(astate->ndims, astate->nitems); |
| 5429 | nbytes += dataoffset; |
| 5430 | } |
| 5431 | else |
| 5432 | { |
| 5433 | dataoffset = 0; |
| 5434 | nbytes += ARR_OVERHEAD_NONULLS(astate->ndims); |
| 5435 | } |
| 5436 | |
| 5437 | result = (ArrayType *) palloc0(nbytes); |
| 5438 | SET_VARSIZE(result, nbytes); |
| 5439 | result->ndim = astate->ndims; |
| 5440 | result->dataoffset = dataoffset; |
| 5441 | result->elemtype = astate->element_type; |
| 5442 | |
| 5443 | memcpy(ARR_DIMS(result), astate->dims, astate->ndims * sizeof(int)); |
| 5444 | memcpy(ARR_LBOUND(result), astate->lbs, astate->ndims * sizeof(int)); |
| 5445 | memcpy(ARR_DATA_PTR(result), astate->data, astate->nbytes); |
| 5446 | |
| 5447 | if (astate->nullbitmap != NULL) |
| 5448 | array_bitmap_copy(ARR_NULLBITMAP(result), 0, |
| 5449 | astate->nullbitmap, 0, |
| 5450 | astate->nitems); |
| 5451 | } |
| 5452 | |
| 5453 | MemoryContextSwitchTo(oldcontext); |
| 5454 | |
| 5455 | /* Clean up all the junk */ |
| 5456 | if (release) |
| 5457 | { |
| 5458 | Assert(astate->private_cxt); |
| 5459 | MemoryContextDelete(astate->mcontext); |
| 5460 | } |
| 5461 | |
| 5462 | return PointerGetDatum(result); |
| 5463 | } |
| 5464 | |
| 5465 | /* |
| 5466 | * The following three functions provide essentially the same API as |
| 5467 | * initArrayResult/accumArrayResult/makeArrayResult, but can accept either |
| 5468 | * scalar or array inputs, invoking the appropriate set of functions above. |
| 5469 | */ |
| 5470 | |
| 5471 | /* |
| 5472 | * initArrayResultAny - initialize an empty ArrayBuildStateAny |
| 5473 | * |
| 5474 | * input_type is the input datatype (either element or array type) |
| 5475 | * rcontext is where to keep working state |
| 5476 | * subcontext is a flag determining whether to use a separate memory context |
| 5477 | */ |
| 5478 | ArrayBuildStateAny * |
| 5479 | initArrayResultAny(Oid input_type, MemoryContext rcontext, bool subcontext) |
| 5480 | { |
| 5481 | ArrayBuildStateAny *astate; |
| 5482 | Oid element_type = get_element_type(input_type); |
| 5483 | |
| 5484 | if (OidIsValid(element_type)) |
| 5485 | { |
| 5486 | /* Array case */ |
| 5487 | ArrayBuildStateArr *arraystate; |
| 5488 | |
| 5489 | arraystate = initArrayResultArr(input_type, InvalidOid, rcontext, subcontext); |
| 5490 | astate = (ArrayBuildStateAny *) |
| 5491 | MemoryContextAlloc(arraystate->mcontext, |
| 5492 | sizeof(ArrayBuildStateAny)); |
| 5493 | astate->scalarstate = NULL; |
| 5494 | astate->arraystate = arraystate; |
| 5495 | } |
| 5496 | else |
| 5497 | { |
| 5498 | /* Scalar case */ |
| 5499 | ArrayBuildState *scalarstate; |
| 5500 | |
| 5501 | /* Let's just check that we have a type that can be put into arrays */ |
| 5502 | Assert(OidIsValid(get_array_type(input_type))); |
| 5503 | |
| 5504 | scalarstate = initArrayResult(input_type, rcontext, subcontext); |
| 5505 | astate = (ArrayBuildStateAny *) |
| 5506 | MemoryContextAlloc(scalarstate->mcontext, |
| 5507 | sizeof(ArrayBuildStateAny)); |
| 5508 | astate->scalarstate = scalarstate; |
| 5509 | astate->arraystate = NULL; |
| 5510 | } |
| 5511 | |
| 5512 | return astate; |
| 5513 | } |
| 5514 | |
| 5515 | /* |
| 5516 | * accumArrayResultAny - accumulate one (more) input for an array result |
| 5517 | * |
| 5518 | * astate is working state (can be NULL on first call) |
| 5519 | * dvalue/disnull represent the new input to append to the array |
| 5520 | * input_type is the input datatype (either element or array type) |
| 5521 | * rcontext is where to keep working state |
| 5522 | */ |
| 5523 | ArrayBuildStateAny * |
| 5524 | accumArrayResultAny(ArrayBuildStateAny *astate, |
| 5525 | Datum dvalue, bool disnull, |
| 5526 | Oid input_type, |
| 5527 | MemoryContext rcontext) |
| 5528 | { |
| 5529 | if (astate == NULL) |
| 5530 | astate = initArrayResultAny(input_type, rcontext, true); |
| 5531 | |
| 5532 | if (astate->scalarstate) |
| 5533 | (void) accumArrayResult(astate->scalarstate, |
| 5534 | dvalue, disnull, |
| 5535 | input_type, rcontext); |
| 5536 | else |
| 5537 | (void) accumArrayResultArr(astate->arraystate, |
| 5538 | dvalue, disnull, |
| 5539 | input_type, rcontext); |
| 5540 | |
| 5541 | return astate; |
| 5542 | } |
| 5543 | |
| 5544 | /* |
| 5545 | * makeArrayResultAny - produce final result of accumArrayResultAny |
| 5546 | * |
| 5547 | * astate is working state (must not be NULL) |
| 5548 | * rcontext is where to construct result |
| 5549 | * release is true if okay to release working state |
| 5550 | */ |
| 5551 | Datum |
| 5552 | makeArrayResultAny(ArrayBuildStateAny *astate, |
| 5553 | MemoryContext rcontext, bool release) |
| 5554 | { |
| 5555 | Datum result; |
| 5556 | |
| 5557 | if (astate->scalarstate) |
| 5558 | { |
| 5559 | /* Must use makeMdArrayResult to support "release" parameter */ |
| 5560 | int ndims; |
| 5561 | int dims[1]; |
| 5562 | int lbs[1]; |
| 5563 | |
| 5564 | /* If no elements were presented, we want to create an empty array */ |
| 5565 | ndims = (astate->scalarstate->nelems > 0) ? 1 : 0; |
| 5566 | dims[0] = astate->scalarstate->nelems; |
| 5567 | lbs[0] = 1; |
| 5568 | |
| 5569 | result = makeMdArrayResult(astate->scalarstate, ndims, dims, lbs, |
| 5570 | rcontext, release); |
| 5571 | } |
| 5572 | else |
| 5573 | { |
| 5574 | result = makeArrayResultArr(astate->arraystate, |
| 5575 | rcontext, release); |
| 5576 | } |
| 5577 | return result; |
| 5578 | } |
| 5579 | |
| 5580 | |
| 5581 | Datum |
| 5582 | array_larger(PG_FUNCTION_ARGS) |
| 5583 | { |
| 5584 | if (array_cmp(fcinfo) > 0) |
| 5585 | PG_RETURN_DATUM(PG_GETARG_DATUM(0)); |
| 5586 | else |
| 5587 | PG_RETURN_DATUM(PG_GETARG_DATUM(1)); |
| 5588 | } |
| 5589 | |
| 5590 | Datum |
| 5591 | array_smaller(PG_FUNCTION_ARGS) |
| 5592 | { |
| 5593 | if (array_cmp(fcinfo) < 0) |
| 5594 | PG_RETURN_DATUM(PG_GETARG_DATUM(0)); |
| 5595 | else |
| 5596 | PG_RETURN_DATUM(PG_GETARG_DATUM(1)); |
| 5597 | } |
| 5598 | |
| 5599 | |
| 5600 | typedef struct generate_subscripts_fctx |
| 5601 | { |
| 5602 | int32 lower; |
| 5603 | int32 upper; |
| 5604 | bool reverse; |
| 5605 | } generate_subscripts_fctx; |
| 5606 | |
| 5607 | /* |
| 5608 | * generate_subscripts(array anyarray, dim int [, reverse bool]) |
| 5609 | * Returns all subscripts of the array for any dimension |
| 5610 | */ |
| 5611 | Datum |
| 5612 | generate_subscripts(PG_FUNCTION_ARGS) |
| 5613 | { |
| 5614 | FuncCallContext *funcctx; |
| 5615 | MemoryContext oldcontext; |
| 5616 | generate_subscripts_fctx *fctx; |
| 5617 | |
| 5618 | /* stuff done only on the first call of the function */ |
| 5619 | if (SRF_IS_FIRSTCALL()) |
| 5620 | { |
| 5621 | AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| 5622 | int reqdim = PG_GETARG_INT32(1); |
| 5623 | int *lb, |
| 5624 | *dimv; |
| 5625 | |
| 5626 | /* create a function context for cross-call persistence */ |
| 5627 | funcctx = SRF_FIRSTCALL_INIT(); |
| 5628 | |
| 5629 | /* Sanity check: does it look like an array at all? */ |
| 5630 | if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| 5631 | SRF_RETURN_DONE(funcctx); |
| 5632 | |
| 5633 | /* Sanity check: was the requested dim valid */ |
| 5634 | if (reqdim <= 0 || reqdim > AARR_NDIM(v)) |
| 5635 | SRF_RETURN_DONE(funcctx); |
| 5636 | |
| 5637 | /* |
| 5638 | * switch to memory context appropriate for multiple function calls |
| 5639 | */ |
| 5640 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 5641 | fctx = (generate_subscripts_fctx *) palloc(sizeof(generate_subscripts_fctx)); |
| 5642 | |
| 5643 | lb = AARR_LBOUND(v); |
| 5644 | dimv = AARR_DIMS(v); |
| 5645 | |
| 5646 | fctx->lower = lb[reqdim - 1]; |
| 5647 | fctx->upper = dimv[reqdim - 1] + lb[reqdim - 1] - 1; |
| 5648 | fctx->reverse = (PG_NARGS() < 3) ? false : PG_GETARG_BOOL(2); |
| 5649 | |
| 5650 | funcctx->user_fctx = fctx; |
| 5651 | |
| 5652 | MemoryContextSwitchTo(oldcontext); |
| 5653 | } |
| 5654 | |
| 5655 | funcctx = SRF_PERCALL_SETUP(); |
| 5656 | |
| 5657 | fctx = funcctx->user_fctx; |
| 5658 | |
| 5659 | if (fctx->lower <= fctx->upper) |
| 5660 | { |
| 5661 | if (!fctx->reverse) |
| 5662 | SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->lower++)); |
| 5663 | else |
| 5664 | SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->upper--)); |
| 5665 | } |
| 5666 | else |
| 5667 | /* done when there are no more elements left */ |
| 5668 | SRF_RETURN_DONE(funcctx); |
| 5669 | } |
| 5670 | |
| 5671 | /* |
| 5672 | * generate_subscripts_nodir |
| 5673 | * Implements the 2-argument version of generate_subscripts |
| 5674 | */ |
| 5675 | Datum |
| 5676 | generate_subscripts_nodir(PG_FUNCTION_ARGS) |
| 5677 | { |
| 5678 | /* just call the other one -- it can handle both cases */ |
| 5679 | return generate_subscripts(fcinfo); |
| 5680 | } |
| 5681 | |
| 5682 | /* |
| 5683 | * array_fill_with_lower_bounds |
| 5684 | * Create and fill array with defined lower bounds. |
| 5685 | */ |
| 5686 | Datum |
| 5687 | array_fill_with_lower_bounds(PG_FUNCTION_ARGS) |
| 5688 | { |
| 5689 | ArrayType *dims; |
| 5690 | ArrayType *lbs; |
| 5691 | ArrayType *result; |
| 5692 | Oid elmtype; |
| 5693 | Datum value; |
| 5694 | bool isnull; |
| 5695 | |
| 5696 | if (PG_ARGISNULL(1) || PG_ARGISNULL(2)) |
| 5697 | ereport(ERROR, |
| 5698 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 5699 | errmsg("dimension array or low bound array cannot be null" ))); |
| 5700 | |
| 5701 | dims = PG_GETARG_ARRAYTYPE_P(1); |
| 5702 | lbs = PG_GETARG_ARRAYTYPE_P(2); |
| 5703 | |
| 5704 | if (!PG_ARGISNULL(0)) |
| 5705 | { |
| 5706 | value = PG_GETARG_DATUM(0); |
| 5707 | isnull = false; |
| 5708 | } |
| 5709 | else |
| 5710 | { |
| 5711 | value = 0; |
| 5712 | isnull = true; |
| 5713 | } |
| 5714 | |
| 5715 | elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0); |
| 5716 | if (!OidIsValid(elmtype)) |
| 5717 | elog(ERROR, "could not determine data type of input" ); |
| 5718 | |
| 5719 | result = array_fill_internal(dims, lbs, value, isnull, elmtype, fcinfo); |
| 5720 | PG_RETURN_ARRAYTYPE_P(result); |
| 5721 | } |
| 5722 | |
| 5723 | /* |
| 5724 | * array_fill |
| 5725 | * Create and fill array with default lower bounds. |
| 5726 | */ |
| 5727 | Datum |
| 5728 | array_fill(PG_FUNCTION_ARGS) |
| 5729 | { |
| 5730 | ArrayType *dims; |
| 5731 | ArrayType *result; |
| 5732 | Oid elmtype; |
| 5733 | Datum value; |
| 5734 | bool isnull; |
| 5735 | |
| 5736 | if (PG_ARGISNULL(1)) |
| 5737 | ereport(ERROR, |
| 5738 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 5739 | errmsg("dimension array or low bound array cannot be null" ))); |
| 5740 | |
| 5741 | dims = PG_GETARG_ARRAYTYPE_P(1); |
| 5742 | |
| 5743 | if (!PG_ARGISNULL(0)) |
| 5744 | { |
| 5745 | value = PG_GETARG_DATUM(0); |
| 5746 | isnull = false; |
| 5747 | } |
| 5748 | else |
| 5749 | { |
| 5750 | value = 0; |
| 5751 | isnull = true; |
| 5752 | } |
| 5753 | |
| 5754 | elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0); |
| 5755 | if (!OidIsValid(elmtype)) |
| 5756 | elog(ERROR, "could not determine data type of input" ); |
| 5757 | |
| 5758 | result = array_fill_internal(dims, NULL, value, isnull, elmtype, fcinfo); |
| 5759 | PG_RETURN_ARRAYTYPE_P(result); |
| 5760 | } |
| 5761 | |
| 5762 | static ArrayType * |
| 5763 | create_array_envelope(int ndims, int *dimv, int *lbsv, int nbytes, |
| 5764 | Oid elmtype, int dataoffset) |
| 5765 | { |
| 5766 | ArrayType *result; |
| 5767 | |
| 5768 | result = (ArrayType *) palloc0(nbytes); |
| 5769 | SET_VARSIZE(result, nbytes); |
| 5770 | result->ndim = ndims; |
| 5771 | result->dataoffset = dataoffset; |
| 5772 | result->elemtype = elmtype; |
| 5773 | memcpy(ARR_DIMS(result), dimv, ndims * sizeof(int)); |
| 5774 | memcpy(ARR_LBOUND(result), lbsv, ndims * sizeof(int)); |
| 5775 | |
| 5776 | return result; |
| 5777 | } |
| 5778 | |
| 5779 | static ArrayType * |
| 5780 | array_fill_internal(ArrayType *dims, ArrayType *lbs, |
| 5781 | Datum value, bool isnull, Oid elmtype, |
| 5782 | FunctionCallInfo fcinfo) |
| 5783 | { |
| 5784 | ArrayType *result; |
| 5785 | int *dimv; |
| 5786 | int *lbsv; |
| 5787 | int ndims; |
| 5788 | int nitems; |
| 5789 | int deflbs[MAXDIM]; |
| 5790 | int16 elmlen; |
| 5791 | bool elmbyval; |
| 5792 | char elmalign; |
| 5793 | ArrayMetaState *; |
| 5794 | |
| 5795 | /* |
| 5796 | * Params checks |
| 5797 | */ |
| 5798 | if (ARR_NDIM(dims) > 1) |
| 5799 | ereport(ERROR, |
| 5800 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 5801 | errmsg("wrong number of array subscripts" ), |
| 5802 | errdetail("Dimension array must be one dimensional." ))); |
| 5803 | |
| 5804 | if (array_contains_nulls(dims)) |
| 5805 | ereport(ERROR, |
| 5806 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 5807 | errmsg("dimension values cannot be null" ))); |
| 5808 | |
| 5809 | dimv = (int *) ARR_DATA_PTR(dims); |
| 5810 | ndims = (ARR_NDIM(dims) > 0) ? ARR_DIMS(dims)[0] : 0; |
| 5811 | |
| 5812 | if (ndims < 0) /* we do allow zero-dimension arrays */ |
| 5813 | ereport(ERROR, |
| 5814 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5815 | errmsg("invalid number of dimensions: %d" , ndims))); |
| 5816 | if (ndims > MAXDIM) |
| 5817 | ereport(ERROR, |
| 5818 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 5819 | errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)" , |
| 5820 | ndims, MAXDIM))); |
| 5821 | |
| 5822 | if (lbs != NULL) |
| 5823 | { |
| 5824 | if (ARR_NDIM(lbs) > 1) |
| 5825 | ereport(ERROR, |
| 5826 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 5827 | errmsg("wrong number of array subscripts" ), |
| 5828 | errdetail("Dimension array must be one dimensional." ))); |
| 5829 | |
| 5830 | if (array_contains_nulls(lbs)) |
| 5831 | ereport(ERROR, |
| 5832 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 5833 | errmsg("dimension values cannot be null" ))); |
| 5834 | |
| 5835 | if (ndims != ((ARR_NDIM(lbs) > 0) ? ARR_DIMS(lbs)[0] : 0)) |
| 5836 | ereport(ERROR, |
| 5837 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 5838 | errmsg("wrong number of array subscripts" ), |
| 5839 | errdetail("Low bound array has different size than dimensions array." ))); |
| 5840 | |
| 5841 | lbsv = (int *) ARR_DATA_PTR(lbs); |
| 5842 | } |
| 5843 | else |
| 5844 | { |
| 5845 | int i; |
| 5846 | |
| 5847 | for (i = 0; i < MAXDIM; i++) |
| 5848 | deflbs[i] = 1; |
| 5849 | |
| 5850 | lbsv = deflbs; |
| 5851 | } |
| 5852 | |
| 5853 | nitems = ArrayGetNItems(ndims, dimv); |
| 5854 | |
| 5855 | /* fast track for empty array */ |
| 5856 | if (nitems <= 0) |
| 5857 | return construct_empty_array(elmtype); |
| 5858 | |
| 5859 | /* |
| 5860 | * We arrange to look up info about element type only once per series of |
| 5861 | * calls, assuming the element type doesn't change underneath us. |
| 5862 | */ |
| 5863 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 5864 | if (my_extra == NULL) |
| 5865 | { |
| 5866 | fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| 5867 | sizeof(ArrayMetaState)); |
| 5868 | my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| 5869 | my_extra->element_type = InvalidOid; |
| 5870 | } |
| 5871 | |
| 5872 | if (my_extra->element_type != elmtype) |
| 5873 | { |
| 5874 | /* Get info about element type */ |
| 5875 | get_typlenbyvalalign(elmtype, |
| 5876 | &my_extra->typlen, |
| 5877 | &my_extra->typbyval, |
| 5878 | &my_extra->typalign); |
| 5879 | my_extra->element_type = elmtype; |
| 5880 | } |
| 5881 | |
| 5882 | elmlen = my_extra->typlen; |
| 5883 | elmbyval = my_extra->typbyval; |
| 5884 | elmalign = my_extra->typalign; |
| 5885 | |
| 5886 | /* compute required space */ |
| 5887 | if (!isnull) |
| 5888 | { |
| 5889 | int i; |
| 5890 | char *p; |
| 5891 | int nbytes; |
| 5892 | int totbytes; |
| 5893 | |
| 5894 | /* make sure data is not toasted */ |
| 5895 | if (elmlen == -1) |
| 5896 | value = PointerGetDatum(PG_DETOAST_DATUM(value)); |
| 5897 | |
| 5898 | nbytes = att_addlength_datum(0, elmlen, value); |
| 5899 | nbytes = att_align_nominal(nbytes, elmalign); |
| 5900 | Assert(nbytes > 0); |
| 5901 | |
| 5902 | totbytes = nbytes * nitems; |
| 5903 | |
| 5904 | /* check for overflow of multiplication or total request */ |
| 5905 | if (totbytes / nbytes != nitems || |
| 5906 | !AllocSizeIsValid(totbytes)) |
| 5907 | ereport(ERROR, |
| 5908 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 5909 | errmsg("array size exceeds the maximum allowed (%d)" , |
| 5910 | (int) MaxAllocSize))); |
| 5911 | |
| 5912 | /* |
| 5913 | * This addition can't overflow, but it might cause us to go past |
| 5914 | * MaxAllocSize. We leave it to palloc to complain in that case. |
| 5915 | */ |
| 5916 | totbytes += ARR_OVERHEAD_NONULLS(ndims); |
| 5917 | |
| 5918 | result = create_array_envelope(ndims, dimv, lbsv, totbytes, |
| 5919 | elmtype, 0); |
| 5920 | |
| 5921 | p = ARR_DATA_PTR(result); |
| 5922 | for (i = 0; i < nitems; i++) |
| 5923 | p += ArrayCastAndSet(value, elmlen, elmbyval, elmalign, p); |
| 5924 | } |
| 5925 | else |
| 5926 | { |
| 5927 | int nbytes; |
| 5928 | int dataoffset; |
| 5929 | |
| 5930 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems); |
| 5931 | nbytes = dataoffset; |
| 5932 | |
| 5933 | result = create_array_envelope(ndims, dimv, lbsv, nbytes, |
| 5934 | elmtype, dataoffset); |
| 5935 | |
| 5936 | /* create_array_envelope already zeroed the bitmap, so we're done */ |
| 5937 | } |
| 5938 | |
| 5939 | return result; |
| 5940 | } |
| 5941 | |
| 5942 | |
| 5943 | /* |
| 5944 | * UNNEST |
| 5945 | */ |
| 5946 | Datum |
| 5947 | array_unnest(PG_FUNCTION_ARGS) |
| 5948 | { |
| 5949 | typedef struct |
| 5950 | { |
| 5951 | array_iter iter; |
| 5952 | int nextelem; |
| 5953 | int numelems; |
| 5954 | int16 elmlen; |
| 5955 | bool elmbyval; |
| 5956 | char elmalign; |
| 5957 | } array_unnest_fctx; |
| 5958 | |
| 5959 | FuncCallContext *funcctx; |
| 5960 | array_unnest_fctx *fctx; |
| 5961 | MemoryContext oldcontext; |
| 5962 | |
| 5963 | /* stuff done only on the first call of the function */ |
| 5964 | if (SRF_IS_FIRSTCALL()) |
| 5965 | { |
| 5966 | AnyArrayType *arr; |
| 5967 | |
| 5968 | /* create a function context for cross-call persistence */ |
| 5969 | funcctx = SRF_FIRSTCALL_INIT(); |
| 5970 | |
| 5971 | /* |
| 5972 | * switch to memory context appropriate for multiple function calls |
| 5973 | */ |
| 5974 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 5975 | |
| 5976 | /* |
| 5977 | * Get the array value and detoast if needed. We can't do this |
| 5978 | * earlier because if we have to detoast, we want the detoasted copy |
| 5979 | * to be in multi_call_memory_ctx, so it will go away when we're done |
| 5980 | * and not before. (If no detoast happens, we assume the originally |
| 5981 | * passed array will stick around till then.) |
| 5982 | */ |
| 5983 | arr = PG_GETARG_ANY_ARRAY_P(0); |
| 5984 | |
| 5985 | /* allocate memory for user context */ |
| 5986 | fctx = (array_unnest_fctx *) palloc(sizeof(array_unnest_fctx)); |
| 5987 | |
| 5988 | /* initialize state */ |
| 5989 | array_iter_setup(&fctx->iter, arr); |
| 5990 | fctx->nextelem = 0; |
| 5991 | fctx->numelems = ArrayGetNItems(AARR_NDIM(arr), AARR_DIMS(arr)); |
| 5992 | |
| 5993 | if (VARATT_IS_EXPANDED_HEADER(arr)) |
| 5994 | { |
| 5995 | /* we can just grab the type data from expanded array */ |
| 5996 | fctx->elmlen = arr->xpn.typlen; |
| 5997 | fctx->elmbyval = arr->xpn.typbyval; |
| 5998 | fctx->elmalign = arr->xpn.typalign; |
| 5999 | } |
| 6000 | else |
| 6001 | get_typlenbyvalalign(AARR_ELEMTYPE(arr), |
| 6002 | &fctx->elmlen, |
| 6003 | &fctx->elmbyval, |
| 6004 | &fctx->elmalign); |
| 6005 | |
| 6006 | funcctx->user_fctx = fctx; |
| 6007 | MemoryContextSwitchTo(oldcontext); |
| 6008 | } |
| 6009 | |
| 6010 | /* stuff done on every call of the function */ |
| 6011 | funcctx = SRF_PERCALL_SETUP(); |
| 6012 | fctx = funcctx->user_fctx; |
| 6013 | |
| 6014 | if (fctx->nextelem < fctx->numelems) |
| 6015 | { |
| 6016 | int offset = fctx->nextelem++; |
| 6017 | Datum elem; |
| 6018 | |
| 6019 | elem = array_iter_next(&fctx->iter, &fcinfo->isnull, offset, |
| 6020 | fctx->elmlen, fctx->elmbyval, fctx->elmalign); |
| 6021 | |
| 6022 | SRF_RETURN_NEXT(funcctx, elem); |
| 6023 | } |
| 6024 | else |
| 6025 | { |
| 6026 | /* do when there is no more left */ |
| 6027 | SRF_RETURN_DONE(funcctx); |
| 6028 | } |
| 6029 | } |
| 6030 | |
| 6031 | /* |
| 6032 | * Planner support function for array_unnest(anyarray) |
| 6033 | */ |
| 6034 | Datum |
| 6035 | array_unnest_support(PG_FUNCTION_ARGS) |
| 6036 | { |
| 6037 | Node *rawreq = (Node *) PG_GETARG_POINTER(0); |
| 6038 | Node *ret = NULL; |
| 6039 | |
| 6040 | if (IsA(rawreq, SupportRequestRows)) |
| 6041 | { |
| 6042 | /* Try to estimate the number of rows returned */ |
| 6043 | SupportRequestRows *req = (SupportRequestRows *) rawreq; |
| 6044 | |
| 6045 | if (is_funcclause(req->node)) /* be paranoid */ |
| 6046 | { |
| 6047 | List *args = ((FuncExpr *) req->node)->args; |
| 6048 | Node *arg1; |
| 6049 | |
| 6050 | /* We can use estimated argument values here */ |
| 6051 | arg1 = estimate_expression_value(req->root, linitial(args)); |
| 6052 | |
| 6053 | req->rows = estimate_array_length(arg1); |
| 6054 | ret = (Node *) req; |
| 6055 | } |
| 6056 | } |
| 6057 | |
| 6058 | PG_RETURN_POINTER(ret); |
| 6059 | } |
| 6060 | |
| 6061 | |
| 6062 | /* |
| 6063 | * array_replace/array_remove support |
| 6064 | * |
| 6065 | * Find all array entries matching (not distinct from) search/search_isnull, |
| 6066 | * and delete them if remove is true, else replace them with |
| 6067 | * replace/replace_isnull. Comparisons are done using the specified |
| 6068 | * collation. fcinfo is passed only for caching purposes. |
| 6069 | */ |
| 6070 | static ArrayType * |
| 6071 | array_replace_internal(ArrayType *array, |
| 6072 | Datum search, bool search_isnull, |
| 6073 | Datum replace, bool replace_isnull, |
| 6074 | bool remove, Oid collation, |
| 6075 | FunctionCallInfo fcinfo) |
| 6076 | { |
| 6077 | LOCAL_FCINFO(locfcinfo, 2); |
| 6078 | ArrayType *result; |
| 6079 | Oid element_type; |
| 6080 | Datum *values; |
| 6081 | bool *nulls; |
| 6082 | int *dim; |
| 6083 | int ndim; |
| 6084 | int nitems, |
| 6085 | nresult; |
| 6086 | int i; |
| 6087 | int32 nbytes = 0; |
| 6088 | int32 dataoffset; |
| 6089 | bool hasnulls; |
| 6090 | int typlen; |
| 6091 | bool typbyval; |
| 6092 | char typalign; |
| 6093 | char *arraydataptr; |
| 6094 | bits8 *bitmap; |
| 6095 | int bitmask; |
| 6096 | bool changed = false; |
| 6097 | TypeCacheEntry *typentry; |
| 6098 | |
| 6099 | element_type = ARR_ELEMTYPE(array); |
| 6100 | ndim = ARR_NDIM(array); |
| 6101 | dim = ARR_DIMS(array); |
| 6102 | nitems = ArrayGetNItems(ndim, dim); |
| 6103 | |
| 6104 | /* Return input array unmodified if it is empty */ |
| 6105 | if (nitems <= 0) |
| 6106 | return array; |
| 6107 | |
| 6108 | /* |
| 6109 | * We can't remove elements from multi-dimensional arrays, since the |
| 6110 | * result might not be rectangular. |
| 6111 | */ |
| 6112 | if (remove && ndim > 1) |
| 6113 | ereport(ERROR, |
| 6114 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 6115 | errmsg("removing elements from multidimensional arrays is not supported" ))); |
| 6116 | |
| 6117 | /* |
| 6118 | * We arrange to look up the equality function only once per series of |
| 6119 | * calls, assuming the element type doesn't change underneath us. |
| 6120 | */ |
| 6121 | typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| 6122 | if (typentry == NULL || |
| 6123 | typentry->type_id != element_type) |
| 6124 | { |
| 6125 | typentry = lookup_type_cache(element_type, |
| 6126 | TYPECACHE_EQ_OPR_FINFO); |
| 6127 | if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) |
| 6128 | ereport(ERROR, |
| 6129 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 6130 | errmsg("could not identify an equality operator for type %s" , |
| 6131 | format_type_be(element_type)))); |
| 6132 | fcinfo->flinfo->fn_extra = (void *) typentry; |
| 6133 | } |
| 6134 | typlen = typentry->typlen; |
| 6135 | typbyval = typentry->typbyval; |
| 6136 | typalign = typentry->typalign; |
| 6137 | |
| 6138 | /* |
| 6139 | * Detoast values if they are toasted. The replacement value must be |
| 6140 | * detoasted for insertion into the result array, while detoasting the |
| 6141 | * search value only once saves cycles. |
| 6142 | */ |
| 6143 | if (typlen == -1) |
| 6144 | { |
| 6145 | if (!search_isnull) |
| 6146 | search = PointerGetDatum(PG_DETOAST_DATUM(search)); |
| 6147 | if (!replace_isnull) |
| 6148 | replace = PointerGetDatum(PG_DETOAST_DATUM(replace)); |
| 6149 | } |
| 6150 | |
| 6151 | /* Prepare to apply the comparison operator */ |
| 6152 | InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, |
| 6153 | collation, NULL, NULL); |
| 6154 | |
| 6155 | /* Allocate temporary arrays for new values */ |
| 6156 | values = (Datum *) palloc(nitems * sizeof(Datum)); |
| 6157 | nulls = (bool *) palloc(nitems * sizeof(bool)); |
| 6158 | |
| 6159 | /* Loop over source data */ |
| 6160 | arraydataptr = ARR_DATA_PTR(array); |
| 6161 | bitmap = ARR_NULLBITMAP(array); |
| 6162 | bitmask = 1; |
| 6163 | hasnulls = false; |
| 6164 | nresult = 0; |
| 6165 | |
| 6166 | for (i = 0; i < nitems; i++) |
| 6167 | { |
| 6168 | Datum elt; |
| 6169 | bool isNull; |
| 6170 | bool oprresult; |
| 6171 | bool skip = false; |
| 6172 | |
| 6173 | /* Get source element, checking for NULL */ |
| 6174 | if (bitmap && (*bitmap & bitmask) == 0) |
| 6175 | { |
| 6176 | isNull = true; |
| 6177 | /* If searching for NULL, we have a match */ |
| 6178 | if (search_isnull) |
| 6179 | { |
| 6180 | if (remove) |
| 6181 | { |
| 6182 | skip = true; |
| 6183 | changed = true; |
| 6184 | } |
| 6185 | else if (!replace_isnull) |
| 6186 | { |
| 6187 | values[nresult] = replace; |
| 6188 | isNull = false; |
| 6189 | changed = true; |
| 6190 | } |
| 6191 | } |
| 6192 | } |
| 6193 | else |
| 6194 | { |
| 6195 | isNull = false; |
| 6196 | elt = fetch_att(arraydataptr, typbyval, typlen); |
| 6197 | arraydataptr = att_addlength_datum(arraydataptr, typlen, elt); |
| 6198 | arraydataptr = (char *) att_align_nominal(arraydataptr, typalign); |
| 6199 | |
| 6200 | if (search_isnull) |
| 6201 | { |
| 6202 | /* no match possible, keep element */ |
| 6203 | values[nresult] = elt; |
| 6204 | } |
| 6205 | else |
| 6206 | { |
| 6207 | /* |
| 6208 | * Apply the operator to the element pair |
| 6209 | */ |
| 6210 | locfcinfo->args[0].value = elt; |
| 6211 | locfcinfo->args[0].isnull = false; |
| 6212 | locfcinfo->args[1].value = search; |
| 6213 | locfcinfo->args[1].isnull = false; |
| 6214 | locfcinfo->isnull = false; |
| 6215 | oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); |
| 6216 | if (!oprresult) |
| 6217 | { |
| 6218 | /* no match, keep element */ |
| 6219 | values[nresult] = elt; |
| 6220 | } |
| 6221 | else |
| 6222 | { |
| 6223 | /* match, so replace or delete */ |
| 6224 | changed = true; |
| 6225 | if (remove) |
| 6226 | skip = true; |
| 6227 | else |
| 6228 | { |
| 6229 | values[nresult] = replace; |
| 6230 | isNull = replace_isnull; |
| 6231 | } |
| 6232 | } |
| 6233 | } |
| 6234 | } |
| 6235 | |
| 6236 | if (!skip) |
| 6237 | { |
| 6238 | nulls[nresult] = isNull; |
| 6239 | if (isNull) |
| 6240 | hasnulls = true; |
| 6241 | else |
| 6242 | { |
| 6243 | /* Update total result size */ |
| 6244 | nbytes = att_addlength_datum(nbytes, typlen, values[nresult]); |
| 6245 | nbytes = att_align_nominal(nbytes, typalign); |
| 6246 | /* check for overflow of total request */ |
| 6247 | if (!AllocSizeIsValid(nbytes)) |
| 6248 | ereport(ERROR, |
| 6249 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 6250 | errmsg("array size exceeds the maximum allowed (%d)" , |
| 6251 | (int) MaxAllocSize))); |
| 6252 | } |
| 6253 | nresult++; |
| 6254 | } |
| 6255 | |
| 6256 | /* advance bitmap pointer if any */ |
| 6257 | if (bitmap) |
| 6258 | { |
| 6259 | bitmask <<= 1; |
| 6260 | if (bitmask == 0x100) |
| 6261 | { |
| 6262 | bitmap++; |
| 6263 | bitmask = 1; |
| 6264 | } |
| 6265 | } |
| 6266 | } |
| 6267 | |
| 6268 | /* |
| 6269 | * If not changed just return the original array |
| 6270 | */ |
| 6271 | if (!changed) |
| 6272 | { |
| 6273 | pfree(values); |
| 6274 | pfree(nulls); |
| 6275 | return array; |
| 6276 | } |
| 6277 | |
| 6278 | /* If all elements were removed return an empty array */ |
| 6279 | if (nresult == 0) |
| 6280 | { |
| 6281 | pfree(values); |
| 6282 | pfree(nulls); |
| 6283 | return construct_empty_array(element_type); |
| 6284 | } |
| 6285 | |
| 6286 | /* Allocate and initialize the result array */ |
| 6287 | if (hasnulls) |
| 6288 | { |
| 6289 | dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nresult); |
| 6290 | nbytes += dataoffset; |
| 6291 | } |
| 6292 | else |
| 6293 | { |
| 6294 | dataoffset = 0; /* marker for no null bitmap */ |
| 6295 | nbytes += ARR_OVERHEAD_NONULLS(ndim); |
| 6296 | } |
| 6297 | result = (ArrayType *) palloc0(nbytes); |
| 6298 | SET_VARSIZE(result, nbytes); |
| 6299 | result->ndim = ndim; |
| 6300 | result->dataoffset = dataoffset; |
| 6301 | result->elemtype = element_type; |
| 6302 | memcpy(ARR_DIMS(result), ARR_DIMS(array), ndim * sizeof(int)); |
| 6303 | memcpy(ARR_LBOUND(result), ARR_LBOUND(array), ndim * sizeof(int)); |
| 6304 | |
| 6305 | if (remove) |
| 6306 | { |
| 6307 | /* Adjust the result length */ |
| 6308 | ARR_DIMS(result)[0] = nresult; |
| 6309 | } |
| 6310 | |
| 6311 | /* Insert data into result array */ |
| 6312 | CopyArrayEls(result, |
| 6313 | values, nulls, nresult, |
| 6314 | typlen, typbyval, typalign, |
| 6315 | false); |
| 6316 | |
| 6317 | pfree(values); |
| 6318 | pfree(nulls); |
| 6319 | |
| 6320 | return result; |
| 6321 | } |
| 6322 | |
| 6323 | /* |
| 6324 | * Remove any occurrences of an element from an array |
| 6325 | * |
| 6326 | * If used on a multi-dimensional array this will raise an error. |
| 6327 | */ |
| 6328 | Datum |
| 6329 | array_remove(PG_FUNCTION_ARGS) |
| 6330 | { |
| 6331 | ArrayType *array; |
| 6332 | Datum search = PG_GETARG_DATUM(1); |
| 6333 | bool search_isnull = PG_ARGISNULL(1); |
| 6334 | |
| 6335 | if (PG_ARGISNULL(0)) |
| 6336 | PG_RETURN_NULL(); |
| 6337 | array = PG_GETARG_ARRAYTYPE_P(0); |
| 6338 | |
| 6339 | array = array_replace_internal(array, |
| 6340 | search, search_isnull, |
| 6341 | (Datum) 0, true, |
| 6342 | true, PG_GET_COLLATION(), |
| 6343 | fcinfo); |
| 6344 | PG_RETURN_ARRAYTYPE_P(array); |
| 6345 | } |
| 6346 | |
| 6347 | /* |
| 6348 | * Replace any occurrences of an element in an array |
| 6349 | */ |
| 6350 | Datum |
| 6351 | array_replace(PG_FUNCTION_ARGS) |
| 6352 | { |
| 6353 | ArrayType *array; |
| 6354 | Datum search = PG_GETARG_DATUM(1); |
| 6355 | bool search_isnull = PG_ARGISNULL(1); |
| 6356 | Datum replace = PG_GETARG_DATUM(2); |
| 6357 | bool replace_isnull = PG_ARGISNULL(2); |
| 6358 | |
| 6359 | if (PG_ARGISNULL(0)) |
| 6360 | PG_RETURN_NULL(); |
| 6361 | array = PG_GETARG_ARRAYTYPE_P(0); |
| 6362 | |
| 6363 | array = array_replace_internal(array, |
| 6364 | search, search_isnull, |
| 6365 | replace, replace_isnull, |
| 6366 | false, PG_GET_COLLATION(), |
| 6367 | fcinfo); |
| 6368 | PG_RETURN_ARRAYTYPE_P(array); |
| 6369 | } |
| 6370 | |
| 6371 | /* |
| 6372 | * Implements width_bucket(anyelement, anyarray). |
| 6373 | * |
| 6374 | * 'thresholds' is an array containing lower bound values for each bucket; |
| 6375 | * these must be sorted from smallest to largest, or bogus results will be |
| 6376 | * produced. If N thresholds are supplied, the output is from 0 to N: |
| 6377 | * 0 is for inputs < first threshold, N is for inputs >= last threshold. |
| 6378 | */ |
| 6379 | Datum |
| 6380 | width_bucket_array(PG_FUNCTION_ARGS) |
| 6381 | { |
| 6382 | Datum operand = PG_GETARG_DATUM(0); |
| 6383 | ArrayType *thresholds = PG_GETARG_ARRAYTYPE_P(1); |
| 6384 | Oid collation = PG_GET_COLLATION(); |
| 6385 | Oid element_type = ARR_ELEMTYPE(thresholds); |
| 6386 | int result; |
| 6387 | |
| 6388 | /* Check input */ |
| 6389 | if (ARR_NDIM(thresholds) > 1) |
| 6390 | ereport(ERROR, |
| 6391 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 6392 | errmsg("thresholds must be one-dimensional array" ))); |
| 6393 | |
| 6394 | if (array_contains_nulls(thresholds)) |
| 6395 | ereport(ERROR, |
| 6396 | (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| 6397 | errmsg("thresholds array must not contain NULLs" ))); |
| 6398 | |
| 6399 | /* We have a dedicated implementation for float8 data */ |
| 6400 | if (element_type == FLOAT8OID) |
| 6401 | result = width_bucket_array_float8(operand, thresholds); |
| 6402 | else |
| 6403 | { |
| 6404 | TypeCacheEntry *typentry; |
| 6405 | |
| 6406 | /* Cache information about the input type */ |
| 6407 | typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| 6408 | if (typentry == NULL || |
| 6409 | typentry->type_id != element_type) |
| 6410 | { |
| 6411 | typentry = lookup_type_cache(element_type, |
| 6412 | TYPECACHE_CMP_PROC_FINFO); |
| 6413 | if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
| 6414 | ereport(ERROR, |
| 6415 | (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| 6416 | errmsg("could not identify a comparison function for type %s" , |
| 6417 | format_type_be(element_type)))); |
| 6418 | fcinfo->flinfo->fn_extra = (void *) typentry; |
| 6419 | } |
| 6420 | |
| 6421 | /* |
| 6422 | * We have separate implementation paths for fixed- and variable-width |
| 6423 | * types, since indexing the array is a lot cheaper in the first case. |
| 6424 | */ |
| 6425 | if (typentry->typlen > 0) |
| 6426 | result = width_bucket_array_fixed(operand, thresholds, |
| 6427 | collation, typentry); |
| 6428 | else |
| 6429 | result = width_bucket_array_variable(operand, thresholds, |
| 6430 | collation, typentry); |
| 6431 | } |
| 6432 | |
| 6433 | /* Avoid leaking memory when handed toasted input. */ |
| 6434 | PG_FREE_IF_COPY(thresholds, 1); |
| 6435 | |
| 6436 | PG_RETURN_INT32(result); |
| 6437 | } |
| 6438 | |
| 6439 | /* |
| 6440 | * width_bucket_array for float8 data. |
| 6441 | */ |
| 6442 | static int |
| 6443 | width_bucket_array_float8(Datum operand, ArrayType *thresholds) |
| 6444 | { |
| 6445 | float8 op = DatumGetFloat8(operand); |
| 6446 | float8 *thresholds_data; |
| 6447 | int left; |
| 6448 | int right; |
| 6449 | |
| 6450 | /* |
| 6451 | * Since we know the array contains no NULLs, we can just index it |
| 6452 | * directly. |
| 6453 | */ |
| 6454 | thresholds_data = (float8 *) ARR_DATA_PTR(thresholds); |
| 6455 | |
| 6456 | left = 0; |
| 6457 | right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); |
| 6458 | |
| 6459 | /* |
| 6460 | * If the probe value is a NaN, it's greater than or equal to all possible |
| 6461 | * threshold values (including other NaNs), so we need not search. Note |
| 6462 | * that this would give the same result as searching even if the array |
| 6463 | * contains multiple NaNs (as long as they're correctly sorted), since the |
| 6464 | * loop logic will find the rightmost of multiple equal threshold values. |
| 6465 | */ |
| 6466 | if (isnan(op)) |
| 6467 | return right; |
| 6468 | |
| 6469 | /* Find the bucket */ |
| 6470 | while (left < right) |
| 6471 | { |
| 6472 | int mid = (left + right) / 2; |
| 6473 | |
| 6474 | if (isnan(thresholds_data[mid]) || op < thresholds_data[mid]) |
| 6475 | right = mid; |
| 6476 | else |
| 6477 | left = mid + 1; |
| 6478 | } |
| 6479 | |
| 6480 | return left; |
| 6481 | } |
| 6482 | |
| 6483 | /* |
| 6484 | * width_bucket_array for generic fixed-width data types. |
| 6485 | */ |
| 6486 | static int |
| 6487 | width_bucket_array_fixed(Datum operand, |
| 6488 | ArrayType *thresholds, |
| 6489 | Oid collation, |
| 6490 | TypeCacheEntry *typentry) |
| 6491 | { |
| 6492 | LOCAL_FCINFO(locfcinfo, 2); |
| 6493 | char *thresholds_data; |
| 6494 | int typlen = typentry->typlen; |
| 6495 | bool typbyval = typentry->typbyval; |
| 6496 | int left; |
| 6497 | int right; |
| 6498 | |
| 6499 | /* |
| 6500 | * Since we know the array contains no NULLs, we can just index it |
| 6501 | * directly. |
| 6502 | */ |
| 6503 | thresholds_data = (char *) ARR_DATA_PTR(thresholds); |
| 6504 | |
| 6505 | InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, |
| 6506 | collation, NULL, NULL); |
| 6507 | |
| 6508 | /* Find the bucket */ |
| 6509 | left = 0; |
| 6510 | right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); |
| 6511 | while (left < right) |
| 6512 | { |
| 6513 | int mid = (left + right) / 2; |
| 6514 | char *ptr; |
| 6515 | int32 cmpresult; |
| 6516 | |
| 6517 | ptr = thresholds_data + mid * typlen; |
| 6518 | |
| 6519 | locfcinfo->args[0].value = operand; |
| 6520 | locfcinfo->args[0].isnull = false; |
| 6521 | locfcinfo->args[1].value = fetch_att(ptr, typbyval, typlen); |
| 6522 | locfcinfo->args[1].isnull = false; |
| 6523 | locfcinfo->isnull = false; |
| 6524 | |
| 6525 | cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); |
| 6526 | |
| 6527 | if (cmpresult < 0) |
| 6528 | right = mid; |
| 6529 | else |
| 6530 | left = mid + 1; |
| 6531 | } |
| 6532 | |
| 6533 | return left; |
| 6534 | } |
| 6535 | |
| 6536 | /* |
| 6537 | * width_bucket_array for generic variable-width data types. |
| 6538 | */ |
| 6539 | static int |
| 6540 | width_bucket_array_variable(Datum operand, |
| 6541 | ArrayType *thresholds, |
| 6542 | Oid collation, |
| 6543 | TypeCacheEntry *typentry) |
| 6544 | { |
| 6545 | LOCAL_FCINFO(locfcinfo, 2); |
| 6546 | char *thresholds_data; |
| 6547 | int typlen = typentry->typlen; |
| 6548 | bool typbyval = typentry->typbyval; |
| 6549 | char typalign = typentry->typalign; |
| 6550 | int left; |
| 6551 | int right; |
| 6552 | |
| 6553 | thresholds_data = (char *) ARR_DATA_PTR(thresholds); |
| 6554 | |
| 6555 | InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, |
| 6556 | collation, NULL, NULL); |
| 6557 | |
| 6558 | /* Find the bucket */ |
| 6559 | left = 0; |
| 6560 | right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); |
| 6561 | while (left < right) |
| 6562 | { |
| 6563 | int mid = (left + right) / 2; |
| 6564 | char *ptr; |
| 6565 | int i; |
| 6566 | int32 cmpresult; |
| 6567 | |
| 6568 | /* Locate mid'th array element by advancing from left element */ |
| 6569 | ptr = thresholds_data; |
| 6570 | for (i = left; i < mid; i++) |
| 6571 | { |
| 6572 | ptr = att_addlength_pointer(ptr, typlen, ptr); |
| 6573 | ptr = (char *) att_align_nominal(ptr, typalign); |
| 6574 | } |
| 6575 | |
| 6576 | locfcinfo->args[0].value = operand; |
| 6577 | locfcinfo->args[0].isnull = false; |
| 6578 | locfcinfo->args[1].value = fetch_att(ptr, typbyval, typlen); |
| 6579 | locfcinfo->args[1].isnull = false; |
| 6580 | |
| 6581 | cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); |
| 6582 | |
| 6583 | if (cmpresult < 0) |
| 6584 | right = mid; |
| 6585 | else |
| 6586 | { |
| 6587 | left = mid + 1; |
| 6588 | |
| 6589 | /* |
| 6590 | * Move the thresholds pointer to match new "left" index, so we |
| 6591 | * don't have to seek over those elements again. This trick |
| 6592 | * ensures we do only O(N) array indexing work, not O(N^2). |
| 6593 | */ |
| 6594 | ptr = att_addlength_pointer(ptr, typlen, ptr); |
| 6595 | thresholds_data = (char *) att_align_nominal(ptr, typalign); |
| 6596 | } |
| 6597 | } |
| 6598 | |
| 6599 | return left; |
| 6600 | } |
| 6601 | |