| 1 | /* |
| 2 | * cash.c |
| 3 | * Written by D'Arcy J.M. Cain |
| 4 | * darcy@druid.net |
| 5 | * http://www.druid.net/darcy/ |
| 6 | * |
| 7 | * Functions to allow input and output of money normally but store |
| 8 | * and handle it as 64 bit ints |
| 9 | * |
| 10 | * A slightly modified version of this file and a discussion of the |
| 11 | * workings can be found in the book "Software Solutions in C" by |
| 12 | * Dale Schumacher, Academic Press, ISBN: 0-12-632360-7 except that |
| 13 | * this version handles 64 bit numbers and so can hold values up to |
| 14 | * $92,233,720,368,547,758.07. |
| 15 | * |
| 16 | * src/backend/utils/adt/cash.c |
| 17 | */ |
| 18 | |
| 19 | #include "postgres.h" |
| 20 | |
| 21 | #include <limits.h> |
| 22 | #include <ctype.h> |
| 23 | #include <math.h> |
| 24 | |
| 25 | #include "common/int.h" |
| 26 | #include "libpq/pqformat.h" |
| 27 | #include "utils/builtins.h" |
| 28 | #include "utils/cash.h" |
| 29 | #include "utils/int8.h" |
| 30 | #include "utils/numeric.h" |
| 31 | #include "utils/pg_locale.h" |
| 32 | |
| 33 | |
| 34 | /************************************************************************* |
| 35 | * Private routines |
| 36 | ************************************************************************/ |
| 37 | |
| 38 | static const char * |
| 39 | num_word(Cash value) |
| 40 | { |
| 41 | static char buf[128]; |
| 42 | static const char *const small[] = { |
| 43 | "zero" , "one" , "two" , "three" , "four" , "five" , "six" , "seven" , |
| 44 | "eight" , "nine" , "ten" , "eleven" , "twelve" , "thirteen" , "fourteen" , |
| 45 | "fifteen" , "sixteen" , "seventeen" , "eighteen" , "nineteen" , "twenty" , |
| 46 | "thirty" , "forty" , "fifty" , "sixty" , "seventy" , "eighty" , "ninety" |
| 47 | }; |
| 48 | const char *const *big = small + 18; |
| 49 | int tu = value % 100; |
| 50 | |
| 51 | /* deal with the simple cases first */ |
| 52 | if (value <= 20) |
| 53 | return small[value]; |
| 54 | |
| 55 | /* is it an even multiple of 100? */ |
| 56 | if (!tu) |
| 57 | { |
| 58 | sprintf(buf, "%s hundred" , small[value / 100]); |
| 59 | return buf; |
| 60 | } |
| 61 | |
| 62 | /* more than 99? */ |
| 63 | if (value > 99) |
| 64 | { |
| 65 | /* is it an even multiple of 10 other than 10? */ |
| 66 | if (value % 10 == 0 && tu > 10) |
| 67 | sprintf(buf, "%s hundred %s" , |
| 68 | small[value / 100], big[tu / 10]); |
| 69 | else if (tu < 20) |
| 70 | sprintf(buf, "%s hundred and %s" , |
| 71 | small[value / 100], small[tu]); |
| 72 | else |
| 73 | sprintf(buf, "%s hundred %s %s" , |
| 74 | small[value / 100], big[tu / 10], small[tu % 10]); |
| 75 | } |
| 76 | else |
| 77 | { |
| 78 | /* is it an even multiple of 10 other than 10? */ |
| 79 | if (value % 10 == 0 && tu > 10) |
| 80 | sprintf(buf, "%s" , big[tu / 10]); |
| 81 | else if (tu < 20) |
| 82 | sprintf(buf, "%s" , small[tu]); |
| 83 | else |
| 84 | sprintf(buf, "%s %s" , big[tu / 10], small[tu % 10]); |
| 85 | } |
| 86 | |
| 87 | return buf; |
| 88 | } /* num_word() */ |
| 89 | |
| 90 | /* cash_in() |
| 91 | * Convert a string to a cash data type. |
| 92 | * Format is [$]###[,]###[.##] |
| 93 | * Examples: 123.45 $123.45 $123,456.78 |
| 94 | * |
| 95 | */ |
| 96 | Datum |
| 97 | cash_in(PG_FUNCTION_ARGS) |
| 98 | { |
| 99 | char *str = PG_GETARG_CSTRING(0); |
| 100 | Cash result; |
| 101 | Cash value = 0; |
| 102 | Cash dec = 0; |
| 103 | Cash sgn = 1; |
| 104 | bool seen_dot = false; |
| 105 | const char *s = str; |
| 106 | int fpoint; |
| 107 | char dsymbol; |
| 108 | const char *ssymbol, |
| 109 | *psymbol, |
| 110 | *nsymbol, |
| 111 | *csymbol; |
| 112 | struct lconv *lconvert = PGLC_localeconv(); |
| 113 | |
| 114 | /* |
| 115 | * frac_digits will be CHAR_MAX in some locales, notably C. However, just |
| 116 | * testing for == CHAR_MAX is risky, because of compilers like gcc that |
| 117 | * "helpfully" let you alter the platform-standard definition of whether |
| 118 | * char is signed or not. If we are so unfortunate as to get compiled |
| 119 | * with a nonstandard -fsigned-char or -funsigned-char switch, then our |
| 120 | * idea of CHAR_MAX will not agree with libc's. The safest course is not |
| 121 | * to test for CHAR_MAX at all, but to impose a range check for plausible |
| 122 | * frac_digits values. |
| 123 | */ |
| 124 | fpoint = lconvert->frac_digits; |
| 125 | if (fpoint < 0 || fpoint > 10) |
| 126 | fpoint = 2; /* best guess in this case, I think */ |
| 127 | |
| 128 | /* we restrict dsymbol to be a single byte, but not the other symbols */ |
| 129 | if (*lconvert->mon_decimal_point != '\0' && |
| 130 | lconvert->mon_decimal_point[1] == '\0') |
| 131 | dsymbol = *lconvert->mon_decimal_point; |
| 132 | else |
| 133 | dsymbol = '.'; |
| 134 | if (*lconvert->mon_thousands_sep != '\0') |
| 135 | ssymbol = lconvert->mon_thousands_sep; |
| 136 | else /* ssymbol should not equal dsymbol */ |
| 137 | ssymbol = (dsymbol != ',') ? "," : "." ; |
| 138 | csymbol = (*lconvert->currency_symbol != '\0') ? lconvert->currency_symbol : "$" ; |
| 139 | psymbol = (*lconvert->positive_sign != '\0') ? lconvert->positive_sign : "+" ; |
| 140 | nsymbol = (*lconvert->negative_sign != '\0') ? lconvert->negative_sign : "-" ; |
| 141 | |
| 142 | #ifdef CASHDEBUG |
| 143 | printf("cashin- precision '%d'; decimal '%c'; thousands '%s'; currency '%s'; positive '%s'; negative '%s'\n" , |
| 144 | fpoint, dsymbol, ssymbol, csymbol, psymbol, nsymbol); |
| 145 | #endif |
| 146 | |
| 147 | /* we need to add all sorts of checking here. For now just */ |
| 148 | /* strip all leading whitespace and any leading currency symbol */ |
| 149 | while (isspace((unsigned char) *s)) |
| 150 | s++; |
| 151 | if (strncmp(s, csymbol, strlen(csymbol)) == 0) |
| 152 | s += strlen(csymbol); |
| 153 | while (isspace((unsigned char) *s)) |
| 154 | s++; |
| 155 | |
| 156 | #ifdef CASHDEBUG |
| 157 | printf("cashin- string is '%s'\n" , s); |
| 158 | #endif |
| 159 | |
| 160 | /* a leading minus or paren signifies a negative number */ |
| 161 | /* again, better heuristics needed */ |
| 162 | /* XXX - doesn't properly check for balanced parens - djmc */ |
| 163 | if (strncmp(s, nsymbol, strlen(nsymbol)) == 0) |
| 164 | { |
| 165 | sgn = -1; |
| 166 | s += strlen(nsymbol); |
| 167 | } |
| 168 | else if (*s == '(') |
| 169 | { |
| 170 | sgn = -1; |
| 171 | s++; |
| 172 | } |
| 173 | else if (strncmp(s, psymbol, strlen(psymbol)) == 0) |
| 174 | s += strlen(psymbol); |
| 175 | |
| 176 | #ifdef CASHDEBUG |
| 177 | printf("cashin- string is '%s'\n" , s); |
| 178 | #endif |
| 179 | |
| 180 | /* allow whitespace and currency symbol after the sign, too */ |
| 181 | while (isspace((unsigned char) *s)) |
| 182 | s++; |
| 183 | if (strncmp(s, csymbol, strlen(csymbol)) == 0) |
| 184 | s += strlen(csymbol); |
| 185 | while (isspace((unsigned char) *s)) |
| 186 | s++; |
| 187 | |
| 188 | #ifdef CASHDEBUG |
| 189 | printf("cashin- string is '%s'\n" , s); |
| 190 | #endif |
| 191 | |
| 192 | /* |
| 193 | * We accumulate the absolute amount in "value" and then apply the sign at |
| 194 | * the end. (The sign can appear before or after the digits, so it would |
| 195 | * be more complicated to do otherwise.) Because of the larger range of |
| 196 | * negative signed integers, we build "value" in the negative and then |
| 197 | * flip the sign at the end, catching most-negative-number overflow if |
| 198 | * necessary. |
| 199 | */ |
| 200 | |
| 201 | for (; *s; s++) |
| 202 | { |
| 203 | /* |
| 204 | * We look for digits as long as we have found less than the required |
| 205 | * number of decimal places. |
| 206 | */ |
| 207 | if (isdigit((unsigned char) *s) && (!seen_dot || dec < fpoint)) |
| 208 | { |
| 209 | int8 digit = *s - '0'; |
| 210 | |
| 211 | if (pg_mul_s64_overflow(value, 10, &value) || |
| 212 | pg_sub_s64_overflow(value, digit, &value)) |
| 213 | ereport(ERROR, |
| 214 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 215 | errmsg("value \"%s\" is out of range for type %s" , |
| 216 | str, "money" ))); |
| 217 | |
| 218 | if (seen_dot) |
| 219 | dec++; |
| 220 | } |
| 221 | /* decimal point? then start counting fractions... */ |
| 222 | else if (*s == dsymbol && !seen_dot) |
| 223 | { |
| 224 | seen_dot = true; |
| 225 | } |
| 226 | /* ignore if "thousands" separator, else we're done */ |
| 227 | else if (strncmp(s, ssymbol, strlen(ssymbol)) == 0) |
| 228 | s += strlen(ssymbol) - 1; |
| 229 | else |
| 230 | break; |
| 231 | } |
| 232 | |
| 233 | /* round off if there's another digit */ |
| 234 | if (isdigit((unsigned char) *s) && *s >= '5') |
| 235 | { |
| 236 | /* remember we build the value in the negative */ |
| 237 | if (pg_sub_s64_overflow(value, 1, &value)) |
| 238 | ereport(ERROR, |
| 239 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 240 | errmsg("value \"%s\" is out of range for type %s" , |
| 241 | str, "money" ))); |
| 242 | } |
| 243 | |
| 244 | /* adjust for less than required decimal places */ |
| 245 | for (; dec < fpoint; dec++) |
| 246 | { |
| 247 | if (pg_mul_s64_overflow(value, 10, &value)) |
| 248 | ereport(ERROR, |
| 249 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 250 | errmsg("value \"%s\" is out of range for type %s" , |
| 251 | str, "money" ))); |
| 252 | } |
| 253 | |
| 254 | /* |
| 255 | * should only be trailing digits followed by whitespace, right paren, |
| 256 | * trailing sign, and/or trailing currency symbol |
| 257 | */ |
| 258 | while (isdigit((unsigned char) *s)) |
| 259 | s++; |
| 260 | |
| 261 | while (*s) |
| 262 | { |
| 263 | if (isspace((unsigned char) *s) || *s == ')') |
| 264 | s++; |
| 265 | else if (strncmp(s, nsymbol, strlen(nsymbol)) == 0) |
| 266 | { |
| 267 | sgn = -1; |
| 268 | s += strlen(nsymbol); |
| 269 | } |
| 270 | else if (strncmp(s, psymbol, strlen(psymbol)) == 0) |
| 271 | s += strlen(psymbol); |
| 272 | else if (strncmp(s, csymbol, strlen(csymbol)) == 0) |
| 273 | s += strlen(csymbol); |
| 274 | else |
| 275 | ereport(ERROR, |
| 276 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 277 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 278 | "money" , str))); |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * If the value is supposed to be positive, flip the sign, but check for |
| 283 | * the most negative number. |
| 284 | */ |
| 285 | if (sgn > 0) |
| 286 | { |
| 287 | if (value == PG_INT64_MIN) |
| 288 | ereport(ERROR, |
| 289 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 290 | errmsg("value \"%s\" is out of range for type %s" , |
| 291 | str, "money" ))); |
| 292 | result = -value; |
| 293 | } |
| 294 | else |
| 295 | result = value; |
| 296 | |
| 297 | #ifdef CASHDEBUG |
| 298 | printf("cashin- result is " INT64_FORMAT "\n" , result); |
| 299 | #endif |
| 300 | |
| 301 | PG_RETURN_CASH(result); |
| 302 | } |
| 303 | |
| 304 | |
| 305 | /* cash_out() |
| 306 | * Function to convert cash to a dollars and cents representation, using |
| 307 | * the lc_monetary locale's formatting. |
| 308 | */ |
| 309 | Datum |
| 310 | cash_out(PG_FUNCTION_ARGS) |
| 311 | { |
| 312 | Cash value = PG_GETARG_CASH(0); |
| 313 | char *result; |
| 314 | char buf[128]; |
| 315 | char *bufptr; |
| 316 | int digit_pos; |
| 317 | int points, |
| 318 | mon_group; |
| 319 | char dsymbol; |
| 320 | const char *ssymbol, |
| 321 | *csymbol, |
| 322 | *signsymbol; |
| 323 | char sign_posn, |
| 324 | cs_precedes, |
| 325 | sep_by_space; |
| 326 | struct lconv *lconvert = PGLC_localeconv(); |
| 327 | |
| 328 | /* see comments about frac_digits in cash_in() */ |
| 329 | points = lconvert->frac_digits; |
| 330 | if (points < 0 || points > 10) |
| 331 | points = 2; /* best guess in this case, I think */ |
| 332 | |
| 333 | /* |
| 334 | * As with frac_digits, must apply a range check to mon_grouping to avoid |
| 335 | * being fooled by variant CHAR_MAX values. |
| 336 | */ |
| 337 | mon_group = *lconvert->mon_grouping; |
| 338 | if (mon_group <= 0 || mon_group > 6) |
| 339 | mon_group = 3; |
| 340 | |
| 341 | /* we restrict dsymbol to be a single byte, but not the other symbols */ |
| 342 | if (*lconvert->mon_decimal_point != '\0' && |
| 343 | lconvert->mon_decimal_point[1] == '\0') |
| 344 | dsymbol = *lconvert->mon_decimal_point; |
| 345 | else |
| 346 | dsymbol = '.'; |
| 347 | if (*lconvert->mon_thousands_sep != '\0') |
| 348 | ssymbol = lconvert->mon_thousands_sep; |
| 349 | else /* ssymbol should not equal dsymbol */ |
| 350 | ssymbol = (dsymbol != ',') ? "," : "." ; |
| 351 | csymbol = (*lconvert->currency_symbol != '\0') ? lconvert->currency_symbol : "$" ; |
| 352 | |
| 353 | if (value < 0) |
| 354 | { |
| 355 | /* make the amount positive for digit-reconstruction loop */ |
| 356 | value = -value; |
| 357 | /* set up formatting data */ |
| 358 | signsymbol = (*lconvert->negative_sign != '\0') ? lconvert->negative_sign : "-" ; |
| 359 | sign_posn = lconvert->n_sign_posn; |
| 360 | cs_precedes = lconvert->n_cs_precedes; |
| 361 | sep_by_space = lconvert->n_sep_by_space; |
| 362 | } |
| 363 | else |
| 364 | { |
| 365 | signsymbol = lconvert->positive_sign; |
| 366 | sign_posn = lconvert->p_sign_posn; |
| 367 | cs_precedes = lconvert->p_cs_precedes; |
| 368 | sep_by_space = lconvert->p_sep_by_space; |
| 369 | } |
| 370 | |
| 371 | /* we build the digits+decimal-point+sep string right-to-left in buf[] */ |
| 372 | bufptr = buf + sizeof(buf) - 1; |
| 373 | *bufptr = '\0'; |
| 374 | |
| 375 | /* |
| 376 | * Generate digits till there are no non-zero digits left and we emitted |
| 377 | * at least one to the left of the decimal point. digit_pos is the |
| 378 | * current digit position, with zero as the digit just left of the decimal |
| 379 | * point, increasing to the right. |
| 380 | */ |
| 381 | digit_pos = points; |
| 382 | do |
| 383 | { |
| 384 | if (points && digit_pos == 0) |
| 385 | { |
| 386 | /* insert decimal point, but not if value cannot be fractional */ |
| 387 | *(--bufptr) = dsymbol; |
| 388 | } |
| 389 | else if (digit_pos < 0 && (digit_pos % mon_group) == 0) |
| 390 | { |
| 391 | /* insert thousands sep, but only to left of radix point */ |
| 392 | bufptr -= strlen(ssymbol); |
| 393 | memcpy(bufptr, ssymbol, strlen(ssymbol)); |
| 394 | } |
| 395 | |
| 396 | *(--bufptr) = ((uint64) value % 10) + '0'; |
| 397 | value = ((uint64) value) / 10; |
| 398 | digit_pos--; |
| 399 | } while (value || digit_pos >= 0); |
| 400 | |
| 401 | /*---------- |
| 402 | * Now, attach currency symbol and sign symbol in the correct order. |
| 403 | * |
| 404 | * The POSIX spec defines these values controlling this code: |
| 405 | * |
| 406 | * p/n_sign_posn: |
| 407 | * 0 Parentheses enclose the quantity and the currency_symbol. |
| 408 | * 1 The sign string precedes the quantity and the currency_symbol. |
| 409 | * 2 The sign string succeeds the quantity and the currency_symbol. |
| 410 | * 3 The sign string precedes the currency_symbol. |
| 411 | * 4 The sign string succeeds the currency_symbol. |
| 412 | * |
| 413 | * p/n_cs_precedes: 0 means currency symbol after value, else before it. |
| 414 | * |
| 415 | * p/n_sep_by_space: |
| 416 | * 0 No <space> separates the currency symbol and value. |
| 417 | * 1 If the currency symbol and sign string are adjacent, a <space> |
| 418 | * separates them from the value; otherwise, a <space> separates |
| 419 | * the currency symbol from the value. |
| 420 | * 2 If the currency symbol and sign string are adjacent, a <space> |
| 421 | * separates them; otherwise, a <space> separates the sign string |
| 422 | * from the value. |
| 423 | *---------- |
| 424 | */ |
| 425 | switch (sign_posn) |
| 426 | { |
| 427 | case 0: |
| 428 | if (cs_precedes) |
| 429 | result = psprintf("(%s%s%s)" , |
| 430 | csymbol, |
| 431 | (sep_by_space == 1) ? " " : "" , |
| 432 | bufptr); |
| 433 | else |
| 434 | result = psprintf("(%s%s%s)" , |
| 435 | bufptr, |
| 436 | (sep_by_space == 1) ? " " : "" , |
| 437 | csymbol); |
| 438 | break; |
| 439 | case 1: |
| 440 | default: |
| 441 | if (cs_precedes) |
| 442 | result = psprintf("%s%s%s%s%s" , |
| 443 | signsymbol, |
| 444 | (sep_by_space == 2) ? " " : "" , |
| 445 | csymbol, |
| 446 | (sep_by_space == 1) ? " " : "" , |
| 447 | bufptr); |
| 448 | else |
| 449 | result = psprintf("%s%s%s%s%s" , |
| 450 | signsymbol, |
| 451 | (sep_by_space == 2) ? " " : "" , |
| 452 | bufptr, |
| 453 | (sep_by_space == 1) ? " " : "" , |
| 454 | csymbol); |
| 455 | break; |
| 456 | case 2: |
| 457 | if (cs_precedes) |
| 458 | result = psprintf("%s%s%s%s%s" , |
| 459 | csymbol, |
| 460 | (sep_by_space == 1) ? " " : "" , |
| 461 | bufptr, |
| 462 | (sep_by_space == 2) ? " " : "" , |
| 463 | signsymbol); |
| 464 | else |
| 465 | result = psprintf("%s%s%s%s%s" , |
| 466 | bufptr, |
| 467 | (sep_by_space == 1) ? " " : "" , |
| 468 | csymbol, |
| 469 | (sep_by_space == 2) ? " " : "" , |
| 470 | signsymbol); |
| 471 | break; |
| 472 | case 3: |
| 473 | if (cs_precedes) |
| 474 | result = psprintf("%s%s%s%s%s" , |
| 475 | signsymbol, |
| 476 | (sep_by_space == 2) ? " " : "" , |
| 477 | csymbol, |
| 478 | (sep_by_space == 1) ? " " : "" , |
| 479 | bufptr); |
| 480 | else |
| 481 | result = psprintf("%s%s%s%s%s" , |
| 482 | bufptr, |
| 483 | (sep_by_space == 1) ? " " : "" , |
| 484 | signsymbol, |
| 485 | (sep_by_space == 2) ? " " : "" , |
| 486 | csymbol); |
| 487 | break; |
| 488 | case 4: |
| 489 | if (cs_precedes) |
| 490 | result = psprintf("%s%s%s%s%s" , |
| 491 | csymbol, |
| 492 | (sep_by_space == 2) ? " " : "" , |
| 493 | signsymbol, |
| 494 | (sep_by_space == 1) ? " " : "" , |
| 495 | bufptr); |
| 496 | else |
| 497 | result = psprintf("%s%s%s%s%s" , |
| 498 | bufptr, |
| 499 | (sep_by_space == 1) ? " " : "" , |
| 500 | csymbol, |
| 501 | (sep_by_space == 2) ? " " : "" , |
| 502 | signsymbol); |
| 503 | break; |
| 504 | } |
| 505 | |
| 506 | PG_RETURN_CSTRING(result); |
| 507 | } |
| 508 | |
| 509 | /* |
| 510 | * cash_recv - converts external binary format to cash |
| 511 | */ |
| 512 | Datum |
| 513 | cash_recv(PG_FUNCTION_ARGS) |
| 514 | { |
| 515 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 516 | |
| 517 | PG_RETURN_CASH((Cash) pq_getmsgint64(buf)); |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * cash_send - converts cash to binary format |
| 522 | */ |
| 523 | Datum |
| 524 | cash_send(PG_FUNCTION_ARGS) |
| 525 | { |
| 526 | Cash arg1 = PG_GETARG_CASH(0); |
| 527 | StringInfoData buf; |
| 528 | |
| 529 | pq_begintypsend(&buf); |
| 530 | pq_sendint64(&buf, arg1); |
| 531 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * Comparison functions |
| 536 | */ |
| 537 | |
| 538 | Datum |
| 539 | cash_eq(PG_FUNCTION_ARGS) |
| 540 | { |
| 541 | Cash c1 = PG_GETARG_CASH(0); |
| 542 | Cash c2 = PG_GETARG_CASH(1); |
| 543 | |
| 544 | PG_RETURN_BOOL(c1 == c2); |
| 545 | } |
| 546 | |
| 547 | Datum |
| 548 | cash_ne(PG_FUNCTION_ARGS) |
| 549 | { |
| 550 | Cash c1 = PG_GETARG_CASH(0); |
| 551 | Cash c2 = PG_GETARG_CASH(1); |
| 552 | |
| 553 | PG_RETURN_BOOL(c1 != c2); |
| 554 | } |
| 555 | |
| 556 | Datum |
| 557 | cash_lt(PG_FUNCTION_ARGS) |
| 558 | { |
| 559 | Cash c1 = PG_GETARG_CASH(0); |
| 560 | Cash c2 = PG_GETARG_CASH(1); |
| 561 | |
| 562 | PG_RETURN_BOOL(c1 < c2); |
| 563 | } |
| 564 | |
| 565 | Datum |
| 566 | cash_le(PG_FUNCTION_ARGS) |
| 567 | { |
| 568 | Cash c1 = PG_GETARG_CASH(0); |
| 569 | Cash c2 = PG_GETARG_CASH(1); |
| 570 | |
| 571 | PG_RETURN_BOOL(c1 <= c2); |
| 572 | } |
| 573 | |
| 574 | Datum |
| 575 | cash_gt(PG_FUNCTION_ARGS) |
| 576 | { |
| 577 | Cash c1 = PG_GETARG_CASH(0); |
| 578 | Cash c2 = PG_GETARG_CASH(1); |
| 579 | |
| 580 | PG_RETURN_BOOL(c1 > c2); |
| 581 | } |
| 582 | |
| 583 | Datum |
| 584 | cash_ge(PG_FUNCTION_ARGS) |
| 585 | { |
| 586 | Cash c1 = PG_GETARG_CASH(0); |
| 587 | Cash c2 = PG_GETARG_CASH(1); |
| 588 | |
| 589 | PG_RETURN_BOOL(c1 >= c2); |
| 590 | } |
| 591 | |
| 592 | Datum |
| 593 | cash_cmp(PG_FUNCTION_ARGS) |
| 594 | { |
| 595 | Cash c1 = PG_GETARG_CASH(0); |
| 596 | Cash c2 = PG_GETARG_CASH(1); |
| 597 | |
| 598 | if (c1 > c2) |
| 599 | PG_RETURN_INT32(1); |
| 600 | else if (c1 == c2) |
| 601 | PG_RETURN_INT32(0); |
| 602 | else |
| 603 | PG_RETURN_INT32(-1); |
| 604 | } |
| 605 | |
| 606 | |
| 607 | /* cash_pl() |
| 608 | * Add two cash values. |
| 609 | */ |
| 610 | Datum |
| 611 | cash_pl(PG_FUNCTION_ARGS) |
| 612 | { |
| 613 | Cash c1 = PG_GETARG_CASH(0); |
| 614 | Cash c2 = PG_GETARG_CASH(1); |
| 615 | Cash result; |
| 616 | |
| 617 | result = c1 + c2; |
| 618 | |
| 619 | PG_RETURN_CASH(result); |
| 620 | } |
| 621 | |
| 622 | |
| 623 | /* cash_mi() |
| 624 | * Subtract two cash values. |
| 625 | */ |
| 626 | Datum |
| 627 | cash_mi(PG_FUNCTION_ARGS) |
| 628 | { |
| 629 | Cash c1 = PG_GETARG_CASH(0); |
| 630 | Cash c2 = PG_GETARG_CASH(1); |
| 631 | Cash result; |
| 632 | |
| 633 | result = c1 - c2; |
| 634 | |
| 635 | PG_RETURN_CASH(result); |
| 636 | } |
| 637 | |
| 638 | |
| 639 | /* cash_div_cash() |
| 640 | * Divide cash by cash, returning float8. |
| 641 | */ |
| 642 | Datum |
| 643 | cash_div_cash(PG_FUNCTION_ARGS) |
| 644 | { |
| 645 | Cash dividend = PG_GETARG_CASH(0); |
| 646 | Cash divisor = PG_GETARG_CASH(1); |
| 647 | float8 quotient; |
| 648 | |
| 649 | if (divisor == 0) |
| 650 | ereport(ERROR, |
| 651 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 652 | errmsg("division by zero" ))); |
| 653 | |
| 654 | quotient = (float8) dividend / (float8) divisor; |
| 655 | PG_RETURN_FLOAT8(quotient); |
| 656 | } |
| 657 | |
| 658 | |
| 659 | /* cash_mul_flt8() |
| 660 | * Multiply cash by float8. |
| 661 | */ |
| 662 | Datum |
| 663 | cash_mul_flt8(PG_FUNCTION_ARGS) |
| 664 | { |
| 665 | Cash c = PG_GETARG_CASH(0); |
| 666 | float8 f = PG_GETARG_FLOAT8(1); |
| 667 | Cash result; |
| 668 | |
| 669 | result = rint(c * f); |
| 670 | PG_RETURN_CASH(result); |
| 671 | } |
| 672 | |
| 673 | |
| 674 | /* flt8_mul_cash() |
| 675 | * Multiply float8 by cash. |
| 676 | */ |
| 677 | Datum |
| 678 | flt8_mul_cash(PG_FUNCTION_ARGS) |
| 679 | { |
| 680 | float8 f = PG_GETARG_FLOAT8(0); |
| 681 | Cash c = PG_GETARG_CASH(1); |
| 682 | Cash result; |
| 683 | |
| 684 | result = rint(f * c); |
| 685 | PG_RETURN_CASH(result); |
| 686 | } |
| 687 | |
| 688 | |
| 689 | /* cash_div_flt8() |
| 690 | * Divide cash by float8. |
| 691 | */ |
| 692 | Datum |
| 693 | cash_div_flt8(PG_FUNCTION_ARGS) |
| 694 | { |
| 695 | Cash c = PG_GETARG_CASH(0); |
| 696 | float8 f = PG_GETARG_FLOAT8(1); |
| 697 | Cash result; |
| 698 | |
| 699 | if (f == 0.0) |
| 700 | ereport(ERROR, |
| 701 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 702 | errmsg("division by zero" ))); |
| 703 | |
| 704 | result = rint(c / f); |
| 705 | PG_RETURN_CASH(result); |
| 706 | } |
| 707 | |
| 708 | |
| 709 | /* cash_mul_flt4() |
| 710 | * Multiply cash by float4. |
| 711 | */ |
| 712 | Datum |
| 713 | cash_mul_flt4(PG_FUNCTION_ARGS) |
| 714 | { |
| 715 | Cash c = PG_GETARG_CASH(0); |
| 716 | float4 f = PG_GETARG_FLOAT4(1); |
| 717 | Cash result; |
| 718 | |
| 719 | result = rint(c * (float8) f); |
| 720 | PG_RETURN_CASH(result); |
| 721 | } |
| 722 | |
| 723 | |
| 724 | /* flt4_mul_cash() |
| 725 | * Multiply float4 by cash. |
| 726 | */ |
| 727 | Datum |
| 728 | flt4_mul_cash(PG_FUNCTION_ARGS) |
| 729 | { |
| 730 | float4 f = PG_GETARG_FLOAT4(0); |
| 731 | Cash c = PG_GETARG_CASH(1); |
| 732 | Cash result; |
| 733 | |
| 734 | result = rint((float8) f * c); |
| 735 | PG_RETURN_CASH(result); |
| 736 | } |
| 737 | |
| 738 | |
| 739 | /* cash_div_flt4() |
| 740 | * Divide cash by float4. |
| 741 | * |
| 742 | */ |
| 743 | Datum |
| 744 | cash_div_flt4(PG_FUNCTION_ARGS) |
| 745 | { |
| 746 | Cash c = PG_GETARG_CASH(0); |
| 747 | float4 f = PG_GETARG_FLOAT4(1); |
| 748 | Cash result; |
| 749 | |
| 750 | if (f == 0.0) |
| 751 | ereport(ERROR, |
| 752 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 753 | errmsg("division by zero" ))); |
| 754 | |
| 755 | result = rint(c / (float8) f); |
| 756 | PG_RETURN_CASH(result); |
| 757 | } |
| 758 | |
| 759 | |
| 760 | /* cash_mul_int8() |
| 761 | * Multiply cash by int8. |
| 762 | */ |
| 763 | Datum |
| 764 | cash_mul_int8(PG_FUNCTION_ARGS) |
| 765 | { |
| 766 | Cash c = PG_GETARG_CASH(0); |
| 767 | int64 i = PG_GETARG_INT64(1); |
| 768 | Cash result; |
| 769 | |
| 770 | result = c * i; |
| 771 | PG_RETURN_CASH(result); |
| 772 | } |
| 773 | |
| 774 | |
| 775 | /* int8_mul_cash() |
| 776 | * Multiply int8 by cash. |
| 777 | */ |
| 778 | Datum |
| 779 | int8_mul_cash(PG_FUNCTION_ARGS) |
| 780 | { |
| 781 | int64 i = PG_GETARG_INT64(0); |
| 782 | Cash c = PG_GETARG_CASH(1); |
| 783 | Cash result; |
| 784 | |
| 785 | result = i * c; |
| 786 | PG_RETURN_CASH(result); |
| 787 | } |
| 788 | |
| 789 | /* cash_div_int8() |
| 790 | * Divide cash by 8-byte integer. |
| 791 | */ |
| 792 | Datum |
| 793 | cash_div_int8(PG_FUNCTION_ARGS) |
| 794 | { |
| 795 | Cash c = PG_GETARG_CASH(0); |
| 796 | int64 i = PG_GETARG_INT64(1); |
| 797 | Cash result; |
| 798 | |
| 799 | if (i == 0) |
| 800 | ereport(ERROR, |
| 801 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 802 | errmsg("division by zero" ))); |
| 803 | |
| 804 | result = c / i; |
| 805 | |
| 806 | PG_RETURN_CASH(result); |
| 807 | } |
| 808 | |
| 809 | |
| 810 | /* cash_mul_int4() |
| 811 | * Multiply cash by int4. |
| 812 | */ |
| 813 | Datum |
| 814 | cash_mul_int4(PG_FUNCTION_ARGS) |
| 815 | { |
| 816 | Cash c = PG_GETARG_CASH(0); |
| 817 | int32 i = PG_GETARG_INT32(1); |
| 818 | Cash result; |
| 819 | |
| 820 | result = c * i; |
| 821 | PG_RETURN_CASH(result); |
| 822 | } |
| 823 | |
| 824 | |
| 825 | /* int4_mul_cash() |
| 826 | * Multiply int4 by cash. |
| 827 | */ |
| 828 | Datum |
| 829 | int4_mul_cash(PG_FUNCTION_ARGS) |
| 830 | { |
| 831 | int32 i = PG_GETARG_INT32(0); |
| 832 | Cash c = PG_GETARG_CASH(1); |
| 833 | Cash result; |
| 834 | |
| 835 | result = i * c; |
| 836 | PG_RETURN_CASH(result); |
| 837 | } |
| 838 | |
| 839 | |
| 840 | /* cash_div_int4() |
| 841 | * Divide cash by 4-byte integer. |
| 842 | * |
| 843 | */ |
| 844 | Datum |
| 845 | cash_div_int4(PG_FUNCTION_ARGS) |
| 846 | { |
| 847 | Cash c = PG_GETARG_CASH(0); |
| 848 | int32 i = PG_GETARG_INT32(1); |
| 849 | Cash result; |
| 850 | |
| 851 | if (i == 0) |
| 852 | ereport(ERROR, |
| 853 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 854 | errmsg("division by zero" ))); |
| 855 | |
| 856 | result = c / i; |
| 857 | |
| 858 | PG_RETURN_CASH(result); |
| 859 | } |
| 860 | |
| 861 | |
| 862 | /* cash_mul_int2() |
| 863 | * Multiply cash by int2. |
| 864 | */ |
| 865 | Datum |
| 866 | cash_mul_int2(PG_FUNCTION_ARGS) |
| 867 | { |
| 868 | Cash c = PG_GETARG_CASH(0); |
| 869 | int16 s = PG_GETARG_INT16(1); |
| 870 | Cash result; |
| 871 | |
| 872 | result = c * s; |
| 873 | PG_RETURN_CASH(result); |
| 874 | } |
| 875 | |
| 876 | /* int2_mul_cash() |
| 877 | * Multiply int2 by cash. |
| 878 | */ |
| 879 | Datum |
| 880 | int2_mul_cash(PG_FUNCTION_ARGS) |
| 881 | { |
| 882 | int16 s = PG_GETARG_INT16(0); |
| 883 | Cash c = PG_GETARG_CASH(1); |
| 884 | Cash result; |
| 885 | |
| 886 | result = s * c; |
| 887 | PG_RETURN_CASH(result); |
| 888 | } |
| 889 | |
| 890 | /* cash_div_int2() |
| 891 | * Divide cash by int2. |
| 892 | * |
| 893 | */ |
| 894 | Datum |
| 895 | cash_div_int2(PG_FUNCTION_ARGS) |
| 896 | { |
| 897 | Cash c = PG_GETARG_CASH(0); |
| 898 | int16 s = PG_GETARG_INT16(1); |
| 899 | Cash result; |
| 900 | |
| 901 | if (s == 0) |
| 902 | ereport(ERROR, |
| 903 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 904 | errmsg("division by zero" ))); |
| 905 | |
| 906 | result = c / s; |
| 907 | PG_RETURN_CASH(result); |
| 908 | } |
| 909 | |
| 910 | /* cashlarger() |
| 911 | * Return larger of two cash values. |
| 912 | */ |
| 913 | Datum |
| 914 | cashlarger(PG_FUNCTION_ARGS) |
| 915 | { |
| 916 | Cash c1 = PG_GETARG_CASH(0); |
| 917 | Cash c2 = PG_GETARG_CASH(1); |
| 918 | Cash result; |
| 919 | |
| 920 | result = (c1 > c2) ? c1 : c2; |
| 921 | |
| 922 | PG_RETURN_CASH(result); |
| 923 | } |
| 924 | |
| 925 | /* cashsmaller() |
| 926 | * Return smaller of two cash values. |
| 927 | */ |
| 928 | Datum |
| 929 | cashsmaller(PG_FUNCTION_ARGS) |
| 930 | { |
| 931 | Cash c1 = PG_GETARG_CASH(0); |
| 932 | Cash c2 = PG_GETARG_CASH(1); |
| 933 | Cash result; |
| 934 | |
| 935 | result = (c1 < c2) ? c1 : c2; |
| 936 | |
| 937 | PG_RETURN_CASH(result); |
| 938 | } |
| 939 | |
| 940 | /* cash_words() |
| 941 | * This converts an int4 as well but to a representation using words |
| 942 | * Obviously way North American centric - sorry |
| 943 | */ |
| 944 | Datum |
| 945 | cash_words(PG_FUNCTION_ARGS) |
| 946 | { |
| 947 | Cash value = PG_GETARG_CASH(0); |
| 948 | uint64 val; |
| 949 | char buf[256]; |
| 950 | char *p = buf; |
| 951 | Cash m0; |
| 952 | Cash m1; |
| 953 | Cash m2; |
| 954 | Cash m3; |
| 955 | Cash m4; |
| 956 | Cash m5; |
| 957 | Cash m6; |
| 958 | |
| 959 | /* work with positive numbers */ |
| 960 | if (value < 0) |
| 961 | { |
| 962 | value = -value; |
| 963 | strcpy(buf, "minus " ); |
| 964 | p += 6; |
| 965 | } |
| 966 | else |
| 967 | buf[0] = '\0'; |
| 968 | |
| 969 | /* Now treat as unsigned, to avoid trouble at INT_MIN */ |
| 970 | val = (uint64) value; |
| 971 | |
| 972 | m0 = val % INT64CONST(100); /* cents */ |
| 973 | m1 = (val / INT64CONST(100)) % 1000; /* hundreds */ |
| 974 | m2 = (val / INT64CONST(100000)) % 1000; /* thousands */ |
| 975 | m3 = (val / INT64CONST(100000000)) % 1000; /* millions */ |
| 976 | m4 = (val / INT64CONST(100000000000)) % 1000; /* billions */ |
| 977 | m5 = (val / INT64CONST(100000000000000)) % 1000; /* trillions */ |
| 978 | m6 = (val / INT64CONST(100000000000000000)) % 1000; /* quadrillions */ |
| 979 | |
| 980 | if (m6) |
| 981 | { |
| 982 | strcat(buf, num_word(m6)); |
| 983 | strcat(buf, " quadrillion " ); |
| 984 | } |
| 985 | |
| 986 | if (m5) |
| 987 | { |
| 988 | strcat(buf, num_word(m5)); |
| 989 | strcat(buf, " trillion " ); |
| 990 | } |
| 991 | |
| 992 | if (m4) |
| 993 | { |
| 994 | strcat(buf, num_word(m4)); |
| 995 | strcat(buf, " billion " ); |
| 996 | } |
| 997 | |
| 998 | if (m3) |
| 999 | { |
| 1000 | strcat(buf, num_word(m3)); |
| 1001 | strcat(buf, " million " ); |
| 1002 | } |
| 1003 | |
| 1004 | if (m2) |
| 1005 | { |
| 1006 | strcat(buf, num_word(m2)); |
| 1007 | strcat(buf, " thousand " ); |
| 1008 | } |
| 1009 | |
| 1010 | if (m1) |
| 1011 | strcat(buf, num_word(m1)); |
| 1012 | |
| 1013 | if (!*p) |
| 1014 | strcat(buf, "zero" ); |
| 1015 | |
| 1016 | strcat(buf, (val / 100) == 1 ? " dollar and " : " dollars and " ); |
| 1017 | strcat(buf, num_word(m0)); |
| 1018 | strcat(buf, m0 == 1 ? " cent" : " cents" ); |
| 1019 | |
| 1020 | /* capitalize output */ |
| 1021 | buf[0] = pg_toupper((unsigned char) buf[0]); |
| 1022 | |
| 1023 | /* return as text datum */ |
| 1024 | PG_RETURN_TEXT_P(cstring_to_text(buf)); |
| 1025 | } |
| 1026 | |
| 1027 | |
| 1028 | /* cash_numeric() |
| 1029 | * Convert cash to numeric. |
| 1030 | */ |
| 1031 | Datum |
| 1032 | cash_numeric(PG_FUNCTION_ARGS) |
| 1033 | { |
| 1034 | Cash money = PG_GETARG_CASH(0); |
| 1035 | Datum result; |
| 1036 | int fpoint; |
| 1037 | struct lconv *lconvert = PGLC_localeconv(); |
| 1038 | |
| 1039 | /* see comments about frac_digits in cash_in() */ |
| 1040 | fpoint = lconvert->frac_digits; |
| 1041 | if (fpoint < 0 || fpoint > 10) |
| 1042 | fpoint = 2; |
| 1043 | |
| 1044 | /* convert the integral money value to numeric */ |
| 1045 | result = DirectFunctionCall1(int8_numeric, Int64GetDatum(money)); |
| 1046 | |
| 1047 | /* scale appropriately, if needed */ |
| 1048 | if (fpoint > 0) |
| 1049 | { |
| 1050 | int64 scale; |
| 1051 | int i; |
| 1052 | Datum numeric_scale; |
| 1053 | Datum quotient; |
| 1054 | |
| 1055 | /* compute required scale factor */ |
| 1056 | scale = 1; |
| 1057 | for (i = 0; i < fpoint; i++) |
| 1058 | scale *= 10; |
| 1059 | numeric_scale = DirectFunctionCall1(int8_numeric, |
| 1060 | Int64GetDatum(scale)); |
| 1061 | |
| 1062 | /* |
| 1063 | * Given integral inputs approaching INT64_MAX, select_div_scale() |
| 1064 | * might choose a result scale of zero, causing loss of fractional |
| 1065 | * digits in the quotient. We can ensure an exact result by setting |
| 1066 | * the dscale of either input to be at least as large as the desired |
| 1067 | * result scale. numeric_round() will do that for us. |
| 1068 | */ |
| 1069 | numeric_scale = DirectFunctionCall2(numeric_round, |
| 1070 | numeric_scale, |
| 1071 | Int32GetDatum(fpoint)); |
| 1072 | |
| 1073 | /* Now we can safely divide ... */ |
| 1074 | quotient = DirectFunctionCall2(numeric_div, result, numeric_scale); |
| 1075 | |
| 1076 | /* ... and forcibly round to exactly the intended number of digits */ |
| 1077 | result = DirectFunctionCall2(numeric_round, |
| 1078 | quotient, |
| 1079 | Int32GetDatum(fpoint)); |
| 1080 | } |
| 1081 | |
| 1082 | PG_RETURN_DATUM(result); |
| 1083 | } |
| 1084 | |
| 1085 | /* numeric_cash() |
| 1086 | * Convert numeric to cash. |
| 1087 | */ |
| 1088 | Datum |
| 1089 | numeric_cash(PG_FUNCTION_ARGS) |
| 1090 | { |
| 1091 | Datum amount = PG_GETARG_DATUM(0); |
| 1092 | Cash result; |
| 1093 | int fpoint; |
| 1094 | int64 scale; |
| 1095 | int i; |
| 1096 | Datum numeric_scale; |
| 1097 | struct lconv *lconvert = PGLC_localeconv(); |
| 1098 | |
| 1099 | /* see comments about frac_digits in cash_in() */ |
| 1100 | fpoint = lconvert->frac_digits; |
| 1101 | if (fpoint < 0 || fpoint > 10) |
| 1102 | fpoint = 2; |
| 1103 | |
| 1104 | /* compute required scale factor */ |
| 1105 | scale = 1; |
| 1106 | for (i = 0; i < fpoint; i++) |
| 1107 | scale *= 10; |
| 1108 | |
| 1109 | /* multiply the input amount by scale factor */ |
| 1110 | numeric_scale = DirectFunctionCall1(int8_numeric, Int64GetDatum(scale)); |
| 1111 | amount = DirectFunctionCall2(numeric_mul, amount, numeric_scale); |
| 1112 | |
| 1113 | /* note that numeric_int8 will round to nearest integer for us */ |
| 1114 | result = DatumGetInt64(DirectFunctionCall1(numeric_int8, amount)); |
| 1115 | |
| 1116 | PG_RETURN_CASH(result); |
| 1117 | } |
| 1118 | |
| 1119 | /* int4_cash() |
| 1120 | * Convert int4 (int) to cash |
| 1121 | */ |
| 1122 | Datum |
| 1123 | int4_cash(PG_FUNCTION_ARGS) |
| 1124 | { |
| 1125 | int32 amount = PG_GETARG_INT32(0); |
| 1126 | Cash result; |
| 1127 | int fpoint; |
| 1128 | int64 scale; |
| 1129 | int i; |
| 1130 | struct lconv *lconvert = PGLC_localeconv(); |
| 1131 | |
| 1132 | /* see comments about frac_digits in cash_in() */ |
| 1133 | fpoint = lconvert->frac_digits; |
| 1134 | if (fpoint < 0 || fpoint > 10) |
| 1135 | fpoint = 2; |
| 1136 | |
| 1137 | /* compute required scale factor */ |
| 1138 | scale = 1; |
| 1139 | for (i = 0; i < fpoint; i++) |
| 1140 | scale *= 10; |
| 1141 | |
| 1142 | /* compute amount * scale, checking for overflow */ |
| 1143 | result = DatumGetInt64(DirectFunctionCall2(int8mul, Int64GetDatum(amount), |
| 1144 | Int64GetDatum(scale))); |
| 1145 | |
| 1146 | PG_RETURN_CASH(result); |
| 1147 | } |
| 1148 | |
| 1149 | /* int8_cash() |
| 1150 | * Convert int8 (bigint) to cash |
| 1151 | */ |
| 1152 | Datum |
| 1153 | int8_cash(PG_FUNCTION_ARGS) |
| 1154 | { |
| 1155 | int64 amount = PG_GETARG_INT64(0); |
| 1156 | Cash result; |
| 1157 | int fpoint; |
| 1158 | int64 scale; |
| 1159 | int i; |
| 1160 | struct lconv *lconvert = PGLC_localeconv(); |
| 1161 | |
| 1162 | /* see comments about frac_digits in cash_in() */ |
| 1163 | fpoint = lconvert->frac_digits; |
| 1164 | if (fpoint < 0 || fpoint > 10) |
| 1165 | fpoint = 2; |
| 1166 | |
| 1167 | /* compute required scale factor */ |
| 1168 | scale = 1; |
| 1169 | for (i = 0; i < fpoint; i++) |
| 1170 | scale *= 10; |
| 1171 | |
| 1172 | /* compute amount * scale, checking for overflow */ |
| 1173 | result = DatumGetInt64(DirectFunctionCall2(int8mul, Int64GetDatum(amount), |
| 1174 | Int64GetDatum(scale))); |
| 1175 | |
| 1176 | PG_RETURN_CASH(result); |
| 1177 | } |
| 1178 | |