| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * datetime.c |
| 4 | * Support functions for date/time types. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/adt/datetime.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <ctype.h> |
| 18 | #include <limits.h> |
| 19 | #include <math.h> |
| 20 | |
| 21 | #include "access/htup_details.h" |
| 22 | #include "access/xact.h" |
| 23 | #include "catalog/pg_type.h" |
| 24 | #include "common/string.h" |
| 25 | #include "funcapi.h" |
| 26 | #include "miscadmin.h" |
| 27 | #include "nodes/nodeFuncs.h" |
| 28 | #include "utils/builtins.h" |
| 29 | #include "utils/date.h" |
| 30 | #include "utils/datetime.h" |
| 31 | #include "utils/memutils.h" |
| 32 | #include "utils/tzparser.h" |
| 33 | |
| 34 | |
| 35 | static int DecodeNumber(int flen, char *field, bool haveTextMonth, |
| 36 | int fmask, int *tmask, |
| 37 | struct pg_tm *tm, fsec_t *fsec, bool *is2digits); |
| 38 | static int DecodeNumberField(int len, char *str, |
| 39 | int fmask, int *tmask, |
| 40 | struct pg_tm *tm, fsec_t *fsec, bool *is2digits); |
| 41 | static int DecodeTime(char *str, int fmask, int range, |
| 42 | int *tmask, struct pg_tm *tm, fsec_t *fsec); |
| 43 | static const datetkn *datebsearch(const char *key, const datetkn *base, int nel); |
| 44 | static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, |
| 45 | struct pg_tm *tm); |
| 46 | static char *AppendSeconds(char *cp, int sec, fsec_t fsec, |
| 47 | int precision, bool fillzeros); |
| 48 | static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, |
| 49 | int scale); |
| 50 | static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, |
| 51 | int scale); |
| 52 | static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, |
| 53 | pg_time_t *tp); |
| 54 | static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, |
| 55 | const char *abbr, pg_tz *tzp, |
| 56 | int *offset, int *isdst); |
| 57 | static pg_tz *FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp); |
| 58 | |
| 59 | |
| 60 | const int day_tab[2][13] = |
| 61 | { |
| 62 | {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}, |
| 63 | {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0} |
| 64 | }; |
| 65 | |
| 66 | const char *const months[] = {"Jan" , "Feb" , "Mar" , "Apr" , "May" , "Jun" , |
| 67 | "Jul" , "Aug" , "Sep" , "Oct" , "Nov" , "Dec" , NULL}; |
| 68 | |
| 69 | const char *const days[] = {"Sunday" , "Monday" , "Tuesday" , "Wednesday" , |
| 70 | "Thursday" , "Friday" , "Saturday" , NULL}; |
| 71 | |
| 72 | |
| 73 | /***************************************************************************** |
| 74 | * PRIVATE ROUTINES * |
| 75 | *****************************************************************************/ |
| 76 | |
| 77 | /* |
| 78 | * datetktbl holds date/time keywords. |
| 79 | * |
| 80 | * Note that this table must be strictly alphabetically ordered to allow an |
| 81 | * O(ln(N)) search algorithm to be used. |
| 82 | * |
| 83 | * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN |
| 84 | * characters to fit. |
| 85 | * |
| 86 | * The static table contains no TZ, DTZ, or DYNTZ entries; rather those |
| 87 | * are loaded from configuration files and stored in zoneabbrevtbl, whose |
| 88 | * abbrevs[] field has the same format as the static datetktbl. |
| 89 | */ |
| 90 | static const datetkn datetktbl[] = { |
| 91 | /* token, type, value */ |
| 92 | {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */ |
| 93 | {DA_D, ADBC, AD}, /* "ad" for years > 0 */ |
| 94 | {"allballs" , RESERV, DTK_ZULU}, /* 00:00:00 */ |
| 95 | {"am" , AMPM, AM}, |
| 96 | {"apr" , MONTH, 4}, |
| 97 | {"april" , MONTH, 4}, |
| 98 | {"at" , IGNORE_DTF, 0}, /* "at" (throwaway) */ |
| 99 | {"aug" , MONTH, 8}, |
| 100 | {"august" , MONTH, 8}, |
| 101 | {DB_C, ADBC, BC}, /* "bc" for years <= 0 */ |
| 102 | {"d" , UNITS, DTK_DAY}, /* "day of month" for ISO input */ |
| 103 | {"dec" , MONTH, 12}, |
| 104 | {"december" , MONTH, 12}, |
| 105 | {"dow" , UNITS, DTK_DOW}, /* day of week */ |
| 106 | {"doy" , UNITS, DTK_DOY}, /* day of year */ |
| 107 | {"dst" , DTZMOD, SECS_PER_HOUR}, |
| 108 | {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */ |
| 109 | {"feb" , MONTH, 2}, |
| 110 | {"february" , MONTH, 2}, |
| 111 | {"fri" , DOW, 5}, |
| 112 | {"friday" , DOW, 5}, |
| 113 | {"h" , UNITS, DTK_HOUR}, /* "hour" */ |
| 114 | {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */ |
| 115 | {"isodow" , UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */ |
| 116 | {"isoyear" , UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */ |
| 117 | {"j" , UNITS, DTK_JULIAN}, |
| 118 | {"jan" , MONTH, 1}, |
| 119 | {"january" , MONTH, 1}, |
| 120 | {"jd" , UNITS, DTK_JULIAN}, |
| 121 | {"jul" , MONTH, 7}, |
| 122 | {"julian" , UNITS, DTK_JULIAN}, |
| 123 | {"july" , MONTH, 7}, |
| 124 | {"jun" , MONTH, 6}, |
| 125 | {"june" , MONTH, 6}, |
| 126 | {"m" , UNITS, DTK_MONTH}, /* "month" for ISO input */ |
| 127 | {"mar" , MONTH, 3}, |
| 128 | {"march" , MONTH, 3}, |
| 129 | {"may" , MONTH, 5}, |
| 130 | {"mm" , UNITS, DTK_MINUTE}, /* "minute" for ISO input */ |
| 131 | {"mon" , DOW, 1}, |
| 132 | {"monday" , DOW, 1}, |
| 133 | {"nov" , MONTH, 11}, |
| 134 | {"november" , MONTH, 11}, |
| 135 | {NOW, RESERV, DTK_NOW}, /* current transaction time */ |
| 136 | {"oct" , MONTH, 10}, |
| 137 | {"october" , MONTH, 10}, |
| 138 | {"on" , IGNORE_DTF, 0}, /* "on" (throwaway) */ |
| 139 | {"pm" , AMPM, PM}, |
| 140 | {"s" , UNITS, DTK_SECOND}, /* "seconds" for ISO input */ |
| 141 | {"sat" , DOW, 6}, |
| 142 | {"saturday" , DOW, 6}, |
| 143 | {"sep" , MONTH, 9}, |
| 144 | {"sept" , MONTH, 9}, |
| 145 | {"september" , MONTH, 9}, |
| 146 | {"sun" , DOW, 0}, |
| 147 | {"sunday" , DOW, 0}, |
| 148 | {"t" , ISOTIME, DTK_TIME}, /* Filler for ISO time fields */ |
| 149 | {"thu" , DOW, 4}, |
| 150 | {"thur" , DOW, 4}, |
| 151 | {"thurs" , DOW, 4}, |
| 152 | {"thursday" , DOW, 4}, |
| 153 | {TODAY, RESERV, DTK_TODAY}, /* midnight */ |
| 154 | {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */ |
| 155 | {"tue" , DOW, 2}, |
| 156 | {"tues" , DOW, 2}, |
| 157 | {"tuesday" , DOW, 2}, |
| 158 | {"wed" , DOW, 3}, |
| 159 | {"wednesday" , DOW, 3}, |
| 160 | {"weds" , DOW, 3}, |
| 161 | {"y" , UNITS, DTK_YEAR}, /* "year" for ISO input */ |
| 162 | {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */ |
| 163 | }; |
| 164 | |
| 165 | static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0]; |
| 166 | |
| 167 | /* |
| 168 | * deltatktbl: same format as datetktbl, but holds keywords used to represent |
| 169 | * time units (eg, for intervals, and for EXTRACT). |
| 170 | */ |
| 171 | static const datetkn deltatktbl[] = { |
| 172 | /* token, type, value */ |
| 173 | {"@" , IGNORE_DTF, 0}, /* postgres relative prefix */ |
| 174 | {DAGO, AGO, 0}, /* "ago" indicates negative time offset */ |
| 175 | {"c" , UNITS, DTK_CENTURY}, /* "century" relative */ |
| 176 | {"cent" , UNITS, DTK_CENTURY}, /* "century" relative */ |
| 177 | {"centuries" , UNITS, DTK_CENTURY}, /* "centuries" relative */ |
| 178 | {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */ |
| 179 | {"d" , UNITS, DTK_DAY}, /* "day" relative */ |
| 180 | {DDAY, UNITS, DTK_DAY}, /* "day" relative */ |
| 181 | {"days" , UNITS, DTK_DAY}, /* "days" relative */ |
| 182 | {"dec" , UNITS, DTK_DECADE}, /* "decade" relative */ |
| 183 | {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */ |
| 184 | {"decades" , UNITS, DTK_DECADE}, /* "decades" relative */ |
| 185 | {"decs" , UNITS, DTK_DECADE}, /* "decades" relative */ |
| 186 | {"h" , UNITS, DTK_HOUR}, /* "hour" relative */ |
| 187 | {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */ |
| 188 | {"hours" , UNITS, DTK_HOUR}, /* "hours" relative */ |
| 189 | {"hr" , UNITS, DTK_HOUR}, /* "hour" relative */ |
| 190 | {"hrs" , UNITS, DTK_HOUR}, /* "hours" relative */ |
| 191 | {"m" , UNITS, DTK_MINUTE}, /* "minute" relative */ |
| 192 | {"microsecon" , UNITS, DTK_MICROSEC}, /* "microsecond" relative */ |
| 193 | {"mil" , UNITS, DTK_MILLENNIUM}, /* "millennium" relative */ |
| 194 | {"millennia" , UNITS, DTK_MILLENNIUM}, /* "millennia" relative */ |
| 195 | {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */ |
| 196 | {"millisecon" , UNITS, DTK_MILLISEC}, /* relative */ |
| 197 | {"mils" , UNITS, DTK_MILLENNIUM}, /* "millennia" relative */ |
| 198 | {"min" , UNITS, DTK_MINUTE}, /* "minute" relative */ |
| 199 | {"mins" , UNITS, DTK_MINUTE}, /* "minutes" relative */ |
| 200 | {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */ |
| 201 | {"minutes" , UNITS, DTK_MINUTE}, /* "minutes" relative */ |
| 202 | {"mon" , UNITS, DTK_MONTH}, /* "months" relative */ |
| 203 | {"mons" , UNITS, DTK_MONTH}, /* "months" relative */ |
| 204 | {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */ |
| 205 | {"months" , UNITS, DTK_MONTH}, |
| 206 | {"ms" , UNITS, DTK_MILLISEC}, |
| 207 | {"msec" , UNITS, DTK_MILLISEC}, |
| 208 | {DMILLISEC, UNITS, DTK_MILLISEC}, |
| 209 | {"mseconds" , UNITS, DTK_MILLISEC}, |
| 210 | {"msecs" , UNITS, DTK_MILLISEC}, |
| 211 | {"qtr" , UNITS, DTK_QUARTER}, /* "quarter" relative */ |
| 212 | {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */ |
| 213 | {"s" , UNITS, DTK_SECOND}, |
| 214 | {"sec" , UNITS, DTK_SECOND}, |
| 215 | {DSECOND, UNITS, DTK_SECOND}, |
| 216 | {"seconds" , UNITS, DTK_SECOND}, |
| 217 | {"secs" , UNITS, DTK_SECOND}, |
| 218 | {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */ |
| 219 | {"timezone_h" , UNITS, DTK_TZ_HOUR}, /* timezone hour units */ |
| 220 | {"timezone_m" , UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */ |
| 221 | {"us" , UNITS, DTK_MICROSEC}, /* "microsecond" relative */ |
| 222 | {"usec" , UNITS, DTK_MICROSEC}, /* "microsecond" relative */ |
| 223 | {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */ |
| 224 | {"useconds" , UNITS, DTK_MICROSEC}, /* "microseconds" relative */ |
| 225 | {"usecs" , UNITS, DTK_MICROSEC}, /* "microseconds" relative */ |
| 226 | {"w" , UNITS, DTK_WEEK}, /* "week" relative */ |
| 227 | {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */ |
| 228 | {"weeks" , UNITS, DTK_WEEK}, /* "weeks" relative */ |
| 229 | {"y" , UNITS, DTK_YEAR}, /* "year" relative */ |
| 230 | {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */ |
| 231 | {"years" , UNITS, DTK_YEAR}, /* "years" relative */ |
| 232 | {"yr" , UNITS, DTK_YEAR}, /* "year" relative */ |
| 233 | {"yrs" , UNITS, DTK_YEAR} /* "years" relative */ |
| 234 | }; |
| 235 | |
| 236 | static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0]; |
| 237 | |
| 238 | static TimeZoneAbbrevTable *zoneabbrevtbl = NULL; |
| 239 | |
| 240 | /* Caches of recent lookup results in the above tables */ |
| 241 | |
| 242 | static const datetkn *datecache[MAXDATEFIELDS] = {NULL}; |
| 243 | |
| 244 | static const datetkn *deltacache[MAXDATEFIELDS] = {NULL}; |
| 245 | |
| 246 | static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL}; |
| 247 | |
| 248 | |
| 249 | /* |
| 250 | * Calendar time to Julian date conversions. |
| 251 | * Julian date is commonly used in astronomical applications, |
| 252 | * since it is numerically accurate and computationally simple. |
| 253 | * The algorithms here will accurately convert between Julian day |
| 254 | * and calendar date for all non-negative Julian days |
| 255 | * (i.e. from Nov 24, -4713 on). |
| 256 | * |
| 257 | * Rewritten to eliminate overflow problems. This now allows the |
| 258 | * routines to work correctly for all Julian day counts from |
| 259 | * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming |
| 260 | * a 32-bit integer. Longer types should also work to the limits |
| 261 | * of their precision. |
| 262 | * |
| 263 | * Actually, date2j() will work sanely, in the sense of producing |
| 264 | * valid negative Julian dates, significantly before Nov 24, -4713. |
| 265 | * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN() |
| 266 | * and associated commentary in timestamp.h. |
| 267 | */ |
| 268 | |
| 269 | int |
| 270 | date2j(int y, int m, int d) |
| 271 | { |
| 272 | int julian; |
| 273 | int century; |
| 274 | |
| 275 | if (m > 2) |
| 276 | { |
| 277 | m += 1; |
| 278 | y += 4800; |
| 279 | } |
| 280 | else |
| 281 | { |
| 282 | m += 13; |
| 283 | y += 4799; |
| 284 | } |
| 285 | |
| 286 | century = y / 100; |
| 287 | julian = y * 365 - 32167; |
| 288 | julian += y / 4 - century + century / 4; |
| 289 | julian += 7834 * m / 256 + d; |
| 290 | |
| 291 | return julian; |
| 292 | } /* date2j() */ |
| 293 | |
| 294 | void |
| 295 | j2date(int jd, int *year, int *month, int *day) |
| 296 | { |
| 297 | unsigned int julian; |
| 298 | unsigned int quad; |
| 299 | unsigned int ; |
| 300 | int y; |
| 301 | |
| 302 | julian = jd; |
| 303 | julian += 32044; |
| 304 | quad = julian / 146097; |
| 305 | extra = (julian - quad * 146097) * 4 + 3; |
| 306 | julian += 60 + quad * 3 + extra / 146097; |
| 307 | quad = julian / 1461; |
| 308 | julian -= quad * 1461; |
| 309 | y = julian * 4 / 1461; |
| 310 | julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366)) |
| 311 | + 123; |
| 312 | y += quad * 4; |
| 313 | *year = y - 4800; |
| 314 | quad = julian * 2141 / 65536; |
| 315 | *day = julian - 7834 * quad / 256; |
| 316 | *month = (quad + 10) % MONTHS_PER_YEAR + 1; |
| 317 | |
| 318 | return; |
| 319 | } /* j2date() */ |
| 320 | |
| 321 | |
| 322 | /* |
| 323 | * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat) |
| 324 | * |
| 325 | * Note: various places use the locution j2day(date - 1) to produce a |
| 326 | * result according to the convention 0..6 = Mon..Sun. This is a bit of |
| 327 | * a crock, but will work as long as the computation here is just a modulo. |
| 328 | */ |
| 329 | int |
| 330 | j2day(int date) |
| 331 | { |
| 332 | date += 1; |
| 333 | date %= 7; |
| 334 | /* Cope if division truncates towards zero, as it probably does */ |
| 335 | if (date < 0) |
| 336 | date += 7; |
| 337 | |
| 338 | return date; |
| 339 | } /* j2day() */ |
| 340 | |
| 341 | |
| 342 | /* |
| 343 | * GetCurrentDateTime() |
| 344 | * |
| 345 | * Get the transaction start time ("now()") broken down as a struct pg_tm. |
| 346 | */ |
| 347 | void |
| 348 | GetCurrentDateTime(struct pg_tm *tm) |
| 349 | { |
| 350 | int tz; |
| 351 | fsec_t fsec; |
| 352 | |
| 353 | timestamp2tm(GetCurrentTransactionStartTimestamp(), &tz, tm, &fsec, |
| 354 | NULL, NULL); |
| 355 | /* Note: don't pass NULL tzp to timestamp2tm; affects behavior */ |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * GetCurrentTimeUsec() |
| 360 | * |
| 361 | * Get the transaction start time ("now()") broken down as a struct pg_tm, |
| 362 | * including fractional seconds and timezone offset. |
| 363 | */ |
| 364 | void |
| 365 | GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp) |
| 366 | { |
| 367 | int tz; |
| 368 | |
| 369 | timestamp2tm(GetCurrentTransactionStartTimestamp(), &tz, tm, fsec, |
| 370 | NULL, NULL); |
| 371 | /* Note: don't pass NULL tzp to timestamp2tm; affects behavior */ |
| 372 | if (tzp != NULL) |
| 373 | *tzp = tz; |
| 374 | } |
| 375 | |
| 376 | |
| 377 | /* |
| 378 | * Append seconds and fractional seconds (if any) at *cp. |
| 379 | * |
| 380 | * precision is the max number of fraction digits, fillzeros says to |
| 381 | * pad to two integral-seconds digits. |
| 382 | * |
| 383 | * Returns a pointer to the new end of string. No NUL terminator is put |
| 384 | * there; callers are responsible for NUL terminating str themselves. |
| 385 | * |
| 386 | * Note that any sign is stripped from the input seconds values. |
| 387 | */ |
| 388 | static char * |
| 389 | AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros) |
| 390 | { |
| 391 | Assert(precision >= 0); |
| 392 | |
| 393 | if (fillzeros) |
| 394 | cp = pg_ltostr_zeropad(cp, Abs(sec), 2); |
| 395 | else |
| 396 | cp = pg_ltostr(cp, Abs(sec)); |
| 397 | |
| 398 | /* fsec_t is just an int32 */ |
| 399 | if (fsec != 0) |
| 400 | { |
| 401 | int32 value = Abs(fsec); |
| 402 | char *end = &cp[precision + 1]; |
| 403 | bool gotnonzero = false; |
| 404 | |
| 405 | *cp++ = '.'; |
| 406 | |
| 407 | /* |
| 408 | * Append the fractional seconds part. Note that we don't want any |
| 409 | * trailing zeros here, so since we're building the number in reverse |
| 410 | * we'll skip appending zeros until we've output a non-zero digit. |
| 411 | */ |
| 412 | while (precision--) |
| 413 | { |
| 414 | int32 oldval = value; |
| 415 | int32 remainder; |
| 416 | |
| 417 | value /= 10; |
| 418 | remainder = oldval - value * 10; |
| 419 | |
| 420 | /* check if we got a non-zero */ |
| 421 | if (remainder) |
| 422 | gotnonzero = true; |
| 423 | |
| 424 | if (gotnonzero) |
| 425 | cp[precision] = '0' + remainder; |
| 426 | else |
| 427 | end = &cp[precision]; |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * If we still have a non-zero value then precision must have not been |
| 432 | * enough to print the number. We punt the problem to pg_ltostr(), |
| 433 | * which will generate a correct answer in the minimum valid width. |
| 434 | */ |
| 435 | if (value) |
| 436 | return pg_ltostr(cp, Abs(fsec)); |
| 437 | |
| 438 | return end; |
| 439 | } |
| 440 | else |
| 441 | return cp; |
| 442 | } |
| 443 | |
| 444 | |
| 445 | /* |
| 446 | * Variant of above that's specialized to timestamp case. |
| 447 | * |
| 448 | * Returns a pointer to the new end of string. No NUL terminator is put |
| 449 | * there; callers are responsible for NUL terminating str themselves. |
| 450 | */ |
| 451 | static char * |
| 452 | AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec) |
| 453 | { |
| 454 | return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true); |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * Multiply frac by scale (to produce seconds) and add to *tm & *fsec. |
| 459 | * We assume the input frac is less than 1 so overflow is not an issue. |
| 460 | */ |
| 461 | static void |
| 462 | AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale) |
| 463 | { |
| 464 | int sec; |
| 465 | |
| 466 | if (frac == 0) |
| 467 | return; |
| 468 | frac *= scale; |
| 469 | sec = (int) frac; |
| 470 | tm->tm_sec += sec; |
| 471 | frac -= sec; |
| 472 | *fsec += rint(frac * 1000000); |
| 473 | } |
| 474 | |
| 475 | /* As above, but initial scale produces days */ |
| 476 | static void |
| 477 | AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale) |
| 478 | { |
| 479 | int ; |
| 480 | |
| 481 | if (frac == 0) |
| 482 | return; |
| 483 | frac *= scale; |
| 484 | extra_days = (int) frac; |
| 485 | tm->tm_mday += extra_days; |
| 486 | frac -= extra_days; |
| 487 | AdjustFractSeconds(frac, tm, fsec, SECS_PER_DAY); |
| 488 | } |
| 489 | |
| 490 | /* Fetch a fractional-second value with suitable error checking */ |
| 491 | static int |
| 492 | ParseFractionalSecond(char *cp, fsec_t *fsec) |
| 493 | { |
| 494 | double frac; |
| 495 | |
| 496 | /* Caller should always pass the start of the fraction part */ |
| 497 | Assert(*cp == '.'); |
| 498 | errno = 0; |
| 499 | frac = strtod(cp, &cp); |
| 500 | /* check for parse failure */ |
| 501 | if (*cp != '\0' || errno != 0) |
| 502 | return DTERR_BAD_FORMAT; |
| 503 | *fsec = rint(frac * 1000000); |
| 504 | return 0; |
| 505 | } |
| 506 | |
| 507 | |
| 508 | /* ParseDateTime() |
| 509 | * Break string into tokens based on a date/time context. |
| 510 | * Returns 0 if successful, DTERR code if bogus input detected. |
| 511 | * |
| 512 | * timestr - the input string |
| 513 | * workbuf - workspace for field string storage. This must be |
| 514 | * larger than the largest legal input for this datetime type -- |
| 515 | * some additional space will be needed to NUL terminate fields. |
| 516 | * buflen - the size of workbuf |
| 517 | * field[] - pointers to field strings are returned in this array |
| 518 | * ftype[] - field type indicators are returned in this array |
| 519 | * maxfields - dimensions of the above two arrays |
| 520 | * *numfields - set to the actual number of fields detected |
| 521 | * |
| 522 | * The fields extracted from the input are stored as separate, |
| 523 | * null-terminated strings in the workspace at workbuf. Any text is |
| 524 | * converted to lower case. |
| 525 | * |
| 526 | * Several field types are assigned: |
| 527 | * DTK_NUMBER - digits and (possibly) a decimal point |
| 528 | * DTK_DATE - digits and two delimiters, or digits and text |
| 529 | * DTK_TIME - digits, colon delimiters, and possibly a decimal point |
| 530 | * DTK_STRING - text (no digits or punctuation) |
| 531 | * DTK_SPECIAL - leading "+" or "-" followed by text |
| 532 | * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-') |
| 533 | * |
| 534 | * Note that some field types can hold unexpected items: |
| 535 | * DTK_NUMBER can hold date fields (yy.ddd) |
| 536 | * DTK_STRING can hold months (January) and time zones (PST) |
| 537 | * DTK_DATE can hold time zone names (America/New_York, GMT-8) |
| 538 | */ |
| 539 | int |
| 540 | ParseDateTime(const char *timestr, char *workbuf, size_t buflen, |
| 541 | char **field, int *ftype, int maxfields, int *numfields) |
| 542 | { |
| 543 | int nf = 0; |
| 544 | const char *cp = timestr; |
| 545 | char *bufp = workbuf; |
| 546 | const char *bufend = workbuf + buflen; |
| 547 | |
| 548 | /* |
| 549 | * Set the character pointed-to by "bufptr" to "newchar", and increment |
| 550 | * "bufptr". "end" gives the end of the buffer -- we return an error if |
| 551 | * there is no space left to append a character to the buffer. Note that |
| 552 | * "bufptr" is evaluated twice. |
| 553 | */ |
| 554 | #define APPEND_CHAR(bufptr, end, newchar) \ |
| 555 | do \ |
| 556 | { \ |
| 557 | if (((bufptr) + 1) >= (end)) \ |
| 558 | return DTERR_BAD_FORMAT; \ |
| 559 | *(bufptr)++ = newchar; \ |
| 560 | } while (0) |
| 561 | |
| 562 | /* outer loop through fields */ |
| 563 | while (*cp != '\0') |
| 564 | { |
| 565 | /* Ignore spaces between fields */ |
| 566 | if (isspace((unsigned char) *cp)) |
| 567 | { |
| 568 | cp++; |
| 569 | continue; |
| 570 | } |
| 571 | |
| 572 | /* Record start of current field */ |
| 573 | if (nf >= maxfields) |
| 574 | return DTERR_BAD_FORMAT; |
| 575 | field[nf] = bufp; |
| 576 | |
| 577 | /* leading digit? then date or time */ |
| 578 | if (isdigit((unsigned char) *cp)) |
| 579 | { |
| 580 | APPEND_CHAR(bufp, bufend, *cp++); |
| 581 | while (isdigit((unsigned char) *cp)) |
| 582 | APPEND_CHAR(bufp, bufend, *cp++); |
| 583 | |
| 584 | /* time field? */ |
| 585 | if (*cp == ':') |
| 586 | { |
| 587 | ftype[nf] = DTK_TIME; |
| 588 | APPEND_CHAR(bufp, bufend, *cp++); |
| 589 | while (isdigit((unsigned char) *cp) || |
| 590 | (*cp == ':') || (*cp == '.')) |
| 591 | APPEND_CHAR(bufp, bufend, *cp++); |
| 592 | } |
| 593 | /* date field? allow embedded text month */ |
| 594 | else if (*cp == '-' || *cp == '/' || *cp == '.') |
| 595 | { |
| 596 | /* save delimiting character to use later */ |
| 597 | char delim = *cp; |
| 598 | |
| 599 | APPEND_CHAR(bufp, bufend, *cp++); |
| 600 | /* second field is all digits? then no embedded text month */ |
| 601 | if (isdigit((unsigned char) *cp)) |
| 602 | { |
| 603 | ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE); |
| 604 | while (isdigit((unsigned char) *cp)) |
| 605 | APPEND_CHAR(bufp, bufend, *cp++); |
| 606 | |
| 607 | /* |
| 608 | * insist that the delimiters match to get a three-field |
| 609 | * date. |
| 610 | */ |
| 611 | if (*cp == delim) |
| 612 | { |
| 613 | ftype[nf] = DTK_DATE; |
| 614 | APPEND_CHAR(bufp, bufend, *cp++); |
| 615 | while (isdigit((unsigned char) *cp) || *cp == delim) |
| 616 | APPEND_CHAR(bufp, bufend, *cp++); |
| 617 | } |
| 618 | } |
| 619 | else |
| 620 | { |
| 621 | ftype[nf] = DTK_DATE; |
| 622 | while (isalnum((unsigned char) *cp) || *cp == delim) |
| 623 | APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * otherwise, number only and will determine year, month, day, or |
| 629 | * concatenated fields later... |
| 630 | */ |
| 631 | else |
| 632 | ftype[nf] = DTK_NUMBER; |
| 633 | } |
| 634 | /* Leading decimal point? Then fractional seconds... */ |
| 635 | else if (*cp == '.') |
| 636 | { |
| 637 | APPEND_CHAR(bufp, bufend, *cp++); |
| 638 | while (isdigit((unsigned char) *cp)) |
| 639 | APPEND_CHAR(bufp, bufend, *cp++); |
| 640 | |
| 641 | ftype[nf] = DTK_NUMBER; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * text? then date string, month, day of week, special, or timezone |
| 646 | */ |
| 647 | else if (isalpha((unsigned char) *cp)) |
| 648 | { |
| 649 | bool is_date; |
| 650 | |
| 651 | ftype[nf] = DTK_STRING; |
| 652 | APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| 653 | while (isalpha((unsigned char) *cp)) |
| 654 | APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| 655 | |
| 656 | /* |
| 657 | * Dates can have embedded '-', '/', or '.' separators. It could |
| 658 | * also be a timezone name containing embedded '/', '+', '-', '_', |
| 659 | * or ':' (but '_' or ':' can't be the first punctuation). If the |
| 660 | * next character is a digit or '+', we need to check whether what |
| 661 | * we have so far is a recognized non-timezone keyword --- if so, |
| 662 | * don't believe that this is the start of a timezone. |
| 663 | */ |
| 664 | is_date = false; |
| 665 | if (*cp == '-' || *cp == '/' || *cp == '.') |
| 666 | is_date = true; |
| 667 | else if (*cp == '+' || isdigit((unsigned char) *cp)) |
| 668 | { |
| 669 | *bufp = '\0'; /* null-terminate current field value */ |
| 670 | /* we need search only the core token table, not TZ names */ |
| 671 | if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL) |
| 672 | is_date = true; |
| 673 | } |
| 674 | if (is_date) |
| 675 | { |
| 676 | ftype[nf] = DTK_DATE; |
| 677 | do |
| 678 | { |
| 679 | APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| 680 | } while (*cp == '+' || *cp == '-' || |
| 681 | *cp == '/' || *cp == '_' || |
| 682 | *cp == '.' || *cp == ':' || |
| 683 | isalnum((unsigned char) *cp)); |
| 684 | } |
| 685 | } |
| 686 | /* sign? then special or numeric timezone */ |
| 687 | else if (*cp == '+' || *cp == '-') |
| 688 | { |
| 689 | APPEND_CHAR(bufp, bufend, *cp++); |
| 690 | /* soak up leading whitespace */ |
| 691 | while (isspace((unsigned char) *cp)) |
| 692 | cp++; |
| 693 | /* numeric timezone? */ |
| 694 | /* note that "DTK_TZ" could also be a signed float or yyyy-mm */ |
| 695 | if (isdigit((unsigned char) *cp)) |
| 696 | { |
| 697 | ftype[nf] = DTK_TZ; |
| 698 | APPEND_CHAR(bufp, bufend, *cp++); |
| 699 | while (isdigit((unsigned char) *cp) || |
| 700 | *cp == ':' || *cp == '.' || *cp == '-') |
| 701 | APPEND_CHAR(bufp, bufend, *cp++); |
| 702 | } |
| 703 | /* special? */ |
| 704 | else if (isalpha((unsigned char) *cp)) |
| 705 | { |
| 706 | ftype[nf] = DTK_SPECIAL; |
| 707 | APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| 708 | while (isalpha((unsigned char) *cp)) |
| 709 | APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| 710 | } |
| 711 | /* otherwise something wrong... */ |
| 712 | else |
| 713 | return DTERR_BAD_FORMAT; |
| 714 | } |
| 715 | /* ignore other punctuation but use as delimiter */ |
| 716 | else if (ispunct((unsigned char) *cp)) |
| 717 | { |
| 718 | cp++; |
| 719 | continue; |
| 720 | } |
| 721 | /* otherwise, something is not right... */ |
| 722 | else |
| 723 | return DTERR_BAD_FORMAT; |
| 724 | |
| 725 | /* force in a delimiter after each field */ |
| 726 | *bufp++ = '\0'; |
| 727 | nf++; |
| 728 | } |
| 729 | |
| 730 | *numfields = nf; |
| 731 | |
| 732 | return 0; |
| 733 | } |
| 734 | |
| 735 | |
| 736 | /* DecodeDateTime() |
| 737 | * Interpret previously parsed fields for general date and time. |
| 738 | * Return 0 if full date, 1 if only time, and negative DTERR code if problems. |
| 739 | * (Currently, all callers treat 1 as an error return too.) |
| 740 | * |
| 741 | * External format(s): |
| 742 | * "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>" |
| 743 | * "Fri Feb-7-1997 15:23:27" |
| 744 | * "Feb-7-1997 15:23:27" |
| 745 | * "2-7-1997 15:23:27" |
| 746 | * "1997-2-7 15:23:27" |
| 747 | * "1997.038 15:23:27" (day of year 1-366) |
| 748 | * Also supports input in compact time: |
| 749 | * "970207 152327" |
| 750 | * "97038 152327" |
| 751 | * "20011225T040506.789-07" |
| 752 | * |
| 753 | * Use the system-provided functions to get the current time zone |
| 754 | * if not specified in the input string. |
| 755 | * |
| 756 | * If the date is outside the range of pg_time_t (in practice that could only |
| 757 | * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas |
| 758 | * 1997-05-27 |
| 759 | */ |
| 760 | int |
| 761 | DecodeDateTime(char **field, int *ftype, int nf, |
| 762 | int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp) |
| 763 | { |
| 764 | int fmask = 0, |
| 765 | tmask, |
| 766 | type; |
| 767 | int ptype = 0; /* "prefix type" for ISO y2001m02d04 format */ |
| 768 | int i; |
| 769 | int val; |
| 770 | int dterr; |
| 771 | int mer = HR24; |
| 772 | bool haveTextMonth = false; |
| 773 | bool isjulian = false; |
| 774 | bool is2digits = false; |
| 775 | bool bc = false; |
| 776 | pg_tz *namedTz = NULL; |
| 777 | pg_tz *abbrevTz = NULL; |
| 778 | pg_tz *valtz; |
| 779 | char *abbrev = NULL; |
| 780 | struct pg_tm cur_tm; |
| 781 | |
| 782 | /* |
| 783 | * We'll insist on at least all of the date fields, but initialize the |
| 784 | * remaining fields in case they are not set later... |
| 785 | */ |
| 786 | *dtype = DTK_DATE; |
| 787 | tm->tm_hour = 0; |
| 788 | tm->tm_min = 0; |
| 789 | tm->tm_sec = 0; |
| 790 | *fsec = 0; |
| 791 | /* don't know daylight savings time status apriori */ |
| 792 | tm->tm_isdst = -1; |
| 793 | if (tzp != NULL) |
| 794 | *tzp = 0; |
| 795 | |
| 796 | for (i = 0; i < nf; i++) |
| 797 | { |
| 798 | switch (ftype[i]) |
| 799 | { |
| 800 | case DTK_DATE: |
| 801 | |
| 802 | /* |
| 803 | * Integral julian day with attached time zone? All other |
| 804 | * forms with JD will be separated into distinct fields, so we |
| 805 | * handle just this case here. |
| 806 | */ |
| 807 | if (ptype == DTK_JULIAN) |
| 808 | { |
| 809 | char *cp; |
| 810 | int val; |
| 811 | |
| 812 | if (tzp == NULL) |
| 813 | return DTERR_BAD_FORMAT; |
| 814 | |
| 815 | errno = 0; |
| 816 | val = strtoint(field[i], &cp, 10); |
| 817 | if (errno == ERANGE || val < 0) |
| 818 | return DTERR_FIELD_OVERFLOW; |
| 819 | |
| 820 | j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| 821 | isjulian = true; |
| 822 | |
| 823 | /* Get the time zone from the end of the string */ |
| 824 | dterr = DecodeTimezone(cp, tzp); |
| 825 | if (dterr) |
| 826 | return dterr; |
| 827 | |
| 828 | tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ); |
| 829 | ptype = 0; |
| 830 | break; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * Already have a date? Then this might be a time zone name |
| 835 | * with embedded punctuation (e.g. "America/New_York") or a |
| 836 | * run-together time with trailing time zone (e.g. hhmmss-zz). |
| 837 | * - thomas 2001-12-25 |
| 838 | * |
| 839 | * We consider it a time zone if we already have month & day. |
| 840 | * This is to allow the form "mmm dd hhmmss tz year", which |
| 841 | * we've historically accepted. |
| 842 | */ |
| 843 | else if (ptype != 0 || |
| 844 | ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) == |
| 845 | (DTK_M(MONTH) | DTK_M(DAY)))) |
| 846 | { |
| 847 | /* No time zone accepted? Then quit... */ |
| 848 | if (tzp == NULL) |
| 849 | return DTERR_BAD_FORMAT; |
| 850 | |
| 851 | if (isdigit((unsigned char) *field[i]) || ptype != 0) |
| 852 | { |
| 853 | char *cp; |
| 854 | |
| 855 | if (ptype != 0) |
| 856 | { |
| 857 | /* Sanity check; should not fail this test */ |
| 858 | if (ptype != DTK_TIME) |
| 859 | return DTERR_BAD_FORMAT; |
| 860 | ptype = 0; |
| 861 | } |
| 862 | |
| 863 | /* |
| 864 | * Starts with a digit but we already have a time |
| 865 | * field? Then we are in trouble with a date and time |
| 866 | * already... |
| 867 | */ |
| 868 | if ((fmask & DTK_TIME_M) == DTK_TIME_M) |
| 869 | return DTERR_BAD_FORMAT; |
| 870 | |
| 871 | if ((cp = strchr(field[i], '-')) == NULL) |
| 872 | return DTERR_BAD_FORMAT; |
| 873 | |
| 874 | /* Get the time zone from the end of the string */ |
| 875 | dterr = DecodeTimezone(cp, tzp); |
| 876 | if (dterr) |
| 877 | return dterr; |
| 878 | *cp = '\0'; |
| 879 | |
| 880 | /* |
| 881 | * Then read the rest of the field as a concatenated |
| 882 | * time |
| 883 | */ |
| 884 | dterr = DecodeNumberField(strlen(field[i]), field[i], |
| 885 | fmask, |
| 886 | &tmask, tm, |
| 887 | fsec, &is2digits); |
| 888 | if (dterr < 0) |
| 889 | return dterr; |
| 890 | |
| 891 | /* |
| 892 | * modify tmask after returning from |
| 893 | * DecodeNumberField() |
| 894 | */ |
| 895 | tmask |= DTK_M(TZ); |
| 896 | } |
| 897 | else |
| 898 | { |
| 899 | namedTz = pg_tzset(field[i]); |
| 900 | if (!namedTz) |
| 901 | { |
| 902 | /* |
| 903 | * We should return an error code instead of |
| 904 | * ereport'ing directly, but then there is no way |
| 905 | * to report the bad time zone name. |
| 906 | */ |
| 907 | ereport(ERROR, |
| 908 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 909 | errmsg("time zone \"%s\" not recognized" , |
| 910 | field[i]))); |
| 911 | } |
| 912 | /* we'll apply the zone setting below */ |
| 913 | tmask = DTK_M(TZ); |
| 914 | } |
| 915 | } |
| 916 | else |
| 917 | { |
| 918 | dterr = DecodeDate(field[i], fmask, |
| 919 | &tmask, &is2digits, tm); |
| 920 | if (dterr) |
| 921 | return dterr; |
| 922 | } |
| 923 | break; |
| 924 | |
| 925 | case DTK_TIME: |
| 926 | |
| 927 | /* |
| 928 | * This might be an ISO time following a "t" field. |
| 929 | */ |
| 930 | if (ptype != 0) |
| 931 | { |
| 932 | /* Sanity check; should not fail this test */ |
| 933 | if (ptype != DTK_TIME) |
| 934 | return DTERR_BAD_FORMAT; |
| 935 | ptype = 0; |
| 936 | } |
| 937 | dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE, |
| 938 | &tmask, tm, fsec); |
| 939 | if (dterr) |
| 940 | return dterr; |
| 941 | |
| 942 | /* |
| 943 | * Check upper limit on hours; other limits checked in |
| 944 | * DecodeTime() |
| 945 | */ |
| 946 | /* test for > 24:00:00 */ |
| 947 | if (tm->tm_hour > HOURS_PER_DAY || |
| 948 | (tm->tm_hour == HOURS_PER_DAY && |
| 949 | (tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0))) |
| 950 | return DTERR_FIELD_OVERFLOW; |
| 951 | break; |
| 952 | |
| 953 | case DTK_TZ: |
| 954 | { |
| 955 | int tz; |
| 956 | |
| 957 | if (tzp == NULL) |
| 958 | return DTERR_BAD_FORMAT; |
| 959 | |
| 960 | dterr = DecodeTimezone(field[i], &tz); |
| 961 | if (dterr) |
| 962 | return dterr; |
| 963 | *tzp = tz; |
| 964 | tmask = DTK_M(TZ); |
| 965 | } |
| 966 | break; |
| 967 | |
| 968 | case DTK_NUMBER: |
| 969 | |
| 970 | /* |
| 971 | * Was this an "ISO date" with embedded field labels? An |
| 972 | * example is "y2001m02d04" - thomas 2001-02-04 |
| 973 | */ |
| 974 | if (ptype != 0) |
| 975 | { |
| 976 | char *cp; |
| 977 | int val; |
| 978 | |
| 979 | errno = 0; |
| 980 | val = strtoint(field[i], &cp, 10); |
| 981 | if (errno == ERANGE) |
| 982 | return DTERR_FIELD_OVERFLOW; |
| 983 | |
| 984 | /* |
| 985 | * only a few kinds are allowed to have an embedded |
| 986 | * decimal |
| 987 | */ |
| 988 | if (*cp == '.') |
| 989 | switch (ptype) |
| 990 | { |
| 991 | case DTK_JULIAN: |
| 992 | case DTK_TIME: |
| 993 | case DTK_SECOND: |
| 994 | break; |
| 995 | default: |
| 996 | return DTERR_BAD_FORMAT; |
| 997 | break; |
| 998 | } |
| 999 | else if (*cp != '\0') |
| 1000 | return DTERR_BAD_FORMAT; |
| 1001 | |
| 1002 | switch (ptype) |
| 1003 | { |
| 1004 | case DTK_YEAR: |
| 1005 | tm->tm_year = val; |
| 1006 | tmask = DTK_M(YEAR); |
| 1007 | break; |
| 1008 | |
| 1009 | case DTK_MONTH: |
| 1010 | |
| 1011 | /* |
| 1012 | * already have a month and hour? then assume |
| 1013 | * minutes |
| 1014 | */ |
| 1015 | if ((fmask & DTK_M(MONTH)) != 0 && |
| 1016 | (fmask & DTK_M(HOUR)) != 0) |
| 1017 | { |
| 1018 | tm->tm_min = val; |
| 1019 | tmask = DTK_M(MINUTE); |
| 1020 | } |
| 1021 | else |
| 1022 | { |
| 1023 | tm->tm_mon = val; |
| 1024 | tmask = DTK_M(MONTH); |
| 1025 | } |
| 1026 | break; |
| 1027 | |
| 1028 | case DTK_DAY: |
| 1029 | tm->tm_mday = val; |
| 1030 | tmask = DTK_M(DAY); |
| 1031 | break; |
| 1032 | |
| 1033 | case DTK_HOUR: |
| 1034 | tm->tm_hour = val; |
| 1035 | tmask = DTK_M(HOUR); |
| 1036 | break; |
| 1037 | |
| 1038 | case DTK_MINUTE: |
| 1039 | tm->tm_min = val; |
| 1040 | tmask = DTK_M(MINUTE); |
| 1041 | break; |
| 1042 | |
| 1043 | case DTK_SECOND: |
| 1044 | tm->tm_sec = val; |
| 1045 | tmask = DTK_M(SECOND); |
| 1046 | if (*cp == '.') |
| 1047 | { |
| 1048 | dterr = ParseFractionalSecond(cp, fsec); |
| 1049 | if (dterr) |
| 1050 | return dterr; |
| 1051 | tmask = DTK_ALL_SECS_M; |
| 1052 | } |
| 1053 | break; |
| 1054 | |
| 1055 | case DTK_TZ: |
| 1056 | tmask = DTK_M(TZ); |
| 1057 | dterr = DecodeTimezone(field[i], tzp); |
| 1058 | if (dterr) |
| 1059 | return dterr; |
| 1060 | break; |
| 1061 | |
| 1062 | case DTK_JULIAN: |
| 1063 | /* previous field was a label for "julian date" */ |
| 1064 | if (val < 0) |
| 1065 | return DTERR_FIELD_OVERFLOW; |
| 1066 | tmask = DTK_DATE_M; |
| 1067 | j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| 1068 | isjulian = true; |
| 1069 | |
| 1070 | /* fractional Julian Day? */ |
| 1071 | if (*cp == '.') |
| 1072 | { |
| 1073 | double time; |
| 1074 | |
| 1075 | errno = 0; |
| 1076 | time = strtod(cp, &cp); |
| 1077 | if (*cp != '\0' || errno != 0) |
| 1078 | return DTERR_BAD_FORMAT; |
| 1079 | time *= USECS_PER_DAY; |
| 1080 | dt2time(time, |
| 1081 | &tm->tm_hour, &tm->tm_min, |
| 1082 | &tm->tm_sec, fsec); |
| 1083 | tmask |= DTK_TIME_M; |
| 1084 | } |
| 1085 | break; |
| 1086 | |
| 1087 | case DTK_TIME: |
| 1088 | /* previous field was "t" for ISO time */ |
| 1089 | dterr = DecodeNumberField(strlen(field[i]), field[i], |
| 1090 | (fmask | DTK_DATE_M), |
| 1091 | &tmask, tm, |
| 1092 | fsec, &is2digits); |
| 1093 | if (dterr < 0) |
| 1094 | return dterr; |
| 1095 | if (tmask != DTK_TIME_M) |
| 1096 | return DTERR_BAD_FORMAT; |
| 1097 | break; |
| 1098 | |
| 1099 | default: |
| 1100 | return DTERR_BAD_FORMAT; |
| 1101 | break; |
| 1102 | } |
| 1103 | |
| 1104 | ptype = 0; |
| 1105 | *dtype = DTK_DATE; |
| 1106 | } |
| 1107 | else |
| 1108 | { |
| 1109 | char *cp; |
| 1110 | int flen; |
| 1111 | |
| 1112 | flen = strlen(field[i]); |
| 1113 | cp = strchr(field[i], '.'); |
| 1114 | |
| 1115 | /* Embedded decimal and no date yet? */ |
| 1116 | if (cp != NULL && !(fmask & DTK_DATE_M)) |
| 1117 | { |
| 1118 | dterr = DecodeDate(field[i], fmask, |
| 1119 | &tmask, &is2digits, tm); |
| 1120 | if (dterr) |
| 1121 | return dterr; |
| 1122 | } |
| 1123 | /* embedded decimal and several digits before? */ |
| 1124 | else if (cp != NULL && flen - strlen(cp) > 2) |
| 1125 | { |
| 1126 | /* |
| 1127 | * Interpret as a concatenated date or time Set the |
| 1128 | * type field to allow decoding other fields later. |
| 1129 | * Example: 20011223 or 040506 |
| 1130 | */ |
| 1131 | dterr = DecodeNumberField(flen, field[i], fmask, |
| 1132 | &tmask, tm, |
| 1133 | fsec, &is2digits); |
| 1134 | if (dterr < 0) |
| 1135 | return dterr; |
| 1136 | } |
| 1137 | |
| 1138 | /* |
| 1139 | * Is this a YMD or HMS specification, or a year number? |
| 1140 | * YMD and HMS are required to be six digits or more, so |
| 1141 | * if it is 5 digits, it is a year. If it is six or more |
| 1142 | * digits, we assume it is YMD or HMS unless no date and |
| 1143 | * no time values have been specified. This forces 6+ |
| 1144 | * digit years to be at the end of the string, or to use |
| 1145 | * the ISO date specification. |
| 1146 | */ |
| 1147 | else if (flen >= 6 && (!(fmask & DTK_DATE_M) || |
| 1148 | !(fmask & DTK_TIME_M))) |
| 1149 | { |
| 1150 | dterr = DecodeNumberField(flen, field[i], fmask, |
| 1151 | &tmask, tm, |
| 1152 | fsec, &is2digits); |
| 1153 | if (dterr < 0) |
| 1154 | return dterr; |
| 1155 | } |
| 1156 | /* otherwise it is a single date/time field... */ |
| 1157 | else |
| 1158 | { |
| 1159 | dterr = DecodeNumber(flen, field[i], |
| 1160 | haveTextMonth, fmask, |
| 1161 | &tmask, tm, |
| 1162 | fsec, &is2digits); |
| 1163 | if (dterr) |
| 1164 | return dterr; |
| 1165 | } |
| 1166 | } |
| 1167 | break; |
| 1168 | |
| 1169 | case DTK_STRING: |
| 1170 | case DTK_SPECIAL: |
| 1171 | /* timezone abbrevs take precedence over built-in tokens */ |
| 1172 | type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz); |
| 1173 | if (type == UNKNOWN_FIELD) |
| 1174 | type = DecodeSpecial(i, field[i], &val); |
| 1175 | if (type == IGNORE_DTF) |
| 1176 | continue; |
| 1177 | |
| 1178 | tmask = DTK_M(type); |
| 1179 | switch (type) |
| 1180 | { |
| 1181 | case RESERV: |
| 1182 | switch (val) |
| 1183 | { |
| 1184 | case DTK_NOW: |
| 1185 | tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ)); |
| 1186 | *dtype = DTK_DATE; |
| 1187 | GetCurrentTimeUsec(tm, fsec, tzp); |
| 1188 | break; |
| 1189 | |
| 1190 | case DTK_YESTERDAY: |
| 1191 | tmask = DTK_DATE_M; |
| 1192 | *dtype = DTK_DATE; |
| 1193 | GetCurrentDateTime(&cur_tm); |
| 1194 | j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1, |
| 1195 | &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| 1196 | break; |
| 1197 | |
| 1198 | case DTK_TODAY: |
| 1199 | tmask = DTK_DATE_M; |
| 1200 | *dtype = DTK_DATE; |
| 1201 | GetCurrentDateTime(&cur_tm); |
| 1202 | tm->tm_year = cur_tm.tm_year; |
| 1203 | tm->tm_mon = cur_tm.tm_mon; |
| 1204 | tm->tm_mday = cur_tm.tm_mday; |
| 1205 | break; |
| 1206 | |
| 1207 | case DTK_TOMORROW: |
| 1208 | tmask = DTK_DATE_M; |
| 1209 | *dtype = DTK_DATE; |
| 1210 | GetCurrentDateTime(&cur_tm); |
| 1211 | j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1, |
| 1212 | &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| 1213 | break; |
| 1214 | |
| 1215 | case DTK_ZULU: |
| 1216 | tmask = (DTK_TIME_M | DTK_M(TZ)); |
| 1217 | *dtype = DTK_DATE; |
| 1218 | tm->tm_hour = 0; |
| 1219 | tm->tm_min = 0; |
| 1220 | tm->tm_sec = 0; |
| 1221 | if (tzp != NULL) |
| 1222 | *tzp = 0; |
| 1223 | break; |
| 1224 | |
| 1225 | default: |
| 1226 | *dtype = val; |
| 1227 | } |
| 1228 | |
| 1229 | break; |
| 1230 | |
| 1231 | case MONTH: |
| 1232 | |
| 1233 | /* |
| 1234 | * already have a (numeric) month? then see if we can |
| 1235 | * substitute... |
| 1236 | */ |
| 1237 | if ((fmask & DTK_M(MONTH)) && !haveTextMonth && |
| 1238 | !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 && |
| 1239 | tm->tm_mon <= 31) |
| 1240 | { |
| 1241 | tm->tm_mday = tm->tm_mon; |
| 1242 | tmask = DTK_M(DAY); |
| 1243 | } |
| 1244 | haveTextMonth = true; |
| 1245 | tm->tm_mon = val; |
| 1246 | break; |
| 1247 | |
| 1248 | case DTZMOD: |
| 1249 | |
| 1250 | /* |
| 1251 | * daylight savings time modifier (solves "MET DST" |
| 1252 | * syntax) |
| 1253 | */ |
| 1254 | tmask |= DTK_M(DTZ); |
| 1255 | tm->tm_isdst = 1; |
| 1256 | if (tzp == NULL) |
| 1257 | return DTERR_BAD_FORMAT; |
| 1258 | *tzp -= val; |
| 1259 | break; |
| 1260 | |
| 1261 | case DTZ: |
| 1262 | |
| 1263 | /* |
| 1264 | * set mask for TZ here _or_ check for DTZ later when |
| 1265 | * getting default timezone |
| 1266 | */ |
| 1267 | tmask |= DTK_M(TZ); |
| 1268 | tm->tm_isdst = 1; |
| 1269 | if (tzp == NULL) |
| 1270 | return DTERR_BAD_FORMAT; |
| 1271 | *tzp = -val; |
| 1272 | break; |
| 1273 | |
| 1274 | case TZ: |
| 1275 | tm->tm_isdst = 0; |
| 1276 | if (tzp == NULL) |
| 1277 | return DTERR_BAD_FORMAT; |
| 1278 | *tzp = -val; |
| 1279 | break; |
| 1280 | |
| 1281 | case DYNTZ: |
| 1282 | tmask |= DTK_M(TZ); |
| 1283 | if (tzp == NULL) |
| 1284 | return DTERR_BAD_FORMAT; |
| 1285 | /* we'll determine the actual offset later */ |
| 1286 | abbrevTz = valtz; |
| 1287 | abbrev = field[i]; |
| 1288 | break; |
| 1289 | |
| 1290 | case AMPM: |
| 1291 | mer = val; |
| 1292 | break; |
| 1293 | |
| 1294 | case ADBC: |
| 1295 | bc = (val == BC); |
| 1296 | break; |
| 1297 | |
| 1298 | case DOW: |
| 1299 | tm->tm_wday = val; |
| 1300 | break; |
| 1301 | |
| 1302 | case UNITS: |
| 1303 | tmask = 0; |
| 1304 | ptype = val; |
| 1305 | break; |
| 1306 | |
| 1307 | case ISOTIME: |
| 1308 | |
| 1309 | /* |
| 1310 | * This is a filler field "t" indicating that the next |
| 1311 | * field is time. Try to verify that this is sensible. |
| 1312 | */ |
| 1313 | tmask = 0; |
| 1314 | |
| 1315 | /* No preceding date? Then quit... */ |
| 1316 | if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| 1317 | return DTERR_BAD_FORMAT; |
| 1318 | |
| 1319 | /*** |
| 1320 | * We will need one of the following fields: |
| 1321 | * DTK_NUMBER should be hhmmss.fff |
| 1322 | * DTK_TIME should be hh:mm:ss.fff |
| 1323 | * DTK_DATE should be hhmmss-zz |
| 1324 | ***/ |
| 1325 | if (i >= nf - 1 || |
| 1326 | (ftype[i + 1] != DTK_NUMBER && |
| 1327 | ftype[i + 1] != DTK_TIME && |
| 1328 | ftype[i + 1] != DTK_DATE)) |
| 1329 | return DTERR_BAD_FORMAT; |
| 1330 | |
| 1331 | ptype = val; |
| 1332 | break; |
| 1333 | |
| 1334 | case UNKNOWN_FIELD: |
| 1335 | |
| 1336 | /* |
| 1337 | * Before giving up and declaring error, check to see |
| 1338 | * if it is an all-alpha timezone name. |
| 1339 | */ |
| 1340 | namedTz = pg_tzset(field[i]); |
| 1341 | if (!namedTz) |
| 1342 | return DTERR_BAD_FORMAT; |
| 1343 | /* we'll apply the zone setting below */ |
| 1344 | tmask = DTK_M(TZ); |
| 1345 | break; |
| 1346 | |
| 1347 | default: |
| 1348 | return DTERR_BAD_FORMAT; |
| 1349 | } |
| 1350 | break; |
| 1351 | |
| 1352 | default: |
| 1353 | return DTERR_BAD_FORMAT; |
| 1354 | } |
| 1355 | |
| 1356 | if (tmask & fmask) |
| 1357 | return DTERR_BAD_FORMAT; |
| 1358 | fmask |= tmask; |
| 1359 | } /* end loop over fields */ |
| 1360 | |
| 1361 | /* do final checking/adjustment of Y/M/D fields */ |
| 1362 | dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm); |
| 1363 | if (dterr) |
| 1364 | return dterr; |
| 1365 | |
| 1366 | /* handle AM/PM */ |
| 1367 | if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2) |
| 1368 | return DTERR_FIELD_OVERFLOW; |
| 1369 | if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2) |
| 1370 | tm->tm_hour = 0; |
| 1371 | else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2) |
| 1372 | tm->tm_hour += HOURS_PER_DAY / 2; |
| 1373 | |
| 1374 | /* do additional checking for full date specs... */ |
| 1375 | if (*dtype == DTK_DATE) |
| 1376 | { |
| 1377 | if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| 1378 | { |
| 1379 | if ((fmask & DTK_TIME_M) == DTK_TIME_M) |
| 1380 | return 1; |
| 1381 | return DTERR_BAD_FORMAT; |
| 1382 | } |
| 1383 | |
| 1384 | /* |
| 1385 | * If we had a full timezone spec, compute the offset (we could not do |
| 1386 | * it before, because we need the date to resolve DST status). |
| 1387 | */ |
| 1388 | if (namedTz != NULL) |
| 1389 | { |
| 1390 | /* daylight savings time modifier disallowed with full TZ */ |
| 1391 | if (fmask & DTK_M(DTZMOD)) |
| 1392 | return DTERR_BAD_FORMAT; |
| 1393 | |
| 1394 | *tzp = DetermineTimeZoneOffset(tm, namedTz); |
| 1395 | } |
| 1396 | |
| 1397 | /* |
| 1398 | * Likewise, if we had a dynamic timezone abbreviation, resolve it |
| 1399 | * now. |
| 1400 | */ |
| 1401 | if (abbrevTz != NULL) |
| 1402 | { |
| 1403 | /* daylight savings time modifier disallowed with dynamic TZ */ |
| 1404 | if (fmask & DTK_M(DTZMOD)) |
| 1405 | return DTERR_BAD_FORMAT; |
| 1406 | |
| 1407 | *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz); |
| 1408 | } |
| 1409 | |
| 1410 | /* timezone not specified? then use session timezone */ |
| 1411 | if (tzp != NULL && !(fmask & DTK_M(TZ))) |
| 1412 | { |
| 1413 | /* |
| 1414 | * daylight savings time modifier but no standard timezone? then |
| 1415 | * error |
| 1416 | */ |
| 1417 | if (fmask & DTK_M(DTZMOD)) |
| 1418 | return DTERR_BAD_FORMAT; |
| 1419 | |
| 1420 | *tzp = DetermineTimeZoneOffset(tm, session_timezone); |
| 1421 | } |
| 1422 | } |
| 1423 | |
| 1424 | return 0; |
| 1425 | } |
| 1426 | |
| 1427 | |
| 1428 | /* DetermineTimeZoneOffset() |
| 1429 | * |
| 1430 | * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min, |
| 1431 | * and tm_sec fields are set, and a zic-style time zone definition, determine |
| 1432 | * the applicable GMT offset and daylight-savings status at that time. |
| 1433 | * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT |
| 1434 | * offset as the function result. |
| 1435 | * |
| 1436 | * Note: if the date is out of the range we can deal with, we return zero |
| 1437 | * as the GMT offset and set tm_isdst = 0. We don't throw an error here, |
| 1438 | * though probably some higher-level code will. |
| 1439 | */ |
| 1440 | int |
| 1441 | DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp) |
| 1442 | { |
| 1443 | pg_time_t t; |
| 1444 | |
| 1445 | return DetermineTimeZoneOffsetInternal(tm, tzp, &t); |
| 1446 | } |
| 1447 | |
| 1448 | |
| 1449 | /* DetermineTimeZoneOffsetInternal() |
| 1450 | * |
| 1451 | * As above, but also return the actual UTC time imputed to the date/time |
| 1452 | * into *tp. |
| 1453 | * |
| 1454 | * In event of an out-of-range date, we punt by returning zero into *tp. |
| 1455 | * This is okay for the immediate callers but is a good reason for not |
| 1456 | * exposing this worker function globally. |
| 1457 | * |
| 1458 | * Note: it might seem that we should use mktime() for this, but bitter |
| 1459 | * experience teaches otherwise. This code is much faster than most versions |
| 1460 | * of mktime(), anyway. |
| 1461 | */ |
| 1462 | static int |
| 1463 | DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp) |
| 1464 | { |
| 1465 | int date, |
| 1466 | sec; |
| 1467 | pg_time_t day, |
| 1468 | mytime, |
| 1469 | prevtime, |
| 1470 | boundary, |
| 1471 | beforetime, |
| 1472 | aftertime; |
| 1473 | long int before_gmtoff, |
| 1474 | after_gmtoff; |
| 1475 | int before_isdst, |
| 1476 | after_isdst; |
| 1477 | int res; |
| 1478 | |
| 1479 | /* |
| 1480 | * First, generate the pg_time_t value corresponding to the given |
| 1481 | * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the |
| 1482 | * timezone is GMT. (For a valid Julian date, integer overflow should be |
| 1483 | * impossible with 64-bit pg_time_t, but let's check for safety.) |
| 1484 | */ |
| 1485 | if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday)) |
| 1486 | goto overflow; |
| 1487 | date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE; |
| 1488 | |
| 1489 | day = ((pg_time_t) date) * SECS_PER_DAY; |
| 1490 | if (day / SECS_PER_DAY != date) |
| 1491 | goto overflow; |
| 1492 | sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE; |
| 1493 | mytime = day + sec; |
| 1494 | /* since sec >= 0, overflow could only be from +day to -mytime */ |
| 1495 | if (mytime < 0 && day > 0) |
| 1496 | goto overflow; |
| 1497 | |
| 1498 | /* |
| 1499 | * Find the DST time boundary just before or following the target time. We |
| 1500 | * assume that all zones have GMT offsets less than 24 hours, and that DST |
| 1501 | * boundaries can't be closer together than 48 hours, so backing up 24 |
| 1502 | * hours and finding the "next" boundary will work. |
| 1503 | */ |
| 1504 | prevtime = mytime - SECS_PER_DAY; |
| 1505 | if (mytime < 0 && prevtime > 0) |
| 1506 | goto overflow; |
| 1507 | |
| 1508 | res = pg_next_dst_boundary(&prevtime, |
| 1509 | &before_gmtoff, &before_isdst, |
| 1510 | &boundary, |
| 1511 | &after_gmtoff, &after_isdst, |
| 1512 | tzp); |
| 1513 | if (res < 0) |
| 1514 | goto overflow; /* failure? */ |
| 1515 | |
| 1516 | if (res == 0) |
| 1517 | { |
| 1518 | /* Non-DST zone, life is simple */ |
| 1519 | tm->tm_isdst = before_isdst; |
| 1520 | *tp = mytime - before_gmtoff; |
| 1521 | return -(int) before_gmtoff; |
| 1522 | } |
| 1523 | |
| 1524 | /* |
| 1525 | * Form the candidate pg_time_t values with local-time adjustment |
| 1526 | */ |
| 1527 | beforetime = mytime - before_gmtoff; |
| 1528 | if ((before_gmtoff > 0 && |
| 1529 | mytime < 0 && beforetime > 0) || |
| 1530 | (before_gmtoff <= 0 && |
| 1531 | mytime > 0 && beforetime < 0)) |
| 1532 | goto overflow; |
| 1533 | aftertime = mytime - after_gmtoff; |
| 1534 | if ((after_gmtoff > 0 && |
| 1535 | mytime < 0 && aftertime > 0) || |
| 1536 | (after_gmtoff <= 0 && |
| 1537 | mytime > 0 && aftertime < 0)) |
| 1538 | goto overflow; |
| 1539 | |
| 1540 | /* |
| 1541 | * If both before or both after the boundary time, we know what to do. The |
| 1542 | * boundary time itself is considered to be after the transition, which |
| 1543 | * means we can accept aftertime == boundary in the second case. |
| 1544 | */ |
| 1545 | if (beforetime < boundary && aftertime < boundary) |
| 1546 | { |
| 1547 | tm->tm_isdst = before_isdst; |
| 1548 | *tp = beforetime; |
| 1549 | return -(int) before_gmtoff; |
| 1550 | } |
| 1551 | if (beforetime > boundary && aftertime >= boundary) |
| 1552 | { |
| 1553 | tm->tm_isdst = after_isdst; |
| 1554 | *tp = aftertime; |
| 1555 | return -(int) after_gmtoff; |
| 1556 | } |
| 1557 | |
| 1558 | /* |
| 1559 | * It's an invalid or ambiguous time due to timezone transition. In a |
| 1560 | * spring-forward transition, prefer the "before" interpretation; in a |
| 1561 | * fall-back transition, prefer "after". (We used to define and implement |
| 1562 | * this test as "prefer the standard-time interpretation", but that rule |
| 1563 | * does not help to resolve the behavior when both times are reported as |
| 1564 | * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also, |
| 1565 | * in some zones such as Europe/Dublin, there is widespread confusion |
| 1566 | * about which time offset is "standard" time, so it's fortunate that our |
| 1567 | * behavior doesn't depend on that.) |
| 1568 | */ |
| 1569 | if (beforetime > aftertime) |
| 1570 | { |
| 1571 | tm->tm_isdst = before_isdst; |
| 1572 | *tp = beforetime; |
| 1573 | return -(int) before_gmtoff; |
| 1574 | } |
| 1575 | tm->tm_isdst = after_isdst; |
| 1576 | *tp = aftertime; |
| 1577 | return -(int) after_gmtoff; |
| 1578 | |
| 1579 | overflow: |
| 1580 | /* Given date is out of range, so assume UTC */ |
| 1581 | tm->tm_isdst = 0; |
| 1582 | *tp = 0; |
| 1583 | return 0; |
| 1584 | } |
| 1585 | |
| 1586 | |
| 1587 | /* DetermineTimeZoneAbbrevOffset() |
| 1588 | * |
| 1589 | * Determine the GMT offset and DST flag to be attributed to a dynamic |
| 1590 | * time zone abbreviation, that is one whose meaning has changed over time. |
| 1591 | * *tm contains the local time at which the meaning should be determined, |
| 1592 | * and tm->tm_isdst receives the DST flag. |
| 1593 | * |
| 1594 | * This differs from the behavior of DetermineTimeZoneOffset() in that a |
| 1595 | * standard-time or daylight-time abbreviation forces use of the corresponding |
| 1596 | * GMT offset even when the zone was then in DS or standard time respectively. |
| 1597 | * (However, that happens only if we can match the given abbreviation to some |
| 1598 | * abbreviation that appears in the IANA timezone data. Otherwise, we fall |
| 1599 | * back to doing DetermineTimeZoneOffset().) |
| 1600 | */ |
| 1601 | int |
| 1602 | DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp) |
| 1603 | { |
| 1604 | pg_time_t t; |
| 1605 | int zone_offset; |
| 1606 | int abbr_offset; |
| 1607 | int abbr_isdst; |
| 1608 | |
| 1609 | /* |
| 1610 | * Compute the UTC time we want to probe at. (In event of overflow, we'll |
| 1611 | * probe at the epoch, which is a bit random but probably doesn't matter.) |
| 1612 | */ |
| 1613 | zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t); |
| 1614 | |
| 1615 | /* |
| 1616 | * Try to match the abbreviation to something in the zone definition. |
| 1617 | */ |
| 1618 | if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp, |
| 1619 | &abbr_offset, &abbr_isdst)) |
| 1620 | { |
| 1621 | /* Success, so use the abbrev-specific answers. */ |
| 1622 | tm->tm_isdst = abbr_isdst; |
| 1623 | return abbr_offset; |
| 1624 | } |
| 1625 | |
| 1626 | /* |
| 1627 | * No match, so use the answers we already got from |
| 1628 | * DetermineTimeZoneOffsetInternal. |
| 1629 | */ |
| 1630 | return zone_offset; |
| 1631 | } |
| 1632 | |
| 1633 | |
| 1634 | /* DetermineTimeZoneAbbrevOffsetTS() |
| 1635 | * |
| 1636 | * As above but the probe time is specified as a TimestampTz (hence, UTC time), |
| 1637 | * and DST status is returned into *isdst rather than into tm->tm_isdst. |
| 1638 | */ |
| 1639 | int |
| 1640 | DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr, |
| 1641 | pg_tz *tzp, int *isdst) |
| 1642 | { |
| 1643 | pg_time_t t = timestamptz_to_time_t(ts); |
| 1644 | int zone_offset; |
| 1645 | int abbr_offset; |
| 1646 | int tz; |
| 1647 | struct pg_tm tm; |
| 1648 | fsec_t fsec; |
| 1649 | |
| 1650 | /* |
| 1651 | * If the abbrev matches anything in the zone data, this is pretty easy. |
| 1652 | */ |
| 1653 | if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp, |
| 1654 | &abbr_offset, isdst)) |
| 1655 | return abbr_offset; |
| 1656 | |
| 1657 | /* |
| 1658 | * Else, break down the timestamp so we can use DetermineTimeZoneOffset. |
| 1659 | */ |
| 1660 | if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0) |
| 1661 | ereport(ERROR, |
| 1662 | (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), |
| 1663 | errmsg("timestamp out of range" ))); |
| 1664 | |
| 1665 | zone_offset = DetermineTimeZoneOffset(&tm, tzp); |
| 1666 | *isdst = tm.tm_isdst; |
| 1667 | return zone_offset; |
| 1668 | } |
| 1669 | |
| 1670 | |
| 1671 | /* DetermineTimeZoneAbbrevOffsetInternal() |
| 1672 | * |
| 1673 | * Workhorse for above two functions: work from a pg_time_t probe instant. |
| 1674 | * On success, return GMT offset and DST status into *offset and *isdst. |
| 1675 | */ |
| 1676 | static bool |
| 1677 | DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, |
| 1678 | int *offset, int *isdst) |
| 1679 | { |
| 1680 | char upabbr[TZ_STRLEN_MAX + 1]; |
| 1681 | unsigned char *p; |
| 1682 | long int gmtoff; |
| 1683 | |
| 1684 | /* We need to force the abbrev to upper case */ |
| 1685 | strlcpy(upabbr, abbr, sizeof(upabbr)); |
| 1686 | for (p = (unsigned char *) upabbr; *p; p++) |
| 1687 | *p = pg_toupper(*p); |
| 1688 | |
| 1689 | /* Look up the abbrev's meaning at this time in this zone */ |
| 1690 | if (pg_interpret_timezone_abbrev(upabbr, |
| 1691 | &t, |
| 1692 | &gmtoff, |
| 1693 | isdst, |
| 1694 | tzp)) |
| 1695 | { |
| 1696 | /* Change sign to agree with DetermineTimeZoneOffset() */ |
| 1697 | *offset = (int) -gmtoff; |
| 1698 | return true; |
| 1699 | } |
| 1700 | return false; |
| 1701 | } |
| 1702 | |
| 1703 | |
| 1704 | /* DecodeTimeOnly() |
| 1705 | * Interpret parsed string as time fields only. |
| 1706 | * Returns 0 if successful, DTERR code if bogus input detected. |
| 1707 | * |
| 1708 | * Note that support for time zone is here for |
| 1709 | * SQL TIME WITH TIME ZONE, but it reveals |
| 1710 | * bogosity with SQL date/time standards, since |
| 1711 | * we must infer a time zone from current time. |
| 1712 | * - thomas 2000-03-10 |
| 1713 | * Allow specifying date to get a better time zone, |
| 1714 | * if time zones are allowed. - thomas 2001-12-26 |
| 1715 | */ |
| 1716 | int |
| 1717 | DecodeTimeOnly(char **field, int *ftype, int nf, |
| 1718 | int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp) |
| 1719 | { |
| 1720 | int fmask = 0, |
| 1721 | tmask, |
| 1722 | type; |
| 1723 | int ptype = 0; /* "prefix type" for ISO h04mm05s06 format */ |
| 1724 | int i; |
| 1725 | int val; |
| 1726 | int dterr; |
| 1727 | bool isjulian = false; |
| 1728 | bool is2digits = false; |
| 1729 | bool bc = false; |
| 1730 | int mer = HR24; |
| 1731 | pg_tz *namedTz = NULL; |
| 1732 | pg_tz *abbrevTz = NULL; |
| 1733 | char *abbrev = NULL; |
| 1734 | pg_tz *valtz; |
| 1735 | |
| 1736 | *dtype = DTK_TIME; |
| 1737 | tm->tm_hour = 0; |
| 1738 | tm->tm_min = 0; |
| 1739 | tm->tm_sec = 0; |
| 1740 | *fsec = 0; |
| 1741 | /* don't know daylight savings time status apriori */ |
| 1742 | tm->tm_isdst = -1; |
| 1743 | |
| 1744 | if (tzp != NULL) |
| 1745 | *tzp = 0; |
| 1746 | |
| 1747 | for (i = 0; i < nf; i++) |
| 1748 | { |
| 1749 | switch (ftype[i]) |
| 1750 | { |
| 1751 | case DTK_DATE: |
| 1752 | |
| 1753 | /* |
| 1754 | * Time zone not allowed? Then should not accept dates or time |
| 1755 | * zones no matter what else! |
| 1756 | */ |
| 1757 | if (tzp == NULL) |
| 1758 | return DTERR_BAD_FORMAT; |
| 1759 | |
| 1760 | /* Under limited circumstances, we will accept a date... */ |
| 1761 | if (i == 0 && nf >= 2 && |
| 1762 | (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME)) |
| 1763 | { |
| 1764 | dterr = DecodeDate(field[i], fmask, |
| 1765 | &tmask, &is2digits, tm); |
| 1766 | if (dterr) |
| 1767 | return dterr; |
| 1768 | } |
| 1769 | /* otherwise, this is a time and/or time zone */ |
| 1770 | else |
| 1771 | { |
| 1772 | if (isdigit((unsigned char) *field[i])) |
| 1773 | { |
| 1774 | char *cp; |
| 1775 | |
| 1776 | /* |
| 1777 | * Starts with a digit but we already have a time |
| 1778 | * field? Then we are in trouble with time already... |
| 1779 | */ |
| 1780 | if ((fmask & DTK_TIME_M) == DTK_TIME_M) |
| 1781 | return DTERR_BAD_FORMAT; |
| 1782 | |
| 1783 | /* |
| 1784 | * Should not get here and fail. Sanity check only... |
| 1785 | */ |
| 1786 | if ((cp = strchr(field[i], '-')) == NULL) |
| 1787 | return DTERR_BAD_FORMAT; |
| 1788 | |
| 1789 | /* Get the time zone from the end of the string */ |
| 1790 | dterr = DecodeTimezone(cp, tzp); |
| 1791 | if (dterr) |
| 1792 | return dterr; |
| 1793 | *cp = '\0'; |
| 1794 | |
| 1795 | /* |
| 1796 | * Then read the rest of the field as a concatenated |
| 1797 | * time |
| 1798 | */ |
| 1799 | dterr = DecodeNumberField(strlen(field[i]), field[i], |
| 1800 | (fmask | DTK_DATE_M), |
| 1801 | &tmask, tm, |
| 1802 | fsec, &is2digits); |
| 1803 | if (dterr < 0) |
| 1804 | return dterr; |
| 1805 | ftype[i] = dterr; |
| 1806 | |
| 1807 | tmask |= DTK_M(TZ); |
| 1808 | } |
| 1809 | else |
| 1810 | { |
| 1811 | namedTz = pg_tzset(field[i]); |
| 1812 | if (!namedTz) |
| 1813 | { |
| 1814 | /* |
| 1815 | * We should return an error code instead of |
| 1816 | * ereport'ing directly, but then there is no way |
| 1817 | * to report the bad time zone name. |
| 1818 | */ |
| 1819 | ereport(ERROR, |
| 1820 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1821 | errmsg("time zone \"%s\" not recognized" , |
| 1822 | field[i]))); |
| 1823 | } |
| 1824 | /* we'll apply the zone setting below */ |
| 1825 | ftype[i] = DTK_TZ; |
| 1826 | tmask = DTK_M(TZ); |
| 1827 | } |
| 1828 | } |
| 1829 | break; |
| 1830 | |
| 1831 | case DTK_TIME: |
| 1832 | dterr = DecodeTime(field[i], (fmask | DTK_DATE_M), |
| 1833 | INTERVAL_FULL_RANGE, |
| 1834 | &tmask, tm, fsec); |
| 1835 | if (dterr) |
| 1836 | return dterr; |
| 1837 | break; |
| 1838 | |
| 1839 | case DTK_TZ: |
| 1840 | { |
| 1841 | int tz; |
| 1842 | |
| 1843 | if (tzp == NULL) |
| 1844 | return DTERR_BAD_FORMAT; |
| 1845 | |
| 1846 | dterr = DecodeTimezone(field[i], &tz); |
| 1847 | if (dterr) |
| 1848 | return dterr; |
| 1849 | *tzp = tz; |
| 1850 | tmask = DTK_M(TZ); |
| 1851 | } |
| 1852 | break; |
| 1853 | |
| 1854 | case DTK_NUMBER: |
| 1855 | |
| 1856 | /* |
| 1857 | * Was this an "ISO time" with embedded field labels? An |
| 1858 | * example is "h04m05s06" - thomas 2001-02-04 |
| 1859 | */ |
| 1860 | if (ptype != 0) |
| 1861 | { |
| 1862 | char *cp; |
| 1863 | int val; |
| 1864 | |
| 1865 | /* Only accept a date under limited circumstances */ |
| 1866 | switch (ptype) |
| 1867 | { |
| 1868 | case DTK_JULIAN: |
| 1869 | case DTK_YEAR: |
| 1870 | case DTK_MONTH: |
| 1871 | case DTK_DAY: |
| 1872 | if (tzp == NULL) |
| 1873 | return DTERR_BAD_FORMAT; |
| 1874 | default: |
| 1875 | break; |
| 1876 | } |
| 1877 | |
| 1878 | errno = 0; |
| 1879 | val = strtoint(field[i], &cp, 10); |
| 1880 | if (errno == ERANGE) |
| 1881 | return DTERR_FIELD_OVERFLOW; |
| 1882 | |
| 1883 | /* |
| 1884 | * only a few kinds are allowed to have an embedded |
| 1885 | * decimal |
| 1886 | */ |
| 1887 | if (*cp == '.') |
| 1888 | switch (ptype) |
| 1889 | { |
| 1890 | case DTK_JULIAN: |
| 1891 | case DTK_TIME: |
| 1892 | case DTK_SECOND: |
| 1893 | break; |
| 1894 | default: |
| 1895 | return DTERR_BAD_FORMAT; |
| 1896 | break; |
| 1897 | } |
| 1898 | else if (*cp != '\0') |
| 1899 | return DTERR_BAD_FORMAT; |
| 1900 | |
| 1901 | switch (ptype) |
| 1902 | { |
| 1903 | case DTK_YEAR: |
| 1904 | tm->tm_year = val; |
| 1905 | tmask = DTK_M(YEAR); |
| 1906 | break; |
| 1907 | |
| 1908 | case DTK_MONTH: |
| 1909 | |
| 1910 | /* |
| 1911 | * already have a month and hour? then assume |
| 1912 | * minutes |
| 1913 | */ |
| 1914 | if ((fmask & DTK_M(MONTH)) != 0 && |
| 1915 | (fmask & DTK_M(HOUR)) != 0) |
| 1916 | { |
| 1917 | tm->tm_min = val; |
| 1918 | tmask = DTK_M(MINUTE); |
| 1919 | } |
| 1920 | else |
| 1921 | { |
| 1922 | tm->tm_mon = val; |
| 1923 | tmask = DTK_M(MONTH); |
| 1924 | } |
| 1925 | break; |
| 1926 | |
| 1927 | case DTK_DAY: |
| 1928 | tm->tm_mday = val; |
| 1929 | tmask = DTK_M(DAY); |
| 1930 | break; |
| 1931 | |
| 1932 | case DTK_HOUR: |
| 1933 | tm->tm_hour = val; |
| 1934 | tmask = DTK_M(HOUR); |
| 1935 | break; |
| 1936 | |
| 1937 | case DTK_MINUTE: |
| 1938 | tm->tm_min = val; |
| 1939 | tmask = DTK_M(MINUTE); |
| 1940 | break; |
| 1941 | |
| 1942 | case DTK_SECOND: |
| 1943 | tm->tm_sec = val; |
| 1944 | tmask = DTK_M(SECOND); |
| 1945 | if (*cp == '.') |
| 1946 | { |
| 1947 | dterr = ParseFractionalSecond(cp, fsec); |
| 1948 | if (dterr) |
| 1949 | return dterr; |
| 1950 | tmask = DTK_ALL_SECS_M; |
| 1951 | } |
| 1952 | break; |
| 1953 | |
| 1954 | case DTK_TZ: |
| 1955 | tmask = DTK_M(TZ); |
| 1956 | dterr = DecodeTimezone(field[i], tzp); |
| 1957 | if (dterr) |
| 1958 | return dterr; |
| 1959 | break; |
| 1960 | |
| 1961 | case DTK_JULIAN: |
| 1962 | /* previous field was a label for "julian date" */ |
| 1963 | if (val < 0) |
| 1964 | return DTERR_FIELD_OVERFLOW; |
| 1965 | tmask = DTK_DATE_M; |
| 1966 | j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| 1967 | isjulian = true; |
| 1968 | |
| 1969 | if (*cp == '.') |
| 1970 | { |
| 1971 | double time; |
| 1972 | |
| 1973 | errno = 0; |
| 1974 | time = strtod(cp, &cp); |
| 1975 | if (*cp != '\0' || errno != 0) |
| 1976 | return DTERR_BAD_FORMAT; |
| 1977 | time *= USECS_PER_DAY; |
| 1978 | dt2time(time, |
| 1979 | &tm->tm_hour, &tm->tm_min, |
| 1980 | &tm->tm_sec, fsec); |
| 1981 | tmask |= DTK_TIME_M; |
| 1982 | } |
| 1983 | break; |
| 1984 | |
| 1985 | case DTK_TIME: |
| 1986 | /* previous field was "t" for ISO time */ |
| 1987 | dterr = DecodeNumberField(strlen(field[i]), field[i], |
| 1988 | (fmask | DTK_DATE_M), |
| 1989 | &tmask, tm, |
| 1990 | fsec, &is2digits); |
| 1991 | if (dterr < 0) |
| 1992 | return dterr; |
| 1993 | ftype[i] = dterr; |
| 1994 | |
| 1995 | if (tmask != DTK_TIME_M) |
| 1996 | return DTERR_BAD_FORMAT; |
| 1997 | break; |
| 1998 | |
| 1999 | default: |
| 2000 | return DTERR_BAD_FORMAT; |
| 2001 | break; |
| 2002 | } |
| 2003 | |
| 2004 | ptype = 0; |
| 2005 | *dtype = DTK_DATE; |
| 2006 | } |
| 2007 | else |
| 2008 | { |
| 2009 | char *cp; |
| 2010 | int flen; |
| 2011 | |
| 2012 | flen = strlen(field[i]); |
| 2013 | cp = strchr(field[i], '.'); |
| 2014 | |
| 2015 | /* Embedded decimal? */ |
| 2016 | if (cp != NULL) |
| 2017 | { |
| 2018 | /* |
| 2019 | * Under limited circumstances, we will accept a |
| 2020 | * date... |
| 2021 | */ |
| 2022 | if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE) |
| 2023 | { |
| 2024 | dterr = DecodeDate(field[i], fmask, |
| 2025 | &tmask, &is2digits, tm); |
| 2026 | if (dterr) |
| 2027 | return dterr; |
| 2028 | } |
| 2029 | /* embedded decimal and several digits before? */ |
| 2030 | else if (flen - strlen(cp) > 2) |
| 2031 | { |
| 2032 | /* |
| 2033 | * Interpret as a concatenated date or time Set |
| 2034 | * the type field to allow decoding other fields |
| 2035 | * later. Example: 20011223 or 040506 |
| 2036 | */ |
| 2037 | dterr = DecodeNumberField(flen, field[i], |
| 2038 | (fmask | DTK_DATE_M), |
| 2039 | &tmask, tm, |
| 2040 | fsec, &is2digits); |
| 2041 | if (dterr < 0) |
| 2042 | return dterr; |
| 2043 | ftype[i] = dterr; |
| 2044 | } |
| 2045 | else |
| 2046 | return DTERR_BAD_FORMAT; |
| 2047 | } |
| 2048 | else if (flen > 4) |
| 2049 | { |
| 2050 | dterr = DecodeNumberField(flen, field[i], |
| 2051 | (fmask | DTK_DATE_M), |
| 2052 | &tmask, tm, |
| 2053 | fsec, &is2digits); |
| 2054 | if (dterr < 0) |
| 2055 | return dterr; |
| 2056 | ftype[i] = dterr; |
| 2057 | } |
| 2058 | /* otherwise it is a single date/time field... */ |
| 2059 | else |
| 2060 | { |
| 2061 | dterr = DecodeNumber(flen, field[i], |
| 2062 | false, |
| 2063 | (fmask | DTK_DATE_M), |
| 2064 | &tmask, tm, |
| 2065 | fsec, &is2digits); |
| 2066 | if (dterr) |
| 2067 | return dterr; |
| 2068 | } |
| 2069 | } |
| 2070 | break; |
| 2071 | |
| 2072 | case DTK_STRING: |
| 2073 | case DTK_SPECIAL: |
| 2074 | /* timezone abbrevs take precedence over built-in tokens */ |
| 2075 | type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz); |
| 2076 | if (type == UNKNOWN_FIELD) |
| 2077 | type = DecodeSpecial(i, field[i], &val); |
| 2078 | if (type == IGNORE_DTF) |
| 2079 | continue; |
| 2080 | |
| 2081 | tmask = DTK_M(type); |
| 2082 | switch (type) |
| 2083 | { |
| 2084 | case RESERV: |
| 2085 | switch (val) |
| 2086 | { |
| 2087 | case DTK_NOW: |
| 2088 | tmask = DTK_TIME_M; |
| 2089 | *dtype = DTK_TIME; |
| 2090 | GetCurrentTimeUsec(tm, fsec, NULL); |
| 2091 | break; |
| 2092 | |
| 2093 | case DTK_ZULU: |
| 2094 | tmask = (DTK_TIME_M | DTK_M(TZ)); |
| 2095 | *dtype = DTK_TIME; |
| 2096 | tm->tm_hour = 0; |
| 2097 | tm->tm_min = 0; |
| 2098 | tm->tm_sec = 0; |
| 2099 | tm->tm_isdst = 0; |
| 2100 | break; |
| 2101 | |
| 2102 | default: |
| 2103 | return DTERR_BAD_FORMAT; |
| 2104 | } |
| 2105 | |
| 2106 | break; |
| 2107 | |
| 2108 | case DTZMOD: |
| 2109 | |
| 2110 | /* |
| 2111 | * daylight savings time modifier (solves "MET DST" |
| 2112 | * syntax) |
| 2113 | */ |
| 2114 | tmask |= DTK_M(DTZ); |
| 2115 | tm->tm_isdst = 1; |
| 2116 | if (tzp == NULL) |
| 2117 | return DTERR_BAD_FORMAT; |
| 2118 | *tzp -= val; |
| 2119 | break; |
| 2120 | |
| 2121 | case DTZ: |
| 2122 | |
| 2123 | /* |
| 2124 | * set mask for TZ here _or_ check for DTZ later when |
| 2125 | * getting default timezone |
| 2126 | */ |
| 2127 | tmask |= DTK_M(TZ); |
| 2128 | tm->tm_isdst = 1; |
| 2129 | if (tzp == NULL) |
| 2130 | return DTERR_BAD_FORMAT; |
| 2131 | *tzp = -val; |
| 2132 | ftype[i] = DTK_TZ; |
| 2133 | break; |
| 2134 | |
| 2135 | case TZ: |
| 2136 | tm->tm_isdst = 0; |
| 2137 | if (tzp == NULL) |
| 2138 | return DTERR_BAD_FORMAT; |
| 2139 | *tzp = -val; |
| 2140 | ftype[i] = DTK_TZ; |
| 2141 | break; |
| 2142 | |
| 2143 | case DYNTZ: |
| 2144 | tmask |= DTK_M(TZ); |
| 2145 | if (tzp == NULL) |
| 2146 | return DTERR_BAD_FORMAT; |
| 2147 | /* we'll determine the actual offset later */ |
| 2148 | abbrevTz = valtz; |
| 2149 | abbrev = field[i]; |
| 2150 | ftype[i] = DTK_TZ; |
| 2151 | break; |
| 2152 | |
| 2153 | case AMPM: |
| 2154 | mer = val; |
| 2155 | break; |
| 2156 | |
| 2157 | case ADBC: |
| 2158 | bc = (val == BC); |
| 2159 | break; |
| 2160 | |
| 2161 | case UNITS: |
| 2162 | tmask = 0; |
| 2163 | ptype = val; |
| 2164 | break; |
| 2165 | |
| 2166 | case ISOTIME: |
| 2167 | tmask = 0; |
| 2168 | |
| 2169 | /*** |
| 2170 | * We will need one of the following fields: |
| 2171 | * DTK_NUMBER should be hhmmss.fff |
| 2172 | * DTK_TIME should be hh:mm:ss.fff |
| 2173 | * DTK_DATE should be hhmmss-zz |
| 2174 | ***/ |
| 2175 | if (i >= nf - 1 || |
| 2176 | (ftype[i + 1] != DTK_NUMBER && |
| 2177 | ftype[i + 1] != DTK_TIME && |
| 2178 | ftype[i + 1] != DTK_DATE)) |
| 2179 | return DTERR_BAD_FORMAT; |
| 2180 | |
| 2181 | ptype = val; |
| 2182 | break; |
| 2183 | |
| 2184 | case UNKNOWN_FIELD: |
| 2185 | |
| 2186 | /* |
| 2187 | * Before giving up and declaring error, check to see |
| 2188 | * if it is an all-alpha timezone name. |
| 2189 | */ |
| 2190 | namedTz = pg_tzset(field[i]); |
| 2191 | if (!namedTz) |
| 2192 | return DTERR_BAD_FORMAT; |
| 2193 | /* we'll apply the zone setting below */ |
| 2194 | tmask = DTK_M(TZ); |
| 2195 | break; |
| 2196 | |
| 2197 | default: |
| 2198 | return DTERR_BAD_FORMAT; |
| 2199 | } |
| 2200 | break; |
| 2201 | |
| 2202 | default: |
| 2203 | return DTERR_BAD_FORMAT; |
| 2204 | } |
| 2205 | |
| 2206 | if (tmask & fmask) |
| 2207 | return DTERR_BAD_FORMAT; |
| 2208 | fmask |= tmask; |
| 2209 | } /* end loop over fields */ |
| 2210 | |
| 2211 | /* do final checking/adjustment of Y/M/D fields */ |
| 2212 | dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm); |
| 2213 | if (dterr) |
| 2214 | return dterr; |
| 2215 | |
| 2216 | /* handle AM/PM */ |
| 2217 | if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2) |
| 2218 | return DTERR_FIELD_OVERFLOW; |
| 2219 | if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2) |
| 2220 | tm->tm_hour = 0; |
| 2221 | else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2) |
| 2222 | tm->tm_hour += HOURS_PER_DAY / 2; |
| 2223 | |
| 2224 | /* |
| 2225 | * This should match the checks in make_timestamp_internal |
| 2226 | */ |
| 2227 | if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 || |
| 2228 | tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE || |
| 2229 | tm->tm_hour > HOURS_PER_DAY || |
| 2230 | /* test for > 24:00:00 */ |
| 2231 | (tm->tm_hour == HOURS_PER_DAY && |
| 2232 | (tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)) || |
| 2233 | *fsec < INT64CONST(0) || *fsec > USECS_PER_SEC) |
| 2234 | return DTERR_FIELD_OVERFLOW; |
| 2235 | |
| 2236 | if ((fmask & DTK_TIME_M) != DTK_TIME_M) |
| 2237 | return DTERR_BAD_FORMAT; |
| 2238 | |
| 2239 | /* |
| 2240 | * If we had a full timezone spec, compute the offset (we could not do it |
| 2241 | * before, because we may need the date to resolve DST status). |
| 2242 | */ |
| 2243 | if (namedTz != NULL) |
| 2244 | { |
| 2245 | long int gmtoff; |
| 2246 | |
| 2247 | /* daylight savings time modifier disallowed with full TZ */ |
| 2248 | if (fmask & DTK_M(DTZMOD)) |
| 2249 | return DTERR_BAD_FORMAT; |
| 2250 | |
| 2251 | /* if non-DST zone, we do not need to know the date */ |
| 2252 | if (pg_get_timezone_offset(namedTz, &gmtoff)) |
| 2253 | { |
| 2254 | *tzp = -(int) gmtoff; |
| 2255 | } |
| 2256 | else |
| 2257 | { |
| 2258 | /* a date has to be specified */ |
| 2259 | if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| 2260 | return DTERR_BAD_FORMAT; |
| 2261 | *tzp = DetermineTimeZoneOffset(tm, namedTz); |
| 2262 | } |
| 2263 | } |
| 2264 | |
| 2265 | /* |
| 2266 | * Likewise, if we had a dynamic timezone abbreviation, resolve it now. |
| 2267 | */ |
| 2268 | if (abbrevTz != NULL) |
| 2269 | { |
| 2270 | struct pg_tm tt, |
| 2271 | *tmp = &tt; |
| 2272 | |
| 2273 | /* |
| 2274 | * daylight savings time modifier but no standard timezone? then error |
| 2275 | */ |
| 2276 | if (fmask & DTK_M(DTZMOD)) |
| 2277 | return DTERR_BAD_FORMAT; |
| 2278 | |
| 2279 | if ((fmask & DTK_DATE_M) == 0) |
| 2280 | GetCurrentDateTime(tmp); |
| 2281 | else |
| 2282 | { |
| 2283 | /* a date has to be specified */ |
| 2284 | if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| 2285 | return DTERR_BAD_FORMAT; |
| 2286 | tmp->tm_year = tm->tm_year; |
| 2287 | tmp->tm_mon = tm->tm_mon; |
| 2288 | tmp->tm_mday = tm->tm_mday; |
| 2289 | } |
| 2290 | tmp->tm_hour = tm->tm_hour; |
| 2291 | tmp->tm_min = tm->tm_min; |
| 2292 | tmp->tm_sec = tm->tm_sec; |
| 2293 | *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz); |
| 2294 | tm->tm_isdst = tmp->tm_isdst; |
| 2295 | } |
| 2296 | |
| 2297 | /* timezone not specified? then use session timezone */ |
| 2298 | if (tzp != NULL && !(fmask & DTK_M(TZ))) |
| 2299 | { |
| 2300 | struct pg_tm tt, |
| 2301 | *tmp = &tt; |
| 2302 | |
| 2303 | /* |
| 2304 | * daylight savings time modifier but no standard timezone? then error |
| 2305 | */ |
| 2306 | if (fmask & DTK_M(DTZMOD)) |
| 2307 | return DTERR_BAD_FORMAT; |
| 2308 | |
| 2309 | if ((fmask & DTK_DATE_M) == 0) |
| 2310 | GetCurrentDateTime(tmp); |
| 2311 | else |
| 2312 | { |
| 2313 | /* a date has to be specified */ |
| 2314 | if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| 2315 | return DTERR_BAD_FORMAT; |
| 2316 | tmp->tm_year = tm->tm_year; |
| 2317 | tmp->tm_mon = tm->tm_mon; |
| 2318 | tmp->tm_mday = tm->tm_mday; |
| 2319 | } |
| 2320 | tmp->tm_hour = tm->tm_hour; |
| 2321 | tmp->tm_min = tm->tm_min; |
| 2322 | tmp->tm_sec = tm->tm_sec; |
| 2323 | *tzp = DetermineTimeZoneOffset(tmp, session_timezone); |
| 2324 | tm->tm_isdst = tmp->tm_isdst; |
| 2325 | } |
| 2326 | |
| 2327 | return 0; |
| 2328 | } |
| 2329 | |
| 2330 | /* DecodeDate() |
| 2331 | * Decode date string which includes delimiters. |
| 2332 | * Return 0 if okay, a DTERR code if not. |
| 2333 | * |
| 2334 | * str: field to be parsed |
| 2335 | * fmask: bitmask for field types already seen |
| 2336 | * *tmask: receives bitmask for fields found here |
| 2337 | * *is2digits: set to true if we find 2-digit year |
| 2338 | * *tm: field values are stored into appropriate members of this struct |
| 2339 | */ |
| 2340 | static int |
| 2341 | DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, |
| 2342 | struct pg_tm *tm) |
| 2343 | { |
| 2344 | fsec_t fsec; |
| 2345 | int nf = 0; |
| 2346 | int i, |
| 2347 | len; |
| 2348 | int dterr; |
| 2349 | bool haveTextMonth = false; |
| 2350 | int type, |
| 2351 | val, |
| 2352 | dmask = 0; |
| 2353 | char *field[MAXDATEFIELDS]; |
| 2354 | |
| 2355 | *tmask = 0; |
| 2356 | |
| 2357 | /* parse this string... */ |
| 2358 | while (*str != '\0' && nf < MAXDATEFIELDS) |
| 2359 | { |
| 2360 | /* skip field separators */ |
| 2361 | while (*str != '\0' && !isalnum((unsigned char) *str)) |
| 2362 | str++; |
| 2363 | |
| 2364 | if (*str == '\0') |
| 2365 | return DTERR_BAD_FORMAT; /* end of string after separator */ |
| 2366 | |
| 2367 | field[nf] = str; |
| 2368 | if (isdigit((unsigned char) *str)) |
| 2369 | { |
| 2370 | while (isdigit((unsigned char) *str)) |
| 2371 | str++; |
| 2372 | } |
| 2373 | else if (isalpha((unsigned char) *str)) |
| 2374 | { |
| 2375 | while (isalpha((unsigned char) *str)) |
| 2376 | str++; |
| 2377 | } |
| 2378 | |
| 2379 | /* Just get rid of any non-digit, non-alpha characters... */ |
| 2380 | if (*str != '\0') |
| 2381 | *str++ = '\0'; |
| 2382 | nf++; |
| 2383 | } |
| 2384 | |
| 2385 | /* look first for text fields, since that will be unambiguous month */ |
| 2386 | for (i = 0; i < nf; i++) |
| 2387 | { |
| 2388 | if (isalpha((unsigned char) *field[i])) |
| 2389 | { |
| 2390 | type = DecodeSpecial(i, field[i], &val); |
| 2391 | if (type == IGNORE_DTF) |
| 2392 | continue; |
| 2393 | |
| 2394 | dmask = DTK_M(type); |
| 2395 | switch (type) |
| 2396 | { |
| 2397 | case MONTH: |
| 2398 | tm->tm_mon = val; |
| 2399 | haveTextMonth = true; |
| 2400 | break; |
| 2401 | |
| 2402 | default: |
| 2403 | return DTERR_BAD_FORMAT; |
| 2404 | } |
| 2405 | if (fmask & dmask) |
| 2406 | return DTERR_BAD_FORMAT; |
| 2407 | |
| 2408 | fmask |= dmask; |
| 2409 | *tmask |= dmask; |
| 2410 | |
| 2411 | /* mark this field as being completed */ |
| 2412 | field[i] = NULL; |
| 2413 | } |
| 2414 | } |
| 2415 | |
| 2416 | /* now pick up remaining numeric fields */ |
| 2417 | for (i = 0; i < nf; i++) |
| 2418 | { |
| 2419 | if (field[i] == NULL) |
| 2420 | continue; |
| 2421 | |
| 2422 | if ((len = strlen(field[i])) <= 0) |
| 2423 | return DTERR_BAD_FORMAT; |
| 2424 | |
| 2425 | dterr = DecodeNumber(len, field[i], haveTextMonth, fmask, |
| 2426 | &dmask, tm, |
| 2427 | &fsec, is2digits); |
| 2428 | if (dterr) |
| 2429 | return dterr; |
| 2430 | |
| 2431 | if (fmask & dmask) |
| 2432 | return DTERR_BAD_FORMAT; |
| 2433 | |
| 2434 | fmask |= dmask; |
| 2435 | *tmask |= dmask; |
| 2436 | } |
| 2437 | |
| 2438 | if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M) |
| 2439 | return DTERR_BAD_FORMAT; |
| 2440 | |
| 2441 | /* validation of the field values must wait until ValidateDate() */ |
| 2442 | |
| 2443 | return 0; |
| 2444 | } |
| 2445 | |
| 2446 | /* ValidateDate() |
| 2447 | * Check valid year/month/day values, handle BC and DOY cases |
| 2448 | * Return 0 if okay, a DTERR code if not. |
| 2449 | */ |
| 2450 | int |
| 2451 | ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc, |
| 2452 | struct pg_tm *tm) |
| 2453 | { |
| 2454 | if (fmask & DTK_M(YEAR)) |
| 2455 | { |
| 2456 | if (isjulian) |
| 2457 | { |
| 2458 | /* tm_year is correct and should not be touched */ |
| 2459 | } |
| 2460 | else if (bc) |
| 2461 | { |
| 2462 | /* there is no year zero in AD/BC notation */ |
| 2463 | if (tm->tm_year <= 0) |
| 2464 | return DTERR_FIELD_OVERFLOW; |
| 2465 | /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */ |
| 2466 | tm->tm_year = -(tm->tm_year - 1); |
| 2467 | } |
| 2468 | else if (is2digits) |
| 2469 | { |
| 2470 | /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */ |
| 2471 | if (tm->tm_year < 0) /* just paranoia */ |
| 2472 | return DTERR_FIELD_OVERFLOW; |
| 2473 | if (tm->tm_year < 70) |
| 2474 | tm->tm_year += 2000; |
| 2475 | else if (tm->tm_year < 100) |
| 2476 | tm->tm_year += 1900; |
| 2477 | } |
| 2478 | else |
| 2479 | { |
| 2480 | /* there is no year zero in AD/BC notation */ |
| 2481 | if (tm->tm_year <= 0) |
| 2482 | return DTERR_FIELD_OVERFLOW; |
| 2483 | } |
| 2484 | } |
| 2485 | |
| 2486 | /* now that we have correct year, decode DOY */ |
| 2487 | if (fmask & DTK_M(DOY)) |
| 2488 | { |
| 2489 | j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1, |
| 2490 | &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| 2491 | } |
| 2492 | |
| 2493 | /* check for valid month */ |
| 2494 | if (fmask & DTK_M(MONTH)) |
| 2495 | { |
| 2496 | if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR) |
| 2497 | return DTERR_MD_FIELD_OVERFLOW; |
| 2498 | } |
| 2499 | |
| 2500 | /* minimal check for valid day */ |
| 2501 | if (fmask & DTK_M(DAY)) |
| 2502 | { |
| 2503 | if (tm->tm_mday < 1 || tm->tm_mday > 31) |
| 2504 | return DTERR_MD_FIELD_OVERFLOW; |
| 2505 | } |
| 2506 | |
| 2507 | if ((fmask & DTK_DATE_M) == DTK_DATE_M) |
| 2508 | { |
| 2509 | /* |
| 2510 | * Check for valid day of month, now that we know for sure the month |
| 2511 | * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems |
| 2512 | * unlikely that "Feb 29" is a YMD-order error. |
| 2513 | */ |
| 2514 | if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]) |
| 2515 | return DTERR_FIELD_OVERFLOW; |
| 2516 | } |
| 2517 | |
| 2518 | return 0; |
| 2519 | } |
| 2520 | |
| 2521 | |
| 2522 | /* DecodeTime() |
| 2523 | * Decode time string which includes delimiters. |
| 2524 | * Return 0 if okay, a DTERR code if not. |
| 2525 | * |
| 2526 | * Only check the lower limit on hours, since this same code can be |
| 2527 | * used to represent time spans. |
| 2528 | */ |
| 2529 | static int |
| 2530 | DecodeTime(char *str, int fmask, int range, |
| 2531 | int *tmask, struct pg_tm *tm, fsec_t *fsec) |
| 2532 | { |
| 2533 | char *cp; |
| 2534 | int dterr; |
| 2535 | |
| 2536 | *tmask = DTK_TIME_M; |
| 2537 | |
| 2538 | errno = 0; |
| 2539 | tm->tm_hour = strtoint(str, &cp, 10); |
| 2540 | if (errno == ERANGE) |
| 2541 | return DTERR_FIELD_OVERFLOW; |
| 2542 | if (*cp != ':') |
| 2543 | return DTERR_BAD_FORMAT; |
| 2544 | errno = 0; |
| 2545 | tm->tm_min = strtoint(cp + 1, &cp, 10); |
| 2546 | if (errno == ERANGE) |
| 2547 | return DTERR_FIELD_OVERFLOW; |
| 2548 | if (*cp == '\0') |
| 2549 | { |
| 2550 | tm->tm_sec = 0; |
| 2551 | *fsec = 0; |
| 2552 | /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */ |
| 2553 | if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) |
| 2554 | { |
| 2555 | tm->tm_sec = tm->tm_min; |
| 2556 | tm->tm_min = tm->tm_hour; |
| 2557 | tm->tm_hour = 0; |
| 2558 | } |
| 2559 | } |
| 2560 | else if (*cp == '.') |
| 2561 | { |
| 2562 | /* always assume mm:ss.sss is MINUTE TO SECOND */ |
| 2563 | dterr = ParseFractionalSecond(cp, fsec); |
| 2564 | if (dterr) |
| 2565 | return dterr; |
| 2566 | tm->tm_sec = tm->tm_min; |
| 2567 | tm->tm_min = tm->tm_hour; |
| 2568 | tm->tm_hour = 0; |
| 2569 | } |
| 2570 | else if (*cp == ':') |
| 2571 | { |
| 2572 | errno = 0; |
| 2573 | tm->tm_sec = strtoint(cp + 1, &cp, 10); |
| 2574 | if (errno == ERANGE) |
| 2575 | return DTERR_FIELD_OVERFLOW; |
| 2576 | if (*cp == '\0') |
| 2577 | *fsec = 0; |
| 2578 | else if (*cp == '.') |
| 2579 | { |
| 2580 | dterr = ParseFractionalSecond(cp, fsec); |
| 2581 | if (dterr) |
| 2582 | return dterr; |
| 2583 | } |
| 2584 | else |
| 2585 | return DTERR_BAD_FORMAT; |
| 2586 | } |
| 2587 | else |
| 2588 | return DTERR_BAD_FORMAT; |
| 2589 | |
| 2590 | /* do a sanity check */ |
| 2591 | if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 || |
| 2592 | tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE || |
| 2593 | *fsec < INT64CONST(0) || |
| 2594 | *fsec > USECS_PER_SEC) |
| 2595 | return DTERR_FIELD_OVERFLOW; |
| 2596 | |
| 2597 | return 0; |
| 2598 | } |
| 2599 | |
| 2600 | |
| 2601 | /* DecodeNumber() |
| 2602 | * Interpret plain numeric field as a date value in context. |
| 2603 | * Return 0 if okay, a DTERR code if not. |
| 2604 | */ |
| 2605 | static int |
| 2606 | DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask, |
| 2607 | int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits) |
| 2608 | { |
| 2609 | int val; |
| 2610 | char *cp; |
| 2611 | int dterr; |
| 2612 | |
| 2613 | *tmask = 0; |
| 2614 | |
| 2615 | errno = 0; |
| 2616 | val = strtoint(str, &cp, 10); |
| 2617 | if (errno == ERANGE) |
| 2618 | return DTERR_FIELD_OVERFLOW; |
| 2619 | if (cp == str) |
| 2620 | return DTERR_BAD_FORMAT; |
| 2621 | |
| 2622 | if (*cp == '.') |
| 2623 | { |
| 2624 | /* |
| 2625 | * More than two digits before decimal point? Then could be a date or |
| 2626 | * a run-together time: 2001.360 20011225 040506.789 |
| 2627 | */ |
| 2628 | if (cp - str > 2) |
| 2629 | { |
| 2630 | dterr = DecodeNumberField(flen, str, |
| 2631 | (fmask | DTK_DATE_M), |
| 2632 | tmask, tm, |
| 2633 | fsec, is2digits); |
| 2634 | if (dterr < 0) |
| 2635 | return dterr; |
| 2636 | return 0; |
| 2637 | } |
| 2638 | |
| 2639 | dterr = ParseFractionalSecond(cp, fsec); |
| 2640 | if (dterr) |
| 2641 | return dterr; |
| 2642 | } |
| 2643 | else if (*cp != '\0') |
| 2644 | return DTERR_BAD_FORMAT; |
| 2645 | |
| 2646 | /* Special case for day of year */ |
| 2647 | if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 && |
| 2648 | val <= 366) |
| 2649 | { |
| 2650 | *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY)); |
| 2651 | tm->tm_yday = val; |
| 2652 | /* tm_mon and tm_mday can't actually be set yet ... */ |
| 2653 | return 0; |
| 2654 | } |
| 2655 | |
| 2656 | /* Switch based on what we have so far */ |
| 2657 | switch (fmask & DTK_DATE_M) |
| 2658 | { |
| 2659 | case 0: |
| 2660 | |
| 2661 | /* |
| 2662 | * Nothing so far; make a decision about what we think the input |
| 2663 | * is. There used to be lots of heuristics here, but the |
| 2664 | * consensus now is to be paranoid. It *must* be either |
| 2665 | * YYYY-MM-DD (with a more-than-two-digit year field), or the |
| 2666 | * field order defined by DateOrder. |
| 2667 | */ |
| 2668 | if (flen >= 3 || DateOrder == DATEORDER_YMD) |
| 2669 | { |
| 2670 | *tmask = DTK_M(YEAR); |
| 2671 | tm->tm_year = val; |
| 2672 | } |
| 2673 | else if (DateOrder == DATEORDER_DMY) |
| 2674 | { |
| 2675 | *tmask = DTK_M(DAY); |
| 2676 | tm->tm_mday = val; |
| 2677 | } |
| 2678 | else |
| 2679 | { |
| 2680 | *tmask = DTK_M(MONTH); |
| 2681 | tm->tm_mon = val; |
| 2682 | } |
| 2683 | break; |
| 2684 | |
| 2685 | case (DTK_M(YEAR)): |
| 2686 | /* Must be at second field of YY-MM-DD */ |
| 2687 | *tmask = DTK_M(MONTH); |
| 2688 | tm->tm_mon = val; |
| 2689 | break; |
| 2690 | |
| 2691 | case (DTK_M(MONTH)): |
| 2692 | if (haveTextMonth) |
| 2693 | { |
| 2694 | /* |
| 2695 | * We are at the first numeric field of a date that included a |
| 2696 | * textual month name. We want to support the variants |
| 2697 | * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous |
| 2698 | * inputs. We will also accept MON-DD-YY or DD-MON-YY in |
| 2699 | * either DMY or MDY modes, as well as YY-MON-DD in YMD mode. |
| 2700 | */ |
| 2701 | if (flen >= 3 || DateOrder == DATEORDER_YMD) |
| 2702 | { |
| 2703 | *tmask = DTK_M(YEAR); |
| 2704 | tm->tm_year = val; |
| 2705 | } |
| 2706 | else |
| 2707 | { |
| 2708 | *tmask = DTK_M(DAY); |
| 2709 | tm->tm_mday = val; |
| 2710 | } |
| 2711 | } |
| 2712 | else |
| 2713 | { |
| 2714 | /* Must be at second field of MM-DD-YY */ |
| 2715 | *tmask = DTK_M(DAY); |
| 2716 | tm->tm_mday = val; |
| 2717 | } |
| 2718 | break; |
| 2719 | |
| 2720 | case (DTK_M(YEAR) | DTK_M(MONTH)): |
| 2721 | if (haveTextMonth) |
| 2722 | { |
| 2723 | /* Need to accept DD-MON-YYYY even in YMD mode */ |
| 2724 | if (flen >= 3 && *is2digits) |
| 2725 | { |
| 2726 | /* Guess that first numeric field is day was wrong */ |
| 2727 | *tmask = DTK_M(DAY); /* YEAR is already set */ |
| 2728 | tm->tm_mday = tm->tm_year; |
| 2729 | tm->tm_year = val; |
| 2730 | *is2digits = false; |
| 2731 | } |
| 2732 | else |
| 2733 | { |
| 2734 | *tmask = DTK_M(DAY); |
| 2735 | tm->tm_mday = val; |
| 2736 | } |
| 2737 | } |
| 2738 | else |
| 2739 | { |
| 2740 | /* Must be at third field of YY-MM-DD */ |
| 2741 | *tmask = DTK_M(DAY); |
| 2742 | tm->tm_mday = val; |
| 2743 | } |
| 2744 | break; |
| 2745 | |
| 2746 | case (DTK_M(DAY)): |
| 2747 | /* Must be at second field of DD-MM-YY */ |
| 2748 | *tmask = DTK_M(MONTH); |
| 2749 | tm->tm_mon = val; |
| 2750 | break; |
| 2751 | |
| 2752 | case (DTK_M(MONTH) | DTK_M(DAY)): |
| 2753 | /* Must be at third field of DD-MM-YY or MM-DD-YY */ |
| 2754 | *tmask = DTK_M(YEAR); |
| 2755 | tm->tm_year = val; |
| 2756 | break; |
| 2757 | |
| 2758 | case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)): |
| 2759 | /* we have all the date, so it must be a time field */ |
| 2760 | dterr = DecodeNumberField(flen, str, fmask, |
| 2761 | tmask, tm, |
| 2762 | fsec, is2digits); |
| 2763 | if (dterr < 0) |
| 2764 | return dterr; |
| 2765 | return 0; |
| 2766 | |
| 2767 | default: |
| 2768 | /* Anything else is bogus input */ |
| 2769 | return DTERR_BAD_FORMAT; |
| 2770 | } |
| 2771 | |
| 2772 | /* |
| 2773 | * When processing a year field, mark it for adjustment if it's only one |
| 2774 | * or two digits. |
| 2775 | */ |
| 2776 | if (*tmask == DTK_M(YEAR)) |
| 2777 | *is2digits = (flen <= 2); |
| 2778 | |
| 2779 | return 0; |
| 2780 | } |
| 2781 | |
| 2782 | |
| 2783 | /* DecodeNumberField() |
| 2784 | * Interpret numeric string as a concatenated date or time field. |
| 2785 | * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not. |
| 2786 | * |
| 2787 | * Use the context of previously decoded fields to help with |
| 2788 | * the interpretation. |
| 2789 | */ |
| 2790 | static int |
| 2791 | DecodeNumberField(int len, char *str, int fmask, |
| 2792 | int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits) |
| 2793 | { |
| 2794 | char *cp; |
| 2795 | |
| 2796 | /* |
| 2797 | * Have a decimal point? Then this is a date or something with a seconds |
| 2798 | * field... |
| 2799 | */ |
| 2800 | if ((cp = strchr(str, '.')) != NULL) |
| 2801 | { |
| 2802 | /* |
| 2803 | * Can we use ParseFractionalSecond here? Not clear whether trailing |
| 2804 | * junk should be rejected ... |
| 2805 | */ |
| 2806 | double frac; |
| 2807 | |
| 2808 | errno = 0; |
| 2809 | frac = strtod(cp, NULL); |
| 2810 | if (errno != 0) |
| 2811 | return DTERR_BAD_FORMAT; |
| 2812 | *fsec = rint(frac * 1000000); |
| 2813 | /* Now truncate off the fraction for further processing */ |
| 2814 | *cp = '\0'; |
| 2815 | len = strlen(str); |
| 2816 | } |
| 2817 | /* No decimal point and no complete date yet? */ |
| 2818 | else if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| 2819 | { |
| 2820 | if (len >= 6) |
| 2821 | { |
| 2822 | *tmask = DTK_DATE_M; |
| 2823 | |
| 2824 | /* |
| 2825 | * Start from end and consider first 2 as Day, next 2 as Month, |
| 2826 | * and the rest as Year. |
| 2827 | */ |
| 2828 | tm->tm_mday = atoi(str + (len - 2)); |
| 2829 | *(str + (len - 2)) = '\0'; |
| 2830 | tm->tm_mon = atoi(str + (len - 4)); |
| 2831 | *(str + (len - 4)) = '\0'; |
| 2832 | tm->tm_year = atoi(str); |
| 2833 | if ((len - 4) == 2) |
| 2834 | *is2digits = true; |
| 2835 | |
| 2836 | return DTK_DATE; |
| 2837 | } |
| 2838 | } |
| 2839 | |
| 2840 | /* not all time fields are specified? */ |
| 2841 | if ((fmask & DTK_TIME_M) != DTK_TIME_M) |
| 2842 | { |
| 2843 | /* hhmmss */ |
| 2844 | if (len == 6) |
| 2845 | { |
| 2846 | *tmask = DTK_TIME_M; |
| 2847 | tm->tm_sec = atoi(str + 4); |
| 2848 | *(str + 4) = '\0'; |
| 2849 | tm->tm_min = atoi(str + 2); |
| 2850 | *(str + 2) = '\0'; |
| 2851 | tm->tm_hour = atoi(str); |
| 2852 | |
| 2853 | return DTK_TIME; |
| 2854 | } |
| 2855 | /* hhmm? */ |
| 2856 | else if (len == 4) |
| 2857 | { |
| 2858 | *tmask = DTK_TIME_M; |
| 2859 | tm->tm_sec = 0; |
| 2860 | tm->tm_min = atoi(str + 2); |
| 2861 | *(str + 2) = '\0'; |
| 2862 | tm->tm_hour = atoi(str); |
| 2863 | |
| 2864 | return DTK_TIME; |
| 2865 | } |
| 2866 | } |
| 2867 | |
| 2868 | return DTERR_BAD_FORMAT; |
| 2869 | } |
| 2870 | |
| 2871 | |
| 2872 | /* DecodeTimezone() |
| 2873 | * Interpret string as a numeric timezone. |
| 2874 | * |
| 2875 | * Return 0 if okay (and set *tzp), a DTERR code if not okay. |
| 2876 | */ |
| 2877 | int |
| 2878 | DecodeTimezone(char *str, int *tzp) |
| 2879 | { |
| 2880 | int tz; |
| 2881 | int hr, |
| 2882 | min, |
| 2883 | sec = 0; |
| 2884 | char *cp; |
| 2885 | |
| 2886 | /* leading character must be "+" or "-" */ |
| 2887 | if (*str != '+' && *str != '-') |
| 2888 | return DTERR_BAD_FORMAT; |
| 2889 | |
| 2890 | errno = 0; |
| 2891 | hr = strtoint(str + 1, &cp, 10); |
| 2892 | if (errno == ERANGE) |
| 2893 | return DTERR_TZDISP_OVERFLOW; |
| 2894 | |
| 2895 | /* explicit delimiter? */ |
| 2896 | if (*cp == ':') |
| 2897 | { |
| 2898 | errno = 0; |
| 2899 | min = strtoint(cp + 1, &cp, 10); |
| 2900 | if (errno == ERANGE) |
| 2901 | return DTERR_TZDISP_OVERFLOW; |
| 2902 | if (*cp == ':') |
| 2903 | { |
| 2904 | errno = 0; |
| 2905 | sec = strtoint(cp + 1, &cp, 10); |
| 2906 | if (errno == ERANGE) |
| 2907 | return DTERR_TZDISP_OVERFLOW; |
| 2908 | } |
| 2909 | } |
| 2910 | /* otherwise, might have run things together... */ |
| 2911 | else if (*cp == '\0' && strlen(str) > 3) |
| 2912 | { |
| 2913 | min = hr % 100; |
| 2914 | hr = hr / 100; |
| 2915 | /* we could, but don't, support a run-together hhmmss format */ |
| 2916 | } |
| 2917 | else |
| 2918 | min = 0; |
| 2919 | |
| 2920 | /* Range-check the values; see notes in datatype/timestamp.h */ |
| 2921 | if (hr < 0 || hr > MAX_TZDISP_HOUR) |
| 2922 | return DTERR_TZDISP_OVERFLOW; |
| 2923 | if (min < 0 || min >= MINS_PER_HOUR) |
| 2924 | return DTERR_TZDISP_OVERFLOW; |
| 2925 | if (sec < 0 || sec >= SECS_PER_MINUTE) |
| 2926 | return DTERR_TZDISP_OVERFLOW; |
| 2927 | |
| 2928 | tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec; |
| 2929 | if (*str == '-') |
| 2930 | tz = -tz; |
| 2931 | |
| 2932 | *tzp = -tz; |
| 2933 | |
| 2934 | if (*cp != '\0') |
| 2935 | return DTERR_BAD_FORMAT; |
| 2936 | |
| 2937 | return 0; |
| 2938 | } |
| 2939 | |
| 2940 | |
| 2941 | /* DecodeTimezoneAbbrev() |
| 2942 | * Interpret string as a timezone abbreviation, if possible. |
| 2943 | * |
| 2944 | * Returns an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if |
| 2945 | * string is not any known abbreviation. On success, set *offset and *tz to |
| 2946 | * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ). |
| 2947 | * Note that full timezone names (such as America/New_York) are not handled |
| 2948 | * here, mostly for historical reasons. |
| 2949 | * |
| 2950 | * Given string must be lowercased already. |
| 2951 | * |
| 2952 | * Implement a cache lookup since it is likely that dates |
| 2953 | * will be related in format. |
| 2954 | */ |
| 2955 | int |
| 2956 | DecodeTimezoneAbbrev(int field, char *lowtoken, |
| 2957 | int *offset, pg_tz **tz) |
| 2958 | { |
| 2959 | int type; |
| 2960 | const datetkn *tp; |
| 2961 | |
| 2962 | tp = abbrevcache[field]; |
| 2963 | /* use strncmp so that we match truncated tokens */ |
| 2964 | if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) |
| 2965 | { |
| 2966 | if (zoneabbrevtbl) |
| 2967 | tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs, |
| 2968 | zoneabbrevtbl->numabbrevs); |
| 2969 | else |
| 2970 | tp = NULL; |
| 2971 | } |
| 2972 | if (tp == NULL) |
| 2973 | { |
| 2974 | type = UNKNOWN_FIELD; |
| 2975 | *offset = 0; |
| 2976 | *tz = NULL; |
| 2977 | } |
| 2978 | else |
| 2979 | { |
| 2980 | abbrevcache[field] = tp; |
| 2981 | type = tp->type; |
| 2982 | if (type == DYNTZ) |
| 2983 | { |
| 2984 | *offset = 0; |
| 2985 | *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp); |
| 2986 | } |
| 2987 | else |
| 2988 | { |
| 2989 | *offset = tp->value; |
| 2990 | *tz = NULL; |
| 2991 | } |
| 2992 | } |
| 2993 | |
| 2994 | return type; |
| 2995 | } |
| 2996 | |
| 2997 | |
| 2998 | /* DecodeSpecial() |
| 2999 | * Decode text string using lookup table. |
| 3000 | * |
| 3001 | * Recognizes the keywords listed in datetktbl. |
| 3002 | * Note: at one time this would also recognize timezone abbreviations, |
| 3003 | * but no more; use DecodeTimezoneAbbrev for that. |
| 3004 | * |
| 3005 | * Given string must be lowercased already. |
| 3006 | * |
| 3007 | * Implement a cache lookup since it is likely that dates |
| 3008 | * will be related in format. |
| 3009 | */ |
| 3010 | int |
| 3011 | DecodeSpecial(int field, char *lowtoken, int *val) |
| 3012 | { |
| 3013 | int type; |
| 3014 | const datetkn *tp; |
| 3015 | |
| 3016 | tp = datecache[field]; |
| 3017 | /* use strncmp so that we match truncated tokens */ |
| 3018 | if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) |
| 3019 | { |
| 3020 | tp = datebsearch(lowtoken, datetktbl, szdatetktbl); |
| 3021 | } |
| 3022 | if (tp == NULL) |
| 3023 | { |
| 3024 | type = UNKNOWN_FIELD; |
| 3025 | *val = 0; |
| 3026 | } |
| 3027 | else |
| 3028 | { |
| 3029 | datecache[field] = tp; |
| 3030 | type = tp->type; |
| 3031 | *val = tp->value; |
| 3032 | } |
| 3033 | |
| 3034 | return type; |
| 3035 | } |
| 3036 | |
| 3037 | |
| 3038 | /* ClearPgTm |
| 3039 | * |
| 3040 | * Zero out a pg_tm and associated fsec_t |
| 3041 | */ |
| 3042 | static inline void |
| 3043 | ClearPgTm(struct pg_tm *tm, fsec_t *fsec) |
| 3044 | { |
| 3045 | tm->tm_year = 0; |
| 3046 | tm->tm_mon = 0; |
| 3047 | tm->tm_mday = 0; |
| 3048 | tm->tm_hour = 0; |
| 3049 | tm->tm_min = 0; |
| 3050 | tm->tm_sec = 0; |
| 3051 | *fsec = 0; |
| 3052 | } |
| 3053 | |
| 3054 | |
| 3055 | /* DecodeInterval() |
| 3056 | * Interpret previously parsed fields for general time interval. |
| 3057 | * Returns 0 if successful, DTERR code if bogus input detected. |
| 3058 | * dtype, tm, fsec are output parameters. |
| 3059 | * |
| 3060 | * Allow "date" field DTK_DATE since this could be just |
| 3061 | * an unsigned floating point number. - thomas 1997-11-16 |
| 3062 | * |
| 3063 | * Allow ISO-style time span, with implicit units on number of days |
| 3064 | * preceding an hh:mm:ss field. - thomas 1998-04-30 |
| 3065 | */ |
| 3066 | int |
| 3067 | DecodeInterval(char **field, int *ftype, int nf, int range, |
| 3068 | int *dtype, struct pg_tm *tm, fsec_t *fsec) |
| 3069 | { |
| 3070 | bool is_before = false; |
| 3071 | char *cp; |
| 3072 | int fmask = 0, |
| 3073 | tmask, |
| 3074 | type; |
| 3075 | int i; |
| 3076 | int dterr; |
| 3077 | int val; |
| 3078 | double fval; |
| 3079 | |
| 3080 | *dtype = DTK_DELTA; |
| 3081 | type = IGNORE_DTF; |
| 3082 | ClearPgTm(tm, fsec); |
| 3083 | |
| 3084 | /* read through list backwards to pick up units before values */ |
| 3085 | for (i = nf - 1; i >= 0; i--) |
| 3086 | { |
| 3087 | switch (ftype[i]) |
| 3088 | { |
| 3089 | case DTK_TIME: |
| 3090 | dterr = DecodeTime(field[i], fmask, range, |
| 3091 | &tmask, tm, fsec); |
| 3092 | if (dterr) |
| 3093 | return dterr; |
| 3094 | type = DTK_DAY; |
| 3095 | break; |
| 3096 | |
| 3097 | case DTK_TZ: |
| 3098 | |
| 3099 | /* |
| 3100 | * Timezone means a token with a leading sign character and at |
| 3101 | * least one digit; there could be ':', '.', '-' embedded in |
| 3102 | * it as well. |
| 3103 | */ |
| 3104 | Assert(*field[i] == '-' || *field[i] == '+'); |
| 3105 | |
| 3106 | /* |
| 3107 | * Check for signed hh:mm or hh:mm:ss. If so, process exactly |
| 3108 | * like DTK_TIME case above, plus handling the sign. |
| 3109 | */ |
| 3110 | if (strchr(field[i] + 1, ':') != NULL && |
| 3111 | DecodeTime(field[i] + 1, fmask, range, |
| 3112 | &tmask, tm, fsec) == 0) |
| 3113 | { |
| 3114 | if (*field[i] == '-') |
| 3115 | { |
| 3116 | /* flip the sign on all fields */ |
| 3117 | tm->tm_hour = -tm->tm_hour; |
| 3118 | tm->tm_min = -tm->tm_min; |
| 3119 | tm->tm_sec = -tm->tm_sec; |
| 3120 | *fsec = -(*fsec); |
| 3121 | } |
| 3122 | |
| 3123 | /* |
| 3124 | * Set the next type to be a day, if units are not |
| 3125 | * specified. This handles the case of '1 +02:03' since we |
| 3126 | * are reading right to left. |
| 3127 | */ |
| 3128 | type = DTK_DAY; |
| 3129 | break; |
| 3130 | } |
| 3131 | |
| 3132 | /* |
| 3133 | * Otherwise, fall through to DTK_NUMBER case, which can |
| 3134 | * handle signed float numbers and signed year-month values. |
| 3135 | */ |
| 3136 | |
| 3137 | /* FALLTHROUGH */ |
| 3138 | |
| 3139 | case DTK_DATE: |
| 3140 | case DTK_NUMBER: |
| 3141 | if (type == IGNORE_DTF) |
| 3142 | { |
| 3143 | /* use typmod to decide what rightmost field is */ |
| 3144 | switch (range) |
| 3145 | { |
| 3146 | case INTERVAL_MASK(YEAR): |
| 3147 | type = DTK_YEAR; |
| 3148 | break; |
| 3149 | case INTERVAL_MASK(MONTH): |
| 3150 | case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH): |
| 3151 | type = DTK_MONTH; |
| 3152 | break; |
| 3153 | case INTERVAL_MASK(DAY): |
| 3154 | type = DTK_DAY; |
| 3155 | break; |
| 3156 | case INTERVAL_MASK(HOUR): |
| 3157 | case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR): |
| 3158 | type = DTK_HOUR; |
| 3159 | break; |
| 3160 | case INTERVAL_MASK(MINUTE): |
| 3161 | case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): |
| 3162 | case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): |
| 3163 | type = DTK_MINUTE; |
| 3164 | break; |
| 3165 | case INTERVAL_MASK(SECOND): |
| 3166 | case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): |
| 3167 | case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): |
| 3168 | case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): |
| 3169 | type = DTK_SECOND; |
| 3170 | break; |
| 3171 | default: |
| 3172 | type = DTK_SECOND; |
| 3173 | break; |
| 3174 | } |
| 3175 | } |
| 3176 | |
| 3177 | errno = 0; |
| 3178 | val = strtoint(field[i], &cp, 10); |
| 3179 | if (errno == ERANGE) |
| 3180 | return DTERR_FIELD_OVERFLOW; |
| 3181 | |
| 3182 | if (*cp == '-') |
| 3183 | { |
| 3184 | /* SQL "years-months" syntax */ |
| 3185 | int val2; |
| 3186 | |
| 3187 | val2 = strtoint(cp + 1, &cp, 10); |
| 3188 | if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR) |
| 3189 | return DTERR_FIELD_OVERFLOW; |
| 3190 | if (*cp != '\0') |
| 3191 | return DTERR_BAD_FORMAT; |
| 3192 | type = DTK_MONTH; |
| 3193 | if (*field[i] == '-') |
| 3194 | val2 = -val2; |
| 3195 | if (((double) val * MONTHS_PER_YEAR + val2) > INT_MAX || |
| 3196 | ((double) val * MONTHS_PER_YEAR + val2) < INT_MIN) |
| 3197 | return DTERR_FIELD_OVERFLOW; |
| 3198 | val = val * MONTHS_PER_YEAR + val2; |
| 3199 | fval = 0; |
| 3200 | } |
| 3201 | else if (*cp == '.') |
| 3202 | { |
| 3203 | errno = 0; |
| 3204 | fval = strtod(cp, &cp); |
| 3205 | if (*cp != '\0' || errno != 0) |
| 3206 | return DTERR_BAD_FORMAT; |
| 3207 | |
| 3208 | if (*field[i] == '-') |
| 3209 | fval = -fval; |
| 3210 | } |
| 3211 | else if (*cp == '\0') |
| 3212 | fval = 0; |
| 3213 | else |
| 3214 | return DTERR_BAD_FORMAT; |
| 3215 | |
| 3216 | tmask = 0; /* DTK_M(type); */ |
| 3217 | |
| 3218 | switch (type) |
| 3219 | { |
| 3220 | case DTK_MICROSEC: |
| 3221 | *fsec += rint(val + fval); |
| 3222 | tmask = DTK_M(MICROSECOND); |
| 3223 | break; |
| 3224 | |
| 3225 | case DTK_MILLISEC: |
| 3226 | /* avoid overflowing the fsec field */ |
| 3227 | tm->tm_sec += val / 1000; |
| 3228 | val -= (val / 1000) * 1000; |
| 3229 | *fsec += rint((val + fval) * 1000); |
| 3230 | tmask = DTK_M(MILLISECOND); |
| 3231 | break; |
| 3232 | |
| 3233 | case DTK_SECOND: |
| 3234 | tm->tm_sec += val; |
| 3235 | *fsec += rint(fval * 1000000); |
| 3236 | |
| 3237 | /* |
| 3238 | * If any subseconds were specified, consider this |
| 3239 | * microsecond and millisecond input as well. |
| 3240 | */ |
| 3241 | if (fval == 0) |
| 3242 | tmask = DTK_M(SECOND); |
| 3243 | else |
| 3244 | tmask = DTK_ALL_SECS_M; |
| 3245 | break; |
| 3246 | |
| 3247 | case DTK_MINUTE: |
| 3248 | tm->tm_min += val; |
| 3249 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE); |
| 3250 | tmask = DTK_M(MINUTE); |
| 3251 | break; |
| 3252 | |
| 3253 | case DTK_HOUR: |
| 3254 | tm->tm_hour += val; |
| 3255 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR); |
| 3256 | tmask = DTK_M(HOUR); |
| 3257 | type = DTK_DAY; /* set for next field */ |
| 3258 | break; |
| 3259 | |
| 3260 | case DTK_DAY: |
| 3261 | tm->tm_mday += val; |
| 3262 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY); |
| 3263 | tmask = DTK_M(DAY); |
| 3264 | break; |
| 3265 | |
| 3266 | case DTK_WEEK: |
| 3267 | tm->tm_mday += val * 7; |
| 3268 | AdjustFractDays(fval, tm, fsec, 7); |
| 3269 | tmask = DTK_M(WEEK); |
| 3270 | break; |
| 3271 | |
| 3272 | case DTK_MONTH: |
| 3273 | tm->tm_mon += val; |
| 3274 | AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH); |
| 3275 | tmask = DTK_M(MONTH); |
| 3276 | break; |
| 3277 | |
| 3278 | case DTK_YEAR: |
| 3279 | tm->tm_year += val; |
| 3280 | if (fval != 0) |
| 3281 | tm->tm_mon += fval * MONTHS_PER_YEAR; |
| 3282 | tmask = DTK_M(YEAR); |
| 3283 | break; |
| 3284 | |
| 3285 | case DTK_DECADE: |
| 3286 | tm->tm_year += val * 10; |
| 3287 | if (fval != 0) |
| 3288 | tm->tm_mon += fval * MONTHS_PER_YEAR * 10; |
| 3289 | tmask = DTK_M(DECADE); |
| 3290 | break; |
| 3291 | |
| 3292 | case DTK_CENTURY: |
| 3293 | tm->tm_year += val * 100; |
| 3294 | if (fval != 0) |
| 3295 | tm->tm_mon += fval * MONTHS_PER_YEAR * 100; |
| 3296 | tmask = DTK_M(CENTURY); |
| 3297 | break; |
| 3298 | |
| 3299 | case DTK_MILLENNIUM: |
| 3300 | tm->tm_year += val * 1000; |
| 3301 | if (fval != 0) |
| 3302 | tm->tm_mon += fval * MONTHS_PER_YEAR * 1000; |
| 3303 | tmask = DTK_M(MILLENNIUM); |
| 3304 | break; |
| 3305 | |
| 3306 | default: |
| 3307 | return DTERR_BAD_FORMAT; |
| 3308 | } |
| 3309 | break; |
| 3310 | |
| 3311 | case DTK_STRING: |
| 3312 | case DTK_SPECIAL: |
| 3313 | type = DecodeUnits(i, field[i], &val); |
| 3314 | if (type == IGNORE_DTF) |
| 3315 | continue; |
| 3316 | |
| 3317 | tmask = 0; /* DTK_M(type); */ |
| 3318 | switch (type) |
| 3319 | { |
| 3320 | case UNITS: |
| 3321 | type = val; |
| 3322 | break; |
| 3323 | |
| 3324 | case AGO: |
| 3325 | is_before = true; |
| 3326 | type = val; |
| 3327 | break; |
| 3328 | |
| 3329 | case RESERV: |
| 3330 | tmask = (DTK_DATE_M | DTK_TIME_M); |
| 3331 | *dtype = val; |
| 3332 | break; |
| 3333 | |
| 3334 | default: |
| 3335 | return DTERR_BAD_FORMAT; |
| 3336 | } |
| 3337 | break; |
| 3338 | |
| 3339 | default: |
| 3340 | return DTERR_BAD_FORMAT; |
| 3341 | } |
| 3342 | |
| 3343 | if (tmask & fmask) |
| 3344 | return DTERR_BAD_FORMAT; |
| 3345 | fmask |= tmask; |
| 3346 | } |
| 3347 | |
| 3348 | /* ensure that at least one time field has been found */ |
| 3349 | if (fmask == 0) |
| 3350 | return DTERR_BAD_FORMAT; |
| 3351 | |
| 3352 | /* ensure fractional seconds are fractional */ |
| 3353 | if (*fsec != 0) |
| 3354 | { |
| 3355 | int sec; |
| 3356 | |
| 3357 | sec = *fsec / USECS_PER_SEC; |
| 3358 | *fsec -= sec * USECS_PER_SEC; |
| 3359 | tm->tm_sec += sec; |
| 3360 | } |
| 3361 | |
| 3362 | /*---------- |
| 3363 | * The SQL standard defines the interval literal |
| 3364 | * '-1 1:00:00' |
| 3365 | * to mean "negative 1 days and negative 1 hours", while Postgres |
| 3366 | * traditionally treats this as meaning "negative 1 days and positive |
| 3367 | * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign |
| 3368 | * to all fields if there are no other explicit signs. |
| 3369 | * |
| 3370 | * We leave the signs alone if there are additional explicit signs. |
| 3371 | * This protects us against misinterpreting postgres-style dump output, |
| 3372 | * since the postgres-style output code has always put an explicit sign on |
| 3373 | * all fields following a negative field. But note that SQL-spec output |
| 3374 | * is ambiguous and can be misinterpreted on load! (So it's best practice |
| 3375 | * to dump in postgres style, not SQL style.) |
| 3376 | *---------- |
| 3377 | */ |
| 3378 | if (IntervalStyle == INTSTYLE_SQL_STANDARD && *field[0] == '-') |
| 3379 | { |
| 3380 | /* Check for additional explicit signs */ |
| 3381 | bool more_signs = false; |
| 3382 | |
| 3383 | for (i = 1; i < nf; i++) |
| 3384 | { |
| 3385 | if (*field[i] == '-' || *field[i] == '+') |
| 3386 | { |
| 3387 | more_signs = true; |
| 3388 | break; |
| 3389 | } |
| 3390 | } |
| 3391 | |
| 3392 | if (!more_signs) |
| 3393 | { |
| 3394 | /* |
| 3395 | * Rather than re-determining which field was field[0], just force |
| 3396 | * 'em all negative. |
| 3397 | */ |
| 3398 | if (*fsec > 0) |
| 3399 | *fsec = -(*fsec); |
| 3400 | if (tm->tm_sec > 0) |
| 3401 | tm->tm_sec = -tm->tm_sec; |
| 3402 | if (tm->tm_min > 0) |
| 3403 | tm->tm_min = -tm->tm_min; |
| 3404 | if (tm->tm_hour > 0) |
| 3405 | tm->tm_hour = -tm->tm_hour; |
| 3406 | if (tm->tm_mday > 0) |
| 3407 | tm->tm_mday = -tm->tm_mday; |
| 3408 | if (tm->tm_mon > 0) |
| 3409 | tm->tm_mon = -tm->tm_mon; |
| 3410 | if (tm->tm_year > 0) |
| 3411 | tm->tm_year = -tm->tm_year; |
| 3412 | } |
| 3413 | } |
| 3414 | |
| 3415 | /* finally, AGO negates everything */ |
| 3416 | if (is_before) |
| 3417 | { |
| 3418 | *fsec = -(*fsec); |
| 3419 | tm->tm_sec = -tm->tm_sec; |
| 3420 | tm->tm_min = -tm->tm_min; |
| 3421 | tm->tm_hour = -tm->tm_hour; |
| 3422 | tm->tm_mday = -tm->tm_mday; |
| 3423 | tm->tm_mon = -tm->tm_mon; |
| 3424 | tm->tm_year = -tm->tm_year; |
| 3425 | } |
| 3426 | |
| 3427 | return 0; |
| 3428 | } |
| 3429 | |
| 3430 | |
| 3431 | /* |
| 3432 | * Helper functions to avoid duplicated code in DecodeISO8601Interval. |
| 3433 | * |
| 3434 | * Parse a decimal value and break it into integer and fractional parts. |
| 3435 | * Returns 0 or DTERR code. |
| 3436 | */ |
| 3437 | static int |
| 3438 | ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart) |
| 3439 | { |
| 3440 | double val; |
| 3441 | |
| 3442 | if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.')) |
| 3443 | return DTERR_BAD_FORMAT; |
| 3444 | errno = 0; |
| 3445 | val = strtod(str, endptr); |
| 3446 | /* did we not see anything that looks like a double? */ |
| 3447 | if (*endptr == str || errno != 0) |
| 3448 | return DTERR_BAD_FORMAT; |
| 3449 | /* watch out for overflow */ |
| 3450 | if (val < INT_MIN || val > INT_MAX) |
| 3451 | return DTERR_FIELD_OVERFLOW; |
| 3452 | /* be very sure we truncate towards zero (cf dtrunc()) */ |
| 3453 | if (val >= 0) |
| 3454 | *ipart = (int) floor(val); |
| 3455 | else |
| 3456 | *ipart = (int) -floor(-val); |
| 3457 | *fpart = val - *ipart; |
| 3458 | return 0; |
| 3459 | } |
| 3460 | |
| 3461 | /* |
| 3462 | * Determine number of integral digits in a valid ISO 8601 number field |
| 3463 | * (we should ignore sign and any fraction part) |
| 3464 | */ |
| 3465 | static int |
| 3466 | ISO8601IntegerWidth(char *fieldstart) |
| 3467 | { |
| 3468 | /* We might have had a leading '-' */ |
| 3469 | if (*fieldstart == '-') |
| 3470 | fieldstart++; |
| 3471 | return strspn(fieldstart, "0123456789" ); |
| 3472 | } |
| 3473 | |
| 3474 | |
| 3475 | /* DecodeISO8601Interval() |
| 3476 | * Decode an ISO 8601 time interval of the "format with designators" |
| 3477 | * (section 4.4.3.2) or "alternative format" (section 4.4.3.3) |
| 3478 | * Examples: P1D for 1 day |
| 3479 | * PT1H for 1 hour |
| 3480 | * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min |
| 3481 | * P0002-06-07T01:30:00 the same value in alternative format |
| 3482 | * |
| 3483 | * Returns 0 if successful, DTERR code if bogus input detected. |
| 3484 | * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like |
| 3485 | * ISO8601, otherwise this could cause unexpected error messages. |
| 3486 | * dtype, tm, fsec are output parameters. |
| 3487 | * |
| 3488 | * A couple exceptions from the spec: |
| 3489 | * - a week field ('W') may coexist with other units |
| 3490 | * - allows decimals in fields other than the least significant unit. |
| 3491 | */ |
| 3492 | int |
| 3493 | DecodeISO8601Interval(char *str, |
| 3494 | int *dtype, struct pg_tm *tm, fsec_t *fsec) |
| 3495 | { |
| 3496 | bool datepart = true; |
| 3497 | bool havefield = false; |
| 3498 | |
| 3499 | *dtype = DTK_DELTA; |
| 3500 | ClearPgTm(tm, fsec); |
| 3501 | |
| 3502 | if (strlen(str) < 2 || str[0] != 'P') |
| 3503 | return DTERR_BAD_FORMAT; |
| 3504 | |
| 3505 | str++; |
| 3506 | while (*str) |
| 3507 | { |
| 3508 | char *fieldstart; |
| 3509 | int val; |
| 3510 | double fval; |
| 3511 | char unit; |
| 3512 | int dterr; |
| 3513 | |
| 3514 | if (*str == 'T') /* T indicates the beginning of the time part */ |
| 3515 | { |
| 3516 | datepart = false; |
| 3517 | havefield = false; |
| 3518 | str++; |
| 3519 | continue; |
| 3520 | } |
| 3521 | |
| 3522 | fieldstart = str; |
| 3523 | dterr = ParseISO8601Number(str, &str, &val, &fval); |
| 3524 | if (dterr) |
| 3525 | return dterr; |
| 3526 | |
| 3527 | /* |
| 3528 | * Note: we could step off the end of the string here. Code below |
| 3529 | * *must* exit the loop if unit == '\0'. |
| 3530 | */ |
| 3531 | unit = *str++; |
| 3532 | |
| 3533 | if (datepart) |
| 3534 | { |
| 3535 | switch (unit) /* before T: Y M W D */ |
| 3536 | { |
| 3537 | case 'Y': |
| 3538 | tm->tm_year += val; |
| 3539 | tm->tm_mon += (fval * MONTHS_PER_YEAR); |
| 3540 | break; |
| 3541 | case 'M': |
| 3542 | tm->tm_mon += val; |
| 3543 | AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH); |
| 3544 | break; |
| 3545 | case 'W': |
| 3546 | tm->tm_mday += val * 7; |
| 3547 | AdjustFractDays(fval, tm, fsec, 7); |
| 3548 | break; |
| 3549 | case 'D': |
| 3550 | tm->tm_mday += val; |
| 3551 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY); |
| 3552 | break; |
| 3553 | case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */ |
| 3554 | case '\0': |
| 3555 | if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield) |
| 3556 | { |
| 3557 | tm->tm_year += val / 10000; |
| 3558 | tm->tm_mon += (val / 100) % 100; |
| 3559 | tm->tm_mday += val % 100; |
| 3560 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY); |
| 3561 | if (unit == '\0') |
| 3562 | return 0; |
| 3563 | datepart = false; |
| 3564 | havefield = false; |
| 3565 | continue; |
| 3566 | } |
| 3567 | /* Else fall through to extended alternative format */ |
| 3568 | /* FALLTHROUGH */ |
| 3569 | case '-': /* ISO 8601 4.4.3.3 Alternative Format, |
| 3570 | * Extended */ |
| 3571 | if (havefield) |
| 3572 | return DTERR_BAD_FORMAT; |
| 3573 | |
| 3574 | tm->tm_year += val; |
| 3575 | tm->tm_mon += (fval * MONTHS_PER_YEAR); |
| 3576 | if (unit == '\0') |
| 3577 | return 0; |
| 3578 | if (unit == 'T') |
| 3579 | { |
| 3580 | datepart = false; |
| 3581 | havefield = false; |
| 3582 | continue; |
| 3583 | } |
| 3584 | |
| 3585 | dterr = ParseISO8601Number(str, &str, &val, &fval); |
| 3586 | if (dterr) |
| 3587 | return dterr; |
| 3588 | tm->tm_mon += val; |
| 3589 | AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH); |
| 3590 | if (*str == '\0') |
| 3591 | return 0; |
| 3592 | if (*str == 'T') |
| 3593 | { |
| 3594 | datepart = false; |
| 3595 | havefield = false; |
| 3596 | continue; |
| 3597 | } |
| 3598 | if (*str != '-') |
| 3599 | return DTERR_BAD_FORMAT; |
| 3600 | str++; |
| 3601 | |
| 3602 | dterr = ParseISO8601Number(str, &str, &val, &fval); |
| 3603 | if (dterr) |
| 3604 | return dterr; |
| 3605 | tm->tm_mday += val; |
| 3606 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY); |
| 3607 | if (*str == '\0') |
| 3608 | return 0; |
| 3609 | if (*str == 'T') |
| 3610 | { |
| 3611 | datepart = false; |
| 3612 | havefield = false; |
| 3613 | continue; |
| 3614 | } |
| 3615 | return DTERR_BAD_FORMAT; |
| 3616 | default: |
| 3617 | /* not a valid date unit suffix */ |
| 3618 | return DTERR_BAD_FORMAT; |
| 3619 | } |
| 3620 | } |
| 3621 | else |
| 3622 | { |
| 3623 | switch (unit) /* after T: H M S */ |
| 3624 | { |
| 3625 | case 'H': |
| 3626 | tm->tm_hour += val; |
| 3627 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR); |
| 3628 | break; |
| 3629 | case 'M': |
| 3630 | tm->tm_min += val; |
| 3631 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE); |
| 3632 | break; |
| 3633 | case 'S': |
| 3634 | tm->tm_sec += val; |
| 3635 | AdjustFractSeconds(fval, tm, fsec, 1); |
| 3636 | break; |
| 3637 | case '\0': /* ISO 8601 4.4.3.3 Alternative Format */ |
| 3638 | if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield) |
| 3639 | { |
| 3640 | tm->tm_hour += val / 10000; |
| 3641 | tm->tm_min += (val / 100) % 100; |
| 3642 | tm->tm_sec += val % 100; |
| 3643 | AdjustFractSeconds(fval, tm, fsec, 1); |
| 3644 | return 0; |
| 3645 | } |
| 3646 | /* Else fall through to extended alternative format */ |
| 3647 | /* FALLTHROUGH */ |
| 3648 | case ':': /* ISO 8601 4.4.3.3 Alternative Format, |
| 3649 | * Extended */ |
| 3650 | if (havefield) |
| 3651 | return DTERR_BAD_FORMAT; |
| 3652 | |
| 3653 | tm->tm_hour += val; |
| 3654 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR); |
| 3655 | if (unit == '\0') |
| 3656 | return 0; |
| 3657 | |
| 3658 | dterr = ParseISO8601Number(str, &str, &val, &fval); |
| 3659 | if (dterr) |
| 3660 | return dterr; |
| 3661 | tm->tm_min += val; |
| 3662 | AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE); |
| 3663 | if (*str == '\0') |
| 3664 | return 0; |
| 3665 | if (*str != ':') |
| 3666 | return DTERR_BAD_FORMAT; |
| 3667 | str++; |
| 3668 | |
| 3669 | dterr = ParseISO8601Number(str, &str, &val, &fval); |
| 3670 | if (dterr) |
| 3671 | return dterr; |
| 3672 | tm->tm_sec += val; |
| 3673 | AdjustFractSeconds(fval, tm, fsec, 1); |
| 3674 | if (*str == '\0') |
| 3675 | return 0; |
| 3676 | return DTERR_BAD_FORMAT; |
| 3677 | |
| 3678 | default: |
| 3679 | /* not a valid time unit suffix */ |
| 3680 | return DTERR_BAD_FORMAT; |
| 3681 | } |
| 3682 | } |
| 3683 | |
| 3684 | havefield = true; |
| 3685 | } |
| 3686 | |
| 3687 | return 0; |
| 3688 | } |
| 3689 | |
| 3690 | |
| 3691 | /* DecodeUnits() |
| 3692 | * Decode text string using lookup table. |
| 3693 | * |
| 3694 | * This routine recognizes keywords associated with time interval units. |
| 3695 | * |
| 3696 | * Given string must be lowercased already. |
| 3697 | * |
| 3698 | * Implement a cache lookup since it is likely that dates |
| 3699 | * will be related in format. |
| 3700 | */ |
| 3701 | int |
| 3702 | DecodeUnits(int field, char *lowtoken, int *val) |
| 3703 | { |
| 3704 | int type; |
| 3705 | const datetkn *tp; |
| 3706 | |
| 3707 | tp = deltacache[field]; |
| 3708 | /* use strncmp so that we match truncated tokens */ |
| 3709 | if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) |
| 3710 | { |
| 3711 | tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl); |
| 3712 | } |
| 3713 | if (tp == NULL) |
| 3714 | { |
| 3715 | type = UNKNOWN_FIELD; |
| 3716 | *val = 0; |
| 3717 | } |
| 3718 | else |
| 3719 | { |
| 3720 | deltacache[field] = tp; |
| 3721 | type = tp->type; |
| 3722 | *val = tp->value; |
| 3723 | } |
| 3724 | |
| 3725 | return type; |
| 3726 | } /* DecodeUnits() */ |
| 3727 | |
| 3728 | /* |
| 3729 | * Report an error detected by one of the datetime input processing routines. |
| 3730 | * |
| 3731 | * dterr is the error code, str is the original input string, datatype is |
| 3732 | * the name of the datatype we were trying to accept. |
| 3733 | * |
| 3734 | * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and |
| 3735 | * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three |
| 3736 | * separate SQLSTATE codes, so ... |
| 3737 | */ |
| 3738 | void |
| 3739 | DateTimeParseError(int dterr, const char *str, const char *datatype) |
| 3740 | { |
| 3741 | switch (dterr) |
| 3742 | { |
| 3743 | case DTERR_FIELD_OVERFLOW: |
| 3744 | ereport(ERROR, |
| 3745 | (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW), |
| 3746 | errmsg("date/time field value out of range: \"%s\"" , |
| 3747 | str))); |
| 3748 | break; |
| 3749 | case DTERR_MD_FIELD_OVERFLOW: |
| 3750 | /* <nanny>same as above, but add hint about DateStyle</nanny> */ |
| 3751 | ereport(ERROR, |
| 3752 | (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW), |
| 3753 | errmsg("date/time field value out of range: \"%s\"" , |
| 3754 | str), |
| 3755 | errhint("Perhaps you need a different \"datestyle\" setting." ))); |
| 3756 | break; |
| 3757 | case DTERR_INTERVAL_OVERFLOW: |
| 3758 | ereport(ERROR, |
| 3759 | (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW), |
| 3760 | errmsg("interval field value out of range: \"%s\"" , |
| 3761 | str))); |
| 3762 | break; |
| 3763 | case DTERR_TZDISP_OVERFLOW: |
| 3764 | ereport(ERROR, |
| 3765 | (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE), |
| 3766 | errmsg("time zone displacement out of range: \"%s\"" , |
| 3767 | str))); |
| 3768 | break; |
| 3769 | case DTERR_BAD_FORMAT: |
| 3770 | default: |
| 3771 | ereport(ERROR, |
| 3772 | (errcode(ERRCODE_INVALID_DATETIME_FORMAT), |
| 3773 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 3774 | datatype, str))); |
| 3775 | break; |
| 3776 | } |
| 3777 | } |
| 3778 | |
| 3779 | /* datebsearch() |
| 3780 | * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this |
| 3781 | * is WAY faster than the generic bsearch(). |
| 3782 | */ |
| 3783 | static const datetkn * |
| 3784 | datebsearch(const char *key, const datetkn *base, int nel) |
| 3785 | { |
| 3786 | if (nel > 0) |
| 3787 | { |
| 3788 | const datetkn *last = base + nel - 1, |
| 3789 | *position; |
| 3790 | int result; |
| 3791 | |
| 3792 | while (last >= base) |
| 3793 | { |
| 3794 | position = base + ((last - base) >> 1); |
| 3795 | /* precheck the first character for a bit of extra speed */ |
| 3796 | result = (int) key[0] - (int) position->token[0]; |
| 3797 | if (result == 0) |
| 3798 | { |
| 3799 | /* use strncmp so that we match truncated tokens */ |
| 3800 | result = strncmp(key, position->token, TOKMAXLEN); |
| 3801 | if (result == 0) |
| 3802 | return position; |
| 3803 | } |
| 3804 | if (result < 0) |
| 3805 | last = position - 1; |
| 3806 | else |
| 3807 | base = position + 1; |
| 3808 | } |
| 3809 | } |
| 3810 | return NULL; |
| 3811 | } |
| 3812 | |
| 3813 | /* EncodeTimezone() |
| 3814 | * Copies representation of a numeric timezone offset to str. |
| 3815 | * |
| 3816 | * Returns a pointer to the new end of string. No NUL terminator is put |
| 3817 | * there; callers are responsible for NUL terminating str themselves. |
| 3818 | */ |
| 3819 | static char * |
| 3820 | EncodeTimezone(char *str, int tz, int style) |
| 3821 | { |
| 3822 | int hour, |
| 3823 | min, |
| 3824 | sec; |
| 3825 | |
| 3826 | sec = abs(tz); |
| 3827 | min = sec / SECS_PER_MINUTE; |
| 3828 | sec -= min * SECS_PER_MINUTE; |
| 3829 | hour = min / MINS_PER_HOUR; |
| 3830 | min -= hour * MINS_PER_HOUR; |
| 3831 | |
| 3832 | /* TZ is negated compared to sign we wish to display ... */ |
| 3833 | *str++ = (tz <= 0 ? '+' : '-'); |
| 3834 | |
| 3835 | if (sec != 0) |
| 3836 | { |
| 3837 | str = pg_ltostr_zeropad(str, hour, 2); |
| 3838 | *str++ = ':'; |
| 3839 | str = pg_ltostr_zeropad(str, min, 2); |
| 3840 | *str++ = ':'; |
| 3841 | str = pg_ltostr_zeropad(str, sec, 2); |
| 3842 | } |
| 3843 | else if (min != 0 || style == USE_XSD_DATES) |
| 3844 | { |
| 3845 | str = pg_ltostr_zeropad(str, hour, 2); |
| 3846 | *str++ = ':'; |
| 3847 | str = pg_ltostr_zeropad(str, min, 2); |
| 3848 | } |
| 3849 | else |
| 3850 | str = pg_ltostr_zeropad(str, hour, 2); |
| 3851 | return str; |
| 3852 | } |
| 3853 | |
| 3854 | /* EncodeDateOnly() |
| 3855 | * Encode date as local time. |
| 3856 | */ |
| 3857 | void |
| 3858 | EncodeDateOnly(struct pg_tm *tm, int style, char *str) |
| 3859 | { |
| 3860 | Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR); |
| 3861 | |
| 3862 | switch (style) |
| 3863 | { |
| 3864 | case USE_ISO_DATES: |
| 3865 | case USE_XSD_DATES: |
| 3866 | /* compatible with ISO date formats */ |
| 3867 | str = pg_ltostr_zeropad(str, |
| 3868 | (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| 3869 | *str++ = '-'; |
| 3870 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 3871 | *str++ = '-'; |
| 3872 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 3873 | break; |
| 3874 | |
| 3875 | case USE_SQL_DATES: |
| 3876 | /* compatible with Oracle/Ingres date formats */ |
| 3877 | if (DateOrder == DATEORDER_DMY) |
| 3878 | { |
| 3879 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 3880 | *str++ = '/'; |
| 3881 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 3882 | } |
| 3883 | else |
| 3884 | { |
| 3885 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 3886 | *str++ = '/'; |
| 3887 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 3888 | } |
| 3889 | *str++ = '/'; |
| 3890 | str = pg_ltostr_zeropad(str, |
| 3891 | (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| 3892 | break; |
| 3893 | |
| 3894 | case USE_GERMAN_DATES: |
| 3895 | /* German-style date format */ |
| 3896 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 3897 | *str++ = '.'; |
| 3898 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 3899 | *str++ = '.'; |
| 3900 | str = pg_ltostr_zeropad(str, |
| 3901 | (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| 3902 | break; |
| 3903 | |
| 3904 | case USE_POSTGRES_DATES: |
| 3905 | default: |
| 3906 | /* traditional date-only style for Postgres */ |
| 3907 | if (DateOrder == DATEORDER_DMY) |
| 3908 | { |
| 3909 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 3910 | *str++ = '-'; |
| 3911 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 3912 | } |
| 3913 | else |
| 3914 | { |
| 3915 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 3916 | *str++ = '-'; |
| 3917 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 3918 | } |
| 3919 | *str++ = '-'; |
| 3920 | str = pg_ltostr_zeropad(str, |
| 3921 | (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| 3922 | break; |
| 3923 | } |
| 3924 | |
| 3925 | if (tm->tm_year <= 0) |
| 3926 | { |
| 3927 | memcpy(str, " BC" , 3); /* Don't copy NUL */ |
| 3928 | str += 3; |
| 3929 | } |
| 3930 | *str = '\0'; |
| 3931 | } |
| 3932 | |
| 3933 | |
| 3934 | /* EncodeTimeOnly() |
| 3935 | * Encode time fields only. |
| 3936 | * |
| 3937 | * tm and fsec are the value to encode, print_tz determines whether to include |
| 3938 | * a time zone (the difference between time and timetz types), tz is the |
| 3939 | * numeric time zone offset, style is the date style, str is where to write the |
| 3940 | * output. |
| 3941 | */ |
| 3942 | void |
| 3943 | EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str) |
| 3944 | { |
| 3945 | str = pg_ltostr_zeropad(str, tm->tm_hour, 2); |
| 3946 | *str++ = ':'; |
| 3947 | str = pg_ltostr_zeropad(str, tm->tm_min, 2); |
| 3948 | *str++ = ':'; |
| 3949 | str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true); |
| 3950 | if (print_tz) |
| 3951 | str = EncodeTimezone(str, tz, style); |
| 3952 | *str = '\0'; |
| 3953 | } |
| 3954 | |
| 3955 | |
| 3956 | /* EncodeDateTime() |
| 3957 | * Encode date and time interpreted as local time. |
| 3958 | * |
| 3959 | * tm and fsec are the value to encode, print_tz determines whether to include |
| 3960 | * a time zone (the difference between timestamp and timestamptz types), tz is |
| 3961 | * the numeric time zone offset, tzn is the textual time zone, which if |
| 3962 | * specified will be used instead of tz by some styles, style is the date |
| 3963 | * style, str is where to write the output. |
| 3964 | * |
| 3965 | * Supported date styles: |
| 3966 | * Postgres - day mon hh:mm:ss yyyy tz |
| 3967 | * SQL - mm/dd/yyyy hh:mm:ss.ss tz |
| 3968 | * ISO - yyyy-mm-dd hh:mm:ss+/-tz |
| 3969 | * German - dd.mm.yyyy hh:mm:ss tz |
| 3970 | * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz |
| 3971 | */ |
| 3972 | void |
| 3973 | EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str) |
| 3974 | { |
| 3975 | int day; |
| 3976 | |
| 3977 | Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR); |
| 3978 | |
| 3979 | /* |
| 3980 | * Negative tm_isdst means we have no valid time zone translation. |
| 3981 | */ |
| 3982 | if (tm->tm_isdst < 0) |
| 3983 | print_tz = false; |
| 3984 | |
| 3985 | switch (style) |
| 3986 | { |
| 3987 | case USE_ISO_DATES: |
| 3988 | case USE_XSD_DATES: |
| 3989 | /* Compatible with ISO-8601 date formats */ |
| 3990 | str = pg_ltostr_zeropad(str, |
| 3991 | (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| 3992 | *str++ = '-'; |
| 3993 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 3994 | *str++ = '-'; |
| 3995 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 3996 | *str++ = (style == USE_ISO_DATES) ? ' ' : 'T'; |
| 3997 | str = pg_ltostr_zeropad(str, tm->tm_hour, 2); |
| 3998 | *str++ = ':'; |
| 3999 | str = pg_ltostr_zeropad(str, tm->tm_min, 2); |
| 4000 | *str++ = ':'; |
| 4001 | str = AppendTimestampSeconds(str, tm, fsec); |
| 4002 | if (print_tz) |
| 4003 | str = EncodeTimezone(str, tz, style); |
| 4004 | break; |
| 4005 | |
| 4006 | case USE_SQL_DATES: |
| 4007 | /* Compatible with Oracle/Ingres date formats */ |
| 4008 | if (DateOrder == DATEORDER_DMY) |
| 4009 | { |
| 4010 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 4011 | *str++ = '/'; |
| 4012 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 4013 | } |
| 4014 | else |
| 4015 | { |
| 4016 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 4017 | *str++ = '/'; |
| 4018 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 4019 | } |
| 4020 | *str++ = '/'; |
| 4021 | str = pg_ltostr_zeropad(str, |
| 4022 | (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| 4023 | *str++ = ' '; |
| 4024 | str = pg_ltostr_zeropad(str, tm->tm_hour, 2); |
| 4025 | *str++ = ':'; |
| 4026 | str = pg_ltostr_zeropad(str, tm->tm_min, 2); |
| 4027 | *str++ = ':'; |
| 4028 | str = AppendTimestampSeconds(str, tm, fsec); |
| 4029 | |
| 4030 | /* |
| 4031 | * Note: the uses of %.*s in this function would be risky if the |
| 4032 | * timezone names ever contain non-ASCII characters. However, all |
| 4033 | * TZ abbreviations in the IANA database are plain ASCII. |
| 4034 | */ |
| 4035 | if (print_tz) |
| 4036 | { |
| 4037 | if (tzn) |
| 4038 | { |
| 4039 | sprintf(str, " %.*s" , MAXTZLEN, tzn); |
| 4040 | str += strlen(str); |
| 4041 | } |
| 4042 | else |
| 4043 | str = EncodeTimezone(str, tz, style); |
| 4044 | } |
| 4045 | break; |
| 4046 | |
| 4047 | case USE_GERMAN_DATES: |
| 4048 | /* German variant on European style */ |
| 4049 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 4050 | *str++ = '.'; |
| 4051 | str = pg_ltostr_zeropad(str, tm->tm_mon, 2); |
| 4052 | *str++ = '.'; |
| 4053 | str = pg_ltostr_zeropad(str, |
| 4054 | (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| 4055 | *str++ = ' '; |
| 4056 | str = pg_ltostr_zeropad(str, tm->tm_hour, 2); |
| 4057 | *str++ = ':'; |
| 4058 | str = pg_ltostr_zeropad(str, tm->tm_min, 2); |
| 4059 | *str++ = ':'; |
| 4060 | str = AppendTimestampSeconds(str, tm, fsec); |
| 4061 | |
| 4062 | if (print_tz) |
| 4063 | { |
| 4064 | if (tzn) |
| 4065 | { |
| 4066 | sprintf(str, " %.*s" , MAXTZLEN, tzn); |
| 4067 | str += strlen(str); |
| 4068 | } |
| 4069 | else |
| 4070 | str = EncodeTimezone(str, tz, style); |
| 4071 | } |
| 4072 | break; |
| 4073 | |
| 4074 | case USE_POSTGRES_DATES: |
| 4075 | default: |
| 4076 | /* Backward-compatible with traditional Postgres abstime dates */ |
| 4077 | day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday); |
| 4078 | tm->tm_wday = j2day(day); |
| 4079 | memcpy(str, days[tm->tm_wday], 3); |
| 4080 | str += 3; |
| 4081 | *str++ = ' '; |
| 4082 | if (DateOrder == DATEORDER_DMY) |
| 4083 | { |
| 4084 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 4085 | *str++ = ' '; |
| 4086 | memcpy(str, months[tm->tm_mon - 1], 3); |
| 4087 | str += 3; |
| 4088 | } |
| 4089 | else |
| 4090 | { |
| 4091 | memcpy(str, months[tm->tm_mon - 1], 3); |
| 4092 | str += 3; |
| 4093 | *str++ = ' '; |
| 4094 | str = pg_ltostr_zeropad(str, tm->tm_mday, 2); |
| 4095 | } |
| 4096 | *str++ = ' '; |
| 4097 | str = pg_ltostr_zeropad(str, tm->tm_hour, 2); |
| 4098 | *str++ = ':'; |
| 4099 | str = pg_ltostr_zeropad(str, tm->tm_min, 2); |
| 4100 | *str++ = ':'; |
| 4101 | str = AppendTimestampSeconds(str, tm, fsec); |
| 4102 | *str++ = ' '; |
| 4103 | str = pg_ltostr_zeropad(str, |
| 4104 | (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| 4105 | |
| 4106 | if (print_tz) |
| 4107 | { |
| 4108 | if (tzn) |
| 4109 | { |
| 4110 | sprintf(str, " %.*s" , MAXTZLEN, tzn); |
| 4111 | str += strlen(str); |
| 4112 | } |
| 4113 | else |
| 4114 | { |
| 4115 | /* |
| 4116 | * We have a time zone, but no string version. Use the |
| 4117 | * numeric form, but be sure to include a leading space to |
| 4118 | * avoid formatting something which would be rejected by |
| 4119 | * the date/time parser later. - thomas 2001-10-19 |
| 4120 | */ |
| 4121 | *str++ = ' '; |
| 4122 | str = EncodeTimezone(str, tz, style); |
| 4123 | } |
| 4124 | } |
| 4125 | break; |
| 4126 | } |
| 4127 | |
| 4128 | if (tm->tm_year <= 0) |
| 4129 | { |
| 4130 | memcpy(str, " BC" , 3); /* Don't copy NUL */ |
| 4131 | str += 3; |
| 4132 | } |
| 4133 | *str = '\0'; |
| 4134 | } |
| 4135 | |
| 4136 | |
| 4137 | /* |
| 4138 | * Helper functions to avoid duplicated code in EncodeInterval. |
| 4139 | */ |
| 4140 | |
| 4141 | /* Append an ISO-8601-style interval field, but only if value isn't zero */ |
| 4142 | static char * |
| 4143 | AddISO8601IntPart(char *cp, int value, char units) |
| 4144 | { |
| 4145 | if (value == 0) |
| 4146 | return cp; |
| 4147 | sprintf(cp, "%d%c" , value, units); |
| 4148 | return cp + strlen(cp); |
| 4149 | } |
| 4150 | |
| 4151 | /* Append a postgres-style interval field, but only if value isn't zero */ |
| 4152 | static char * |
| 4153 | AddPostgresIntPart(char *cp, int value, const char *units, |
| 4154 | bool *is_zero, bool *is_before) |
| 4155 | { |
| 4156 | if (value == 0) |
| 4157 | return cp; |
| 4158 | sprintf(cp, "%s%s%d %s%s" , |
| 4159 | (!*is_zero) ? " " : "" , |
| 4160 | (*is_before && value > 0) ? "+" : "" , |
| 4161 | value, |
| 4162 | units, |
| 4163 | (value != 1) ? "s" : "" ); |
| 4164 | |
| 4165 | /* |
| 4166 | * Each nonzero field sets is_before for (only) the next one. This is a |
| 4167 | * tad bizarre but it's how it worked before... |
| 4168 | */ |
| 4169 | *is_before = (value < 0); |
| 4170 | *is_zero = false; |
| 4171 | return cp + strlen(cp); |
| 4172 | } |
| 4173 | |
| 4174 | /* Append a verbose-style interval field, but only if value isn't zero */ |
| 4175 | static char * |
| 4176 | AddVerboseIntPart(char *cp, int value, const char *units, |
| 4177 | bool *is_zero, bool *is_before) |
| 4178 | { |
| 4179 | if (value == 0) |
| 4180 | return cp; |
| 4181 | /* first nonzero value sets is_before */ |
| 4182 | if (*is_zero) |
| 4183 | { |
| 4184 | *is_before = (value < 0); |
| 4185 | value = abs(value); |
| 4186 | } |
| 4187 | else if (*is_before) |
| 4188 | value = -value; |
| 4189 | sprintf(cp, " %d %s%s" , value, units, (value == 1) ? "" : "s" ); |
| 4190 | *is_zero = false; |
| 4191 | return cp + strlen(cp); |
| 4192 | } |
| 4193 | |
| 4194 | |
| 4195 | /* EncodeInterval() |
| 4196 | * Interpret time structure as a delta time and convert to string. |
| 4197 | * |
| 4198 | * Support "traditional Postgres" and ISO-8601 styles. |
| 4199 | * Actually, afaik ISO does not address time interval formatting, |
| 4200 | * but this looks similar to the spec for absolute date/time. |
| 4201 | * - thomas 1998-04-30 |
| 4202 | * |
| 4203 | * Actually, afaik, ISO 8601 does specify formats for "time |
| 4204 | * intervals...[of the]...format with time-unit designators", which |
| 4205 | * are pretty ugly. The format looks something like |
| 4206 | * P1Y1M1DT1H1M1.12345S |
| 4207 | * but useful for exchanging data with computers instead of humans. |
| 4208 | * - ron 2003-07-14 |
| 4209 | * |
| 4210 | * And ISO's SQL 2008 standard specifies standards for |
| 4211 | * "year-month literal"s (that look like '2-3') and |
| 4212 | * "day-time literal"s (that look like ('4 5:6:7') |
| 4213 | */ |
| 4214 | void |
| 4215 | EncodeInterval(struct pg_tm *tm, fsec_t fsec, int style, char *str) |
| 4216 | { |
| 4217 | char *cp = str; |
| 4218 | int year = tm->tm_year; |
| 4219 | int mon = tm->tm_mon; |
| 4220 | int mday = tm->tm_mday; |
| 4221 | int hour = tm->tm_hour; |
| 4222 | int min = tm->tm_min; |
| 4223 | int sec = tm->tm_sec; |
| 4224 | bool is_before = false; |
| 4225 | bool is_zero = true; |
| 4226 | |
| 4227 | /* |
| 4228 | * The sign of year and month are guaranteed to match, since they are |
| 4229 | * stored internally as "month". But we'll need to check for is_before and |
| 4230 | * is_zero when determining the signs of day and hour/minute/seconds |
| 4231 | * fields. |
| 4232 | */ |
| 4233 | switch (style) |
| 4234 | { |
| 4235 | /* SQL Standard interval format */ |
| 4236 | case INTSTYLE_SQL_STANDARD: |
| 4237 | { |
| 4238 | bool has_negative = year < 0 || mon < 0 || |
| 4239 | mday < 0 || hour < 0 || |
| 4240 | min < 0 || sec < 0 || fsec < 0; |
| 4241 | bool has_positive = year > 0 || mon > 0 || |
| 4242 | mday > 0 || hour > 0 || |
| 4243 | min > 0 || sec > 0 || fsec > 0; |
| 4244 | bool has_year_month = year != 0 || mon != 0; |
| 4245 | bool has_day_time = mday != 0 || hour != 0 || |
| 4246 | min != 0 || sec != 0 || fsec != 0; |
| 4247 | bool has_day = mday != 0; |
| 4248 | bool sql_standard_value = !(has_negative && has_positive) && |
| 4249 | !(has_year_month && has_day_time); |
| 4250 | |
| 4251 | /* |
| 4252 | * SQL Standard wants only 1 "<sign>" preceding the whole |
| 4253 | * interval ... but can't do that if mixed signs. |
| 4254 | */ |
| 4255 | if (has_negative && sql_standard_value) |
| 4256 | { |
| 4257 | *cp++ = '-'; |
| 4258 | year = -year; |
| 4259 | mon = -mon; |
| 4260 | mday = -mday; |
| 4261 | hour = -hour; |
| 4262 | min = -min; |
| 4263 | sec = -sec; |
| 4264 | fsec = -fsec; |
| 4265 | } |
| 4266 | |
| 4267 | if (!has_negative && !has_positive) |
| 4268 | { |
| 4269 | sprintf(cp, "0" ); |
| 4270 | } |
| 4271 | else if (!sql_standard_value) |
| 4272 | { |
| 4273 | /* |
| 4274 | * For non sql-standard interval values, force outputting |
| 4275 | * the signs to avoid ambiguities with intervals with |
| 4276 | * mixed sign components. |
| 4277 | */ |
| 4278 | char year_sign = (year < 0 || mon < 0) ? '-' : '+'; |
| 4279 | char day_sign = (mday < 0) ? '-' : '+'; |
| 4280 | char sec_sign = (hour < 0 || min < 0 || |
| 4281 | sec < 0 || fsec < 0) ? '-' : '+'; |
| 4282 | |
| 4283 | sprintf(cp, "%c%d-%d %c%d %c%d:%02d:" , |
| 4284 | year_sign, abs(year), abs(mon), |
| 4285 | day_sign, abs(mday), |
| 4286 | sec_sign, abs(hour), abs(min)); |
| 4287 | cp += strlen(cp); |
| 4288 | cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); |
| 4289 | *cp = '\0'; |
| 4290 | } |
| 4291 | else if (has_year_month) |
| 4292 | { |
| 4293 | sprintf(cp, "%d-%d" , year, mon); |
| 4294 | } |
| 4295 | else if (has_day) |
| 4296 | { |
| 4297 | sprintf(cp, "%d %d:%02d:" , mday, hour, min); |
| 4298 | cp += strlen(cp); |
| 4299 | cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); |
| 4300 | *cp = '\0'; |
| 4301 | } |
| 4302 | else |
| 4303 | { |
| 4304 | sprintf(cp, "%d:%02d:" , hour, min); |
| 4305 | cp += strlen(cp); |
| 4306 | cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); |
| 4307 | *cp = '\0'; |
| 4308 | } |
| 4309 | } |
| 4310 | break; |
| 4311 | |
| 4312 | /* ISO 8601 "time-intervals by duration only" */ |
| 4313 | case INTSTYLE_ISO_8601: |
| 4314 | /* special-case zero to avoid printing nothing */ |
| 4315 | if (year == 0 && mon == 0 && mday == 0 && |
| 4316 | hour == 0 && min == 0 && sec == 0 && fsec == 0) |
| 4317 | { |
| 4318 | sprintf(cp, "PT0S" ); |
| 4319 | break; |
| 4320 | } |
| 4321 | *cp++ = 'P'; |
| 4322 | cp = AddISO8601IntPart(cp, year, 'Y'); |
| 4323 | cp = AddISO8601IntPart(cp, mon, 'M'); |
| 4324 | cp = AddISO8601IntPart(cp, mday, 'D'); |
| 4325 | if (hour != 0 || min != 0 || sec != 0 || fsec != 0) |
| 4326 | *cp++ = 'T'; |
| 4327 | cp = AddISO8601IntPart(cp, hour, 'H'); |
| 4328 | cp = AddISO8601IntPart(cp, min, 'M'); |
| 4329 | if (sec != 0 || fsec != 0) |
| 4330 | { |
| 4331 | if (sec < 0 || fsec < 0) |
| 4332 | *cp++ = '-'; |
| 4333 | cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false); |
| 4334 | *cp++ = 'S'; |
| 4335 | *cp++ = '\0'; |
| 4336 | } |
| 4337 | break; |
| 4338 | |
| 4339 | /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */ |
| 4340 | case INTSTYLE_POSTGRES: |
| 4341 | cp = AddPostgresIntPart(cp, year, "year" , &is_zero, &is_before); |
| 4342 | |
| 4343 | /* |
| 4344 | * Ideally we should spell out "month" like we do for "year" and |
| 4345 | * "day". However, for backward compatibility, we can't easily |
| 4346 | * fix this. bjm 2011-05-24 |
| 4347 | */ |
| 4348 | cp = AddPostgresIntPart(cp, mon, "mon" , &is_zero, &is_before); |
| 4349 | cp = AddPostgresIntPart(cp, mday, "day" , &is_zero, &is_before); |
| 4350 | if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0) |
| 4351 | { |
| 4352 | bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0); |
| 4353 | |
| 4354 | sprintf(cp, "%s%s%02d:%02d:" , |
| 4355 | is_zero ? "" : " " , |
| 4356 | (minus ? "-" : (is_before ? "+" : "" )), |
| 4357 | abs(hour), abs(min)); |
| 4358 | cp += strlen(cp); |
| 4359 | cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); |
| 4360 | *cp = '\0'; |
| 4361 | } |
| 4362 | break; |
| 4363 | |
| 4364 | /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */ |
| 4365 | case INTSTYLE_POSTGRES_VERBOSE: |
| 4366 | default: |
| 4367 | strcpy(cp, "@" ); |
| 4368 | cp++; |
| 4369 | cp = AddVerboseIntPart(cp, year, "year" , &is_zero, &is_before); |
| 4370 | cp = AddVerboseIntPart(cp, mon, "mon" , &is_zero, &is_before); |
| 4371 | cp = AddVerboseIntPart(cp, mday, "day" , &is_zero, &is_before); |
| 4372 | cp = AddVerboseIntPart(cp, hour, "hour" , &is_zero, &is_before); |
| 4373 | cp = AddVerboseIntPart(cp, min, "min" , &is_zero, &is_before); |
| 4374 | if (sec != 0 || fsec != 0) |
| 4375 | { |
| 4376 | *cp++ = ' '; |
| 4377 | if (sec < 0 || (sec == 0 && fsec < 0)) |
| 4378 | { |
| 4379 | if (is_zero) |
| 4380 | is_before = true; |
| 4381 | else if (!is_before) |
| 4382 | *cp++ = '-'; |
| 4383 | } |
| 4384 | else if (is_before) |
| 4385 | *cp++ = '-'; |
| 4386 | cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false); |
| 4387 | sprintf(cp, " sec%s" , |
| 4388 | (abs(sec) != 1 || fsec != 0) ? "s" : "" ); |
| 4389 | is_zero = false; |
| 4390 | } |
| 4391 | /* identically zero? then put in a unitless zero... */ |
| 4392 | if (is_zero) |
| 4393 | strcat(cp, " 0" ); |
| 4394 | if (is_before) |
| 4395 | strcat(cp, " ago" ); |
| 4396 | break; |
| 4397 | } |
| 4398 | } |
| 4399 | |
| 4400 | |
| 4401 | /* |
| 4402 | * We've been burnt by stupid errors in the ordering of the datetkn tables |
| 4403 | * once too often. Arrange to check them during postmaster start. |
| 4404 | */ |
| 4405 | static bool |
| 4406 | CheckDateTokenTable(const char *tablename, const datetkn *base, int nel) |
| 4407 | { |
| 4408 | bool ok = true; |
| 4409 | int i; |
| 4410 | |
| 4411 | for (i = 0; i < nel; i++) |
| 4412 | { |
| 4413 | /* check for token strings that don't fit */ |
| 4414 | if (strlen(base[i].token) > TOKMAXLEN) |
| 4415 | { |
| 4416 | /* %.*s is safe since all our tokens are ASCII */ |
| 4417 | elog(LOG, "token too long in %s table: \"%.*s\"" , |
| 4418 | tablename, |
| 4419 | TOKMAXLEN + 1, base[i].token); |
| 4420 | ok = false; |
| 4421 | break; /* don't risk applying strcmp */ |
| 4422 | } |
| 4423 | /* check for out of order */ |
| 4424 | if (i > 0 && |
| 4425 | strcmp(base[i - 1].token, base[i].token) >= 0) |
| 4426 | { |
| 4427 | elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"" , |
| 4428 | tablename, |
| 4429 | base[i - 1].token, |
| 4430 | base[i].token); |
| 4431 | ok = false; |
| 4432 | } |
| 4433 | } |
| 4434 | return ok; |
| 4435 | } |
| 4436 | |
| 4437 | bool |
| 4438 | CheckDateTokenTables(void) |
| 4439 | { |
| 4440 | bool ok = true; |
| 4441 | |
| 4442 | Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1)); |
| 4443 | Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1)); |
| 4444 | |
| 4445 | ok &= CheckDateTokenTable("datetktbl" , datetktbl, szdatetktbl); |
| 4446 | ok &= CheckDateTokenTable("deltatktbl" , deltatktbl, szdeltatktbl); |
| 4447 | return ok; |
| 4448 | } |
| 4449 | |
| 4450 | /* |
| 4451 | * Common code for temporal prosupport functions: simplify, if possible, |
| 4452 | * a call to a temporal type's length-coercion function. |
| 4453 | * |
| 4454 | * Types time, timetz, timestamp and timestamptz each have a range of allowed |
| 4455 | * precisions. An unspecified precision is rigorously equivalent to the |
| 4456 | * highest specifiable precision. We can replace the function call with a |
| 4457 | * no-op RelabelType if it is coercing to the same or higher precision as the |
| 4458 | * input is known to have. |
| 4459 | * |
| 4460 | * The input Node is always a FuncExpr, but to reduce the #include footprint |
| 4461 | * of datetime.h, we declare it as Node *. |
| 4462 | * |
| 4463 | * Note: timestamp_scale throws an error when the typmod is out of range, but |
| 4464 | * we can't get there from a cast: our typmodin will have caught it already. |
| 4465 | */ |
| 4466 | Node * |
| 4467 | TemporalSimplify(int32 max_precis, Node *node) |
| 4468 | { |
| 4469 | FuncExpr *expr = castNode(FuncExpr, node); |
| 4470 | Node *ret = NULL; |
| 4471 | Node *typmod; |
| 4472 | |
| 4473 | Assert(list_length(expr->args) >= 2); |
| 4474 | |
| 4475 | typmod = (Node *) lsecond(expr->args); |
| 4476 | |
| 4477 | if (IsA(typmod, Const) &&!((Const *) typmod)->constisnull) |
| 4478 | { |
| 4479 | Node *source = (Node *) linitial(expr->args); |
| 4480 | int32 old_precis = exprTypmod(source); |
| 4481 | int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue); |
| 4482 | |
| 4483 | if (new_precis < 0 || new_precis == max_precis || |
| 4484 | (old_precis >= 0 && new_precis >= old_precis)) |
| 4485 | ret = relabel_to_typmod(source, new_precis); |
| 4486 | } |
| 4487 | |
| 4488 | return ret; |
| 4489 | } |
| 4490 | |
| 4491 | /* |
| 4492 | * This function gets called during timezone config file load or reload |
| 4493 | * to create the final array of timezone tokens. The argument array |
| 4494 | * is already sorted in name order. |
| 4495 | * |
| 4496 | * The result is a TimeZoneAbbrevTable (which must be a single malloc'd chunk) |
| 4497 | * or NULL on malloc failure. No other error conditions are defined. |
| 4498 | */ |
| 4499 | TimeZoneAbbrevTable * |
| 4500 | ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n) |
| 4501 | { |
| 4502 | TimeZoneAbbrevTable *tbl; |
| 4503 | Size tbl_size; |
| 4504 | int i; |
| 4505 | |
| 4506 | /* Space for fixed fields and datetkn array */ |
| 4507 | tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) + |
| 4508 | n * sizeof(datetkn); |
| 4509 | tbl_size = MAXALIGN(tbl_size); |
| 4510 | /* Count up space for dynamic abbreviations */ |
| 4511 | for (i = 0; i < n; i++) |
| 4512 | { |
| 4513 | struct tzEntry *abbr = abbrevs + i; |
| 4514 | |
| 4515 | if (abbr->zone != NULL) |
| 4516 | { |
| 4517 | Size dsize; |
| 4518 | |
| 4519 | dsize = offsetof(DynamicZoneAbbrev, zone) + |
| 4520 | strlen(abbr->zone) + 1; |
| 4521 | tbl_size += MAXALIGN(dsize); |
| 4522 | } |
| 4523 | } |
| 4524 | |
| 4525 | /* Alloc the result ... */ |
| 4526 | tbl = malloc(tbl_size); |
| 4527 | if (!tbl) |
| 4528 | return NULL; |
| 4529 | |
| 4530 | /* ... and fill it in */ |
| 4531 | tbl->tblsize = tbl_size; |
| 4532 | tbl->numabbrevs = n; |
| 4533 | /* in this loop, tbl_size reprises the space calculation above */ |
| 4534 | tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) + |
| 4535 | n * sizeof(datetkn); |
| 4536 | tbl_size = MAXALIGN(tbl_size); |
| 4537 | for (i = 0; i < n; i++) |
| 4538 | { |
| 4539 | struct tzEntry *abbr = abbrevs + i; |
| 4540 | datetkn *dtoken = tbl->abbrevs + i; |
| 4541 | |
| 4542 | /* use strlcpy to truncate name if necessary */ |
| 4543 | strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1); |
| 4544 | if (abbr->zone != NULL) |
| 4545 | { |
| 4546 | /* Allocate a DynamicZoneAbbrev for this abbreviation */ |
| 4547 | DynamicZoneAbbrev *dtza; |
| 4548 | Size dsize; |
| 4549 | |
| 4550 | dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size); |
| 4551 | dtza->tz = NULL; |
| 4552 | strcpy(dtza->zone, abbr->zone); |
| 4553 | |
| 4554 | dtoken->type = DYNTZ; |
| 4555 | /* value is offset from table start to DynamicZoneAbbrev */ |
| 4556 | dtoken->value = (int32) tbl_size; |
| 4557 | |
| 4558 | dsize = offsetof(DynamicZoneAbbrev, zone) + |
| 4559 | strlen(abbr->zone) + 1; |
| 4560 | tbl_size += MAXALIGN(dsize); |
| 4561 | } |
| 4562 | else |
| 4563 | { |
| 4564 | dtoken->type = abbr->is_dst ? DTZ : TZ; |
| 4565 | dtoken->value = abbr->offset; |
| 4566 | } |
| 4567 | } |
| 4568 | |
| 4569 | /* Assert the two loops above agreed on size calculations */ |
| 4570 | Assert(tbl->tblsize == tbl_size); |
| 4571 | |
| 4572 | /* Check the ordering, if testing */ |
| 4573 | Assert(CheckDateTokenTable("timezone abbreviations" , tbl->abbrevs, n)); |
| 4574 | |
| 4575 | return tbl; |
| 4576 | } |
| 4577 | |
| 4578 | /* |
| 4579 | * Install a TimeZoneAbbrevTable as the active table. |
| 4580 | * |
| 4581 | * Caller is responsible that the passed table doesn't go away while in use. |
| 4582 | */ |
| 4583 | void |
| 4584 | InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl) |
| 4585 | { |
| 4586 | zoneabbrevtbl = tbl; |
| 4587 | /* reset abbrevcache, which may contain pointers into old table */ |
| 4588 | memset(abbrevcache, 0, sizeof(abbrevcache)); |
| 4589 | } |
| 4590 | |
| 4591 | /* |
| 4592 | * Helper subroutine to locate pg_tz timezone for a dynamic abbreviation. |
| 4593 | */ |
| 4594 | static pg_tz * |
| 4595 | FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp) |
| 4596 | { |
| 4597 | DynamicZoneAbbrev *dtza; |
| 4598 | |
| 4599 | /* Just some sanity checks to prevent indexing off into nowhere */ |
| 4600 | Assert(tp->type == DYNTZ); |
| 4601 | Assert(tp->value > 0 && tp->value < tbl->tblsize); |
| 4602 | |
| 4603 | dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value); |
| 4604 | |
| 4605 | /* Look up the underlying zone if we haven't already */ |
| 4606 | if (dtza->tz == NULL) |
| 4607 | { |
| 4608 | dtza->tz = pg_tzset(dtza->zone); |
| 4609 | |
| 4610 | /* |
| 4611 | * Ideally we'd let the caller ereport instead of doing it here, but |
| 4612 | * then there is no way to report the bad time zone name. |
| 4613 | */ |
| 4614 | if (dtza->tz == NULL) |
| 4615 | ereport(ERROR, |
| 4616 | (errcode(ERRCODE_CONFIG_FILE_ERROR), |
| 4617 | errmsg("time zone \"%s\" not recognized" , |
| 4618 | dtza->zone), |
| 4619 | errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\"." , |
| 4620 | tp->token))); |
| 4621 | } |
| 4622 | return dtza->tz; |
| 4623 | } |
| 4624 | |
| 4625 | |
| 4626 | /* |
| 4627 | * This set-returning function reads all the available time zone abbreviations |
| 4628 | * and returns a set of (abbrev, utc_offset, is_dst). |
| 4629 | */ |
| 4630 | Datum |
| 4631 | pg_timezone_abbrevs(PG_FUNCTION_ARGS) |
| 4632 | { |
| 4633 | FuncCallContext *funcctx; |
| 4634 | int *pindex; |
| 4635 | Datum result; |
| 4636 | HeapTuple tuple; |
| 4637 | Datum values[3]; |
| 4638 | bool nulls[3]; |
| 4639 | const datetkn *tp; |
| 4640 | char buffer[TOKMAXLEN + 1]; |
| 4641 | int gmtoffset; |
| 4642 | bool is_dst; |
| 4643 | unsigned char *p; |
| 4644 | struct pg_tm tm; |
| 4645 | Interval *resInterval; |
| 4646 | |
| 4647 | /* stuff done only on the first call of the function */ |
| 4648 | if (SRF_IS_FIRSTCALL()) |
| 4649 | { |
| 4650 | TupleDesc tupdesc; |
| 4651 | MemoryContext oldcontext; |
| 4652 | |
| 4653 | /* create a function context for cross-call persistence */ |
| 4654 | funcctx = SRF_FIRSTCALL_INIT(); |
| 4655 | |
| 4656 | /* |
| 4657 | * switch to memory context appropriate for multiple function calls |
| 4658 | */ |
| 4659 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 4660 | |
| 4661 | /* allocate memory for user context */ |
| 4662 | pindex = (int *) palloc(sizeof(int)); |
| 4663 | *pindex = 0; |
| 4664 | funcctx->user_fctx = (void *) pindex; |
| 4665 | |
| 4666 | /* |
| 4667 | * build tupdesc for result tuples. This must match this function's |
| 4668 | * pg_proc entry! |
| 4669 | */ |
| 4670 | tupdesc = CreateTemplateTupleDesc(3); |
| 4671 | TupleDescInitEntry(tupdesc, (AttrNumber) 1, "abbrev" , |
| 4672 | TEXTOID, -1, 0); |
| 4673 | TupleDescInitEntry(tupdesc, (AttrNumber) 2, "utc_offset" , |
| 4674 | INTERVALOID, -1, 0); |
| 4675 | TupleDescInitEntry(tupdesc, (AttrNumber) 3, "is_dst" , |
| 4676 | BOOLOID, -1, 0); |
| 4677 | |
| 4678 | funcctx->tuple_desc = BlessTupleDesc(tupdesc); |
| 4679 | MemoryContextSwitchTo(oldcontext); |
| 4680 | } |
| 4681 | |
| 4682 | /* stuff done on every call of the function */ |
| 4683 | funcctx = SRF_PERCALL_SETUP(); |
| 4684 | pindex = (int *) funcctx->user_fctx; |
| 4685 | |
| 4686 | if (zoneabbrevtbl == NULL || |
| 4687 | *pindex >= zoneabbrevtbl->numabbrevs) |
| 4688 | SRF_RETURN_DONE(funcctx); |
| 4689 | |
| 4690 | tp = zoneabbrevtbl->abbrevs + *pindex; |
| 4691 | |
| 4692 | switch (tp->type) |
| 4693 | { |
| 4694 | case TZ: |
| 4695 | gmtoffset = tp->value; |
| 4696 | is_dst = false; |
| 4697 | break; |
| 4698 | case DTZ: |
| 4699 | gmtoffset = tp->value; |
| 4700 | is_dst = true; |
| 4701 | break; |
| 4702 | case DYNTZ: |
| 4703 | { |
| 4704 | /* Determine the current meaning of the abbrev */ |
| 4705 | pg_tz *tzp; |
| 4706 | TimestampTz now; |
| 4707 | int isdst; |
| 4708 | |
| 4709 | tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp); |
| 4710 | now = GetCurrentTransactionStartTimestamp(); |
| 4711 | gmtoffset = -DetermineTimeZoneAbbrevOffsetTS(now, |
| 4712 | tp->token, |
| 4713 | tzp, |
| 4714 | &isdst); |
| 4715 | is_dst = (bool) isdst; |
| 4716 | break; |
| 4717 | } |
| 4718 | default: |
| 4719 | elog(ERROR, "unrecognized timezone type %d" , (int) tp->type); |
| 4720 | gmtoffset = 0; /* keep compiler quiet */ |
| 4721 | is_dst = false; |
| 4722 | break; |
| 4723 | } |
| 4724 | |
| 4725 | MemSet(nulls, 0, sizeof(nulls)); |
| 4726 | |
| 4727 | /* |
| 4728 | * Convert name to text, using upcasing conversion that is the inverse of |
| 4729 | * what ParseDateTime() uses. |
| 4730 | */ |
| 4731 | strlcpy(buffer, tp->token, sizeof(buffer)); |
| 4732 | for (p = (unsigned char *) buffer; *p; p++) |
| 4733 | *p = pg_toupper(*p); |
| 4734 | |
| 4735 | values[0] = CStringGetTextDatum(buffer); |
| 4736 | |
| 4737 | /* Convert offset (in seconds) to an interval */ |
| 4738 | MemSet(&tm, 0, sizeof(struct pg_tm)); |
| 4739 | tm.tm_sec = gmtoffset; |
| 4740 | resInterval = (Interval *) palloc(sizeof(Interval)); |
| 4741 | tm2interval(&tm, 0, resInterval); |
| 4742 | values[1] = IntervalPGetDatum(resInterval); |
| 4743 | |
| 4744 | values[2] = BoolGetDatum(is_dst); |
| 4745 | |
| 4746 | (*pindex)++; |
| 4747 | |
| 4748 | tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); |
| 4749 | result = HeapTupleGetDatum(tuple); |
| 4750 | |
| 4751 | SRF_RETURN_NEXT(funcctx, result); |
| 4752 | } |
| 4753 | |
| 4754 | /* |
| 4755 | * This set-returning function reads all the available full time zones |
| 4756 | * and returns a set of (name, abbrev, utc_offset, is_dst). |
| 4757 | */ |
| 4758 | Datum |
| 4759 | pg_timezone_names(PG_FUNCTION_ARGS) |
| 4760 | { |
| 4761 | MemoryContext oldcontext; |
| 4762 | FuncCallContext *funcctx; |
| 4763 | pg_tzenum *tzenum; |
| 4764 | pg_tz *tz; |
| 4765 | Datum result; |
| 4766 | HeapTuple tuple; |
| 4767 | Datum values[4]; |
| 4768 | bool nulls[4]; |
| 4769 | int tzoff; |
| 4770 | struct pg_tm tm; |
| 4771 | fsec_t fsec; |
| 4772 | const char *tzn; |
| 4773 | Interval *resInterval; |
| 4774 | struct pg_tm itm; |
| 4775 | |
| 4776 | /* stuff done only on the first call of the function */ |
| 4777 | if (SRF_IS_FIRSTCALL()) |
| 4778 | { |
| 4779 | TupleDesc tupdesc; |
| 4780 | |
| 4781 | /* create a function context for cross-call persistence */ |
| 4782 | funcctx = SRF_FIRSTCALL_INIT(); |
| 4783 | |
| 4784 | /* |
| 4785 | * switch to memory context appropriate for multiple function calls |
| 4786 | */ |
| 4787 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 4788 | |
| 4789 | /* initialize timezone scanning code */ |
| 4790 | tzenum = pg_tzenumerate_start(); |
| 4791 | funcctx->user_fctx = (void *) tzenum; |
| 4792 | |
| 4793 | /* |
| 4794 | * build tupdesc for result tuples. This must match this function's |
| 4795 | * pg_proc entry! |
| 4796 | */ |
| 4797 | tupdesc = CreateTemplateTupleDesc(4); |
| 4798 | TupleDescInitEntry(tupdesc, (AttrNumber) 1, "name" , |
| 4799 | TEXTOID, -1, 0); |
| 4800 | TupleDescInitEntry(tupdesc, (AttrNumber) 2, "abbrev" , |
| 4801 | TEXTOID, -1, 0); |
| 4802 | TupleDescInitEntry(tupdesc, (AttrNumber) 3, "utc_offset" , |
| 4803 | INTERVALOID, -1, 0); |
| 4804 | TupleDescInitEntry(tupdesc, (AttrNumber) 4, "is_dst" , |
| 4805 | BOOLOID, -1, 0); |
| 4806 | |
| 4807 | funcctx->tuple_desc = BlessTupleDesc(tupdesc); |
| 4808 | MemoryContextSwitchTo(oldcontext); |
| 4809 | } |
| 4810 | |
| 4811 | /* stuff done on every call of the function */ |
| 4812 | funcctx = SRF_PERCALL_SETUP(); |
| 4813 | tzenum = (pg_tzenum *) funcctx->user_fctx; |
| 4814 | |
| 4815 | /* search for another zone to display */ |
| 4816 | for (;;) |
| 4817 | { |
| 4818 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 4819 | tz = pg_tzenumerate_next(tzenum); |
| 4820 | MemoryContextSwitchTo(oldcontext); |
| 4821 | |
| 4822 | if (!tz) |
| 4823 | { |
| 4824 | pg_tzenumerate_end(tzenum); |
| 4825 | funcctx->user_fctx = NULL; |
| 4826 | SRF_RETURN_DONE(funcctx); |
| 4827 | } |
| 4828 | |
| 4829 | /* Convert now() to local time in this zone */ |
| 4830 | if (timestamp2tm(GetCurrentTransactionStartTimestamp(), |
| 4831 | &tzoff, &tm, &fsec, &tzn, tz) != 0) |
| 4832 | continue; /* ignore if conversion fails */ |
| 4833 | |
| 4834 | /* |
| 4835 | * IANA's rather silly "Factory" time zone used to emit ridiculously |
| 4836 | * long "abbreviations" such as "Local time zone must be set--see zic |
| 4837 | * manual page" or "Local time zone must be set--use tzsetup". While |
| 4838 | * modern versions of tzdb emit the much saner "-00", it seems some |
| 4839 | * benighted packagers are hacking the IANA data so that it continues |
| 4840 | * to produce these strings. To prevent producing a weirdly wide |
| 4841 | * abbrev column, reject ridiculously long abbreviations. |
| 4842 | */ |
| 4843 | if (tzn && strlen(tzn) > 31) |
| 4844 | continue; |
| 4845 | |
| 4846 | /* Found a displayable zone */ |
| 4847 | break; |
| 4848 | } |
| 4849 | |
| 4850 | MemSet(nulls, 0, sizeof(nulls)); |
| 4851 | |
| 4852 | values[0] = CStringGetTextDatum(pg_get_timezone_name(tz)); |
| 4853 | values[1] = CStringGetTextDatum(tzn ? tzn : "" ); |
| 4854 | |
| 4855 | MemSet(&itm, 0, sizeof(struct pg_tm)); |
| 4856 | itm.tm_sec = -tzoff; |
| 4857 | resInterval = (Interval *) palloc(sizeof(Interval)); |
| 4858 | tm2interval(&itm, 0, resInterval); |
| 4859 | values[2] = IntervalPGetDatum(resInterval); |
| 4860 | |
| 4861 | values[3] = BoolGetDatum(tm.tm_isdst > 0); |
| 4862 | |
| 4863 | tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); |
| 4864 | result = HeapTupleGetDatum(tuple); |
| 4865 | |
| 4866 | SRF_RETURN_NEXT(funcctx, result); |
| 4867 | } |
| 4868 | |