| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * geo_ops.c |
| 4 | * 2D geometric operations |
| 5 | * |
| 6 | * This module implements the geometric functions and operators. The |
| 7 | * geometric types are (from simple to more complicated): |
| 8 | * |
| 9 | * - point |
| 10 | * - line |
| 11 | * - line segment |
| 12 | * - box |
| 13 | * - circle |
| 14 | * - polygon |
| 15 | * |
| 16 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 17 | * Portions Copyright (c) 1994, Regents of the University of California |
| 18 | * |
| 19 | * |
| 20 | * IDENTIFICATION |
| 21 | * src/backend/utils/adt/geo_ops.c |
| 22 | * |
| 23 | *------------------------------------------------------------------------- |
| 24 | */ |
| 25 | #include "postgres.h" |
| 26 | |
| 27 | #include <math.h> |
| 28 | #include <limits.h> |
| 29 | #include <float.h> |
| 30 | #include <ctype.h> |
| 31 | |
| 32 | #include "libpq/pqformat.h" |
| 33 | #include "miscadmin.h" |
| 34 | #include "utils/float.h" |
| 35 | #include "utils/fmgrprotos.h" |
| 36 | #include "utils/geo_decls.h" |
| 37 | |
| 38 | /* |
| 39 | * * Type constructors have this form: |
| 40 | * void type_construct(Type *result, ...); |
| 41 | * |
| 42 | * * Operators commonly have signatures such as |
| 43 | * void type1_operator_type2(Type *result, Type1 *obj1, Type2 *obj2); |
| 44 | * |
| 45 | * Common operators are: |
| 46 | * * Intersection point: |
| 47 | * bool type1_interpt_type2(Point *result, Type1 *obj1, Type2 *obj2); |
| 48 | * Return whether the two objects intersect. If *result is not NULL, |
| 49 | * it is set to the intersection point. |
| 50 | * |
| 51 | * * Containment: |
| 52 | * bool type1_contain_type2(Type1 *obj1, Type2 *obj2); |
| 53 | * Return whether obj1 contains obj2. |
| 54 | * bool type1_contain_type2(Type1 *contains_obj, Type1 *contained_obj); |
| 55 | * Return whether obj1 contains obj2 (used when types are the same) |
| 56 | * |
| 57 | * * Distance of closest point in or on obj1 to obj2: |
| 58 | * float8 type1_closept_type2(Point *result, Type1 *obj1, Type2 *obj2); |
| 59 | * Returns the shortest distance between two objects. If *result is not |
| 60 | * NULL, it is set to the closest point in or on obj1 to obj2. |
| 61 | * |
| 62 | * These functions may be used to implement multiple SQL-level operators. For |
| 63 | * example, determining whether two lines are parallel is done by checking |
| 64 | * whether they don't intersect. |
| 65 | */ |
| 66 | |
| 67 | /* |
| 68 | * Internal routines |
| 69 | */ |
| 70 | |
| 71 | enum path_delim |
| 72 | { |
| 73 | PATH_NONE, PATH_OPEN, PATH_CLOSED |
| 74 | }; |
| 75 | |
| 76 | /* Routines for points */ |
| 77 | static inline void point_construct(Point *result, float8 x, float8 y); |
| 78 | static inline void point_add_point(Point *result, Point *pt1, Point *pt2); |
| 79 | static inline void point_sub_point(Point *result, Point *pt1, Point *pt2); |
| 80 | static inline void point_mul_point(Point *result, Point *pt1, Point *pt2); |
| 81 | static inline void point_div_point(Point *result, Point *pt1, Point *pt2); |
| 82 | static inline bool point_eq_point(Point *pt1, Point *pt2); |
| 83 | static inline float8 point_dt(Point *pt1, Point *pt2); |
| 84 | static inline float8 point_sl(Point *pt1, Point *pt2); |
| 85 | static int point_inside(Point *p, int npts, Point *plist); |
| 86 | |
| 87 | /* Routines for lines */ |
| 88 | static inline void line_construct(LINE *result, Point *pt, float8 m); |
| 89 | static inline float8 line_sl(LINE *line); |
| 90 | static inline float8 line_invsl(LINE *line); |
| 91 | static bool line_interpt_line(Point *result, LINE *l1, LINE *l2); |
| 92 | static bool line_contain_point(LINE *line, Point *point); |
| 93 | static float8 line_closept_point(Point *result, LINE *line, Point *pt); |
| 94 | |
| 95 | /* Routines for line segments */ |
| 96 | static inline void statlseg_construct(LSEG *lseg, Point *pt1, Point *pt2); |
| 97 | static inline float8 lseg_sl(LSEG *lseg); |
| 98 | static inline float8 lseg_invsl(LSEG *lseg); |
| 99 | static bool lseg_interpt_line(Point *result, LSEG *lseg, LINE *line); |
| 100 | static bool lseg_interpt_lseg(Point *result, LSEG *l1, LSEG *l2); |
| 101 | static int lseg_crossing(float8 x, float8 y, float8 px, float8 py); |
| 102 | static bool lseg_contain_point(LSEG *lseg, Point *point); |
| 103 | static float8 lseg_closept_point(Point *result, LSEG *lseg, Point *pt); |
| 104 | static float8 lseg_closept_line(Point *result, LSEG *lseg, LINE *line); |
| 105 | static float8 lseg_closept_lseg(Point *result, LSEG *on_lseg, LSEG *to_lseg); |
| 106 | |
| 107 | /* Routines for boxes */ |
| 108 | static inline void box_construct(BOX *result, Point *pt1, Point *pt2); |
| 109 | static void box_cn(Point *center, BOX *box); |
| 110 | static bool box_ov(BOX *box1, BOX *box2); |
| 111 | static float8 box_ar(BOX *box); |
| 112 | static float8 box_ht(BOX *box); |
| 113 | static float8 box_wd(BOX *box); |
| 114 | static bool box_contain_point(BOX *box, Point *point); |
| 115 | static bool box_contain_box(BOX *contains_box, BOX *contained_box); |
| 116 | static bool box_contain_lseg(BOX *box, LSEG *lseg); |
| 117 | static bool box_interpt_lseg(Point *result, BOX *box, LSEG *lseg); |
| 118 | static float8 box_closept_point(Point *result, BOX *box, Point *point); |
| 119 | static float8 box_closept_lseg(Point *result, BOX *box, LSEG *lseg); |
| 120 | |
| 121 | /* Routines for circles */ |
| 122 | static float8 circle_ar(CIRCLE *circle); |
| 123 | |
| 124 | /* Routines for polygons */ |
| 125 | static void make_bound_box(POLYGON *poly); |
| 126 | static void poly_to_circle(CIRCLE *result, POLYGON *poly); |
| 127 | static bool lseg_inside_poly(Point *a, Point *b, POLYGON *poly, int start); |
| 128 | static bool poly_contain_poly(POLYGON *contains_poly, POLYGON *contained_poly); |
| 129 | static bool plist_same(int npts, Point *p1, Point *p2); |
| 130 | static float8 dist_ppoly_internal(Point *pt, POLYGON *poly); |
| 131 | |
| 132 | /* Routines for encoding and decoding */ |
| 133 | static float8 single_decode(char *num, char **endptr_p, |
| 134 | const char *type_name, const char *orig_string); |
| 135 | static void single_encode(float8 x, StringInfo str); |
| 136 | static void pair_decode(char *str, float8 *x, float8 *y, char **endptr_p, |
| 137 | const char *type_name, const char *orig_string); |
| 138 | static void pair_encode(float8 x, float8 y, StringInfo str); |
| 139 | static int pair_count(char *s, char delim); |
| 140 | static void path_decode(char *str, bool opentype, int npts, Point *p, |
| 141 | bool *isopen, char **endptr_p, |
| 142 | const char *type_name, const char *orig_string); |
| 143 | static char *path_encode(enum path_delim path_delim, int npts, Point *pt); |
| 144 | |
| 145 | |
| 146 | /* |
| 147 | * Delimiters for input and output strings. |
| 148 | * LDELIM, RDELIM, and DELIM are left, right, and separator delimiters, respectively. |
| 149 | * LDELIM_EP, RDELIM_EP are left and right delimiters for paths with endpoints. |
| 150 | */ |
| 151 | |
| 152 | #define LDELIM '(' |
| 153 | #define RDELIM ')' |
| 154 | #define DELIM ',' |
| 155 | #define LDELIM_EP '[' |
| 156 | #define RDELIM_EP ']' |
| 157 | #define LDELIM_C '<' |
| 158 | #define RDELIM_C '>' |
| 159 | #define LDELIM_L '{' |
| 160 | #define RDELIM_L '}' |
| 161 | |
| 162 | |
| 163 | /* |
| 164 | * Geometric data types are composed of points. |
| 165 | * This code tries to support a common format throughout the data types, |
| 166 | * to allow for more predictable usage and data type conversion. |
| 167 | * The fundamental unit is the point. Other units are line segments, |
| 168 | * open paths, boxes, closed paths, and polygons (which should be considered |
| 169 | * non-intersecting closed paths). |
| 170 | * |
| 171 | * Data representation is as follows: |
| 172 | * point: (x,y) |
| 173 | * line segment: [(x1,y1),(x2,y2)] |
| 174 | * box: (x1,y1),(x2,y2) |
| 175 | * open path: [(x1,y1),...,(xn,yn)] |
| 176 | * closed path: ((x1,y1),...,(xn,yn)) |
| 177 | * polygon: ((x1,y1),...,(xn,yn)) |
| 178 | * |
| 179 | * For boxes, the points are opposite corners with the first point at the top right. |
| 180 | * For closed paths and polygons, the points should be reordered to allow |
| 181 | * fast and correct equality comparisons. |
| 182 | * |
| 183 | * XXX perhaps points in complex shapes should be reordered internally |
| 184 | * to allow faster internal operations, but should keep track of input order |
| 185 | * and restore that order for text output - tgl 97/01/16 |
| 186 | */ |
| 187 | |
| 188 | static float8 |
| 189 | single_decode(char *num, char **endptr_p, |
| 190 | const char *type_name, const char *orig_string) |
| 191 | { |
| 192 | return float8in_internal(num, endptr_p, type_name, orig_string); |
| 193 | } /* single_decode() */ |
| 194 | |
| 195 | static void |
| 196 | single_encode(float8 x, StringInfo str) |
| 197 | { |
| 198 | char *xstr = float8out_internal(x); |
| 199 | |
| 200 | appendStringInfoString(str, xstr); |
| 201 | pfree(xstr); |
| 202 | } /* single_encode() */ |
| 203 | |
| 204 | static void |
| 205 | pair_decode(char *str, float8 *x, float8 *y, char **endptr_p, |
| 206 | const char *type_name, const char *orig_string) |
| 207 | { |
| 208 | bool has_delim; |
| 209 | |
| 210 | while (isspace((unsigned char) *str)) |
| 211 | str++; |
| 212 | if ((has_delim = (*str == LDELIM))) |
| 213 | str++; |
| 214 | |
| 215 | *x = float8in_internal(str, &str, type_name, orig_string); |
| 216 | |
| 217 | if (*str++ != DELIM) |
| 218 | ereport(ERROR, |
| 219 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 220 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 221 | type_name, orig_string))); |
| 222 | |
| 223 | *y = float8in_internal(str, &str, type_name, orig_string); |
| 224 | |
| 225 | if (has_delim) |
| 226 | { |
| 227 | if (*str++ != RDELIM) |
| 228 | ereport(ERROR, |
| 229 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 230 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 231 | type_name, orig_string))); |
| 232 | while (isspace((unsigned char) *str)) |
| 233 | str++; |
| 234 | } |
| 235 | |
| 236 | /* report stopping point if wanted, else complain if not end of string */ |
| 237 | if (endptr_p) |
| 238 | *endptr_p = str; |
| 239 | else if (*str != '\0') |
| 240 | ereport(ERROR, |
| 241 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 242 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 243 | type_name, orig_string))); |
| 244 | } |
| 245 | |
| 246 | static void |
| 247 | pair_encode(float8 x, float8 y, StringInfo str) |
| 248 | { |
| 249 | char *xstr = float8out_internal(x); |
| 250 | char *ystr = float8out_internal(y); |
| 251 | |
| 252 | appendStringInfo(str, "%s,%s" , xstr, ystr); |
| 253 | pfree(xstr); |
| 254 | pfree(ystr); |
| 255 | } |
| 256 | |
| 257 | static void |
| 258 | path_decode(char *str, bool opentype, int npts, Point *p, |
| 259 | bool *isopen, char **endptr_p, |
| 260 | const char *type_name, const char *orig_string) |
| 261 | { |
| 262 | int depth = 0; |
| 263 | char *cp; |
| 264 | int i; |
| 265 | |
| 266 | while (isspace((unsigned char) *str)) |
| 267 | str++; |
| 268 | if ((*isopen = (*str == LDELIM_EP))) |
| 269 | { |
| 270 | /* no open delimiter allowed? */ |
| 271 | if (!opentype) |
| 272 | ereport(ERROR, |
| 273 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 274 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 275 | type_name, orig_string))); |
| 276 | depth++; |
| 277 | str++; |
| 278 | } |
| 279 | else if (*str == LDELIM) |
| 280 | { |
| 281 | cp = (str + 1); |
| 282 | while (isspace((unsigned char) *cp)) |
| 283 | cp++; |
| 284 | if (*cp == LDELIM) |
| 285 | { |
| 286 | depth++; |
| 287 | str = cp; |
| 288 | } |
| 289 | else if (strrchr(str, LDELIM) == str) |
| 290 | { |
| 291 | depth++; |
| 292 | str = cp; |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | for (i = 0; i < npts; i++) |
| 297 | { |
| 298 | pair_decode(str, &(p->x), &(p->y), &str, type_name, orig_string); |
| 299 | if (*str == DELIM) |
| 300 | str++; |
| 301 | p++; |
| 302 | } |
| 303 | |
| 304 | while (depth > 0) |
| 305 | { |
| 306 | if (*str == RDELIM || (*str == RDELIM_EP && *isopen && depth == 1)) |
| 307 | { |
| 308 | depth--; |
| 309 | str++; |
| 310 | while (isspace((unsigned char) *str)) |
| 311 | str++; |
| 312 | } |
| 313 | else |
| 314 | ereport(ERROR, |
| 315 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 316 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 317 | type_name, orig_string))); |
| 318 | } |
| 319 | |
| 320 | /* report stopping point if wanted, else complain if not end of string */ |
| 321 | if (endptr_p) |
| 322 | *endptr_p = str; |
| 323 | else if (*str != '\0') |
| 324 | ereport(ERROR, |
| 325 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 326 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 327 | type_name, orig_string))); |
| 328 | } /* path_decode() */ |
| 329 | |
| 330 | static char * |
| 331 | path_encode(enum path_delim path_delim, int npts, Point *pt) |
| 332 | { |
| 333 | StringInfoData str; |
| 334 | int i; |
| 335 | |
| 336 | initStringInfo(&str); |
| 337 | |
| 338 | switch (path_delim) |
| 339 | { |
| 340 | case PATH_CLOSED: |
| 341 | appendStringInfoChar(&str, LDELIM); |
| 342 | break; |
| 343 | case PATH_OPEN: |
| 344 | appendStringInfoChar(&str, LDELIM_EP); |
| 345 | break; |
| 346 | case PATH_NONE: |
| 347 | break; |
| 348 | } |
| 349 | |
| 350 | for (i = 0; i < npts; i++) |
| 351 | { |
| 352 | if (i > 0) |
| 353 | appendStringInfoChar(&str, DELIM); |
| 354 | appendStringInfoChar(&str, LDELIM); |
| 355 | pair_encode(pt->x, pt->y, &str); |
| 356 | appendStringInfoChar(&str, RDELIM); |
| 357 | pt++; |
| 358 | } |
| 359 | |
| 360 | switch (path_delim) |
| 361 | { |
| 362 | case PATH_CLOSED: |
| 363 | appendStringInfoChar(&str, RDELIM); |
| 364 | break; |
| 365 | case PATH_OPEN: |
| 366 | appendStringInfoChar(&str, RDELIM_EP); |
| 367 | break; |
| 368 | case PATH_NONE: |
| 369 | break; |
| 370 | } |
| 371 | |
| 372 | return str.data; |
| 373 | } /* path_encode() */ |
| 374 | |
| 375 | /*------------------------------------------------------------- |
| 376 | * pair_count - count the number of points |
| 377 | * allow the following notation: |
| 378 | * '((1,2),(3,4))' |
| 379 | * '(1,3,2,4)' |
| 380 | * require an odd number of delim characters in the string |
| 381 | *-------------------------------------------------------------*/ |
| 382 | static int |
| 383 | pair_count(char *s, char delim) |
| 384 | { |
| 385 | int ndelim = 0; |
| 386 | |
| 387 | while ((s = strchr(s, delim)) != NULL) |
| 388 | { |
| 389 | ndelim++; |
| 390 | s++; |
| 391 | } |
| 392 | return (ndelim % 2) ? ((ndelim + 1) / 2) : -1; |
| 393 | } |
| 394 | |
| 395 | |
| 396 | /*********************************************************************** |
| 397 | ** |
| 398 | ** Routines for two-dimensional boxes. |
| 399 | ** |
| 400 | ***********************************************************************/ |
| 401 | |
| 402 | /*---------------------------------------------------------- |
| 403 | * Formatting and conversion routines. |
| 404 | *---------------------------------------------------------*/ |
| 405 | |
| 406 | /* box_in - convert a string to internal form. |
| 407 | * |
| 408 | * External format: (two corners of box) |
| 409 | * "(f8, f8), (f8, f8)" |
| 410 | * also supports the older style "(f8, f8, f8, f8)" |
| 411 | */ |
| 412 | Datum |
| 413 | box_in(PG_FUNCTION_ARGS) |
| 414 | { |
| 415 | char *str = PG_GETARG_CSTRING(0); |
| 416 | BOX *box = (BOX *) palloc(sizeof(BOX)); |
| 417 | bool isopen; |
| 418 | float8 x, |
| 419 | y; |
| 420 | |
| 421 | path_decode(str, false, 2, &(box->high), &isopen, NULL, "box" , str); |
| 422 | |
| 423 | /* reorder corners if necessary... */ |
| 424 | if (float8_lt(box->high.x, box->low.x)) |
| 425 | { |
| 426 | x = box->high.x; |
| 427 | box->high.x = box->low.x; |
| 428 | box->low.x = x; |
| 429 | } |
| 430 | if (float8_lt(box->high.y, box->low.y)) |
| 431 | { |
| 432 | y = box->high.y; |
| 433 | box->high.y = box->low.y; |
| 434 | box->low.y = y; |
| 435 | } |
| 436 | |
| 437 | PG_RETURN_BOX_P(box); |
| 438 | } |
| 439 | |
| 440 | /* box_out - convert a box to external form. |
| 441 | */ |
| 442 | Datum |
| 443 | box_out(PG_FUNCTION_ARGS) |
| 444 | { |
| 445 | BOX *box = PG_GETARG_BOX_P(0); |
| 446 | |
| 447 | PG_RETURN_CSTRING(path_encode(PATH_NONE, 2, &(box->high))); |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * box_recv - converts external binary format to box |
| 452 | */ |
| 453 | Datum |
| 454 | box_recv(PG_FUNCTION_ARGS) |
| 455 | { |
| 456 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 457 | BOX *box; |
| 458 | float8 x, |
| 459 | y; |
| 460 | |
| 461 | box = (BOX *) palloc(sizeof(BOX)); |
| 462 | |
| 463 | box->high.x = pq_getmsgfloat8(buf); |
| 464 | box->high.y = pq_getmsgfloat8(buf); |
| 465 | box->low.x = pq_getmsgfloat8(buf); |
| 466 | box->low.y = pq_getmsgfloat8(buf); |
| 467 | |
| 468 | /* reorder corners if necessary... */ |
| 469 | if (float8_lt(box->high.x, box->low.x)) |
| 470 | { |
| 471 | x = box->high.x; |
| 472 | box->high.x = box->low.x; |
| 473 | box->low.x = x; |
| 474 | } |
| 475 | if (float8_lt(box->high.y, box->low.y)) |
| 476 | { |
| 477 | y = box->high.y; |
| 478 | box->high.y = box->low.y; |
| 479 | box->low.y = y; |
| 480 | } |
| 481 | |
| 482 | PG_RETURN_BOX_P(box); |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * box_send - converts box to binary format |
| 487 | */ |
| 488 | Datum |
| 489 | box_send(PG_FUNCTION_ARGS) |
| 490 | { |
| 491 | BOX *box = PG_GETARG_BOX_P(0); |
| 492 | StringInfoData buf; |
| 493 | |
| 494 | pq_begintypsend(&buf); |
| 495 | pq_sendfloat8(&buf, box->high.x); |
| 496 | pq_sendfloat8(&buf, box->high.y); |
| 497 | pq_sendfloat8(&buf, box->low.x); |
| 498 | pq_sendfloat8(&buf, box->low.y); |
| 499 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 500 | } |
| 501 | |
| 502 | |
| 503 | /* box_construct - fill in a new box. |
| 504 | */ |
| 505 | static inline void |
| 506 | box_construct(BOX *result, Point *pt1, Point *pt2) |
| 507 | { |
| 508 | if (float8_gt(pt1->x, pt2->x)) |
| 509 | { |
| 510 | result->high.x = pt1->x; |
| 511 | result->low.x = pt2->x; |
| 512 | } |
| 513 | else |
| 514 | { |
| 515 | result->high.x = pt2->x; |
| 516 | result->low.x = pt1->x; |
| 517 | } |
| 518 | if (float8_gt(pt1->y, pt2->y)) |
| 519 | { |
| 520 | result->high.y = pt1->y; |
| 521 | result->low.y = pt2->y; |
| 522 | } |
| 523 | else |
| 524 | { |
| 525 | result->high.y = pt2->y; |
| 526 | result->low.y = pt1->y; |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | |
| 531 | /*---------------------------------------------------------- |
| 532 | * Relational operators for BOXes. |
| 533 | * <, >, <=, >=, and == are based on box area. |
| 534 | *---------------------------------------------------------*/ |
| 535 | |
| 536 | /* box_same - are two boxes identical? |
| 537 | */ |
| 538 | Datum |
| 539 | box_same(PG_FUNCTION_ARGS) |
| 540 | { |
| 541 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 542 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 543 | |
| 544 | PG_RETURN_BOOL(point_eq_point(&box1->high, &box2->high) && |
| 545 | point_eq_point(&box1->low, &box2->low)); |
| 546 | } |
| 547 | |
| 548 | /* box_overlap - does box1 overlap box2? |
| 549 | */ |
| 550 | Datum |
| 551 | box_overlap(PG_FUNCTION_ARGS) |
| 552 | { |
| 553 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 554 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 555 | |
| 556 | PG_RETURN_BOOL(box_ov(box1, box2)); |
| 557 | } |
| 558 | |
| 559 | static bool |
| 560 | box_ov(BOX *box1, BOX *box2) |
| 561 | { |
| 562 | return (FPle(box1->low.x, box2->high.x) && |
| 563 | FPle(box2->low.x, box1->high.x) && |
| 564 | FPle(box1->low.y, box2->high.y) && |
| 565 | FPle(box2->low.y, box1->high.y)); |
| 566 | } |
| 567 | |
| 568 | /* box_left - is box1 strictly left of box2? |
| 569 | */ |
| 570 | Datum |
| 571 | box_left(PG_FUNCTION_ARGS) |
| 572 | { |
| 573 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 574 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 575 | |
| 576 | PG_RETURN_BOOL(FPlt(box1->high.x, box2->low.x)); |
| 577 | } |
| 578 | |
| 579 | /* box_overleft - is the right edge of box1 at or left of |
| 580 | * the right edge of box2? |
| 581 | * |
| 582 | * This is "less than or equal" for the end of a time range, |
| 583 | * when time ranges are stored as rectangles. |
| 584 | */ |
| 585 | Datum |
| 586 | box_overleft(PG_FUNCTION_ARGS) |
| 587 | { |
| 588 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 589 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 590 | |
| 591 | PG_RETURN_BOOL(FPle(box1->high.x, box2->high.x)); |
| 592 | } |
| 593 | |
| 594 | /* box_right - is box1 strictly right of box2? |
| 595 | */ |
| 596 | Datum |
| 597 | box_right(PG_FUNCTION_ARGS) |
| 598 | { |
| 599 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 600 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 601 | |
| 602 | PG_RETURN_BOOL(FPgt(box1->low.x, box2->high.x)); |
| 603 | } |
| 604 | |
| 605 | /* box_overright - is the left edge of box1 at or right of |
| 606 | * the left edge of box2? |
| 607 | * |
| 608 | * This is "greater than or equal" for time ranges, when time ranges |
| 609 | * are stored as rectangles. |
| 610 | */ |
| 611 | Datum |
| 612 | box_overright(PG_FUNCTION_ARGS) |
| 613 | { |
| 614 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 615 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 616 | |
| 617 | PG_RETURN_BOOL(FPge(box1->low.x, box2->low.x)); |
| 618 | } |
| 619 | |
| 620 | /* box_below - is box1 strictly below box2? |
| 621 | */ |
| 622 | Datum |
| 623 | box_below(PG_FUNCTION_ARGS) |
| 624 | { |
| 625 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 626 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 627 | |
| 628 | PG_RETURN_BOOL(FPlt(box1->high.y, box2->low.y)); |
| 629 | } |
| 630 | |
| 631 | /* box_overbelow - is the upper edge of box1 at or below |
| 632 | * the upper edge of box2? |
| 633 | */ |
| 634 | Datum |
| 635 | box_overbelow(PG_FUNCTION_ARGS) |
| 636 | { |
| 637 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 638 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 639 | |
| 640 | PG_RETURN_BOOL(FPle(box1->high.y, box2->high.y)); |
| 641 | } |
| 642 | |
| 643 | /* box_above - is box1 strictly above box2? |
| 644 | */ |
| 645 | Datum |
| 646 | box_above(PG_FUNCTION_ARGS) |
| 647 | { |
| 648 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 649 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 650 | |
| 651 | PG_RETURN_BOOL(FPgt(box1->low.y, box2->high.y)); |
| 652 | } |
| 653 | |
| 654 | /* box_overabove - is the lower edge of box1 at or above |
| 655 | * the lower edge of box2? |
| 656 | */ |
| 657 | Datum |
| 658 | box_overabove(PG_FUNCTION_ARGS) |
| 659 | { |
| 660 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 661 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 662 | |
| 663 | PG_RETURN_BOOL(FPge(box1->low.y, box2->low.y)); |
| 664 | } |
| 665 | |
| 666 | /* box_contained - is box1 contained by box2? |
| 667 | */ |
| 668 | Datum |
| 669 | box_contained(PG_FUNCTION_ARGS) |
| 670 | { |
| 671 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 672 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 673 | |
| 674 | PG_RETURN_BOOL(box_contain_box(box2, box1)); |
| 675 | } |
| 676 | |
| 677 | /* box_contain - does box1 contain box2? |
| 678 | */ |
| 679 | Datum |
| 680 | box_contain(PG_FUNCTION_ARGS) |
| 681 | { |
| 682 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 683 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 684 | |
| 685 | PG_RETURN_BOOL(box_contain_box(box1, box2)); |
| 686 | } |
| 687 | |
| 688 | /* |
| 689 | * Check whether the second box is in the first box or on its border |
| 690 | */ |
| 691 | static bool |
| 692 | box_contain_box(BOX *contains_box, BOX *contained_box) |
| 693 | { |
| 694 | return FPge(contains_box->high.x, contained_box->high.x) && |
| 695 | FPle(contains_box->low.x, contained_box->low.x) && |
| 696 | FPge(contains_box->high.y, contained_box->high.y) && |
| 697 | FPle(contains_box->low.y, contained_box->low.y); |
| 698 | } |
| 699 | |
| 700 | |
| 701 | /* box_positionop - |
| 702 | * is box1 entirely {above,below} box2? |
| 703 | * |
| 704 | * box_below_eq and box_above_eq are obsolete versions that (probably |
| 705 | * erroneously) accept the equal-boundaries case. Since these are not |
| 706 | * in sync with the box_left and box_right code, they are deprecated and |
| 707 | * not supported in the PG 8.1 rtree operator class extension. |
| 708 | */ |
| 709 | Datum |
| 710 | box_below_eq(PG_FUNCTION_ARGS) |
| 711 | { |
| 712 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 713 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 714 | |
| 715 | PG_RETURN_BOOL(FPle(box1->high.y, box2->low.y)); |
| 716 | } |
| 717 | |
| 718 | Datum |
| 719 | box_above_eq(PG_FUNCTION_ARGS) |
| 720 | { |
| 721 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 722 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 723 | |
| 724 | PG_RETURN_BOOL(FPge(box1->low.y, box2->high.y)); |
| 725 | } |
| 726 | |
| 727 | |
| 728 | /* box_relop - is area(box1) relop area(box2), within |
| 729 | * our accuracy constraint? |
| 730 | */ |
| 731 | Datum |
| 732 | box_lt(PG_FUNCTION_ARGS) |
| 733 | { |
| 734 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 735 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 736 | |
| 737 | PG_RETURN_BOOL(FPlt(box_ar(box1), box_ar(box2))); |
| 738 | } |
| 739 | |
| 740 | Datum |
| 741 | box_gt(PG_FUNCTION_ARGS) |
| 742 | { |
| 743 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 744 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 745 | |
| 746 | PG_RETURN_BOOL(FPgt(box_ar(box1), box_ar(box2))); |
| 747 | } |
| 748 | |
| 749 | Datum |
| 750 | box_eq(PG_FUNCTION_ARGS) |
| 751 | { |
| 752 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 753 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 754 | |
| 755 | PG_RETURN_BOOL(FPeq(box_ar(box1), box_ar(box2))); |
| 756 | } |
| 757 | |
| 758 | Datum |
| 759 | box_le(PG_FUNCTION_ARGS) |
| 760 | { |
| 761 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 762 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 763 | |
| 764 | PG_RETURN_BOOL(FPle(box_ar(box1), box_ar(box2))); |
| 765 | } |
| 766 | |
| 767 | Datum |
| 768 | box_ge(PG_FUNCTION_ARGS) |
| 769 | { |
| 770 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 771 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 772 | |
| 773 | PG_RETURN_BOOL(FPge(box_ar(box1), box_ar(box2))); |
| 774 | } |
| 775 | |
| 776 | |
| 777 | /*---------------------------------------------------------- |
| 778 | * "Arithmetic" operators on boxes. |
| 779 | *---------------------------------------------------------*/ |
| 780 | |
| 781 | /* box_area - returns the area of the box. |
| 782 | */ |
| 783 | Datum |
| 784 | box_area(PG_FUNCTION_ARGS) |
| 785 | { |
| 786 | BOX *box = PG_GETARG_BOX_P(0); |
| 787 | |
| 788 | PG_RETURN_FLOAT8(box_ar(box)); |
| 789 | } |
| 790 | |
| 791 | |
| 792 | /* box_width - returns the width of the box |
| 793 | * (horizontal magnitude). |
| 794 | */ |
| 795 | Datum |
| 796 | box_width(PG_FUNCTION_ARGS) |
| 797 | { |
| 798 | BOX *box = PG_GETARG_BOX_P(0); |
| 799 | |
| 800 | PG_RETURN_FLOAT8(box_wd(box)); |
| 801 | } |
| 802 | |
| 803 | |
| 804 | /* box_height - returns the height of the box |
| 805 | * (vertical magnitude). |
| 806 | */ |
| 807 | Datum |
| 808 | box_height(PG_FUNCTION_ARGS) |
| 809 | { |
| 810 | BOX *box = PG_GETARG_BOX_P(0); |
| 811 | |
| 812 | PG_RETURN_FLOAT8(box_ht(box)); |
| 813 | } |
| 814 | |
| 815 | |
| 816 | /* box_distance - returns the distance between the |
| 817 | * center points of two boxes. |
| 818 | */ |
| 819 | Datum |
| 820 | box_distance(PG_FUNCTION_ARGS) |
| 821 | { |
| 822 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 823 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 824 | Point a, |
| 825 | b; |
| 826 | |
| 827 | box_cn(&a, box1); |
| 828 | box_cn(&b, box2); |
| 829 | |
| 830 | PG_RETURN_FLOAT8(point_dt(&a, &b)); |
| 831 | } |
| 832 | |
| 833 | |
| 834 | /* box_center - returns the center point of the box. |
| 835 | */ |
| 836 | Datum |
| 837 | box_center(PG_FUNCTION_ARGS) |
| 838 | { |
| 839 | BOX *box = PG_GETARG_BOX_P(0); |
| 840 | Point *result = (Point *) palloc(sizeof(Point)); |
| 841 | |
| 842 | box_cn(result, box); |
| 843 | |
| 844 | PG_RETURN_POINT_P(result); |
| 845 | } |
| 846 | |
| 847 | |
| 848 | /* box_ar - returns the area of the box. |
| 849 | */ |
| 850 | static float8 |
| 851 | box_ar(BOX *box) |
| 852 | { |
| 853 | return float8_mul(box_wd(box), box_ht(box)); |
| 854 | } |
| 855 | |
| 856 | |
| 857 | /* box_cn - stores the centerpoint of the box into *center. |
| 858 | */ |
| 859 | static void |
| 860 | box_cn(Point *center, BOX *box) |
| 861 | { |
| 862 | center->x = float8_div(float8_pl(box->high.x, box->low.x), 2.0); |
| 863 | center->y = float8_div(float8_pl(box->high.y, box->low.y), 2.0); |
| 864 | } |
| 865 | |
| 866 | |
| 867 | /* box_wd - returns the width (length) of the box |
| 868 | * (horizontal magnitude). |
| 869 | */ |
| 870 | static float8 |
| 871 | box_wd(BOX *box) |
| 872 | { |
| 873 | return float8_mi(box->high.x, box->low.x); |
| 874 | } |
| 875 | |
| 876 | |
| 877 | /* box_ht - returns the height of the box |
| 878 | * (vertical magnitude). |
| 879 | */ |
| 880 | static float8 |
| 881 | box_ht(BOX *box) |
| 882 | { |
| 883 | return float8_mi(box->high.y, box->low.y); |
| 884 | } |
| 885 | |
| 886 | |
| 887 | /*---------------------------------------------------------- |
| 888 | * Funky operations. |
| 889 | *---------------------------------------------------------*/ |
| 890 | |
| 891 | /* box_intersect - |
| 892 | * returns the overlapping portion of two boxes, |
| 893 | * or NULL if they do not intersect. |
| 894 | */ |
| 895 | Datum |
| 896 | box_intersect(PG_FUNCTION_ARGS) |
| 897 | { |
| 898 | BOX *box1 = PG_GETARG_BOX_P(0); |
| 899 | BOX *box2 = PG_GETARG_BOX_P(1); |
| 900 | BOX *result; |
| 901 | |
| 902 | if (!box_ov(box1, box2)) |
| 903 | PG_RETURN_NULL(); |
| 904 | |
| 905 | result = (BOX *) palloc(sizeof(BOX)); |
| 906 | |
| 907 | result->high.x = float8_min(box1->high.x, box2->high.x); |
| 908 | result->low.x = float8_max(box1->low.x, box2->low.x); |
| 909 | result->high.y = float8_min(box1->high.y, box2->high.y); |
| 910 | result->low.y = float8_max(box1->low.y, box2->low.y); |
| 911 | |
| 912 | PG_RETURN_BOX_P(result); |
| 913 | } |
| 914 | |
| 915 | |
| 916 | /* box_diagonal - |
| 917 | * returns a line segment which happens to be the |
| 918 | * positive-slope diagonal of "box". |
| 919 | */ |
| 920 | Datum |
| 921 | box_diagonal(PG_FUNCTION_ARGS) |
| 922 | { |
| 923 | BOX *box = PG_GETARG_BOX_P(0); |
| 924 | LSEG *result = (LSEG *) palloc(sizeof(LSEG)); |
| 925 | |
| 926 | statlseg_construct(result, &box->high, &box->low); |
| 927 | |
| 928 | PG_RETURN_LSEG_P(result); |
| 929 | } |
| 930 | |
| 931 | /*********************************************************************** |
| 932 | ** |
| 933 | ** Routines for 2D lines. |
| 934 | ** |
| 935 | ***********************************************************************/ |
| 936 | |
| 937 | static bool |
| 938 | line_decode(char *s, const char *str, LINE *line) |
| 939 | { |
| 940 | /* s was already advanced over leading '{' */ |
| 941 | line->A = single_decode(s, &s, "line" , str); |
| 942 | if (*s++ != DELIM) |
| 943 | return false; |
| 944 | line->B = single_decode(s, &s, "line" , str); |
| 945 | if (*s++ != DELIM) |
| 946 | return false; |
| 947 | line->C = single_decode(s, &s, "line" , str); |
| 948 | if (*s++ != RDELIM_L) |
| 949 | return false; |
| 950 | while (isspace((unsigned char) *s)) |
| 951 | s++; |
| 952 | if (*s != '\0') |
| 953 | return false; |
| 954 | return true; |
| 955 | } |
| 956 | |
| 957 | Datum |
| 958 | line_in(PG_FUNCTION_ARGS) |
| 959 | { |
| 960 | char *str = PG_GETARG_CSTRING(0); |
| 961 | LINE *line = (LINE *) palloc(sizeof(LINE)); |
| 962 | LSEG lseg; |
| 963 | bool isopen; |
| 964 | char *s; |
| 965 | |
| 966 | s = str; |
| 967 | while (isspace((unsigned char) *s)) |
| 968 | s++; |
| 969 | if (*s == LDELIM_L) |
| 970 | { |
| 971 | if (!line_decode(s + 1, str, line)) |
| 972 | ereport(ERROR, |
| 973 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 974 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 975 | "line" , str))); |
| 976 | if (FPzero(line->A) && FPzero(line->B)) |
| 977 | ereport(ERROR, |
| 978 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 979 | errmsg("invalid line specification: A and B cannot both be zero" ))); |
| 980 | } |
| 981 | else |
| 982 | { |
| 983 | path_decode(s, true, 2, &lseg.p[0], &isopen, NULL, "line" , str); |
| 984 | if (point_eq_point(&lseg.p[0], &lseg.p[1])) |
| 985 | ereport(ERROR, |
| 986 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 987 | errmsg("invalid line specification: must be two distinct points" ))); |
| 988 | line_construct(line, &lseg.p[0], lseg_sl(&lseg)); |
| 989 | } |
| 990 | |
| 991 | PG_RETURN_LINE_P(line); |
| 992 | } |
| 993 | |
| 994 | |
| 995 | Datum |
| 996 | line_out(PG_FUNCTION_ARGS) |
| 997 | { |
| 998 | LINE *line = PG_GETARG_LINE_P(0); |
| 999 | char *astr = float8out_internal(line->A); |
| 1000 | char *bstr = float8out_internal(line->B); |
| 1001 | char *cstr = float8out_internal(line->C); |
| 1002 | |
| 1003 | PG_RETURN_CSTRING(psprintf("%c%s%c%s%c%s%c" , LDELIM_L, astr, DELIM, bstr, |
| 1004 | DELIM, cstr, RDELIM_L)); |
| 1005 | } |
| 1006 | |
| 1007 | /* |
| 1008 | * line_recv - converts external binary format to line |
| 1009 | */ |
| 1010 | Datum |
| 1011 | line_recv(PG_FUNCTION_ARGS) |
| 1012 | { |
| 1013 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 1014 | LINE *line; |
| 1015 | |
| 1016 | line = (LINE *) palloc(sizeof(LINE)); |
| 1017 | |
| 1018 | line->A = pq_getmsgfloat8(buf); |
| 1019 | line->B = pq_getmsgfloat8(buf); |
| 1020 | line->C = pq_getmsgfloat8(buf); |
| 1021 | |
| 1022 | if (FPzero(line->A) && FPzero(line->B)) |
| 1023 | ereport(ERROR, |
| 1024 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 1025 | errmsg("invalid line specification: A and B cannot both be zero" ))); |
| 1026 | |
| 1027 | PG_RETURN_LINE_P(line); |
| 1028 | } |
| 1029 | |
| 1030 | /* |
| 1031 | * line_send - converts line to binary format |
| 1032 | */ |
| 1033 | Datum |
| 1034 | line_send(PG_FUNCTION_ARGS) |
| 1035 | { |
| 1036 | LINE *line = PG_GETARG_LINE_P(0); |
| 1037 | StringInfoData buf; |
| 1038 | |
| 1039 | pq_begintypsend(&buf); |
| 1040 | pq_sendfloat8(&buf, line->A); |
| 1041 | pq_sendfloat8(&buf, line->B); |
| 1042 | pq_sendfloat8(&buf, line->C); |
| 1043 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 1044 | } |
| 1045 | |
| 1046 | |
| 1047 | /*---------------------------------------------------------- |
| 1048 | * Conversion routines from one line formula to internal. |
| 1049 | * Internal form: Ax+By+C=0 |
| 1050 | *---------------------------------------------------------*/ |
| 1051 | |
| 1052 | /* |
| 1053 | * Fill already-allocated LINE struct from the point and the slope |
| 1054 | */ |
| 1055 | static inline void |
| 1056 | line_construct(LINE *result, Point *pt, float8 m) |
| 1057 | { |
| 1058 | if (m == DBL_MAX) |
| 1059 | { |
| 1060 | /* vertical - use "x = C" */ |
| 1061 | result->A = -1.0; |
| 1062 | result->B = 0.0; |
| 1063 | result->C = pt->x; |
| 1064 | } |
| 1065 | else |
| 1066 | { |
| 1067 | /* use "mx - y + yinter = 0" */ |
| 1068 | result->A = m; |
| 1069 | result->B = -1.0; |
| 1070 | result->C = float8_mi(pt->y, float8_mul(m, pt->x)); |
| 1071 | /* on some platforms, the preceding expression tends to produce -0 */ |
| 1072 | if (result->C == 0.0) |
| 1073 | result->C = 0.0; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | /* line_construct_pp() |
| 1078 | * two points |
| 1079 | */ |
| 1080 | Datum |
| 1081 | line_construct_pp(PG_FUNCTION_ARGS) |
| 1082 | { |
| 1083 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1084 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1085 | LINE *result = (LINE *) palloc(sizeof(LINE)); |
| 1086 | |
| 1087 | if (point_eq_point(pt1, pt2)) |
| 1088 | ereport(ERROR, |
| 1089 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1090 | errmsg("invalid line specification: must be two distinct points" ))); |
| 1091 | |
| 1092 | line_construct(result, pt1, point_sl(pt1, pt2)); |
| 1093 | |
| 1094 | PG_RETURN_LINE_P(result); |
| 1095 | } |
| 1096 | |
| 1097 | |
| 1098 | /*---------------------------------------------------------- |
| 1099 | * Relative position routines. |
| 1100 | *---------------------------------------------------------*/ |
| 1101 | |
| 1102 | Datum |
| 1103 | line_intersect(PG_FUNCTION_ARGS) |
| 1104 | { |
| 1105 | LINE *l1 = PG_GETARG_LINE_P(0); |
| 1106 | LINE *l2 = PG_GETARG_LINE_P(1); |
| 1107 | |
| 1108 | PG_RETURN_BOOL(line_interpt_line(NULL, l1, l2)); |
| 1109 | } |
| 1110 | |
| 1111 | Datum |
| 1112 | line_parallel(PG_FUNCTION_ARGS) |
| 1113 | { |
| 1114 | LINE *l1 = PG_GETARG_LINE_P(0); |
| 1115 | LINE *l2 = PG_GETARG_LINE_P(1); |
| 1116 | |
| 1117 | PG_RETURN_BOOL(!line_interpt_line(NULL, l1, l2)); |
| 1118 | } |
| 1119 | |
| 1120 | Datum |
| 1121 | line_perp(PG_FUNCTION_ARGS) |
| 1122 | { |
| 1123 | LINE *l1 = PG_GETARG_LINE_P(0); |
| 1124 | LINE *l2 = PG_GETARG_LINE_P(1); |
| 1125 | |
| 1126 | if (FPzero(l1->A)) |
| 1127 | PG_RETURN_BOOL(FPzero(l2->B)); |
| 1128 | if (FPzero(l2->A)) |
| 1129 | PG_RETURN_BOOL(FPzero(l1->B)); |
| 1130 | if (FPzero(l1->B)) |
| 1131 | PG_RETURN_BOOL(FPzero(l2->A)); |
| 1132 | if (FPzero(l2->B)) |
| 1133 | PG_RETURN_BOOL(FPzero(l1->A)); |
| 1134 | |
| 1135 | PG_RETURN_BOOL(FPeq(float8_div(float8_mul(l1->A, l2->A), |
| 1136 | float8_mul(l1->B, l2->B)), -1.0)); |
| 1137 | } |
| 1138 | |
| 1139 | Datum |
| 1140 | line_vertical(PG_FUNCTION_ARGS) |
| 1141 | { |
| 1142 | LINE *line = PG_GETARG_LINE_P(0); |
| 1143 | |
| 1144 | PG_RETURN_BOOL(FPzero(line->B)); |
| 1145 | } |
| 1146 | |
| 1147 | Datum |
| 1148 | line_horizontal(PG_FUNCTION_ARGS) |
| 1149 | { |
| 1150 | LINE *line = PG_GETARG_LINE_P(0); |
| 1151 | |
| 1152 | PG_RETURN_BOOL(FPzero(line->A)); |
| 1153 | } |
| 1154 | |
| 1155 | |
| 1156 | /* |
| 1157 | * Check whether the two lines are the same |
| 1158 | * |
| 1159 | * We consider NaNs values to be equal to each other to let those lines |
| 1160 | * to be found. |
| 1161 | */ |
| 1162 | Datum |
| 1163 | line_eq(PG_FUNCTION_ARGS) |
| 1164 | { |
| 1165 | LINE *l1 = PG_GETARG_LINE_P(0); |
| 1166 | LINE *l2 = PG_GETARG_LINE_P(1); |
| 1167 | float8 ratio; |
| 1168 | |
| 1169 | if (!FPzero(l2->A) && !isnan(l2->A)) |
| 1170 | ratio = float8_div(l1->A, l2->A); |
| 1171 | else if (!FPzero(l2->B) && !isnan(l2->B)) |
| 1172 | ratio = float8_div(l1->B, l2->B); |
| 1173 | else if (!FPzero(l2->C) && !isnan(l2->C)) |
| 1174 | ratio = float8_div(l1->C, l2->C); |
| 1175 | else |
| 1176 | ratio = 1.0; |
| 1177 | |
| 1178 | PG_RETURN_BOOL((FPeq(l1->A, float8_mul(ratio, l2->A)) && |
| 1179 | FPeq(l1->B, float8_mul(ratio, l2->B)) && |
| 1180 | FPeq(l1->C, float8_mul(ratio, l2->C))) || |
| 1181 | (float8_eq(l1->A, l2->A) && |
| 1182 | float8_eq(l1->B, l2->B) && |
| 1183 | float8_eq(l1->C, l2->C))); |
| 1184 | } |
| 1185 | |
| 1186 | |
| 1187 | /*---------------------------------------------------------- |
| 1188 | * Line arithmetic routines. |
| 1189 | *---------------------------------------------------------*/ |
| 1190 | |
| 1191 | /* |
| 1192 | * Return slope of the line |
| 1193 | */ |
| 1194 | static inline float8 |
| 1195 | line_sl(LINE *line) |
| 1196 | { |
| 1197 | if (FPzero(line->A)) |
| 1198 | return 0.0; |
| 1199 | if (FPzero(line->B)) |
| 1200 | return DBL_MAX; |
| 1201 | return float8_div(line->A, -line->B); |
| 1202 | } |
| 1203 | |
| 1204 | |
| 1205 | /* |
| 1206 | * Return inverse slope of the line |
| 1207 | */ |
| 1208 | static inline float8 |
| 1209 | line_invsl(LINE *line) |
| 1210 | { |
| 1211 | if (FPzero(line->A)) |
| 1212 | return DBL_MAX; |
| 1213 | if (FPzero(line->B)) |
| 1214 | return 0.0; |
| 1215 | return float8_div(line->B, line->A); |
| 1216 | } |
| 1217 | |
| 1218 | |
| 1219 | /* line_distance() |
| 1220 | * Distance between two lines. |
| 1221 | */ |
| 1222 | Datum |
| 1223 | line_distance(PG_FUNCTION_ARGS) |
| 1224 | { |
| 1225 | LINE *l1 = PG_GETARG_LINE_P(0); |
| 1226 | LINE *l2 = PG_GETARG_LINE_P(1); |
| 1227 | float8 ratio; |
| 1228 | |
| 1229 | if (line_interpt_line(NULL, l1, l2)) /* intersecting? */ |
| 1230 | PG_RETURN_FLOAT8(0.0); |
| 1231 | |
| 1232 | if (!FPzero(l1->A) && !isnan(l1->A) && !FPzero(l2->A) && !isnan(l2->A)) |
| 1233 | ratio = float8_div(l1->A, l2->A); |
| 1234 | else if (!FPzero(l1->B) && !isnan(l1->B) && !FPzero(l2->B) && !isnan(l2->B)) |
| 1235 | ratio = float8_div(l1->B, l2->B); |
| 1236 | else |
| 1237 | ratio = 1.0; |
| 1238 | |
| 1239 | PG_RETURN_FLOAT8(float8_div(fabs(float8_mi(l1->C, |
| 1240 | float8_mul(ratio, l2->C))), |
| 1241 | HYPOT(l1->A, l1->B))); |
| 1242 | } |
| 1243 | |
| 1244 | /* line_interpt() |
| 1245 | * Point where two lines l1, l2 intersect (if any) |
| 1246 | */ |
| 1247 | Datum |
| 1248 | line_interpt(PG_FUNCTION_ARGS) |
| 1249 | { |
| 1250 | LINE *l1 = PG_GETARG_LINE_P(0); |
| 1251 | LINE *l2 = PG_GETARG_LINE_P(1); |
| 1252 | Point *result; |
| 1253 | |
| 1254 | result = (Point *) palloc(sizeof(Point)); |
| 1255 | |
| 1256 | if (!line_interpt_line(result, l1, l2)) |
| 1257 | PG_RETURN_NULL(); |
| 1258 | PG_RETURN_POINT_P(result); |
| 1259 | } |
| 1260 | |
| 1261 | /* |
| 1262 | * Internal version of line_interpt |
| 1263 | * |
| 1264 | * Return whether two lines intersect. If *result is not NULL, it is set to |
| 1265 | * the intersection point. |
| 1266 | * |
| 1267 | * NOTE: If the lines are identical then we will find they are parallel |
| 1268 | * and report "no intersection". This is a little weird, but since |
| 1269 | * there's no *unique* intersection, maybe it's appropriate behavior. |
| 1270 | * |
| 1271 | * If the lines have NaN constants, we will return true, and the intersection |
| 1272 | * point would have NaN coordinates. We shouldn't return false in this case |
| 1273 | * because that would mean the lines are parallel. |
| 1274 | */ |
| 1275 | static bool |
| 1276 | line_interpt_line(Point *result, LINE *l1, LINE *l2) |
| 1277 | { |
| 1278 | float8 x, |
| 1279 | y; |
| 1280 | |
| 1281 | if (!FPzero(l1->B)) |
| 1282 | { |
| 1283 | if (FPeq(l2->A, float8_mul(l1->A, float8_div(l2->B, l1->B)))) |
| 1284 | return false; |
| 1285 | |
| 1286 | x = float8_div(float8_mi(float8_mul(l1->B, l2->C), |
| 1287 | float8_mul(l2->B, l1->C)), |
| 1288 | float8_mi(float8_mul(l1->A, l2->B), |
| 1289 | float8_mul(l2->A, l1->B))); |
| 1290 | y = float8_div(-float8_pl(float8_mul(l1->A, x), l1->C), l1->B); |
| 1291 | } |
| 1292 | else if (!FPzero(l2->B)) |
| 1293 | { |
| 1294 | if (FPeq(l1->A, float8_mul(l2->A, float8_div(l1->B, l2->B)))) |
| 1295 | return false; |
| 1296 | |
| 1297 | x = float8_div(float8_mi(float8_mul(l2->B, l1->C), |
| 1298 | float8_mul(l1->B, l2->C)), |
| 1299 | float8_mi(float8_mul(l2->A, l1->B), |
| 1300 | float8_mul(l1->A, l2->B))); |
| 1301 | y = float8_div(-float8_pl(float8_mul(l2->A, x), l2->C), l2->B); |
| 1302 | } |
| 1303 | else |
| 1304 | return false; |
| 1305 | |
| 1306 | /* On some platforms, the preceding expressions tend to produce -0. */ |
| 1307 | if (x == 0.0) |
| 1308 | x = 0.0; |
| 1309 | if (y == 0.0) |
| 1310 | y = 0.0; |
| 1311 | |
| 1312 | if (result != NULL) |
| 1313 | point_construct(result, x, y); |
| 1314 | |
| 1315 | return true; |
| 1316 | } |
| 1317 | |
| 1318 | |
| 1319 | /*********************************************************************** |
| 1320 | ** |
| 1321 | ** Routines for 2D paths (sequences of line segments, also |
| 1322 | ** called `polylines'). |
| 1323 | ** |
| 1324 | ** This is not a general package for geometric paths, |
| 1325 | ** which of course include polygons; the emphasis here |
| 1326 | ** is on (for example) usefulness in wire layout. |
| 1327 | ** |
| 1328 | ***********************************************************************/ |
| 1329 | |
| 1330 | /*---------------------------------------------------------- |
| 1331 | * String to path / path to string conversion. |
| 1332 | * External format: |
| 1333 | * "((xcoord, ycoord),... )" |
| 1334 | * "[(xcoord, ycoord),... ]" |
| 1335 | * "(xcoord, ycoord),... " |
| 1336 | * "[xcoord, ycoord,... ]" |
| 1337 | * Also support older format: |
| 1338 | * "(closed, npts, xcoord, ycoord,... )" |
| 1339 | *---------------------------------------------------------*/ |
| 1340 | |
| 1341 | Datum |
| 1342 | path_area(PG_FUNCTION_ARGS) |
| 1343 | { |
| 1344 | PATH *path = PG_GETARG_PATH_P(0); |
| 1345 | float8 area = 0.0; |
| 1346 | int i, |
| 1347 | j; |
| 1348 | |
| 1349 | if (!path->closed) |
| 1350 | PG_RETURN_NULL(); |
| 1351 | |
| 1352 | for (i = 0; i < path->npts; i++) |
| 1353 | { |
| 1354 | j = (i + 1) % path->npts; |
| 1355 | area = float8_pl(area, float8_mul(path->p[i].x, path->p[j].y)); |
| 1356 | area = float8_mi(area, float8_mul(path->p[i].y, path->p[j].x)); |
| 1357 | } |
| 1358 | |
| 1359 | PG_RETURN_FLOAT8(float8_div(fabs(area), 2.0)); |
| 1360 | } |
| 1361 | |
| 1362 | |
| 1363 | Datum |
| 1364 | path_in(PG_FUNCTION_ARGS) |
| 1365 | { |
| 1366 | char *str = PG_GETARG_CSTRING(0); |
| 1367 | PATH *path; |
| 1368 | bool isopen; |
| 1369 | char *s; |
| 1370 | int npts; |
| 1371 | int size; |
| 1372 | int base_size; |
| 1373 | int depth = 0; |
| 1374 | |
| 1375 | if ((npts = pair_count(str, ',')) <= 0) |
| 1376 | ereport(ERROR, |
| 1377 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 1378 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 1379 | "path" , str))); |
| 1380 | |
| 1381 | s = str; |
| 1382 | while (isspace((unsigned char) *s)) |
| 1383 | s++; |
| 1384 | |
| 1385 | /* skip single leading paren */ |
| 1386 | if ((*s == LDELIM) && (strrchr(s, LDELIM) == s)) |
| 1387 | { |
| 1388 | s++; |
| 1389 | depth++; |
| 1390 | } |
| 1391 | |
| 1392 | base_size = sizeof(path->p[0]) * npts; |
| 1393 | size = offsetof(PATH, p) + base_size; |
| 1394 | |
| 1395 | /* Check for integer overflow */ |
| 1396 | if (base_size / npts != sizeof(path->p[0]) || size <= base_size) |
| 1397 | ereport(ERROR, |
| 1398 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 1399 | errmsg("too many points requested" ))); |
| 1400 | |
| 1401 | path = (PATH *) palloc(size); |
| 1402 | |
| 1403 | SET_VARSIZE(path, size); |
| 1404 | path->npts = npts; |
| 1405 | |
| 1406 | path_decode(s, true, npts, &(path->p[0]), &isopen, &s, "path" , str); |
| 1407 | |
| 1408 | if (depth >= 1) |
| 1409 | { |
| 1410 | if (*s++ != RDELIM) |
| 1411 | ereport(ERROR, |
| 1412 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 1413 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 1414 | "path" , str))); |
| 1415 | while (isspace((unsigned char) *s)) |
| 1416 | s++; |
| 1417 | } |
| 1418 | if (*s != '\0') |
| 1419 | ereport(ERROR, |
| 1420 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 1421 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 1422 | "path" , str))); |
| 1423 | |
| 1424 | path->closed = (!isopen); |
| 1425 | /* prevent instability in unused pad bytes */ |
| 1426 | path->dummy = 0; |
| 1427 | |
| 1428 | PG_RETURN_PATH_P(path); |
| 1429 | } |
| 1430 | |
| 1431 | |
| 1432 | Datum |
| 1433 | path_out(PG_FUNCTION_ARGS) |
| 1434 | { |
| 1435 | PATH *path = PG_GETARG_PATH_P(0); |
| 1436 | |
| 1437 | PG_RETURN_CSTRING(path_encode(path->closed ? PATH_CLOSED : PATH_OPEN, path->npts, path->p)); |
| 1438 | } |
| 1439 | |
| 1440 | /* |
| 1441 | * path_recv - converts external binary format to path |
| 1442 | * |
| 1443 | * External representation is closed flag (a boolean byte), int32 number |
| 1444 | * of points, and the points. |
| 1445 | */ |
| 1446 | Datum |
| 1447 | path_recv(PG_FUNCTION_ARGS) |
| 1448 | { |
| 1449 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 1450 | PATH *path; |
| 1451 | int closed; |
| 1452 | int32 npts; |
| 1453 | int32 i; |
| 1454 | int size; |
| 1455 | |
| 1456 | closed = pq_getmsgbyte(buf); |
| 1457 | npts = pq_getmsgint(buf, sizeof(int32)); |
| 1458 | if (npts <= 0 || npts >= (int32) ((INT_MAX - offsetof(PATH, p)) / sizeof(Point))) |
| 1459 | ereport(ERROR, |
| 1460 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 1461 | errmsg("invalid number of points in external \"path\" value" ))); |
| 1462 | |
| 1463 | size = offsetof(PATH, p) + sizeof(path->p[0]) * npts; |
| 1464 | path = (PATH *) palloc(size); |
| 1465 | |
| 1466 | SET_VARSIZE(path, size); |
| 1467 | path->npts = npts; |
| 1468 | path->closed = (closed ? 1 : 0); |
| 1469 | /* prevent instability in unused pad bytes */ |
| 1470 | path->dummy = 0; |
| 1471 | |
| 1472 | for (i = 0; i < npts; i++) |
| 1473 | { |
| 1474 | path->p[i].x = pq_getmsgfloat8(buf); |
| 1475 | path->p[i].y = pq_getmsgfloat8(buf); |
| 1476 | } |
| 1477 | |
| 1478 | PG_RETURN_PATH_P(path); |
| 1479 | } |
| 1480 | |
| 1481 | /* |
| 1482 | * path_send - converts path to binary format |
| 1483 | */ |
| 1484 | Datum |
| 1485 | path_send(PG_FUNCTION_ARGS) |
| 1486 | { |
| 1487 | PATH *path = PG_GETARG_PATH_P(0); |
| 1488 | StringInfoData buf; |
| 1489 | int32 i; |
| 1490 | |
| 1491 | pq_begintypsend(&buf); |
| 1492 | pq_sendbyte(&buf, path->closed ? 1 : 0); |
| 1493 | pq_sendint32(&buf, path->npts); |
| 1494 | for (i = 0; i < path->npts; i++) |
| 1495 | { |
| 1496 | pq_sendfloat8(&buf, path->p[i].x); |
| 1497 | pq_sendfloat8(&buf, path->p[i].y); |
| 1498 | } |
| 1499 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 1500 | } |
| 1501 | |
| 1502 | |
| 1503 | /*---------------------------------------------------------- |
| 1504 | * Relational operators. |
| 1505 | * These are based on the path cardinality, |
| 1506 | * as stupid as that sounds. |
| 1507 | * |
| 1508 | * Better relops and access methods coming soon. |
| 1509 | *---------------------------------------------------------*/ |
| 1510 | |
| 1511 | Datum |
| 1512 | path_n_lt(PG_FUNCTION_ARGS) |
| 1513 | { |
| 1514 | PATH *p1 = PG_GETARG_PATH_P(0); |
| 1515 | PATH *p2 = PG_GETARG_PATH_P(1); |
| 1516 | |
| 1517 | PG_RETURN_BOOL(p1->npts < p2->npts); |
| 1518 | } |
| 1519 | |
| 1520 | Datum |
| 1521 | path_n_gt(PG_FUNCTION_ARGS) |
| 1522 | { |
| 1523 | PATH *p1 = PG_GETARG_PATH_P(0); |
| 1524 | PATH *p2 = PG_GETARG_PATH_P(1); |
| 1525 | |
| 1526 | PG_RETURN_BOOL(p1->npts > p2->npts); |
| 1527 | } |
| 1528 | |
| 1529 | Datum |
| 1530 | path_n_eq(PG_FUNCTION_ARGS) |
| 1531 | { |
| 1532 | PATH *p1 = PG_GETARG_PATH_P(0); |
| 1533 | PATH *p2 = PG_GETARG_PATH_P(1); |
| 1534 | |
| 1535 | PG_RETURN_BOOL(p1->npts == p2->npts); |
| 1536 | } |
| 1537 | |
| 1538 | Datum |
| 1539 | path_n_le(PG_FUNCTION_ARGS) |
| 1540 | { |
| 1541 | PATH *p1 = PG_GETARG_PATH_P(0); |
| 1542 | PATH *p2 = PG_GETARG_PATH_P(1); |
| 1543 | |
| 1544 | PG_RETURN_BOOL(p1->npts <= p2->npts); |
| 1545 | } |
| 1546 | |
| 1547 | Datum |
| 1548 | path_n_ge(PG_FUNCTION_ARGS) |
| 1549 | { |
| 1550 | PATH *p1 = PG_GETARG_PATH_P(0); |
| 1551 | PATH *p2 = PG_GETARG_PATH_P(1); |
| 1552 | |
| 1553 | PG_RETURN_BOOL(p1->npts >= p2->npts); |
| 1554 | } |
| 1555 | |
| 1556 | /*---------------------------------------------------------- |
| 1557 | * Conversion operators. |
| 1558 | *---------------------------------------------------------*/ |
| 1559 | |
| 1560 | Datum |
| 1561 | path_isclosed(PG_FUNCTION_ARGS) |
| 1562 | { |
| 1563 | PATH *path = PG_GETARG_PATH_P(0); |
| 1564 | |
| 1565 | PG_RETURN_BOOL(path->closed); |
| 1566 | } |
| 1567 | |
| 1568 | Datum |
| 1569 | path_isopen(PG_FUNCTION_ARGS) |
| 1570 | { |
| 1571 | PATH *path = PG_GETARG_PATH_P(0); |
| 1572 | |
| 1573 | PG_RETURN_BOOL(!path->closed); |
| 1574 | } |
| 1575 | |
| 1576 | Datum |
| 1577 | path_npoints(PG_FUNCTION_ARGS) |
| 1578 | { |
| 1579 | PATH *path = PG_GETARG_PATH_P(0); |
| 1580 | |
| 1581 | PG_RETURN_INT32(path->npts); |
| 1582 | } |
| 1583 | |
| 1584 | |
| 1585 | Datum |
| 1586 | path_close(PG_FUNCTION_ARGS) |
| 1587 | { |
| 1588 | PATH *path = PG_GETARG_PATH_P_COPY(0); |
| 1589 | |
| 1590 | path->closed = true; |
| 1591 | |
| 1592 | PG_RETURN_PATH_P(path); |
| 1593 | } |
| 1594 | |
| 1595 | Datum |
| 1596 | path_open(PG_FUNCTION_ARGS) |
| 1597 | { |
| 1598 | PATH *path = PG_GETARG_PATH_P_COPY(0); |
| 1599 | |
| 1600 | path->closed = false; |
| 1601 | |
| 1602 | PG_RETURN_PATH_P(path); |
| 1603 | } |
| 1604 | |
| 1605 | |
| 1606 | /* path_inter - |
| 1607 | * Does p1 intersect p2 at any point? |
| 1608 | * Use bounding boxes for a quick (O(n)) check, then do a |
| 1609 | * O(n^2) iterative edge check. |
| 1610 | */ |
| 1611 | Datum |
| 1612 | path_inter(PG_FUNCTION_ARGS) |
| 1613 | { |
| 1614 | PATH *p1 = PG_GETARG_PATH_P(0); |
| 1615 | PATH *p2 = PG_GETARG_PATH_P(1); |
| 1616 | BOX b1, |
| 1617 | b2; |
| 1618 | int i, |
| 1619 | j; |
| 1620 | LSEG seg1, |
| 1621 | seg2; |
| 1622 | |
| 1623 | Assert(p1->npts > 0 && p2->npts > 0); |
| 1624 | |
| 1625 | b1.high.x = b1.low.x = p1->p[0].x; |
| 1626 | b1.high.y = b1.low.y = p1->p[0].y; |
| 1627 | for (i = 1; i < p1->npts; i++) |
| 1628 | { |
| 1629 | b1.high.x = float8_max(p1->p[i].x, b1.high.x); |
| 1630 | b1.high.y = float8_max(p1->p[i].y, b1.high.y); |
| 1631 | b1.low.x = float8_min(p1->p[i].x, b1.low.x); |
| 1632 | b1.low.y = float8_min(p1->p[i].y, b1.low.y); |
| 1633 | } |
| 1634 | b2.high.x = b2.low.x = p2->p[0].x; |
| 1635 | b2.high.y = b2.low.y = p2->p[0].y; |
| 1636 | for (i = 1; i < p2->npts; i++) |
| 1637 | { |
| 1638 | b2.high.x = float8_max(p2->p[i].x, b2.high.x); |
| 1639 | b2.high.y = float8_max(p2->p[i].y, b2.high.y); |
| 1640 | b2.low.x = float8_min(p2->p[i].x, b2.low.x); |
| 1641 | b2.low.y = float8_min(p2->p[i].y, b2.low.y); |
| 1642 | } |
| 1643 | if (!box_ov(&b1, &b2)) |
| 1644 | PG_RETURN_BOOL(false); |
| 1645 | |
| 1646 | /* pairwise check lseg intersections */ |
| 1647 | for (i = 0; i < p1->npts; i++) |
| 1648 | { |
| 1649 | int iprev; |
| 1650 | |
| 1651 | if (i > 0) |
| 1652 | iprev = i - 1; |
| 1653 | else |
| 1654 | { |
| 1655 | if (!p1->closed) |
| 1656 | continue; |
| 1657 | iprev = p1->npts - 1; /* include the closure segment */ |
| 1658 | } |
| 1659 | |
| 1660 | for (j = 0; j < p2->npts; j++) |
| 1661 | { |
| 1662 | int jprev; |
| 1663 | |
| 1664 | if (j > 0) |
| 1665 | jprev = j - 1; |
| 1666 | else |
| 1667 | { |
| 1668 | if (!p2->closed) |
| 1669 | continue; |
| 1670 | jprev = p2->npts - 1; /* include the closure segment */ |
| 1671 | } |
| 1672 | |
| 1673 | statlseg_construct(&seg1, &p1->p[iprev], &p1->p[i]); |
| 1674 | statlseg_construct(&seg2, &p2->p[jprev], &p2->p[j]); |
| 1675 | if (lseg_interpt_lseg(NULL, &seg1, &seg2)) |
| 1676 | PG_RETURN_BOOL(true); |
| 1677 | } |
| 1678 | } |
| 1679 | |
| 1680 | /* if we dropped through, no two segs intersected */ |
| 1681 | PG_RETURN_BOOL(false); |
| 1682 | } |
| 1683 | |
| 1684 | /* path_distance() |
| 1685 | * This essentially does a cartesian product of the lsegs in the |
| 1686 | * two paths, and finds the min distance between any two lsegs |
| 1687 | */ |
| 1688 | Datum |
| 1689 | path_distance(PG_FUNCTION_ARGS) |
| 1690 | { |
| 1691 | PATH *p1 = PG_GETARG_PATH_P(0); |
| 1692 | PATH *p2 = PG_GETARG_PATH_P(1); |
| 1693 | float8 min = 0.0; /* initialize to keep compiler quiet */ |
| 1694 | bool have_min = false; |
| 1695 | float8 tmp; |
| 1696 | int i, |
| 1697 | j; |
| 1698 | LSEG seg1, |
| 1699 | seg2; |
| 1700 | |
| 1701 | for (i = 0; i < p1->npts; i++) |
| 1702 | { |
| 1703 | int iprev; |
| 1704 | |
| 1705 | if (i > 0) |
| 1706 | iprev = i - 1; |
| 1707 | else |
| 1708 | { |
| 1709 | if (!p1->closed) |
| 1710 | continue; |
| 1711 | iprev = p1->npts - 1; /* include the closure segment */ |
| 1712 | } |
| 1713 | |
| 1714 | for (j = 0; j < p2->npts; j++) |
| 1715 | { |
| 1716 | int jprev; |
| 1717 | |
| 1718 | if (j > 0) |
| 1719 | jprev = j - 1; |
| 1720 | else |
| 1721 | { |
| 1722 | if (!p2->closed) |
| 1723 | continue; |
| 1724 | jprev = p2->npts - 1; /* include the closure segment */ |
| 1725 | } |
| 1726 | |
| 1727 | statlseg_construct(&seg1, &p1->p[iprev], &p1->p[i]); |
| 1728 | statlseg_construct(&seg2, &p2->p[jprev], &p2->p[j]); |
| 1729 | |
| 1730 | tmp = lseg_closept_lseg(NULL, &seg1, &seg2); |
| 1731 | if (!have_min || float8_lt(tmp, min)) |
| 1732 | { |
| 1733 | min = tmp; |
| 1734 | have_min = true; |
| 1735 | } |
| 1736 | } |
| 1737 | } |
| 1738 | |
| 1739 | if (!have_min) |
| 1740 | PG_RETURN_NULL(); |
| 1741 | |
| 1742 | PG_RETURN_FLOAT8(min); |
| 1743 | } |
| 1744 | |
| 1745 | |
| 1746 | /*---------------------------------------------------------- |
| 1747 | * "Arithmetic" operations. |
| 1748 | *---------------------------------------------------------*/ |
| 1749 | |
| 1750 | Datum |
| 1751 | path_length(PG_FUNCTION_ARGS) |
| 1752 | { |
| 1753 | PATH *path = PG_GETARG_PATH_P(0); |
| 1754 | float8 result = 0.0; |
| 1755 | int i; |
| 1756 | |
| 1757 | for (i = 0; i < path->npts; i++) |
| 1758 | { |
| 1759 | int iprev; |
| 1760 | |
| 1761 | if (i > 0) |
| 1762 | iprev = i - 1; |
| 1763 | else |
| 1764 | { |
| 1765 | if (!path->closed) |
| 1766 | continue; |
| 1767 | iprev = path->npts - 1; /* include the closure segment */ |
| 1768 | } |
| 1769 | |
| 1770 | result = float8_pl(result, point_dt(&path->p[iprev], &path->p[i])); |
| 1771 | } |
| 1772 | |
| 1773 | PG_RETURN_FLOAT8(result); |
| 1774 | } |
| 1775 | |
| 1776 | /*********************************************************************** |
| 1777 | ** |
| 1778 | ** Routines for 2D points. |
| 1779 | ** |
| 1780 | ***********************************************************************/ |
| 1781 | |
| 1782 | /*---------------------------------------------------------- |
| 1783 | * String to point, point to string conversion. |
| 1784 | * External format: |
| 1785 | * "(x,y)" |
| 1786 | * "x,y" |
| 1787 | *---------------------------------------------------------*/ |
| 1788 | |
| 1789 | Datum |
| 1790 | point_in(PG_FUNCTION_ARGS) |
| 1791 | { |
| 1792 | char *str = PG_GETARG_CSTRING(0); |
| 1793 | Point *point = (Point *) palloc(sizeof(Point)); |
| 1794 | |
| 1795 | pair_decode(str, &point->x, &point->y, NULL, "point" , str); |
| 1796 | PG_RETURN_POINT_P(point); |
| 1797 | } |
| 1798 | |
| 1799 | Datum |
| 1800 | point_out(PG_FUNCTION_ARGS) |
| 1801 | { |
| 1802 | Point *pt = PG_GETARG_POINT_P(0); |
| 1803 | |
| 1804 | PG_RETURN_CSTRING(path_encode(PATH_NONE, 1, pt)); |
| 1805 | } |
| 1806 | |
| 1807 | /* |
| 1808 | * point_recv - converts external binary format to point |
| 1809 | */ |
| 1810 | Datum |
| 1811 | point_recv(PG_FUNCTION_ARGS) |
| 1812 | { |
| 1813 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 1814 | Point *point; |
| 1815 | |
| 1816 | point = (Point *) palloc(sizeof(Point)); |
| 1817 | point->x = pq_getmsgfloat8(buf); |
| 1818 | point->y = pq_getmsgfloat8(buf); |
| 1819 | PG_RETURN_POINT_P(point); |
| 1820 | } |
| 1821 | |
| 1822 | /* |
| 1823 | * point_send - converts point to binary format |
| 1824 | */ |
| 1825 | Datum |
| 1826 | point_send(PG_FUNCTION_ARGS) |
| 1827 | { |
| 1828 | Point *pt = PG_GETARG_POINT_P(0); |
| 1829 | StringInfoData buf; |
| 1830 | |
| 1831 | pq_begintypsend(&buf); |
| 1832 | pq_sendfloat8(&buf, pt->x); |
| 1833 | pq_sendfloat8(&buf, pt->y); |
| 1834 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 1835 | } |
| 1836 | |
| 1837 | |
| 1838 | /* |
| 1839 | * Initialize a point |
| 1840 | */ |
| 1841 | static inline void |
| 1842 | point_construct(Point *result, float8 x, float8 y) |
| 1843 | { |
| 1844 | result->x = x; |
| 1845 | result->y = y; |
| 1846 | } |
| 1847 | |
| 1848 | |
| 1849 | /*---------------------------------------------------------- |
| 1850 | * Relational operators for Points. |
| 1851 | * Since we do have a sense of coordinates being |
| 1852 | * "equal" to a given accuracy (point_vert, point_horiz), |
| 1853 | * the other ops must preserve that sense. This means |
| 1854 | * that results may, strictly speaking, be a lie (unless |
| 1855 | * EPSILON = 0.0). |
| 1856 | *---------------------------------------------------------*/ |
| 1857 | |
| 1858 | Datum |
| 1859 | point_left(PG_FUNCTION_ARGS) |
| 1860 | { |
| 1861 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1862 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1863 | |
| 1864 | PG_RETURN_BOOL(FPlt(pt1->x, pt2->x)); |
| 1865 | } |
| 1866 | |
| 1867 | Datum |
| 1868 | point_right(PG_FUNCTION_ARGS) |
| 1869 | { |
| 1870 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1871 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1872 | |
| 1873 | PG_RETURN_BOOL(FPgt(pt1->x, pt2->x)); |
| 1874 | } |
| 1875 | |
| 1876 | Datum |
| 1877 | point_above(PG_FUNCTION_ARGS) |
| 1878 | { |
| 1879 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1880 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1881 | |
| 1882 | PG_RETURN_BOOL(FPgt(pt1->y, pt2->y)); |
| 1883 | } |
| 1884 | |
| 1885 | Datum |
| 1886 | point_below(PG_FUNCTION_ARGS) |
| 1887 | { |
| 1888 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1889 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1890 | |
| 1891 | PG_RETURN_BOOL(FPlt(pt1->y, pt2->y)); |
| 1892 | } |
| 1893 | |
| 1894 | Datum |
| 1895 | point_vert(PG_FUNCTION_ARGS) |
| 1896 | { |
| 1897 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1898 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1899 | |
| 1900 | PG_RETURN_BOOL(FPeq(pt1->x, pt2->x)); |
| 1901 | } |
| 1902 | |
| 1903 | Datum |
| 1904 | point_horiz(PG_FUNCTION_ARGS) |
| 1905 | { |
| 1906 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1907 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1908 | |
| 1909 | PG_RETURN_BOOL(FPeq(pt1->y, pt2->y)); |
| 1910 | } |
| 1911 | |
| 1912 | Datum |
| 1913 | point_eq(PG_FUNCTION_ARGS) |
| 1914 | { |
| 1915 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1916 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1917 | |
| 1918 | PG_RETURN_BOOL(point_eq_point(pt1, pt2)); |
| 1919 | } |
| 1920 | |
| 1921 | Datum |
| 1922 | point_ne(PG_FUNCTION_ARGS) |
| 1923 | { |
| 1924 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1925 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1926 | |
| 1927 | PG_RETURN_BOOL(!point_eq_point(pt1, pt2)); |
| 1928 | } |
| 1929 | |
| 1930 | |
| 1931 | /* |
| 1932 | * Check whether the two points are the same |
| 1933 | * |
| 1934 | * We consider NaNs coordinates to be equal to each other to let those points |
| 1935 | * to be found. |
| 1936 | */ |
| 1937 | static inline bool |
| 1938 | point_eq_point(Point *pt1, Point *pt2) |
| 1939 | { |
| 1940 | return ((FPeq(pt1->x, pt2->x) && FPeq(pt1->y, pt2->y)) || |
| 1941 | (float8_eq(pt1->x, pt2->x) && float8_eq(pt1->y, pt2->y))); |
| 1942 | } |
| 1943 | |
| 1944 | |
| 1945 | /*---------------------------------------------------------- |
| 1946 | * "Arithmetic" operators on points. |
| 1947 | *---------------------------------------------------------*/ |
| 1948 | |
| 1949 | Datum |
| 1950 | point_distance(PG_FUNCTION_ARGS) |
| 1951 | { |
| 1952 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1953 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1954 | |
| 1955 | PG_RETURN_FLOAT8(point_dt(pt1, pt2)); |
| 1956 | } |
| 1957 | |
| 1958 | static inline float8 |
| 1959 | point_dt(Point *pt1, Point *pt2) |
| 1960 | { |
| 1961 | return HYPOT(float8_mi(pt1->x, pt2->x), float8_mi(pt1->y, pt2->y)); |
| 1962 | } |
| 1963 | |
| 1964 | Datum |
| 1965 | point_slope(PG_FUNCTION_ARGS) |
| 1966 | { |
| 1967 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 1968 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 1969 | |
| 1970 | PG_RETURN_FLOAT8(point_sl(pt1, pt2)); |
| 1971 | } |
| 1972 | |
| 1973 | |
| 1974 | /* |
| 1975 | * Return slope of two points |
| 1976 | * |
| 1977 | * Note that this function returns DBL_MAX when the points are the same. |
| 1978 | */ |
| 1979 | static inline float8 |
| 1980 | point_sl(Point *pt1, Point *pt2) |
| 1981 | { |
| 1982 | if (FPeq(pt1->x, pt2->x)) |
| 1983 | return DBL_MAX; |
| 1984 | if (FPeq(pt1->y, pt2->y)) |
| 1985 | return 0.0; |
| 1986 | return float8_div(float8_mi(pt1->y, pt2->y), float8_mi(pt1->x, pt2->x)); |
| 1987 | } |
| 1988 | |
| 1989 | |
| 1990 | /* |
| 1991 | * Return inverse slope of two points |
| 1992 | * |
| 1993 | * Note that this function returns 0.0 when the points are the same. |
| 1994 | */ |
| 1995 | static inline float8 |
| 1996 | point_invsl(Point *pt1, Point *pt2) |
| 1997 | { |
| 1998 | if (FPeq(pt1->x, pt2->x)) |
| 1999 | return 0.0; |
| 2000 | if (FPeq(pt1->y, pt2->y)) |
| 2001 | return DBL_MAX; |
| 2002 | return float8_div(float8_mi(pt1->x, pt2->x), float8_mi(pt2->y, pt1->y)); |
| 2003 | } |
| 2004 | |
| 2005 | |
| 2006 | /*********************************************************************** |
| 2007 | ** |
| 2008 | ** Routines for 2D line segments. |
| 2009 | ** |
| 2010 | ***********************************************************************/ |
| 2011 | |
| 2012 | /*---------------------------------------------------------- |
| 2013 | * String to lseg, lseg to string conversion. |
| 2014 | * External forms: "[(x1, y1), (x2, y2)]" |
| 2015 | * "(x1, y1), (x2, y2)" |
| 2016 | * "x1, y1, x2, y2" |
| 2017 | * closed form ok "((x1, y1), (x2, y2))" |
| 2018 | * (old form) "(x1, y1, x2, y2)" |
| 2019 | *---------------------------------------------------------*/ |
| 2020 | |
| 2021 | Datum |
| 2022 | lseg_in(PG_FUNCTION_ARGS) |
| 2023 | { |
| 2024 | char *str = PG_GETARG_CSTRING(0); |
| 2025 | LSEG *lseg = (LSEG *) palloc(sizeof(LSEG)); |
| 2026 | bool isopen; |
| 2027 | |
| 2028 | path_decode(str, true, 2, &lseg->p[0], &isopen, NULL, "lseg" , str); |
| 2029 | PG_RETURN_LSEG_P(lseg); |
| 2030 | } |
| 2031 | |
| 2032 | |
| 2033 | Datum |
| 2034 | lseg_out(PG_FUNCTION_ARGS) |
| 2035 | { |
| 2036 | LSEG *ls = PG_GETARG_LSEG_P(0); |
| 2037 | |
| 2038 | PG_RETURN_CSTRING(path_encode(PATH_OPEN, 2, &ls->p[0])); |
| 2039 | } |
| 2040 | |
| 2041 | /* |
| 2042 | * lseg_recv - converts external binary format to lseg |
| 2043 | */ |
| 2044 | Datum |
| 2045 | lseg_recv(PG_FUNCTION_ARGS) |
| 2046 | { |
| 2047 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 2048 | LSEG *lseg; |
| 2049 | |
| 2050 | lseg = (LSEG *) palloc(sizeof(LSEG)); |
| 2051 | |
| 2052 | lseg->p[0].x = pq_getmsgfloat8(buf); |
| 2053 | lseg->p[0].y = pq_getmsgfloat8(buf); |
| 2054 | lseg->p[1].x = pq_getmsgfloat8(buf); |
| 2055 | lseg->p[1].y = pq_getmsgfloat8(buf); |
| 2056 | |
| 2057 | PG_RETURN_LSEG_P(lseg); |
| 2058 | } |
| 2059 | |
| 2060 | /* |
| 2061 | * lseg_send - converts lseg to binary format |
| 2062 | */ |
| 2063 | Datum |
| 2064 | lseg_send(PG_FUNCTION_ARGS) |
| 2065 | { |
| 2066 | LSEG *ls = PG_GETARG_LSEG_P(0); |
| 2067 | StringInfoData buf; |
| 2068 | |
| 2069 | pq_begintypsend(&buf); |
| 2070 | pq_sendfloat8(&buf, ls->p[0].x); |
| 2071 | pq_sendfloat8(&buf, ls->p[0].y); |
| 2072 | pq_sendfloat8(&buf, ls->p[1].x); |
| 2073 | pq_sendfloat8(&buf, ls->p[1].y); |
| 2074 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 2075 | } |
| 2076 | |
| 2077 | |
| 2078 | /* lseg_construct - |
| 2079 | * form a LSEG from two Points. |
| 2080 | */ |
| 2081 | Datum |
| 2082 | lseg_construct(PG_FUNCTION_ARGS) |
| 2083 | { |
| 2084 | Point *pt1 = PG_GETARG_POINT_P(0); |
| 2085 | Point *pt2 = PG_GETARG_POINT_P(1); |
| 2086 | LSEG *result = (LSEG *) palloc(sizeof(LSEG)); |
| 2087 | |
| 2088 | statlseg_construct(result, pt1, pt2); |
| 2089 | |
| 2090 | PG_RETURN_LSEG_P(result); |
| 2091 | } |
| 2092 | |
| 2093 | /* like lseg_construct, but assume space already allocated */ |
| 2094 | static inline void |
| 2095 | statlseg_construct(LSEG *lseg, Point *pt1, Point *pt2) |
| 2096 | { |
| 2097 | lseg->p[0].x = pt1->x; |
| 2098 | lseg->p[0].y = pt1->y; |
| 2099 | lseg->p[1].x = pt2->x; |
| 2100 | lseg->p[1].y = pt2->y; |
| 2101 | } |
| 2102 | |
| 2103 | |
| 2104 | /* |
| 2105 | * Return slope of the line segment |
| 2106 | */ |
| 2107 | static inline float8 |
| 2108 | lseg_sl(LSEG *lseg) |
| 2109 | { |
| 2110 | return point_sl(&lseg->p[0], &lseg->p[1]); |
| 2111 | } |
| 2112 | |
| 2113 | |
| 2114 | /* |
| 2115 | * Return inverse slope of the line segment |
| 2116 | */ |
| 2117 | static inline float8 |
| 2118 | lseg_invsl(LSEG *lseg) |
| 2119 | { |
| 2120 | return point_invsl(&lseg->p[0], &lseg->p[1]); |
| 2121 | } |
| 2122 | |
| 2123 | |
| 2124 | Datum |
| 2125 | lseg_length(PG_FUNCTION_ARGS) |
| 2126 | { |
| 2127 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 2128 | |
| 2129 | PG_RETURN_FLOAT8(point_dt(&lseg->p[0], &lseg->p[1])); |
| 2130 | } |
| 2131 | |
| 2132 | /*---------------------------------------------------------- |
| 2133 | * Relative position routines. |
| 2134 | *---------------------------------------------------------*/ |
| 2135 | |
| 2136 | /* |
| 2137 | ** find intersection of the two lines, and see if it falls on |
| 2138 | ** both segments. |
| 2139 | */ |
| 2140 | Datum |
| 2141 | lseg_intersect(PG_FUNCTION_ARGS) |
| 2142 | { |
| 2143 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2144 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2145 | |
| 2146 | PG_RETURN_BOOL(lseg_interpt_lseg(NULL, l1, l2)); |
| 2147 | } |
| 2148 | |
| 2149 | |
| 2150 | Datum |
| 2151 | lseg_parallel(PG_FUNCTION_ARGS) |
| 2152 | { |
| 2153 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2154 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2155 | |
| 2156 | PG_RETURN_BOOL(FPeq(lseg_sl(l1), lseg_sl(l2))); |
| 2157 | } |
| 2158 | |
| 2159 | /* |
| 2160 | * Determine if two line segments are perpendicular. |
| 2161 | */ |
| 2162 | Datum |
| 2163 | lseg_perp(PG_FUNCTION_ARGS) |
| 2164 | { |
| 2165 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2166 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2167 | |
| 2168 | PG_RETURN_BOOL(FPeq(lseg_sl(l1), lseg_invsl(l2))); |
| 2169 | } |
| 2170 | |
| 2171 | Datum |
| 2172 | lseg_vertical(PG_FUNCTION_ARGS) |
| 2173 | { |
| 2174 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 2175 | |
| 2176 | PG_RETURN_BOOL(FPeq(lseg->p[0].x, lseg->p[1].x)); |
| 2177 | } |
| 2178 | |
| 2179 | Datum |
| 2180 | lseg_horizontal(PG_FUNCTION_ARGS) |
| 2181 | { |
| 2182 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 2183 | |
| 2184 | PG_RETURN_BOOL(FPeq(lseg->p[0].y, lseg->p[1].y)); |
| 2185 | } |
| 2186 | |
| 2187 | |
| 2188 | Datum |
| 2189 | lseg_eq(PG_FUNCTION_ARGS) |
| 2190 | { |
| 2191 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2192 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2193 | |
| 2194 | PG_RETURN_BOOL(point_eq_point(&l1->p[0], &l2->p[0]) && |
| 2195 | point_eq_point(&l1->p[1], &l2->p[1])); |
| 2196 | } |
| 2197 | |
| 2198 | Datum |
| 2199 | lseg_ne(PG_FUNCTION_ARGS) |
| 2200 | { |
| 2201 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2202 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2203 | |
| 2204 | PG_RETURN_BOOL(!point_eq_point(&l1->p[0], &l2->p[0]) || |
| 2205 | !point_eq_point(&l1->p[1], &l2->p[1])); |
| 2206 | } |
| 2207 | |
| 2208 | Datum |
| 2209 | lseg_lt(PG_FUNCTION_ARGS) |
| 2210 | { |
| 2211 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2212 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2213 | |
| 2214 | PG_RETURN_BOOL(FPlt(point_dt(&l1->p[0], &l1->p[1]), |
| 2215 | point_dt(&l2->p[0], &l2->p[1]))); |
| 2216 | } |
| 2217 | |
| 2218 | Datum |
| 2219 | lseg_le(PG_FUNCTION_ARGS) |
| 2220 | { |
| 2221 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2222 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2223 | |
| 2224 | PG_RETURN_BOOL(FPle(point_dt(&l1->p[0], &l1->p[1]), |
| 2225 | point_dt(&l2->p[0], &l2->p[1]))); |
| 2226 | } |
| 2227 | |
| 2228 | Datum |
| 2229 | lseg_gt(PG_FUNCTION_ARGS) |
| 2230 | { |
| 2231 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2232 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2233 | |
| 2234 | PG_RETURN_BOOL(FPgt(point_dt(&l1->p[0], &l1->p[1]), |
| 2235 | point_dt(&l2->p[0], &l2->p[1]))); |
| 2236 | } |
| 2237 | |
| 2238 | Datum |
| 2239 | lseg_ge(PG_FUNCTION_ARGS) |
| 2240 | { |
| 2241 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2242 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2243 | |
| 2244 | PG_RETURN_BOOL(FPge(point_dt(&l1->p[0], &l1->p[1]), |
| 2245 | point_dt(&l2->p[0], &l2->p[1]))); |
| 2246 | } |
| 2247 | |
| 2248 | |
| 2249 | /*---------------------------------------------------------- |
| 2250 | * Line arithmetic routines. |
| 2251 | *---------------------------------------------------------*/ |
| 2252 | |
| 2253 | /* lseg_distance - |
| 2254 | * If two segments don't intersect, then the closest |
| 2255 | * point will be from one of the endpoints to the other |
| 2256 | * segment. |
| 2257 | */ |
| 2258 | Datum |
| 2259 | lseg_distance(PG_FUNCTION_ARGS) |
| 2260 | { |
| 2261 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2262 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2263 | |
| 2264 | PG_RETURN_FLOAT8(lseg_closept_lseg(NULL, l1, l2)); |
| 2265 | } |
| 2266 | |
| 2267 | |
| 2268 | Datum |
| 2269 | lseg_center(PG_FUNCTION_ARGS) |
| 2270 | { |
| 2271 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 2272 | Point *result; |
| 2273 | |
| 2274 | result = (Point *) palloc(sizeof(Point)); |
| 2275 | |
| 2276 | result->x = float8_div(float8_pl(lseg->p[0].x, lseg->p[1].x), 2.0); |
| 2277 | result->y = float8_div(float8_pl(lseg->p[0].y, lseg->p[1].y), 2.0); |
| 2278 | |
| 2279 | PG_RETURN_POINT_P(result); |
| 2280 | } |
| 2281 | |
| 2282 | |
| 2283 | /* |
| 2284 | * Return whether the two segments intersect. If *result is not NULL, |
| 2285 | * it is set to the intersection point. |
| 2286 | * |
| 2287 | * This function is almost perfectly symmetric, even though it doesn't look |
| 2288 | * like it. See lseg_interpt_line() for the other half of it. |
| 2289 | */ |
| 2290 | static bool |
| 2291 | lseg_interpt_lseg(Point *result, LSEG *l1, LSEG *l2) |
| 2292 | { |
| 2293 | Point interpt; |
| 2294 | LINE tmp; |
| 2295 | |
| 2296 | line_construct(&tmp, &l2->p[0], lseg_sl(l2)); |
| 2297 | if (!lseg_interpt_line(&interpt, l1, &tmp)) |
| 2298 | return false; |
| 2299 | |
| 2300 | /* |
| 2301 | * If the line intersection point isn't within l2, there is no valid |
| 2302 | * segment intersection point at all. |
| 2303 | */ |
| 2304 | if (!lseg_contain_point(l2, &interpt)) |
| 2305 | return false; |
| 2306 | |
| 2307 | if (result != NULL) |
| 2308 | *result = interpt; |
| 2309 | |
| 2310 | return true; |
| 2311 | } |
| 2312 | |
| 2313 | Datum |
| 2314 | lseg_interpt(PG_FUNCTION_ARGS) |
| 2315 | { |
| 2316 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2317 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2318 | Point *result; |
| 2319 | |
| 2320 | result = (Point *) palloc(sizeof(Point)); |
| 2321 | |
| 2322 | if (!lseg_interpt_lseg(result, l1, l2)) |
| 2323 | PG_RETURN_NULL(); |
| 2324 | PG_RETURN_POINT_P(result); |
| 2325 | } |
| 2326 | |
| 2327 | /*********************************************************************** |
| 2328 | ** |
| 2329 | ** Routines for position comparisons of differently-typed |
| 2330 | ** 2D objects. |
| 2331 | ** |
| 2332 | ***********************************************************************/ |
| 2333 | |
| 2334 | /*--------------------------------------------------------------------- |
| 2335 | * dist_ |
| 2336 | * Minimum distance from one object to another. |
| 2337 | *-------------------------------------------------------------------*/ |
| 2338 | |
| 2339 | /* |
| 2340 | * Distance from a point to a line |
| 2341 | */ |
| 2342 | Datum |
| 2343 | dist_pl(PG_FUNCTION_ARGS) |
| 2344 | { |
| 2345 | Point *pt = PG_GETARG_POINT_P(0); |
| 2346 | LINE *line = PG_GETARG_LINE_P(1); |
| 2347 | |
| 2348 | PG_RETURN_FLOAT8(line_closept_point(NULL, line, pt)); |
| 2349 | } |
| 2350 | |
| 2351 | |
| 2352 | /* |
| 2353 | * Distance from a point to a lseg |
| 2354 | */ |
| 2355 | Datum |
| 2356 | dist_ps(PG_FUNCTION_ARGS) |
| 2357 | { |
| 2358 | Point *pt = PG_GETARG_POINT_P(0); |
| 2359 | LSEG *lseg = PG_GETARG_LSEG_P(1); |
| 2360 | |
| 2361 | PG_RETURN_FLOAT8(lseg_closept_point(NULL, lseg, pt)); |
| 2362 | } |
| 2363 | |
| 2364 | /* |
| 2365 | * Distance from a point to a path |
| 2366 | */ |
| 2367 | Datum |
| 2368 | dist_ppath(PG_FUNCTION_ARGS) |
| 2369 | { |
| 2370 | Point *pt = PG_GETARG_POINT_P(0); |
| 2371 | PATH *path = PG_GETARG_PATH_P(1); |
| 2372 | float8 result = 0.0; /* keep compiler quiet */ |
| 2373 | bool have_min = false; |
| 2374 | float8 tmp; |
| 2375 | int i; |
| 2376 | LSEG lseg; |
| 2377 | |
| 2378 | Assert(path->npts > 0); |
| 2379 | |
| 2380 | /* |
| 2381 | * The distance from a point to a path is the smallest distance from the |
| 2382 | * point to any of its constituent segments. |
| 2383 | */ |
| 2384 | for (i = 0; i < path->npts; i++) |
| 2385 | { |
| 2386 | int iprev; |
| 2387 | |
| 2388 | if (i > 0) |
| 2389 | iprev = i - 1; |
| 2390 | else |
| 2391 | { |
| 2392 | if (!path->closed) |
| 2393 | continue; |
| 2394 | iprev = path->npts - 1; /* Include the closure segment */ |
| 2395 | } |
| 2396 | |
| 2397 | statlseg_construct(&lseg, &path->p[iprev], &path->p[i]); |
| 2398 | tmp = lseg_closept_point(NULL, &lseg, pt); |
| 2399 | if (!have_min || float8_lt(tmp, result)) |
| 2400 | { |
| 2401 | result = tmp; |
| 2402 | have_min = true; |
| 2403 | } |
| 2404 | } |
| 2405 | |
| 2406 | PG_RETURN_FLOAT8(result); |
| 2407 | } |
| 2408 | |
| 2409 | /* |
| 2410 | * Distance from a point to a box |
| 2411 | */ |
| 2412 | Datum |
| 2413 | dist_pb(PG_FUNCTION_ARGS) |
| 2414 | { |
| 2415 | Point *pt = PG_GETARG_POINT_P(0); |
| 2416 | BOX *box = PG_GETARG_BOX_P(1); |
| 2417 | |
| 2418 | PG_RETURN_FLOAT8(box_closept_point(NULL, box, pt)); |
| 2419 | } |
| 2420 | |
| 2421 | /* |
| 2422 | * Distance from a lseg to a line |
| 2423 | */ |
| 2424 | Datum |
| 2425 | dist_sl(PG_FUNCTION_ARGS) |
| 2426 | { |
| 2427 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 2428 | LINE *line = PG_GETARG_LINE_P(1); |
| 2429 | |
| 2430 | PG_RETURN_FLOAT8(lseg_closept_line(NULL, lseg, line)); |
| 2431 | } |
| 2432 | |
| 2433 | /* |
| 2434 | * Distance from a lseg to a box |
| 2435 | */ |
| 2436 | Datum |
| 2437 | dist_sb(PG_FUNCTION_ARGS) |
| 2438 | { |
| 2439 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 2440 | BOX *box = PG_GETARG_BOX_P(1); |
| 2441 | |
| 2442 | PG_RETURN_FLOAT8(box_closept_lseg(NULL, box, lseg)); |
| 2443 | } |
| 2444 | |
| 2445 | /* |
| 2446 | * Distance from a line to a box |
| 2447 | */ |
| 2448 | Datum |
| 2449 | dist_lb(PG_FUNCTION_ARGS) |
| 2450 | { |
| 2451 | #ifdef NOT_USED |
| 2452 | LINE *line = PG_GETARG_LINE_P(0); |
| 2453 | BOX *box = PG_GETARG_BOX_P(1); |
| 2454 | #endif |
| 2455 | |
| 2456 | /* need to think about this one for a while */ |
| 2457 | ereport(ERROR, |
| 2458 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2459 | errmsg("function \"dist_lb\" not implemented" ))); |
| 2460 | |
| 2461 | PG_RETURN_NULL(); |
| 2462 | } |
| 2463 | |
| 2464 | /* |
| 2465 | * Distance from a circle to a polygon |
| 2466 | */ |
| 2467 | Datum |
| 2468 | dist_cpoly(PG_FUNCTION_ARGS) |
| 2469 | { |
| 2470 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 2471 | POLYGON *poly = PG_GETARG_POLYGON_P(1); |
| 2472 | float8 result; |
| 2473 | |
| 2474 | /* calculate distance to center, and subtract radius */ |
| 2475 | result = float8_mi(dist_ppoly_internal(&circle->center, poly), |
| 2476 | circle->radius); |
| 2477 | if (result < 0.0) |
| 2478 | result = 0.0; |
| 2479 | |
| 2480 | PG_RETURN_FLOAT8(result); |
| 2481 | } |
| 2482 | |
| 2483 | /* |
| 2484 | * Distance from a point to a polygon |
| 2485 | */ |
| 2486 | Datum |
| 2487 | dist_ppoly(PG_FUNCTION_ARGS) |
| 2488 | { |
| 2489 | Point *point = PG_GETARG_POINT_P(0); |
| 2490 | POLYGON *poly = PG_GETARG_POLYGON_P(1); |
| 2491 | |
| 2492 | PG_RETURN_FLOAT8(dist_ppoly_internal(point, poly)); |
| 2493 | } |
| 2494 | |
| 2495 | Datum |
| 2496 | dist_polyp(PG_FUNCTION_ARGS) |
| 2497 | { |
| 2498 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 2499 | Point *point = PG_GETARG_POINT_P(1); |
| 2500 | |
| 2501 | PG_RETURN_FLOAT8(dist_ppoly_internal(point, poly)); |
| 2502 | } |
| 2503 | |
| 2504 | static float8 |
| 2505 | dist_ppoly_internal(Point *pt, POLYGON *poly) |
| 2506 | { |
| 2507 | float8 result; |
| 2508 | float8 d; |
| 2509 | int i; |
| 2510 | LSEG seg; |
| 2511 | |
| 2512 | if (point_inside(pt, poly->npts, poly->p) != 0) |
| 2513 | return 0.0; |
| 2514 | |
| 2515 | /* initialize distance with segment between first and last points */ |
| 2516 | seg.p[0].x = poly->p[0].x; |
| 2517 | seg.p[0].y = poly->p[0].y; |
| 2518 | seg.p[1].x = poly->p[poly->npts - 1].x; |
| 2519 | seg.p[1].y = poly->p[poly->npts - 1].y; |
| 2520 | result = lseg_closept_point(NULL, &seg, pt); |
| 2521 | |
| 2522 | /* check distances for other segments */ |
| 2523 | for (i = 0; i < poly->npts - 1; i++) |
| 2524 | { |
| 2525 | seg.p[0].x = poly->p[i].x; |
| 2526 | seg.p[0].y = poly->p[i].y; |
| 2527 | seg.p[1].x = poly->p[i + 1].x; |
| 2528 | seg.p[1].y = poly->p[i + 1].y; |
| 2529 | d = lseg_closept_point(NULL, &seg, pt); |
| 2530 | if (float8_lt(d, result)) |
| 2531 | result = d; |
| 2532 | } |
| 2533 | |
| 2534 | return result; |
| 2535 | } |
| 2536 | |
| 2537 | |
| 2538 | /*--------------------------------------------------------------------- |
| 2539 | * interpt_ |
| 2540 | * Intersection point of objects. |
| 2541 | * We choose to ignore the "point" of intersection between |
| 2542 | * lines and boxes, since there are typically two. |
| 2543 | *-------------------------------------------------------------------*/ |
| 2544 | |
| 2545 | /* |
| 2546 | * Return whether the line segment intersect with the line. If *result is not |
| 2547 | * NULL, it is set to the intersection point. |
| 2548 | */ |
| 2549 | static bool |
| 2550 | lseg_interpt_line(Point *result, LSEG *lseg, LINE *line) |
| 2551 | { |
| 2552 | Point interpt; |
| 2553 | LINE tmp; |
| 2554 | |
| 2555 | /* |
| 2556 | * First, we promote the line segment to a line, because we know how to |
| 2557 | * find the intersection point of two lines. If they don't have an |
| 2558 | * intersection point, we are done. |
| 2559 | */ |
| 2560 | line_construct(&tmp, &lseg->p[0], lseg_sl(lseg)); |
| 2561 | if (!line_interpt_line(&interpt, &tmp, line)) |
| 2562 | return false; |
| 2563 | |
| 2564 | /* |
| 2565 | * Then, we check whether the intersection point is actually on the line |
| 2566 | * segment. |
| 2567 | */ |
| 2568 | if (!lseg_contain_point(lseg, &interpt)) |
| 2569 | return false; |
| 2570 | if (result != NULL) |
| 2571 | { |
| 2572 | /* |
| 2573 | * If there is an intersection, then check explicitly for matching |
| 2574 | * endpoints since there may be rounding effects with annoying LSB |
| 2575 | * residue. |
| 2576 | */ |
| 2577 | if (point_eq_point(&lseg->p[0], &interpt)) |
| 2578 | *result = lseg->p[0]; |
| 2579 | else if (point_eq_point(&lseg->p[1], &interpt)) |
| 2580 | *result = lseg->p[1]; |
| 2581 | else |
| 2582 | *result = interpt; |
| 2583 | } |
| 2584 | |
| 2585 | return true; |
| 2586 | } |
| 2587 | |
| 2588 | /*--------------------------------------------------------------------- |
| 2589 | * close_ |
| 2590 | * Point of closest proximity between objects. |
| 2591 | *-------------------------------------------------------------------*/ |
| 2592 | |
| 2593 | /* |
| 2594 | * If *result is not NULL, it is set to the intersection point of a |
| 2595 | * perpendicular of the line through the point. Returns the distance |
| 2596 | * of those two points. |
| 2597 | */ |
| 2598 | static float8 |
| 2599 | line_closept_point(Point *result, LINE *line, Point *point) |
| 2600 | { |
| 2601 | Point closept; |
| 2602 | LINE tmp; |
| 2603 | |
| 2604 | /* |
| 2605 | * We drop a perpendicular to find the intersection point. Ordinarily we |
| 2606 | * should always find it, but that can fail in the presence of NaN |
| 2607 | * coordinates, and perhaps even from simple roundoff issues. |
| 2608 | */ |
| 2609 | line_construct(&tmp, point, line_invsl(line)); |
| 2610 | if (!line_interpt_line(&closept, &tmp, line)) |
| 2611 | { |
| 2612 | if (result != NULL) |
| 2613 | *result = *point; |
| 2614 | |
| 2615 | return get_float8_nan(); |
| 2616 | } |
| 2617 | |
| 2618 | if (result != NULL) |
| 2619 | *result = closept; |
| 2620 | |
| 2621 | return point_dt(&closept, point); |
| 2622 | } |
| 2623 | |
| 2624 | Datum |
| 2625 | close_pl(PG_FUNCTION_ARGS) |
| 2626 | { |
| 2627 | Point *pt = PG_GETARG_POINT_P(0); |
| 2628 | LINE *line = PG_GETARG_LINE_P(1); |
| 2629 | Point *result; |
| 2630 | |
| 2631 | result = (Point *) palloc(sizeof(Point)); |
| 2632 | |
| 2633 | if (isnan(line_closept_point(result, line, pt))) |
| 2634 | PG_RETURN_NULL(); |
| 2635 | |
| 2636 | PG_RETURN_POINT_P(result); |
| 2637 | } |
| 2638 | |
| 2639 | |
| 2640 | /* |
| 2641 | * Closest point on line segment to specified point. |
| 2642 | * |
| 2643 | * If *result is not NULL, set it to the closest point on the line segment |
| 2644 | * to the point. Returns the distance of the two points. |
| 2645 | */ |
| 2646 | static float8 |
| 2647 | lseg_closept_point(Point *result, LSEG *lseg, Point *pt) |
| 2648 | { |
| 2649 | Point closept; |
| 2650 | LINE tmp; |
| 2651 | |
| 2652 | /* |
| 2653 | * To find the closest point, we draw a perpendicular line from the point |
| 2654 | * to the line segment. |
| 2655 | */ |
| 2656 | line_construct(&tmp, pt, point_invsl(&lseg->p[0], &lseg->p[1])); |
| 2657 | lseg_closept_line(&closept, lseg, &tmp); |
| 2658 | |
| 2659 | if (result != NULL) |
| 2660 | *result = closept; |
| 2661 | |
| 2662 | return point_dt(&closept, pt); |
| 2663 | } |
| 2664 | |
| 2665 | Datum |
| 2666 | close_ps(PG_FUNCTION_ARGS) |
| 2667 | { |
| 2668 | Point *pt = PG_GETARG_POINT_P(0); |
| 2669 | LSEG *lseg = PG_GETARG_LSEG_P(1); |
| 2670 | Point *result; |
| 2671 | |
| 2672 | result = (Point *) palloc(sizeof(Point)); |
| 2673 | |
| 2674 | if (isnan(lseg_closept_point(result, lseg, pt))) |
| 2675 | PG_RETURN_NULL(); |
| 2676 | |
| 2677 | PG_RETURN_POINT_P(result); |
| 2678 | } |
| 2679 | |
| 2680 | |
| 2681 | /* |
| 2682 | * Closest point on line segment to line segment |
| 2683 | */ |
| 2684 | static float8 |
| 2685 | lseg_closept_lseg(Point *result, LSEG *on_lseg, LSEG *to_lseg) |
| 2686 | { |
| 2687 | Point point; |
| 2688 | float8 dist, |
| 2689 | d; |
| 2690 | |
| 2691 | /* First, we handle the case when the line segments are intersecting. */ |
| 2692 | if (lseg_interpt_lseg(result, on_lseg, to_lseg)) |
| 2693 | return 0.0; |
| 2694 | |
| 2695 | /* |
| 2696 | * Then, we find the closest points from the endpoints of the second line |
| 2697 | * segment, and keep the closest one. |
| 2698 | */ |
| 2699 | dist = lseg_closept_point(result, on_lseg, &to_lseg->p[0]); |
| 2700 | d = lseg_closept_point(&point, on_lseg, &to_lseg->p[1]); |
| 2701 | if (float8_lt(d, dist)) |
| 2702 | { |
| 2703 | dist = d; |
| 2704 | if (result != NULL) |
| 2705 | *result = point; |
| 2706 | } |
| 2707 | |
| 2708 | /* The closest point can still be one of the endpoints, so we test them. */ |
| 2709 | d = lseg_closept_point(NULL, to_lseg, &on_lseg->p[0]); |
| 2710 | if (float8_lt(d, dist)) |
| 2711 | { |
| 2712 | dist = d; |
| 2713 | if (result != NULL) |
| 2714 | *result = on_lseg->p[0]; |
| 2715 | } |
| 2716 | d = lseg_closept_point(NULL, to_lseg, &on_lseg->p[1]); |
| 2717 | if (float8_lt(d, dist)) |
| 2718 | { |
| 2719 | dist = d; |
| 2720 | if (result != NULL) |
| 2721 | *result = on_lseg->p[1]; |
| 2722 | } |
| 2723 | |
| 2724 | return dist; |
| 2725 | } |
| 2726 | |
| 2727 | Datum |
| 2728 | close_lseg(PG_FUNCTION_ARGS) |
| 2729 | { |
| 2730 | LSEG *l1 = PG_GETARG_LSEG_P(0); |
| 2731 | LSEG *l2 = PG_GETARG_LSEG_P(1); |
| 2732 | Point *result; |
| 2733 | |
| 2734 | if (lseg_sl(l1) == lseg_sl(l2)) |
| 2735 | PG_RETURN_NULL(); |
| 2736 | |
| 2737 | result = (Point *) palloc(sizeof(Point)); |
| 2738 | |
| 2739 | if (isnan(lseg_closept_lseg(result, l2, l1))) |
| 2740 | PG_RETURN_NULL(); |
| 2741 | |
| 2742 | PG_RETURN_POINT_P(result); |
| 2743 | } |
| 2744 | |
| 2745 | |
| 2746 | /* |
| 2747 | * Closest point on or in box to specified point. |
| 2748 | * |
| 2749 | * If *result is not NULL, set it to the closest point on the box to the |
| 2750 | * given point, and return the distance of the two points. |
| 2751 | */ |
| 2752 | static float8 |
| 2753 | box_closept_point(Point *result, BOX *box, Point *pt) |
| 2754 | { |
| 2755 | float8 dist, |
| 2756 | d; |
| 2757 | Point point, |
| 2758 | closept; |
| 2759 | LSEG lseg; |
| 2760 | |
| 2761 | if (box_contain_point(box, pt)) |
| 2762 | { |
| 2763 | if (result != NULL) |
| 2764 | *result = *pt; |
| 2765 | |
| 2766 | return 0.0; |
| 2767 | } |
| 2768 | |
| 2769 | /* pairwise check lseg distances */ |
| 2770 | point.x = box->low.x; |
| 2771 | point.y = box->high.y; |
| 2772 | statlseg_construct(&lseg, &box->low, &point); |
| 2773 | dist = lseg_closept_point(result, &lseg, pt); |
| 2774 | |
| 2775 | statlseg_construct(&lseg, &box->high, &point); |
| 2776 | d = lseg_closept_point(&closept, &lseg, pt); |
| 2777 | if (float8_lt(d, dist)) |
| 2778 | { |
| 2779 | dist = d; |
| 2780 | if (result != NULL) |
| 2781 | *result = closept; |
| 2782 | } |
| 2783 | |
| 2784 | point.x = box->high.x; |
| 2785 | point.y = box->low.y; |
| 2786 | statlseg_construct(&lseg, &box->low, &point); |
| 2787 | d = lseg_closept_point(&closept, &lseg, pt); |
| 2788 | if (float8_lt(d, dist)) |
| 2789 | { |
| 2790 | dist = d; |
| 2791 | if (result != NULL) |
| 2792 | *result = closept; |
| 2793 | } |
| 2794 | |
| 2795 | statlseg_construct(&lseg, &box->high, &point); |
| 2796 | d = lseg_closept_point(&closept, &lseg, pt); |
| 2797 | if (float8_lt(d, dist)) |
| 2798 | { |
| 2799 | dist = d; |
| 2800 | if (result != NULL) |
| 2801 | *result = closept; |
| 2802 | } |
| 2803 | |
| 2804 | return dist; |
| 2805 | } |
| 2806 | |
| 2807 | Datum |
| 2808 | close_pb(PG_FUNCTION_ARGS) |
| 2809 | { |
| 2810 | Point *pt = PG_GETARG_POINT_P(0); |
| 2811 | BOX *box = PG_GETARG_BOX_P(1); |
| 2812 | Point *result; |
| 2813 | |
| 2814 | result = (Point *) palloc(sizeof(Point)); |
| 2815 | |
| 2816 | if (isnan(box_closept_point(result, box, pt))) |
| 2817 | PG_RETURN_NULL(); |
| 2818 | |
| 2819 | PG_RETURN_POINT_P(result); |
| 2820 | } |
| 2821 | |
| 2822 | |
| 2823 | /* close_sl() |
| 2824 | * Closest point on line to line segment. |
| 2825 | * |
| 2826 | * XXX THIS CODE IS WRONG |
| 2827 | * The code is actually calculating the point on the line segment |
| 2828 | * which is backwards from the routine naming convention. |
| 2829 | * Copied code to new routine close_ls() but haven't fixed this one yet. |
| 2830 | * - thomas 1998-01-31 |
| 2831 | */ |
| 2832 | Datum |
| 2833 | close_sl(PG_FUNCTION_ARGS) |
| 2834 | { |
| 2835 | #ifdef NOT_USED |
| 2836 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 2837 | LINE *line = PG_GETARG_LINE_P(1); |
| 2838 | Point *result; |
| 2839 | float8 d1, |
| 2840 | d2; |
| 2841 | |
| 2842 | result = (Point *) palloc(sizeof(Point)); |
| 2843 | |
| 2844 | if (lseg_interpt_line(result, lseg, line)) |
| 2845 | PG_RETURN_POINT_P(result); |
| 2846 | |
| 2847 | d1 = line_closept_point(NULL, line, &lseg->p[0]); |
| 2848 | d2 = line_closept_point(NULL, line, &lseg->p[1]); |
| 2849 | if (float8_lt(d1, d2)) |
| 2850 | *result = lseg->p[0]; |
| 2851 | else |
| 2852 | *result = lseg->p[1]; |
| 2853 | |
| 2854 | PG_RETURN_POINT_P(result); |
| 2855 | #endif |
| 2856 | |
| 2857 | ereport(ERROR, |
| 2858 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2859 | errmsg("function \"close_sl\" not implemented" ))); |
| 2860 | |
| 2861 | PG_RETURN_NULL(); |
| 2862 | } |
| 2863 | |
| 2864 | /* |
| 2865 | * Closest point on line segment to line. |
| 2866 | * |
| 2867 | * Return the distance between the line and the closest point of the line |
| 2868 | * segment to the line. If *result is not NULL, set it to that point. |
| 2869 | * |
| 2870 | * NOTE: When the lines are parallel, endpoints of one of the line segment |
| 2871 | * are FPeq(), in presence of NaN or Infinite coordinates, or perhaps = |
| 2872 | * even because of simple roundoff issues, there may not be a single closest |
| 2873 | * point. We are likely to set the result to the second endpoint in these |
| 2874 | * cases. |
| 2875 | */ |
| 2876 | static float8 |
| 2877 | lseg_closept_line(Point *result, LSEG *lseg, LINE *line) |
| 2878 | { |
| 2879 | float8 dist1, |
| 2880 | dist2; |
| 2881 | |
| 2882 | if (lseg_interpt_line(result, lseg, line)) |
| 2883 | return 0.0; |
| 2884 | |
| 2885 | dist1 = line_closept_point(NULL, line, &lseg->p[0]); |
| 2886 | dist2 = line_closept_point(NULL, line, &lseg->p[1]); |
| 2887 | |
| 2888 | if (dist1 < dist2) |
| 2889 | { |
| 2890 | if (result != NULL) |
| 2891 | *result = lseg->p[0]; |
| 2892 | |
| 2893 | return dist1; |
| 2894 | } |
| 2895 | else |
| 2896 | { |
| 2897 | if (result != NULL) |
| 2898 | *result = lseg->p[1]; |
| 2899 | |
| 2900 | return dist2; |
| 2901 | } |
| 2902 | } |
| 2903 | |
| 2904 | Datum |
| 2905 | close_ls(PG_FUNCTION_ARGS) |
| 2906 | { |
| 2907 | LINE *line = PG_GETARG_LINE_P(0); |
| 2908 | LSEG *lseg = PG_GETARG_LSEG_P(1); |
| 2909 | Point *result; |
| 2910 | |
| 2911 | if (lseg_sl(lseg) == line_sl(line)) |
| 2912 | PG_RETURN_NULL(); |
| 2913 | |
| 2914 | result = (Point *) palloc(sizeof(Point)); |
| 2915 | |
| 2916 | if (isnan(lseg_closept_line(result, lseg, line))) |
| 2917 | PG_RETURN_NULL(); |
| 2918 | |
| 2919 | PG_RETURN_POINT_P(result); |
| 2920 | } |
| 2921 | |
| 2922 | |
| 2923 | /* |
| 2924 | * Closest point on or in box to line segment. |
| 2925 | * |
| 2926 | * Returns the distance between the closest point on or in the box to |
| 2927 | * the line segment. If *result is not NULL, it is set to that point. |
| 2928 | */ |
| 2929 | static float8 |
| 2930 | box_closept_lseg(Point *result, BOX *box, LSEG *lseg) |
| 2931 | { |
| 2932 | float8 dist, |
| 2933 | d; |
| 2934 | Point point, |
| 2935 | closept; |
| 2936 | LSEG bseg; |
| 2937 | |
| 2938 | if (box_interpt_lseg(result, box, lseg)) |
| 2939 | return 0.0; |
| 2940 | |
| 2941 | /* pairwise check lseg distances */ |
| 2942 | point.x = box->low.x; |
| 2943 | point.y = box->high.y; |
| 2944 | statlseg_construct(&bseg, &box->low, &point); |
| 2945 | dist = lseg_closept_lseg(result, &bseg, lseg); |
| 2946 | |
| 2947 | statlseg_construct(&bseg, &box->high, &point); |
| 2948 | d = lseg_closept_lseg(&closept, &bseg, lseg); |
| 2949 | if (float8_lt(d, dist)) |
| 2950 | { |
| 2951 | dist = d; |
| 2952 | if (result != NULL) |
| 2953 | *result = closept; |
| 2954 | } |
| 2955 | |
| 2956 | point.x = box->high.x; |
| 2957 | point.y = box->low.y; |
| 2958 | statlseg_construct(&bseg, &box->low, &point); |
| 2959 | d = lseg_closept_lseg(&closept, &bseg, lseg); |
| 2960 | if (float8_lt(d, dist)) |
| 2961 | { |
| 2962 | dist = d; |
| 2963 | if (result != NULL) |
| 2964 | *result = closept; |
| 2965 | } |
| 2966 | |
| 2967 | statlseg_construct(&bseg, &box->high, &point); |
| 2968 | d = lseg_closept_lseg(&closept, &bseg, lseg); |
| 2969 | if (float8_lt(d, dist)) |
| 2970 | { |
| 2971 | dist = d; |
| 2972 | if (result != NULL) |
| 2973 | *result = closept; |
| 2974 | } |
| 2975 | |
| 2976 | return dist; |
| 2977 | } |
| 2978 | |
| 2979 | Datum |
| 2980 | close_sb(PG_FUNCTION_ARGS) |
| 2981 | { |
| 2982 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 2983 | BOX *box = PG_GETARG_BOX_P(1); |
| 2984 | Point *result; |
| 2985 | |
| 2986 | result = (Point *) palloc(sizeof(Point)); |
| 2987 | |
| 2988 | if (isnan(box_closept_lseg(result, box, lseg))) |
| 2989 | PG_RETURN_NULL(); |
| 2990 | |
| 2991 | PG_RETURN_POINT_P(result); |
| 2992 | } |
| 2993 | |
| 2994 | |
| 2995 | Datum |
| 2996 | close_lb(PG_FUNCTION_ARGS) |
| 2997 | { |
| 2998 | #ifdef NOT_USED |
| 2999 | LINE *line = PG_GETARG_LINE_P(0); |
| 3000 | BOX *box = PG_GETARG_BOX_P(1); |
| 3001 | #endif |
| 3002 | |
| 3003 | /* think about this one for a while */ |
| 3004 | ereport(ERROR, |
| 3005 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3006 | errmsg("function \"close_lb\" not implemented" ))); |
| 3007 | |
| 3008 | PG_RETURN_NULL(); |
| 3009 | } |
| 3010 | |
| 3011 | /*--------------------------------------------------------------------- |
| 3012 | * on_ |
| 3013 | * Whether one object lies completely within another. |
| 3014 | *-------------------------------------------------------------------*/ |
| 3015 | |
| 3016 | /* |
| 3017 | * Does the point satisfy the equation? |
| 3018 | */ |
| 3019 | static bool |
| 3020 | line_contain_point(LINE *line, Point *point) |
| 3021 | { |
| 3022 | return FPzero(float8_pl(float8_pl(float8_mul(line->A, point->x), |
| 3023 | float8_mul(line->B, point->y)), |
| 3024 | line->C)); |
| 3025 | } |
| 3026 | |
| 3027 | Datum |
| 3028 | on_pl(PG_FUNCTION_ARGS) |
| 3029 | { |
| 3030 | Point *pt = PG_GETARG_POINT_P(0); |
| 3031 | LINE *line = PG_GETARG_LINE_P(1); |
| 3032 | |
| 3033 | PG_RETURN_BOOL(line_contain_point(line, pt)); |
| 3034 | } |
| 3035 | |
| 3036 | |
| 3037 | /* |
| 3038 | * Determine colinearity by detecting a triangle inequality. |
| 3039 | * This algorithm seems to behave nicely even with lsb residues - tgl 1997-07-09 |
| 3040 | */ |
| 3041 | static bool |
| 3042 | lseg_contain_point(LSEG *lseg, Point *pt) |
| 3043 | { |
| 3044 | return FPeq(point_dt(pt, &lseg->p[0]) + |
| 3045 | point_dt(pt, &lseg->p[1]), |
| 3046 | point_dt(&lseg->p[0], &lseg->p[1])); |
| 3047 | } |
| 3048 | |
| 3049 | Datum |
| 3050 | on_ps(PG_FUNCTION_ARGS) |
| 3051 | { |
| 3052 | Point *pt = PG_GETARG_POINT_P(0); |
| 3053 | LSEG *lseg = PG_GETARG_LSEG_P(1); |
| 3054 | |
| 3055 | PG_RETURN_BOOL(lseg_contain_point(lseg, pt)); |
| 3056 | } |
| 3057 | |
| 3058 | |
| 3059 | /* |
| 3060 | * Check whether the point is in the box or on its border |
| 3061 | */ |
| 3062 | static bool |
| 3063 | box_contain_point(BOX *box, Point *point) |
| 3064 | { |
| 3065 | return box->high.x >= point->x && box->low.x <= point->x && |
| 3066 | box->high.y >= point->y && box->low.y <= point->y; |
| 3067 | } |
| 3068 | |
| 3069 | Datum |
| 3070 | on_pb(PG_FUNCTION_ARGS) |
| 3071 | { |
| 3072 | Point *pt = PG_GETARG_POINT_P(0); |
| 3073 | BOX *box = PG_GETARG_BOX_P(1); |
| 3074 | |
| 3075 | PG_RETURN_BOOL(box_contain_point(box, pt)); |
| 3076 | } |
| 3077 | |
| 3078 | Datum |
| 3079 | box_contain_pt(PG_FUNCTION_ARGS) |
| 3080 | { |
| 3081 | BOX *box = PG_GETARG_BOX_P(0); |
| 3082 | Point *pt = PG_GETARG_POINT_P(1); |
| 3083 | |
| 3084 | PG_RETURN_BOOL(box_contain_point(box, pt)); |
| 3085 | } |
| 3086 | |
| 3087 | /* on_ppath - |
| 3088 | * Whether a point lies within (on) a polyline. |
| 3089 | * If open, we have to (groan) check each segment. |
| 3090 | * (uses same algorithm as for point intersecting segment - tgl 1997-07-09) |
| 3091 | * If closed, we use the old O(n) ray method for point-in-polygon. |
| 3092 | * The ray is horizontal, from pt out to the right. |
| 3093 | * Each segment that crosses the ray counts as an |
| 3094 | * intersection; note that an endpoint or edge may touch |
| 3095 | * but not cross. |
| 3096 | * (we can do p-in-p in lg(n), but it takes preprocessing) |
| 3097 | */ |
| 3098 | Datum |
| 3099 | on_ppath(PG_FUNCTION_ARGS) |
| 3100 | { |
| 3101 | Point *pt = PG_GETARG_POINT_P(0); |
| 3102 | PATH *path = PG_GETARG_PATH_P(1); |
| 3103 | int i, |
| 3104 | n; |
| 3105 | float8 a, |
| 3106 | b; |
| 3107 | |
| 3108 | /*-- OPEN --*/ |
| 3109 | if (!path->closed) |
| 3110 | { |
| 3111 | n = path->npts - 1; |
| 3112 | a = point_dt(pt, &path->p[0]); |
| 3113 | for (i = 0; i < n; i++) |
| 3114 | { |
| 3115 | b = point_dt(pt, &path->p[i + 1]); |
| 3116 | if (FPeq(float8_pl(a, b), point_dt(&path->p[i], &path->p[i + 1]))) |
| 3117 | PG_RETURN_BOOL(true); |
| 3118 | a = b; |
| 3119 | } |
| 3120 | PG_RETURN_BOOL(false); |
| 3121 | } |
| 3122 | |
| 3123 | /*-- CLOSED --*/ |
| 3124 | PG_RETURN_BOOL(point_inside(pt, path->npts, path->p) != 0); |
| 3125 | } |
| 3126 | |
| 3127 | |
| 3128 | /* |
| 3129 | * Check whether the line segment is on the line or close enough |
| 3130 | * |
| 3131 | * It is, if both of its points are on the line or close enough. |
| 3132 | */ |
| 3133 | Datum |
| 3134 | on_sl(PG_FUNCTION_ARGS) |
| 3135 | { |
| 3136 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 3137 | LINE *line = PG_GETARG_LINE_P(1); |
| 3138 | |
| 3139 | PG_RETURN_BOOL(line_contain_point(line, &lseg->p[0]) && |
| 3140 | line_contain_point(line, &lseg->p[1])); |
| 3141 | } |
| 3142 | |
| 3143 | |
| 3144 | /* |
| 3145 | * Check whether the line segment is in the box or on its border |
| 3146 | * |
| 3147 | * It is, if both of its points are in the box or on its border. |
| 3148 | */ |
| 3149 | static bool |
| 3150 | box_contain_lseg(BOX *box, LSEG *lseg) |
| 3151 | { |
| 3152 | return box_contain_point(box, &lseg->p[0]) && |
| 3153 | box_contain_point(box, &lseg->p[1]); |
| 3154 | } |
| 3155 | |
| 3156 | Datum |
| 3157 | on_sb(PG_FUNCTION_ARGS) |
| 3158 | { |
| 3159 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 3160 | BOX *box = PG_GETARG_BOX_P(1); |
| 3161 | |
| 3162 | PG_RETURN_BOOL(box_contain_lseg(box, lseg)); |
| 3163 | } |
| 3164 | |
| 3165 | /*--------------------------------------------------------------------- |
| 3166 | * inter_ |
| 3167 | * Whether one object intersects another. |
| 3168 | *-------------------------------------------------------------------*/ |
| 3169 | |
| 3170 | Datum |
| 3171 | inter_sl(PG_FUNCTION_ARGS) |
| 3172 | { |
| 3173 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 3174 | LINE *line = PG_GETARG_LINE_P(1); |
| 3175 | |
| 3176 | PG_RETURN_BOOL(lseg_interpt_line(NULL, lseg, line)); |
| 3177 | } |
| 3178 | |
| 3179 | |
| 3180 | /* |
| 3181 | * Do line segment and box intersect? |
| 3182 | * |
| 3183 | * Segment completely inside box counts as intersection. |
| 3184 | * If you want only segments crossing box boundaries, |
| 3185 | * try converting box to path first. |
| 3186 | * |
| 3187 | * This function also sets the *result to the closest point on the line |
| 3188 | * segment to the center of the box when they overlap and the result is |
| 3189 | * not NULL. It is somewhat arbitrary, but maybe the best we can do as |
| 3190 | * there are typically two points they intersect. |
| 3191 | * |
| 3192 | * Optimize for non-intersection by checking for box intersection first. |
| 3193 | * - thomas 1998-01-30 |
| 3194 | */ |
| 3195 | static bool |
| 3196 | box_interpt_lseg(Point *result, BOX *box, LSEG *lseg) |
| 3197 | { |
| 3198 | BOX lbox; |
| 3199 | LSEG bseg; |
| 3200 | Point point; |
| 3201 | |
| 3202 | lbox.low.x = float8_min(lseg->p[0].x, lseg->p[1].x); |
| 3203 | lbox.low.y = float8_min(lseg->p[0].y, lseg->p[1].y); |
| 3204 | lbox.high.x = float8_max(lseg->p[0].x, lseg->p[1].x); |
| 3205 | lbox.high.y = float8_max(lseg->p[0].y, lseg->p[1].y); |
| 3206 | |
| 3207 | /* nothing close to overlap? then not going to intersect */ |
| 3208 | if (!box_ov(&lbox, box)) |
| 3209 | return false; |
| 3210 | |
| 3211 | if (result != NULL) |
| 3212 | { |
| 3213 | box_cn(&point, box); |
| 3214 | lseg_closept_point(result, lseg, &point); |
| 3215 | } |
| 3216 | |
| 3217 | /* an endpoint of segment is inside box? then clearly intersects */ |
| 3218 | if (box_contain_point(box, &lseg->p[0]) || |
| 3219 | box_contain_point(box, &lseg->p[1])) |
| 3220 | return true; |
| 3221 | |
| 3222 | /* pairwise check lseg intersections */ |
| 3223 | point.x = box->low.x; |
| 3224 | point.y = box->high.y; |
| 3225 | statlseg_construct(&bseg, &box->low, &point); |
| 3226 | if (lseg_interpt_lseg(NULL, &bseg, lseg)) |
| 3227 | return true; |
| 3228 | |
| 3229 | statlseg_construct(&bseg, &box->high, &point); |
| 3230 | if (lseg_interpt_lseg(NULL, &bseg, lseg)) |
| 3231 | return true; |
| 3232 | |
| 3233 | point.x = box->high.x; |
| 3234 | point.y = box->low.y; |
| 3235 | statlseg_construct(&bseg, &box->low, &point); |
| 3236 | if (lseg_interpt_lseg(NULL, &bseg, lseg)) |
| 3237 | return true; |
| 3238 | |
| 3239 | statlseg_construct(&bseg, &box->high, &point); |
| 3240 | if (lseg_interpt_lseg(NULL, &bseg, lseg)) |
| 3241 | return true; |
| 3242 | |
| 3243 | /* if we dropped through, no two segs intersected */ |
| 3244 | return false; |
| 3245 | } |
| 3246 | |
| 3247 | Datum |
| 3248 | inter_sb(PG_FUNCTION_ARGS) |
| 3249 | { |
| 3250 | LSEG *lseg = PG_GETARG_LSEG_P(0); |
| 3251 | BOX *box = PG_GETARG_BOX_P(1); |
| 3252 | |
| 3253 | PG_RETURN_BOOL(box_interpt_lseg(NULL, box, lseg)); |
| 3254 | } |
| 3255 | |
| 3256 | |
| 3257 | /* inter_lb() |
| 3258 | * Do line and box intersect? |
| 3259 | */ |
| 3260 | Datum |
| 3261 | inter_lb(PG_FUNCTION_ARGS) |
| 3262 | { |
| 3263 | LINE *line = PG_GETARG_LINE_P(0); |
| 3264 | BOX *box = PG_GETARG_BOX_P(1); |
| 3265 | LSEG bseg; |
| 3266 | Point p1, |
| 3267 | p2; |
| 3268 | |
| 3269 | /* pairwise check lseg intersections */ |
| 3270 | p1.x = box->low.x; |
| 3271 | p1.y = box->low.y; |
| 3272 | p2.x = box->low.x; |
| 3273 | p2.y = box->high.y; |
| 3274 | statlseg_construct(&bseg, &p1, &p2); |
| 3275 | if (lseg_interpt_line(NULL, &bseg, line)) |
| 3276 | PG_RETURN_BOOL(true); |
| 3277 | p1.x = box->high.x; |
| 3278 | p1.y = box->high.y; |
| 3279 | statlseg_construct(&bseg, &p1, &p2); |
| 3280 | if (lseg_interpt_line(NULL, &bseg, line)) |
| 3281 | PG_RETURN_BOOL(true); |
| 3282 | p2.x = box->high.x; |
| 3283 | p2.y = box->low.y; |
| 3284 | statlseg_construct(&bseg, &p1, &p2); |
| 3285 | if (lseg_interpt_line(NULL, &bseg, line)) |
| 3286 | PG_RETURN_BOOL(true); |
| 3287 | p1.x = box->low.x; |
| 3288 | p1.y = box->low.y; |
| 3289 | statlseg_construct(&bseg, &p1, &p2); |
| 3290 | if (lseg_interpt_line(NULL, &bseg, line)) |
| 3291 | PG_RETURN_BOOL(true); |
| 3292 | |
| 3293 | /* if we dropped through, no intersection */ |
| 3294 | PG_RETURN_BOOL(false); |
| 3295 | } |
| 3296 | |
| 3297 | /*------------------------------------------------------------------ |
| 3298 | * The following routines define a data type and operator class for |
| 3299 | * POLYGONS .... Part of which (the polygon's bounding box) is built on |
| 3300 | * top of the BOX data type. |
| 3301 | * |
| 3302 | * make_bound_box - create the bounding box for the input polygon |
| 3303 | *------------------------------------------------------------------*/ |
| 3304 | |
| 3305 | /*--------------------------------------------------------------------- |
| 3306 | * Make the smallest bounding box for the given polygon. |
| 3307 | *---------------------------------------------------------------------*/ |
| 3308 | static void |
| 3309 | make_bound_box(POLYGON *poly) |
| 3310 | { |
| 3311 | int i; |
| 3312 | float8 x1, |
| 3313 | y1, |
| 3314 | x2, |
| 3315 | y2; |
| 3316 | |
| 3317 | Assert(poly->npts > 0); |
| 3318 | |
| 3319 | x1 = x2 = poly->p[0].x; |
| 3320 | y2 = y1 = poly->p[0].y; |
| 3321 | for (i = 1; i < poly->npts; i++) |
| 3322 | { |
| 3323 | if (float8_lt(poly->p[i].x, x1)) |
| 3324 | x1 = poly->p[i].x; |
| 3325 | if (float8_gt(poly->p[i].x, x2)) |
| 3326 | x2 = poly->p[i].x; |
| 3327 | if (float8_lt(poly->p[i].y, y1)) |
| 3328 | y1 = poly->p[i].y; |
| 3329 | if (float8_gt(poly->p[i].y, y2)) |
| 3330 | y2 = poly->p[i].y; |
| 3331 | } |
| 3332 | |
| 3333 | poly->boundbox.low.x = x1; |
| 3334 | poly->boundbox.high.x = x2; |
| 3335 | poly->boundbox.low.y = y1; |
| 3336 | poly->boundbox.high.y = y2; |
| 3337 | } |
| 3338 | |
| 3339 | /*------------------------------------------------------------------ |
| 3340 | * poly_in - read in the polygon from a string specification |
| 3341 | * |
| 3342 | * External format: |
| 3343 | * "((x0,y0),...,(xn,yn))" |
| 3344 | * "x0,y0,...,xn,yn" |
| 3345 | * also supports the older style "(x1,...,xn,y1,...yn)" |
| 3346 | *------------------------------------------------------------------*/ |
| 3347 | Datum |
| 3348 | poly_in(PG_FUNCTION_ARGS) |
| 3349 | { |
| 3350 | char *str = PG_GETARG_CSTRING(0); |
| 3351 | POLYGON *poly; |
| 3352 | int npts; |
| 3353 | int size; |
| 3354 | int base_size; |
| 3355 | bool isopen; |
| 3356 | |
| 3357 | if ((npts = pair_count(str, ',')) <= 0) |
| 3358 | ereport(ERROR, |
| 3359 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 3360 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 3361 | "polygon" , str))); |
| 3362 | |
| 3363 | base_size = sizeof(poly->p[0]) * npts; |
| 3364 | size = offsetof(POLYGON, p) + base_size; |
| 3365 | |
| 3366 | /* Check for integer overflow */ |
| 3367 | if (base_size / npts != sizeof(poly->p[0]) || size <= base_size) |
| 3368 | ereport(ERROR, |
| 3369 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 3370 | errmsg("too many points requested" ))); |
| 3371 | |
| 3372 | poly = (POLYGON *) palloc0(size); /* zero any holes */ |
| 3373 | |
| 3374 | SET_VARSIZE(poly, size); |
| 3375 | poly->npts = npts; |
| 3376 | |
| 3377 | path_decode(str, false, npts, &(poly->p[0]), &isopen, NULL, "polygon" , str); |
| 3378 | |
| 3379 | make_bound_box(poly); |
| 3380 | |
| 3381 | PG_RETURN_POLYGON_P(poly); |
| 3382 | } |
| 3383 | |
| 3384 | /*--------------------------------------------------------------- |
| 3385 | * poly_out - convert internal POLYGON representation to the |
| 3386 | * character string format "((f8,f8),...,(f8,f8))" |
| 3387 | *---------------------------------------------------------------*/ |
| 3388 | Datum |
| 3389 | poly_out(PG_FUNCTION_ARGS) |
| 3390 | { |
| 3391 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 3392 | |
| 3393 | PG_RETURN_CSTRING(path_encode(PATH_CLOSED, poly->npts, poly->p)); |
| 3394 | } |
| 3395 | |
| 3396 | /* |
| 3397 | * poly_recv - converts external binary format to polygon |
| 3398 | * |
| 3399 | * External representation is int32 number of points, and the points. |
| 3400 | * We recompute the bounding box on read, instead of trusting it to |
| 3401 | * be valid. (Checking it would take just as long, so may as well |
| 3402 | * omit it from external representation.) |
| 3403 | */ |
| 3404 | Datum |
| 3405 | poly_recv(PG_FUNCTION_ARGS) |
| 3406 | { |
| 3407 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 3408 | POLYGON *poly; |
| 3409 | int32 npts; |
| 3410 | int32 i; |
| 3411 | int size; |
| 3412 | |
| 3413 | npts = pq_getmsgint(buf, sizeof(int32)); |
| 3414 | if (npts <= 0 || npts >= (int32) ((INT_MAX - offsetof(POLYGON, p)) / sizeof(Point))) |
| 3415 | ereport(ERROR, |
| 3416 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 3417 | errmsg("invalid number of points in external \"polygon\" value" ))); |
| 3418 | |
| 3419 | size = offsetof(POLYGON, p) + sizeof(poly->p[0]) * npts; |
| 3420 | poly = (POLYGON *) palloc0(size); /* zero any holes */ |
| 3421 | |
| 3422 | SET_VARSIZE(poly, size); |
| 3423 | poly->npts = npts; |
| 3424 | |
| 3425 | for (i = 0; i < npts; i++) |
| 3426 | { |
| 3427 | poly->p[i].x = pq_getmsgfloat8(buf); |
| 3428 | poly->p[i].y = pq_getmsgfloat8(buf); |
| 3429 | } |
| 3430 | |
| 3431 | make_bound_box(poly); |
| 3432 | |
| 3433 | PG_RETURN_POLYGON_P(poly); |
| 3434 | } |
| 3435 | |
| 3436 | /* |
| 3437 | * poly_send - converts polygon to binary format |
| 3438 | */ |
| 3439 | Datum |
| 3440 | poly_send(PG_FUNCTION_ARGS) |
| 3441 | { |
| 3442 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 3443 | StringInfoData buf; |
| 3444 | int32 i; |
| 3445 | |
| 3446 | pq_begintypsend(&buf); |
| 3447 | pq_sendint32(&buf, poly->npts); |
| 3448 | for (i = 0; i < poly->npts; i++) |
| 3449 | { |
| 3450 | pq_sendfloat8(&buf, poly->p[i].x); |
| 3451 | pq_sendfloat8(&buf, poly->p[i].y); |
| 3452 | } |
| 3453 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 3454 | } |
| 3455 | |
| 3456 | |
| 3457 | /*------------------------------------------------------- |
| 3458 | * Is polygon A strictly left of polygon B? i.e. is |
| 3459 | * the right most point of A left of the left most point |
| 3460 | * of B? |
| 3461 | *-------------------------------------------------------*/ |
| 3462 | Datum |
| 3463 | poly_left(PG_FUNCTION_ARGS) |
| 3464 | { |
| 3465 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3466 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3467 | bool result; |
| 3468 | |
| 3469 | result = polya->boundbox.high.x < polyb->boundbox.low.x; |
| 3470 | |
| 3471 | /* |
| 3472 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3473 | */ |
| 3474 | PG_FREE_IF_COPY(polya, 0); |
| 3475 | PG_FREE_IF_COPY(polyb, 1); |
| 3476 | |
| 3477 | PG_RETURN_BOOL(result); |
| 3478 | } |
| 3479 | |
| 3480 | /*------------------------------------------------------- |
| 3481 | * Is polygon A overlapping or left of polygon B? i.e. is |
| 3482 | * the right most point of A at or left of the right most point |
| 3483 | * of B? |
| 3484 | *-------------------------------------------------------*/ |
| 3485 | Datum |
| 3486 | poly_overleft(PG_FUNCTION_ARGS) |
| 3487 | { |
| 3488 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3489 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3490 | bool result; |
| 3491 | |
| 3492 | result = polya->boundbox.high.x <= polyb->boundbox.high.x; |
| 3493 | |
| 3494 | /* |
| 3495 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3496 | */ |
| 3497 | PG_FREE_IF_COPY(polya, 0); |
| 3498 | PG_FREE_IF_COPY(polyb, 1); |
| 3499 | |
| 3500 | PG_RETURN_BOOL(result); |
| 3501 | } |
| 3502 | |
| 3503 | /*------------------------------------------------------- |
| 3504 | * Is polygon A strictly right of polygon B? i.e. is |
| 3505 | * the left most point of A right of the right most point |
| 3506 | * of B? |
| 3507 | *-------------------------------------------------------*/ |
| 3508 | Datum |
| 3509 | poly_right(PG_FUNCTION_ARGS) |
| 3510 | { |
| 3511 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3512 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3513 | bool result; |
| 3514 | |
| 3515 | result = polya->boundbox.low.x > polyb->boundbox.high.x; |
| 3516 | |
| 3517 | /* |
| 3518 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3519 | */ |
| 3520 | PG_FREE_IF_COPY(polya, 0); |
| 3521 | PG_FREE_IF_COPY(polyb, 1); |
| 3522 | |
| 3523 | PG_RETURN_BOOL(result); |
| 3524 | } |
| 3525 | |
| 3526 | /*------------------------------------------------------- |
| 3527 | * Is polygon A overlapping or right of polygon B? i.e. is |
| 3528 | * the left most point of A at or right of the left most point |
| 3529 | * of B? |
| 3530 | *-------------------------------------------------------*/ |
| 3531 | Datum |
| 3532 | poly_overright(PG_FUNCTION_ARGS) |
| 3533 | { |
| 3534 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3535 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3536 | bool result; |
| 3537 | |
| 3538 | result = polya->boundbox.low.x >= polyb->boundbox.low.x; |
| 3539 | |
| 3540 | /* |
| 3541 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3542 | */ |
| 3543 | PG_FREE_IF_COPY(polya, 0); |
| 3544 | PG_FREE_IF_COPY(polyb, 1); |
| 3545 | |
| 3546 | PG_RETURN_BOOL(result); |
| 3547 | } |
| 3548 | |
| 3549 | /*------------------------------------------------------- |
| 3550 | * Is polygon A strictly below polygon B? i.e. is |
| 3551 | * the upper most point of A below the lower most point |
| 3552 | * of B? |
| 3553 | *-------------------------------------------------------*/ |
| 3554 | Datum |
| 3555 | poly_below(PG_FUNCTION_ARGS) |
| 3556 | { |
| 3557 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3558 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3559 | bool result; |
| 3560 | |
| 3561 | result = polya->boundbox.high.y < polyb->boundbox.low.y; |
| 3562 | |
| 3563 | /* |
| 3564 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3565 | */ |
| 3566 | PG_FREE_IF_COPY(polya, 0); |
| 3567 | PG_FREE_IF_COPY(polyb, 1); |
| 3568 | |
| 3569 | PG_RETURN_BOOL(result); |
| 3570 | } |
| 3571 | |
| 3572 | /*------------------------------------------------------- |
| 3573 | * Is polygon A overlapping or below polygon B? i.e. is |
| 3574 | * the upper most point of A at or below the upper most point |
| 3575 | * of B? |
| 3576 | *-------------------------------------------------------*/ |
| 3577 | Datum |
| 3578 | poly_overbelow(PG_FUNCTION_ARGS) |
| 3579 | { |
| 3580 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3581 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3582 | bool result; |
| 3583 | |
| 3584 | result = polya->boundbox.high.y <= polyb->boundbox.high.y; |
| 3585 | |
| 3586 | /* |
| 3587 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3588 | */ |
| 3589 | PG_FREE_IF_COPY(polya, 0); |
| 3590 | PG_FREE_IF_COPY(polyb, 1); |
| 3591 | |
| 3592 | PG_RETURN_BOOL(result); |
| 3593 | } |
| 3594 | |
| 3595 | /*------------------------------------------------------- |
| 3596 | * Is polygon A strictly above polygon B? i.e. is |
| 3597 | * the lower most point of A above the upper most point |
| 3598 | * of B? |
| 3599 | *-------------------------------------------------------*/ |
| 3600 | Datum |
| 3601 | poly_above(PG_FUNCTION_ARGS) |
| 3602 | { |
| 3603 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3604 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3605 | bool result; |
| 3606 | |
| 3607 | result = polya->boundbox.low.y > polyb->boundbox.high.y; |
| 3608 | |
| 3609 | /* |
| 3610 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3611 | */ |
| 3612 | PG_FREE_IF_COPY(polya, 0); |
| 3613 | PG_FREE_IF_COPY(polyb, 1); |
| 3614 | |
| 3615 | PG_RETURN_BOOL(result); |
| 3616 | } |
| 3617 | |
| 3618 | /*------------------------------------------------------- |
| 3619 | * Is polygon A overlapping or above polygon B? i.e. is |
| 3620 | * the lower most point of A at or above the lower most point |
| 3621 | * of B? |
| 3622 | *-------------------------------------------------------*/ |
| 3623 | Datum |
| 3624 | poly_overabove(PG_FUNCTION_ARGS) |
| 3625 | { |
| 3626 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3627 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3628 | bool result; |
| 3629 | |
| 3630 | result = polya->boundbox.low.y >= polyb->boundbox.low.y; |
| 3631 | |
| 3632 | /* |
| 3633 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3634 | */ |
| 3635 | PG_FREE_IF_COPY(polya, 0); |
| 3636 | PG_FREE_IF_COPY(polyb, 1); |
| 3637 | |
| 3638 | PG_RETURN_BOOL(result); |
| 3639 | } |
| 3640 | |
| 3641 | |
| 3642 | /*------------------------------------------------------- |
| 3643 | * Is polygon A the same as polygon B? i.e. are all the |
| 3644 | * points the same? |
| 3645 | * Check all points for matches in both forward and reverse |
| 3646 | * direction since polygons are non-directional and are |
| 3647 | * closed shapes. |
| 3648 | *-------------------------------------------------------*/ |
| 3649 | Datum |
| 3650 | poly_same(PG_FUNCTION_ARGS) |
| 3651 | { |
| 3652 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3653 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3654 | bool result; |
| 3655 | |
| 3656 | if (polya->npts != polyb->npts) |
| 3657 | result = false; |
| 3658 | else |
| 3659 | result = plist_same(polya->npts, polya->p, polyb->p); |
| 3660 | |
| 3661 | /* |
| 3662 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3663 | */ |
| 3664 | PG_FREE_IF_COPY(polya, 0); |
| 3665 | PG_FREE_IF_COPY(polyb, 1); |
| 3666 | |
| 3667 | PG_RETURN_BOOL(result); |
| 3668 | } |
| 3669 | |
| 3670 | /*----------------------------------------------------------------- |
| 3671 | * Determine if polygon A overlaps polygon B |
| 3672 | *-----------------------------------------------------------------*/ |
| 3673 | Datum |
| 3674 | poly_overlap(PG_FUNCTION_ARGS) |
| 3675 | { |
| 3676 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3677 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3678 | bool result; |
| 3679 | |
| 3680 | Assert(polya->npts > 0 && polyb->npts > 0); |
| 3681 | |
| 3682 | /* Quick check by bounding box */ |
| 3683 | result = box_ov(&polya->boundbox, &polyb->boundbox); |
| 3684 | |
| 3685 | /* |
| 3686 | * Brute-force algorithm - try to find intersected edges, if so then |
| 3687 | * polygons are overlapped else check is one polygon inside other or not |
| 3688 | * by testing single point of them. |
| 3689 | */ |
| 3690 | if (result) |
| 3691 | { |
| 3692 | int ia, |
| 3693 | ib; |
| 3694 | LSEG sa, |
| 3695 | sb; |
| 3696 | |
| 3697 | /* Init first of polya's edge with last point */ |
| 3698 | sa.p[0] = polya->p[polya->npts - 1]; |
| 3699 | result = false; |
| 3700 | |
| 3701 | for (ia = 0; ia < polya->npts && !result; ia++) |
| 3702 | { |
| 3703 | /* Second point of polya's edge is a current one */ |
| 3704 | sa.p[1] = polya->p[ia]; |
| 3705 | |
| 3706 | /* Init first of polyb's edge with last point */ |
| 3707 | sb.p[0] = polyb->p[polyb->npts - 1]; |
| 3708 | |
| 3709 | for (ib = 0; ib < polyb->npts && !result; ib++) |
| 3710 | { |
| 3711 | sb.p[1] = polyb->p[ib]; |
| 3712 | result = lseg_interpt_lseg(NULL, &sa, &sb); |
| 3713 | sb.p[0] = sb.p[1]; |
| 3714 | } |
| 3715 | |
| 3716 | /* |
| 3717 | * move current endpoint to the first point of next edge |
| 3718 | */ |
| 3719 | sa.p[0] = sa.p[1]; |
| 3720 | } |
| 3721 | |
| 3722 | if (!result) |
| 3723 | { |
| 3724 | result = (point_inside(polya->p, polyb->npts, polyb->p) || |
| 3725 | point_inside(polyb->p, polya->npts, polya->p)); |
| 3726 | } |
| 3727 | } |
| 3728 | |
| 3729 | /* |
| 3730 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3731 | */ |
| 3732 | PG_FREE_IF_COPY(polya, 0); |
| 3733 | PG_FREE_IF_COPY(polyb, 1); |
| 3734 | |
| 3735 | PG_RETURN_BOOL(result); |
| 3736 | } |
| 3737 | |
| 3738 | /* |
| 3739 | * Tests special kind of segment for in/out of polygon. |
| 3740 | * Special kind means: |
| 3741 | * - point a should be on segment s |
| 3742 | * - segment (a,b) should not be contained by s |
| 3743 | * Returns true if: |
| 3744 | * - segment (a,b) is collinear to s and (a,b) is in polygon |
| 3745 | * - segment (a,b) s not collinear to s. Note: that doesn't |
| 3746 | * mean that segment is in polygon! |
| 3747 | */ |
| 3748 | |
| 3749 | static bool |
| 3750 | touched_lseg_inside_poly(Point *a, Point *b, LSEG *s, POLYGON *poly, int start) |
| 3751 | { |
| 3752 | /* point a is on s, b is not */ |
| 3753 | LSEG t; |
| 3754 | |
| 3755 | t.p[0] = *a; |
| 3756 | t.p[1] = *b; |
| 3757 | |
| 3758 | if (point_eq_point(a, s->p)) |
| 3759 | { |
| 3760 | if (lseg_contain_point(&t, s->p + 1)) |
| 3761 | return lseg_inside_poly(b, s->p + 1, poly, start); |
| 3762 | } |
| 3763 | else if (point_eq_point(a, s->p + 1)) |
| 3764 | { |
| 3765 | if (lseg_contain_point(&t, s->p)) |
| 3766 | return lseg_inside_poly(b, s->p, poly, start); |
| 3767 | } |
| 3768 | else if (lseg_contain_point(&t, s->p)) |
| 3769 | { |
| 3770 | return lseg_inside_poly(b, s->p, poly, start); |
| 3771 | } |
| 3772 | else if (lseg_contain_point(&t, s->p + 1)) |
| 3773 | { |
| 3774 | return lseg_inside_poly(b, s->p + 1, poly, start); |
| 3775 | } |
| 3776 | |
| 3777 | return true; /* may be not true, but that will check later */ |
| 3778 | } |
| 3779 | |
| 3780 | /* |
| 3781 | * Returns true if segment (a,b) is in polygon, option |
| 3782 | * start is used for optimization - function checks |
| 3783 | * polygon's edges starting from start |
| 3784 | */ |
| 3785 | static bool |
| 3786 | lseg_inside_poly(Point *a, Point *b, POLYGON *poly, int start) |
| 3787 | { |
| 3788 | LSEG s, |
| 3789 | t; |
| 3790 | int i; |
| 3791 | bool res = true, |
| 3792 | intersection = false; |
| 3793 | |
| 3794 | t.p[0] = *a; |
| 3795 | t.p[1] = *b; |
| 3796 | s.p[0] = poly->p[(start == 0) ? (poly->npts - 1) : (start - 1)]; |
| 3797 | |
| 3798 | for (i = start; i < poly->npts && res; i++) |
| 3799 | { |
| 3800 | Point interpt; |
| 3801 | |
| 3802 | CHECK_FOR_INTERRUPTS(); |
| 3803 | |
| 3804 | s.p[1] = poly->p[i]; |
| 3805 | |
| 3806 | if (lseg_contain_point(&s, t.p)) |
| 3807 | { |
| 3808 | if (lseg_contain_point(&s, t.p + 1)) |
| 3809 | return true; /* t is contained by s */ |
| 3810 | |
| 3811 | /* Y-cross */ |
| 3812 | res = touched_lseg_inside_poly(t.p, t.p + 1, &s, poly, i + 1); |
| 3813 | } |
| 3814 | else if (lseg_contain_point(&s, t.p + 1)) |
| 3815 | { |
| 3816 | /* Y-cross */ |
| 3817 | res = touched_lseg_inside_poly(t.p + 1, t.p, &s, poly, i + 1); |
| 3818 | } |
| 3819 | else if (lseg_interpt_lseg(&interpt, &t, &s)) |
| 3820 | { |
| 3821 | /* |
| 3822 | * segments are X-crossing, go to check each subsegment |
| 3823 | */ |
| 3824 | |
| 3825 | intersection = true; |
| 3826 | res = lseg_inside_poly(t.p, &interpt, poly, i + 1); |
| 3827 | if (res) |
| 3828 | res = lseg_inside_poly(t.p + 1, &interpt, poly, i + 1); |
| 3829 | } |
| 3830 | |
| 3831 | s.p[0] = s.p[1]; |
| 3832 | } |
| 3833 | |
| 3834 | if (res && !intersection) |
| 3835 | { |
| 3836 | Point p; |
| 3837 | |
| 3838 | /* |
| 3839 | * if X-intersection wasn't found then check central point of tested |
| 3840 | * segment. In opposite case we already check all subsegments |
| 3841 | */ |
| 3842 | p.x = float8_div(float8_pl(t.p[0].x, t.p[1].x), 2.0); |
| 3843 | p.y = float8_div(float8_pl(t.p[0].y, t.p[1].y), 2.0); |
| 3844 | |
| 3845 | res = point_inside(&p, poly->npts, poly->p); |
| 3846 | } |
| 3847 | |
| 3848 | return res; |
| 3849 | } |
| 3850 | |
| 3851 | /* |
| 3852 | * Check whether the first polygon contains the second |
| 3853 | */ |
| 3854 | static bool |
| 3855 | poly_contain_poly(POLYGON *contains_poly, POLYGON *contained_poly) |
| 3856 | { |
| 3857 | int i; |
| 3858 | LSEG s; |
| 3859 | |
| 3860 | Assert(contains_poly->npts > 0 && contained_poly->npts > 0); |
| 3861 | |
| 3862 | /* |
| 3863 | * Quick check to see if contained's bounding box is contained in |
| 3864 | * contains' bb. |
| 3865 | */ |
| 3866 | if (!box_contain_box(&contains_poly->boundbox, &contained_poly->boundbox)) |
| 3867 | return false; |
| 3868 | |
| 3869 | s.p[0] = contained_poly->p[contained_poly->npts - 1]; |
| 3870 | |
| 3871 | for (i = 0; i < contained_poly->npts; i++) |
| 3872 | { |
| 3873 | s.p[1] = contained_poly->p[i]; |
| 3874 | if (!lseg_inside_poly(s.p, s.p + 1, contains_poly, 0)) |
| 3875 | return false; |
| 3876 | s.p[0] = s.p[1]; |
| 3877 | } |
| 3878 | |
| 3879 | return true; |
| 3880 | } |
| 3881 | |
| 3882 | Datum |
| 3883 | poly_contain(PG_FUNCTION_ARGS) |
| 3884 | { |
| 3885 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3886 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3887 | bool result; |
| 3888 | |
| 3889 | result = poly_contain_poly(polya, polyb); |
| 3890 | |
| 3891 | /* |
| 3892 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3893 | */ |
| 3894 | PG_FREE_IF_COPY(polya, 0); |
| 3895 | PG_FREE_IF_COPY(polyb, 1); |
| 3896 | |
| 3897 | PG_RETURN_BOOL(result); |
| 3898 | } |
| 3899 | |
| 3900 | |
| 3901 | /*----------------------------------------------------------------- |
| 3902 | * Determine if polygon A is contained by polygon B |
| 3903 | *-----------------------------------------------------------------*/ |
| 3904 | Datum |
| 3905 | poly_contained(PG_FUNCTION_ARGS) |
| 3906 | { |
| 3907 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3908 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3909 | bool result; |
| 3910 | |
| 3911 | /* Just switch the arguments and pass it off to poly_contain */ |
| 3912 | result = poly_contain_poly(polyb, polya); |
| 3913 | |
| 3914 | /* |
| 3915 | * Avoid leaking memory for toasted inputs ... needed for rtree indexes |
| 3916 | */ |
| 3917 | PG_FREE_IF_COPY(polya, 0); |
| 3918 | PG_FREE_IF_COPY(polyb, 1); |
| 3919 | |
| 3920 | PG_RETURN_BOOL(result); |
| 3921 | } |
| 3922 | |
| 3923 | |
| 3924 | Datum |
| 3925 | poly_contain_pt(PG_FUNCTION_ARGS) |
| 3926 | { |
| 3927 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 3928 | Point *p = PG_GETARG_POINT_P(1); |
| 3929 | |
| 3930 | PG_RETURN_BOOL(point_inside(p, poly->npts, poly->p) != 0); |
| 3931 | } |
| 3932 | |
| 3933 | Datum |
| 3934 | pt_contained_poly(PG_FUNCTION_ARGS) |
| 3935 | { |
| 3936 | Point *p = PG_GETARG_POINT_P(0); |
| 3937 | POLYGON *poly = PG_GETARG_POLYGON_P(1); |
| 3938 | |
| 3939 | PG_RETURN_BOOL(point_inside(p, poly->npts, poly->p) != 0); |
| 3940 | } |
| 3941 | |
| 3942 | |
| 3943 | Datum |
| 3944 | poly_distance(PG_FUNCTION_ARGS) |
| 3945 | { |
| 3946 | #ifdef NOT_USED |
| 3947 | POLYGON *polya = PG_GETARG_POLYGON_P(0); |
| 3948 | POLYGON *polyb = PG_GETARG_POLYGON_P(1); |
| 3949 | #endif |
| 3950 | |
| 3951 | ereport(ERROR, |
| 3952 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3953 | errmsg("function \"poly_distance\" not implemented" ))); |
| 3954 | |
| 3955 | PG_RETURN_NULL(); |
| 3956 | } |
| 3957 | |
| 3958 | |
| 3959 | /*********************************************************************** |
| 3960 | ** |
| 3961 | ** Routines for 2D points. |
| 3962 | ** |
| 3963 | ***********************************************************************/ |
| 3964 | |
| 3965 | Datum |
| 3966 | construct_point(PG_FUNCTION_ARGS) |
| 3967 | { |
| 3968 | float8 x = PG_GETARG_FLOAT8(0); |
| 3969 | float8 y = PG_GETARG_FLOAT8(1); |
| 3970 | Point *result; |
| 3971 | |
| 3972 | result = (Point *) palloc(sizeof(Point)); |
| 3973 | |
| 3974 | point_construct(result, x, y); |
| 3975 | |
| 3976 | PG_RETURN_POINT_P(result); |
| 3977 | } |
| 3978 | |
| 3979 | |
| 3980 | static inline void |
| 3981 | point_add_point(Point *result, Point *pt1, Point *pt2) |
| 3982 | { |
| 3983 | point_construct(result, |
| 3984 | float8_pl(pt1->x, pt2->x), |
| 3985 | float8_pl(pt1->y, pt2->y)); |
| 3986 | } |
| 3987 | |
| 3988 | Datum |
| 3989 | point_add(PG_FUNCTION_ARGS) |
| 3990 | { |
| 3991 | Point *p1 = PG_GETARG_POINT_P(0); |
| 3992 | Point *p2 = PG_GETARG_POINT_P(1); |
| 3993 | Point *result; |
| 3994 | |
| 3995 | result = (Point *) palloc(sizeof(Point)); |
| 3996 | |
| 3997 | point_add_point(result, p1, p2); |
| 3998 | |
| 3999 | PG_RETURN_POINT_P(result); |
| 4000 | } |
| 4001 | |
| 4002 | |
| 4003 | static inline void |
| 4004 | point_sub_point(Point *result, Point *pt1, Point *pt2) |
| 4005 | { |
| 4006 | point_construct(result, |
| 4007 | float8_mi(pt1->x, pt2->x), |
| 4008 | float8_mi(pt1->y, pt2->y)); |
| 4009 | } |
| 4010 | |
| 4011 | Datum |
| 4012 | point_sub(PG_FUNCTION_ARGS) |
| 4013 | { |
| 4014 | Point *p1 = PG_GETARG_POINT_P(0); |
| 4015 | Point *p2 = PG_GETARG_POINT_P(1); |
| 4016 | Point *result; |
| 4017 | |
| 4018 | result = (Point *) palloc(sizeof(Point)); |
| 4019 | |
| 4020 | point_sub_point(result, p1, p2); |
| 4021 | |
| 4022 | PG_RETURN_POINT_P(result); |
| 4023 | } |
| 4024 | |
| 4025 | |
| 4026 | static inline void |
| 4027 | point_mul_point(Point *result, Point *pt1, Point *pt2) |
| 4028 | { |
| 4029 | point_construct(result, |
| 4030 | float8_mi(float8_mul(pt1->x, pt2->x), |
| 4031 | float8_mul(pt1->y, pt2->y)), |
| 4032 | float8_pl(float8_mul(pt1->x, pt2->y), |
| 4033 | float8_mul(pt1->y, pt2->x))); |
| 4034 | } |
| 4035 | |
| 4036 | Datum |
| 4037 | point_mul(PG_FUNCTION_ARGS) |
| 4038 | { |
| 4039 | Point *p1 = PG_GETARG_POINT_P(0); |
| 4040 | Point *p2 = PG_GETARG_POINT_P(1); |
| 4041 | Point *result; |
| 4042 | |
| 4043 | result = (Point *) palloc(sizeof(Point)); |
| 4044 | |
| 4045 | point_mul_point(result, p1, p2); |
| 4046 | |
| 4047 | PG_RETURN_POINT_P(result); |
| 4048 | } |
| 4049 | |
| 4050 | |
| 4051 | static inline void |
| 4052 | point_div_point(Point *result, Point *pt1, Point *pt2) |
| 4053 | { |
| 4054 | float8 div; |
| 4055 | |
| 4056 | div = float8_pl(float8_mul(pt2->x, pt2->x), float8_mul(pt2->y, pt2->y)); |
| 4057 | |
| 4058 | point_construct(result, |
| 4059 | float8_div(float8_pl(float8_mul(pt1->x, pt2->x), |
| 4060 | float8_mul(pt1->y, pt2->y)), div), |
| 4061 | float8_div(float8_mi(float8_mul(pt1->y, pt2->x), |
| 4062 | float8_mul(pt1->x, pt2->y)), div)); |
| 4063 | } |
| 4064 | |
| 4065 | Datum |
| 4066 | point_div(PG_FUNCTION_ARGS) |
| 4067 | { |
| 4068 | Point *p1 = PG_GETARG_POINT_P(0); |
| 4069 | Point *p2 = PG_GETARG_POINT_P(1); |
| 4070 | Point *result; |
| 4071 | |
| 4072 | result = (Point *) palloc(sizeof(Point)); |
| 4073 | |
| 4074 | point_div_point(result, p1, p2); |
| 4075 | |
| 4076 | PG_RETURN_POINT_P(result); |
| 4077 | } |
| 4078 | |
| 4079 | |
| 4080 | /*********************************************************************** |
| 4081 | ** |
| 4082 | ** Routines for 2D boxes. |
| 4083 | ** |
| 4084 | ***********************************************************************/ |
| 4085 | |
| 4086 | Datum |
| 4087 | points_box(PG_FUNCTION_ARGS) |
| 4088 | { |
| 4089 | Point *p1 = PG_GETARG_POINT_P(0); |
| 4090 | Point *p2 = PG_GETARG_POINT_P(1); |
| 4091 | BOX *result; |
| 4092 | |
| 4093 | result = (BOX *) palloc(sizeof(BOX)); |
| 4094 | |
| 4095 | box_construct(result, p1, p2); |
| 4096 | |
| 4097 | PG_RETURN_BOX_P(result); |
| 4098 | } |
| 4099 | |
| 4100 | Datum |
| 4101 | box_add(PG_FUNCTION_ARGS) |
| 4102 | { |
| 4103 | BOX *box = PG_GETARG_BOX_P(0); |
| 4104 | Point *p = PG_GETARG_POINT_P(1); |
| 4105 | BOX *result; |
| 4106 | |
| 4107 | result = (BOX *) palloc(sizeof(BOX)); |
| 4108 | |
| 4109 | point_add_point(&result->high, &box->high, p); |
| 4110 | point_add_point(&result->low, &box->low, p); |
| 4111 | |
| 4112 | PG_RETURN_BOX_P(result); |
| 4113 | } |
| 4114 | |
| 4115 | Datum |
| 4116 | box_sub(PG_FUNCTION_ARGS) |
| 4117 | { |
| 4118 | BOX *box = PG_GETARG_BOX_P(0); |
| 4119 | Point *p = PG_GETARG_POINT_P(1); |
| 4120 | BOX *result; |
| 4121 | |
| 4122 | result = (BOX *) palloc(sizeof(BOX)); |
| 4123 | |
| 4124 | point_sub_point(&result->high, &box->high, p); |
| 4125 | point_sub_point(&result->low, &box->low, p); |
| 4126 | |
| 4127 | PG_RETURN_BOX_P(result); |
| 4128 | } |
| 4129 | |
| 4130 | Datum |
| 4131 | box_mul(PG_FUNCTION_ARGS) |
| 4132 | { |
| 4133 | BOX *box = PG_GETARG_BOX_P(0); |
| 4134 | Point *p = PG_GETARG_POINT_P(1); |
| 4135 | BOX *result; |
| 4136 | Point high, |
| 4137 | low; |
| 4138 | |
| 4139 | result = (BOX *) palloc(sizeof(BOX)); |
| 4140 | |
| 4141 | point_mul_point(&high, &box->high, p); |
| 4142 | point_mul_point(&low, &box->low, p); |
| 4143 | |
| 4144 | box_construct(result, &high, &low); |
| 4145 | |
| 4146 | PG_RETURN_BOX_P(result); |
| 4147 | } |
| 4148 | |
| 4149 | Datum |
| 4150 | box_div(PG_FUNCTION_ARGS) |
| 4151 | { |
| 4152 | BOX *box = PG_GETARG_BOX_P(0); |
| 4153 | Point *p = PG_GETARG_POINT_P(1); |
| 4154 | BOX *result; |
| 4155 | Point high, |
| 4156 | low; |
| 4157 | |
| 4158 | result = (BOX *) palloc(sizeof(BOX)); |
| 4159 | |
| 4160 | point_div_point(&high, &box->high, p); |
| 4161 | point_div_point(&low, &box->low, p); |
| 4162 | |
| 4163 | box_construct(result, &high, &low); |
| 4164 | |
| 4165 | PG_RETURN_BOX_P(result); |
| 4166 | } |
| 4167 | |
| 4168 | /* |
| 4169 | * Convert point to empty box |
| 4170 | */ |
| 4171 | Datum |
| 4172 | point_box(PG_FUNCTION_ARGS) |
| 4173 | { |
| 4174 | Point *pt = PG_GETARG_POINT_P(0); |
| 4175 | BOX *box; |
| 4176 | |
| 4177 | box = (BOX *) palloc(sizeof(BOX)); |
| 4178 | |
| 4179 | box->high.x = pt->x; |
| 4180 | box->low.x = pt->x; |
| 4181 | box->high.y = pt->y; |
| 4182 | box->low.y = pt->y; |
| 4183 | |
| 4184 | PG_RETURN_BOX_P(box); |
| 4185 | } |
| 4186 | |
| 4187 | /* |
| 4188 | * Smallest bounding box that includes both of the given boxes |
| 4189 | */ |
| 4190 | Datum |
| 4191 | boxes_bound_box(PG_FUNCTION_ARGS) |
| 4192 | { |
| 4193 | BOX *box1 = PG_GETARG_BOX_P(0), |
| 4194 | *box2 = PG_GETARG_BOX_P(1), |
| 4195 | *container; |
| 4196 | |
| 4197 | container = (BOX *) palloc(sizeof(BOX)); |
| 4198 | |
| 4199 | container->high.x = float8_max(box1->high.x, box2->high.x); |
| 4200 | container->low.x = float8_min(box1->low.x, box2->low.x); |
| 4201 | container->high.y = float8_max(box1->high.y, box2->high.y); |
| 4202 | container->low.y = float8_min(box1->low.y, box2->low.y); |
| 4203 | |
| 4204 | PG_RETURN_BOX_P(container); |
| 4205 | } |
| 4206 | |
| 4207 | |
| 4208 | /*********************************************************************** |
| 4209 | ** |
| 4210 | ** Routines for 2D paths. |
| 4211 | ** |
| 4212 | ***********************************************************************/ |
| 4213 | |
| 4214 | /* path_add() |
| 4215 | * Concatenate two paths (only if they are both open). |
| 4216 | */ |
| 4217 | Datum |
| 4218 | path_add(PG_FUNCTION_ARGS) |
| 4219 | { |
| 4220 | PATH *p1 = PG_GETARG_PATH_P(0); |
| 4221 | PATH *p2 = PG_GETARG_PATH_P(1); |
| 4222 | PATH *result; |
| 4223 | int size, |
| 4224 | base_size; |
| 4225 | int i; |
| 4226 | |
| 4227 | if (p1->closed || p2->closed) |
| 4228 | PG_RETURN_NULL(); |
| 4229 | |
| 4230 | base_size = sizeof(p1->p[0]) * (p1->npts + p2->npts); |
| 4231 | size = offsetof(PATH, p) + base_size; |
| 4232 | |
| 4233 | /* Check for integer overflow */ |
| 4234 | if (base_size / sizeof(p1->p[0]) != (p1->npts + p2->npts) || |
| 4235 | size <= base_size) |
| 4236 | ereport(ERROR, |
| 4237 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 4238 | errmsg("too many points requested" ))); |
| 4239 | |
| 4240 | result = (PATH *) palloc(size); |
| 4241 | |
| 4242 | SET_VARSIZE(result, size); |
| 4243 | result->npts = (p1->npts + p2->npts); |
| 4244 | result->closed = p1->closed; |
| 4245 | /* prevent instability in unused pad bytes */ |
| 4246 | result->dummy = 0; |
| 4247 | |
| 4248 | for (i = 0; i < p1->npts; i++) |
| 4249 | { |
| 4250 | result->p[i].x = p1->p[i].x; |
| 4251 | result->p[i].y = p1->p[i].y; |
| 4252 | } |
| 4253 | for (i = 0; i < p2->npts; i++) |
| 4254 | { |
| 4255 | result->p[i + p1->npts].x = p2->p[i].x; |
| 4256 | result->p[i + p1->npts].y = p2->p[i].y; |
| 4257 | } |
| 4258 | |
| 4259 | PG_RETURN_PATH_P(result); |
| 4260 | } |
| 4261 | |
| 4262 | /* path_add_pt() |
| 4263 | * Translation operators. |
| 4264 | */ |
| 4265 | Datum |
| 4266 | path_add_pt(PG_FUNCTION_ARGS) |
| 4267 | { |
| 4268 | PATH *path = PG_GETARG_PATH_P_COPY(0); |
| 4269 | Point *point = PG_GETARG_POINT_P(1); |
| 4270 | int i; |
| 4271 | |
| 4272 | for (i = 0; i < path->npts; i++) |
| 4273 | point_add_point(&path->p[i], &path->p[i], point); |
| 4274 | |
| 4275 | PG_RETURN_PATH_P(path); |
| 4276 | } |
| 4277 | |
| 4278 | Datum |
| 4279 | path_sub_pt(PG_FUNCTION_ARGS) |
| 4280 | { |
| 4281 | PATH *path = PG_GETARG_PATH_P_COPY(0); |
| 4282 | Point *point = PG_GETARG_POINT_P(1); |
| 4283 | int i; |
| 4284 | |
| 4285 | for (i = 0; i < path->npts; i++) |
| 4286 | point_sub_point(&path->p[i], &path->p[i], point); |
| 4287 | |
| 4288 | PG_RETURN_PATH_P(path); |
| 4289 | } |
| 4290 | |
| 4291 | /* path_mul_pt() |
| 4292 | * Rotation and scaling operators. |
| 4293 | */ |
| 4294 | Datum |
| 4295 | path_mul_pt(PG_FUNCTION_ARGS) |
| 4296 | { |
| 4297 | PATH *path = PG_GETARG_PATH_P_COPY(0); |
| 4298 | Point *point = PG_GETARG_POINT_P(1); |
| 4299 | int i; |
| 4300 | |
| 4301 | for (i = 0; i < path->npts; i++) |
| 4302 | point_mul_point(&path->p[i], &path->p[i], point); |
| 4303 | |
| 4304 | PG_RETURN_PATH_P(path); |
| 4305 | } |
| 4306 | |
| 4307 | Datum |
| 4308 | path_div_pt(PG_FUNCTION_ARGS) |
| 4309 | { |
| 4310 | PATH *path = PG_GETARG_PATH_P_COPY(0); |
| 4311 | Point *point = PG_GETARG_POINT_P(1); |
| 4312 | int i; |
| 4313 | |
| 4314 | for (i = 0; i < path->npts; i++) |
| 4315 | point_div_point(&path->p[i], &path->p[i], point); |
| 4316 | |
| 4317 | PG_RETURN_PATH_P(path); |
| 4318 | } |
| 4319 | |
| 4320 | |
| 4321 | Datum |
| 4322 | path_center(PG_FUNCTION_ARGS) |
| 4323 | { |
| 4324 | #ifdef NOT_USED |
| 4325 | PATH *path = PG_GETARG_PATH_P(0); |
| 4326 | #endif |
| 4327 | |
| 4328 | ereport(ERROR, |
| 4329 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 4330 | errmsg("function \"path_center\" not implemented" ))); |
| 4331 | |
| 4332 | PG_RETURN_NULL(); |
| 4333 | } |
| 4334 | |
| 4335 | Datum |
| 4336 | path_poly(PG_FUNCTION_ARGS) |
| 4337 | { |
| 4338 | PATH *path = PG_GETARG_PATH_P(0); |
| 4339 | POLYGON *poly; |
| 4340 | int size; |
| 4341 | int i; |
| 4342 | |
| 4343 | /* This is not very consistent --- other similar cases return NULL ... */ |
| 4344 | if (!path->closed) |
| 4345 | ereport(ERROR, |
| 4346 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 4347 | errmsg("open path cannot be converted to polygon" ))); |
| 4348 | |
| 4349 | /* |
| 4350 | * Never overflows: the old size fit in MaxAllocSize, and the new size is |
| 4351 | * just a small constant larger. |
| 4352 | */ |
| 4353 | size = offsetof(POLYGON, p) + sizeof(poly->p[0]) * path->npts; |
| 4354 | poly = (POLYGON *) palloc(size); |
| 4355 | |
| 4356 | SET_VARSIZE(poly, size); |
| 4357 | poly->npts = path->npts; |
| 4358 | |
| 4359 | for (i = 0; i < path->npts; i++) |
| 4360 | { |
| 4361 | poly->p[i].x = path->p[i].x; |
| 4362 | poly->p[i].y = path->p[i].y; |
| 4363 | } |
| 4364 | |
| 4365 | make_bound_box(poly); |
| 4366 | |
| 4367 | PG_RETURN_POLYGON_P(poly); |
| 4368 | } |
| 4369 | |
| 4370 | |
| 4371 | /*********************************************************************** |
| 4372 | ** |
| 4373 | ** Routines for 2D polygons. |
| 4374 | ** |
| 4375 | ***********************************************************************/ |
| 4376 | |
| 4377 | Datum |
| 4378 | poly_npoints(PG_FUNCTION_ARGS) |
| 4379 | { |
| 4380 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 4381 | |
| 4382 | PG_RETURN_INT32(poly->npts); |
| 4383 | } |
| 4384 | |
| 4385 | |
| 4386 | Datum |
| 4387 | poly_center(PG_FUNCTION_ARGS) |
| 4388 | { |
| 4389 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 4390 | Point *result; |
| 4391 | CIRCLE circle; |
| 4392 | |
| 4393 | result = (Point *) palloc(sizeof(Point)); |
| 4394 | |
| 4395 | poly_to_circle(&circle, poly); |
| 4396 | *result = circle.center; |
| 4397 | |
| 4398 | PG_RETURN_POINT_P(result); |
| 4399 | } |
| 4400 | |
| 4401 | |
| 4402 | Datum |
| 4403 | poly_box(PG_FUNCTION_ARGS) |
| 4404 | { |
| 4405 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 4406 | BOX *box; |
| 4407 | |
| 4408 | box = (BOX *) palloc(sizeof(BOX)); |
| 4409 | *box = poly->boundbox; |
| 4410 | |
| 4411 | PG_RETURN_BOX_P(box); |
| 4412 | } |
| 4413 | |
| 4414 | |
| 4415 | /* box_poly() |
| 4416 | * Convert a box to a polygon. |
| 4417 | */ |
| 4418 | Datum |
| 4419 | box_poly(PG_FUNCTION_ARGS) |
| 4420 | { |
| 4421 | BOX *box = PG_GETARG_BOX_P(0); |
| 4422 | POLYGON *poly; |
| 4423 | int size; |
| 4424 | |
| 4425 | /* map four corners of the box to a polygon */ |
| 4426 | size = offsetof(POLYGON, p) + sizeof(poly->p[0]) * 4; |
| 4427 | poly = (POLYGON *) palloc(size); |
| 4428 | |
| 4429 | SET_VARSIZE(poly, size); |
| 4430 | poly->npts = 4; |
| 4431 | |
| 4432 | poly->p[0].x = box->low.x; |
| 4433 | poly->p[0].y = box->low.y; |
| 4434 | poly->p[1].x = box->low.x; |
| 4435 | poly->p[1].y = box->high.y; |
| 4436 | poly->p[2].x = box->high.x; |
| 4437 | poly->p[2].y = box->high.y; |
| 4438 | poly->p[3].x = box->high.x; |
| 4439 | poly->p[3].y = box->low.y; |
| 4440 | |
| 4441 | box_construct(&poly->boundbox, &box->high, &box->low); |
| 4442 | |
| 4443 | PG_RETURN_POLYGON_P(poly); |
| 4444 | } |
| 4445 | |
| 4446 | |
| 4447 | Datum |
| 4448 | poly_path(PG_FUNCTION_ARGS) |
| 4449 | { |
| 4450 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 4451 | PATH *path; |
| 4452 | int size; |
| 4453 | int i; |
| 4454 | |
| 4455 | /* |
| 4456 | * Never overflows: the old size fit in MaxAllocSize, and the new size is |
| 4457 | * smaller by a small constant. |
| 4458 | */ |
| 4459 | size = offsetof(PATH, p) + sizeof(path->p[0]) * poly->npts; |
| 4460 | path = (PATH *) palloc(size); |
| 4461 | |
| 4462 | SET_VARSIZE(path, size); |
| 4463 | path->npts = poly->npts; |
| 4464 | path->closed = true; |
| 4465 | /* prevent instability in unused pad bytes */ |
| 4466 | path->dummy = 0; |
| 4467 | |
| 4468 | for (i = 0; i < poly->npts; i++) |
| 4469 | { |
| 4470 | path->p[i].x = poly->p[i].x; |
| 4471 | path->p[i].y = poly->p[i].y; |
| 4472 | } |
| 4473 | |
| 4474 | PG_RETURN_PATH_P(path); |
| 4475 | } |
| 4476 | |
| 4477 | |
| 4478 | /*********************************************************************** |
| 4479 | ** |
| 4480 | ** Routines for circles. |
| 4481 | ** |
| 4482 | ***********************************************************************/ |
| 4483 | |
| 4484 | /*---------------------------------------------------------- |
| 4485 | * Formatting and conversion routines. |
| 4486 | *---------------------------------------------------------*/ |
| 4487 | |
| 4488 | /* circle_in - convert a string to internal form. |
| 4489 | * |
| 4490 | * External format: (center and radius of circle) |
| 4491 | * "((f8,f8)<f8>)" |
| 4492 | * also supports quick entry style "(f8,f8,f8)" |
| 4493 | */ |
| 4494 | Datum |
| 4495 | circle_in(PG_FUNCTION_ARGS) |
| 4496 | { |
| 4497 | char *str = PG_GETARG_CSTRING(0); |
| 4498 | CIRCLE *circle = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 4499 | char *s, |
| 4500 | *cp; |
| 4501 | int depth = 0; |
| 4502 | |
| 4503 | s = str; |
| 4504 | while (isspace((unsigned char) *s)) |
| 4505 | s++; |
| 4506 | if ((*s == LDELIM_C) || (*s == LDELIM)) |
| 4507 | { |
| 4508 | depth++; |
| 4509 | cp = (s + 1); |
| 4510 | while (isspace((unsigned char) *cp)) |
| 4511 | cp++; |
| 4512 | if (*cp == LDELIM) |
| 4513 | s = cp; |
| 4514 | } |
| 4515 | |
| 4516 | pair_decode(s, &circle->center.x, &circle->center.y, &s, "circle" , str); |
| 4517 | |
| 4518 | if (*s == DELIM) |
| 4519 | s++; |
| 4520 | |
| 4521 | circle->radius = single_decode(s, &s, "circle" , str); |
| 4522 | /* We have to accept NaN. */ |
| 4523 | if (circle->radius < 0.0) |
| 4524 | ereport(ERROR, |
| 4525 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 4526 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 4527 | "circle" , str))); |
| 4528 | |
| 4529 | while (depth > 0) |
| 4530 | { |
| 4531 | if ((*s == RDELIM) || ((*s == RDELIM_C) && (depth == 1))) |
| 4532 | { |
| 4533 | depth--; |
| 4534 | s++; |
| 4535 | while (isspace((unsigned char) *s)) |
| 4536 | s++; |
| 4537 | } |
| 4538 | else |
| 4539 | ereport(ERROR, |
| 4540 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 4541 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 4542 | "circle" , str))); |
| 4543 | } |
| 4544 | |
| 4545 | if (*s != '\0') |
| 4546 | ereport(ERROR, |
| 4547 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 4548 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 4549 | "circle" , str))); |
| 4550 | |
| 4551 | PG_RETURN_CIRCLE_P(circle); |
| 4552 | } |
| 4553 | |
| 4554 | /* circle_out - convert a circle to external form. |
| 4555 | */ |
| 4556 | Datum |
| 4557 | circle_out(PG_FUNCTION_ARGS) |
| 4558 | { |
| 4559 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4560 | StringInfoData str; |
| 4561 | |
| 4562 | initStringInfo(&str); |
| 4563 | |
| 4564 | appendStringInfoChar(&str, LDELIM_C); |
| 4565 | appendStringInfoChar(&str, LDELIM); |
| 4566 | pair_encode(circle->center.x, circle->center.y, &str); |
| 4567 | appendStringInfoChar(&str, RDELIM); |
| 4568 | appendStringInfoChar(&str, DELIM); |
| 4569 | single_encode(circle->radius, &str); |
| 4570 | appendStringInfoChar(&str, RDELIM_C); |
| 4571 | |
| 4572 | PG_RETURN_CSTRING(str.data); |
| 4573 | } |
| 4574 | |
| 4575 | /* |
| 4576 | * circle_recv - converts external binary format to circle |
| 4577 | */ |
| 4578 | Datum |
| 4579 | circle_recv(PG_FUNCTION_ARGS) |
| 4580 | { |
| 4581 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 4582 | CIRCLE *circle; |
| 4583 | |
| 4584 | circle = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 4585 | |
| 4586 | circle->center.x = pq_getmsgfloat8(buf); |
| 4587 | circle->center.y = pq_getmsgfloat8(buf); |
| 4588 | circle->radius = pq_getmsgfloat8(buf); |
| 4589 | |
| 4590 | /* We have to accept NaN. */ |
| 4591 | if (circle->radius < 0.0) |
| 4592 | ereport(ERROR, |
| 4593 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 4594 | errmsg("invalid radius in external \"circle\" value" ))); |
| 4595 | |
| 4596 | PG_RETURN_CIRCLE_P(circle); |
| 4597 | } |
| 4598 | |
| 4599 | /* |
| 4600 | * circle_send - converts circle to binary format |
| 4601 | */ |
| 4602 | Datum |
| 4603 | circle_send(PG_FUNCTION_ARGS) |
| 4604 | { |
| 4605 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4606 | StringInfoData buf; |
| 4607 | |
| 4608 | pq_begintypsend(&buf); |
| 4609 | pq_sendfloat8(&buf, circle->center.x); |
| 4610 | pq_sendfloat8(&buf, circle->center.y); |
| 4611 | pq_sendfloat8(&buf, circle->radius); |
| 4612 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 4613 | } |
| 4614 | |
| 4615 | |
| 4616 | /*---------------------------------------------------------- |
| 4617 | * Relational operators for CIRCLEs. |
| 4618 | * <, >, <=, >=, and == are based on circle area. |
| 4619 | *---------------------------------------------------------*/ |
| 4620 | |
| 4621 | /* circles identical? |
| 4622 | * |
| 4623 | * We consider NaNs values to be equal to each other to let those circles |
| 4624 | * to be found. |
| 4625 | */ |
| 4626 | Datum |
| 4627 | circle_same(PG_FUNCTION_ARGS) |
| 4628 | { |
| 4629 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4630 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4631 | |
| 4632 | PG_RETURN_BOOL(((isnan(circle1->radius) && isnan(circle1->radius)) || |
| 4633 | FPeq(circle1->radius, circle2->radius)) && |
| 4634 | point_eq_point(&circle1->center, &circle2->center)); |
| 4635 | } |
| 4636 | |
| 4637 | /* circle_overlap - does circle1 overlap circle2? |
| 4638 | */ |
| 4639 | Datum |
| 4640 | circle_overlap(PG_FUNCTION_ARGS) |
| 4641 | { |
| 4642 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4643 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4644 | |
| 4645 | PG_RETURN_BOOL(FPle(point_dt(&circle1->center, &circle2->center), |
| 4646 | float8_pl(circle1->radius, circle2->radius))); |
| 4647 | } |
| 4648 | |
| 4649 | /* circle_overleft - is the right edge of circle1 at or left of |
| 4650 | * the right edge of circle2? |
| 4651 | */ |
| 4652 | Datum |
| 4653 | circle_overleft(PG_FUNCTION_ARGS) |
| 4654 | { |
| 4655 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4656 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4657 | |
| 4658 | PG_RETURN_BOOL(FPle(float8_pl(circle1->center.x, circle1->radius), |
| 4659 | float8_pl(circle2->center.x, circle2->radius))); |
| 4660 | } |
| 4661 | |
| 4662 | /* circle_left - is circle1 strictly left of circle2? |
| 4663 | */ |
| 4664 | Datum |
| 4665 | circle_left(PG_FUNCTION_ARGS) |
| 4666 | { |
| 4667 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4668 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4669 | |
| 4670 | PG_RETURN_BOOL(FPlt(float8_pl(circle1->center.x, circle1->radius), |
| 4671 | float8_mi(circle2->center.x, circle2->radius))); |
| 4672 | } |
| 4673 | |
| 4674 | /* circle_right - is circle1 strictly right of circle2? |
| 4675 | */ |
| 4676 | Datum |
| 4677 | circle_right(PG_FUNCTION_ARGS) |
| 4678 | { |
| 4679 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4680 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4681 | |
| 4682 | PG_RETURN_BOOL(FPgt(float8_mi(circle1->center.x, circle1->radius), |
| 4683 | float8_pl(circle2->center.x, circle2->radius))); |
| 4684 | } |
| 4685 | |
| 4686 | /* circle_overright - is the left edge of circle1 at or right of |
| 4687 | * the left edge of circle2? |
| 4688 | */ |
| 4689 | Datum |
| 4690 | circle_overright(PG_FUNCTION_ARGS) |
| 4691 | { |
| 4692 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4693 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4694 | |
| 4695 | PG_RETURN_BOOL(FPge(float8_mi(circle1->center.x, circle1->radius), |
| 4696 | float8_mi(circle2->center.x, circle2->radius))); |
| 4697 | } |
| 4698 | |
| 4699 | /* circle_contained - is circle1 contained by circle2? |
| 4700 | */ |
| 4701 | Datum |
| 4702 | circle_contained(PG_FUNCTION_ARGS) |
| 4703 | { |
| 4704 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4705 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4706 | |
| 4707 | PG_RETURN_BOOL(FPle(point_dt(&circle1->center, &circle2->center), |
| 4708 | float8_mi(circle2->radius, circle1->radius))); |
| 4709 | } |
| 4710 | |
| 4711 | /* circle_contain - does circle1 contain circle2? |
| 4712 | */ |
| 4713 | Datum |
| 4714 | circle_contain(PG_FUNCTION_ARGS) |
| 4715 | { |
| 4716 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4717 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4718 | |
| 4719 | PG_RETURN_BOOL(FPle(point_dt(&circle1->center, &circle2->center), |
| 4720 | float8_mi(circle1->radius, circle2->radius))); |
| 4721 | } |
| 4722 | |
| 4723 | |
| 4724 | /* circle_below - is circle1 strictly below circle2? |
| 4725 | */ |
| 4726 | Datum |
| 4727 | circle_below(PG_FUNCTION_ARGS) |
| 4728 | { |
| 4729 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4730 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4731 | |
| 4732 | PG_RETURN_BOOL(FPlt(float8_pl(circle1->center.y, circle1->radius), |
| 4733 | float8_mi(circle2->center.y, circle2->radius))); |
| 4734 | } |
| 4735 | |
| 4736 | /* circle_above - is circle1 strictly above circle2? |
| 4737 | */ |
| 4738 | Datum |
| 4739 | circle_above(PG_FUNCTION_ARGS) |
| 4740 | { |
| 4741 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4742 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4743 | |
| 4744 | PG_RETURN_BOOL(FPgt(float8_mi(circle1->center.y, circle1->radius), |
| 4745 | float8_pl(circle2->center.y, circle2->radius))); |
| 4746 | } |
| 4747 | |
| 4748 | /* circle_overbelow - is the upper edge of circle1 at or below |
| 4749 | * the upper edge of circle2? |
| 4750 | */ |
| 4751 | Datum |
| 4752 | circle_overbelow(PG_FUNCTION_ARGS) |
| 4753 | { |
| 4754 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4755 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4756 | |
| 4757 | PG_RETURN_BOOL(FPle(float8_pl(circle1->center.y, circle1->radius), |
| 4758 | float8_pl(circle2->center.y, circle2->radius))); |
| 4759 | } |
| 4760 | |
| 4761 | /* circle_overabove - is the lower edge of circle1 at or above |
| 4762 | * the lower edge of circle2? |
| 4763 | */ |
| 4764 | Datum |
| 4765 | circle_overabove(PG_FUNCTION_ARGS) |
| 4766 | { |
| 4767 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4768 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4769 | |
| 4770 | PG_RETURN_BOOL(FPge(float8_mi(circle1->center.y, circle1->radius), |
| 4771 | float8_mi(circle2->center.y, circle2->radius))); |
| 4772 | } |
| 4773 | |
| 4774 | |
| 4775 | /* circle_relop - is area(circle1) relop area(circle2), within |
| 4776 | * our accuracy constraint? |
| 4777 | */ |
| 4778 | Datum |
| 4779 | circle_eq(PG_FUNCTION_ARGS) |
| 4780 | { |
| 4781 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4782 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4783 | |
| 4784 | PG_RETURN_BOOL(FPeq(circle_ar(circle1), circle_ar(circle2))); |
| 4785 | } |
| 4786 | |
| 4787 | Datum |
| 4788 | circle_ne(PG_FUNCTION_ARGS) |
| 4789 | { |
| 4790 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4791 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4792 | |
| 4793 | PG_RETURN_BOOL(FPne(circle_ar(circle1), circle_ar(circle2))); |
| 4794 | } |
| 4795 | |
| 4796 | Datum |
| 4797 | circle_lt(PG_FUNCTION_ARGS) |
| 4798 | { |
| 4799 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4800 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4801 | |
| 4802 | PG_RETURN_BOOL(FPlt(circle_ar(circle1), circle_ar(circle2))); |
| 4803 | } |
| 4804 | |
| 4805 | Datum |
| 4806 | circle_gt(PG_FUNCTION_ARGS) |
| 4807 | { |
| 4808 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4809 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4810 | |
| 4811 | PG_RETURN_BOOL(FPgt(circle_ar(circle1), circle_ar(circle2))); |
| 4812 | } |
| 4813 | |
| 4814 | Datum |
| 4815 | circle_le(PG_FUNCTION_ARGS) |
| 4816 | { |
| 4817 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4818 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4819 | |
| 4820 | PG_RETURN_BOOL(FPle(circle_ar(circle1), circle_ar(circle2))); |
| 4821 | } |
| 4822 | |
| 4823 | Datum |
| 4824 | circle_ge(PG_FUNCTION_ARGS) |
| 4825 | { |
| 4826 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4827 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4828 | |
| 4829 | PG_RETURN_BOOL(FPge(circle_ar(circle1), circle_ar(circle2))); |
| 4830 | } |
| 4831 | |
| 4832 | |
| 4833 | /*---------------------------------------------------------- |
| 4834 | * "Arithmetic" operators on circles. |
| 4835 | *---------------------------------------------------------*/ |
| 4836 | |
| 4837 | /* circle_add_pt() |
| 4838 | * Translation operator. |
| 4839 | */ |
| 4840 | Datum |
| 4841 | circle_add_pt(PG_FUNCTION_ARGS) |
| 4842 | { |
| 4843 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4844 | Point *point = PG_GETARG_POINT_P(1); |
| 4845 | CIRCLE *result; |
| 4846 | |
| 4847 | result = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 4848 | |
| 4849 | point_add_point(&result->center, &circle->center, point); |
| 4850 | result->radius = circle->radius; |
| 4851 | |
| 4852 | PG_RETURN_CIRCLE_P(result); |
| 4853 | } |
| 4854 | |
| 4855 | Datum |
| 4856 | circle_sub_pt(PG_FUNCTION_ARGS) |
| 4857 | { |
| 4858 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4859 | Point *point = PG_GETARG_POINT_P(1); |
| 4860 | CIRCLE *result; |
| 4861 | |
| 4862 | result = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 4863 | |
| 4864 | point_sub_point(&result->center, &circle->center, point); |
| 4865 | result->radius = circle->radius; |
| 4866 | |
| 4867 | PG_RETURN_CIRCLE_P(result); |
| 4868 | } |
| 4869 | |
| 4870 | |
| 4871 | /* circle_mul_pt() |
| 4872 | * Rotation and scaling operators. |
| 4873 | */ |
| 4874 | Datum |
| 4875 | circle_mul_pt(PG_FUNCTION_ARGS) |
| 4876 | { |
| 4877 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4878 | Point *point = PG_GETARG_POINT_P(1); |
| 4879 | CIRCLE *result; |
| 4880 | |
| 4881 | result = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 4882 | |
| 4883 | point_mul_point(&result->center, &circle->center, point); |
| 4884 | result->radius = float8_mul(circle->radius, HYPOT(point->x, point->y)); |
| 4885 | |
| 4886 | PG_RETURN_CIRCLE_P(result); |
| 4887 | } |
| 4888 | |
| 4889 | Datum |
| 4890 | circle_div_pt(PG_FUNCTION_ARGS) |
| 4891 | { |
| 4892 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4893 | Point *point = PG_GETARG_POINT_P(1); |
| 4894 | CIRCLE *result; |
| 4895 | |
| 4896 | result = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 4897 | |
| 4898 | point_div_point(&result->center, &circle->center, point); |
| 4899 | result->radius = float8_div(circle->radius, HYPOT(point->x, point->y)); |
| 4900 | |
| 4901 | PG_RETURN_CIRCLE_P(result); |
| 4902 | } |
| 4903 | |
| 4904 | |
| 4905 | /* circle_area - returns the area of the circle. |
| 4906 | */ |
| 4907 | Datum |
| 4908 | circle_area(PG_FUNCTION_ARGS) |
| 4909 | { |
| 4910 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4911 | |
| 4912 | PG_RETURN_FLOAT8(circle_ar(circle)); |
| 4913 | } |
| 4914 | |
| 4915 | |
| 4916 | /* circle_diameter - returns the diameter of the circle. |
| 4917 | */ |
| 4918 | Datum |
| 4919 | circle_diameter(PG_FUNCTION_ARGS) |
| 4920 | { |
| 4921 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4922 | |
| 4923 | PG_RETURN_FLOAT8(float8_mul(circle->radius, 2.0)); |
| 4924 | } |
| 4925 | |
| 4926 | |
| 4927 | /* circle_radius - returns the radius of the circle. |
| 4928 | */ |
| 4929 | Datum |
| 4930 | circle_radius(PG_FUNCTION_ARGS) |
| 4931 | { |
| 4932 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4933 | |
| 4934 | PG_RETURN_FLOAT8(circle->radius); |
| 4935 | } |
| 4936 | |
| 4937 | |
| 4938 | /* circle_distance - returns the distance between |
| 4939 | * two circles. |
| 4940 | */ |
| 4941 | Datum |
| 4942 | circle_distance(PG_FUNCTION_ARGS) |
| 4943 | { |
| 4944 | CIRCLE *circle1 = PG_GETARG_CIRCLE_P(0); |
| 4945 | CIRCLE *circle2 = PG_GETARG_CIRCLE_P(1); |
| 4946 | float8 result; |
| 4947 | |
| 4948 | result = float8_mi(point_dt(&circle1->center, &circle2->center), |
| 4949 | float8_pl(circle1->radius, circle2->radius)); |
| 4950 | if (result < 0.0) |
| 4951 | result = 0.0; |
| 4952 | |
| 4953 | PG_RETURN_FLOAT8(result); |
| 4954 | } |
| 4955 | |
| 4956 | |
| 4957 | Datum |
| 4958 | circle_contain_pt(PG_FUNCTION_ARGS) |
| 4959 | { |
| 4960 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 4961 | Point *point = PG_GETARG_POINT_P(1); |
| 4962 | float8 d; |
| 4963 | |
| 4964 | d = point_dt(&circle->center, point); |
| 4965 | PG_RETURN_BOOL(d <= circle->radius); |
| 4966 | } |
| 4967 | |
| 4968 | |
| 4969 | Datum |
| 4970 | pt_contained_circle(PG_FUNCTION_ARGS) |
| 4971 | { |
| 4972 | Point *point = PG_GETARG_POINT_P(0); |
| 4973 | CIRCLE *circle = PG_GETARG_CIRCLE_P(1); |
| 4974 | float8 d; |
| 4975 | |
| 4976 | d = point_dt(&circle->center, point); |
| 4977 | PG_RETURN_BOOL(d <= circle->radius); |
| 4978 | } |
| 4979 | |
| 4980 | |
| 4981 | /* dist_pc - returns the distance between |
| 4982 | * a point and a circle. |
| 4983 | */ |
| 4984 | Datum |
| 4985 | dist_pc(PG_FUNCTION_ARGS) |
| 4986 | { |
| 4987 | Point *point = PG_GETARG_POINT_P(0); |
| 4988 | CIRCLE *circle = PG_GETARG_CIRCLE_P(1); |
| 4989 | float8 result; |
| 4990 | |
| 4991 | result = float8_mi(point_dt(point, &circle->center), |
| 4992 | circle->radius); |
| 4993 | if (result < 0.0) |
| 4994 | result = 0.0; |
| 4995 | |
| 4996 | PG_RETURN_FLOAT8(result); |
| 4997 | } |
| 4998 | |
| 4999 | /* |
| 5000 | * Distance from a circle to a point |
| 5001 | */ |
| 5002 | Datum |
| 5003 | dist_cpoint(PG_FUNCTION_ARGS) |
| 5004 | { |
| 5005 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 5006 | Point *point = PG_GETARG_POINT_P(1); |
| 5007 | float8 result; |
| 5008 | |
| 5009 | result = float8_mi(point_dt(point, &circle->center), circle->radius); |
| 5010 | if (result < 0.0) |
| 5011 | result = 0.0; |
| 5012 | |
| 5013 | PG_RETURN_FLOAT8(result); |
| 5014 | } |
| 5015 | |
| 5016 | /* circle_center - returns the center point of the circle. |
| 5017 | */ |
| 5018 | Datum |
| 5019 | circle_center(PG_FUNCTION_ARGS) |
| 5020 | { |
| 5021 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 5022 | Point *result; |
| 5023 | |
| 5024 | result = (Point *) palloc(sizeof(Point)); |
| 5025 | result->x = circle->center.x; |
| 5026 | result->y = circle->center.y; |
| 5027 | |
| 5028 | PG_RETURN_POINT_P(result); |
| 5029 | } |
| 5030 | |
| 5031 | |
| 5032 | /* circle_ar - returns the area of the circle. |
| 5033 | */ |
| 5034 | static float8 |
| 5035 | circle_ar(CIRCLE *circle) |
| 5036 | { |
| 5037 | return float8_mul(float8_mul(circle->radius, circle->radius), M_PI); |
| 5038 | } |
| 5039 | |
| 5040 | |
| 5041 | /*---------------------------------------------------------- |
| 5042 | * Conversion operators. |
| 5043 | *---------------------------------------------------------*/ |
| 5044 | |
| 5045 | Datum |
| 5046 | cr_circle(PG_FUNCTION_ARGS) |
| 5047 | { |
| 5048 | Point *center = PG_GETARG_POINT_P(0); |
| 5049 | float8 radius = PG_GETARG_FLOAT8(1); |
| 5050 | CIRCLE *result; |
| 5051 | |
| 5052 | result = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 5053 | |
| 5054 | result->center.x = center->x; |
| 5055 | result->center.y = center->y; |
| 5056 | result->radius = radius; |
| 5057 | |
| 5058 | PG_RETURN_CIRCLE_P(result); |
| 5059 | } |
| 5060 | |
| 5061 | Datum |
| 5062 | circle_box(PG_FUNCTION_ARGS) |
| 5063 | { |
| 5064 | CIRCLE *circle = PG_GETARG_CIRCLE_P(0); |
| 5065 | BOX *box; |
| 5066 | float8 delta; |
| 5067 | |
| 5068 | box = (BOX *) palloc(sizeof(BOX)); |
| 5069 | |
| 5070 | delta = float8_div(circle->radius, sqrt(2.0)); |
| 5071 | |
| 5072 | box->high.x = float8_pl(circle->center.x, delta); |
| 5073 | box->low.x = float8_mi(circle->center.x, delta); |
| 5074 | box->high.y = float8_pl(circle->center.y, delta); |
| 5075 | box->low.y = float8_mi(circle->center.y, delta); |
| 5076 | |
| 5077 | PG_RETURN_BOX_P(box); |
| 5078 | } |
| 5079 | |
| 5080 | /* box_circle() |
| 5081 | * Convert a box to a circle. |
| 5082 | */ |
| 5083 | Datum |
| 5084 | box_circle(PG_FUNCTION_ARGS) |
| 5085 | { |
| 5086 | BOX *box = PG_GETARG_BOX_P(0); |
| 5087 | CIRCLE *circle; |
| 5088 | |
| 5089 | circle = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 5090 | |
| 5091 | circle->center.x = float8_div(float8_pl(box->high.x, box->low.x), 2.0); |
| 5092 | circle->center.y = float8_div(float8_pl(box->high.y, box->low.y), 2.0); |
| 5093 | |
| 5094 | circle->radius = point_dt(&circle->center, &box->high); |
| 5095 | |
| 5096 | PG_RETURN_CIRCLE_P(circle); |
| 5097 | } |
| 5098 | |
| 5099 | |
| 5100 | Datum |
| 5101 | circle_poly(PG_FUNCTION_ARGS) |
| 5102 | { |
| 5103 | int32 npts = PG_GETARG_INT32(0); |
| 5104 | CIRCLE *circle = PG_GETARG_CIRCLE_P(1); |
| 5105 | POLYGON *poly; |
| 5106 | int base_size, |
| 5107 | size; |
| 5108 | int i; |
| 5109 | float8 angle; |
| 5110 | float8 anglestep; |
| 5111 | |
| 5112 | if (FPzero(circle->radius)) |
| 5113 | ereport(ERROR, |
| 5114 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 5115 | errmsg("cannot convert circle with radius zero to polygon" ))); |
| 5116 | |
| 5117 | if (npts < 2) |
| 5118 | ereport(ERROR, |
| 5119 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5120 | errmsg("must request at least 2 points" ))); |
| 5121 | |
| 5122 | base_size = sizeof(poly->p[0]) * npts; |
| 5123 | size = offsetof(POLYGON, p) + base_size; |
| 5124 | |
| 5125 | /* Check for integer overflow */ |
| 5126 | if (base_size / npts != sizeof(poly->p[0]) || size <= base_size) |
| 5127 | ereport(ERROR, |
| 5128 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 5129 | errmsg("too many points requested" ))); |
| 5130 | |
| 5131 | poly = (POLYGON *) palloc0(size); /* zero any holes */ |
| 5132 | SET_VARSIZE(poly, size); |
| 5133 | poly->npts = npts; |
| 5134 | |
| 5135 | anglestep = float8_div(2.0 * M_PI, npts); |
| 5136 | |
| 5137 | for (i = 0; i < npts; i++) |
| 5138 | { |
| 5139 | angle = float8_mul(anglestep, i); |
| 5140 | |
| 5141 | poly->p[i].x = float8_mi(circle->center.x, |
| 5142 | float8_mul(circle->radius, cos(angle))); |
| 5143 | poly->p[i].y = float8_pl(circle->center.y, |
| 5144 | float8_mul(circle->radius, sin(angle))); |
| 5145 | } |
| 5146 | |
| 5147 | make_bound_box(poly); |
| 5148 | |
| 5149 | PG_RETURN_POLYGON_P(poly); |
| 5150 | } |
| 5151 | |
| 5152 | /* |
| 5153 | * Convert polygon to circle |
| 5154 | * |
| 5155 | * The result must be preallocated. |
| 5156 | * |
| 5157 | * XXX This algorithm should use weighted means of line segments |
| 5158 | * rather than straight average values of points - tgl 97/01/21. |
| 5159 | */ |
| 5160 | static void |
| 5161 | poly_to_circle(CIRCLE *result, POLYGON *poly) |
| 5162 | { |
| 5163 | int i; |
| 5164 | |
| 5165 | Assert(poly->npts > 0); |
| 5166 | |
| 5167 | result->center.x = 0; |
| 5168 | result->center.y = 0; |
| 5169 | result->radius = 0; |
| 5170 | |
| 5171 | for (i = 0; i < poly->npts; i++) |
| 5172 | point_add_point(&result->center, &result->center, &poly->p[i]); |
| 5173 | result->center.x = float8_div(result->center.x, poly->npts); |
| 5174 | result->center.y = float8_div(result->center.y, poly->npts); |
| 5175 | |
| 5176 | for (i = 0; i < poly->npts; i++) |
| 5177 | result->radius = float8_pl(result->radius, |
| 5178 | point_dt(&poly->p[i], &result->center)); |
| 5179 | result->radius = float8_div(result->radius, poly->npts); |
| 5180 | } |
| 5181 | |
| 5182 | Datum |
| 5183 | poly_circle(PG_FUNCTION_ARGS) |
| 5184 | { |
| 5185 | POLYGON *poly = PG_GETARG_POLYGON_P(0); |
| 5186 | CIRCLE *result; |
| 5187 | |
| 5188 | result = (CIRCLE *) palloc(sizeof(CIRCLE)); |
| 5189 | |
| 5190 | poly_to_circle(result, poly); |
| 5191 | |
| 5192 | PG_RETURN_CIRCLE_P(result); |
| 5193 | } |
| 5194 | |
| 5195 | |
| 5196 | /*********************************************************************** |
| 5197 | ** |
| 5198 | ** Private routines for multiple types. |
| 5199 | ** |
| 5200 | ***********************************************************************/ |
| 5201 | |
| 5202 | /* |
| 5203 | * Test to see if the point is inside the polygon, returns 1/0, or 2 if |
| 5204 | * the point is on the polygon. |
| 5205 | * Code adapted but not copied from integer-based routines in WN: A |
| 5206 | * Server for the HTTP |
| 5207 | * version 1.15.1, file wn/image.c |
| 5208 | * http://hopf.math.northwestern.edu/index.html |
| 5209 | * Description of algorithm: http://www.linuxjournal.com/article/2197 |
| 5210 | * http://www.linuxjournal.com/article/2029 |
| 5211 | */ |
| 5212 | |
| 5213 | #define POINT_ON_POLYGON INT_MAX |
| 5214 | |
| 5215 | static int |
| 5216 | point_inside(Point *p, int npts, Point *plist) |
| 5217 | { |
| 5218 | float8 x0, |
| 5219 | y0; |
| 5220 | float8 prev_x, |
| 5221 | prev_y; |
| 5222 | int i = 0; |
| 5223 | float8 x, |
| 5224 | y; |
| 5225 | int cross, |
| 5226 | total_cross = 0; |
| 5227 | |
| 5228 | Assert(npts > 0); |
| 5229 | |
| 5230 | /* compute first polygon point relative to single point */ |
| 5231 | x0 = float8_mi(plist[0].x, p->x); |
| 5232 | y0 = float8_mi(plist[0].y, p->y); |
| 5233 | |
| 5234 | prev_x = x0; |
| 5235 | prev_y = y0; |
| 5236 | /* loop over polygon points and aggregate total_cross */ |
| 5237 | for (i = 1; i < npts; i++) |
| 5238 | { |
| 5239 | /* compute next polygon point relative to single point */ |
| 5240 | x = float8_mi(plist[i].x, p->x); |
| 5241 | y = float8_mi(plist[i].y, p->y); |
| 5242 | |
| 5243 | /* compute previous to current point crossing */ |
| 5244 | if ((cross = lseg_crossing(x, y, prev_x, prev_y)) == POINT_ON_POLYGON) |
| 5245 | return 2; |
| 5246 | total_cross += cross; |
| 5247 | |
| 5248 | prev_x = x; |
| 5249 | prev_y = y; |
| 5250 | } |
| 5251 | |
| 5252 | /* now do the first point */ |
| 5253 | if ((cross = lseg_crossing(x0, y0, prev_x, prev_y)) == POINT_ON_POLYGON) |
| 5254 | return 2; |
| 5255 | total_cross += cross; |
| 5256 | |
| 5257 | if (total_cross != 0) |
| 5258 | return 1; |
| 5259 | return 0; |
| 5260 | } |
| 5261 | |
| 5262 | |
| 5263 | /* lseg_crossing() |
| 5264 | * Returns +/-2 if line segment crosses the positive X-axis in a +/- direction. |
| 5265 | * Returns +/-1 if one point is on the positive X-axis. |
| 5266 | * Returns 0 if both points are on the positive X-axis, or there is no crossing. |
| 5267 | * Returns POINT_ON_POLYGON if the segment contains (0,0). |
| 5268 | * Wow, that is one confusing API, but it is used above, and when summed, |
| 5269 | * can tell is if a point is in a polygon. |
| 5270 | */ |
| 5271 | |
| 5272 | static int |
| 5273 | lseg_crossing(float8 x, float8 y, float8 prev_x, float8 prev_y) |
| 5274 | { |
| 5275 | float8 z; |
| 5276 | int y_sign; |
| 5277 | |
| 5278 | if (FPzero(y)) |
| 5279 | { /* y == 0, on X axis */ |
| 5280 | if (FPzero(x)) /* (x,y) is (0,0)? */ |
| 5281 | return POINT_ON_POLYGON; |
| 5282 | else if (FPgt(x, 0)) |
| 5283 | { /* x > 0 */ |
| 5284 | if (FPzero(prev_y)) /* y and prev_y are zero */ |
| 5285 | /* prev_x > 0? */ |
| 5286 | return FPgt(prev_x, 0.0) ? 0 : POINT_ON_POLYGON; |
| 5287 | return FPlt(prev_y, 0.0) ? 1 : -1; |
| 5288 | } |
| 5289 | else |
| 5290 | { /* x < 0, x not on positive X axis */ |
| 5291 | if (FPzero(prev_y)) |
| 5292 | /* prev_x < 0? */ |
| 5293 | return FPlt(prev_x, 0.0) ? 0 : POINT_ON_POLYGON; |
| 5294 | return 0; |
| 5295 | } |
| 5296 | } |
| 5297 | else |
| 5298 | { /* y != 0 */ |
| 5299 | /* compute y crossing direction from previous point */ |
| 5300 | y_sign = FPgt(y, 0.0) ? 1 : -1; |
| 5301 | |
| 5302 | if (FPzero(prev_y)) |
| 5303 | /* previous point was on X axis, so new point is either off or on */ |
| 5304 | return FPlt(prev_x, 0.0) ? 0 : y_sign; |
| 5305 | else if ((y_sign < 0 && FPlt(prev_y, 0.0)) || |
| 5306 | (y_sign > 0 && FPgt(prev_y, 0.0))) |
| 5307 | /* both above or below X axis */ |
| 5308 | return 0; /* same sign */ |
| 5309 | else |
| 5310 | { /* y and prev_y cross X-axis */ |
| 5311 | if (FPge(x, 0.0) && FPgt(prev_x, 0.0)) |
| 5312 | /* both non-negative so cross positive X-axis */ |
| 5313 | return 2 * y_sign; |
| 5314 | if (FPlt(x, 0.0) && FPle(prev_x, 0.0)) |
| 5315 | /* both non-positive so do not cross positive X-axis */ |
| 5316 | return 0; |
| 5317 | |
| 5318 | /* x and y cross axes, see URL above point_inside() */ |
| 5319 | z = float8_mi(float8_mul(float8_mi(x, prev_x), y), |
| 5320 | float8_mul(float8_mi(y, prev_y), x)); |
| 5321 | if (FPzero(z)) |
| 5322 | return POINT_ON_POLYGON; |
| 5323 | if ((y_sign < 0 && FPlt(z, 0.0)) || |
| 5324 | (y_sign > 0 && FPgt(z, 0.0))) |
| 5325 | return 0; |
| 5326 | return 2 * y_sign; |
| 5327 | } |
| 5328 | } |
| 5329 | } |
| 5330 | |
| 5331 | |
| 5332 | static bool |
| 5333 | plist_same(int npts, Point *p1, Point *p2) |
| 5334 | { |
| 5335 | int i, |
| 5336 | ii, |
| 5337 | j; |
| 5338 | |
| 5339 | /* find match for first point */ |
| 5340 | for (i = 0; i < npts; i++) |
| 5341 | { |
| 5342 | if (point_eq_point(&p2[i], &p1[0])) |
| 5343 | { |
| 5344 | |
| 5345 | /* match found? then look forward through remaining points */ |
| 5346 | for (ii = 1, j = i + 1; ii < npts; ii++, j++) |
| 5347 | { |
| 5348 | if (j >= npts) |
| 5349 | j = 0; |
| 5350 | if (!point_eq_point(&p2[j], &p1[ii])) |
| 5351 | break; |
| 5352 | } |
| 5353 | if (ii == npts) |
| 5354 | return true; |
| 5355 | |
| 5356 | /* match not found forwards? then look backwards */ |
| 5357 | for (ii = 1, j = i - 1; ii < npts; ii++, j--) |
| 5358 | { |
| 5359 | if (j < 0) |
| 5360 | j = (npts - 1); |
| 5361 | if (!point_eq_point(&p2[j], &p1[ii])) |
| 5362 | break; |
| 5363 | } |
| 5364 | if (ii == npts) |
| 5365 | return true; |
| 5366 | } |
| 5367 | } |
| 5368 | |
| 5369 | return false; |
| 5370 | } |
| 5371 | |
| 5372 | |
| 5373 | /*------------------------------------------------------------------------- |
| 5374 | * Determine the hypotenuse. |
| 5375 | * |
| 5376 | * If required, x and y are swapped to make x the larger number. The |
| 5377 | * traditional formula of x^2+y^2 is rearranged to factor x outside the |
| 5378 | * sqrt. This allows computation of the hypotenuse for significantly |
| 5379 | * larger values, and with a higher precision than when using the naive |
| 5380 | * formula. In particular, this cannot overflow unless the final result |
| 5381 | * would be out-of-range. |
| 5382 | * |
| 5383 | * sqrt( x^2 + y^2 ) = sqrt( x^2( 1 + y^2/x^2) ) |
| 5384 | * = x * sqrt( 1 + y^2/x^2 ) |
| 5385 | * = x * sqrt( 1 + y/x * y/x ) |
| 5386 | * |
| 5387 | * It is expected that this routine will eventually be replaced with the |
| 5388 | * C99 hypot() function. |
| 5389 | * |
| 5390 | * This implementation conforms to IEEE Std 1003.1 and GLIBC, in that the |
| 5391 | * case of hypot(inf,nan) results in INF, and not NAN. |
| 5392 | *----------------------------------------------------------------------- |
| 5393 | */ |
| 5394 | float8 |
| 5395 | pg_hypot(float8 x, float8 y) |
| 5396 | { |
| 5397 | float8 yx, |
| 5398 | result; |
| 5399 | |
| 5400 | /* Handle INF and NaN properly */ |
| 5401 | if (isinf(x) || isinf(y)) |
| 5402 | return get_float8_infinity(); |
| 5403 | |
| 5404 | if (isnan(x) || isnan(y)) |
| 5405 | return get_float8_nan(); |
| 5406 | |
| 5407 | /* Else, drop any minus signs */ |
| 5408 | x = fabs(x); |
| 5409 | y = fabs(y); |
| 5410 | |
| 5411 | /* Swap x and y if needed to make x the larger one */ |
| 5412 | if (x < y) |
| 5413 | { |
| 5414 | float8 temp = x; |
| 5415 | |
| 5416 | x = y; |
| 5417 | y = temp; |
| 5418 | } |
| 5419 | |
| 5420 | /* |
| 5421 | * If y is zero, the hypotenuse is x. This test saves a few cycles in |
| 5422 | * such cases, but more importantly it also protects against |
| 5423 | * divide-by-zero errors, since now x >= y. |
| 5424 | */ |
| 5425 | if (y == 0.0) |
| 5426 | return x; |
| 5427 | |
| 5428 | /* Determine the hypotenuse */ |
| 5429 | yx = y / x; |
| 5430 | result = x * sqrt(1.0 + (yx * yx)); |
| 5431 | |
| 5432 | check_float8_val(result, false, false); |
| 5433 | |
| 5434 | return result; |
| 5435 | } |
| 5436 | |